Powered by Deep Web Technologies
Note: This page contains sample records for the topic "industrial steam coking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Steam Path Audits on Industrial Steam Turbines  

E-Print Network (OSTI)

The electric utility industry has benefitted from steam path audits on steam turbines for several years. Benefits include the ability to identify areas of performance degradation during a turbine outage. Repair priorities can then be set in accordance with quantitative results from the steam path audit. As a result of optimized repair decisions, turbine efficiency increases, emissions decrease, and maintenance expenses decrease. These benefits can be achieved by using a computer program Encotech, Inc. developed for the utility industry to perform steam path audits. With the increased emphasis on industrial turbine efficiency, and as a result of the experience with the Destec Operating Company, Encotech is adapting the computer program to respond to the needs of the industrial steam turbine community. This paper describes the results of using the STPE computer program to conduct a steam path audit at Destec Energy's Lyondell Cogeneration power plant.

Mitchell, D. R.

1992-04-01T23:59:59.000Z

2

Deaerators in Industrial Steam Systems  

SciTech Connect

This revised ITP tip sheet on deaerators in industrial steam systems provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

3

Fundamentals of Delayed Coking Joint Industry Project  

SciTech Connect

Delayed coking evolved steadily over the early to mid 1900s to enable refiners to convert high boiling, residual petroleum fractions to light products such as gasoline. Pound for pound, coking is the most energy intensive of any operation in a modern refinery. Large amounts of energy are required to heat the thick, poor-quality petroleum residuum to the 900 to 950 degrees F required to crack the heavy hydrocarbon molecules into lighter, more valuable products. One common misconception of delayed coking is that the product coke is a disadvantage. Although coke is a low valued (near zero economic value) byproduct, compared to transportation fuels, there is a significant worldwide trade and demand for coke as it is an economical fuel. Coke production has increased steadily over the last ten years, with further increases forecast for the foreseeable future. Current domestic production is near 111,000 tons per day. A major driving force behind this increase is the steady decline in crude quality available to refiners. Crude slates are expected to grow heavier with higher sulfur contents while environmental restrictions are expected to significantly reduce the demand for high-sulfur residual fuel oil. Light sweet crudes will continue to be available and in even greater demand than they are today. Refiners will be faced with the choice of purchasing light sweet crudes at a premium price, or adding bottom of the barrel upgrading capability, through additional new investments, to reduce the production of high-sulfur residual fuel oil and increase the production of low-sulfur distillate fuels. A second disadvantage is that liquid products from cokers frequently are unstable, i.e., they rapidly form gum and sediments. Because of intermediate investment and operating costs, delayed coking has increased in popularity among refiners worldwide. Based on the 2000 Worldwide Refining Survey published in the Oil and Gas, the delayed coking capacity for 101 refineries around the world is 2,937,439 barrels/calendar day. These cokers produce 154,607 tons of coke per day and delayed coking accounts for 88% of the world capacity. The delayed coking charge capacity in the United States is 1,787,860 b/cd. Despite its wide commercial use, only relatively few contractors and refiners are truly knowledgeable in delayed-coking design, so that this process carries with it a ''black art'' connotation. Until recently, the expected yield from cokers was determined by a simple laboratory test on the feedstock. As a result of Tulsa University's prior related research, a process model was developed that with additional work could be used to optimize existing delayed cokers over a wide range of potential feedstocks and operating conditions. The objectives of this research program are to: utilize the current micro, batch and pilot unit facilities at The University of Tulsa to enhance the understanding of the coking process; conduct additional micro and pilot unit tests with new and in-house resids and recycles to make current optimization models more robust; conduct focused kinetic experiments to enhance the furnace tube model and to enhance liquid production while minimizing sulfur in the products; conduct detailed foaming studies to optimize the process and minimize process upsets; quantify the parameters that affect coke morphology; and to utilize the knowledge gained from the experimental and modeling studies to enhance the computer programs developed in the previous JIP for optimization of the coking process. These refined computer models will then be tested against refinery data provided by the member companies. Novel concepts will also be explored for hydrogen sulfide removal of furnace gases as well as gas injection studies to reduce over-cracking.

Michael Volk; Keith Wisecarver

2003-09-26T23:59:59.000Z

4

Fundamentals of Delayed Coking Joint Industry Project  

SciTech Connect

Delayed coking evolved steadily over the early to mid 1900s to enable refiners to convert high boiling, residual petroleum fractions to light products such as gasoline. Pound for pound, coking is the most energy intensive of any operation in a modern refinery. Large amounts of energy are required to heat the thick, poor-quality petroleum residuum to the 900 to 950 degrees F required to crack the heavy hydrocarbon molecules into lighter, more valuable products. One common misconception of delayed coking is that the product coke is a disadvantage. Although coke is a low valued (near zero economic value) byproduct, compared to transportation fuels, there is a significant worldwide trade and demand for coke as it is an economical fuel. Coke production has increased steadily over the last ten years, with further increases forecast for the foreseeable future. Current domestic production is near 111,000 tons per day. A major driving force behind this increase is the steady decline in crude quality available to refiners. Crude slates are expected to grow heavier with higher sulfur contents while environmental restrictions are expected to significantly reduce the demand for high-sulfur residual fuel oil. Light sweet crudes will continue to be available and in even greater demand than they are today. Refiners will be faced with the choice of purchasing light sweet crudes at a premium price, or adding bottom of the barrel upgrading capability, through additional new investments, to reduce the production of high-sulfur residual fuel oil and increase the production of low-sulfur distillate fuels. A second disadvantage is that liquid products from cokers frequently are unstable, i.e., they rapidly form gum and sediments. Because of intermediate investment and operating costs, delayed coking has increased in popularity among refiners worldwide. Based on the 2000 Worldwide Refining Survey published in the Oil and Gas, the delayed coking capacity for 101 refineries around the world is 2,937,439 barrels/calendar day. These cokers produce 154,607 tons of coke per day and delayed coking accounts for 88% of the world capacity. The delayed coking charge capacity in the United States is 1,787,860 b/cd. Despite its wide commercial use, only relatively few contractors and refiners are truly knowledgeable in delayed-coking design, so that this process carries with it a ''black art'' connotation. Until recently, the expected yield from cokers was determined by a simple laboratory test on the feedstock. As a result of Tulsa University's prior related research, a process model was developed that with additional work could be used to optimize existing delayed cokers over a wide range of potential feedstocks and operating conditions. The objectives of this research program are to: utilize the current micro, batch and pilot unit facilities at The University of Tulsa to enhance the understanding of the coking process; conduct additional micro and pilot unit tests with new and in-house resids and recycles to make current optimization models more robust; conduct focused kinetic experiments to enhance the furnace tube model and to enhance liquid production while minimizing sulfur in the products; conduct detailed foaming studies to optimize the process and minimize process upsets; quantify the parameters that affect coke morphology; and to utilize the knowledge gained from the experimental and modeling studies to enhance the computer programs developed in the previous JIP for optimization of the coking process. These refined computer models will then be tested against refinery data provided by the member companies. Novel concepts will also be explored for hydrogen sulfide removal of furnace gases as well as gas injection studies to reduce over-cracking.

Michael Volk; Keith Wisecarver

2004-09-26T23:59:59.000Z

5

Fundamentals of Delayed Coking Joint Industry Project  

Science Conference Proceedings (OSTI)

The coking test facilities include three reactors (or cokers) and ten utilities. Experiments were conducted using the micro-coker, pilot-coker, and stirred-batch coker. Gas products were analyzed using an on-line gas chromatograph. Liquid properties were analyzed in-house using simulated distillation (HP 5880a), high temperature gas chromatography (6890a), detailed hydrocarbon analysis, and ASTM fractionation. Coke analyses as well as feedstock analyses and some additional liquid analyses (including elemental analyses) were done off-site.

Volk Jr., Michael; Wisecarver, Keith D.; Sheppard, Charles M.

2003-02-07T23:59:59.000Z

6

Fundamentals of Delayed Coking Joint Industry Project  

SciTech Connect

Delayed coking evolved steadily over the early to mid 1900s to enable refiners to convert high boiling, residual petroleum fractions to light products such as gasoline. Pound for pound, coking is the most energy intensive of any operation in a modern refinery. Large amounts of energy are required to heat the thick, poor-quality petroleum residuum to the 900 to 950 degrees F required to crack the heavy hydrocarbon molecules into lighter, more valuable products. One common misconception of delayed coking is that the product coke is a disadvantage. Although coke is a low valued (near zero economic value) byproduct, compared to transportation fuels, there is a significant worldwide trade and demand for coke as it is an economical fuel. Coke production has increased steadily over the last ten years, with further increases forecast for the foreseeable future. Current domestic production is near 111,000 tons per day. A major driving force behind this increase is the steady decline in crude quality available to refiners. Crude slates are expected to grow heavier with higher sulfur contents while environmental restrictions are expected to significantly reduce the demand for high-sulfur residual fuel oil. Light sweet crudes will continue to be available and in even greater demand than they are today. Refiners will be faced with the choice of purchasing light sweet crudes at a premium price, or adding bottom of the barrel upgrading capability, through additional new investments, to reduce the production of high-sulfur residual fuel oil and increase the production of low-sulfur distillate fuels. A second disadvantage is that liquid products from cokers frequently are unstable, i.e., they rapidly form gum and sediments. Because of intermediate investment and operating costs, delayed coking has increased in popularity among refiners worldwide. Based on the 2000 Worldwide Refining Survey published in the Oil and Gas, the delayed coking capacity for 101 refineries around the world is 2,937,439 barrels/calendar day. These cokers produce 154,607 tons of coke per day and delayed coking accounts for 88% of the world capacity. The delayed coking charge capacity in the United States is 1,787,860 b/cd. Despite its wide commercial use, only relatively few contractors and refiners are truly knowledgeable in delayed-coking design, so that this process carries with it a ''black art'' connotation. Until recently, the expected yield from cokers was determined by a simple laboratory test on the feedstock. As a result of Tulsa University's prior related research, a process model was developed that with additional work could be used to optimize existing delayed cokers over a wide range of potential feedstocks and operating conditions. The objectives of this research program are to: utilize the current micro, batch and pilot unit facilities at The University of Tulsa to enhance the understanding of the coking process; conduct additional micro and pilot unit tests with new and in-house resids and recycles to make current optimization models more robust; conduct focused kinetic experiments to enhance the furnace tube model and to enhance liquid production while minimizing sulfur in the products; conduct detailed foaming studies to optimize the process and minimize process upsets; quantify the parameters that affect coke morphology; and to utilize the knowledge gained from the experimental and modeling studies to enhance the computer programs developed in the previous JIP for optimization of the coking process. These refined computer models will then be tested against refinery data provided by the member companies. Novel concepts will also be explored for hydrogen sulfide removal of furnace gases as well as gas injection studies to reduce over-cracking. The following deliverables are scheduled from the two projects of the three-year JIP: (1) A novel method for enhancing liquid yields from delayed cokers and data that provide insight as to the optimum temperature to remove hydrogen sulfide from furnace gases. (2) An understanding of what causes foaming in c

Michael Volk Jr; Keith Wisecarver

2005-10-01T23:59:59.000Z

7

The development of coke smelting and the industrial revolution  

E-Print Network (OSTI)

Abraham Darby and the origins of the industrial revolution in Britain. Alan Macfarlane talks to John about the reasons for the area near Birmingham becoming the epi-centre of the industrial development, and the development of coke furnaces and iron...

Macfarlane, Alan

2004-08-05T23:59:59.000Z

8

The steam engine and industrialization  

E-Print Network (OSTI)

Simon Schaffer in York Rail Museum talks to the camera about the relationship between the steam engine and industrialization and whatsteam meant; a regular supply of moving power for workshops and factories....

Dugan, David

2004-08-17T23:59:59.000Z

9

Coking Coal Prices for Industry - EIA  

Gasoline and Diesel Fuel Update (EIA)

Prices for Industry for Selected Countries1 Prices for Industry for Selected Countries1 U.S. Dollars per Metric Ton2 Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Argentina NA NA NA NA NA 37.24 NA NA NA Austria NA NA NA NA NA NA NA NA NA Belgium 54.03 NA NA NA NA NA NA NA NA Brazil NA NA NA NA NA 106.77 NA NA NA Canada NA NA NA NA NA NA NA NA NA Chile NA NA NA NA NA 69.02 NA NA NA China NA 38.38 41.28 52.20 61.72 NA NA NA NA Chinese Taipei (Taiwan) - - - - - - - - - - - - - - - - - - Colombia NA NA NA NA NA 33.84 NA NA NA Costa Rica NA NA NA NA NA NA NA NA NA Cuba NA NA NA NA NA NA NA NA NA Czech Republic 51.37 61.04 C C C C C C C Denmark - - - - - - - - - - - - - - - - - -

10

MISR -- Solar and steam for industry  

SciTech Connect

The goal of the MISR project is to assist industry in developing viable Solar Energy Systems which have high reliability and low cost because they do not require custom engineering and installation for each industrial site. The collector field, piping and steam generation equipment are pre-engineered to be suitable for a wide range of industrial steam applications. The approach of the MISR project is twofold: to develop line-focus industrial solar thermal energy systems which, like conventional packaged steam boilers, are based on the modular concept; and to install and operate a number (10 or less) of these systems at existing industrial plants, supplementing steam produced by conventional boilers. The project is briefly described.

1981-12-31T23:59:59.000Z

11

New environmental concepts in the chemical and coke industries  

Science Conference Proceedings (OSTI)

We know that environmentally pure technologies do not exist. Coke production is no exception to the rule. The article considers the logic of environmental decision making. Attention focuses on a new bank of ecologically appropriate materials whose release to the biosphere must be considered solely in quantititative terms. Qualitativily all these materials are familiar; they are assimilated by populations of microorganisms and tar thus compatible with the biosphere.

A.Yu. Naletov; V.A. Naletov [Mendeleev Russian Chemical-Engineering University (Russian Federation)

2007-05-15T23:59:59.000Z

12

Tools to Boost Steam System Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program steam software tools can help industrial plants identify steam system improvements to save energy and money.

Not Available

2008-12-01T23:59:59.000Z

13

,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 7.2;" 2 Relative Standard Errors for Table 7.2;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related","All"

14

,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"  

U.S. Energy Information Administration (EIA) Indexed Site

Relative Standard Errors for Table 7.1;" Relative Standard Errors for Table 7.1;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related","All"

15

Dale Coke: Coke Farm  

E-Print Network (OSTI)

Dale Coke Photo by Benjamin J. Myers.2009. Coke FarmDale Coke grew up on an apricot orchard in California’s

Farmer, Ellen

2010-01-01T23:59:59.000Z

16

Industrial Heat Pumps for Steam and Fuel Savings: A BestPractices Steam Technical Brief  

SciTech Connect

The purpose of this Steam Techcial Brief is to introduce heat-pump technology and its applicaiton in industrial processes.

2003-06-01T23:59:59.000Z

17

"Greening" Industrial Steam Generation via On-demand Steam Systems  

E-Print Network (OSTI)

Both recent economic and environmental conditions in the U.S. have converged to bring about unprecedented attention to energy efficiency and sustainability in the country's industrial sector. Historically, energy costs in the U.S. have been low in comparison to global averages in some measure do to an extended tolerance for externalized costs related to environmental degradation. Consequently, awareness, innovation & implementation of technologies focused on energy efficiency and reduced environmental impact have not kept pace with other industrialized nations. The U.S. is confronted with looming tipping points with respect to energy supply and GHG emissions that represent very tangible constraints on future economic growth and quality of life. A recent 2008 article in Forbes Magazine highlights the top ten most energy efficient economies in the world. The U.S. is conspicuously absent from the list. The U.S. economy, with an estimated energy intensity of 9,000 Btu's/$GDP, is only half as energy efficient as Japan (holding the top spot on the list with an EI of 4,500 Btu's / US$ GDP). The U.S. Department of Energy has initiated the Save Energy Now program to address this by supporting reductions in U.S. industrial energy intensity by 25% by 2020. A recent 2005 survey conducted by Energy & Environmental Analysis, Inc. (EEA) for Oak Ridge National Laboratory indicates that the current U.S. inventory of commercial/industrial boilers stands at around 163,000 units and 2.7 million MMBtu/hr. total fuel input capacity. These boilers consume nearly 8,100 Tbtu per year, representing about 40% of all energy consumed in the commercial/industrial sectors. Moreover, this same survey indicates that 47% of all commercial/industrial boilers in the U.S. are 40+ years old while as many as 76% are 30+ years old. Boilers account for nearly half of commercial / industrial energy consumption and represent some of the most energy intensive systems comprising these sectors. Given the preponderance of aged, obsolete boiler technology currently in service in the U.S., it is critical to raise awareness and examine the role of emerging new technologies to address the energy and environmental challenges inherent with steam generation. In the same way that tank-less / instantaneous water heating systems are eschewing a new era in energy efficiency in the residential sector, compact modular on-demand steam generation systems are poised to support the same kind of transformation in the commercial / industrial sector. This paper will illustrate how emerging on-demand steam generation technologies will play a part in addressing the energy and environmental challenges facing the country's commercial/ industrial sectors and in doing so help to transform the U.S. economy.

Smith, J. P.

2010-01-01T23:59:59.000Z

18

US DOE Industrial Steam BestPractices Software Tools  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOW RESTRICTED For internal DOW RESTRICTED For internal use only US DOE Industrial Steam BestPractices Software Tools Riyaz Papar, PE, CEM Hudson Technologies Company Phone: (281) 298 0975 Email: rpapar@hudsontech.com - Agenda * Introduction * Steam System BP Tools Suite - SSST - SSAT - 3EPlus * Q & A 1 Steam System Management Objective: Minimize Steam Use, Energy Losses And Most Importantly STEAM COST!! Steam Market Assessment Takeaways * Fuel savings estimates - individual projects - ranged from 0.6 percent to 5.2 percent * Estimated payback periods generally very attractive - Ranged from 2 to 34 months - Most less than 2 years * Potential steam savings in target industries - over 12 percent of fuel use 2 Promising Areas To Achieve Steam Energy and Cost Savings? Use Steam System Scoping Tool (SSST) For

19

Cogeneration: An Industrial Steam and Power Option  

E-Print Network (OSTI)

Industrial facilities of all sizes have the ability to reduce and better control both power and steam costs with a cogeneration system. Unlike the larger systems that sell almost all of the cogenerated power to a regulated electric utility, these internal use systems use the cogenerated power on-site to reduce power purchases. Ranging from a few hundred kilowatts to tens of megawatts, they are somewhat smaller than the Wholesale Power systems; system size is determined by the industrial plant's electric and thermal requirements and not by an external need for power by a utility. These systems can be very cost effective but require considerably more engineering analysis of site conditions than is typical for a Wholesale Power Project; it is necessary to analyze the industrial host's power and thermal requirements on an hour by hour basis. Moreover, because economic viability is dependent upon displacing some or all of the industrial site's purchased power requirements, considerable attention must be given to the analysis of the local utility's retail rates. This paper describes the concept of an Internal Use cogeneration system and reviews some of the key factors that must be considered in evaluating the viability of a cogeneration facility at any specific industrial site.

Orlando, J. A.; Stewart, M. M.; Roberts, J. R.

1993-03-01T23:59:59.000Z

20

Steam Challenge: Developing A New DOE Program to Help Industry be Steam Smart  

E-Print Network (OSTI)

Last year, the Alliance to Save Energy, the Department of Energy's Office of Industrial Technologies, and a cadre of private companies and associations formed an innovative "Steam Partnership" with the goal of developing a new, DOE technical assistance program on steam efficiency. In 1997, the Steam Partnership began to define the appropriate activities, tools, and services of a public-private program on steam. Modeled after the successful Motor Challenge program and the newly launched Compressed Air Challenge program, "Steam Challenge" will highlight the importance of steam system efficiency and provide information and technical assistance on technologies for today's industrial steam systems. This paper will introduce Steam Challenge, describe what has been accomplished over the last year, and describe the program's future goals and activities.

Jones, T.; Hart, F.

1998-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial steam coking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Industrial Steam Power Cycles Final End-Use Classification  

E-Print Network (OSTI)

Final end uses of steam include two major classifications: those uses that condense the steam against heat transfer surfaces to provide heat to an item of process or service equipment; and those that require a mass flow of steam for stripping, dilution, a reaction ingredient, etc. These classifications are termed 'Btu' loads or 'Pound' loads. Some final end uses of steam are actually a combination of the two. The classification of steam loads is extremely important to the overall economics of the industrial plant steam system. These economic effects are explained in detail as they impact on both the thermal efficiency and the heat power cycle efficiency of an industrial system. The use of a powerful steam system mass and energy modeling program called MESA (Modular Energy System Analyzer, The MESA Company) in identifying and accurately evaluating these effects is described.

Waterland, A. F.

1983-01-01T23:59:59.000Z

22

The Analysis and Development of Large Industrial Steam Systems  

E-Print Network (OSTI)

Chemicals, petroleum, pulp and paper, and many other industries depend heavily on extensive complex steam systems for thermal and mechanical energy delivery. Steam's versatility and desirable characteristics as both a heat transfer medium and a working fluid has fostered and perpetuated this dependency throughout industrial history. Many large process operations, however, have not developed their steam systems to keep pace with rapidly changing energy economics. As a result, the use of steam on industrial plants seldom approaches the optimum levels of first or second law efficiency. At each of many industrial complexes today, tens of millions of energy dollars per year are literally wasted. This paper describes some case histories comparing actual and optimum steam system configurations, and operational concepts. Highly effective steam system analytical techniques developed and used by the author are discussed. These include "energy level" mass balancing; the "three-branch" thermodynamic system; and powerful sophisticated digital computer steam system models. These latter are really "working models" on which development options can be tried and actively evaluated for economic and technical feasibility. The principal of steam as a plant-wide integrating energy system is explained and demonstrated with examples. These show how a properly structured and effectively operated steam system can increase operational flexibility and facilitate the practical implementation of many energy conservation opportunities in process and plant service areas.

Waterland, A. F.

1980-01-01T23:59:59.000Z

23

Advanced high performance steam systems for industrial cogeneration: Final report  

SciTech Connect

Advanced steam conditions of 1500/sup 0/F and 1500 psig have been shown to offer a major positive economic impact and a dramatic improvement in cogeneration system performance. In a back pressure steam turbine system, electricity production increases by 80%, and the return on investment improves by 60%. For a 35% extraction turbine, the electricity production increases 28% and the return increases by 34%. Designs of a 1500/sup 0/F modular steam generator and two sizes of matching steam turbines have been completed. The steam generator module uses all Alloy 800 tubes except for two superheater rows of Inconel 617. Its design is based on current production Alloy 800 once-through steam generators currently being introduced into cogeneration combined cycles. A test loop is currently evaluating candidate steam generator tube materials and steam turbine materials at 1500/sup 0/F and 1500 psig. To date, 4000 hours of operation of this loop have been accumulated. The candidate metals after operation in 1500/sup 0/F and 1500 psig steam showed no surface distress. Trade-off studies have been completed on the high temperature steam turbine. Tangential, radial, and axial turbine configurations have been designed and evaluated. The stress analyses of the 1500/sup 0/F steam turbines show that the machine can be operated at 1500/sup 0/F and 1500 psig for over ten years without component replacement when using rotor hub cooling to maintain disk bore temperatures in the 900/sup 0/F range. When applied in back pressure steam, extraction steam, and combined cycle systems the ''1500/sup 0/F steam technology building blocks'' provide full coverage of industrial cogeneration from 4 MW to 25 MW in a single gas turbine and steam turbine installation. A twelve-inch diameter tangential flow turbine has also been designed which is optimum in the 1 to 3 MW power range.

Duffy, T.E.; Schneider, P.H.; Campbell, A.H.; Evensen, O.E.

1987-01-01T23:59:59.000Z

24

Solar Augmented Steam Cycles: 2010 Industry Update  

Science Conference Proceedings (OSTI)

Several studies were performed to evaluate a range of solar augmented steam cycle design options. All the designs use steam generated by a solar field in a conventional steam cycle, either offsetting some of the fuel required to generate power or boosting plant power output. The scope of the studies included a conceptual design modeling effort to evaluate a broad range of solar integration design options for biomass and natural gas combined-cycle (NGCC) power plants and two detailed case studies at NGCC ...

2010-12-23T23:59:59.000Z

25

Following Where the Steam Goes: Industry's Business Opportunity  

E-Print Network (OSTI)

Many associated benefits accrue from plant projects which comprehensively address steam systems. The DOE-Alliance to Save Energy Steam Challenge program was initiated shortly after last year's IETC on April 30, 1998 to promote awareness of these benefits. Program accomplishments include the collection of steam efficiency tools and documents, the opening of a Steam Challenge clearinghouse, and the creation of a Steering Committee and six subcommittees which allow valued input from businesses and organizations involved with steam systems. Steam energy efficiency opportunities are especially attractive in key industrial sectors. Emphasizing a "systems" approach to steam efficiency is necessary for optimal operation. This takes into consideration the importance of technologies and practices affecting boilers, distribution systems, steam applications and condensate return. Each of these areas offers energy, pollution, and cost savings, as well as important productivity and safety benefits. Particularly important to consider is the interaction effect among these technologies and practices. As an example, poor water treatment can result in early steam trap failure or pipe corrosion down the line. Many examples and case studies demonstrate the benefits of a systems approach to steam.

Jaber, D.; Jones, T.

1999-05-01T23:59:59.000Z

26

Implementation and Rejection of Industrial Steam System Energy Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Implementation and Rejection of Industrial Steam System Energy Efficiency Implementation and Rejection of Industrial Steam System Energy Efficiency Measures Title Implementation and Rejection of Industrial Steam System Energy Efficiency Measures Publication Type Journal Article Refereed Designation Unknown LBNL Report Number LBNL-6288E Year of Publication 2013 Authors Therkelsen, Peter L., and Aimee T. McKane Journal Energy Policy Volume 57 Start Page 318 Date Published 06/2013 Publisher Lawrence Berkeley National Laboratory Keywords industrial energy efficiency, industrial energy efficiency barriers, steam system efficiency Abstract Steam systems consume approximately one third of energy applied at U.S. industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of five years through the Energy Savings Assessment (ESA) program administered by the U.S. Department of Energy (U.S. DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well.

27

Met coke world summit 2005  

SciTech Connect

Papers are presented under the following session headings: industry overview and market outlook; coke in the Americas; the global coke industry; and new developments. All the papers (except one) only consist of a copy of the overheads/viewgraphs.

NONE

2005-07-01T23:59:59.000Z

28

Aerogel-Based Insulation for Industrial Steam Distribution Systems  

SciTech Connect

Thermal losses in industrial steam distribution systems account for 977 trillion Btu/year in the US, more than 1% of total domestic energy consumption. Aspen Aerogels worked with Department of Energy’s Industrial Technologies Program to specify, develop, scale-up, demonstrate, and deliver Pyrogel XT®, an aerogel-based pipe insulation, to market to reduce energy losses in industrial steam systems. The product developed has become Aspen’s best selling flexible aerogel blanket insulation and has led to over 60 new jobs. Additionally, this product has delivered more than ~0.7 TBTU of domestic energy savings to date, and could produce annual energy savings of 149 TBTU by 2030. Pyrogel XT’s commercial success has been driven by it’s 2-4X better thermal performance, improved durability, greater resistance to corrosion under insulation (CUI), and faster installation times than incumbent insulation materials.

John Williams

2011-03-30T23:59:59.000Z

29

Revised Industry Steam Generator Program Generic License Change Package  

E-Print Network (OSTI)

License Change Package for NRC review and endorsement. Industry events during the subsequent months have delayed the NRC review and presented an opportunity for the industry to improve the submittal. A summary of the major changes from the February submittal is provided in Enclosure 1. The resulting package (Enclosures 2 through 8), which supercedes the earlier version in its entirety, is enclosed for your endorsement. Although the events of the last ten months have resulted in some changes to the industry steam generator program guidance, the fundamental principles remain sound. Equally as important, the program has demonstrated its resiliency. The steam generator program guidance is designed to accommodate new knowledge and experience, and that is precisely what is occurring. The enclosed Generic License Change Package includes changes that reflect recent experience. In addition, the appropriate underlying technical documents are currently being revised or supplemental guidance is being developed as necessary to reflect new information. The industry and the NRC worked diligently to address the technical and licensing issues that ultimately resulted in the February 2000 version of the Steam Generator Program Generic License Change Package. Although these documents have been revised since the previous submittal, the differences do not represent a change in our position on the issues.

David J. Modeen; Mr. Samuel; J. Collins; U. S. Nuclear; Regulatory Commission; Xuo Mr; Samuel J. Collins

2000-01-01T23:59:59.000Z

30

Reduce Natural Gas Use in Your Industrial Steam Systems: Ten Timely Tips  

SciTech Connect

This DOE Industrial Technologies Program brochure provides 10 timely tips to help industrial manufacturing plants save money and reduce natural gas use in their steam systems.

2006-02-01T23:59:59.000Z

31

A novel technique for on-line coke gasification during propane steam reforming using forced CO2 cycling.  

E-Print Network (OSTI)

??Steam reforming is an important source of synthesis gas production that is used by major petrochemical processes such as ammonia, methanol and the Fisher-Tropsch process.… (more)

Alenazey, Feraih Sheradh

2011-01-01T23:59:59.000Z

32

Solar production of industrial process steam. Final detail design report  

SciTech Connect

The application of solar energy to produce 110 psig industrial steam for processing laundry and drycleaning for a facility in Pasadena, California, is described. The system uses tracking parabolic trough collectors. The collectors, the detailed process analyses, solar calculations and insolation data, energy reduction analyses, economic analyses, design of the solar system, construction, and costs are presented in detail. Included in appendices are the following: mechanical specifications and calculations, electrical specifications and calculations, and structural specifications and calculations. (MHR)

Eldridge, B.G.

1978-06-15T23:59:59.000Z

33

Advanced Green Petroleum Coke Calcination In Electrothermal ...  

Science Conference Proceedings (OSTI)

Symposium, Fluidization Technologies for the Mineral, Materials, and Energy Industries. Presentation Title, Advanced Green Petroleum Coke Calcination In ...

34

Minimizing the formation of coke and methane on Co nanoparticles in steam reforming of biomass-derived oxygenates  

SciTech Connect

Fundamental understanding and control of chemical transformations are essential to the development of technically feasible and economically viable catalytic processes for efficient conversion of biomass to fuels and chemicals. Using an integrated experimental and theoretical approach, we report high hydrogen selectivity and catalyst durability of acetone steam reforming (ASR) on inert carbon supported Co nanoparticles. The observed catalytic performance is further elucidated on the basis of comprehensive first-principles calculations. Instead of being considered as an undesired intermediate prone for catalyst deactivation during bioethanol steam reforming (ESR), acetone is suggested as a key and desired intermediate in proposed two-stage ESR process that leads to high hydrogen selectivity and low methane formation on Co-based catalysts. The significance of the present work also sheds a light on controlling the chemical transformations of key intermediates in biomass conversion such as ketones. We gratefully acknowledge the financial support from U. S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, and the Laboratory directed research and development (LDRD) project of Pacific Northwest National Laboratory (PNNL). Computing time was granted by the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). The EMSL is a U.S. DOE national scientific user facility located at PNNL, and sponsored by the U.S. DOE’s Office of Biological and Environmental Research.

Sun, Junming; Mei, Donghai; Karim, Ayman M.; Datye, Abhaya K.; Wang, Yong

2013-06-01T23:59:59.000Z

35

Bates solar industrial process steam application environmental impact assessment  

DOE Green Energy (OSTI)

It is planned to install 34,440 square feet of linear parabolic trough solar collectors at a new corrugator plant for making corrugated boxes. The system is to operate in parallel with a fossil fuel boiler. An assessment is presented of the impacts of the solar energy system on the existing environment and to determine whether or not a more detailed environmental impact statement is needed. The environmental assessment is based on actual operational data obtained on the collector, fluid, and heat transport system. A description of the design of the solar energy system and its application is given. Also included is a discussion of the location of the new plant in Fort Worth, Texas, and of the surrounding environment. Environmental impacts are discussed in detail, and alternatives to the solar industrial process steam retrofit application are offered. It is concluded that the overall benefits from the solar industrial process heat system outweigh any negative environmental factors. Benefits include reduced fossil fuel demand, with attending reductions in air pollutants. The selection of a stable heat transfer fluid with low toxicity and biodegradable qualities minimizes environmental damage due to fluid spills, personal exposure, and degradation byproducts. The collector is found to be aesthetically attractive with minimal hazards due to glare. (LEW)

Not Available

1981-06-30T23:59:59.000Z

36

Case history of industrial plant steam system layup for direct-fired gas operations  

Science Conference Proceedings (OSTI)

This paper presents the facts of an industrial plant steam system layup for direct fired gas operations. Fuel price savings indicated that gas firing a paper dryer, the largest steam user in the plant, would pay for itself in one year. Conversion work is detailed. Primary gas distribution was achieved by using one line of the steam loop. Machine water heating, power venting, space heating, and air makeup heating, among other conversions, are also specified.

Stacy, G.N.

1983-06-01T23:59:59.000Z

37

Characterization of Packing Ability of Coke Particles  

Science Conference Proceedings (OSTI)

VBD is conventionally used in anode industry to determine the required amount of pitch and fine coke. VBD may be achieved by dense particles while they do ...

38

Financial Impact of Good Condenser Vacuum in Industrial Steam Turbines: Computer Modeling Techniques  

E-Print Network (OSTI)

Industrial turbine throttle conditions are fixed by plant designs - materials of construction, steam requirements, etc. Condensing turbine exhaust conditions are limited by the atmosphere to which residual heat is rejected; and are fixed by installed condenser surface area and the steam space characteristics. Since the steam rate and shaft power costs are dependent on the available enthalpy drop across the machine, the steam must condense at the lowest practical thermal state. Thus, air presence and cooling rate must be controlled. The condensing turbine is not an isolated system. It directly affects the use of boiler fuel and the purchase of power. Its condensate requires reheating to feedwater temperature: steam is used, backpressure power is made, for example. Its performance affects the entire steam system and must be monitored persistently. Because of the complexities (and advantages) of systems analyses, computer modeling is demonstrated in this paper to fully evaluated the network effects and the financial impact of good condenser vacuum.

Viar, W. L.

1984-01-01T23:59:59.000Z

39

Productivity Improvement for Fossil Steam Power Plants: Industry Case Studies  

Science Conference Proceedings (OSTI)

The "Productivity Improvement Handbook for Fossil Steam Plants," now in its third edition, has included many descriptions of successfully applied advanced techniques and products. In the last few years, an increasingly diverse set of plant case studies have been described in some detail on the website of the Productivity Improvement User Group. This report assembles more than sixty of these case studies on subjects spanning the power plant from the boiler and the steam turbine, through plant auxiliaries ...

2003-11-17T23:59:59.000Z

40

Replace Pressure-Reducing Valves with Backpressure Turbogenerators: Office of Industrial Technologies (OIT) Steam Tip Fact Sheet No. 20  

SciTech Connect

Many industrial facilities produce steam at a higher pressure than is demanded by process requirements. Steam passes through pressure-reducing valves (PRVs, also known as letdown valves) at various locations in the steam distribution system to let down or reduce its pressure. A non-condensing or backpressure steam turbine can perform the same pressure-reducing function as a PRV, while converting steam energy into electrical energy.

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial steam coking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries: Main Report  

Science Conference Proceedings (OSTI)

This report assesses steam generation and use in the pulp and paper, chemical, and petroleum refining industries, and estimates the potential for energy savings from implementation of steam system performance and efficiency improvements.

Not Available

2002-10-01T23:59:59.000Z

42

Determination of electrical resistivity of dry coke beds  

SciTech Connect

The electrical resistivity of the coke bed is of great importance when producing FeMn, SiMn, and FeCr in a submerged arc furnace. In these processes, a coke bed is situated below and around the electrode tip and consists of metallurgical coke, slag, gas, and metal droplets. Since the basic mechanisms determining the electrical resistivity of a coke bed is not yet fully understood, this investigation is focused on the resistivity of dry coke beds consisting of different carbonaceous materials, i.e., coke beds containing no slag or metal. A method that reliably compares the electrical bulk resistivity of different metallurgical cokes at 1500{sup o} C to 1600{sup o}C is developed. The apparatus is dimensioned for industrial sized materials, and the electrical resistivity of anthracite, charcoal, petroleum coke, and metallurgical coke has been measured. The resistivity at high temperatures of the Magnitogorsk coke, which has the highest resistivity of the metallurgical cokes investigated, is twice the resistivity of the Corus coke, which has the lowest electrical resistivity. Zdzieszowice and SSAB coke sort in between with decreasing resistivities in the respective order. The electrical resistivity of anthracite, charcoal, and petroleum coke is generally higher than the resistivity of the metallurgical cokes, ranging from about two to about eight times the resistivity of the Corus coke at 1450{sup o}C. The general trend is that the bulk resistivity of carbon materials decreases with increasing temperature and increasing particle size.

Eidem, P.A.; Tangstad, M.; Bakken, J.A. [NTNU, Trondheim (Norway)

2008-02-15T23:59:59.000Z

43

Role of gas and steam turbines to reduce industrial plant energy costs  

SciTech Connect

Data are given to help industry select the economic fuel and economic mix of steam and gas turbines for energy-conservation measures and costs. Utilities and industrials can no longer rely on a firm supply of natural gas to fuel their boilers and turbines. The effect various liquid fuels have on gas turbine maintenance and availability is summarized. Process heat requirements per unit of power, process steam pressure, and the type of fuel will be factors in evaluating the proper mix of steam and gas turbines. The plant requirements for heat, and the availability of a reliable source of electric power will influence the amount of power (hp and kW) that can be economically generated by the industrial. (auth)

Wilson, W.B.; Hefner, W.J.

1973-11-01T23:59:59.000Z

44

Steam systems in industry: Energy use and energy efficiency improvement potentials  

SciTech Connect

Steam systems are a part of almost every major industrial process today. Thirty-seven percent of the fossil fuel burned in US industry is burned to produce steam. In this paper we will establish baseline energy consumption for steam systems. Based on a detailed analysis of boiler energy use we estimate current energy use in boilers in U.S. industry at 6.1 Quads (6.4 EJ), emitting almost 66 MtC in CO{sub 2} emissions. We will discuss fuels used and boiler size distribution. We also describe potential savings measures, and estimate the economic energy savings potential in U.S. industry (i.e. having payback period of 3 years or less). We estimate the nationwide economic potential, based on the evaluation of 16 individual measures in steam generation and distribution. The analysis excludes the efficient use of steam and increased heat recovery. Based on the analysis we estimate the economic potential at 18-20% of total boiler energy use, resulting in energy savings approximately 1120-1190 TBtu ( 1180-1260 PJ). This results in a reduction of CO{sub 2} emissions equivalent to 12-13 MtC.

Einstein, Dan; Worrell, Ernst; Khrushch, Marta

2001-07-22T23:59:59.000Z

45

Clean Production of Coke from Carbonaceous Fines  

Science Conference Proceedings (OSTI)

In order to produce steel (a necessary commodity in developed nations) using conventional technologies, you must have metallurgical coke. Current coke-making technology pyrolyzes high-quality coking coals in a slot oven, but prime coking coals are becoming more expensive and slot ovens are being shut-down because of age and environmental problems. The United States typically imports about 4 million tons of coke per year, but because of a world-wide coke scarcity, metallurgical coke costs have risen from about $77 per tonne to more than $225. This coke shortage is a long-term challenge driving up the price of steel and is forcing steel makers to search for alternatives. Combustion Resources (CR) has developed a technology to produce metallurgical coke from alternative feedstocks in an environmentally clean manner. The purpose of the current project was to refine material and process requirements in order to achieve improved economic benefits and to expand upon prior work on the proposed technology through successful prototype testing of coke products. The ultimate objective of this project is commercialization of the proposed technology. During this project period, CR developed coke from over thirty different formulations that meet the strength and reactivity requirements for use as metallurgical coke. The technology has been termed CR Clean Coke because it utilizes waste materials as feedstocks and is produced in a continuous process where pollutant emissions can be significantly reduced compared to current practice. The proposed feed material and operating costs for a CR Clean Coke plant are significantly less than conventional coke plants. Even the capital costs for the proposed coke plant are about half that of current plants. The remaining barrier for CR Clean Coke to overcome prior to commercialization is full-scale testing in a blast furnace. These tests will require a significant quantity of product (tens of thousands of tons) necessitating the construction of a demonstration facility. Talks are currently underway with potential partners and investors to build a demonstration facility that will generate enough coke for meaningful blast furnace evaluation tests. If the testing is successful, CR Clean Coke could potentially eliminate the need for the United States to import any coke, effectively decreasing US Steel industry dependence on foreign nations and reducing the price of domestic steel.

Craig N. Eatough

2004-11-16T23:59:59.000Z

46

Price of dwindling supply of better-quality coke will trend upward during this decade  

Science Conference Proceedings (OSTI)

This paper discusses the markets for petroleum coke with particular emphasis on the USA. The factors affecting the price of Green Coke are examined. It is considered that the price of any coke is set by the mix of markets available to the market based on demand. However, refiners producing similar quality cokes, will not necessarily receive the same netback price even if their cokes are sold to the same mix of markets. Calcined coke is used almost exclusively by the Aluminium industry thus green coke prices are indirectly tied to those of Aluminium as green coke is the primary carbon source for the calcined coke market.

Fasullo, P.; Tarrillion, T.; Matson, J.

1982-11-08T23:59:59.000Z

47

National survey of industrial markets for steam produced from burning municipal solid waste  

DOE Green Energy (OSTI)

This report presents the methodology and findings of an analysis to determine the maximum size of the industrial market for steam produced from municipal solid waste in the United States. The data used in the analysis were developed from the 1980 census report and the US Chamber of Commerce's 1979 Standard Industrial Classification (SIC) listing. The process used to match potential steam users with populations large enough to generate suitable quantities of waste is presented. No attempt was made to rank the markets or analyze the market economics.

Pearson, C.V.

1983-09-01T23:59:59.000Z

48

Method for processing coke oven gas  

SciTech Connect

Coke oven gas is subjected, immediately after the discharge thereof from coke ovens, and without any preliminary cooling operation or any purification operation other than desulfurization, to a catalytic cracking operation to form a hot cracked gas which is rich in hydrogen and carbon monoxide. The catalytic cracking reaction is carried out in the presence of a hydrogen-containing and/or CO2-containing gas, with a steam reforming catalyst.

Flockenhaus, C.; Meckel, J.F.; Wagener, D.

1980-11-25T23:59:59.000Z

49

Method for the wet quenching of coke  

SciTech Connect

A method and apparatus for the wet quenching of coke is disclosed wherein hot coke is sprayed from above with quenching water, the steam generated by the heat of the coke is condensed by a spray of condensation water from the top of the quenching tower, and the hot condensate-water mixture is collected at the bottom of the quenching tower and recirculated to the top of the tower where it is sprayed between quenching operations to be cooled by a counterflowing stream of air. The cooled condensate water mixture is suitable for reuse as the condensation spray water.

Blase, M.; Flockenhaus, C.; Wagener, D.

1982-03-30T23:59:59.000Z

50

Petroleum Coke VBD  

Science Conference Proceedings (OSTI)

Mar 1, 2011 ... Electrode Technology for Aluminium Production: Petroleum Coke VBD ... of Calcined Petroleum Coke: Jignesh Panchal1; Mark Wyborney1; ...

51

Solar production of industrial process steam at Ore-Ida frozen-fried-potato plant  

DOE Green Energy (OSTI)

TRW is designing a system for the demonstration of the Solar Production of Industrial Process Steam. Included, besides the Conceptual Design, is an Environmental Impact Assessment and a System Safety Analysis report. The system as proposed and conceptualized consists of an array of 9520 square feet of parabolic trough concentrating solar energy collectors which generate pressurized hot water. The pressurized water is allowed to flash to steam at 300 psi (417/sup 0/F) and fed directly into the high pressure steam lines of the Ore-Ida Foods, Inc., processing plant in Ontario, Oregon. Steam is normally generated in the factory by fossil-fired boilers and is used by means of a steam-to-oil heat exchanger for the process of frying potatoes in their frozen food processing line. The high pressure steam is also cascaded down to 125 psi for use in other food processing operations. This solar system will generate 2 x 10/sup 6/ Btu/hr during peak periods of insolation. Steam requirements in the plant for frying potatoes are: 43 x 10/sup 6/ Btu/hr at 300 psi and 52 x 10/sup 6/ Btu/hr at the lower temperatures and pressures. The Ontario plant operates on a 24 hr/day schedule six days a week during the potato processing campaigns and five days a week for the remainder of the year. The seventh day and sixth day, respectively, use steam for cleanup operations. An analysis of the steam generated, based on available annual insolation data and energy utilized in the plant, is included.

Cherne, J.M.; Gelb, G.H.; Pinkerton, J.D.; Paige, S.F.

1978-12-29T23:59:59.000Z

52

A flexible computer software package for industrial steam reformers and methanators based on rigorous heterogeneous mathematical models  

Science Conference Proceedings (OSTI)

An advanced software package for industrial steam reformers based upon heterogeneous models for the catalyst tube is developed and successfully checked against a number of top-fired and side-fired industrial reformers. The package is further developed ...

F. M. Alhabdan; M. A. Abashar; S. S. E. Elnashaie

1992-11-01T23:59:59.000Z

53

Steam systems in industry: Energy use and energy efficiency improvement potentials  

E-Print Network (OSTI)

Repair Flash Steam Recovery/ Condensate Return Condensateflash steam. When a steam trap purges condensate from ais removed by a steam trap, which allows condensate to pass

Einstein, Dan; Worrell, Ernst; Khrushch, Marta

2001-01-01T23:59:59.000Z

54

Improving Steam System Performance: A Sourcebook for Industry, Second Edition (Book) (Revised)  

Science Conference Proceedings (OSTI)

Improving Steam System Performance: A Sourcebook for Industry was developed for the U.S. Department of Energy's (DOE) Advanced Manufacturing Office (AMO), formerly the Industrial Technologies Program. AMO undertook this project as a series of sourcebook publications. Other topics in this series include: compressed air systems, pumping systems, fan systems, process heating and motor and drive systems. For more information about program resources, see AMO in the Where to Find Help section of this publication.

Not Available

2012-10-01T23:59:59.000Z

55

High performance steam development. Final report, Phase No. 3: 1500{degree}F steam plant for industrial cogeneration prototype development tests  

Science Conference Proceedings (OSTI)

As a key part of DOE`s and industry`s R&D efforts to improve the efficiency, cost, and emissions of power generation, a prototype High Performance Steam System (HPSS) has been designed, built, and demonstrated. The world`s highest temperature ASME Section I coded power plant successfully completed over 100 hours of development tests at 1500{degrees}F and 1500 psig on a 56,000 pound per hour steam generator, control valve and topping turbine at an output power of 5500 hp. This development advances the HPSS to 400{degrees}F higher steam temperature than the current best technology being installed around the world. Higher cycle temperatures produce higher conversion efficiencies and since steam is used to produce the large majority of the world`s power, the authors expect HPSS developments will have a major impact on electric power production and cogeneration in the twenty-first century. Coal fueled steam plants now produce the majority of the United States electric power. Cogeneration and reduced costs and availability of natural gas have now made gas turbines using Heat Recovery Steam Generators (HRSG`s) and combined cycles for cogeneration and power generation the lowest cost producer of electric power in the United States. These gas fueled combined cycles also have major benefits in reducing emissions while reducing the cost of electricity. Development of HPSS technology can significantly improve the efficiency of cogeneration, steam plants, and combined cycles. Figure 2 is a TS diagram that shows the HPSS has twice the energy available from each pound of steam when expanding from 1500{degrees}F and 1500 psia to 165 psia (150 psig, a common cogeneration process steam pressure). This report describes the prototype component and system design, and results of the 100-hour laboratory tests. The next phase of the program consists of building up the steam turbine into a generator set, and installing the power plant at an industrial site for extended operation.

Duffy, T.; Schneider, P.

1996-01-01T23:59:59.000Z

56

Coke briquettes  

SciTech Connect

This patent describes a briquette suitable for use as an auxiliary fuel in a shaft furnace for melting of mineral in the manufacture of mineral wool which comprises: 30-75% by weight, based on the dry weight of the briquettes, of particles of coke fines or coal fines or both, the fines consisting essentially of particles having a particle size of from 2 to 25 mm; at least 7% by weight, based on the dry weight of the briquette, of a hydraulic binder; and at least 15% by weight, based on the dry weight of the briquette, of a fine grain oxidic mineral component selected from the group consisting of sand, slag, stone powder, fly ash, limestone powder, dolomite powder, silicon dioxide, and waste material from mineral wool manufacturer, the fine grain oxidic mineral component having a particle size of less than 2 mm.

Anderson, D.B.; Juhlin, N.J.W.; Gillenium, C.I.; Kjell-Berger, O.; Brinck, O.R.

1987-04-28T23:59:59.000Z

57

Solar production of industrial process steam for the Lone Star Brewery. Final report  

DOE Green Energy (OSTI)

This report outlines the detailed design and system analysis of a solar industrial process steam system for the Lone Star Brewery. The industrial plant has an average natural gas usage of 12.7 MMcf per month. The majority of this energy goes to producing process steam of 125 psi and 353/sup 0/F at about 50,000 lb/h, with this load dropping to about 6000 lb/h on the weekends. The maximum steam production of the solar energy system is about 1700 lb/h. The climatic conditions at the industrial site give 50% of the possible amount of sunshine during the winter months and more than 70% during the summer months. The long-term yearly average daily total radiation on a horizontal surface is 1574 Btu/day-ft/sup 2/, the long-term yearly average daytime ambient temperature is 72/sup 0/F, and the percentage of clear day insolation received on the average day of the year is 62%. The solar steam system will consist of 9450 ft/sup 2/ of Solar Kinetics T-700 collectors arranged in fifteen 90-ft long rows through which 67.5 gpm of Therminol T-55 is pumped. This hot Therminol then transfers the heat collected to a Patterson-Kelley Series 380 unfired steam boiler. The solar-produced steam is then metered to the industrial process via a standard check valve. The thermal performance of this system is projected to produce about 3 million lbs of steam during an average weather year, which is approximately 3 billion Btu's. As with any prototype system, this steam system cannot be justified for purely economic reasons. It is estimated, however, that if the cost of the collectors can be reduced to a mass production level of $3 per lb then this type of system would be cost effective in about six years with the current government incentives and a fuel escalation rate of 10%. This period can be shortened by a combination of an increased investment tax credit and an accelerated depreciation.

Deffenbaugh, D.M.; Watkins, P.V.; Hugg, S.B.; Kulesz, J.J.; Decker, H.E.; Powell, R.C.

1979-06-29T23:59:59.000Z

58

Market integration in the international coal industry: A cointegration approach  

SciTech Connect

The purpose of this paper is to test the hypothesis of the existence of a single economic market for the international coal industry, separated for coking and steam coal, and to investigate market integration over time. This has been conducted by applying cointegration and error-correction models on quarterly price series data in Europe and Japan over the time period 1980-2000. Both the coking and the steam coal markets show evidence of global market integration, as demonstrated by the stable long-run cointegrating relationship between the respective price series in different world regions. This supports the hypothesis of a globally integrated market. However, when analyzing market integration over time it is not possible to confirm cointegration in the 1990s for steam coal. Thus, compared to the coking coal market, the steam coal market looks somewhat less global in scope.

Warell, L. [University of Lulea, Lulea (Sweden). Dept. of Business Administration & Social Science

2006-07-01T23:59:59.000Z

59

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

Industry. Brussels: IISI. The best practice coke plant isa modern coke plant using standard technology, includingspeed drives on motors and fans. Coke dry quenching saves an

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

60

Steam  

E-Print Network (OSTI)

stations ? Retail Access was established in MD in 2000 ? As part of deregulation, many state policymakers required that customers ’ rates be frozen – in most cases below the wholesale cost of power ? As rate freezes expired, rates increased to reflect market ratesThe Electric Utility Industry ? The electric utility industry consists of three functions needed to deliver power to customer loads:

Joan Kowal

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial steam coking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Consider Steam Turbine Drives for Rotating Equipment: Office of Industrial Technologies (OIT) Steam Tip Fact Sheet No.21  

SciTech Connect

Steam turbines are well suited as prime movers for driving boiler feedwater pumps, forced or induced-draft fans, blowers, air compressors, and other rotating equipment. This service generally calls for a backpressure non-condensing steam turbine. The low-pressure steam turbine exhaust is available for feedwater heating, preheating of deaerator makeup water, and/or process requirements.

2002-01-01T23:59:59.000Z

62

Steam systems in industry: Energy use and energy efficiency improvement potentials  

E-Print Network (OSTI)

Alesson, T. 1995. "All Steam Traps Are Not Equal."Capturing Energy Savings with Steam Traps. ” Proc. 1997V. 1994. "Understand Steam Generator Performance." Chemical

Einstein, Dan; Worrell, Ernst; Khrushch, Marta

2001-01-01T23:59:59.000Z

63

Vibrated Bulk Density (VBD) of Calcined Petroleum Coke and ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Vibrated bulk density (VBD) is a quantitative measurement used in the aluminum industry to evaluate the density of calcined petroleum coke.

64

Petroleum Coke: A Viable Fuel for Cogeneration  

E-Print Network (OSTI)

Petroleum coke is a by-product of the coking process which upgrades (converts) low-valued residual oils into higher-valued transportation, heating and industrial fuels. Pace forecasts that by the year 2000 petroleum coke production will increase from 36 million to 47 million short tons/year. Because the crude pool will continue to become more sour and refiners treat the coker as the "garbage can" the quality of the petroleum cokes will generally degrade- contain higher sulfur and trace metal levels. The U.S. produces nearly 70% of the total and is expected to maintain this share. Domestic markets consumed less than half of the U.S. production; 80% of the high sulfur fuel grade production from the Gulf coast is exported to Japan or Europe. Increasing environmental concerns could disrupt historic markets and threaten coker operations. This would create opportunities for alternate end-uses such as cogeneration projects. The Pace Consultants Inc. continuously monitors and reports on the petroleum coke industry-production and markets-in its multi-client publication The Pace Petroleum Coke Ouarterly. The information presented in this paper is based on this involvement and Pace's experience in single and multi client consulting activities related to the petroleum refining and petroleum coke industries. The purpose is to provide a review of the existing world petroleum coke industry with particular emphasis on the U.S. production and markets. Forecasted production levels and critical factors which could alter the historic market disposition of petroleum coke are addressed.

Dymond, R. E.

1992-04-01T23:59:59.000Z

65

This Traveler is the industry’s Steam Generator Program Generic License Change  

E-Print Network (OSTI)

Package (GLCP) that we have been developing in coordination with the NRC staff for the past several years. The format of the documents in this submittal has been changed from the GLCP that the staff has reviewed previously in order to comply with standard technical specification convention, but the information contained therein is unchanged. The information in this Traveler is consistent with the Catawba license amendment request for steam generator technical specification changes that was submitted by the licensee on February 25, 2003. The two submittals need to remain consistent to ensure an unambiguous template for other licensees to follow when submitting related steam generator technical specification changes. We therefore request that your review of these two submittals proceed in parallel.

Anthony R. Pietrangelo; Dr. William; D. Beckner

2003-01-01T23:59:59.000Z

66

Developing indicators for the assessment and proper management of the different levels of exposure to polycyclic aromatic hydrocarbons (PAH)s generally associated with coke-oven workers.  

E-Print Network (OSTI)

??Coke ovens may occur in the aluminium, steel, graphite, electrical, and construction industries. In the work area coke-oven workers may be exposed to various chemical… (more)

Wang, Tianyuan

2011-01-01T23:59:59.000Z

67

Kansas refinery starts up coke gasification unit  

SciTech Connect

Texaco Refining and Marketing Inc. has started up a gasification unit at its El Dorado, Kan., refinery. The unit gasifies delayed coke and other refinery waste products. This is the first refinery to install a coke-fueled gasification unit for power generation. Start-up of the $80-million gasification-based power plant was completed in mid-June. The gasifier produces syngas which, along with natural gas, fuels a combustion turbine. The turbine produces virtually 100% of the refinery`s electricity needs and enough heat to generate 40% of its steam requirements.

Rhodes, A.K.

1996-08-05T23:59:59.000Z

68

Utilizing secondary heat to heat wash oil in the coke-oven gas desulfurization division  

SciTech Connect

Removal of hydrogen sulfide from the coke-oven gas by the vacuum-carbonate method involves significant energy costs, comprising about 47% of the total costs of the process. This is explained by the significant demand of steam for regeneration of the wash oil, the cost of which exceeds 30% of the total operating costs. The boiling point of the saturated wash oil under vacuum does not exceed 70/sup 0/C, thus the wash oil entering the regenerator can be heated either by the direct coke-oven gas or by the tar supernatant from the gas collection cycle. Utilizing the secondary heat of the direct coke-oven gas and the tar supernatant liquor (the thermal effect is approximately the same) to heat the wash oil from the gas desulfurization shops significantly improves the industrial economic indices. Heating the wash oil from gas desulfurization shops using the vacuum-carbonate method by the heat of the tar supernatant liquor may be adopted at a number of coking plants which have a scarcity of thermal resources and which have primary coolers with vertical tubes.

Volkov, E.L.

1981-01-01T23:59:59.000Z

69

TY JOUR T1 Implementation and Rejection of Industrial Steam System...  

NLE Websites -- All DOE Office Websites (Extended Search)

recommended steam system energy efficiency measures Based on analyses implementation of steam system energy efficiency measures is driven primarily by cost metrics payback period...

70

Solar production of industrial process steam for the Lone Star Brewery. Conceptual design report  

DOE Green Energy (OSTI)

The project conceptual design activities are divided into six parts: Industrial Plant, Conceptual System Design, Collector Selection, Heat Transfer Fluid Selection, Site Fabrication, and Engineered Equipment. Included is an overview of the solar steam system and a brief discussion on the environmental impact of the project as well as the safety considerations of the system design. The effect of the solar system on the environment is negligible, and the safety analysis of the system indicates the considerations to be taken to minimize any potential safety hazard due to contamination of the food product or to fire. Both of these potential hazards are discussed in detail. Both the question of product contamination and the question of potential fire hazards will be presented to the industrial partner's safety committee so that the selection of the heat transfer fluid meets with their approval.

Deffenbaugh, D.M.

1978-12-29T23:59:59.000Z

71

REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE  

Science Conference Proceedings (OSTI)

Petroleum coke, a byproduct of the petroleum-refining process, is an attractive primary or supplemental fuel for power production primarily because of a progressive and predictable increase in the production volumes of petroleum coke (1, 2). Petroleum coke is most commonly blended with coal in proportions suitable to meet sulfur emission compliance. Petroleum coke is generally less reactive than coal; therefore, the cofiring of petroleum coke with coal typically improves ignition, flame stability, and carbon loss relative to the combustion of petroleum coke alone. Although petroleum coke is a desirable fuel for producing relatively inexpensive electrical power, concerns about the effects of petroleum coke blending on combustion and pollution control processes exist in the coal-fired utility industry (3). The Energy & Environmental Research Center (EERC) completed a 2-year technical assessment of petroleum coke as a supplemental fuel. A survey questionnaire was sent to seven electric utility companies that are currently cofiring coal and petroleum coke in an effort to solicit specific suggestions on research needs and fuel selections. An example of the letter and survey questionnaire is presented in Appendix A. Interest was expressed by most utilities in evaluating the effects of petroleum coke blending on grindability, combustion reactivity, fouling, slagging, and fly ash emissions control. Unexpectedly, concern over corrosion was not expressed by the utilities contacted. Although all seven utilities responded to the question, only two utilities, Northern States Power Company (NSP) and Ameren, sent fuels to the EERC for evaluation. Both utilities sent subbituminous coals from the Power River Basin and petroleum shot coke samples. Petroleum shot coke is produced unintentionally during operational upsets in the petroleum refining process. This report evaluates the effects of petroleum shot coke blending on grindability, fuel reactivity, fouling/slagging, and electrostatic precipitator (ESP) fly ash collection efficiency.

Kevin C. Galbreath; Donald L. Toman; Christopher J. Zygarlicke

1999-09-01T23:59:59.000Z

72

Economical Desulfurization of Petroleum Coke  

Science Conference Proceedings (OSTI)

Presentation Title, Economical Desulfurization of Petroleum Coke ... " Desulfurization of Petroleum Coke Beyond 1600'C" by Christopher A. Paul of Great Lakes ...

73

Downhole steam injector  

SciTech Connect

An improved downhole steam injector has an angled water orifice to swirl the water through the device for improved heat transfer before it is converted to steam. The injector also has a sloped diameter reduction in the steam chamber to throw water that collects along the side of the chamber during slant drilling into the flame for conversion to steam. In addition, the output of the flame chamber is beveled to reduce hot spots and increase efficiency, and the fuel-oxidant inputs are arranged to minimize coking.

Donaldson, A. Burl (Albuquerque, NM); Hoke, Donald E. (Albuquerque, NM)

1983-01-01T23:59:59.000Z

74

Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries: Main Report and Appendices (CD-ROM)  

SciTech Connect

The main report on this CD assesses steam generation and use in the pulp and paper, chemical, and petroleum refining industries, and estimates the potential for energy savings from implementation of steam system performace and efficiency improvements. The Appendices on this CD provide supporting information for the analyses and provides and recommendations for assessing the effectiveness of the U.S. Department of Energy BestPractices Steam Program.

Not Available

2002-10-01T23:59:59.000Z

75

A desiccant/steam-injected gas-turbine industrial cogeneration system  

SciTech Connect

An integrated desiccant/steam-injected gas-turbine system was evaluated as an industrial cogenerator for the production of electricity and dry, heated air for product drying applications. The desiccant can be regenerated using the heated, compressed air leaving the compressor. The wet stream leaves the regenerator at a lower temperature than when it entered the desiccant regenerator, but with little loss of energy. The wet stream returns to the combustion chamber of the gas-turbine system after preheating by exchanging heat with the turbine exhaust strewn. Therefore, the desiccant is regenerated virtually energy-free. In the proposed system, the moisture-laden air exiting the desiccant is introduced into the combustion chamber of the gas-turbine power system. This paper discusses various possible design configurations, the impact of increased moisture content on the combustion process, the pressure drop across the desiccant regenerator, and the impact of these factors on the overall performance of the integrated system. A preliminary economic analysis including estimated potential energy savings when the system is used in several drying applications, and equipment and operating costs are also presented.

Jody, B.J.; Daniels, E.J.; Karvelas, D.E.; Teotia, A.P.S.

1993-12-31T23:59:59.000Z

76

A desiccant/steam-injected gas-turbine industrial cogeneration system  

SciTech Connect

An integrated desiccant/steam-injected gas-turbine system was evaluated as an industrial cogenerator for the production of electricity and dry, heated air for product drying applications. The desiccant can be regenerated using the heated, compressed air leaving the compressor. The wet stream leaves the regenerator at a lower temperature than when it entered the desiccant regenerator, but with little loss of energy. The wet stream returns to the combustion chamber of the gas-turbine system after preheating by exchanging heat with the turbine exhaust strewn. Therefore, the desiccant is regenerated virtually energy-free. In the proposed system, the moisture-laden air exiting the desiccant is introduced into the combustion chamber of the gas-turbine power system. This paper discusses various possible design configurations, the impact of increased moisture content on the combustion process, the pressure drop across the desiccant regenerator, and the impact of these factors on the overall performance of the integrated system. A preliminary economic analysis including estimated potential energy savings when the system is used in several drying applications, and equipment and operating costs are also presented.

Jody, B.J.; Daniels, E.J.; Karvelas, D.E.; Teotia, A.P.S.

1993-01-01T23:59:59.000Z

77

Industry  

E-Print Network (OSTI)

combined heat and power and coke ovens, and waste managementto ban the use of small-scale coke-producing facilities forcasting, Scrap preheating, Dry coke quenching Inert anodes,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

78

The Vertical Ball Mill for the Grinding of Calcined Petroleum Coke to ...  

Science Conference Proceedings (OSTI)

A new vertical ball ring mill concept has been developed based on the results of research on the grinding of calcined petroleum coke. Industrial vertical mills are ...

79

Development Of Reclamation Substrates For Alberta Oil Sands Using Mature Fine Tailings And Coke.  

E-Print Network (OSTI)

??Mature fine tailings and coke are waste products of the oil sands industry with potential for reclamation. A greenhouse study assessed whether substrates of various… (more)

Luna-Wolter, Gabriela L.

2012-01-01T23:59:59.000Z

80

Simulation of Combustion and Thermal-flow Inside a Petroleum Coke Rotary Calcining Kiln.  

E-Print Network (OSTI)

??Calcined coke is the best material for making carbon anodes for smelting of alumina to aluminum. Calcining is an energy intensive industry and a significant… (more)

Zhang, Zexuan

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial steam coking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

SteamMaster: Steam System Analysis Software  

E-Print Network (OSTI)

As director of Oregon's Industrial Assessment Center, I have encountered many industrial steam systems during plant visits. We analyze steam systems and make recommendations to improve system efficiency. In nearly 400 industrial assessments, we have recommended 210 steam system improvements, excluding heat recovery, that would save $1.5 million/year with a 0.4-year payback. 75% of those recommendations have been implemented for $1.1 million annual savings with 0.3-year payback. Recently I have developed a tool to facilitate the process. SteamMaster is based on an Excel spreadsheet with a Visual Basic interface to simplify system modeling and analysis. SteamMaster has many features and capabilities, including energy and cost savings calculations for five steam recommendations. This presentation will demonstrate SteamMaster software applied to one or more industrial steam systems. Software will be made available on a national web site at no cost.

Wheeler, G.

2003-05-01T23:59:59.000Z

82

Definition: Coke | Open Energy Information  

Open Energy Info (EERE)

Coke A solid carbonaceous residue derived from low-ash, low-sulfur bituminous coal; used as a fuel and a reducing agent in smelting iron ore in a blast furnace. Coke from...

83

Coking and gasification process  

DOE Patents (OSTI)

An improved coking process for normally solid carbonaceous materials wherein the yield of liquid product from the coker is increased by adding ammonia or an ammonia precursor to the coker. The invention is particularly useful in a process wherein coal liquefaction bottoms are coked to produce both a liquid and a gaseous product. Broadly, ammonia or an ammonia precursor is added to the coker ranging from about 1 to about 60 weight percent based on normally solid carbonaceous material and is preferably added in an amount from about 2 to about 15 weight percent.

Billimoria, Rustom M. (Houston, TX); Tao, Frank F. (Baytown, TX)

1986-01-01T23:59:59.000Z

84

CARBON TECHNOLOGY: I: Petroleum Coke  

Science Conference Proceedings (OSTI)

CARBON TECHNOLOGY: Session I: Petroleum Coke. Sponsored by: LMD Aluminum Committee Program Organizer: Jean-Claude Thomas , Aluminium ...

85

Steam Pressure Reduction: Opportunities and Issues; A BestPractices Steam Technical Brief  

SciTech Connect

A BestPractices Technical Brief describing industrial steam generation systems and opportunities for reducing steam system operating pressure.

Not Available

2005-11-01T23:59:59.000Z

86

Proving Safety Properties of the Steam Boiler - Formal Methods for Industrial Applications: A Case Study  

E-Print Network (OSTI)

In this paper we model a hybrid system consisting of a continuous steam boiler and a discrete controller. Our model uses the Lynch-Vaandrager Timed Automata model to show formally that certain safety requirements can be guaranteed under the described assumptions and failure model. We prove incrementally that a simple controller model and a controller model tolerating sensor faults preserve the required safety conditions. The specification of the steam boiler and the failure model follow the specification problem for participants of the Dagstuhl Meeting "Methods for Semantics and Specification." 1

Gunter Leeb; Gunter Leeb; Nancy Lynch

1996-01-01T23:59:59.000Z

87

Coke | OpenEI  

Open Energy Info (EERE)

18 18 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278418 Varnish cache server Coke Dataset Summary Description UK National coal (and solid fuels and gases derived from processing coal) are published in Chapter 2 (Solid Fuels and Derived Gases) of the Digest of UK Energy Statistics (DUKES). Included here are the datasets for commodity balances (1998 - 2009); supply and consumption (2005 - 2009) of coal and other fuels (e.g. coke oven gas, blast furnace gas, benzole and tars, etc). Chapter 2 of the report is available: http://www.decc.gov.uk/assets/decc/Statistics/publications/dukes/308-dukes-2010-ch2.pdf Source UK Department of Energy and Climate Change (DECC)

88

Steam Digest 2001  

SciTech Connect

Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

2002-01-01T23:59:59.000Z

89

Steam Digest 2001  

SciTech Connect

Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

Not Available

2002-01-01T23:59:59.000Z

90

Downhole steam injector. [Patent application  

DOE Patents (OSTI)

An improved downhole steam injector has an angled water orifice to swirl the water through the device for improved heat transfer before it is converted to steam. The injector also has a sloped diameter reduction in the steam chamber to throw water that collects along the side of the chamber during slant drilling into the flame for conversion to steam. In addition, the output of the flame chamber is beveled to reduce hot spots and increase efficiency, and the fuel-oxidant inputs are arranged to minimize coking.

Donaldson, A.B.; Hoke, E.

1981-06-03T23:59:59.000Z

91

Influence of Coke Calcining Parameters on Petroleum Coke ... - TMS  

Science Conference Proceedings (OSTI)

Jan 1, 1985 ... TMS Student Member price: 0.00. Product In Stock. Description All physical and chemical properties of petroleum coke are determined by three ...

92

Industrialization and Urbanization: Did the Steam Engine Contribute to the Growth of Cities in the United States?  

E-Print Network (OSTI)

Crafts, Nicholas. 2004. “Steam as a General Purpose19th Century British Growth Steam-powered? : The ClimactericPower in the Century of the Steam Engine, Vol. 1. University

Kim, Sukkoo

2004-01-01T23:59:59.000Z

93

Design and construction of coke battery 1A at Radlin coke plant, Poland  

Science Conference Proceedings (OSTI)

In the design and construction of coke battery 1A at Radlin coke plant (Poland), coking of rammed coke with a stationary system was employed for the first time. The coke batteries are grouped in blocks. Safety railings are provided on the coke and machine sides of the maintenance areas.

A.M. Kravchenko; D.P. Yarmoshik; V.B. Kamenyuka; G.E. Kos'kova; N.I. Shkol'naya; V.V. Derevich; A.S. Grankin [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

94

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam  

SciTech Connect

Industrial Technologies Program's BestPractices tip sheet on improving efficiency of industrial steam systems by recovery latent heat from low-pressure steam.

2005-09-01T23:59:59.000Z

95

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam  

SciTech Connect

Industrial Technologies Program's BestPractices tip sheet on improving efficiency of industrial steam systems by recovery latent heat from low-pressure steam.

Not Available

2005-09-01T23:59:59.000Z

96

Solar production of industrial process steam. Quarterly performance report, January 16, 1980-June 30, 1980  

DOE Green Energy (OSTI)

A solar process steam system for gauze bleaching/sterilization utilizing 1065 m/sup 2/ Acurex Model 3001 line focusing parabolic trough concentrators is described. The system operates by circulating pressurized water through the collector field and then throttling it into a flash boiler. There the heated, pressurized water flashes to steam and flows into the plant steam main for distribution to various plant processes. Makeup water is supplied by the existing plant boiler feedwater system. The flash boiler retains enough thermal storage to provide freeze protection to the collector field when required. The system performance from January 16 to June 30 is summarized. A comparison of predicted and measured performance for a single day in June is presented. A summary of the operation of the system is given in Appendix A for each day of operation. Appendix B contains the hourly average values of system parameters for a single clear day in each month. These values are presented in graphical form in Appendix C. The daily values are tabulated in Appendix D and plotted in Appendix E for each month of operation. (MCW)

Not Available

1980-01-01T23:59:59.000Z

97

Steam systems in industry: Energy use and energy efficiency improvement potentials  

E-Print Network (OSTI)

all boilers, based on energy audits across US industries (contains thousands of energy audits of medium and small

Einstein, Dan; Worrell, Ernst; Khrushch, Marta

2001-01-01T23:59:59.000Z

98

Factors influencing coke gasification with carbon dioxide.  

E-Print Network (OSTI)

??Of all coke properties the influence of the catalytic mineral matter on reactivity of metallurgical cokes is least understood. There is limited information about the… (more)

Grigore, Mihaela

2007-01-01T23:59:59.000Z

99

Coke from coal and petroleum  

DOE Patents (OSTI)

A carbonaceous coke is manufactured by the delayed coking of a slurry mixture of from about 10 to about 30 weight percent of caking or non-caking coal and the remainder a petroleum resid blended at below 50.degree. C.

Wynne, Jr., Francis E. (Allison Park, PA); Lopez, Jaime (Pittsburgh, PA); Zaborowsky, Edward J. (Harwick, PA)

1981-01-01T23:59:59.000Z

100

Laser ultrasonic furnace tube coke monitor. Quarterly technical progress report No. 1, May 1--August 1, 1998  

Science Conference Proceedings (OSTI)

The overall aim of the project is to demonstrate the performance and practical use of a laser ultrasonic probe for measuring the thickness of coke deposits located within the high temperature tubes of a thermal cracking furnace. This aim will be met by constructing an optical probe that will be tested using simulated coke deposits that are positioned inside of a bench-scale furnace. Successful development of the optical coke detector will provide industry with the only available method for on-line measurement of coke deposits. The optical coke detector will have numerous uses in the refining and petrochemical sectors including monitoring of visbreakers, hydrotreaters, delayed coking units, vacuum tower heaters, and various other heavy oil heating applications where coke formation is a problem. The coke detector will particularly benefit the olefins industry where high temperature thermal crackers are used to produce ethylene, propylene, butylene and other important olefin intermediates. The ethylene industry requires development of an on-line method for gauging the thickness of coke deposits in cracking furnaces because the current lack of detailed knowledge of coke deposition profiles introduces the single greatest uncertainty in the simulation and control of modern cracking furnaces. The laser ultrasonic coke detector will provide operators with valuable new information allowing them to better optimize the decoking turnaround schedule and therefore maximize production capacity.

NONE

1998-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "industrial steam coking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Solar production of industrial process steam for the Lone Star Brewery. 80% review report  

DOE Green Energy (OSTI)

The solar steam system for the Lone Star Brewery is described in detail. It consists of a roof-mounted parabolic trough collector field heating Monsanto's Therminol T-55 heat transfer fluid, a solar-fired boiler, a heat transfer fluid circulation pump, and all the associated piping. The comparison of various collectors and heat transfer fluids surveyed is reviewed. Also included are discussions of the system performance analysis, economic analysis, safety analysis, data collection, and environmental impact assessment. Numerous drawings illustrate the system, particularly the parallel trough collectors. (LEW)

Deffenbaugh, D.M.; Watkins, P.V.; Hugg, S.B.; Kulesz, J.J.; Decker, H.E.; Powell, R.C.

1979-05-15T23:59:59.000Z

102

Converting Petroleum Coke to Electricity  

E-Print Network (OSTI)

Changes in oil refining technology and economics are driving refiners to utilize thermal processes to maximize the conversion of heavy crude oil components to clean products. Since the primary unit operation to accomplish this objective is the coking unit, more cokers are being built, and existing cokers are being operated to maximum capacity utilization. SRI recently completed an assignment for a refiner interested in converting the by-product fluid coke from his unit to electricity. This paper presents the operating history of US based plants converting petroleum coke to electricity, and presents generic economics for the conversion process utilizing three primary technologies available: conventional pulverized coke combustion, atmospheric fluidized bed combustion, and coke gasification combined cycle power production.

Pavone, A.

1992-04-01T23:59:59.000Z

103

Steam Turbine Developments  

Science Conference Proceedings (OSTI)

...O. Jonas, Corrosion of Steam Turbines, Corrosion: Environments and Industries, Vol 13C, ASM Handbook, ASM International, 2006, p 469â??476...

104

Cogeneration Waste Heat Recovery at a Coke Calcining Facility  

E-Print Network (OSTI)

PSE Inc. recently completed the design, construction and start-up of a cogeneration plant in which waste heat in the high temperature flue gases of three existing coke calcining kilns is recovered to produce process steam and electrical energy. The heat previously exhausted to the atmosphere is now converted to steam by waste heat recovery boilers. Eighty percent of the steam produced is metered for sale to a major oil refinery, while the remainder passes through a steam turbine generator and is used for deaeration and feedwater heating. The electricity produced is used for the plant auxiliaries and sold to the local utility. Many design concepts were incorporated into the plant which provided for high plant availability, reliability and energy efficiency. This paper will show how these concepts were implemented and incorporated into the detailed design of the plant while making cogeneration a cost effective way to save conventional fuels. Operating data since plant start-up will also be presented.

Coles, R. L.

1986-06-01T23:59:59.000Z

105

Definition: Petroleum coke | Open Energy Information  

Open Energy Info (EERE)

coke coke Jump to: navigation, search Dictionary.png Petroleum coke A residue high in carbon content and low in hydrogen that is the final product of thermal decomposition in the condensation process in cracking (breaking of carbon-carbon bonds). This product is reported as marketable coke or catalyst coke.Coke from petroleum has a heating value of 6.024 million Btu per barrel.[1] View on Wikipedia Wikipedia Definition Petroleum coke (often abbreviated Pet coke or petcoke) is a carbonaceous solid derived from oil refinery coker units or other cracking processes. Other coke has traditionally been derived from coal. This coke can either be fuel grade (high in sulphur and metals) or anode grade (low in sulphur and metals). The raw coke directly out of the coker is often

106

Impact on the steam electric power industry of deleting Section 316(a) of the Clean Water Act: Capital costs  

Science Conference Proceedings (OSTI)

Many power plants discharge large volumes of cooling water. In some cases, the temperature of the discharge exceeds state thermal requirements. Section 316(a) of the Clean Water Act (CWA) allows a thermal discharger to demonstrate that less stringent thermal effluent limitations would still protect aquatic life. About 32% of total US steam electric generating capacity operates under Section 316(a) variances. In 1991, the US Senate proposed legislation that would delete Section 316(a) from the CWA. This study, presented in two companion reports, examines how this legislation would affect the steam electric power industry. This report describes alternatives available to nuclear and coal-fired plants currently operating under variances. Data from 38 plants representing 14 companies are used to estimate the national cost of implementing such alternatives. Although there are other alternatives, most affected plants would be retrofitted with cooling towers. Assuming that all plants currently operating under variances would install cooling towers, the national capital cost estimate for these retrofits ranges from $22.7 billion to $24.4 billion (in 1992 dollars). The second report quantitatively and qualitatively evaluates the energy and environmental impacts of deleting the variance. Little justification has been found for removing the Section 316(a) variance from the CWA.

Veil, J.A.

1993-01-01T23:59:59.000Z

107

Development and analysis of a linearly segmented CPC collector for industrial steam generation  

DOE Green Energy (OSTI)

This study involves the design, analysis and construction of a modular, non-imaging, trough, concentrating solar collector for generation of process steam in a tropical climate. The most innovative feature of this concentrator is that the mirror surface consists of long and narrow planar segments placed inside sealed low-cost glass tubes. The absorber is a cylindrical fin inside an evacuated glass tube. As an extension of the same study, the optical efficiency of the segmented concentrator has been simulated by means of a Monte-Carlo Ray-Tracing program. Laser Ray-Tracing techniques were also used to evaluate the possibilities of this new concept. A preliminary evaluation of the experimental concentrator was done using a relatively simple method that combines results from two experimental measurements: overall heat loss coefficient and optical efficiency. A transient behaviour test was used to measure the overall heat loss coefficient throughout a wide range of temperatures.

Figueroa, J.A.A.

1980-06-01T23:59:59.000Z

108

Georgia Refinery Marketable Petroleum Coke Production Capacity ...  

U.S. Energy Information Administration (EIA)

Georgia Refinery Marketable Petroleum Coke Production Capacity as of January 1 (Barrels per Stream Day)

109

Minnesota Refinery Marketable Petroleum Coke Production ...  

U.S. Energy Information Administration (EIA)

Minnesota Refinery Marketable Petroleum Coke Production Capacity as of January 1 (Barrels per Stream Day)

110

Solar production of industrial process steam ranging in temperature from 300/sup 0/F to 550/sup 0/F (Phase I). Volume 1. Final report, September 30, 1978-June 30, 1979  

DOE Green Energy (OSTI)

This section summarizes the Foster Wheeler Development Corporation/Dow Chemical Company Phase I solar industrial process steam system and includes a system schematic, a brief system description, general specifications of the major system components, expected system performance, and a cost estimate summary for Phases II and III. The objectives of Phase I are: (1) design a cost-effective solar steam generating system, using state-of-the-art components and technology, to supply steam for Dow Chemical Company's Dalton, Georgia, plant; (2) predict the performance of the solar process steam plant; (3) conduct a safety evaluation and an environmental impact assessment of the solar steam system; (4) conduct an economic analysis to determine the potential economic benefits of a solar-augmented process steam production system compared with an existing fossil-fuel-fired steam generator; and (5) promote the project extensively to make it visible to industry and the general public.

Not Available

1979-06-30T23:59:59.000Z

111

Save Energy Now (SEN) Assessment Helps Expand Energy Management Program at Shaw Industries: Flooring Company Saves $872,000 Annually by Improving Steam System Efficiency  

Science Conference Proceedings (OSTI)

This case study describes how the Shaw Industries plant #20 in Dalton, Georgia, achieved annual savings of $872,000 and 93,000 MMBtu after receiving a DOE Save Energy Now energy assessment and implementing recommendations to improve the efficiency of its steam system.

Not Available

2008-07-01T23:59:59.000Z

112

Coping with the Decline in Coke Quality – Using Onsite Blending ...  

Science Conference Proceedings (OSTI)

... coke (CPC), the blending of non-traditional cokes (NTAC's) has increased. ... Prebaked Anode from Coal - Utilization of Coal Extract as a Coke Feedstock-.

113

New coke-sorting system at OAO Koks  

SciTech Connect

A new coke-sorting system has been introduced at OAO Koks. It differs from the existing system in that it has no bunkers for all-purpose coke but only bunkers for commercial coke. In using this system with coke from battery 4, the crushing of the coke on conveyer belts, at roller screens, and in the commercial-coke bunkers is studied. After installing braking elements in the coke path, their effectiveness in reducing coke disintegration and improving coke screening is investigated. The granulometric composition and strength of the commercial coke from coke battery 3, with the new coke-sorting system, is evaluated.

B.Kh. Bulaevskii; V.S. Shved; Yu.V. Kalimin; S.D. Filippov [OAO Koks, Kemerovo (Russian Federation)

2009-05-15T23:59:59.000Z

114

Experimental study of elastoplastic mechanical properties of coke drum materials.  

E-Print Network (OSTI)

??Coke drums are vertical pressure vessels used in the delayed coking process in petroleum refineries. Significant temperature variation during the delayed coking process causes the… (more)

Chen, Jie

2010-01-01T23:59:59.000Z

115

Estimating Coke and Pepsi's Price and Advertising Strategies  

E-Print Network (OSTI)

Strategy Distributions for Coke (First Quarter 1977) a)Paper No. 789 ESTIMATING COKE AND PEPSI'S PRICE ADVERTISINGEconomics July, 1998 Estimating Coke and Pepsi’s Price and

Golan, Amos; Karp, Larry S.; Perloff, Jeffrey M.

1998-01-01T23:59:59.000Z

116

Prediction of Calcined Coke Bulk Density - Programmaster.org  

Science Conference Proceedings (OSTI)

Due to changing green coke quality, a reliable forecast of the calcined coke VBD from small green coke samples is required. The VBD can be predicted from ...

117

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China  

E-Print Network (OSTI)

tonne CO2/MWh) Sintering Coke Making Iron Making – Blastadopted in China include: Coke Dry Quenching (CDQ), Top-steel industry is coal and coke, the weighted average CO 2

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

118

Solar production of industrial process steam at the Home Cleaning and Laundry Co. Final technical report  

SciTech Connect

This report presents the results of the operation and performance evaluation period at the Home Laundry Solar Industrial Process Heat Project at Pasadena, California. The installation comprises 6496 ft/sup 2/ (603.5 m/sup 2/) of linear parabolic trough concentrating collectors supplying solar thermal energy for use in laundry and dry cleaning processes. The design phase began in September 1977, and an acceptance test was conducted during the week of April 12, 1982. The plant has been in operation since May 1982, with the 12-month Phase III (operational) period starting in October 1982. The objective of the operational evaluation experiment was to maximize energy delivery to the industrial participant while characterizing system performance. Data were acquired for monthly documentation of system performance, maintenance requirements, and operating costs.

1984-06-01T23:59:59.000Z

119

Steam Turbine Cogeneration  

E-Print Network (OSTI)

Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system can increase energy efficiency, reduce air emissions and qualify the equipment for a Capital Cost tax Allowance. As a result, such a system benefits the stakeholders, the society and the environment. This paper describes briefly the types of steam turbine classified by their conditions of exhaust and review quickly the fundamentals related to steam and steam turbine. Then the authors will analyze a typical steam turbine co-generation system and give examples to illustrate the benefits of the System.

Quach, K.; Robb, A. G.

2008-01-01T23:59:59.000Z

120

Steam Champions in Manufacturing  

E-Print Network (OSTI)

Traditionally, industrial steam system management has focused on operations and maintenance. Competitive pressures, technology evolution, and increasingly complex regulations provide additional management challenges. The practice of operating a steam system demands the managerial expertise of a "Steam Champion," which will be described in this paper. Briefly, the steam champion is a facility professional who embodies the skills, leadership, and vision needed to maximize the effectiveness of a plant's steam system. Perhaps more importantly, the steam champion's definitive role is that of liaison between the manufacturer's boardroom and the plant floor. As such, the champion is able to translate the functional impacts of steam optimization into equivalent corporate rewards, such as increased profitability, reliability, workplace safety, and other benefits. The prerequisites for becoming a true steam champion will include engineering, business, and management skills.

Russell, C.

2001-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial steam coking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A Comparative Study between Co and Rh for Steam Reforming of Ethanol  

Science Conference Proceedings (OSTI)

Rh and Co-based catalyst performance was compared for steam reforming of ethanol under conditions suitable for industrial hydrogen production. The reaction conditions were varied to elucidate the differences in reaction pathways on both catalysts. On Co/ZnO, CH4 is a secondary product formed through the methanation reaction, while it is produced directly by ethanol decomposition on Rh. The difference in the reaction mechanism is shown to favor Co-based catalysts for selective hydrogen production under elevated system pressures (up to 15 bar) of industrial importance. The carbon deposition rate was also studied, and we show that Co is more prone to coking and catalyst failure. However, the Co/ZnO catalyst can be regenerated, by mild oxidation, despite the high carbon deposition rate. We conclude that Co/ZnO is a more suitable catalyst system for steam reforming of ethanol due to the low methane selectivity, low cost and possibility of regeneration with mild oxidation.

Karim, Ayman M.; Su, Yu; Sun, Junming; Yang, Cheng; Strohm, James J.; King, David L.; Wang, Yong

2010-06-01T23:59:59.000Z

122

Solar production of industrial process steam. Phase III. Operation and evaluation of the Johnson and Johnson solar facility. Final report, January 1, 1980-March 31, 1981  

DOE Green Energy (OSTI)

A solar facility that generates 177/sup 0/C (350/sup 0/F) process steam has been designed and constructed by Acurex Corporation and has operated for 1 yr supplying steam to the Johnson and Johnson manufacturing plant in Sherman, Texas. The facility consists of 1068 m/sup 2/ (11,520 ft/sup 2/) of parabolic trough concentrating collectors, a 18,900 1 (5000 gal) flash boiler, and an 18.6 kW (25 hp) circulating pump. In the first year of operation the system was available 97 percent of the days, and with sufficient solar radiation available it operated 70 percent of the days during this period. The measured data showed that the collector field operated at an efficiency of 25.4 percent for the year, and that at least 75 percent of the energy reaching the flash boiler was delivered to the plant as steam. A total of 309,510 kg (682,400 lb) of steam was produced by the solar facility for the first year. An analysis of the data showed that the delivered energy was within 90 to 100 percent of the predicted value. The successful completion of the first year of operation has demonstrated the technical feasibility of generating industrial process steam with solar energy.

Brink, D.F.; Kendall, J.M.; Youngblood, S.B.

1981-03-01T23:59:59.000Z

123

Coke gasification costs, economics, and commercial applications  

Science Conference Proceedings (OSTI)

The disposition of petroleum coke remains a problem for modern high conversion refineries. Market uncertainty and the price for coke can prevent the implementation of otherwise attractive projects. The commercially proven Texaco Gasification Process remains an excellent option for clean, cost effective coke disposition as demonstrated by the new coke gasification units coming on-line and under design. Previous papers, have discussed the coke market and general economics of coke gasification. This paper updates the current market situation and economics, and provide more details on cost and performance based on recent studies for commercial plants.

Jahnke, F.C.; Falsetti, J.S.; Wilson, R.F. [Texaco, Inc., White Plains, NY (United States)

1996-12-01T23:59:59.000Z

124

Inspect and Repair Steam Traps  

SciTech Connect

This revised ITP tip sheet on inspecting and repairing steam traps provide how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

125

U.S. Imports of Petroleum Coke Marketable (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Marketable Petroleum Coke Supply and Disposition; Petroleum Coke Imports from All Countries; U.S. Imports from All Countries ...

126

Trends in the automation of coke production  

SciTech Connect

Up-to-date mathematical methods, such as correlation analysis and expert systems, are employed in creating a model of the coking process. Automatic coking-control systems developed by Giprokoks rule out human error. At an existing coke battery, after introducing automatic control, the heating-gas consumption is reduced by {>=}5%.

R.I. Rudyka; Y.E. Zingerman; K.G. Lavrov [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

127

Power*","Other Industrial","Coke","Commercial  

U.S. Energy Information Administration (EIA) Indexed Site

,3899,"-","w","w","w",-3.3 "Arizona",23217,503,"-","-",23084,536,"-","-",23719,23620,0.4 "Colorado",18744,"w","-","w",18979,"w","-","w",19032,19585,-2.8 "Idaho","-",382,"-","w","-"...

128

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

E-Print Network (OSTI)

air pollutant emissions. Steam distribution system energyimprovements to steam distribution systems primarily focusenergy in industrial steam distribution systems. Improve

Kermeli, Katerina

2013-01-01T23:59:59.000Z

129

CDQ System Designing and Dual-Loop PID Tuning Method for Air Steam Temperature  

Science Conference Proceedings (OSTI)

In this paper, we mainly introduce the key technology of a steel plant's CDQ(Coke Dry Quenching) control system design based on PLC (Programmable LogicController). The CDQ control system is divided into five systems which are as follows: the coke loading, ... Keywords: CDQ system, steam temperature control, Dualloop PID Tuning, environment protecting

Gao Jian, Chen Xianqiao

2013-09-01T23:59:59.000Z

130

An active carbon catalyst prevents coke formation from asphaltenes during the hydrocracking of vacuum residue  

SciTech Connect

Active carbons were prepared by the steam activation of a brown coal char. The active carbon with mesopores showed greater adsorption selectivity for asphaltenes. The active carbon was effective at suppressing coke formation, even with the high hydrocracking conversion of vacuum residue. The analysis of the change in the composition of saturates, aromatics, resins, and asphaltenes in the cracked residue with conversion demonstrated the ability of active carbon to restrict the transformation of asphaltenes to coke. The active carbon that was richer in mesopores was presumably more effective at providing adsorption sites for the hydrocarbon free-radicals generated initially during thermal cracking to prevent them from coupling and polycondensing.

Fukuyama, H.; Terai, S. [Toyo Engineering Corp., Chiba (Japan). Technological Research Center

2007-07-01T23:59:59.000Z

131

Degradation of Steam Generator Internals  

Science Conference Proceedings (OSTI)

Aug 1, 1999 ... Regulatory Perspective on Industry's Response to Generic Letter 97-06, " Degradation of Steam Generator Internals" by S. Coffin, M. Subudhi, ...

132

Steam Generator Management Program: Steam Generator Engineering Training Course 1  

Science Conference Proceedings (OSTI)

This technical update provides training material that was prepared for the first of three Steam Generator Engineer Training Program courses. The Steam Generator Engineer Training Program is a comprehensive training program of the Steam Generator Management Program. The content of this course is based on an industry-developed job analysis for a steam generator engineer. The job analysis resulted in eight high-level tasks; therefore, eight training modules will be developed over a three-year period beginni...

2009-03-25T23:59:59.000Z

133

Save Energy Now in Your Steam Systems  

SciTech Connect

This DOE Industrial Technologies Program fact sheet describes how manufacturing plants can save energy and money by making energy efficiency improvements to their industrial steam systems.

2006-01-01T23:59:59.000Z

134

Water reuse and recycle in the US steam-electric-generating industry - an assessment of current practice and potential for future applications  

Science Conference Proceedings (OSTI)

The study assesses the current and future potential for wastewater reuse and recycle by the steam-electric-generating industry in the United States. Fifty-three power plants employing one or more of the following reuse/recycle measures were identified by a literature search and interviews with reuse/recycle experts--cascading higher-quality wastewaters to lower-quality uses, recirculating ash sluice water, using cooling tower makeup or sidestream softening, treating and reclaiming wastewaters, using dry-cooling systems, and using municipal effluents as plant-intake water. Detailed case studies were performed on eight of the 53 plants surveyed.

Breitstein, L.; Tucker, R.C.

1986-01-01T23:59:59.000Z

135

Selecting the optimum coke pushing sequence  

SciTech Connect

The sequence of pushing coke ovens is one of the most important aspects of battery operation. The sequence must satisfy a number of technical and process conditions: (1) achieve maximum heating-wall life by avoiding destructive expansion pressure in freshly charged ovens and during pushing of the finished coke; (2) ensure uniform brickwork temperature and prevent overheating by compensating for the high thermal flux in freshly charged ovens due to accumulated heat in adjacent ovens that are in the second half of the coking cycle; (3) ensure the most favorable working conditions and safety for operating personnel; (4) provide additional opportunities for repair personnel to perform various types of work, such as replacing coke-machine rails, without interrupting coal production; (5) perform the maximum number of coke-machine operations simultaneously: pushing, charging, and cleaning doors, frames, and standpipe elbows; and (6) reduce electricity consumption by minimizing idle travel of coke machines.

V.T. Krivoshein; A.V. Makarov [ZAO Trest Koksokhimmontazh (Russian Federation)

2007-01-15T23:59:59.000Z

136

Study of Modified Semi-Coke on the Advanced Treatment of Coking ...  

Science Conference Proceedings (OSTI)

Mass of absorbent and absorption time had put much on the removal rate of oil in coke wastewater. The removal rate of oil in coke wastewater could be above ...

137

Entrained Flow Gasification of Oil Sand Coke.  

E-Print Network (OSTI)

??The effect of blending woody biomass material with fluid coke and coal on the co-pyrolysis process was investigated in an entrained flow gasifier. The SEM… (more)

Vejahati, Farshid

2012-01-01T23:59:59.000Z

138

Estimating Coke and Pepsi's price and advertising strategies  

E-Print Network (OSTI)

Working Paper No. 789 ESTIMATING COKE AND PEPSI’ PRICE S ANDand Advertising Strategies: Coke and Pepsi) by Amos Golan,Revised, March 1999 Estimating Coke and Pepsi’s Price and

Golan, Amos; Karp, Larry; Perloff, Jeffrey M.

1999-01-01T23:59:59.000Z

139

Steam generator designs  

SciTech Connect

A combined cycle is any one of combinations of gas turbines, steam generators or heat recovery equipment, and steam turbines assembled for the reduction in plant cost or improvement of cycle efficiency in the utility power generation process. The variety of combined cycles discussed for the possibilities for industrial applications include gas turbine plus unfired steam generator; gas turbine plus supplementary fired steam generator; gas turbine plus furnace-fired steam generator; and supercharged furnace-fired system generator plus gas turbine. These units are large enough to meet the demands for the utility applications and with the advent of economical coal gasification processes to provide clean fuel, the combined-cycle applications are solicited. (MCW)

Clayton, W.H.; Singer, J.G.

1973-07-01T23:59:59.000Z

140

Evolution of Anode Grade Calcined Coke - Programmaster.org  

Science Conference Proceedings (OSTI)

The term "anode grade coke" has been used as a broad definition to describe delayed coke with a sponge structure containing relatively low levels of trace ...

Note: This page contains sample records for the topic "industrial steam coking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Strength of the coke fillers of carbon materials  

Science Conference Proceedings (OSTI)

Relationships between the ultimate compression strengths of coke fillers for carbon materials determined by various techniques and structures, final coke treatment temperatures, etc., are considered.

V.S. Ostrovskii [Research Institute of Structural Graphite Materials, Moscow (Russian Federation)

2008-12-15T23:59:59.000Z

142

New designs in the reconstruction of coke-sorting systems  

Science Conference Proceedings (OSTI)

In recent Giprokoks designs for the reconstruction of coke-sorting systems, high-productivity vibrational-inertial screens have been employed. This permits single-stage screening and reduction in capital and especially operating expenditures, without loss of coke quality. In two-stage screening, >80 mm coke (for foundry needs) is additionally separated, with significant improvement in quality of the metallurgical coke (25-80 mm). New designs for the reconstruction of coke-sorting systems employ mechanical treatment of the coke outside the furnace, which offers new scope for stabilization of coke quality and permits considerable improvement in mechanical strength and granulometric composition of the coke by mechanical crushing.

A.S. Larin; V.V. Demenko; V.L. Voitanik [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

143

Effect of Coke Particle Size on Sinter Quality  

Science Conference Proceedings (OSTI)

Abstract Scope, The effect of different Coke particle size on sinter quality has been investigated. Eight different coke particle sizes were chosen and sinter ...

144

Improving the Precision and Productivity of Green Coke VCM Analysis  

Science Conference Proceedings (OSTI)

Green cokes with high VCM (>12%) are more difficult to calcine and result in a higher porosity and lower bulk density in calcined coke. The paper will review ...

145

Observations on the Coke Air Reactivity Test - Programmaster.org  

Science Conference Proceedings (OSTI)

Coke air reactivities are strongly dependent on coke calcination levels and it is possible to drive air reactivities lower by increasing calcining temperatures.

146

Industry  

Science Conference Proceedings (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

147

Steam Power Partnership: Improving Steam System Efficiency Through Marketplace Partnerships  

E-Print Network (OSTI)

The Alliance to Save Energy, a national nonprofit organization based in Washington DC, and the U.S. Department of Energy are working with energy efficiency suppliers to promote the comprehensive upgrade of industrial steam systems. Like EPA's Green Lights and DOE's Motor Challenge, the Steam Power Partnership program will encourage industrial energy consumers to retrofit their steam plants wherever profitable. The Alliance has organized a "Steam Team" of trade associations, consulting engineering firms, and energy efficiency companies to help develop this public- private initiative.

Jones, T.

1997-04-01T23:59:59.000Z

148

Ukraine Steam Partnership  

SciTech Connect

The Ukraine Steam Partnership program is designed to implement energy efficiency improvements in industrial steam systems. These improvements are to be made by the private plants and local government departments responsible for generation and delivery of energy to end-users. One of the activities planned under this program was to provide a two-day training workshop on industrial steam systems focusing on energy efficiency issues related to the generation, distribution, and consumption of steam. The workshop was geared towards plant managers, who are not only technically oriented, but are also key decision makers in their respective companies. The Agency for Rational Energy Use and Ecology (ARENA-ECO), a non-governmental, not-for-profit organization founded to promote energy efficiency and environmental protection in Ukraine, in conjunction with the Alliance staff in Kiev sent out invitations to potential participants in all the regions of Ukraine. The purpose of this report is the describe the proceedings from the workshop and provide recommendations from the workshop's roundtable discussion. The workshop was broken down into two main areas: (1) Energy efficient boiler house steam generation; and Energy efficient steam distribution and consumption. The workshop also covered the following topics: (1) Ukrainian boilers; (2) Water treatment systems; (3) A profile of UKRESCO (Ukrainian Energy Services Company); (4) Turbine expanders and electricity generation; (5) Enterprise energy audit basics; and (6) Experience of steam use in Donetsk oblast.

Gurvinder Singh

2000-02-15T23:59:59.000Z

149

Benchmark the Fuel Cost of Steam Generation  

SciTech Connect

This revised ITP tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

150

Insulate Steam Distribution and Condensate Return Lines  

Science Conference Proceedings (OSTI)

This revised ITP tip sheet on insulating steam distribution and condensate return lines provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

151

Steam Quality  

E-Print Network (OSTI)

"STEAM QUALITY has been generally defined as the amount of moisture/vapor (or lack thereof) contained within steam produced from some form of boiler. It has long been used as the standard term for the measurement of ""wet or dry"" steam and as a means of measuring enthalpy. Totally dry steam is said to be ""saturated"" steam. It is sometimes defined as the ""dryness faction"". The term in its historical denotation refers to a physical attribute of the steam. That attribute being ""what is the percentage water vapor content of the steam"" as compared to the amount of steam. Dry saturated steam is steam which carries no water vapor with it and is defined as having a quality of 1.00 (100%). Since water vapor is always present at the interface between the water level and the steam in a boiler, some water vapor will always tend to pass through the system with the steam. Hence, a continuing problem. If steam does carry water vapor past the separators it will tend to coalesce as a liquid, and in doing so it also will carry boiler chemicals with it."

Johnston, W.

1989-09-01T23:59:59.000Z

152

Impact on the steam electric power industry of deleting Section 316(a) of the Clean Water Act: Energy and environmental impacts  

Science Conference Proceedings (OSTI)

Many power plants discharge large volumes of cooling water. In some cases, the temperature of the discharge exceeds state thermal requirements. Section 316(a) of the Clean Water Act (CWA) allows a thermal discharger to demonstrate that less stringent thermal effluent limitations would still protect aquatic life. About 32% of the total steam electric generating capacity in the United States operates under Section 316(a) variances. In 1991, the US Senate proposed legislation that would delete Section 316(a) from the CWA. This study, presented in two companion reports, examines how this legislation would affect the steam electric power industry. This report quantitatively and qualitatively evaluates the energy and environmental impacts of deleting the variance. No evidence exists that Section 316(a) variances have caused any widespread environmental problems. Conversion from once-through cooling to cooling towers would result in a loss of plant output of 14.7-23.7 billion kilowatt-hours. The cost to make up the lost energy is estimated at $12.8-$23.7 billion (in 1992 dollars). Conversion to cooling towers would increase emission of pollutants to the atmosphere and water loss through evaporation. The second report describes alternatives available to plants that currently operate under the variance and estimates the national cost of implementing such alternatives. Little justification has been found for removing the 316(a) variance from the CWA.

Veil, J.A.; VanKuiken, J.C.; Folga, S.; Gillette, J.L.

1993-01-01T23:59:59.000Z

153

FM12 & rus Steam - Steam Users' Forums  

U.S. Energy Information Administration (EIA)

STORE COMMUNITY ABOUT SUPPORT Steam Users' Forums > Steam Game Discussions > D - G > Football Manager series

154

Colorado Refinery Marketable Petroleum Coke Production Capacity as ...  

U.S. Energy Information Administration (EIA)

Colorado Refinery Marketable Petroleum Coke Production Capacity as of January 1 (Barrels per Stream Day)

155

Heteroatom incorporated coke for electrochemical cell electrode  

DOE Patents (OSTI)

This invention relates to an electrode for a coke/alkali metal electrochemical cell comprising: (a) calcined coke particles: (i) that contain at least 0.5 weight percent of nitrogen heteroatoms and at least 1.0 weight percent sulfur heteroatoms, and (ii) that have an average particle size from 2 microns to 40 microns with essentially no particles being greater than 50 microns. (b) a binder This invention also relates to a coke/alkali metal electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrically conductive salt, and (c) a counterelectrode.

Lewis, Irwin Charles (Strongsville, OH); Greinke, Ronald Alfred (Medina, OH)

1997-01-01T23:59:59.000Z

156

Heteroatom incorporated coke for electrochemical cell electrode  

DOE Patents (OSTI)

This invention relates to an electrode for a coke/alkali metal electrochemical cell comprising: (a) calcined coke particles: (1) that contain at least 0.5 weight percent of nitrogen heteroatoms and at least 1.0 weight percent sulfur heteroatoms, and (2) that have an average particle size from 2 microns to 40 microns with essentially no particles being greater than 50 microns and (b) a binder. This invention also relates to a coke/alkali metal electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrically conductive salt, and (c) a counterelectrode. 5 figs.

Lewis, I.C.; Greinke, R.A.

1997-06-17T23:59:59.000Z

157

Control Scheme Modifications Increase Efficiency of Steam Generation System at ExxonMobil Gas Plant. Office of Industrial Technologies (OIT) Chemicals BestPractices Project Case Study  

Science Conference Proceedings (OSTI)

This case study highlights control scheme modifications made to the steam system at ExxonMobil's Mary Ann Gas Plant in Mobile, Alabama, which improved steam flow efficiency and reduced energy costs.

Not Available

2002-01-01T23:59:59.000Z

158

Industry  

E-Print Network (OSTI)

from refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processes

Bernstein, Lenny

2008-01-01T23:59:59.000Z

159

Spatial variation of coke quality in the non-recovery beehive coke ovens.  

E-Print Network (OSTI)

??More than 50% of hot metal production worldwide takes place in blast furnaces. Coke is the most expensive raw material in the blast furnace. It… (more)

Segers, Magrieta

2006-01-01T23:59:59.000Z

160

Mozambique becomes a major coking coal exporter?  

SciTech Connect

In addition to its potential role as a major international supplier of coking coal, Mozambique will also become a major source of power generation for southern Africa. 3 figs.

Ruffini, A.

2008-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "industrial steam coking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

New and revised standards for coke production  

SciTech Connect

The need for new and revised standards for coke production in Ukraine and Russia is outlined. Such standards should address improvements in plant operation, working conditions, environmental protection, energy conservation, fire and explosion safety, and economic indices.

G.A. Kotsyuba; M.I. Alpatov; Y.G. Shapoval [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

162

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam  

SciTech Connect

This revised ITP tip sheet on steam jet ejectors and thermocompressors provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

163

Réactivité de l'anode et désulfuration : effet du niveau de calcination du coke.  

E-Print Network (OSTI)

??Les propriétés du coke et la performance des anodes sont affectées par le niveau de calcination du coke. Une densité de coke (VBD) élevée implique… (more)

Bergeron-Lagacé, Charles-Luc

2012-01-01T23:59:59.000Z

164

Coke Gasification - A Solution to Excess Coke Capacity and High Energy Costs  

E-Print Network (OSTI)

United States crude slate is becoming heavier and generally higher in sulfur. At the same time demand of distillate products is increasing. Refiners are reworking their plans to include resid conversion via coking and approximately 230,000 BPD of new coking capacity is either under construction or announced. Even if 50 percent of the coke produced is exported, there will be an excess capacity of coke selling at less than $30/ton depending upon the sulfur content. This coke can be gasified effectively to produce medium-Btu (300 Btu/scf) gas which, in turn, can fuel the refinery furnaces to replace natural gas. Coke gasification should prove economical with natural gas price decontrol and the average price projected to rise to over $14.0 per million Btu in 1990. The paper will discuss three gasifiers - Gesellschaft fur Kohle-Technologie Gmbh (GKT), Texaco and Westinghouse which may be used for the production of medium-Btu gas from coke. The design parameters, which for coke gasification may be different from coal gasification because of the difference in physical and chemical characteristics of coke and coal, will be evaluated. Conceptual design will be performed based upon normal fuel requirements of about 20 billion Btu per day for a typical 50,000 BPD refinery. Adaptability of coke derived gas to refinery fuel systems will be discussed in terms of flame temperatures, flue gas volumes, derating and required furnace modifications. Estimates of capital and operating costs will be obtained to calculate the gas cost using the new tax laws. Finally, the GKT gasifier will be compared to the developing Texaco and Westinghouse gasifiers to assess the effect of second generation gasifiers on the economics of coke gasification.

Patel, S. S.

1982-01-01T23:59:59.000Z

165

Major Corrosion Problems in Steam Turbines  

Science Conference Proceedings (OSTI)

...O. Jonas, Corrosion of Steam Turbines, Corrosion: Environments and Industries, Vol 13C, ASM Handbook, ASM International, 2006, p 469â??476...

166

Use of resin-bearing wastes from coke and coal chemicals production at the Novokuznetsk Metallurgical Combine  

SciTech Connect

The coke and coal chemicals plant at the Novokuznetsk Metallurgical Combine is making trial use of a technology that recycles waste products in 'tar ponds.' Specialists from the Ekomash company have installed a recycling unit in one area of the plant's dump, the unit including an inclined conveyor with a steam heater and a receiving hopper The coal preparation shop receives the wastes in a heated bin, where a screw mixes the wastes with pail of the charge for the coking ovens. The mixture subsequently travels along a moving conveyor belt together with the rest of the charge materials. The addition of up to 2% resin-bearing waste materials to the coal charge has not had any significant effect on the strength properties of the coke.

Kul'kova, T.N.; Yablochkin, N.V.; Gal'chenko, A.I.; Karyakina, E.A.; Litvinova, V.A.; Gorbach, D.A.

2007-03-15T23:59:59.000Z

167

Giprokoks proposals for improvement in air quality at coke battery 1A of Radlin coke plant  

SciTech Connect

Coke battery 1A, which uses rammed batch, has gone into production at Radlin coke plant (Poland), on the basis of Giprokoks designs. Up-to-date dust-trapping methods are used for the first time within the aspiration systems in the coal-preparation shop and in improving dust collection within the production buildings.

T.F. Trembach; A.G. Klimenko [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

168

Steam Pricing  

E-Print Network (OSTI)

Steam is used in many plants to furnish both heat and mechanical energy. It is typically produced in several fired boilers which may operate at different pressures and with different efficiencies. It is then distributed throughout the plant to the various users in steam distribution systems, each one operating at a different pressure and temperature. This paper examines various ways to cost steam and discusses the importance of proper costing. Specifically it addresses three types of steam costs; Marginal Costs, Project Evaluation Costs and Financial Costs.

Jones, K. C.

1986-06-01T23:59:59.000Z

169

Investigation of bonding mechanism of coking on semi-coke from lignite with pitch and tar  

SciTech Connect

In coking, the bonding ability of inert macerals by reactive macerals is dependent on various parameters and also is related to the wettability of the inert macerals. In this study, the effect of carbonization temperature on the wettability of semi-cokes produced at various temperatures has been investigated. Soma and Yatagan semicokes represent inert macerals, and pitch was used as a reactive structure in the experiments. The briquetted pitch blocks were located on the semi-cokes and heated from the softening temperature of pitch (60{sup o}C) to 140{sup o}C to observe the wettability. In addition, liquid tar was also used to determine the wettability of semi-cokes. From the standpoint of wettability, the temperature of 900{sup o}C was determined to be the critical point for coke produced from sub-bituminous coals. 15 refs., 6 figs., 2 tabs.

Vedat Arslan [Dokuz Eylul University, Izmir (Turkey). Engineering Faculty

2006-10-15T23:59:59.000Z

170

Industry  

E-Print Network (OSTI)

oxide emission reductions in industry in the EU. Europeanissues: Annual survey of industries. Central StatisticalDesiccated coconut industry of Sri- Lanka’s opportunities

Bernstein, Lenny

2008-01-01T23:59:59.000Z

171

Solid fuel fired oil field steam generators  

Science Conference Proceedings (OSTI)

The increased shortages being experienced in the domestic crude oil supply have forced attention on the production of heavy crude oils from proven reserves to supplement requirements for petroleum products. Since most heavy crudes require heat to facilitate their extraction, oil field steam generators appear to represent a key component in any heavy crude oil production program. Typical oil field steam generator experience in California indicates that approx. one out of every 3 bbl of crude oil produced by steam stimulation must be consumed as fuel in the steam generators to produce the injection steam. The scarcity and price of crude oil makes it desirable to substitute more readily available and less expensive solid fuels for the crude oil which is presently serving as the primary steam generator fuel. Solid fuel firing capability also is of importance because of the substantial amounts of high heating value and low cost petroleum coke available from the processing of heavy crude oil and suitable for use as a steam generator fuel.

Young, W.W.

1982-01-01T23:59:59.000Z

172

Energy Savings Through Steam Trap Management  

E-Print Network (OSTI)

Sustainability and energy management are broad topics which have become a common focus in industry. Recognizing the need for greater cost reduction and competitive advantage through sustainability, industry is putting forth resources to improve energy management controls. When the topic of energy management relates to steam trap management however, the focus becomes less clear and action less notable. The seemingly “low hanging” fruit of steam traps are not often tied to significant and sustainable energy management projects. Typically this holds true because of the failure of industry to put a value on the cost of steam and because of the lack of energy tracking from failed steam traps as part of best practice. The use of technology can help industry transform how steam systems are managed and sustainability in steam systems is achieved.

Gibbs, C.

2008-01-01T23:59:59.000Z

173

Development of coke strength after reaction (CSR) at Dofasco  

Science Conference Proceedings (OSTI)

In order to prevent coke degradation without detrimentally affecting blast furnace service life, Dofasco initiated a project to improve coke strength after reaction. The results of the program and Dofasco's prediction model are presented. 9 refs., 12 figs., 9 tabs.

T.W. Todoschuk; J.P. Price; J.F. Gransden

2004-03-01T23:59:59.000Z

174

Thomas Reddinger Director, Steam  

E-Print Network (OSTI)

(Distribution) Deborah Moorhead Office Coordinator III Martin Bower Steam Plant Operator Richard Redfield SteamThomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance Plant Operator Bohdan Sawa Steam Plant Operator Robert Tedesco Steam Plant Operator James Bradley

Raina, Ramesh

175

Coke oven gas desulfurization: at Republic Steel's New Coking Facility, Warren, OH  

SciTech Connect

Our performance test indicates that the Sulfiban process is an effective method for removing H/sub 2/S from coke-oven gas. The process is able to handle variations in coke-oven gas flow and composition. Continuing efforts are underway to maintain optimum desulfurization conditions while trying to reduce waste production and MEA consumption. The problems which have prevented us from operating continuously have given us a better understanding of the process. This has contributed to better plant operations and greater equipment reliability for us to obtain continuous coke-oven gas desulfurization. 2 figures, 1 table.

Boak, S.C.; Prucha, D.G.; Turic, H.L.

1981-01-01T23:59:59.000Z

176

U.S. Refinery Thermal Cracking, Fluid Coking Downstream Charge ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Thermal Cracking, Fluid Coking Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

177

Characterization of Petroleum Coke and Butts Used in Anode ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Particulate Composites. Presentation Title, Characterization of Petroleum Coke ...

178

U.S. Refinery Marketable Petroleum Coke Production Capacity as ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Marketable Petroleum Coke Production Capacity as of January 1 (Barrels per Stream Day)

179

Effect of Coke particle size on sinter quality  

Science Conference Proceedings (OSTI)

Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium, EMPMD Technical Division Student Poster Contest. Presentation Title, Effect of Coke particle size ...

180

Financial Analysis for Developing CDM Project in the Coke Plant  

Science Conference Proceedings (OSTI)

In the coke plant, the traditional coke wet quenching method is to be used to cool down the red hot coke and waste heat is released to the atmosphere in China. There are a lot of smog, particles, cyanide, sulphide and etc. mixtures within the waste heat. ... Keywords: CDQ technology, CO2 emission reductions, financial analysis, potential calculation, recycle sustainable development

Ma Xiuqin; Huang Chao; Wu Guoning

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial steam coking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Effect of Trace Elements on Anaerobic Digestion of Coking Wastewater  

Science Conference Proceedings (OSTI)

The pretreatment of coking wastewater using ASBR was conducted at 35? in this paper. The addition of trace elements to the anaerobic reactor has positive effect on the anaerobic treatment of coking wastewater, but too much or too little of it will ... Keywords: trace elements, anaerobic digestion, coking wastewater

Yu-ying Li; Bing Li

2009-10-01T23:59:59.000Z

182

Industry  

E-Print Network (OSTI)

the paper, glass or ceramics industry) making it difficulttechnology in the ceramic manufacturing industry. industries: iron and steel, non-ferrous metals, chemicals (including fertilisers), petroleum refining, minerals (cement, lime, glass and ceramics) and

Bernstein, Lenny

2008-01-01T23:59:59.000Z

183

Industry  

E-Print Network (OSTI)

in the iron and steel industry: a global model. Energy, 30,report of the world steel industry 2005. International Irontrends in the iron and steel industry. Energy Policy, 30,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

184

Water protection in coke-plant design  

Science Conference Proceedings (OSTI)

Wastewater generation, water consumption, and water management at coke plants are considered. Measures to create runoff-free water-supply and sewer systems are discussed. Filters for water purification, corrosion inhibitors, and biocides are described. An integrated single-phase technology for the removal of phenols, thiocyanides, and ammoniacal nitrogen is outlined.

G.I. Alekseev [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

185

Reducing dust emissions at OAO Alchevskkoks coke battery 10A  

Science Conference Proceedings (OSTI)

Coke battery 10A with rammed batch is under construction at OAO Alchevskkoks. The design documentation developed by Giprokoks includes measures for reducing dust emissions to the atmosphere. Aspiration systems with dry dust trapping are employed in the new components of coke battery 10A and in the existing coke-sorting equipment. Two-stage purification of dusty air in cyclones and bag filters is employed for the coke-sorting equipment. This system considerably reduces coke-dust emissions to the atmosphere.

T.F. Trembach; E.N. Lanina [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

186

Steam Generator Management Program: Steam Generator Engineering Training Course 2 Handbook  

Science Conference Proceedings (OSTI)

This Technical Update provides training material that was prepared for the second Steam Generator Engineering Training class. The Steam Generator Engineering Training is a comprehensive training program for steam generator program managers. The content of the training is based on an industry-developed job analysis for a steam generator engineer. The job analysis resulted in eight high-level tasks; consequently, eight training modules were planned to be developed over a three-year period beginning in 2008...

2010-04-26T23:59:59.000Z

187

Use a Vent Condenser to Recover Flash Steam Energy (Revised)  

Science Conference Proceedings (OSTI)

This revised ITP tip sheet on vent condenser to recover flash steam energy provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-05-01T23:59:59.000Z

188

The Future of Steam: A Preliminary Discussion  

E-Print Network (OSTI)

Steam production represents a significant proportion of today's industrial energy demand. But the evolution of process technologies, as well as turbulence in energy markets, suggests that steam's role may be subject to change in the next decade. Questions as to the ways those changes will manifest are addressed by this paper. Specifically, the text presents an outline of parameters that (in the authors' opinions) will ultimately shape the dimensions of industrial steam use in the next 10 to 20 years. Technical, business, institutional, and labor developments are the forces in question. This paper provides a systematic review of these forces, and suggests how they may influence industrial asset purchasing decisions. The coming decade will witness opportunities for maintaining and growing steam markets, but there are also reasons to believe that steam will be supplanted by alternative technologies in certain industries and applications. Combined heat and power applications are the wildcard in this formula, since they may facilitate the replacement of some traditional steam applications. But at the same time, CHP may ensure that steam indirectly serves industry by powering generators that serve newer electric applications. The trends discussed in this paper suggest the components for an industrial steam policy agenda.

Russell, C.; Harrell, G.; Moore, J.; French, S.

2001-05-01T23:59:59.000Z

189

Replace Pressure-Reducing Valves with Backpressure Turbogenerators (International Fact Sheet), Energy Tips-Steam, Steam Tip Sheet #20c  

SciTech Connect

This English/Chinese ITP steam tip sheet on replacing pressure-reducing valves provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2010-10-01T23:59:59.000Z

190

Who lives near coke plants and oil refineries An exploration of the environmental inequity hypothesis  

SciTech Connect

Facility-specific information on pollution was obtained for 36 coke plants and 46 oil refineries in the US and matched with information on populations surrounding these 82 facilities. These data were analyzed to determine whether environmental inequities were present, whether they were more economic or racial in nature, and whether the racial composition of nearby communities has changed significantly since plants began operations. The Census tracts near coke plants have a disproportionate share of poor and nonwhite residents. Multivariate analyses suggest that existing inequities are primarily economic in nature. The findings for oil refineries are not strongly supportive of the environmental inequity hypothesis. Rank ordering of facilities by race, poverty, and pollution produces limited (although not consistent) evidence that the more risky facilities tend to be operating in communities with above-median proportions of nonwhite residents (near coke plants) and Hispanic residents (near oil refineries). Over time, the radical makeup of many communities near facilities has changed significantly, particularly in the case of coke plants sited in the early 1900s. Further risk-oriented studies of multiple manufacturing facilities in various industrial sectors of the economy are recommended.

Graham, J.D.; Beaulieu, N.D.; Sussman, D.; Sadowitz, M.; Li, Y.C. (Harvard Center for Risk Analysis, Boston, MA (United States))

1999-04-01T23:59:59.000Z

191

Steam System Improvement: A Case Study  

E-Print Network (OSTI)

The industrial sector consumes the largest share of the world's energy. The pulp and paper industry is one of the five most energy-intensive industries in the world. Therefore, optimum energy efficiency plays a pivotal role in the profitability of this sector. Also, energy cost accounts for a significant share in production cost in pulp and paper industries. This paper highlights the findings of a study done on the steam system of a paper mill (covering steam generation, steam distribution and steam usage) where steam generation accounts for 85% of the total energy used. Therefore, optimization of the steam system has the biggest energy saving potential. This paper mill produces 40,000 pounds of steam at 600 psig and distributes it to the paper-making process at various pressure levels. This New England paper mill spends approximately $1.9 million every year on its steam system. The study identified an opportunity to save the plant steam costs in the amount of 12%. Among the identified saving measures, there are some measures that can be done through better maintenance and improvement of operating conditions. The average payback period to implement the identified saving measures is 12 months. In addition to this, upon the implementation of the proposed measures, the paper mill can reduce its carbon emissions in the amount of 500 tons per year and thus, can help save the environment as well.

Leigh, N.; Venkatesan, V. V.

1999-05-01T23:59:59.000Z

192

Optimized Control Of Steam Heating Coils  

E-Print Network (OSTI)

Steam has been widely used as the source of heating in commercial buildings and industries throughout the twentieth century. Even though contemporary designers have moved to hot water as the primary choice for heating, a large number of facilities still use steam for heating. Medical campuses with on-site steam generation and extensive distribution systems often serve a number of buildings designed prior to the mid-1980s. The steam is typically used for preheat as its high thermal content helps in heating the air faster and prevents coils from freezing in locations with extreme weather conditions during winter. The present work provides a comprehensive description of the various types of steam heating systems, steam coils, and valves to facilitate the engineer's understanding of these steam systems. A large percentage of the steam coils used in buildings are provided with medium pressure steam. Veterans Integrated Service Network and Army Medical Command Medical Facilities are examples which use medium pressure steam for heating. The current design manual for these medical facilities recommends steam at 30psig be provided to these coils. In certain cases although the steam heating coil is designed for a 5psig steam pressure, it is observed that higher pressure steam is supplied at the coil. A higher steam pressure may lead to excessive heating, system inefficiency due to increased heat loss, simultaneous heating and cooling, and increased maintenance cost. Field experiments were conducted to evaluate the effect of lowering steam pressure on the system performance. A 16% reduction in temperature rise across the coil was found when the steam pressure in the coil was reduced from 15psig to 5psig. The rise in temperature with lower pressure steam was sufficient to prevent coil freeze-up even in the most severe weather conditions. Additional benefits of reduced steam pressure are reduced flash steam losses (flash steam is vapor or secondary steam formed when hot condensate from the coil is discharged into a lower pressure area, i.e., the condensate return line) and radiation losses, increased flow of air through the coil thereby reducing air stratification and reduced energy losses in the event of actuator failure. The work also involved evaluating the existing control strategies for the steam heating system. New control strategies were developed and tested to address the short comings of existing sequences. Improved temperature control and occupant comfort; elimination of valve hunting and reduced energy consumption were benefits realized by implementing these measures.

Ali, Mir Muddassir

2011-12-01T23:59:59.000Z

193

EIA Electric Industry Data Collection  

U.S. Energy Information Administration (EIA)

Steam Production EIA Electric Industry Data Collection Residential Industrial ... Monthly data on cost and quality of fuels delivered to cost-of-service plants

194

Industry  

E-Print Network (OSTI)

and power in US industry. Energy Policy, 29, pp. 1243-1254.Paris. IEA, 2004: Energy Policies of IEA Countries: Finlandand steel industry. Energy Policy, 30, pp. 827-838. Kim, Y.

Bernstein, Lenny

2008-01-01T23:59:59.000Z

195

REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE  

SciTech Connect

A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it may adversely affect combustion performance. Although the blending of petroleum coke with coal may adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.

NONE

1998-09-01T23:59:59.000Z

196

Method for reducing coke oven carbonization pressure  

SciTech Connect

A method of reducing the carbonization pressure in the coking of coal is provided which comprises randomly dispersing flakes through the coal, said flakes formed of a material that does not pass through a plastic phase such as pressed sawdust wherein the flakes have a thickness of between about 1/8 '' and about 3/4 '' and a length and width of between about 1'' and about 5''.

Perch, M.

1981-04-28T23:59:59.000Z

197

Steam System Optimization : A Case Study  

E-Print Network (OSTI)

The steam system optimization (generation, distribution, use and condensate return) offers a large opportunity for action to comply with the new levels of energy efficiency standards. Superior design and improved maintenance practices are the two main sources of savings in steam systems. Increased competition no longer permits an industry to survive with energy waste that could be eliminated. This paper highlights the study findings of the steam system in a plant from the Food industry. The steam system operates with an annual budget of $1.9 million. Normal steam demand ranges between 80,000 to 85,000 lb/hr. The steam system analysis identified energy savings worth $270,000 per year. The optimization measures were in two categories: • No cost/low cost optimizations that can be done through a better maintenance and improved operating condition • Major improvements that require a significant investment, and includes the modification of the process and major equipment.

Iordanova, N.; Venkatesan, V. V.; Calogero, M.

2002-04-01T23:59:59.000Z

198

Table 16. U.S. Coke Exports  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coke Exports U.S. Coke Exports (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 16. U.S. Coke Exports (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Continent and Country of Destination April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change North America Total 162,796 79,217 201,795 242,013 340,944 -29.0 Canada* 73,859 17,837 112,348 91,696 161,596 -43.3 Mexico 88,535 60,517 86,721 149,052 176,163 -15.4 Other** 402 863 2,726 1,265 3,185 -60.3 South America Total 223 217 591 440 1,158 -62.0 Other** 223 217 591 440 1,158 -62.0 Europe Total 48,972 59,197 - 108,169 6 NM Other** 347 11,743 - 12,090 - - United Kingdom 48,625 47,454 - 96,079 6 NM Asia Total 317 553 633 870 4,778

199

Table 21. U.S. Coke Imports  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coke Imports U.S. Coke Imports (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 21. U.S. Coke Imports (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Continent and Country of Origin April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change North America Total 10,284 2,293 159,462 12,577 183,712 -93.2 Canada 3,009 2,293 159,462 5,302 183,712 -97.1 Panama 7,275 - - 7,275 - - South America Total 25,267 13,030 88,424 38,297 106,612 -64.1 Brazil - - 78,595 - 78,595 - Colombia 25,267 13,030 9,829 38,297 28,017 36.7 Europe Total 6,044 40,281 165,027 46,325 485,791 -90.5 Czech Republic - 170 - 170 - - Spain 363 - - 363 - - Ukraine 5,681 40,111 5,047 45,792 53,543 -14.5 United Kingdom

200

Steam-flooding  

SciTech Connect

Steam-flooding has become an established recovery technique within the last 20 years. This overview discusses its evolution, methods for selecting and designing steam-floods, constraints, and possible improvements. The term steam-flooding is used here in a general sense. The discussion includes steam soak (cyclic steam injection) and steam drive.

Matthews, C.S.

1983-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial steam coking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Steam-channel-expanding steam form drive  

SciTech Connect

In a viscous oil reservoir in which the stratification of the rock permeability is insufficient to confine steam within the most permeable strata, oil can be produced by forming and expanding a steam channel through which steam is flowed and oil is produced. Steam is injected and fluid is produced at rates causing a steam channel to be extended between locations that are horizontally separated. A foam-forming mixture of steam, noncondensable gas and surfactant is then injected into the steam channel to provide foam and a relatively high pressure gradient within the channel, without plugging the channel. A flow of steam-containing fluid through the steam channel is continued in a manner such that the magnitudes of the pressure gradient, the rate of oil production, and the rate of steam channel expansion exceed those which could be provided by steam alone. 10 claims, 6 figures.

Dilgren, R.E.; Hirasaki, G.J.; Hill, H.J.; Whitten, D.G.

1978-05-02T23:59:59.000Z

202

Steam Basics: Use Available Data to Lower Steam System Cost  

E-Print Network (OSTI)

Industrial steam users recognize the need to reduce system cost in order to remain internationally competitive. Steam systems are a key utility that influence cost significantly, and represent a high value opportunity target. However, the quality of steam is often taken for granted, even overlooked at times. When the recent global recession challenged companies to remain profitable as a first priority, the result was that maintenance budgets were cut and long term cost reduction initiatives for steam systems set aside due to more pressing issues. One of the regrettable results of such actions is that knowledgeable personnel are re-assigned, retired, or released when necessary steam system cost reduction programs are eliminated. When the time arrives to refocus on long term cost reduction by improving the steam system, some programs may have to start from the beginning and a clear path forward may not be evident. New personnel are often tasked with steam improvements when the programs restart, and they may experience difficulty in determining the true key factors that can help reduce system cost. The urgency for lowering long term fuel use and reducing the cost of producing steam is near for each plant. Population growth and resultant global demand are inevitable, so the global economy will expand, production will increase, more fossil fuel energy will be needed, and that fuel will become scarce and more costly. Although fuel prices are low now, energy costs can be expected to trend significantly upward as global production and demand increase. Now is the time for plants to make certain that they can deliver high quality steam to process equipment at lowest system cost. There are three stages to help optimize plant steam for best performance at a low system cost; Phase 1: Manage the condensate discharge locations (where the steam traps & valves are located), Phase 2: Optimize steam-using equipment, and Phase 3: Optimize the entire steam system. This presentation will focus primarily on management of the condensate discharge locations (CDLs) and show sites how to use readily available data to more efficiently achieve goals; but will also provide insight into how the three stages interact to reduce system cost and improve process performance.

Risko, J. R.

2011-01-01T23:59:59.000Z

203

Reducing Power Production Costs by Utilizing Petroleum Coke  

Science Conference Proceedings (OSTI)

Petroleum coke, a byproduct of the petroleum-refining process, is an attractive primary or supplemental fuel for power production primarily because of a progressive and predictable increase in the production volumes of petroleum coke. It is most commonly blended with coal in proportions suitable to meet sulfur emission compliance, and is generally less reactive than coal. Therefore, the cofiring of petroleum coke with coal typically improves ignition, flame stability, and carbon loss relative to the comb...

2000-05-05T23:59:59.000Z

204

Design and economics for low pressure delayed coking  

Science Conference Proceedings (OSTI)

The current refining trend is to run heavier crudes with a growing emphasis on bottom of the barrel resid upgrading. In general, a reduction in light crude availability and a corresponding increase in the price differential between light and heavy crudes makes the processing of heavier crudes highly attractive. US Department of Energy data indicate that between 1985 and 1989 the average API gravity of crude being processed in the US dropped from 32.46 to 32.14 degrees while the average sulfur content increased 0.15 wt%. As crudes get heavier and the demand for light, clean fuels increases, expanded resid upgrading capacity is rapidly becoming a necessity for most refiners. The coking process has existed since the early 1900's, and delayed coking is still favored as a relatively low cost resid upgrading option. Consistent with the objective of maximizing resid conversion, recent trends in delayed coking include maximizing liquid yields and reducing the production of petroleum coke by operating coke drums at lower pressures. Typically, the incremental liquid gained at lower pressures is worth significantly more than coke and can be further upgraded to lighter products. In addition, the driving force to minimize coke make has been accelerated by the worsening quality of crude oils. As vacuum resid feedstocks become heavier, contaminants in coke such as sulfur and metals are increased, making the coke less marketable. In the case of an existing coker which is capacity limited by coke make, a reduction in coke yield can be quite valuable. This paper discusses the design features and presents the economics associated with building a low pressure delayed coker with a 15 psig coke drum operating pressure versus a more conventional 25 psig design.

Bansal, B.B.; Moretta, J.C.; Gentry, A.R. (M.W. Kellogg Co., Houston, TX (United States))

1993-01-01T23:59:59.000Z

205

The Elimination of Steam Traps  

E-Print Network (OSTI)

How would you like to have a share of $154,000,000,000 a year? According to the Department of Energy that is roughly what was spent for creating steam in 1978. Steam generation accounts for fully one half of the industrial and commercial energy dollar. That figure could be reduced by 10-20% or more by the simple elimination of steam traps. Recent engineering developments show that steam traps can be eliminated. Documented results demonstrate that the retrofitting of existing facilities to alternative methods of condensate removal is simple and economically feasible, with paybacks of less than 12 months. Advantages obtained in the first year remain consistent for several years after conversion with virtual elimination of maintenance.

Dickman, F.

1985-05-01T23:59:59.000Z

206

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and...

207

Impurity Removal from Petroleum Coke - Programmaster.org  

Science Conference Proceedings (OSTI)

Presentation Title, Impurity Removal from Petroleum Coke. Author(s), Alexandre Gagnon, Hans Darmstadt, Nigel Backhouse, Esme Ryan, Laurence Dyer, David ...

208

Vibrated Bulk Density (VBD) of Calcined Petroleum Coke and ...  

Science Conference Proceedings (OSTI)

Presentation Title, Vibrated Bulk Density (VBD) of Calcined Petroleum Coke and Implications of Changes in the ASTM Method D4292. Author(s), Bill Spencer, ...

209

Influence of Petroleum Coke Sulphur Content on the Sodium ... - TMS  

Science Conference Proceedings (OSTI)

Feb 1, 1993 ... Influence of Petroleum Coke Sulphur Content on the Sodium Sensitivity of Carbon Anodes by S.M. Hume ... TMS Student Member price: 0.00.

210

Coking is a refinery process that produces 19% of finished ...  

U.S. Energy Information Administration (EIA)

Financial market analysis and financial data ... hydraulically cutting the coke using water. ... to a heater as a fluidized solid where some of it is ...

211

Determination of Coke Calcination Level and Anode Baking Level  

Science Conference Proceedings (OSTI)

Presentation Title, Determination of Coke Calcination Level and Anode Baking Level – Application and Reproducibility of Lc Based Methods. Author(s), Stein ...

212

Use of Coal Tar Pitch Coke for Producing Prebaked Electrodes  

Science Conference Proceedings (OSTI)

The study was conducted in order to (1) find an alternative material to petroleum coke due to its high cost and deteriorating properties, and (2) determine the ...

213

Modélisation thermomécanique d'un piédroit de four à coke.  

E-Print Network (OSTI)

??Inscrite dans le cadre du projet européen Coke Oven Operating Limits, cette thèse porte sur la modélisation thermomécanique d'un piédroit de cokerie. Le piédroit est… (more)

Landreau, Matthieu

2009-01-01T23:59:59.000Z

214

Discrete Element Method Applied to the Vibration Process of Coke ...  

Science Conference Proceedings (OSTI)

In the present work, effects of particle shape and size distribution on vibrated bulk density (VBD) of dry coke samples have been investigated. Discrete Element ...

215

Increasing Coke Impurities – Is this Really a Problem for Metal ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Increases in the Vanadium and Nickel content of anode grade coke in recent years have predictably affected smelter metal quality. This has now ...

216

Dry purification of aspirational air in coke-sorting systems with wet slaking of coke  

Science Conference Proceedings (OSTI)

Coke transportation after wet slaking is accompanied by the release of dust in the production building and in the surrounding atmosphere. Wet methods are traditionally used to purify very humid air. Giprokoks has developed designs for highly efficient dry dust-removal methods in such conditions.

T.F. Trembach; A.G. Klimenko [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

217

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

An Exploration of Innovation and An Exploration of Innovation and Energy Efficiency in an Appliance Industry Prepared by Margaret Taylor, K. Sydny Fujita, Larry Dale, and James McMahon For the European Council for an Energy Efficient Economy March 29, 2012 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL - 5689E An Exploration of Innovation and Energy Efficiency in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and direction of technological change of product industries; the factors that underlie the outcomes of innovation in these industries; and the ways the innovation system might respond to any given intervention. The report provides an overview of the dynamics of energy efficiency policy and innovation in the appliance

218

Industry  

E-Print Network (OSTI)

milling industry: An ENERGY STAR Guide for Energy and Plantcement mak- ing - An ENERGY STAR Guide for Energy and Plantre- fineries - An ENERGY STAR Guide for Energy and Plant

Bernstein, Lenny

2008-01-01T23:59:59.000Z

219

Adsorptive removal of nitrogen from coal-based needle coke feedstocks using activated carbon.  

E-Print Network (OSTI)

??A low percentage of nitrogen in needle coke feedstocks is desired for the reduction of puffing during the process of graphitization of needle coke. The… (more)

Madala, Sreeja.

2009-01-01T23:59:59.000Z

220

Prediction of Coke Quality in Ironmaking Process: A Data Mining Approach.  

E-Print Network (OSTI)

??Coke is an indispensable material in Ironmaking process by blast furnace. To provide good and constant quality coke for stable and efficient blast furance operation… (more)

Hsieh, Hsu-huang

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial steam coking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Thomas Reddinger Director, Steam  

E-Print Network (OSTI)

Supervisor (Distribution) Deborah Moorhead Office Coordinator III Martin Bower Steam Plant Operator RichardThomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance Redfield Steam Plant Operator SU Steam Station/Chilled Water Plant Bohdan Sawa Steam Plant Operator Robert

McConnell, Terry

222

Waste heat steams ahead with injection technology  

Science Conference Proceedings (OSTI)

Owners of Commercial-Industrial-Institutional buildings whose thermal usage is too variable to implement cogeneration are looking to a gasturbine steam-injection technology, called the Cheng Cycle, to reduce their energy costs. The Cheng Cycle uses industrial components-a gas-turbine generating set, a waste-heat recovery steam generator and system controls-in a thermodynamically optimized mode. In the process, steam produced from waste heat can be used for space or process heating or to increase the electrical output of a gas turbine. The process was patented in 1974 by Dr. Dah Yu Cheng, of the University of Santa Clara, Santa Clara, Calif. When a plant's thermal needs fall because of production or temperature changes, unused steam is directed back to the turbine to increase electrical output. As thermal requirements rise, the process is reversed and needed steam is channeled to plant uses.

Shepherd, S.; Koloseus, C.

1985-03-01T23:59:59.000Z

223

Steam System Optimization  

E-Print Network (OSTI)

Most plant steam systems are complex systems. Usually the fuel required to produce the steam represents a major expense for manufacturing facilities. By properly operating and maintaining the steam system and making minor improvements, significant savings can be realized.

Aegerter, R. A.

1998-04-01T23:59:59.000Z

224

Steam atmosphere drying concepts using steam exhaust recompression  

SciTech Connect

In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg{sub evap} to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

DiBella, F.A. [TECOGEN, Inc., Waltham, MA (United States)

1992-08-01T23:59:59.000Z

225

Steam atmosphere drying concepts using steam exhaust recompression  

SciTech Connect

In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg[sub evap] to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

DiBella, F.A. (TECOGEN, Inc., Waltham, MA (United States))

1992-08-01T23:59:59.000Z

226

Coke profile and effect on methane/ethylene conversion process  

E-Print Network (OSTI)

The objective of this study was to investigate the coke profile with respect to time on stream and the change of product distribution due to catalyst deactivation. A fixed bed reactor was used to conduct this investigation. A series of runs were conducted using the Engelhard catalyst with fixed operating conditions. The only variable was the time on stream of each run. Six experiments were conducted starting with one hour time on stream up to six hours with an increment of one hour. In each experiment data on product flow rate, reactor temperature, and product distribution were collected. And at the end of each run, the amount of coke deposited on the catalyst was measured. Hydrogen concentration in the product distribution decreased as a function of time on stream. On the other hand, low and high end hydrocarbons increased with time on stream. The coke deposition kinetics for the catalyst at the process operating conditions can be estimated using Voorhies' empirical formula. The coke profile inside the reactor showed that the coke reaction follows a parallel mechanism to the main reaction. Ethylene was found to be the main coke precursor; however, the participation of methane in the coke reaction could not be neglected.

Al-Solami, Bandar

2002-01-01T23:59:59.000Z

227

Coke mineral transformations in the experimental blast furnace  

SciTech Connect

Blast furnace efficiency may be improved by optimizing coke reactivity. Some but not all forms of mineral matter in the coke modify its reactivity, but changes in mineral matter that occur within coke while in the blast furnace have not been fully quantified. To determine changes in mineral matter forms in the blast furnace, coke samples from a dissection study in the LKAB experimental blast furnace (EBF) were characterized using SEM/EDS analysis, EPMA (microprobe), and low-temperature ashing/quantitative XRD analysis. Variations in alkali concentration, particularly potassium, dominated the compositional changes. At high concentrations of potassium, the mineral matter was largely potassium-bearing but even more potassium was diffused throughout the coke and not associated with mineral matter. There was little difference in potassium concentration between the core and surface of the coke pieces, suggesting that potassium diffused rapidly through the whole coke. Iron, calcium, silicon, and aluminum concentrations were relatively constant in comparison, although the mineralogy of all elements changed significantly with changing temperature. 23 refs., 20 figs., 9 tabs.

Kelli Kazuberns; Sushil Gupta; Mihaela Grigore; David French; Richard Sakurovs; Mats Hallin; Bo Lindblom; Veena Sahajwalla [University of New South Wales, Sydney, NSW (Australia). Cooperative Research Centre for Coal in Sustainable Development (CCSD)

2008-09-15T23:59:59.000Z

228

U.S. Exports to Saudi Arabia of Petroleum Coke (Thousand ...  

U.S. Energy Information Administration (EIA)

Petroleum Coke Exports by Destination; Saudi Arabia Exports of Crude Oil and Petroleum Products by Destination ...

229

U.S. Exports to South Africa of Petroleum Coke (Thousand ...  

U.S. Energy Information Administration (EIA)

Petroleum Coke Exports by Destination; South Africa Exports of Crude Oil and Petroleum Products by Destination ...

230

New process for coke-oven gas desulfurization  

SciTech Connect

With the EPA reclassifying spent iron oxide as a hazardous waste material in 1990, an alternative technology was sought for desulfurizing coke-oven gas. Vacasulf technology was adopted for reasons that included: producing of coke battery heating gas without further polishing and high-quality elemental sulfur; lowest operating cost in comparison with other methods; no waste products; and integrates with existing ammonia destruction facility. Vacasulf requires a single purchased material, potassium hydroxide, that reacts with carbon dioxide in coke-oven gas to form potassium carbonate which, in turn, absorbs hydrogen sulfide. Operation of the system has been successful following the resolution of relatively minor start-up problems.

Currey, J.H. [Citizens Gas and Coke Utility, Indianapolis, IN (United States)

1995-10-01T23:59:59.000Z

231

Variation in coke properties within the blast-furnace shop  

SciTech Connect

In active production at OAO Magnitogorskii Metallurgicheskii Kombinat (MMK), samples of melt materials were taken during shutdown and during planned repairs at furnaces 1 and 8. In particular, coke was taken from the tuyere zone at different distances from the tuyere tip. The mass of the point samples was 2-15 kg, depending on the sampling zone. The material extracted from each zone underwent magnetic separation and screening by size class. The resulting coke sample was averaged out and divided into parts: one for determining the granulometric composition and mechanical strength; and the other for technical analysis and determination of the physicochemical properties of the coke.

E.N. Stepanov; I.I. Mel'nikov; V.P. Gridasov; A.A. Stepanova [OAO Magnitogorskii Metallurgicheskii Kombinat (MMK), Magnitogorsk, (Russian Federation)

2009-04-15T23:59:59.000Z

232

Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial 8,870,422 44.3% Commercial 3,158,244 15.8% Electric Utilities 2,732,496 13.7% Residential 5,241,414 26.2% Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." T e x a s L o u i s i a n a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Industrial Billion Cubic Meters T e x a s C a l i f o r n i a F l o r i d a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Electric Utilities Billion Cubic Meters N e w Y o r k C a l i f o r n i a I l l i n o i s A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Commercial Billion Cubic Meters I l l i n o i s C a l i f o r n i a N e w Y o r k A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Residential Billion Cubic Meters 11. Natural Gas Delivered to Consumers in the United States, 1996 Figure Volumes in Million Cubic Feet Energy Information Administration

233

Steam driven markets  

Science Conference Proceedings (OSTI)

The market for steam equipment has been relatively level. Looking ahead, manufacturers anticipate steady market growth worldwide. Steam equipment manufacturers share a similar view of the market for next few years - upward. The steady upward climb is being attributed to a number of factors that will benefit steam turbine and heat recovery steam generator (HRSG) makers.

Anderson, J.L.

1993-02-01T23:59:59.000Z

234

The Steam System Scoping Tool: Benchmarking Your Steam Operations Through Best Practices  

E-Print Network (OSTI)

The U.S. Department of Energy Office of Industrial Technology (DOE-OIT) BestPractice efforts aim to assist U.S. industry in adopting near-term energy-efficient technologies and practices through voluntary technical-assistance programs on improved system efficiency. The BestPractices Steam effort, a part of the DOE-OIT effort, has developed a new tool that steam energy managers and operations personnel can use to assess their steam operations and improve their steam energy usage -the Steam System Scoping Tool. This paper describes how the tool was developed, how the tool works, and the status of efforts to improve the tool in the future.

Wright, A.; Hahn, G.

2001-05-01T23:59:59.000Z

235

Method for improving the steam splits in a multiple steam injection process using multiple steam headers  

SciTech Connect

This patent describes a method for enhancing the uniformity of steam distribution in a multiple steam injection system comprising a steam generator, a primary steam header, at least one secondary steam header, a primary steam line connecting the generator to the primary header, at lease one secondary steam line connecting the primary header to the secondary steam header, and a plurality of tertiary steam lines connecting the secondary steam header to a plurality of stem injection wells. It comprises injecting a surfactant into the primary steam line, mixing the surfactant and steam in the primary steam line sufficiently so that the surfactant and the steam enter the primary steam header as a foam, and mixing the surfactant and steam in the secondary steam lines sufficiently so that the surfactant and the steam enter the secondary steam header as a foam.

Stowe, G.R.

1991-03-19T23:59:59.000Z

236

Table 38. Coal Stocks at Coke Plants by Census Division  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Stocks at Coke Plants by Census Division Coal Stocks at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 38. Coal Stocks at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Census Division June 30, 2013 March 31, 2013 June 30, 2012 Percent Change (June 30) 2013 versus 2012 Middle Atlantic w w w w East North Central 1,313 1,177 1,326 -1.0 South Atlantic w w w w East South Central w w w w U.S. Total 2,500 2,207 2,295 8.9 w = Data withheld to avoid disclosure. Note: Total may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration (EIA), Form EIA-5, 'Quarterly Coal Consumption and Quality Report - Coke Plants.'

237

Gulf Coast (PADD 3) Catalyst Petroleum Coke Consumed at ...  

U.S. Energy Information Administration (EIA)

Gulf Coast (PADD 3) Catalyst Petroleum Coke Consumed at Refineries (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

238

Comprehensive Effect of Coke Breeze and Limestone Particle Size ...  

Science Conference Proceedings (OSTI)

Chemical Enrichment of Precious Metals in Iron Sulfides Using Microwave Energy · Chloridizing ... Co-Gasification Behavior of Metallurgical Coke with High and Low Reactivity .... Thermal Plasma Torches for Metallurgical Applications.

239

U.S. Ending Stocks of Petroleum Coke (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Ending Stocks of Petroleum Coke (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 4,502: ...

240

U.S. Exports of Petroleum Coke (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Exports of Petroleum Coke (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 50,292: ...

Note: This page contains sample records for the topic "industrial steam coking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

U.S. Petroleum Coke Consumed at Refineries (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Petroleum Coke Consumed at Refineries (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: ...

242

U.S. Exports of Petroleum Coke (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Exports of Petroleum Coke (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 2,754: 4,394: 3,722: 3,995: 5,211: ...

243

U.S. Petroleum Coke Stocks at Refineries (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Petroleum Coke Stocks at Refineries (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 10,747: 11,072: 11,444: ...

244

Nippon Coke and Engineering Sumitomo Corp JV | Open Energy Information  

Open Energy Info (EERE)

and Engineering Sumitomo Corp JV Jump to: navigation, search Name Nippon Coke and Engineering & Sumitomo Corp JV Place Tokyo, Japan Zip 135-6007 Product Japan-based natural...

245

Table A23. Quantity of Purchased Electricity, Steam, and Natural Gas by Type  

U.S. Energy Information Administration (EIA) Indexed Site

3. Quantity of Purchased Electricity, Steam, and Natural Gas by Type" 3. Quantity of Purchased Electricity, Steam, and Natural Gas by Type" " of Supplier, Census Region, Industry Group, and Selected Industries, 1991" " (Estimates in Btu or Physical Units)" ,," Electricity",," Steam",," Natural Gas" ,," (Million kWh)",," (Billion Btu)",," (Billion cu ft)" ,," -------------------------",," -------------------------",," ---------------------------------------",,,"RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Utility","Transmission","Other","Row"

246

Problem of improving coke oven gas purification systems  

Science Conference Proceedings (OSTI)

A discussion of the problems of improving desulfurization processes of coke oven gas was presented. Of particular interest were control systems and increasing capacity of the coke ovens. Included in the discussion were the vacuum-carbonate and arsenic-soda sulfur removal systems. Problems involved with these systems were the number of treatment operations, the volume of the reagents used, and the operation of equipment for naphthalene and cyanide removal.

Goldin, I.A.

1982-01-01T23:59:59.000Z

247

Priorities in the design of chemical shops at coke plants  

SciTech Connect

Recent trends in the design of chemical equipment at coke plants are described, through the lens of experience at Giprokoks. The main priorities were to improve the removal of impurities from coke oven gas; to improve equipment design on the basis of new materials; to reduce reagent consumption; to reduce the materials and energy consumed in the construction of new equipment; and to minimize impacts on the environment and worker health. Some technological equipment is briefly characterized.

V.I. Rudyka; Y.E. Zingerman; V.V. Grabko; L.A. Kazak [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

248

Productivity benefits of industrial energy efficiency measures  

E-Print Network (OSTI)

at the coke battery Saves equipment/handling costs; reducesand material cost savings at the coke battery Decreases cokeand material cost savings at the coke battery Decreases coke

Worrell, Ernst

2011-01-01T23:59:59.000Z

249

Innovative coke oven gas cleaning system for retrofit applications  

DOE Green Energy (OSTI)

The coke plant at the Sparrows Point Plant consist of three coke oven batteries and two coal chemical plants. The by-product coke oven gas (COG) consists primarily of hydrogen, methane, carbon monoxide, nitrogen and contaminants consisting of tars, light oils (benzene, toluene, and xylene) hydrogen sulfide, ammonia, water vapor and other hydrocarbons. This raw coke oven gas needs to be cleaned of most of its contaminants before it can be used as a fuel at other operations at the Sparrows Point Plant. In response to environmental concerns, BSC decided to replace much of the existing coke oven gas treatment facilities in the two coal chemical Plants (A and B) with a group of technologies consisting of: Secondary Cooling of the Coke oven Gas; Hydrogen Sulfide Removal; Ammonia Removal; Deacification of Acid Gases Removed; Ammonia Distillation and Destruction; and, Sulfur Recovery. This combination of technologies will replace the existing ammonia removal system, the final coolers, hydrogen sulfide removal system and the sulfur recovery system. The existing wastewater treatment, tar recovery and one of the three light oil recovery systems will continue to be used to support the new innovative combination of COG treatment technologies.

Not Available

1992-08-24T23:59:59.000Z

250

Steam System Improvement: A Case Study  

E-Print Network (OSTI)

Along with the shortage of conventional energy sources, efforts have been sought to use energy in a rational manner. Whereas the biggest energy consumption is in the industrial sector, various techniques to reduce energy have been searched. For industries, this will result in the reduction of production cost. In industry where steam is utilized, the steam production and distribution system consumes a significant portion of energy. Therefore, optimization of steam system is among the biggest energy saving potential in industry. The optimization measures can be categorized into two methods, i.e. (1) no cost/low cost that can be done through a better maintenance and improvement of operating conditions, and (2) major improvement that requires a significant amount of investment, that includes the modification of process and major equipment. Since energy saving is an endless effort, new levels of energy efficiency standards are being set year after year. Therefore, repeated studies should be made to identify energy saving potential. Modern instruments allow the energy specialists to conduct an in-depth survey to identify energy performance. This paper highlights the findings of the study in a steam generation and distribution system of a crude oil stabilization unit. With the annual budget of $8.3 million, the unit is handling about 600,000 barrels crude oil per day from an offshore platform. The study identified an opportunity of annual saving amounting to $1,115,300. Though the finding is specific to a single site, the basics of steam system analysis are applicable to any steam system. The steam system should be reviewed year after year to identify more energy wastes and to improve efficiency of steam system, thus reducing the energy cost. At the same time this will also help save the environment.

Venkatesan, V. V.; Leigh, N.

1998-04-01T23:59:59.000Z

251

Development of a mathematical description of catalytic reforming taking into account changes of the individual components of the feedstock and catalyst coking  

Science Conference Proceedings (OSTI)

This paper presents an approach for modeling petroleum and petrochemical processing. Based on this approach a mathematical model has been developed for catalytic reforming taking into account changes of individual feedstock components and catalyst coking. Examples are given of calculations and optimization of industrial equipment.

Rabinovich, G.B.; Dynkina, N.E.

1985-12-01T23:59:59.000Z

252

Steam atmosphere drying exhaust steam recompression system  

DOE Patents (OSTI)

This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

1994-03-08T23:59:59.000Z

253

Steam atmosphere drying exhaust steam recompression system  

DOE Patents (OSTI)

This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculated through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried The dryer comprises a vessel which enables the feedstock and steam to enter recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard.

Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Doyle, Edward F. (Dedham, MA); DiBella, Francis A. (Roslindale, MA)

1994-01-01T23:59:59.000Z

254

Flash High-Pressure Condensate to Regenerate Low-Pressure Steam  

SciTech Connect

This revised ITP tip sheet on regenerating low-pressure steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

255

Use Vapor Recompression to Recover Low-Pressure Waste Steam (Revised0  

SciTech Connect

This revised ITP tip sheet on recovering low-pressure waste steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2008-03-01T23:59:59.000Z

256

High performance steam development  

SciTech Connect

DOE has launched a program to make a step change in power plant to 1500 F steam, since the highest possible performance gains can be achieved in a 1500 F steam system when using a topping turbine in a back pressure steam turbine for cogeneration. A 500-hour proof-of-concept steam generator test module was designed, fabricated, and successfully tested. It has four once-through steam generator circuits. The complete HPSS (high performance steam system) was tested above 1500 F and 1500 psig for over 102 hours at full power.

Duffy, T.; Schneider, P.

1995-12-31T23:59:59.000Z

257

"Table A38. Total Expenditures for Purchased Electricity, Steam, and Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Total Expenditures for Purchased Electricity, Steam, and Natural Gas" 8. Total Expenditures for Purchased Electricity, Steam, and Natural Gas" " by Type of Supplier, Census Region, Census Division, Industry Group," " and Selected Industries, 1994" " (Estimates in Million Dollars)" ,," Electricity",," Steam" ,,,,,,"RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Row" "Code(a)","Industry Group and Industry","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors" ,,"Total United States"

258

"Table A46. Total Expenditures for Purchased Electricity, Steam, and Natural"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Total Expenditures for Purchased Electricity, Steam, and Natural" 6. Total Expenditures for Purchased Electricity, Steam, and Natural" " Gas by Type of Supplier, Census Region, Industry Group, and Selected Industries," 1991 " (Estimates in Million Dollars)" ,," Electricity",," Steam",," Natural Gas" ,,"-","-----------","-","-----------","-","------------","-","RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Utility","Transmission","Other","Row" "Code(a)","Industry Groups and Industry","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Supplier(b)","Pipelines","Supplier(d)","Factors"

259

The potential for reducing energy utilization in the refining industry  

Science Conference Proceedings (OSTI)

The paper first discusses energy use in petroleum refineries and CO{sub 2} emissions because of the fuels used. Then the paper looks at near-, mid-, and long-term opportunities for energy reduction. Some of the options are catalysts, cooling water recycling, steam system efficiency, and the use of coke and petroleum residues.

Petrick, M.; Pellegrino, J.

1999-10-08T23:59:59.000Z

260

Steam Generator Management Program: Steam Generator Progress Report  

Science Conference Proceedings (OSTI)

Since 1985, EPRI has published the Steam Generator Progress Report (SGPR), which provides historical information on worldwide steam generator activities.

2009-10-19T23:59:59.000Z

Note: This page contains sample records for the topic "industrial steam coking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Prediction of metallurgical coke strength from the petrographic composition of coal blends  

Science Conference Proceedings (OSTI)

Turkey, especially Zonguldak on the West Coast of Black Sea region, has large reserves of bituminous coal that can be used either directly or in blends with other coals for metallurgical coke production. It is possible to predict the coking properties of these coals by petrographic analysis. In this study, semi- and non-coking coals were blended with coking bituminous coals in varying proportions and an estimation was made as to their stability factors through petrographic techniques. It was established that semi- and non-coking bituminous coals could be used in the production of metallurgical coke.

Sutcu, H.; Toroglu, I.; Piskin, S. [Zonguldak Karaelmas University, Zonguldak (Turkey)

2009-07-01T23:59:59.000Z

262

Downhole steam quality measurement  

SciTech Connect

An empirical method for the remote sensing of steam quality that can be easily adapted to downhole steam quality measurements by measuring the electrical properties of two-phase flow across electrode grids at low frequencies.

Lee, David O. (Albuquerque, NM); Montoya, Paul C. (Albuquerque, NM); Muir, James F. (Albuquerque, NM); Wayland, Jr., J. Robert (Albuquerque, NM)

1987-01-01T23:59:59.000Z

263

Downhole steam quality measurement  

DOE Patents (OSTI)

The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

1985-06-19T23:59:59.000Z

264

Materials Performance in USC Steam  

SciTech Connect

The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C).

G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk

2010-05-01T23:59:59.000Z

265

Steam System Optimization  

E-Print Network (OSTI)

Refinery and chemical plant steam systems are complex and the fuel required to produce the steam represents a major expense. The incremental cost for generating a 1,000 lb./hr. of steam is typically $45,000 - $60,000/year. Most plants have numerous low/

Aegerter, R.

2004-01-01T23:59:59.000Z

266

Steam Trap Application  

E-Print Network (OSTI)

The effective application of steam traps encompasses three primary areas which are the selection and sizing, the installation, and the monitoring of the steam trapping system. Proper application of steam traps will improve production rates, product quality, and reduce energy and maintenance costs.

Murphy, J. J.

1982-01-01T23:59:59.000Z

267

Industrial Demand Module (IDM) - 2002 EIA Models Directory  

U.S. Energy Information Administration (EIA)

The Industrial Demand Module incorporates three components: buildings; process and assembly; and boiler, steam, and cogeneration. Last Model Update:

268

Steam Generator Management Program: Benchmark Study of EPRI and EDF Steam Generator Thermal-Hydraulic and Flow Induced Vibration Cod es  

Science Conference Proceedings (OSTI)

Steam generator thermal-hydraulics software codes and flow induced vibration software codes are used for steam generator design, root cause investigations, and assessment of operational changes. Organizations within the steam generator industry develop and maintain such software codes. Capabilities of existing codes are being challenged by current demands for more comprehensive results to troubleshoot ...

2012-12-12T23:59:59.000Z

269

Guidelines on Optimizing Heat Recovery Steam Generator Drains  

Science Conference Proceedings (OSTI)

Severe thermal-mechanical fatigue damage to the superheaters (SHs), reheaters (RHs), and steam piping of horizontal-gas-path heat recovery steam generators due primarily to ineffective drainage of the condensate that is generated in superheaters and reheaters at every startup continues to be a significant industry problem that results in avoidable deterioration of unit reliability and significant unnecessary maintenance costs. This report will assist operators in guiding heat recovery steam generator (HR...

2007-12-21T23:59:59.000Z

270

Does the CO2 emission trading directive threaten the competitiveness of European industry?  

E-Print Network (OSTI)

, gas and water; non-metallic minerals; iron and steel; petroleum refining, coke and nuclear fuel industry refining, coke and nuclear fuels chemicals machinery and equipement, N.E.C. textile, textile sector, the loss in turnover is then the higher, the higher the four items below: 1. the cost of CO2

Paris-Sud XI, Université de

271

Hydrodesulfurization of Fluid Catalytic Cracking Decant Oils for the Production of Low-sulfur Needle Coke Feedstocks.  

E-Print Network (OSTI)

??Needle coke, produced by the delayed coking of fluid catalytic cracking decant oils, is the primary filler used in the production of graphite electrodes. The… (more)

Wincek, Ronald

2013-01-01T23:59:59.000Z

272

DOE's BestPractices Steam End User Training Steam EndUser Training  

E-Print Network (OSTI)

is that the industrial plant has a need for thermal energy as well as shaft power. The industrial plant can make use that is passed through turbines. Therefore, let's examine a typical coalfired power plant. Steam End User words, the power plant turbine will be 85 percent of perfect. The generator that converts shaft power

Oak Ridge National Laboratory

273

Plant View On Reducing Steam Trap Energy Loss  

E-Print Network (OSTI)

Energy will continue to be an ever increasingly important factor in the cost of doing business in the decade of the 80' s. In many petrochemical industries, energy is the second most costly item in producing a product. About 36% of our nation's total energy consumption is used by industry in producing the goods which are consumed around the world. Steam is the most commonly used energy source for the petrochemical industry. Most of this steam is used for heating and evaporating the many petrochemical liquids. This steam is then condensed and is removed from the system at the same rate as it is being formed or the loss of heat transfer will result. From a cost standpoint only condensate should be allowed through the trap. But at many plants half of the steam traps are passing excess steam. This is caused by neglect of aged steam traps which have worn out and misapplication of steam traps by oversizing or using the 'wrong' type trap. Elimination of steam wastes by an effective well engineered steam trap program is what is covered by this article.

Vallery, S. J.

1982-01-01T23:59:59.000Z

274

Urinary 1-hydroxypyrene in nonsmokers: a biomarker for coke smoke exposure and general urban PAH exposure.  

E-Print Network (OSTI)

??This dissertation research examined the validity of urinary 1-OHP as a biomarker of PAH for coke production workers and non-coke oven workers in Anshan City,… (more)

Han, In-Kyu

2008-01-01T23:59:59.000Z

275

Steam trap monitor  

DOE Patents (OSTI)

A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (a hot finger) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellow in providing an indication of total energy (steam + condensate) of the system. Processing means coupled to and responsive to outputs from the hot and cold fingers subtracts the former from the latter to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning. 2 figs.

Ryan, M.J.

1987-05-04T23:59:59.000Z

276

Steam turbine control  

SciTech Connect

In a power plant which includes a steam turbine with main control valves for admitting steam into the steam turbine and a steam bypass with bypass control valves for diverting steam around the steam turbine directly into a condenser, it is necessary to coordinate the operation of the respective valves so that the steam turbine can be started, brought up to speed, synchronized with a generator and then loaded as smoothly and efficiently as possible. The present invention provides for such operation and, in addition, allows for the transfer of power plant operation from the so-called turbine following mode to the boiler following mode through the use of the sliding pressure concept. The invention described is particularly applicable to combined cycle power plants.

Priluck, D.M.; Wagner, J.B.

1982-05-11T23:59:59.000Z

277

New packing in absorption systems for trapping benzene from coke-oven gas  

SciTech Connect

The efficiency of benzene removal from coke-oven gas in absorption units OAO Alchevskkoks with new packing is assessed.

V.V. Grabko; V.M. Li; T.A. Shevchenko; M.A. Solov'ev [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

278

Boiler Efficiency vs. Steam Quality- The Challenge of Creating Quality Steam Using Existing Boiler Efficiencies  

E-Print Network (OSTI)

A boiler works under pressure and it is not possible to see what is happening inside of it. The terms "wet steam" and "carry over" are every day idioms in the steam industry, yet very few people have ever seen these phenomena and the actual water movement inside a boiler has remained highly speculative. This paper and support test video of actual boiler operations will illustrate the effects steam quality vs. boiler efficiency during different boiler and steam system demands. There are four different operating situations that effect the steam quality. Each of the following situation will be described in detail using visual aids and supporting literature: Case I: On/Off Feedwater Control: Wide swings in the water level of the boiler can result in unnecessary low water alarms and shut downs. Case II: Reduced Operating Pressure: By running a boiler at a lower pressure, the boiling action within the boiler becomes much more violent causing water to be carried over in to the steam system. Case III: A Demand of 15% over Capacity: Over loading a boiler will cause excessive amounts of water to be carried along with the steam into the system. Case IV: TDS Control: Without proper control of IDS within the boiler carry-over of water into the steam system will occur causing damage to equipment and/or waterhammer.

Hahn, G.

1998-04-01T23:59:59.000Z

279

The Iron Age & Coal-based Coke: A Neglected Case of Fossil-fuel Dependence  

E-Print Network (OSTI)

The Iron Age & Coal-based Coke: A Neglected Case of Fossil-fuel Dependence by Vaclav Smil September share of their primary energies from renewable sources. Steel & Coal-Derived Coke Here is another important: steel's fundamental dependence on coal-derived coke with no practical substitutes on any rational

Smil, Vaclav

280

Co-combustion Character of Oil Shale and Its Semi-coke on CFB Bench  

Science Conference Proceedings (OSTI)

Semi-coke is by-product from oil shale retorts and it is important to burn it in CFB furnace. But limited to the inflammable combustion traits, co-combustion of semi-coke with raw oil shale would be meaningful. Experimental research on co-combustion ... Keywords: combustion, distribution, semi-coke, temperature

Sun Baizhong; Huang Zhirong

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial steam coking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

" Census Region, Census Division, Industry Group, and Selected Industries, 1994"  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Electricity and Steam by Type of Supplier," Quantity of Purchased Electricity and Steam by Type of Supplier," " Census Region, Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Btu or Physical Units)" ,," Electricity",," Steam" ,," (million kWh)",," (billion Btu)" ,,,,,,"RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Row" "Code(a)","Industry Group and Industry","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors"

282

A Mixed-Dimensionality Modeling Approach for Interaction of Heterogeneous Steam Reforming Reactions and Heat Transfer.  

E-Print Network (OSTI)

??Hydrogen is most often produced on an industrial scale by catalytic steam methane reforming, an equilibrium-limited, highly endothermic process requiring the substantial addition of heat… (more)

Valensa, Jeroen

2009-01-01T23:59:59.000Z

283

Microchannel steam-methane reforming under constant and variable surface temperature distributions.  

E-Print Network (OSTI)

??Steam-methane reforming is a well understood industrial process used for generating hydrogen and synthesis gas. The reaction is generally carried out with residence times on… (more)

[No author

2010-01-01T23:59:59.000Z

284

The Engineered Approach to Energy and Maintenance Effective Steam Trapping  

E-Print Network (OSTI)

The engineered approach to steam trap sizing, selection and application has proven effective in significantly reducing a plant's fuel consumption, maintenance and trap replacement costs while improving thermal efficiency and overall steam system performance. New field test procedures for measuring condensate load and steam loss have proven valuable in sizing traps and to determine which trap is the most energy efficient. The combination of using the engineered approach to steam trapping, field tests to verify trap performance and good maintenance practices has contributed to a major reduction in energy consumption of 10-50% in many industrial plants.

Krueger, R. G.; Wilt, G. W.

1980-01-01T23:59:59.000Z

285

Table 33. Coal Carbonized at Coke Plants by Census Division  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Carbonized at Coke Plants by Census Division Coal Carbonized at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 33. Coal Carbonized at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Census Division April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change Middle Atlantic w w w w w w East North Central 3,051 2,997 3,092 6,048 6,156 -1.8 South Atlantic w w w w w w East South Central w w w w w w U.S. Total 5,471 5,280 5,296 10,751 10,579 1.6 w = Data withheld to avoid disclosure. Note: Total may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration (EIA), Form EIA-5, 'Quarterly Coal Consumption and Quality Report - Coke Plants

286

Table 23. Coal Receipts at Coke Plants by Census Division  

U.S. Energy Information Administration (EIA) Indexed Site

Receipts at Coke Plants by Census Division Receipts at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 23. Coal Receipts at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Census Division April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change Middle Atlantic w w w w w w East North Central 3,189 2,679 3,225 5,867 5,993 -2.1 South Atlantic w w w w w w East South Central w w w w w w U.S. Total 5,770 4,962 5,370 10,732 10,440 2.8 w = Data withheld to avoid disclosure. Note: Total may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration (EIA), Form EIA-5, 'Quarterly Coal Consumption and Quality Report - Coke Plants

287

Fuel gas main replacement at Acme Steel's coke plant  

SciTech Connect

ACME Steel's Chicago coke plant consists of two 4-meter, 50-oven Wilputte underjet coke-oven batteries. These batteries were constructed in 1956--1957. The use of blast furnace gas was discontinued in the late 1960's. In 1977--1978, the oven walls in both batteries were reconstructed. Reconstruction of the underfire system was limited to rebuilding the coke-oven gas reversing cocks and meter in orifices. By the early 1980's, the 24-in. diameter underfire fuel gas mains of both batteries developed leaks at the Dresser expansion joints. These leaks were a result of pipe loss due to corrosion. Leaks also developed along the bottoms and sides of both mains. A method is described that permitted pushing temperatures to be maintained during replacement of underfire fuel gas mains. Each of Acme's two, 50-oven, 4-metric Wilputte coke-oven, gas-fired batteries were heated by converting 10-in. diameter decarbonizing air mains into temporary fuel gas mains. Replacement was made one battery at a time, with the temporary 10-in. mains in service for five to eight weeks.

Trevino, O. (Acme Steel Co., Chicago, IL (United States). Chicago Coke Plant)

1994-09-01T23:59:59.000Z

288

Process for converting coal into liquid fuel and metallurgical coke  

DOE Patents (OSTI)

A method of recovering coal liquids and producing metallurgical coke utilizes low ash, low sulfur coal as a parent for a coal char formed by pyrolysis with a volatile content of less than 8%. The char is briquetted and heated in an inert gas over a prescribed heat history to yield a high strength briquette with less than 2% volatile content.

Wolfe, Richard A. (Abingdon, VA); Im, Chang J. (Abingdon, VA); Wright, Robert E. (Bristol, TN)

1994-01-01T23:59:59.000Z

289

Coke quality for blast furnaces with coal-dust fuel  

SciTech Connect

Recently, plans have been developed for the introduction of pulverized coal injection (PCI) at various Russian metallurgical enterprises. The main incentive for switching to PCI is the recent price rises for Russian natural gas. The paper discusses the quality of coke for PCI into blast furnaces.

Y.A. Zolotukhin; N.S. Andreichikov [Eastern Coal-Chemistry Institute, Yekaterinburg (Russian Federation)

2009-07-01T23:59:59.000Z

290

U.S. Refinery Yield of Petroleum Coke (Percent)  

U.S. Energy Information Administration (EIA)

U.S. Refinery Yield of Petroleum Coke (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's: 4.3: 4.3: 4.3: ...

291

U.S. Refinery Yield of Petroleum Coke (Percent)  

U.S. Energy Information Administration (EIA)

U.S. Refinery Yield of Petroleum Coke (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 4.4: 4.6: 4.5: 4.3: 4.1: 4.2: 4.4: 4.3: ...

292

Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 20  

E-Print Network (OSTI)

Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 20 Proving Safety Properties of the Steam Boiler Controller Formal Methods for Industrial Applications: A Case Study system consisting of a continuous steam boiler and a discrete controller. Our model uses the Lynch

Lynch, Nancy

293

Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 37  

E-Print Network (OSTI)

Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 37 Proving Safety Properties of the Steam Boiler Controller Formal Methods for Industrial Applications: A Case Study system consisting of a continuous steam boiler and a discrete controller. Our model uses the Lynch

Lynch, Nancy

294

Steam generator support system  

SciTech Connect

A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

Moldenhauer, James E. (Simi Valley, CA)

1987-01-01T23:59:59.000Z

295

Steam turbine plant  

SciTech Connect

A system for regulating the rate of closing of the turbine intake valve of a steam turbine plant is disclosed. A steam turbine is supplied from a steam generator through a turbine intake valve. A branch line conducts the steam to a bypass valve which is normally closed. In the event of conditions making it necessary to close the turbine intake valve rapidly, a regulator is provided to control the rate of closing of the turbine intake valve and the opening of the bypass valve so that the pressure conditions in the steam generator do not exceed the limits established by the manufacturer. Pressure measuring instruments are placed in the system to sense the pressure immediately upstream from the turbine intake valve and the bypass valve as well as the initial steam supply pressure. These pressure signals are transmitted to a computer which produces a control signal in accordance with predetermined conditions.

Skala, K.

1981-06-09T23:59:59.000Z

296

Steam generator support system  

DOE Patents (OSTI)

A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

Moldenhauer, J.E.

1987-08-25T23:59:59.000Z

297

Flash Steam Recovery Project  

E-Print Network (OSTI)

One of the goals of Vulcan's cost reduction effort is to reduce energy consumption in production facilities through energy optimization. As part of this program, the chloromethanes production unit, which produces a wide variety of chlorinated organic compounds, was targeted for improvement. This unit uses a portion of the high-pressure steam available from the plant's cogeneration facility. Continuous expansions within the unit had exceeded the optimum design capacity of the unit's steam/condensate recovery system, resulting in condensate flash steam losses to the atmosphere. Using computer simulation models and pinch analysis techniques, the Operational Excellence Group (Six Sigma) was able to identify a project to recover the flash steam losses as a supplemental low-pressure steam supply. The project was designed and implemented at no capital cost using existing instrumentation and controls. On an annualized basis steam usage per ton of product fell by about three percent. Absolute savings were about 15,800 million Btu.

Bronhold, C. J.

2000-04-01T23:59:59.000Z

298

Guidelines for Maintaining Steam Turbine Lubrication Systems  

Science Conference Proceedings (OSTI)

Failures of steam turbine bearings and rotors cost the utility industry an estimated $150 million a year. A third of these failures involve contaminated lubricants or malfunctioning lubricant supply system components. This report, outlining a comprehensive surveillance program, presents guidelines for maintaining major elements in the turbine lubrication system.

1986-07-01T23:59:59.000Z

299

Proceedings: Steam Turbine Stress Corrosion Workshop  

Science Conference Proceedings (OSTI)

A recent survey of utilities commissioned by EPRI indicated that cracking of steam turbine disk rims by stress corrosion was a pervasive problem in both fossil and nuclear power plants. There is a clear need to document industry experience in this area so that guidelines can be provided to utilities on managing the problem.

1997-11-03T23:59:59.000Z

300

Steam Generator Management Program  

Science Conference Proceedings (OSTI)

The 24th EPRI Steam Generator NDE Workshop took place in San Diego, California, July 1113, 2005. It covered one full day and two half days of presentations. Attendees included representatives from domestic and overseas nuclear utilities, nuclear steam supply system (NSSS) vendors, nondestructive evaluation (NDE) service and equipment organizations, research laboratories, and regulatory bodies. This annual workshop serves as a forum for NDE specialists to gather and discuss current steam generator NDE iss...

2005-12-08T23:59:59.000Z

Note: This page contains sample records for the topic "industrial steam coking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Theoretical and experimental foundations for preparing coke for blast-furnace smelting  

SciTech Connect

This article examines the preparation of coke for blast-furnace smelting by a method that most fully meets the requirements of blast-furnace technology: screening of the -36 mm fraction, the separation of nut coke of the 15-36 mm fraction, and its charging into the furnace in a mixture with the iron-ore-bearing charge components. An analysis is made of trial use of coke of the Premium class on blast furnace No. 5 at the Enakievo Metallurgical Plant. Use of this coke makes it possible to reduce the consumption of skip coke by 3.2-4.1%.

A.L. Podkorytov; A.M. Kuznetsov; E.N. Dymchenko; V.P. Padalka; S.L. Yaroshevskii; A.V. Kuzin [Enakievo Metallurgical Plant, Enakievo (Ukraine)

2009-05-15T23:59:59.000Z

302

Coke battery with 51-m{sup 3} furnace chambers and lateral supply of mixed gas  

SciTech Connect

The basic approaches employed in the construction of coke battery 11A at OAO Magnitogorskii Metallurgicheskii Kombinat are outlined. This battery includes 51.0-m{sup 3} furnaces and a dust-free coke-supply system designed by Giprokoks with lateral gas supply; it is heated exclusively by low-calorific mixed gas consisting of blast-furnace gas with added coke-oven gas. The 82 furnaces in the coke battery are divided into two blocks of 41. The gross coke output of the battery (6% moisture content) is 1140000 t/yr.

V.I. Rudyka; N.Y. Chebotarev; O.N. Surenskii; V.V. Derevich [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

303

Steam and Condensate Systems  

E-Print Network (OSTI)

In the late 60's and early 70's oil was plentiful and steam was relatively inexpensive. The switch to low sulphur fuel oil and the oil embargo suddenly changed the picture. The cost of steam rose from about $0.50 per 1,000# to $3.00 or more. Many see costs of $5.00 per 1,000# by 1980. These tremendous increases have caused steam systems, steam traps and condensate systems to become a major factor in overall plant efficiency and profit.

Yates, W.

1979-01-01T23:59:59.000Z

304

Steam and Condensate Systems  

E-Print Network (OSTI)

In the late 60's and early 70's oil was plentiful and steam was relatively inexpensive. The switch to low sulphur fuel oil and the oil embargo suddenly changed the picture. The cost of steam rose from $0.50 per 1,000# to today's cost of $4.00 or more. Many see costs of $6.00/$7.00 in the near future. These tremendous increases have caused steam systems, steam traps and condensate systems to become a major factor in overall plant efficiency and profit.

Yates, W.

1980-01-01T23:59:59.000Z

305

CALENDAR YEAR 2012 SCHEDULE Workshops to Improve Industrial Productivity by  

E-Print Network (OSTI)

. It covers material in steam generation efficiency, steam distribution system losses, and resource. For complete course information: http://www.eere.energy.gov/industry/bestpractices/pumping_systems.html Steam System Assessment Many facilities can save energy through the installation of more efficient steam

306

Boiler steam engine with steam recovery and recompression  

SciTech Connect

A boiler type of steam engine is described which uses a conventional boiler with an external combustion chamber which heats water in a pressure chamber to produce steam. A mixing chamber is used to mix the steam from the boiler with recovered recompressed steam. Steam from the mixing chamber actuates a piston in a cylinder, thereafter the steam going to a reservoir in a heat exchanger where recovered steam is held and heated by exhaust gases from the combustion chamber. Recovered steam is then recompressed while being held saturated by a spray of water. Recovered steam from a steam accumulator is then used again in the mixing chamber. Thus, the steam is prevented from condensing and is recovered to be used again. The heat of the recovered steam is saved by this process.

Vincent, O.W.

1980-12-23T23:59:59.000Z

307

Steam in Distribution and Use: Steam Quality Redefined  

E-Print Network (OSTI)

Steam quality is an important measurement in steam generation. It's a measurement of steam to moisture ratio. In use, steam quality takes on a different meaning- steam which maximizes energy transfer. To do this, the steam must be clean, dry, of desired pressure and free of air and non-condensible gases. Objectives in these areas should be set and an action plan implemented. Typical objectives could be to specify steam pressure delivery of maximum pressure and to use steam at the lowest pressure possible. Steam velocity ranges and maximum system pressure drops should be set. Cleaning steam and protecting control devices is an important means of maintaining quality. Draining condensate and venting air and other gases preserves the steam quality at the point of use. Poor pressure control yields poor operation and efficiency. Dirty steam causes valve leaks and maintenance problems. Improper drainage and venting can cause premature corrosion and poor heat transfer.

Deacon, W. T.

1989-09-01T23:59:59.000Z

308

Steam in Distribution and Use: Steam Quality Redefined  

E-Print Network (OSTI)

"Steam quality is an important measurement in steam generation. It's a measurement of steam to moisture ratio. In use, steam quality takes on a different meaning - steam which maximizes energy transfer. To do this, the steam must be clean, dry, of desired pressure and free of air and non-condensable gases. Objectives in these areas should be set and an action plan implemented. Typical objectives could be to specify steam pressure delivery of maximum pressure and to use steam at the lowest pressure possible. Steam velocity ranges and maximum system pressure drops should be set. Cleaning steam and protecting control devices is an important means of maintaining quality. Draining condensate and venting air and other gases preserves the steam quality at the point of use. Poor pressure control yields poor operation and efficiency. Dirty steam causes valve leaks and maintenance problems. Improper drainage and venting can cause premature corrosion and poor heat transfer."

Deacon, W.

1989-09-01T23:59:59.000Z

309

Steam BestPractice Resources and Tools: "Old" News is "New" News!  

E-Print Network (OSTI)

The U.S. Department of Energy Office of Industrial Technology (DOE-OIT) BestPractice efforts aim to assist U.S. industry in adopting near-term energy-efficient technologies and practices through voluntary, technical assistance programs on improved system efficiency. The Steam BestPractice effort, a part of the DOE-OIT effort, has identified and documented an extensive group of steam system resources and tools to assist steam system users to improve their systems. This paper describes the "new" news that Steam BestPractices is assembling from the "old" news about opportunities and techniques to improve steam systems.

Wright, A.; Hart, F.; Russell, C.; Jaber, D.

2000-04-01T23:59:59.000Z

310

CIBO's Energy Efficiency Handbook for Steam Power Systems  

E-Print Network (OSTI)

The Council of Industrial Boiler Owners (CIBO) has developed a handbook to help boiler operators get the best performance from their industrial steam systems. This energy efficiency handbook takes a comprehensive look at the boiler and steam system and addresses opportunities to improve performance every step of the way, including boiler maintenance, optimization, benchmarking, water treatment, and energy efficiency services. The handbook will include a checklist of items that operators should look for to improve their steam system's performance. This IETC paper will introduce the new CIBO handbook and describe its contents. The paper will also explain how the handbook is intended to be used.

Bessette, R. D.

1997-04-01T23:59:59.000Z

311

Risks From Severe Accidents Involving Steam Generator Tube Leaks or Ruptures  

Science Conference Proceedings (OSTI)

The various types of corrosion observed in PWR steam generator tubes prompted the nuclear industry to initiate a program of Steam Generator Degradation Specific Management (SGDSM). This program's objective is to develop a cost-effective means to maintain plant safety while improving steam generator reliability. Critical to this program is an assessment of the impact of steam generator tube leakage or rupture during severe accidents. This study determined the contributions of these types of severe acciden...

1998-01-02T23:59:59.000Z

312

STEAM GENERATOR FOR NUCLEAR REACTOR  

DOE Patents (OSTI)

The steam generator described for use in reactor powergenerating systems employs a series of concentric tubes providing annular passage of steam and water and includes a unique arrangement for separating the steam from the water. (AEC)

Kinyon, B.W.; Whitman, G.D.

1963-07-16T23:59:59.000Z

313

Effects of HyperCoal addition on coke strength and thermoplasticity of coal blends  

SciTech Connect

Ashless coal, also known as HyperCoal (HPC), was produced by thermal extraction of three coals of different ranks (Gregory caking coal, Warkworth steam coal, and Pasir subbituminous coal) with 1-methylnaphthalene (1-MN) at 360, 380, and 400{sup o}C. The effects of blending these HPCs into standard coal blends were investigated. Blending HPCs as 5-10% of a standard blend (Kouryusho:Goonyella:K9) enhanced the thermoplasticity over a wide temperature range. For blends made with the Pasir-HPC, produced from a noncaking coal, increasing the extraction temperature from 360 to 400{sup o}C increased the thermoplasticity significantly. Blends containing Warkworth-HPC, produced from a slightly caking coal, had a higher tensile strength than the standard blend in semicoke strength tests. The addition of 10% Pasir-HPC, extracted at 400{sup o}C, increased the tensile strength of the semicokes to the same degree as those made with Gregory-HPC. Furthermore, all HPC blends had a higher tensile strength and smaller weight loss during carbonization. These results suggest that the HPC became integrated into the coke matrix, interacting strongly with the other raw coals. 14 refs., 11 figs., 1 tab.

Toshimasa Takanohashi; Takahiro Shishido; Ikuo Saito [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Energy Technology Research Institute

2008-05-15T23:59:59.000Z

314

Turbine Steam Path Damage: Theory and Practice  

Science Conference Proceedings (OSTI)

Historically, most treatises about steam turbines have concentrated on thermo-dynamics or design. In contrast, the primary focus of this book is on the problems that occur in the turbine steam path. Some of these problems have been long known to the industry, starting as early as A. Stodola's work at the turn of the century in which mechanisms such as solid particle erosion, corrosion and liquid droplet damage were recognized. What we have tried to do here is to provide, in a single, comprehensive refere...

1999-08-18T23:59:59.000Z

315

Coke County, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Coke County, Texas: Energy Resources Coke County, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.8277663°, -100.5296115° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.8277663,"lon":-100.5296115,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

316

Coke oven gas desulphurization by the Carl Still process  

SciTech Connect

The Steubenville East Coke Plant need a desulfurization process that would desulfurize an eventual 95 million standard cubic feet per day of coke oven gas from an inlet of 450 gr/DSCF to an outlet of 45 gr/DSCF of hydrogen sulfide. The Dravo/Still plant process was selected, due to the use of ammonia which was available in the gas, as the absorbing agent. It was also a proven process. Dravo/Still also was capable of building a sulfuric acid plant. The desulfurization efficiency of the plant has consistently provided an average final gas sulfur loading below the guaranteed 45 gr/DSCF. This removal efficiency has enabled production of an average of 4615 tons per day of 66/sup 0/Be acid. Also SO/sub 2/ to SO/sub 3/ conversion has averaged 98%. 3 figures. (DP)

Knight, R.E.

1981-01-01T23:59:59.000Z

317

Integrated coke, asphalt and jet fuel production process and apparatus  

DOE Patents (OSTI)

A process and apparatus for the production of coke, asphalt and jet fuel from a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products, removing at least some coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. The process provides a useful method of mass producing these products from materials such as coal, oil shale and tar sands. 1 fig.

Shang, Jer Yu.

1989-10-17T23:59:59.000Z

318

Integrated coke, asphalt and jet fuel production process and apparatus  

DOE Patents (OSTI)

A process and apparatus for the production of coke, asphalt and jet fuel m a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products removing at least one coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. the process provides a useful method of mass producing and jet fuels from materials such as coal, oil shale and tar sands.

Shang, Jer Y. (McLean, VA)

1991-01-01T23:59:59.000Z

319

PriceTechNotes2011.vp  

Gasoline and Diesel Fuel Update (EIA)

prices prices are developed for the following three categories: coking coal; steam coal (all noncoking coal); and coal coke imports and exports. Coking coal, used in the industrial sector only, is a high-quality bitumi- nous coal that is used to make coal coke. Steam coal, which may be used by all sectors, includes anthracite, bituminous coal, subbituminous coal, and lignite. In the industrial sector, coal consumption is the sum of cok- ing coal and steam coal. The industrial coal price is the quantity- weighted average price of these two components. Imports and exports of coal coke are available only on the national level and are accounted for in the industrial sector. Coal coke imports and ex- ports are reported separately and are not averaged with other coal prices and expenditures. Coking Coal Coking coal is generally more expensive than steam coal; therefore, it is identified separately

320

Development of Load Tap Changer Monitoring Technique: Mechanism of Coking  

Science Conference Proceedings (OSTI)

Load tap changers (LTCs) play a major role in the reliable delivery of electric power. They are the single biggest contributors to transformer outages. To improve reliability and extend their service interval, utilities are adopting proactive maintenance practices using monitoring devices and seeking new diagnostic techniques. As part of an ongoing EPRI project, EPRI and cosponsor Consolidated Edison Co. of New York, Inc. engaged in a study of contact coking, one of the biggest problems in LTCs. This EPR...

2001-11-27T23:59:59.000Z

Note: This page contains sample records for the topic "industrial steam coking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Streams of Steam The Steam Boiler Specification Case Study  

E-Print Network (OSTI)

Streams of Steam ­ The Steam Boiler Specification Case Study Manfred Broy, Franz Regensburger-tuned con- cepts of FOCUS by its application of the requirements specification of a steam boiler, see [Abr96-studies. In this context, applying FOCUS to the steam boiler case study ([Abr96]) led us to a couple of questions re- #12

Cengarle, María Victoria

322

Steam trap monitor  

DOE Patents (OSTI)

A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (the combination of a hot finger and thermocouple well) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellows in providing an indication of total energy (steam+condensate) of the system. Processing means coupled to and responsive to outputs from the thermocouple well hot and cold fingers subtracts the condensate energy as measured by the hot finger and thermocouple well from the total energy as measured by the cold finger to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning.

Ryan, Michael J. (Plainfield, IL)

1988-01-01T23:59:59.000Z

323

Steam generator replacement overview  

Science Conference Proceedings (OSTI)

Since nuclear power began to be widely used for commercial purposes in the 1960s, unit operators have experienced a variety of problems with major components. Although many of the problems have diminished considerably, those associated with pressurized water reactor (PWR) steam generators persist. Steam generator problems rank second, behind refueling outages, as the most significant contributor to lost electricity generation. As of December 31, 1995, 38 steam generators had been replaced in 13 of the 72 operating PWRs, and three units had been shut down prematurely, due primarily (or partially) to degradation of their steam generators: Portland General Electric`s Trojan unit, located in Prescott, OR, in 1992; Southern California Edison`s San Onofre 1, located in San Clemente, CA, in 1992; and Sacramento Municipal Utility District`s Rancho Seco unit in 1989. In the coming years, operators of PWRs in the US with degraded steam generators will have to decide whether to make annual repairs (with eventual derating likely), replace the generators or shut the plants down prematurely. To understand the issues and decisions utility managers face, this article examines problems encountered at steam generators over the past few decades and identifies some of the remedies that utility operators and the nuclear community have employed, including operational changes, maintenance, repairs and steam generator replacement.

Chernoff, H. [Science Applications International Corp., McLean, VA (United States); Wade, K.C. [USDOE Energy Information Administration, Washington, DC (United States)

1996-01-01T23:59:59.000Z

324

Waste Steam Recovery  

E-Print Network (OSTI)

An examination has been made of the recovery of waste steam by three techniques: direct heat exchange to process, mechanical compression, and thermocompression. Near atmospheric steam sources were considered, but the techniques developed are equally applicable to other sources of steam. The interaction of the recovery system with the plant's steam/power system has been included. Typical operating economics have been prepared. It was found that the profitability of most recovery schemes is generally dependent on the techniques used, the existing steam/power system, and the relative costs of steam and power. However, there will always be site-specific factors to consider. It is shown that direct heat exchange and thermocompression will always yield an energy profit when interacting with PRVs in the powerhouse. A set of typical comparisons between the three recovery techniques, interacting with various powerhouse and plant steam system configurations, is presented. A brief outline of the analysis techniques needed to prepare the comparison is also shown. Only operating costs are examined; capital costs are so size - and site-specific as to be impossible to generalize. The operating cost savings may be used to give an indication of investment potential.

Kleinfeld, J. M.

1979-01-01T23:59:59.000Z

325

Table 22. Average Price of U.S. Coke Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Average Price of U.S. Coke Imports Average Price of U.S. Coke Imports (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 22. Average Price of U.S. Coke Imports (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Continent and Country of Origin April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change North America Total 263.21 252.66 353.05 261.29 356.01 -26.6 Canada 263.51 252.66 353.05 258.82 356.01 -27.3 Panama 263.09 - - 263.09 - - South America Total 196.86 194.14 175.88 195.94 181.01 8.2 Brazil - - 157.60 - 157.60 - Colombia 196.86 194.14 322.06 195.94 246.68 -20.6 Europe Total 181.55 232.13 385.65 225.53 384.96 -41.4 Czech Republic - 475.91 - 475.91 - - Spain 360.51

326

Table 17. Average Price of U.S. Coke Exports  

U.S. Energy Information Administration (EIA) Indexed Site

Average Price of U.S. Coke Exports Average Price of U.S. Coke Exports (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 17. Average Price of U.S. Coke Exports (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Continent and Country of Destination April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change North America Total 240.59 241.38 218.40 240.85 225.80 6.7 Canada* 147.49 330.47 243.04 183.08 286.56 -36.1 Mexico 316.57 211.63 189.12 273.97 171.71 59.6 Other** 612.42 485.63 134.48 525.92 135.04 289.5 South America Total 140.65 156.15 322.70 148.29 250.36 -40.8 Other** 140.65 156.15 322.70 148.29 250.36 -40.8 Europe Total 259.26 255.24 - 257.06 427.83 -39.9 Other**

327

BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived...  

NLE Websites -- All DOE Office Websites (Extended Search)

at high pressures yields more methane, less hydrogen at thermodynamic equilibrium Coke formation tendency increases with increasing pressures Coking tendency can be...

328

Steam generator tube failures  

SciTech Connect

A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

1996-04-01T23:59:59.000Z

329

Steam deflector assembly for a steam injected gas turbine engine  

SciTech Connect

A steam injected gas turbine engine is described having a combustor, a casing for the combustor and an annular manifold comprising a part of the casing, the annular manifold having an exterior port formed therein and a plurality of holes formed in the manifold leading to the interior of the combustor, the improvement comprising a steam carrying line connected to the port and a steam deflector means for protecting the casing from direct impingement by the steam from the steam line and for distributing the steam about the annular manifold, the steam deflector means being mounted adjacent the port and within the manifold.

Holt, G.A. III.

1993-08-31T23:59:59.000Z

330

Recent developments: Industry briefs  

SciTech Connect

This article is the `Industry Briefs` portion of the March 1992 `Recent Developments` section of Nuexco. Specific issues mentioned are: (1) closure of Yankee Rowe, (2) steam-generator tube plugging at Trojan, (3) laser enrichment in South Africa, (4) the US uranium industry, (5) planning for two nuclear units in Taiwan, and (6) the establishment of a Czech/French joint venture.

NONE

1992-03-01T23:59:59.000Z

331

Initial steam flow regulator for steam turbine start-up  

SciTech Connect

In a combined steam generator-turbine system, a drain type is provided in front of the stop valve to drain the first steam supply with the stop valve closed until the temperature of the valve and/or the temperature of the steam exceeds the temperature of saturation by a predetermined amount, and logic circuitry is provided to generate permissive signals which combine to allow successive admission of steam to the gland seal and to the steam turbine.

Martens, A.; Hobbs, M. M.

1985-12-31T23:59:59.000Z

332

Case Study- Steam System Improvements at Dupont Automotive Marshall Laboratory  

E-Print Network (OSTI)

Dupont's Marshall Laboratory is an automotive paint research and development facility in Philadelphia, Pennsylvania. The campus is comprised of several buildings that are served by Trigen-Philadelphia Energy Corporation's district steam loop. In 1996 Dupont management announced that it was considering moving the facility out of Philadelphia primarily due to the high operating cost compared to where they were considering relocating. The city officials responded by bringing the local electric and gas utilities to the table to negotiate better rates for Dupont. Trigen also requested the opportunity to propose energy savings opportunities, and dedicated a team of engineers to review Dupont's steam system to determine if energy savings could be realized within the steam system infrastructure. As part of a proposal to help Dupont reduce energy costs while continuing to use Trigen's steam, Trigen recommended modifications to increase energy efficiency, reduce steam system maintenance costs and implement small scale cogeneration. These recommendations included reducing the medium pressure steam distribution to low pressure, eliminating the medium pressure to low pressure reducing stations, installing a back pressure steam turbine generator, and preheating the domestic hot water with the condensate. Dupont engineers evaluated these recommended modifications and chose to implement most of them. An analysis of Dupont's past steam consumption revealed that the steam distribution system sizing was acceptable if the steam pressure was reduced from medium to low. After a test of the system and a few modifications, Dupont reduced the steam distribution system to low pressure. Energy efficiency is improved since the heat transfer losses at the low pressure are less than at the medium pressure distribution. Additionally, steam system maintenance will be significantly reduced since 12 pressure reducing stations are eliminated. With the steam pressure reduction now occurring at one location, the opportunity existed to install a backpressure turbine generator adjacent to the primary pressure reducing station. The analysis of Dupont's steam and electric load profiles demonstrated that cost savings could be realized with the installation of 150 kW of self-generation. There were a few obstacles, including meeting the utility's parallel operation requirements, that made this installation challenging. Over two years have passed since the modifications were implemented, and although cost savings are difficult to quantify since process steam use has increased, the comparison of steam consumption to heating degree days shows a reducing trend. Dupont's willingness to tackle energy conservation projects without adversely affecting their process conditions can be an example to other industrial steam users.

Larkin, A.

2002-04-01T23:59:59.000Z

333

Materials Performance in USC Steam  

DOE Green Energy (OSTI)

Materials Performance in USC Steam: (1) pressure effects on steam oxidation - unique capability coming on-line; (2) hydrogen evolution - hydrogen permeability apparatus to determine where hydrogen goes during steam oxidation; and (3) NETL materials development - steam oxidation resource for NETL developed materials.

G. R. Holcomb; J. Tylczak; G. H. Meier; N. M. Yanar

2011-09-07T23:59:59.000Z

334

CYCLIC STEAM STIMULATION  

NLE Websites -- All DOE Office Websites (Extended Search)

CYCLIC STEAM STIMULATION ("Huff-and-Puff') (A well-stimulation method) This method is sometimes applied to heavy-oil reservoirs to boost recovery during the primary production...

335

Steam purity in PWRs  

Science Conference Proceedings (OSTI)

Impurities enter the secondary loop of the PWR through both makeup water from lake or well and cooling-water leaks in the condenser. These impurities can be carried to the steam generator, where they cause corrosion deposits to form. Corrosion products in steam are swept further through the system and become concentrated at the point in the low-pressure turbine where steam begins to condense. Several plants have effectively reduced impurities, and therefore corrosion, by installing a demineralizer for the makeup water, a resin-bed system to clean condensed steam from the condenser, and a deaerator to remove oxygen from the water and so lower the risk of system metal oxidation. 5 references, 1 figure.

Hopkinson, J.

1982-10-01T23:59:59.000Z

336

Economics of Steam Pressure Reduction  

E-Print Network (OSTI)

Economics of Steam Pressure Reduction is a technical paper that addresses the operating and economic advantages associated with the program to lower the steam operating pressure. Evaluation of a testing program will be discussed. The paper will address the following. 1. Factors that determine the feasibility of reducing the plant steam operating pressure. 2. The operating advantages and disadvantages associated with the decreased steam pressure. 3. The economics of steam pressure reduction. Appropriate visual aids will be utilized as part of the discussion.

Sylva, D. M.

1985-05-01T23:59:59.000Z

337

Evaluating Steam Trap Performance  

E-Print Network (OSTI)

Laboratory tests were conducted on several types of steam traps at Holston Defense Corporation in Kingsport, Tennessee. Data from these tests, which determined their relative efficiencies, were used in performing economic analyses to determine their equivalent uniform annual cost (EUAC). The comparison was made using a computer program written for the Apple II computer to evaluate overall steam trap economics. This program calculates the EUAC for any steam trap based on 12 input variables including capital, maintenance and steam costs, interest rate and trap life. After determinIng the EUAC, the program will perform sensitivity analyses on any of the twelve variables. (This computer program is available from the author.) This study shows that inverted bucket traps have lower EUAC's under more conditions than other types of traps. Also, this study shows that live steam loss is the heaviest contributor to the annual operating cost of any steam trap and that maintenance frequency and repair cost are also more important than a trap's first cost.

Fuller, N. Y.

1986-06-01T23:59:59.000Z

338

Integration of stripping of fines slurry in a coking and gasification process  

DOE Patents (OSTI)

In an integrated fluid coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a wet scrubbing process and wherein the resulting solids-liquid slurry is stripped to remove acidic gases, the stripped vapors of the stripping zone are sent to the gas cleanup stage of the gasification product gas. The improved stripping integration is particularly useful in the combination coal liquefaction process, fluid coking of bottoms of the coal liquefaction zone and gasification of the product coke.

DeGeorge, Charles W. (Chester, NJ)

1980-01-01T23:59:59.000Z

339

Investigating factors that influence carbon dissolution from Coke into Molten iron.  

E-Print Network (OSTI)

??The need for more efficient blast furnaces is even greater now that there are stricter environmental regulations on greenhouse gas (GHG) emissions. Coke within the… (more)

Cham, S. Tsuey

2007-01-01T23:59:59.000Z

340

Preparation of Activated Carbon from Oil Sands Coke by Chemical and Physical Activation Techniques.  

E-Print Network (OSTI)

??Oil sands coke is a by-product resulting from the upgrading of heavy crude bitumen to light synthetic oil. This research investigates the preparation of activated… (more)

Morshed, Golam

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial steam coking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Lignin as Both Fuel and Fusing Binder in Briquetted Anthracite Fines for Foundry Coke Substitute.  

E-Print Network (OSTI)

??Lignin that had been extracted from Kraft black liquor was investigated as a fusing binder in briquetted anthracite fines for a foundry coke substitute. Cupola… (more)

Lumadue, Matthew

2012-01-01T23:59:59.000Z

342

Coke yield and transport processes in agglomerates of bitumen and solids.  

E-Print Network (OSTI)

??Agglomerate formation is a common phenomenon that can cause operating problems in the fluid coking reactor. When agglomerates form they provide longer diffusion paths of… (more)

Ali, Mohamed Ali Hassan

2010-01-01T23:59:59.000Z

343

The Effect of Coke Particle Size on Thermal Profile of Sintering ...  

Science Conference Proceedings (OSTI)

Baking process and sinter production was performed for different ranges of coke particle size while other parameter like, iron ore, lime and sintering mixture ...

344

MOLECULAR COMPOSITION OF NEEDLE COKE FEEDSTOCKS AND MESOPHASE DEVELOPMENT DURING CARBONIZATION.  

E-Print Network (OSTI)

??This study investigates the molecular composition of fluid catalytic cracking (FCC) decant oil and its derivatives that are used as feedstocks for delayed coking to… (more)

Wang, Guohua

2005-01-01T23:59:59.000Z

345

U.S. Exports to Belarus of Petroleum Coke (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Exports to Belarus of Petroleum Coke (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2004: 17

346

Effect of Blending HDPE with Coke on the Reduction Behavior of a ...  

Science Conference Proceedings (OSTI)

This has led to the exploration of the possibility of using polymer/coke blends in the production of ferro-alloys, particularly High Carbon Ferromanganese (HC ...

347

Co-gasification of biomass with coal and oil sands coke in a drop tube furnace.  

E-Print Network (OSTI)

??Chars were obtained from individual fuels and blends with different blend ratios of coal, coke and biomass in Drop Tube Furnace at different temperatures. Based… (more)

Gao, Chen

2010-01-01T23:59:59.000Z

348

The effect of diabietic acid on the coking of oxidised solvent-extracted coal.  

E-Print Network (OSTI)

??Refcoal is a refined carbon source obtained by extraction of coal with dimethylformamide (DMF). During the coking process, Refcoal goes through a mesophase (fluid) stage… (more)

Ludere, Margaret Tshimangadzo

2008-01-01T23:59:59.000Z

349

Pyrolysis behavior of coal and petroleum coke at high temperature and high pressure.  

E-Print Network (OSTI)

??While pyrolysis of coal is a well-studied thermal process, little is known about pressurized pyrolysis of coal and petroleum coke. This study aims to interpret… (more)

Wagner, David Ray

2011-01-01T23:59:59.000Z

350

SUBJECT: Insights and Implications of Steam Generator Operating, Inspecting and Maintenance Experience  

E-Print Network (OSTI)

The steam generator tube failure event at Indian Point Unit 2 and the potential issues surrounding the in-situ pressure testing of selected tubes and test specimens at Arkansas Nuclear One Unit 2, prompted industry to evaluate its generic steam generator guidelines, plant experiences, and insights gained from the periodic steam generator program review visits conducted by the Institute of Nuclear Power Operations (INPO). The purpose of this letter is to share with the NRC staff the industry conclusions and actions taken. As the NRC staff is well aware, the operation, inspection, and maintenance of steam generators are a high industry priority. Given the critical role of the steam generator in providing safe, reliable, and economic power production, steam generator performance has received broad industry attention for years. Generic industry activities, managed by EPRI, have been underway continuously since 1978. NRC staff is familiar with those efforts based on past briefings on the activities of the EPRI Steam Generator Management Program (SGMP) and attendance at selected SGMP workshops. More recently, other industry support organizations, such as NEI, INPO, and NSSS Owners Groups, have played important roles as well. Industry data indicates continual improvement in steam generator performance since the initiation of these efforts.

David J. Modeen; Dr. Brian; W. Sheron

2000-01-01T23:59:59.000Z

351

Climate Wise Boiler and Steam Efficiency Wise Rules  

E-Print Network (OSTI)

Climate Wise is an industrial energy efficiency program sponsored by the U.S. EPA, and supported by the U.S. DOE, working in partnership with more than 400 industrial companies. Many Climate Wise Partners are evaluating or implementing boiler and steam system efficiency measures and have requested assistance in quickly estimating the impacts of these projects through the Wise Line. Climate Wise has developed the Wise Rules for Industrial Efficiency (Wise Rules Tool Kit) to provide companies with simple rules of thumb, or Wise Rules, for estimating potential energy, cost, and greenhouse gas emissions savings from key industrial energy efficiency measures for a broad range of end uses, including boilers and steam systems. This paper presents excerpts from the Wise Rules Tool Kit on boiler and steam system efficiency measures.

Milmoe, P. H.; Winkelman, S. R.

1998-04-01T23:59:59.000Z

352

Energy reduction analysis report for Tropicana solar process steam system  

SciTech Connect

Economic assessment data pertinent to the current Tropican solar system configuration is presented and the potential for energy reduction through the use of additional and/or larger systems is projected. The economic model, Tropicana plant and citrus juice industry energy savings potential, and industrial low-pressure steam energy savings potential are discussed. (MHR)

1978-10-01T23:59:59.000Z

353

Final Technical Report - High-Performance, Oxide-Dispersion-Strengthened Tubes for Production of Ethylene adn Other Industrial Chemicals  

SciTech Connect

This project was undertaken by Michigan Technological University and Special Metals Corporation to develop creep-resistant, coking-resistant oxide-dispersion-strengthened (ODS) tubes for use in industrial-scale ethylene pyrolysis and steam methane reforming operations. Ethylene pyrolysis tubes are exposed to some of the most severe service conditions for metallic materials found anywhere in the chemical process industries, including elevated temperatures, oxidizing atmospheres and high carbon potentials. During service, hard deposits of carbon (coke) build up on the inner wall of the tube, reducing heat transfer and restricting the flow of the hydrocarbon feedstocks. About every 20 to 60 days, the reactor must be taken off-line and decoked by burning out the accumulated carbon. This decoking costs on the order of $9 million per year per ethylene plant, accelerates tube degradation, and requires that tubes be replaced about every 5 years. The technology developed under this program seeks to reduce the energy and economic cost of coking by creating novel bimetallic tubes offering a combination of improved coking resistance, creep resistance and fabricability not available in current single-alloy tubes. The inner core of this tube consists of Incoloy(R) MA956, a commercial ferritic Fe-Cr-Al alloy offering a 50% reduction in coke buildup combined with improved carburization resistance. The outer sheath consists of a new material - oxide dispersion strengthened (ODS) Alloy 803(R) developed under the program. This new alloy retains the good fireside environmental resistance of Alloy 803, a commercial wrought alloy currently used for ethylene production, and provides an austenitic casing to alleviate the inherently-limited fabricability of the ferritic Incoloy(R) MA956 core. To provide mechanical compatibility between the two alloys and maximize creep resistance of the bimetallic tube, both the inner Incoloy(R) MA956 and the outer ODS Alloy 803 are oxide dispersion strengthened materials produced using mechanical alloying technology. To minimize cost, the bimetallic tube is produced by direct powder co-extrusion. This technology has potential for domestic energy savings of up to 4.1 trillion BTU/year (4.3 x 1015J/year) and a reduction of 370,000 tons (340,000 tonnes) of CO2 emissions in short-residence-time ethylene furnaces. This represents an energy savings and CO2 emissions reduction of about 3.3%. If the technology is also applied to other types of ethylene pyrolysis furnaces, total energy savings and CO2 emissions reductions could increase by up to five times. The work involved: Developing powder and consolidation processing protocols to produce an oxide-dispersion strengthened variant of Alloy 803 exhibiting creep strength comparable to Incoloy? Alloy MA956, Developing a direct powder co-extrusion protocol for fabricating co-extruded bimetallic Incoloy? Alloy MA956 / ODS Alloy 803 tubes, Characterizing the properties of the ODS Alloy 803 material, the welding characteristics of the bimetallic tubes, and the coking characteristics of the Incoloy? MA956 alloy, and Documenting the potential energy savings and user requirements for these bimetallic pyrolysis furnace tubes. The project demonstrated that oxide dispersion strengthened Alloy 803 can be produced successfully using conventional mechanical alloying technology. The oxide dispersion strengthened bimetallic radiant coil technology explored under this program has significant potential for energy savings and productivity improvements for domestic ethylene producers. In today's competitive market, however, domestic furnace manufacturers and ethylene producers appear reluctant to pay any cost premium for higher-performance coil materials offering either higher temperature capabilities or longer service life. Interest in oxide dispersion strengthened radiant coils is likely to increase if furnace and ethylene producers begin to focus more on increasing tube wall temperatures to improve productivity.

McKimpson, Marvin G.

2006-04-06T23:59:59.000Z

354

High performance steam cogeneration (proof-of-concept phases). Phase 2, HRSG 500-hour test report: Final report  

SciTech Connect

Recent advances in small once-through Alloy 800 steam generators, improved materials technology, and application of small industrial gas turbine technology to steam turbine cogeneration offers the potential to make a step increase in steam temperature from around 1000{degree}F, where industry has been for almost fifty years, to 1500{degree}F. In small cogeneration systems, it is economically practical to introduce new technology and make a step change in temperature where it may not be possible (given the regulatory environment and economic risk) for a major change in steam temperature to be introduced in the hundreds of megawatt size of an electric utility. Increasing the peak steam temperature in a steam turbine cycle allows more work to be extracted or electrical power to be generated from a given quantity of heat input. Figure 1 plots steam efficiency as a function of superheat steam temperature and pressure for a turbine-back pressure of 166 psia. This figure clearly shows that increasing the steam conditions from the typical current practice of 900{degree}F and 900 psia to 1500{degree}F and 1500 psia will increase the steam cycle efficiency by 53%. The combination of higher cycle efficiency with an advanced high efficiency steam turbine design provides a substantial increase in turbine output power for a given steam flowrate. The output of this advanced high temperature steam turbine is approximately twice that of a current industrial practive turbine for the same turbine flowrate as seen in Figure 2.

Campbell, A.H.

1992-12-01T23:59:59.000Z

355

Industrial Carbon Management Initiative (ICMI)  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Carbon Management Initiative Industrial Carbon Management Initiative (ICMI) Background The ICMI project is part of a larger program called Carbon Capture Simulation and Storage Initiative (C2S2I). The C2S2I has a goal of expanding the DOE's focus on Carbon Capture Utilization and Storage (CCUS) for advanced coal power systems and other applications, including the use of petroleum coke as a feedstock for the industrial sector. The American Recovery and Re-Investment Act (ARRA)-funded

356

Efficient model-based leak detection in boiler steam-water systems Xi Sun, Tongwen Chen *, Horacio J. Marquez  

E-Print Network (OSTI)

Efficient model-based leak detection in boiler steam-water systems Xi Sun, Tongwen Chen *, Horacio detection in boiler steam-water systems. The algorithm has been tested using real industrial data from Syncrude Canada, and has proven to be effective in detection of boiler tube or steam leaks; proper

Marquez, Horacio J.

357

Steam Heat: Winter Fountains in the City  

E-Print Network (OSTI)

Joan Brigham Steam Heat: Winter Fountains int h e City Steam is a phenomenon of the winter city. Iteven when the surging steam temporarily blinds them. When I

Brigham, Joan

1990-01-01T23:59:59.000Z

358

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China  

E-Print Network (OSTI)

average unit price of electricity and coal used inyear. The weighted average unit price of Bituminous coal,coal, and coke consumed in the steel industry in 2010 is used as the fuel price

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

359

Steam Generator Management Program: Administrative Procedures, Revision 3  

Science Conference Proceedings (OSTI)

The Nuclear Energy Institute's "Guideline for the Management of Materials Issues" (NEI 03-08) is the industry's guideline for management of materials issues, and "Steam Generator Program Guidelines" (NEI 97-06) describes the fundamental elements that are included in a utility's steam generator program. With nuclear safety as the priority, these elements incorporate a balance of prevention, inspection, evaluation, repair, and leakage monitoring measures. NEI 97 06 establishes these measures with reference...

2010-12-13T23:59:59.000Z

360

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network (OSTI)

DOE's BestPractices Steam End User Training Steam End User Training Steam Distribution Losses Module 1 June 29, 2010 Steam EndUser Training Steam Distribution System Losses Module Slide 1 Steam Distribution System Losses Module The steam distribution system typically consists of main steam

Oak Ridge National Laboratory

Note: This page contains sample records for the topic "industrial steam coking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Takahax-Hirohax process for coke oven gas desulfurization  

SciTech Connect

This paper describes the Takahax-Hirohax process to desulfurize coke oven gas and to produce an ammonium sulfate end product. A review is also made of current operating experience and recent technical developments. The Takahax-Hirohax process is extremely useful when the COG contains a suitable ammonia to sulfur ratio and when ammonium sulfate is a desirable end product. No contaminated effluent streams are emitted from the process. The process is simple, reliable, flexible, and responds easily to COG variations. 4 figures, 3 tables. (DP)

Gastwirth, H.; Miner, R.; Stengle, W.

1981-01-01T23:59:59.000Z

362

Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector  

E-Print Network (OSTI)

constant heating of the coke ovens ensures optimization ofheating - coke plant Variable speed drive coke oven gasheating - coke plant Variable speed drive coke oven gas

Xu, T.T.

2011-01-01T23:59:59.000Z

363

CHARACTERIZATION OF COAL- AND PETROLEUM-DERIVED BINDER PITCHES AND THE INTERACTION OF PITCH/COKE MIXTURES IN PRE-BAKED CARBON ANODES.  

E-Print Network (OSTI)

??Carbon anodes are manufactured from calcined petroleum coke (i.e. sponge coke) and recycled anode butts as fillers, and coal tar pitch (SCTP) as the binder.… (more)

Suriyapraphadilok, Uthaiporn

2008-01-01T23:59:59.000Z

364

Productivity benefits of industrial energy efficiency measures  

E-Print Network (OSTI)

the blast furnace means less coke is needed, so maintenancecontrol Foamy slag practices Coke making Oxy-fuel burners/Variable speed drive on coke oven gas compressors Coke dry

Worrell, Ernst

2011-01-01T23:59:59.000Z

365

The effects of petroleum coke amendments on macrophytes and aquatic invertebrates in northern Alberta, Canada constructed wetlands.  

E-Print Network (OSTI)

??Oil-sands operators of Fort McMurray, Alberta produce six million t/y of petroleum coke. The use of coke to stabilize clay-dominated mine tailings in constructed wetlands… (more)

Baker, Leanne F.

2007-01-01T23:59:59.000Z

366

Analytical input-output and supply chain study of China's coke and steel sectors; Analytical I/O and supply chain study of China's coke and steel sectors.  

E-Print Network (OSTI)

??I design an input-output model to investigate the energy supply chain of coal-coke-steel in China. To study the demand, supply, and energy-intensity issues for coal… (more)

Li, Yu, 1976-

2004-01-01T23:59:59.000Z

367

Short Survey: Intelligent switching expert system for delayed coking unit based on iterative learning strategy  

Science Conference Proceedings (OSTI)

Delayed coking is the most effective process to decarbonize and demetallize heavy petroleum residues. However, it relies much on the field engineers' experiences and expertise in practice for operating the controllers effectively and compatibly in delayed ... Keywords: Delayed coking, Expert system, Intelligent control, Iterative learning

Xiaodong Yu; Yujie Wei; Dexian Huang; Yongheng Jiang; Bo Liu; Yihui Jin

2011-07-01T23:59:59.000Z

368

Study on Further Treatment of Coal Coking Wastewater by Ultrasound Wave, Fenton's Reagent and Coagulation  

Science Conference Proceedings (OSTI)

The study on further treatment of coal coking wastewater by ultrasound wave, Fenton's reagent and coagulation was carried out in this paper at the first time, Furthermore, this paper discussed the optimum cooperative reaction condition of their combined ... Keywords: ultrasound wave, coke plant wastewater, Fenton reagent, coagulation

Jun Shi; Liangbo Zhang

2009-10-01T23:59:59.000Z

369

Organic Sulphur Transfers in Coke Oven Gas via Noncatalytic Partial Oxidation  

Science Conference Proceedings (OSTI)

The organic sulfur transformation was studied during coke oven gas to produce syngas via noncatalytic partial oxidation. The concentration of CS2 and thiophene was examined in syngas by sulfide detector. For comparison, the sulfur transfer was also studied ... Keywords: Organic sulfur transfer, Coke oven gas, CS2, thiophene

Guojie Zhang; Yongfa Zhang; Xianglan Li; Hongcheng Cao

2009-10-01T23:59:59.000Z

370

Analytical input-output and supply chain study of China's coke and steel sectors  

E-Print Network (OSTI)

I design an input-output model to investigate the energy supply chain of coal-coke-steel in China. To study the demand, supply, and energy-intensity issues for coal and coke from a macroeconomic perspective, I apply the ...

Li, Yu, 1976-

2004-01-01T23:59:59.000Z

371

Influence of coal on coke properties and blast-furnace operation  

SciTech Connect

With unstable coal supplies and properties and a fluctuating content of coking coal in the batch at OAO Zapadno-Sibirskii Metallurgicheskii Kombinat (ZSMK) and of bituminous coal at Kuznetskaya enrichment facility, it is important to optimize the rank composition of the batch for coke production.

G.R. Gainieva; L.D. Nikitin [OAO Zapadno-Sibirskii Metallurgicheskii Kombinat (Russian Federation)

2007-07-01T23:59:59.000Z

372

Method for improving the steam splits in a multiple steam injection process  

SciTech Connect

This patent describes a method for enhancing the uniformity of steam distribution in a multiple steam injection system comprising a steam generator, a steam header, a primary steam line connecting the generator to the header, and secondary steam lines connecting the header to steam injection wells. It comprises: injecting a surfactant into the primary steam line, and mixing the surfactant and steam sufficiently so that the surfactant and the steam enter the header as a foam.

Stowe, G.R. III.

1990-09-04T23:59:59.000Z

373

Optical wet steam monitor  

DOE Patents (OSTI)

A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically.

Maxey, Lonnie C. (Powell, TN); Simpson, Marc L. (Knoxville, TN)

1995-01-01T23:59:59.000Z

374

Optical wet steam monitor  

DOE Patents (OSTI)

A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically. 4 figures.

Maxey, L.C.; Simpson, M.L.

1995-01-17T23:59:59.000Z

375

Desulphurization of coke oven gas by the Stretford Process  

SciTech Connect

The Stretford process is probably the most effective means available for removing hydrogen sulphide from gas streams. For streams which do not contain hydrogen cyanide or excessive oxygen it should be nearly ideal. However, the large volume of waste liquor generated by fixation of hydrogen cyanide has prevented its widespread adoption for coke oven gas treatment. Investigations of various proposals for treating the waste liquor indicate that the only practicable way of dealing with it is by reductive incineration. Although attempts to apply the Peabody-Holmes reductive incineration process have been disappointing, significant progress in overcoming some of its deficiencies has been made. The Zimpro wet oxidation process will provide a convenient method of treating the HCN scrubber effluent at No. 1 Plant. However, it will not treat the sodium based liquor from the Stretford plant. Its application to Stretford waste treatment is limited to situations where ammonium liquors and ammonium sulphate recovery facilities are available. Commissioning of this plant has been delayed while a defect in the air compressor supplied for the plant is being remedied. When the problem of liquid effluent disposal has been overcome, and if reagent chemicals continue to be available at reasonable prices, the Stretford process will be a good choice for coke oven gas desulphurization. 8 figures.

Plenderleith, J.

1981-01-01T23:59:59.000Z

376

Innovative coke oven gas cleaning system for retrofit applications  

Science Conference Proceedings (OSTI)

Bethlehem Steel Corporation (BSC), in conjunction with the Department of Energy (DOE) is conducting a Clean Coal Technology (CCT) project at its Sparrows Point, Maryland Coke Oven Plant. This project combines several existing technologies into an integrated system for removing impurities from Coke Oven Gas (COG) to make it an acceptable fuel. DOE is providing cost-sharing under a Cooperative Agreement with BSC. This Cooperative Agreement requires BSC to develop and conduct an Environmental Monitoring Plan (EMP) for the Clean Coal Technology project and to report the status of the EMP on a quarterly basis. This report is the third quarterly status report of the EMP. It covers the Environmental Monitoring Plan activities for the full year of 1991 from January 1, 1991 through December 31, 1991, including the forth quarter. See Sections 2, 3 and 4 for status reports of the Project Installation and Commissioning, the Environmental Monitoring activities and the Compliance Monitoring results for the period. Section 5 contains a list of Compliance Reports submitted to regulatory agencies during the period. The EMP describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) document the extent of compliance of monitoring activities, i.e. those monitoring required to meet permit requirements, (2) confirm the specific impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base for the assessment of the environmental performance of the technology demonstrated by the project.

Not Available

1992-10-16T23:59:59.000Z

377

Bethlehem Steel announces plans to control coke oven air and water pollution  

Science Conference Proceedings (OSTI)

Bethlehem Steel Corporation and the Maryland Department of the Environment have announced an agreement under which Bethlehem will spend an estimated $92-million at its Sparrows Points, Md., plant for technologically-advanced controls to further reduce air and water pollution, mainly from the plant's coke ovens. The two major systems include one to treat by-product coke oven gas and chemicals, and another to upgrade existing pushing emission controls on two older coke oven batteries. One of the new systems will replace most of the existing equipment that cleans gas and treats chemicals created by the coking process at the plant's three coke oven batteries. Because this system has the potential to greatly reduce sulfur dioxide and other pollutants, the United States Department of Energy (DOE) in September announced that its installation qualified for funding as part of the nationwide Innovative Clean Coal Technology Program.

Not Available

1989-08-01T23:59:59.000Z

378

World Class Boilers and Steam Distribution System  

E-Print Network (OSTI)

“World class” is a term used to describe steam systems that rank in the top 20% of their industry based on quantitative system performance data and energy management for the facility. The rating is determined through a proceduralized assessment process that includes technical features such as boiler efficiency and the percentage of failed steam traps. Management features such as the internal metrices and adequate staffing and training area also included in the assessment. These results are compared with benchmarks for the subject industry. Chemical plants are compared with other chemical plants instead of aggregated data from refining, food processing, health care, etc. This approach provides relevant comparisons and realistic performance targets. The assessment process and industry benchmarks have been developed through sources that include those in the public domain and proprietary industry data. Periodic review and updates are used to ensure that the data accurately represents the relevant industrial profile. Some companies may question why they should upgrade their system. The most obvious answer will be found in the benefits that derive from more efficient operations. Costs are reduced, reliability is improved, and adverse environmental impacts are mitigated. Successful upgrading and maintenance of the energy system requires management support. This may necessitate changes in current practices, technical upgrades to equipment, additional personnel, or other resources. Managers must communicate the message that they want energy management at their plant to be world class.

Portell, V. P.

2002-04-01T23:59:59.000Z

379

Belgrade Lot Steam Plant Lot  

E-Print Network (OSTI)

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Oceanographic Operations 1 2 8 5 3 4 7 6 AMC Chadbourne Merrill Aubert Hannibal Hamlin Steam Plant Crosby

Thomas, Andrew

380

Belgrade Lot Steam Plant Lot  

E-Print Network (OSTI)

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Chadbourne Merrill Aubert Hannibal Hamlin Steam Plant Crosby Machine Tool Lab Children's Center Rogers N

Thomas, Andrew

Note: This page contains sample records for the topic "industrial steam coking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Belgrade Lot Steam Plant Lot  

E-Print Network (OSTI)

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Gym Lot Corbett Lot Greenhouse Patch Oceanographic Operations 1 2 8 5 3 4 7 6 AMC Chadbourne Merrill Aubert Hannibal Hamlin Steam

Thomas, Andrew

382

Steam generator tube rupture study  

E-Print Network (OSTI)

This report describes our investigation of steam generator behavior during a postulated tube rupture accident. Our study was performed using the steam generator, thermal-hydraulic analysis code THERMIT-UTSG. The purpose ...

Free, Scott Thomas

1986-01-01T23:59:59.000Z

383

Compressor & Steam Turbine Efficiency Improvements & Revamping Opportunities  

E-Print Network (OSTI)

Fossil fuels remain the dominant source for primary energy production worldwide. In relation to this trend, energy consumption in turbomachinery has been increasing due to the scale up of both the machinery itself as well as the processing plants in which they operate. This energy growth requires high efficiency improvements for machine design and operation to minimize life cycle cost. This paper will focus on the mechanical drive steam turbines which power the main process equipment in the heart of the plant and introduce the history of efficiency improvements for compressors and steam turbines in the Petrochemical Industry. Since heat balance configurations affect the plant's steam consumption, the authors will explain several cases of heat balance configurations and applications / selections of steam turbines. According to the change in output demand, in some cases the original plants are modified by increasing capacity and consequently the turbines and compressors are revamped internally or replaced totally. The authors will introduce several case studies on revamping to increase efficiency and reliability as per the following cases: a) Replacement of High Pressure Section Internals b) Replacement of Low Pressure Section Internals c) Replacement of All Internals d) Internals and Casing Replacement e) Efficiency Recovery Technique Modification Finally, life cycle cost (LCC) evaluation and sensitivity due to turbomachinery performance are explained as a case study of a mega ethylene plant.

Hata, S.; Horiba, J.; Sicker, M.

2011-01-01T23:59:59.000Z

384

Task 1—Steam Oxidation (NETL-US)  

SciTech Connect

The proposed steam in let temperature in the Advanced Ultra Supercritical (A·USC) steam turbine is high enough (760°C) Ihat traditional turbine casing and valve body materials such as ferr;tic/manensitic steels will not suffice due to temperature lim itations of this class of materials. Cast versions of three traditionally wrought Ni-based superalloys (Haynes 263. Haynes 282, and Nimonic 105) were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantia l: 2-5,000 kg each half and on the order of 100 nun thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equi valem microslruclUre •. A multi_step homogenization heat treatment was d~ve loped to better disperse the al loy constituents. These castings were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (al 760 and 800 "C).

G. R. Holcomb

2010-05-01T23:59:59.000Z

385

SUMMER-FALL 2011 SCHEDULE Workshops to Improve Industrial Productivity by  

E-Print Network (OSTI)

. It covers material in steam generation efficiency, steam distribution system losses, and resource. For complete course information: http://www.eere.energy.gov/industry/bestpractices/pumping_systems.html Steam System Assessment Many facilities can save energy through the installation of more efficient steam

386

CALENDAR YEARS 2012-3 SCHEDULE Workshops to Improve Industrial Productivity by  

E-Print Network (OSTI)

. It covers material in steam generation efficiency, steam distribution system losses, and resource. For complete course information: http://www.eere.energy.gov/industry/bestpractices/pumping_systems.html Steam System Assessment Many facilities can save energy through the installation of more efficient steam

387

Fuzzy control of steam turbines  

Science Conference Proceedings (OSTI)

Keywords: PID control, comparison of PID and fuzzy control, fuzzy logic control, robustness, speed control, steam turbine control

N. Kiupel; P. M. Frank; O. Bux

1994-05-01T23:59:59.000Z

388

Steam Turbine Performance Engineer's Guide  

Science Conference Proceedings (OSTI)

The Steam Turbine Performance Engineer's Guide is meant to present the steam turbine performance engineer with the expected and important functions and responsibilities necessary to succeed in this position that are not necessarily taught in college. The instructions and recommendations in this guide, when properly executed, will improve the effectiveness of steam turbine performance engineers, positively affecting both the performance and reliability of the steam turbines under their care.

2010-12-23T23:59:59.000Z

389

Table 7.3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2010; 3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: U.S. Dollars per Physical Units. Electricity Components Natural Gas Components Steam Components Electricity Natural Gas Steam Electricity from Sources Natural Gas from Sources Steam from Sources Electricity from Local Other than Natural Gas from Local Other than Steam from Local Other than NAICS Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Code(a) Subsector and Industry (kWh) (kWh) (kWh) (1000 cu ft) (1000 cu ft) (1000 cu ft) (million Btu)

390

Table 7.7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2010; 7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: Physical Units or Btu. Electricity Components Natural Gas Components Steam Components Electricity Natural Gas Steam Electricity from Sources Natural Gas from Sources Steam from Sources Electricity from Local Other than Natural Gas from Local Other than Steam from Local Other than NAICS Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Code(a) Subsector and Industry (million kWh) (million kWh) (million kWh) (billion cu ft) (billion cu ft)

391

Options for Generating Steam Efficiently  

E-Print Network (OSTI)

This paper describes how plant engineers can efficiently generate steam when there are steam generators and Heat Recovery Steam Generators in their plant. The process consists of understanding the performance characteristics of the various equipment as a function of load and operating them close to the maximum efficiency point.

Ganapathy, V.

1996-04-01T23:59:59.000Z

392

STEAM GENERATOR PRELIMINARY DESIGN  

SciTech Connect

A conceptual study on design of sodium-cooled reactor steam generators was conducted. Included is a detailed description of the preliminary design and analysis, based on the use of known materials and existing methods of fabrication. (See also APAE-41 Vols. I and III.) (J.R.D.)

1959-02-28T23:59:59.000Z

393

Steam purity in PWRs  

Science Conference Proceedings (OSTI)

Reports that 2 EPRI studies of PWRs prove that impure steam triggers decay of turbine metals. Reveals that EPRI is attempting to improve steam monitoring and analysis, which are key steps on the way to deciding the most cost-effective degree of steam purity, and to upgrade demineralizing systems, which can then reliably maintain that degree of purity. Points out that 90% of all cracks in turbine disks have occurred at the dry-to-wet transition zone, dubbed the Wilson line. Explains that because even very clean water contains traces of chemical impurities with concentrations in the parts-per-billion range, Crystal River-3's secondary loop was designed with even more purification capability; a deaerator to remove oxygen and prevent oxidation of system metals, and full-flow resin beds to demineralize 100% of the secondary-loop water from the condenser. Concludes that focusing attention on steam and water chemistry can ward off cracking and sludge problems caused by corrosion.

Hopkinson, J.; Passell, T.

1982-10-01T23:59:59.000Z

394

FAST 1.0 - Flow Path Analysis for Steam Turbines, Version 1.0  

Science Conference Proceedings (OSTI)

FAST Software Flow Analysis of Steam Turbines is a tool for performance engineers, designers and financial analysts. This tool is for industry use by utilities and manufacturers to evaluate thermal performance characteristics of existing and proposed turbine steam-path modifications/upgrades. Description The FAST software diagnoses performance problems and facilitates the economic evaluation of steam-path upgrade options. FAST software is used primarily by the thermal performance engineer in both fossil ...

2007-05-30T23:59:59.000Z

395

Allsoft Engenharia e Informatica Industrial | Open Energy Information  

Open Energy Info (EERE)

Product A Brazilian engineering and fabrication company specialising in boiler and steam generation equipment. References Allsoft Engenharia e Informatica Industrial1...

396

Simulation of Combustion and Thermal Flow inside an Industrial Boiler.  

E-Print Network (OSTI)

??Industrial boilers that produce steam or electric power represent a large capital investment as well as a crucial facility for overall plant operations. In real… (more)

Saripalli, Raja

2004-01-01T23:59:59.000Z

397

Guidelines for Estimating Unmetered Industrial Water Use | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

approach to estimate industrial water use in evaporative cooling systems, steam boiler systems, and facility wash applications. This document assists federal agencies in the...

398

Steam assisted gas turbine engine  

SciTech Connect

A gas turbine engine is disclosed which has an integral steam power system consisting of heat absorbing boilers which convert an unpressurized liquid into an expanded and heated steam by utilizing heat normally lost through component cooling systems and the exhaust system. Upon completion of the steam power cycle, the steam is condensed back to a liquid state through a condensing system located within the compressor and other functional components of the gas turbine engine. A system of high pressure air and friction seals restrict steam or liquid condensate within designed flow bounds. The gas turbine engine disclosed is designed to give improved fuel efficiency and economy for aircraft and land use applications.

Coronel, P.D.

1982-06-08T23:59:59.000Z

399

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network (OSTI)

demands, and cogeneration. The Steam Distribution System Losses module will cover steam leaks, steam traps Analysis ­ (SSAT) Fuel selection Steam demands Cogeneration Steam Distribution System Losses - (3EDOE's BestPractices Steam End User Training Steam End User Training Welcome Module - 1 8

Oak Ridge National Laboratory

400

Characterization of liquids derived from laboratory coking of decant oil and co-coking of Pittsburgh seam bituminous coal with decant oil  

Science Conference Proceedings (OSTI)

In this study, decant oil and a blend of Pittsburgh seam bituminous coal with decant oil were subjected to coking and co-coking in a laboratory-scale delayed coker. Higher yields of coke and gas were obtained from co-coking than from coking. Coal addition into the feedstock resulted in lighter overhead liquid. GC/MS analyses of gasoline, jet fuel, and diesel show that co-coking of coal/decant oil gave higher quantity aromatic components than that of coking of decant oil alone. Simulated distillation gas chromatography analyses of overhead liquids and GC/MS analyses of vacuum fractions show that when coal was reacted with a decant oil, the coal constituents contributed to the distillable liquids. To address the reproducibility of the liquid products, overhead liquid samples collected at the first, third, and fifth hours of experiments of 6 h duration were evaluated using simulated distillation gas chromatography and {sup 1}H and {sup 13}C NMR. NMR analyses of the liquid products showed that, even though there were slight changes in the {sup 1}H and {sup 13}C spectra, the standard deviation was low for the time-dependent samples. Simulated distillation gas chromatography showed that the yields of refinery boiling range materials (i.e., gasoline, jet fuel, diesel, and fuel oil cuts) were reproducible between runs. Fractionation of the overhead liquids into refinery boiling range materials (gasoline, jet fuel, diesel, fuel oil fractions) showed that the boiling range materials and chemical compositions of fractions were found to be reproducible. 54 refs., 17 tabs.

Omer Gul; Caroline Clifford; Leslie R. Rudnick; Harold H. Schobert [Pennsylvania State University, University Park, PA (United States)

2009-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "industrial steam coking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Steam System Balancing and Tuning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steam System Balancing and Steam System Balancing and Tuning Building America Stakeholder Meeting Austin, TX Jayne Choi, Energy Analyst, CNT Energy March 2, 2012 PARR Current collaboration with GTI as a part of the PARR Building America team - Steam Systems Balancing and Tuning Study - Heating season 2011-2012 Background In Chicago, heating is the focus of residential energy use Of the 470,000 multifamily units in the Chicago region, at least 70,000 of those are steam heated Old steam systems invariably suffer from imbalance - Tenants must use supplemental heat or open their windows to cool their apartments during the heating season Buildings are often overheated Problem Statement (CNT Energy) Steam Heating Steam heat was the best option for buildings constructed between 1900 and 1930

402

Electrical Cost Reduction Via Steam Turbine Cogeneration  

E-Print Network (OSTI)

Steam turbine cogeneration is a well established technology which is widely used in industry. However, smaller previously unfeasible applications can now be cost effective due to the packaged system approach which has become available in recent years. The availability of this equipment in a packaged system form makes it feasible to replace pressure reducing valves with turbine generator sets in applications with flows as low as 4000 pounds of steam per hour. These systems produce electricity for $0.01 to $.02 per kWh (based on current costs of gas and oil); system cost is between $200 and $800 per kW of capacity. Simple system paybacks between one and three years are common.

Ewing, T. S.; Di Tullio, L. B.

1991-06-01T23:59:59.000Z

403

Method for removing hydrogen sulfide from coke oven gas  

Science Conference Proceedings (OSTI)

An improved sulfur-ammonia process is disclosed for removing hydrogen sulfide from coke oven gases. In the improved process, a concentrator formerly used for standby operation is used at all normal times as an ammonia scrubber to improve the efficiency of gas separation during normal operation and is used as a concentrator for its intended standby functions during the alternative operations. In its normal function, the concentrator/scrubber functions as a scrubber to strip ammonia gas from recirculating liquid streams and to permit introduction of an ammonia-rich gas into a hydrogen sulfide scrubber to increase the separation efficiency of that unit. In the standby operation, the same concentrator/scrubber serves as a concentrator to concentrate hydrogen sulfide in a ''strong liquor'' stream for separate recovery as a strong liquor.

Ritter, H.

1982-08-03T23:59:59.000Z

404

Energy efficiency of alternative coke-free metallurgical technologies  

SciTech Connect

Energy analysis is undertaken for the blast-furnace process, for liquid-phase processes (Corex, Hismelt, Romelt), for solid-phase pellet reduction (Midrex, HYL III, LP-V in a shaft furnace), for steel production in systems consisting of a blast furnace and a converter, a Midrex unit and an arc furnace, or a Romelt unit and an arc furnace, and for scrap processing in an arc furnace or in an LP-V shaft furnace. Three blast-furnace processes with sinter and coke are adopted as the basis of comparison, as in: the standard blast-furnace process used in Russia; the improved blast-furnace process with coal-dust injection; and the production of vanadium hot metal from vanadium-bearing titanomagnetite ore (with a subsequent duplex process, ferrovanadium production, and its use in the arc furnace).

V.G. Lisienko; A.V. Lapteva; A.E. Paren'kov [Ural State Technical University - Ural Polytechnic Institute, Yekaterinburg (Russian Federation)

2009-02-15T23:59:59.000Z

405

ADVANCED STEAM GENERATORS  

SciTech Connect

Concerns about climate change have encouraged significant interest in concepts for ultra-low or ''zero''-emissions power generation systems. In some proposed concepts, nitrogen is removed from the combustion air and replaced with another diluent such as carbon dioxide or steam. In this way, formation of nitrogen oxides is prevented, and the exhaust stream can be separated into concentrated CO{sub 2} and steam or water streams. The concentrated CO{sub 2} stream could then serve as input to a CO{sub 2} sequestration process or utilized in some other way. Some of these concepts are illustrated in Figure 1. This project is an investigation of one approach to ''zero'' emission power generation. Oxy-fuel combustion is used with steam as diluent in a power cycle proposed by Clean Energy Systems, Inc. (CES) [1,2]. In oxy-fuel combustion, air separation is used to produce nearly pure oxygen for combustion. In this particular concept, the combustion temperatures are moderated by steam as a diluent. An advantage of this technique is that water in the product stream can be condensed with relative ease, leaving a pure CO{sub 2} stream suitable for sequestration. Because most of the atmospheric nitrogen has been separated from the oxidant, the potential to form any NOx pollutant is very small. Trace quantities of any minor pollutants species that do form are captured with the CO{sub 2} or can be readily removed from the condensate. The result is a nearly zero-emission power plant. A sketch of the turbine system proposed by CES is shown in Figure 2. NETL is working with CES to develop a reheat combustor for this application. The reheat combustion application is unusual even among oxy-fuel combustion applications. Most often, oxy-fuel combustion is carried out with the intent of producing very high temperatures for heat transfer to a product. In the reheat case, incoming steam is mixed with the oxygen and natural gas fuel to control the temperature of the output stream to about 1480 K. A potential concern is the possibility of quenching non-equilibrium levels of CO or unburned fuel in the mixing process. Inadequate residence times in the combustor and/or slow kinetics could possibly result in unacceptably high emissions. Thus, the reheat combustor design must balance the need for minimal excess oxygen with the need to oxidize the CO. This paper will describe the progress made to date in the design, fabrication, and simulation of a reheat combustor for an advanced steam generator system, and discuss planned experimental testing to be conducted in conjunction with NASA Glenn Research Center-Plumb Brook Station.

Richards, Geo. A.; Casleton, Kent H.; Lewis, Robie E.; Rogers, William A. (U.S. DOE National Energy Technology Laboratory); Woike, Mark R.; Willis; Brian P. (NASA Glenn Research Center)

2001-11-06T23:59:59.000Z

406

Crude oil steam distillation in steam flooding. Final report  

SciTech Connect

Steam distillation yields of sixteen crude oils from various parts of the United States have been determined at a saturated steam pressure of 200 psig. Study made to investigate the effect of steam pressure (200 to 500 psig) on steam distillation yields indicates that the maximum yields of a crude oil may be obtained at 200 psig. At a steam distillation correlation factor (V/sub w//V/sub oi/) of 15, the determined steam distillation yields range from 12 to 56% of initial oil volume for the sixteen crude oils with gravity ranging from 12 to 40/sup 0/API. Regression analysis of experimental steam distillation yields shows that the boiling temperature (simulated distillation temperature) at 20% simulated distillation yield can predict the steam distillation yields reasonably well: the standard error ranges from 2.8 to 3.5% (in yield) for V/sub w//V/sub oi/ < 5 and from 3.5 to 4.5% for V/sub w//V/sub oi/ > 5. The oil viscosity (cs) at 100/sup 0/F can predict the steam distillation yields with standard error from 3.1 to 4.3%. The API gravity can predict the steam distillation yields with standard error from 4.4 to 5.7%. Characterization factor is an unsatisfactory correlation independent variable for correlation purpose.

Wu, C.H.; Elder, R.B.

1980-08-01T23:59:59.000Z

407

" Energy Sources by Industry Group, Selected Industries, and Selected"  

U.S. Energy Information Administration (EIA) Indexed Site

5. Capability to Switch from Distillate Fuel Oil to Alternative" 5. Capability to Switch from Distillate Fuel Oil to Alternative" " Energy Sources by Industry Group, Selected Industries, and Selected" " Characteristics, 1991" " (Estimates in Thousand Barrels)" ,," Distillate Fuel Oil ",,," Alternative Types of Energy(b)" ,,"-","-","-------------","-","-","-","-","-","-","-","RSE" ,,"Total"," ","Not","Electricity","Natural","Residual",,,"Coal Coke",,"Row" ,,"Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","and Breeze","Other(e)","Factors"

408

" Sources by Industry Group, Selected Industries, and Selected Characteristics,"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Capability to Switch from Residual Fuel Oil to Alternative Energy" 6. Capability to Switch from Residual Fuel Oil to Alternative Energy" " Sources by Industry Group, Selected Industries, and Selected Characteristics," 1991 " (Estimates in Thousand Barrels)" ,," Residual Fuel Oil",,," Alternative Types of Energy(b)" ," ","-","-","-------------","-","-","-","-","-","-","-","RSE" ,,"Total",,"Not","Electricity","Natural","Distillate",,,"Coal Coke",,"Row" ,,"Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","and Breeze","Other(e)","Factors"

409

" Sources by Industry Group, Selected Industries, and Selected Characteristics,"  

U.S. Energy Information Administration (EIA) Indexed Site

4. Capability to Switch from Natural Gas to Alternative Energy" 4. Capability to Switch from Natural Gas to Alternative Energy" " Sources by Industry Group, Selected Industries, and Selected Characteristics," 1991 " (Estimates in Billion Cubic Feet)" ,," Natural Gas",,," Alternative Types of Energy(b)" ,,"-","-","-------------","-","-","-","-","-","-","-","RSE" ,,"Total"," ","Not","Electricity","Distillate","Residual",,,"Coal Coke",,"Row" ,,"Consumed(c)","Switchable","Switchable","Receipts(d)","Fuel Oil","Fuel Oil","Coal","LPG","and Breeze","Other(e)","Factors"

410

" Sources by Industry Group, Selected Industries, and Selected Characteristics,"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Capability to Switch from Electricity to Alternative Energy" 3. Capability to Switch from Electricity to Alternative Energy" " Sources by Industry Group, Selected Industries, and Selected Characteristics," 1991 " (Estimates in Million Kilowatthours)" ,," Electricity Receipts",,," Alternative Types of Energy(b)" ,,"-","-","-----------","-","-","-","-","-","-","-" ,,,,,,,,,,"Coal",,"RSE" ,,"Total"," ","Not","Natural","Distillate","Residual",,,"Coke and",,"Row" ,,"Receipts(c)","Switchable","Switchable","Gas","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(d)","Factors"," "

411

Innovative coke oven gas cleaning system for retrofit applications: Environmental Monitoring Program. Volume 3, Appendix sections 8--14: Baseline Sampling Program report  

Science Conference Proceedings (OSTI)

This report contains no text. It consists entirely of numerical data: Coke oven wastewater treatment performance; Ammonia still effluents to equalization tank; Stack gas analysis of coke oven batteries; CoaL consumption; Coke production; Supplemental OSHA employee exposure monitoring(hydrocarbons,ammonia, hydrogen sulfide); operating data; chemical products and coke oven gas production.

Stuart, L.M.

1994-05-27T23:59:59.000Z

412

Annual book of ASTM Standards 2008. Section Five. Petroleum products, lubricants, and fossil fuels. Volume 05.06. Gaseous fuels; coal and coke  

SciTech Connect

The first part covers standards for gaseous fuels. The second part covers standards on coal and coke including the classification of coals, determination of major elements in coal ash and trace elements in coal, metallurgical properties of coal and coke, methods of analysis of coal and coke, petrogrpahic analysis of coal and coke, physical characteristics of coal, quality assurance and sampling.

NONE

2008-09-15T23:59:59.000Z

413

Steam Generator Management Program: Simulation Model for Eddy Current Steam Generator Inspection  

Science Conference Proceedings (OSTI)

BackgroundEddy current techniques are used widely to evaluate the integrity of steam generator (SG) tubes in nuclear power plants. A variety of commercial probes have been used by industry; it is well known that eddy current probe responses change as the tube condition changes. Other factors that influence the eddy current signal include deposits, loose parts, and denting. Postulated SG conditions have been mocked up in the laboratory; however, capabilities are limited ...

2013-12-19T23:59:59.000Z

414

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Dry Steam) (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

415

dist_steam.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

District Steam Usage Form District Steam Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed questionnaire is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y our company. a. You may submit a single report for the entire building, or if it i s easier, a separate report for each of several accounts in the building. These will then be aggregated by the survey contractor. b. If you are concerned about your individual account information, you may c

416

Water cooled steam jet  

DOE Patents (OSTI)

A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

Wagner, Jr., Edward P. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

417

Steam separator latch assembly  

SciTech Connect

A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof.

Challberg, Roy C. (Livermore, CA); Kobsa, Irvin R. (San Jose, CA)

1994-01-01T23:59:59.000Z

418

Steam separator latch assembly  

DOE Patents (OSTI)

A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof. 12 figures.

Challberg, R.C.; Kobsa, I.R.

1994-02-01T23:59:59.000Z

419

Steam Condensation Induced Waterhammer  

E-Print Network (OSTI)

This is the type of waterhammer that kills people. It's initiating mechanism is much different than the image most engineers have of what causes waterhammer-- i.e. fast moving steam picking up a slug of condensate and hurling it downstream against an elbow or a valve. Condensation Induced Waterhammer can be 100 times more powerful than this type of waterhammer. Because it does not require flowing steam, it often occurs during relatively quiescent periods when operators least expect it. It's most often initiated by opening a valve, even a drain valve to remove condensate. The overpressure from an event can easily exceed 1000 psi. This is enough pressure to fracture a cast iron valve, blow out a steam gasket, or burst an accordion type expansion joint. And, in fact, failure of each of these components in separate condensation induced waterhammer accidents has resulted in operator fatalities. Operators and engineers need to understand this type of waterhammer so they can avoid procedures which can initiate it and designs which are susceptible to it.

Kirsner, W.

2000-04-01T23:59:59.000Z

420

Steam Generator Management Program: Alloy 800 Steam Generator Tubing Experience  

Science Conference Proceedings (OSTI)

Nuclear grade (NG) Alloy 800 has been used for steam generator tubing since 1972 in over 50 nuclear power plants worldwide. The operational performance of this alloy has been very good, although some degradation modes have recently been observed. This report describes worldwide operating experience for Alloy 800 steam generator tubing along with differences in tubing material, plant design, and operating conditions that can affect tube degradation. The various types of plants with Alloy 800 steam generat...

2012-06-26T23:59:59.000Z

Note: This page contains sample records for the topic "industrial steam coking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Steam condensate leakage  

SciTech Connect

Argonne National Laboratory (ANL) is a multi-program research and development center owned by the United States Department of Energy and operated by the University of Chicago. The majority of the buildings on site use steam for heating and other purposes. Steam is generated from liquid water at the site`s central boiler house and distributed around the site by means of large pipes both above and below the ground. Steam comes into each building where it is converted to liquid condensate, giving off heat which can be used by the building. The condensate is then pumped back to the boiler house where it will be reheated to steam again. The process is continual but is not perfectly efficient. A substantial amount of condensate is being lost somewhere on site. The lost condensate has both economic and environmental significance. To compensate for lost condensate, makeup water must be added to the returned condensate at the boiler house. The water cost itself will become significant in the future when ANL begins purchasing Lake Michigan water. In addition to the water cost, there is also the cost of chemically treating the water to remove impurities, and there is the cost of energy required to heat the water, as it enters the boiler house 1000 F colder than the condensate return. It has been estimated that only approximately 60% of ANL`s steam is being returned as condensate, thus 40% is being wasted. This is quite costly to ANL and will become significantly more costly in the future when ANL begins purchasing water from Lake Michigan. This study locates where condensate loss is occurring and shows how much money would be saved by repairing the areas of loss. Shortly after completion of the study, one of the major areas of loss was repaired. This paper discusses the basis for the study, the areas where losses are occurring, the potential savings of repairing the losses, and a hypothesis as to where the unaccounted for loss is occurring.

Midlock, E.B.; Thuot, J.R.

1996-07-01T23:59:59.000Z

422

Computational heterogeneous catalysis applied to steam methane reforming over nickel and nickel/silver catalysts  

E-Print Network (OSTI)

The steam methane reforming (SMR) reaction is the primary industrial means for producing hydrogen gas. As such, it is a critical support process for applications including petrochemical processing and ammonia synthesis. ...

Blaylock, Donnie Wayne

2011-01-01T23:59:59.000Z

423

Co-Gasification Behavior of Metallurgical Coke with High and Low ...  

Science Conference Proceedings (OSTI)

The co-gasification behavior of highly and lowly reactive coke for blast furnace is investigated. ... Chemical Enrichment of Precious Metals in Iron Sulfides Using Microwave Energy .... Thermal Plasma Torches for Metallurgical Applications.

424

Current developments at Giprokoks for coke-battery construction and reconstruction  

Science Conference Proceedings (OSTI)

Approaches developed at Giprokoks for coke-battery construction and reconstruction are considered. Recommendations regarding furnace construction and reconstruction are made on the basis of Ukrainian and world experience.

V.I. Rudyka; Y.E. Zingerman; V.B. Kamenyuka; O.N. Surenskii; G.E. Kos'kova; V.V. Derevich; V.A. Gushchin [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

425

Guide to ASTM test methods for the analysis of coal and coke  

Science Conference Proceedings (OSTI)

The guide includes brief descriptions of all 56 ASTM test methods that cover the physical, chemical, and spectroscopic analytical techniques to qualitatively and quantitatively identify over 40 chemical and physical properties of coal, coke, their products, and by-products.

R.A. Kishore Nadkarni (ed.)

2008-07-01T23:59:59.000Z

426

U.S. Exports to South Africa of Petroleum Coke (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Exports to South Africa of Petroleum Coke (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; ...

427

Study of ways of reducing coke use at non-integrated metallurgical plants  

SciTech Connect

To reduce the costs of blast-furnace smelting, the Svobodnyi Sokol plant has devised a comprehensive program of organizational-technical measures that include study of ways of reducing coke consumption. To do this, the plant began operating its blast furnaces with schungite when making foundry and conversion pig irons. Using schungite in the charge employed to make foundry iron makes it possible to save a significant (10-15%) amount of coke. The value of the coefficient that characterizes the replacement of coke by schungite varies broadly and can reach 1.0 or more, depending on the grade of iron being made and the furnace operating regime. The same coefficient has a value of 0.57 kg coke/kg schungite when 12-15 kg schungite/ton pig is used to make conversion pig iron.

S.A. Feshchenko; V.I. Pleshkov; I.N. Shishchuk; A.V. Buev [Svobodnyi Sokol (Russian Federation). Lipetsk Metallurgical Plant

2006-03-15T23:59:59.000Z

428

U.S. Exports to Cameroon of Petroleum Coke (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Exports to Cameroon of Petroleum Coke (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1995: 0: 0: 0: 35: 0: 0: 0: 36: ...

429

Steam generators, turbines, and condensers. Volume six  

SciTech Connect

Volume six covers steam generators (How steam is generated, steam generation in a PWR, vertical U-tube steam generators, once-through steam generators, how much steam do steam generators make.), turbines (basic turbine principles, impulse turbines, reaction turbines, turbine stages, turbine arrangements, turbine steam flow, steam admission to turbines, turbine seals and supports, turbine oil system, generators), and condensers (need for condensers, basic condenser principles, condenser arrangements, heat transfer in condensers, air removal from condensers, circulating water system, heat loss to the circulating water system, factors affecting condenser performance, condenser auxiliaries).

1986-01-01T23:59:59.000Z

430

Steam pretreatment for coal liquefaction  

SciTech Connect

Steam pretreatment is the reaction of coal with steam at temperatures well below those usually used for solubilization. The objective of the proposed work is to test the application of steam pretreatment to coal liquefaction. This quarter, a 300 ml stirred autoclave for liquefaction tests were specified and ordered, procedures for extraction tests were reestablished, and the synthesis of four model compounds was completed. Two of these compounds remain to be purified.

Graff, R.A.; Balogh-Nair, V.

1990-01-01T23:59:59.000Z

431

Process for purifying geothermal steam  

DOE Patents (OSTI)

Steam containing hydrogen sulfide is purified and sulfur recovered by passing the steam through a reactor packed with activated carbon in the presence of a stoichiometric amount of oxygen which oxidizes the hydrogen sulfide to elemental sulfur which is adsorbed on the bed. The carbon can be recycled after the sulfur has been recovered by vacuum distillation, inert gas entrainment or solvent extraction. The process is suitable for the purification of steam from geothermal sources which may also contain other noncondensable gases.

Li, Charles T. (Richland, WA)

1980-01-01T23:59:59.000Z

432

Cryogenic fractionator gas as stripping gas of fines slurry in a coking and gasification process  

DOE Patents (OSTI)

In an integrated coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a scrubbing process and wherein the resulting solids-liquid slurry is stripped with a stripping gas to remove acidic gases, at least a portion of the stripping gas comprises a gas comprising hydrogen, nitrogen and methane separated from the coker products.

DeGeorge, Charles W. (Chester, NJ)

1981-01-01T23:59:59.000Z

433

Effect of thermal treatment on coke reactivity and catalytic iron mineralogy  

SciTech Connect

Iron minerals in coke can catalyze its gasification and may affect coke behavior in the blast furnace. The catalytic behavior of iron depends largely upon the nature of the iron-bearing minerals. To determine the mineralogical changes that iron could undergo in the blast furnace, cokes made from three coals containing iron present in different mineral forms (clays, carbonates, and pyrite) were examined. All coke samples were heat-treated in a horizontal furnace at 1373, 1573, and 1773 K and then gasified with CO{sub 2} at 1173 K in a fixed bed reactor (FBR). Coke mineralogy was characterized using quantitative X-ray diffraction (XRD) analysis of coke mineral matter prepared by low-temperature ashing (LTA) and field emission scanning electron microscopy combined with energy dispersive X-ray analysis (FESEM/EDS). The mineralogy of the three cokes was most notably distinguished by differing proportions of iron-bearing phases. During heat treatment and subsequent gasification, iron-containing minerals transformed to a range of minerals but predominantly iron-silicides and iron oxides, the relative amounts of which varied with heat treatment temperature and gasification conditions. The relationship between initial apparent reaction rate and the amount of catalytic iron minerals - pyrrhotite, metallic iron, and iron oxides - was linear and independent of heat treatment temperature at total catalyst levels below 1 wt %. The study showed that the coke reactivity decreased with increasing temperature of heat treatment due to decreased levels of catalytic iron minerals (largely due to formation of iron silicides) as well as increased ordering of the carbon structure. The study also showed that the importance of catalytic mineral matter in determining reactivity declines as gasification proceeds. 37 refs., 13 figs., 7 tabs.

Byong-chul Kim; Sushil Gupta; David French; Richard Sakurovs; Veena Sahajwalla [University of New South Wales, Sydney, NSW (Australia). Centre for Sustainable Materials Research and Technology

2009-07-15T23:59:59.000Z

434

Corrosion in Fossil and Alternative Fuel Industries  

Science Conference Proceedings (OSTI)

...coal-fired steam, industrial gas turbine, and combined-cycle power plants. The most common and widely used is the pulverized-coal-fired steam power plant. Because of the complex and corrosive environments in which power plants operate, corrosion has been a serious problem, with a significant impact on...

435

Air-cooled vacuum steam condenser  

SciTech Connect

This patent describes a steam powered system. It comprises: a turbine for converting steam energy into mechanical energy upon expansion of steam therein, a boiler for generating steam to be fed to the turbine, and a conduit arrangement coupling the boiler to the turbine and then recoupling the turbine exhaust to the boiler through steam condensing mechanisms.

Larinoff, M.W.

1990-02-27T23:59:59.000Z

436

Constant-Pressure Measurement of Steam-  

E-Print Network (OSTI)

SGP-TR-169 Constant-Pressure Measurement of Steam- Water Relative Permeability Peter A. O by measuring in-situ steam saturation more directly. Mobile steam mass fraction was established by separate steam and water inlets or by correlating with previous results. The measured steam-water relative

Stanford University

437

" by Type of Supplier, Census Region, Census Division, Industry Group,"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Average Prices of Purchased Electricity and Steam" 3. Average Prices of Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, Industry Group," " and Selected Industries, 1994" " (Estimates in Dollars per Physical Units)" ,," Electricity",," Steam" ,," (kWh)",," (million Btu)" ,,,,,,"RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Row" "Code(a)","Industry Group and Industry","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors"

438

Experimental study on the effects of blast-cap configurations and charge patterns on coke descending in CDQ cooling shaft  

SciTech Connect

The coke descending behavior in a CDQ cooling shaft is studied experimentally by means of a tracing method with a digital camera. For three different blast-caps, the law of coke flow is studied under five conditions of coke charge. The experimental results show that, for the sake of the uniformity of the coke burden descending, a blast-cap with elliptical cross-section is a better choice than that with circular cross-section regardless of high or low placement. A coke charge pattern with a flat top burden surface is preferable to that with peak-valley surface, a double-peak superior to a one-peak. Trajectory and average velocity distribution of coke behavior depend weakly on whether the coke is continuously fed or not as the discharging began. The blast-caps have local effects on the descending coke and hardly affect whether the cokes flow smoothly or not in the case of coke burden with enough depth.

Y.H. Feng; X.X. Zhang; M.L. Wu [University of Science & Technology, Beijing (China). School of Mechanical Engineering

2008-08-15T23:59:59.000Z

439

Steam turbines for cogeneration power plants  

SciTech Connect

Steam turbines for cogeneration plants may carry a combination of industrial, space heating, cooling and domestic hot water loads. These loads are hourly, weekly, and seasonally irregular and require turbines of special design to meet the load duration curve, while generating electric power. Design features and performance characteristics of one of the largest cogeneration turbine units for combined electric generation and district heat supply are presented. Different modes of operation of the cogeneration turbine under variable load conditions are discussed in conjunction with a heat load duration curve for urban heat supply. Problems associated with the retrofitting of existing condensing type turbines for cogeneration applications are identified. 4 refs.

Oliker, I.

1980-04-01T23:59:59.000Z

440

"Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 5.3;" 3 Relative Standard Errors for Table 5.3;" " Unit: Percents." " "," " " "," ",," ","Distillate"," "," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" "NAICS"," ","for ","Residual","and","Natural","LPG and","(excluding Coal" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"TOTAL FUEL CONSUMPTION",2,3,6,2,4,9

Note: This page contains sample records for the topic "industrial steam coking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Coke gasification: the influence and behavior of inherent catalytic mineral matter  

Science Conference Proceedings (OSTI)

Gasification of coke contributes to its degradation in the blast furnace. In this study, the effect of gasification on the inherent catalytic minerals in cokes and their reciprocal influence on gasification are investigated. The catalytic mineral phases identified in the cokes used in this study were metallic iron, iron sulfides, and iron oxides. Metallic iron and pyrrhotite were rapidly oxidized during gasification to iron oxide. The catalysts had a strong influence on the apparent rates at the initial stages of reaction. As gasification proceeds, their effect on the reaction rate diminishes as a result of reducing the surface contact between catalyst and carbon matrix because of carbon consumption around the catalyst particles; with extended burnout the reactivity of the coke becomes increasingly dependent on surface area. The reaction rate in the initial stages was also influenced by the particle size of the catalytic minerals; for a given catalytic iron level, the cokes whose catalytic minerals were more finely dispersed had a higher apparent reaction rate than cokes containing larger catalytic particles. Iron, sodium, and potassium in the amorphous phase did not appear to affect the reaction rate. 40 refs., 16 figs., 6 tabs.

Mihaela Grigore; Richard Sakurovs; David French; Veena Sahajwalla [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Bangor, NSW (Australia)

2009-04-15T23:59:59.000Z

442

Microchannel Process Technology for Compact Methane Steam Reforming  

Science Conference Proceedings (OSTI)

The study of microchannel reaction engineering and applications to compact chemical reactors has expanded rapidly both academically and industrially in recent years. Velocys{reg_sign}, a spin-out company from Battelle Memorial Institute, is commercializing microchannel process technology for large-scale chemical processing. Hydrogen production at industrial rates in compact Velocys hardware is made possible through increases in both heat and mass transfer rates for highly active and novel catalysts. In one example, a microchannel methane steam reforming reactor is presented with integrated catalytic partial oxidation of methane prior to catalytic combustion with low excess air (25%) to generate the required energy for undothermic methane steam reforming in adjacent channels. Heat transfer rates from the exothermic reactions exceed 18 W/cm{sup 2} of interplanar heat transfer surface area and exceed 65 W/cm{sup 3} of total reaction volume for a methane steam reforming contact time near 4 milliseconds. The process intensity of the Velocys methane steam reformer well exceeds that of conventional steam reformers, which have a typical volumetric heat flux below 1 W/cm{sup 3}. The integration of multiple unit operations and improvements in process intensification result in significant capital and operating cost savings for commercial applications.

Tonkovich, A L.; Perry, Steve; Wang, Yong; Qiu, Dongming; LaPlante, Timothy J.; Rogers, William A.

2004-12-01T23:59:59.000Z

443

Steam Generator Management Program: Assessment of Steam Generator Tube Plugs  

Science Conference Proceedings (OSTI)

EPRI Steam Generator Management Program guidelines require that utilities perform integrity assessments of all steam generator (SG) components, including tube plugs. SG inspection outages should specifically include monitoring of degradation in tube hardware such as plugs. This report provides guidance for utility engineers to use in determining tube plug inspection requirements, including scope, technique, and periodicity.BackgroundGenerally, utilities perform ...

2013-08-28T23:59:59.000Z

444

Industrial Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Facilities Industrial Facilities Industrial Facilities October 8, 2013 - 10:14am Addthis The Federal Energy Management Program (FEMP) encourages Federal agencies requiring assistance with implementing energy-efficiency measures in their industrial facilities to hire a U.S. Department of Energy Industrial Assessment Center (IAC) for assessment services. The following resources can be used to plan and implement industrial facility energy-efficiency projects. Technical Publications: The Advanced Manufacturing Office (AMO) website offers fact sheets, handbooks, and self-assessment manuals covering steam system efficiency, fundamentals of compressed air systems, motor systems management, and other topics. Tools: The AMO website offers valuable software tools for evaluating

445

Studies of a small PWR for onsite industrial power  

SciTech Connect

Information on the use of a 300 to 400 MW(t) PWR type reactor for industrial applications is presented concerning the potential market, reliability considerations, reactor plant description, construction techniques, comparison between nuclear and fossil-fired process steam costs, alternative fossil-fired steam supplies, and industrial application.

Klepper, O.H.; Smith, W.R.

1977-04-19T23:59:59.000Z

446

The Enbridge Consumers Gas "Steam Saver" Program ("As Found" Performance and Fuel Saving Projects from Audits of 30 Steam Plants)  

E-Print Network (OSTI)

In Canada, medium and large sized steam plants consume approximately 442 Billion Cubic Feet (12.5 Billion Cubic Meters) of natural gas annually. This is 25% of all natural gas delivered to all customers. (Small steam plants and Hydronic heating boilers consume another 15%) Enbridge Consumers Gas, a local gas distribution company located in Toronto, has approximately 400 Industrial and Institutional customers who own medium or large sized steam plants. During the past three years, Enbridge has developed a comprehensive steam energy efficiency program called "Steam Saver". This program is aimed at these 400 customers. The heart of this program is the boiler plant audit and performance test. This paper describes the fuel saving results for more than 30 medium and large sized boiler plants where audits have been completed and projects have been implemented. The savings in cubic feet per year of natural gas are broken down according to project or technology type. The financial payback is indicated for each category. Eleven of the larger plants have been "benchmarked". Plant efficiency, fuel consumption, steam costs and other performance variables are tabulated for these plants.

Griffin, B.

2000-04-01T23:59:59.000Z

447

" Electricity Generation by Census Region, Census Division, Industry Group, and"  

U.S. Energy Information Administration (EIA) Indexed Site

A6. Total Inputs of Selected Byproduct Energy for Heat, Power, and" A6. Total Inputs of Selected Byproduct Energy for Heat, Power, and" " Electricity Generation by Census Region, Census Division, Industry Group, and" " Selected Industries, 1994" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," ","Waste"," " " "," "," ","Blast"," "," "," "," ","Oils/Tars","RSE" "SIC"," "," ","Furnace/Coke"," ","Petroleum","Pulping","Wood Chips,","And Waste","Row"

448

" Electricity Generation by Census Region, Industry Group, and Selected"  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," "," ","Residual","Distillate"," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

449

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

450

Turbocompressor downhole steam-generating system  

SciTech Connect

This patent describes a downhole steam-generating system comprising: an air compressor; a steam generating unit, including: a combustor for combusting fuel with the compressed air from the compressor producing combustor exhaust products; and steam conversion means, in indirect heat-exchange relationship with the combustor, for converting water which is fed into the steam-conversion means into steam; a turbine which is rotated by the combustor exhaust products and steam from the steam-generating unit, the rotational motion of the turbine is mechanically coupled to the air compressor to drive the air compressor; and control bypass means associated with the steam generating unit and turbine for regulating the relative amounts of the combustor exhaust product and steam delivered to the turbine from the steam generating unit. The air compressor and turbine form an integral turbocompressor unit. The turbocompressor unit, steam-generating unit and control bypass means are located downhole during operation of the steam-generating system.

Wagner, W.R.

1987-07-28T23:59:59.000Z

451

Benchmark the Fuel Cost of Steam Generation  

DOE Green Energy (OSTI)

BestPractices Steam tip sheet regarding ways to assess steam system efficiency. To determine the effective cost of steam, use a combined heat and power simulation model that includes all the significant effects.

Papar, R. [U.S. Department of Energy (US)

2000-12-04T23:59:59.000Z

452

High Efficiency Steam Electrolyzer  

SciTech Connect

A novel steam electrolyzer has been developed. In conventional electrolyzers, oxygen produced from electrolysis is usually released in the air stream. In their novel design, natural gas is used to replace air in order to reduce the chemical potential difference across the electrolyzer, thus minimizing the electrical consumption. The oxygen from the electrolysis is consumed in either a total oxidation or a partial oxidation reaction with natural gas. Experiments performed on single cells shown a voltage reduction as much as 1 V when compared to conventional electrolyzers. Using thin film materials and high performance cathode and anode, electrolysis could be done at temperatures as low as 700 C with electrolytic current as high as 1 A/cm{sup 2} at a voltage of 0.5 V only. The 700 C operating temperature is favorable to the total oxidation of natural gas while minimizing the need for steam that is otherwise necessary to avoid carbon deposition. A novel tubular electrolyzer stack has been developed. The system was designed to produce hydrogen at high pressures, taking advantage of the simplicity and high efficiency of the electrochemical compressors. A complete fabrication process was developed for making electrolyzer tubes with thin film coatings. A 100 W stack is being built.

Pham, A.Q.

2000-06-19T23:59:59.000Z

453

Evaluation of fly ash from co-combustion of coal and petroleum coke for use in concrete  

Science Conference Proceedings (OSTI)

An investigation of fly ash (FA) produced from various blends of coal and petroleum coke (pet coke) fired at Belledune Generating Station, New Brunswick, Canada, was conducted to establish its performance relative to FA derived from coal-only combustion and its compliance with CSA A3000. The FA samples were beneficiated by an electrostatic separation process to produce samples for testing with a range of loss-on-ignition (LOI) values. The results of these studies indicate that the combustion of pet coke results in very little inorganic residue (for example, typically less than 0.5% ash) and the main impact on FA resulting from the co-combustion of coal and up to 25% pet coke is an increase in the unburned carbon content and LOI values. The testing of FA after beneficiation indicates that FA produced from fuels with up to 25% pet coke performs as good as FA produced from the same coal without pet coke.

Scott, A.N.; Thomas, M.D.A.

2007-01-15T23:59:59.000Z

454

LASER Welding Survey for Power Generation Industry  

Science Conference Proceedings (OSTI)

EPRI has developed technology for laser weld repair of steam generator tubes in light water reactors. This technology has promise for other specialized welding and heat treatment applications in the power generation industry.

1998-04-23T23:59:59.000Z

455

Reduction in Unit Steam Production  

E-Print Network (OSTI)

In 2001 the company's Arch-Brandenburg facility faced increased steam costs due to high natural gas prices and decreased production due to shutdown of a process. The facility was challenged to reduce unit steam consumption to minimize the effects of thes

Gombos, R.

2004-01-01T23:59:59.000Z

456

Go Steam for Green Transportation  

Science Conference Proceedings (OSTI)

Railroads are very fuel-efficient in moving freight by land. The history of rail begins with steam power, moving to eventual dieselization. Some components, advantages and disadvantages of internal combustion engines (gasoline, diesel) and external combustion ... Keywords: diesel engine, steam engine, biocoal, biofuel, computer control, internal combustion, external combustion

Paul Fred Frenger

2013-04-01T23:59:59.000Z

457

Steam-powered sensing  

Science Conference Proceedings (OSTI)

Sensornets promise to extend automated monitoring and control into industrial processes. In spite of great progress made in sensornet design, installation and operational costs can impede their widespread adoption---current practices of infrequent, ... Keywords: blockage detection, industrial wireless sensor networks, non-invasive sensing, thermal energy harvesting

Chengjie Zhang; Affan Syed; Young Cho; John Heidemann

2011-11-01T23:59:59.000Z

458

North Shore Gas - Commercial and Industrial Prescriptive Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North Shore Gas - Commercial and Industrial Prescriptive Rebate North Shore Gas - Commercial and Industrial Prescriptive Rebate Program North Shore Gas - Commercial and Industrial Prescriptive Rebate Program < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Manufacturing Appliances & Electronics Water Heating Maximum Rebate Contact North Shore Gas Program Info Expiration Date 05/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount Steam Traps (Low Pressure): $60/unit Steam Traps (High Pressure): $150/unit Industrial/Process Steam Trap (Low Pressure): $150 Industrial/Process Steam Trap (High Pressure): $200 HVAC Steam Trap Test: $5/unit surveyed Condensing Unit Heater: $2/MBH Boilers: $2 - $6.67/MBH Boiler Cutout/Reset Control: $250

459

Evaluate deaerator steam requirements quickly  

Science Conference Proceedings (OSTI)

Steam plant engineers frequently have to perform energy balance calculations around the deaerator to estimate the steam required to preheat and deaerate the make-up water and condensate returns. This calculation involves solving two sets of equations, one for mass and the other for energy balance. Reference to steam tables is also necessary. However, with the help of this program written in BASIC, one can arrive at the make-up water and steam requirements quickly, without referring to steam tables. This paper shows the mass and energy balance equations for the deaerator. This paper gives the program listing. An number of condensate returns can be handled. An example illustrates the use of the program.

Ganapathy, V. (ABCO Industries, Inc., Abilene, TX (US))

1991-02-01T23:59:59.000Z

460

List of Steam-system upgrades Incentives | Open Energy Information  

Open Energy Info (EERE)

upgrades Incentives upgrades Incentives Jump to: navigation, search The following contains the list of 100 Steam-system upgrades Incentives. CSV (rows 1 - 100) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Alabama Commercial Industrial Institutional Building Insulation Doors Energy Mgmt. Systems/Building Controls Lighting Lighting Controls/Sensors Steam-system upgrades Water Heaters Windows Biodiesel Biomass CHP/Cogeneration Ethanol Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Photovoltaics Renewable Fuels Solar Water Heat Commercial Refrigeration Equipment Natural Gas Yes Ameren Missouri (Gas) - Business Energy Efficiency Program (Missouri) Utility Rebate Program Missouri Commercial

Note: This page contains sample records for the topic "industrial steam coking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Hartford Steam Co | Open Energy Information  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon Hartford Steam Co Jump to: navigation, search Name Hartford Steam Co Place Connecticut Utility Id...

462

Combustion gas turbine/steam generator plant  

SciTech Connect

A fired steam generator is described that is interconnected with a gas turbine/steam generator plant having at least one gas turbine group followed by an exhaust-gas steam generator. The exhaust-gas steam generator has a preheater and an evaporator. The inlet of the preheater is connected to a feedwater distribution line which also feeds a preheater in the fired steam generator. The outlet of the preheater is connected to the evaporator of the fired steam generator. The evaporator outlet of the exhaust-gas steam generator is connected to the input of a superheater in the fired steam generator.

Aguet, E.

1975-11-18T23:59:59.000Z

463

Practical Procedures for Auditing Industrial Boiler Plants  

E-Print Network (OSTI)

Industrial boiler plants are an area of opportunity in virtually every industry to save energy and reduce costs by using relatively simple, inexpensive auditing procedures. An energy audit consists of inspection, measurement, analysis, and the preparation of recommendations. A complete boiler plant program will consider each individual boiler, boiler room auxiliary equipment, steam distribution and return systems, and steam end use equipment. This paper summarizes the practical procedures, techniques, and instrumentation which Nabisco uses in its boiler plant energy conservation program.

O'Neil, J. P.

1980-01-01T23:59:59.000Z

464

Characterization of tuyere-level core-drill coke samples from blast furnace operation  

SciTech Connect

A suite of tuyere-level coke samples have been withdrawn from a working blast furnace during coal injection, using the core-drilling technique. The samples have been characterized by size exclusion chromatography (SEC), Fourier transform Raman spectroscopy (FT-RS), and X-ray powder diffraction (XRD) spectroscopy. The 1-methyl-2-pyrrolidinone (NMP) extracts of the cokes sampled from the 'bosh', the rear of the 'bird's nest', and the 'dead man' zones were found by SEC to contain heavy soot-like materials (ca. 10{sup 7}-10{sup 8} apparent mass units). In contrast, NMP extracts of cokes taken from the raceway and the front of the 'bird's nest' only contained a small amount of material of relatively lower apparent molecular mass (up to ca. 10{sup 5} u). Since the feed coke contained no materials extractable by the present method, the soot-like materials are thought to have formed during the reactions of volatile matter released from the injectant coal, probably via dehydrogenation and repolymerization of the tars. The Raman spectra of the NMP-extracted core-drilled coke samples showed variations reflecting their temperature histories. Area ratios of D-band to G-band decreased as the exposure temperature increased, while intensity ratios of D to G band and those of 2D to G bands increased with temperature. The graphitic (G), defect (D), and random (R) fractions of the carbon structure of the cokes were also derived from the Raman spectra. The R fractions decreased with increasing temperature, whereas G fractions increased, while the D fractions showed a more complex variation with temperature. These data appear to give clues regarding the graphitization mechanism of tuyere-level cokes in the blast furnace. 41 refs., 9 figs., 6 tabs.

S. Dong; N. Paterson; S.G. Kazarian; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

2007-12-15T23:59:59.000Z

465

Development of an impedance-based sensor for the detection of catalyst coking in fuel-reforming systems.  

E-Print Network (OSTI)

??A novel sensor for detecting the early stages of catalyst coking in fuel reforming systems has been developed. The sensor was manufactured by inkjet printing… (more)

Wheeler, Jeffrey L.

2013-01-01T23:59:59.000Z

466

Dale Coke: Coke Farm  

E-Print Network (OSTI)

to Alice Waters’ Chez Panisse Restaurant in Berkeley, andlater other high-end restaurants across the country. Cokemostly geared toward the restaurant trade, because that’s

Farmer, Ellen

2010-01-01T23:59:59.000Z

467

Dale Coke: Coke Farm  

E-Print Network (OSTI)

the right place to get compost, or how you get the beststerilized or pasteurized our compost before we put it out.

Farmer, Ellen

2010-01-01T23:59:59.000Z

468

ULTRA-SUPERCRITICAL STEAM CORROSION  

SciTech Connect

Efficiency increases in fossil energy boilers and steam turbines are being achieved by increasing the temperature and pressure at the turbine inlets well beyond the critical point of water. To allow these increases, advanced materials are needed that are able to withstand the higher temperatures and pressures in terms of strength, creep, and oxidation resistance. As part of a larger collaborative effort, the Albany Research Center (ARC) is examining the steam-side oxidation behavior for ultrasupercritical (USC) steam turbine applications. Initial tests are being done on six alloys identified as candidates for USC steam boiler applications: ferritic alloy SAVE12, austenitic alloy Super 304H, the high Cr-high Ni alloy HR6W, and the nickel-base superalloys Inconel 617, Haynes 230, and Inconel 740. Each of these alloys has very high strength for its alloy type. Three types of experiments are planned: cyclic oxidation in air plus steam at atmospheric pressure, thermogravimetric ana lysis (TGA) in steam at atmospheric pressure, and exposure tests in supercritical steam up to 650 C (1202 F) and 34.5 MPa (5000 psi). The atmospheric pressure tests, combined with supercritical exposures at 13.8, 20.7, 24.6, and 34.5 MPa (2000, 3000, 4000, and 5000 psi) should allow the determination of the effect of pressure on the oxidation process.

Holcomb, G.R.; Alman, D.E.; Bullard, S.B.; Covino, B.S., Jr.; Cramer, S.D.; Ziomek-Moroz, M.

2003-04-22T23:59:59.000Z

469

Comparison of the Potential Impacts of Petroleum Coke and Anthracite Culm Use  

E-Print Network (OSTI)

The primary feedstock for the proposed Gilberton Coal-to-Clean Fuels and Power Project would be low-cost anthracite culm, which is a locally abundant, previously discarded resource that could accommodate fuel requirements during the demonstration period. Culm reserves controlled by WMPI are estimated to be sufficient to supply the proposed facilities for about 15 years, or to supply both the proposed facilities and the existing Gilberton Power Plant for about 11 years. Based on the applicant’s proposal, the facilities would also be capable of using a blend of feedstock containing up to 25% petroleum coke. Petroleum coke is a high-sulfur, high-energy product having the appearance of coal. Oil refineries produce petroleum coke by heating and removing volatile organic compounds (VOCs) from the residue remaining after the refining process. This appendix compares some of the potential impacts of 100 % anthracite culm use with the potential impacts from using a blended feedstock of 75 % anthracite culm and 25 % petroleum coke. Topics considered include carbon dioxide emissions, air emissions of sulfur compounds and toxic substances, solid wastes and byproduct production, and increased truck traffic. Carbon Dioxide (CO2) Emissions Published values for potential CO2 emissions from anthracite and petroleum coke are very similar.

Gilberton Coal-to-clean Fuels

2007-01-01T23:59:59.000Z

470

Application of solar energy for the generation and supply of industrial-process low-to intermediate-pressure steam ranging from 300/sup 0/F-550/sup 0/F (high-temperature steam). Final report, September 30, 1978-June 30, 1979  

DOE Green Energy (OSTI)

A detailed design was developed for a solar industrial process heat system to be installed at the ERGON, Inc. Bulk Oil Storage Terminal in Mobile, Alabama. The 1874 m/sup 2/ (20160 ft/sup 2/) solar energy collector field will generate industrial process heat at temperatures ranging from 150 to 290/sup 0/C (300 to 550/sup 0/F). The heat will be used to reduce the viscosity of stored No. 6 fuel oil, making it easier to pump from storage to transport tankers. Heat transfer oil is circulated in a closed system, absorbing heat in the collector field and delivering it through immersed heat exchangers to the stored fuel oil. The solar energy system will provide approximately 44 percent of the process heat required.

Matteo, M.; Kull, J.; Luddy, W.; Youngblood, S.

1980-12-01T23:59:59.000Z

471

Development and Transient Analysis of a Helical-coil Steam Generator for High Temperature Reactors  

DOE Green Energy (OSTI)

A high temperature gas-cooled reactor (HTGR) is under development by the Next Generation Nuclear Plant (NGNP) Project at the Idaho National Laboratory (INL). Its design emphasizes electrical power production which may potentially be coupled with process heat for hydrogen production and other industrial applications. NGNP is considering a helical-coil steam generator for the primary heat transport loop heat exchanger based on its increased heat transfer and compactness when compared to other steam generators. The safety and reliability of the helical-coil steam generator is currently under evaluation as part of the development of NGNP. Transients, such as loss of coolant accidents (LOCA), are of interest in evaluating the safety of steam generators. In this study, a complete steam generator inlet pipe break (double ended pipe break) LOCA was simulated by an exponential loss of primary side pressure. For this analysis, a model of the helical-coil steam generator was developed using RELAP5-3D, an INL inhouse systems analysis code. The steam generator model behaved normally during the transient simulating the complete steam generator inlet pipe break LOCA. Further analysis is required to comprehensively evaluate the safety and reliability of the helical-coil steam generator design in the NGNP setting.

Nathan V. Hoffer; Nolan A. Anderson; Piyush Sabharwall

2011-08-01T23:59:59.000Z

472

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

is coke produced in industrial coke ovens. This category isinefficient than industrial coke ovens. This category is noFrom Gas Fields (industrial use) Coke Oven Gas (industrial

Fridley, Ed., David

2008-01-01T23:59:59.000Z

473

Steam reformer with catalytic combustor  

DOE Patents (OSTI)

A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

Voecks, Gerald E. (La Crescenta, CA)

1990-03-20T23:59:59.000Z

474

GCFR steam generator conceptual design  

SciTech Connect

The gas-cooled fast reactor (GCFR) steam generators are large once-through heat exchangers with helically coiled tube bundles. In the GCFR demonstration plant, hot helium from the reactor core is passed through these units to produce superheated steam, which is used by the turbine generators to produce electrical power. The paper describes the conceptual design of the steam generator. The major components and functions of the design are addressed. The topics discussed are the configuration, operating conditions, design criteria, and the design verification and support programs.

Holm, R.A.; Elliott, J.P.

1980-01-01T23:59:59.000Z

475

Steam Generator Management Program: Steam Generator Progress Report: Revision 18  

Science Conference Proceedings (OSTI)

BackgroundSince 1985, the Electric Power Research Institute (EPRI) has published the Steam Generator Progress Report (SGPR), which provides historical information on worldwide steam generator activities. This document was published once a year and distributed via hardcopy. Until 1998, the method of acquiring data for this report had been to issue annual survey forms to all PWR and pressurized heavy water reactor nuclear utilities worldwide. The information included in ...

2013-11-20T23:59:59.000Z

476

Steam Generator Management Program: Steam Generator Integrity Assessment Guidelines  

Science Conference Proceedings (OSTI)

This report provides guidance for evaluating the condition of steam generator (SG) tubes based on nondestructive examination (NDE) or in situ pressure testing. The integrity assessments are normally performed during a reactor refueling outage. Nuclear power plant licensees who follow the guidance in this report will have satisfied the requirements for degradation assessments, condition monitoring, and operational assessment as defined in the Nuclear Energy Institute (NEI) Steam Generator Program Guidelin...

2009-11-19T23:59:59.000Z

477

Wet-steam erosion of steam turbine disks and shafts  

SciTech Connect

A study of wet-steam erosion of the disks and the rotor bosses or housings of turbines in thermal and nuclear power plants shows that the rate of wear does not depend on the diagrammed degree of moisture, but is determined by moisture condensing on the surfaces of the diaphragms and steam inlet components. Renovating the diaphragm seals as an assembly with condensate removal provides a manifold reduction in the erosion.

Averkina, N. V. [JSC 'NPO TsKTI' (Russian Federation); Zheleznyak, I. V. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation); Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G., E-mail: orlikvg@mail.ru [JSC 'NPO TsKTI' (Russian Federation); Shishkin, V. I. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation)

2011-01-15T23:59:59.000Z

478

Steam distillation effect and oil quality change during steam injection  

SciTech Connect

Steam distillation is an important mechanism which reduces residual oil saturation during steam injection. It may be the main recovery mechanism in steamflooding of light oil reservoirs. As light components are distilled the residual (initial) oil, the residuum becomes heavier. Mixing the distilled components with the initial oil results in a lighter produced oil. A general method has been developed to compute steam distillation yield and to quantify oil quality changes during steam injection. The quantitative results are specific because the California crude data bank was used. But general principles were followed and calculations were based on information extracted from the DOE crude oil assay data bank. It was found that steam distillation data from the literature can be correlated with the steam distillation yield obtained from the DOE crude oil assays. The common basis for comparison was the equivalent normal boiling point. Blending of distilled components with the initial oil results in API gravity changes similar to those observed in several laboratory and field operations.

Lim, K.T.; Ramey, H.J. Jr.; Brigham, W.E.

1992-01-01T23:59:59.000Z

479

Combined Heat and Power Plant Steam Turbine  

E-Print Network (OSTI)

waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load SouthernCombined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

480

Steam Plant Conversion Eliminating Campus Coal Use  

E-Print Network (OSTI)

Steam Plant Conversion Eliminating Campus Coal Use at the Steam Plant #12;· Flagship campus region produce 14% of US coal (TN only 0.2%) Knoxville and the TN Valley #12;· UT is one of about 70 U.S. colleges and universities w/ steam plant that burns coal · Constructed in 1964, provides steam for

Dai, Pengcheng

Note: This page contains sample records for the topic "industrial steam coking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Case Study of the California Cement Industry  

E-Print Network (OSTI)

tons of coal, 0.25 tons of coke, and smaller amounts oftons of coal, 0.25 tons of coke, and smaller amounts ofWaste Solid Waste Tires Coke Coal Source: Hendrick van Oss,

Coito, Fred; Powell, Frank; Worrell, Ernst; Price, Lynn; Friedmann, Rafael

2005-01-01T23:59:59.000Z

482

Heat-recovery steam generators: Understand the basics  

Science Conference Proceedings (OSTI)

Gas turbines with heat-recovery steam generators (HRSGs) can be found in virtually every chemical process industries (CPI) plant. They can be operated in either the cogeneration mode or the combined-cycle mode. In the cogeneration mode, steam produced from the HRSG is mainly used for process applications, whereas in the combined-cycle mode, power is generated via a steam turbine generator. Recent trends in HRSG design include multiple-pressure units for maximum energy recovery, the use of high-temperature superheaters or reheaters in combined-cycle plants, and auxiliary firing for efficient steam generation. In addition, furnace firing is often employed in small capacity units when the exhaust gas is raised to temperatures of 2,400--3,000 F to maximize steam generation and thus improve fuel utilization. This article highlights some of the basic facts about gas turbine HRSGs. This information can help plant engineers, consultants, and those planning cogeneration projects make important decisions about the system and performance related aspects.

Ganapathy, V.

1996-08-01T23:59:59.000Z

483

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network (OSTI)

: Introduction, Steam Generation Efficiency Resource Utilization Analysis, and Steam Distribution System Losses Stack Losses Resource Utilization Analysis Steam Distribution System Losses Conclusion Quiz If youDOE's BestPractices Steam End User Training Steam End User Training Navigational Tutorial - 1 8

Oak Ridge National Laboratory

484

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network (OSTI)

horizontal runs of steam distribution piping from a common header. Steam distribution piping is insulatedDOE's BestPractices Steam End User Training Steam End User Training Introduction Module - 1 8/27/2010 Steam End User Training Introduction Module Slide 1 - Introduction Title Page Hello, and welcome

Oak Ridge National Laboratory

485

Evaluation of 2 Percent CrMoWV HP/LP Rotor Gap Forging for Single Cylinder Steam Turbine Use  

Science Conference Proceedings (OSTI)

There has been considerable industry interest in developing a single shaft rotor configuration that uses the same rotor in the high-pressure (HP) as well as the Low Pressure (LP) sections of a steam turbine. This report evaluates an HP/LP rotor forging for single cylinder steam turbines.

1998-11-24T23:59:59.000Z

486

Steam turbine for geothermal power generation  

SciTech Connect

A steam turbine comprises a casing; turbine vanes rotatably set in the casing; a plurality of partition walls which extend along radial directions from the rotation center of the turbine vanes to define a plurality of steam valve chambers in the casing; steam supply pipes respectively connected to the corresponding steam valve chambers; and regulating valves which are fitted to the respective steam supply pipes to regulate respectively the flow rate of steam streams supplied to the respective steam valve chambers. At least one partition wall for dividing the interior space of the steam turbine into adjacent steam valve chambers is provided with at least one penetrating hole for causing the steam valve chambers to communicate with each other.

Tsujimura, K.; Hadano, Y.

1984-04-10T23:59:59.000Z

487

Simplify heat recovery steam generator evaluation  

SciTech Connect

Heat recovery steam generators (HRSGs) are widely used in process and power plants, refineries and in several cogeneration/combined cycle systems. They are usually designed for a set of gas and steam conditions but often operate under different parameters due to plant constraints, steam demand, different ambient conditions (which affect the gas flow and exhaust gas temperature in a gas turbine plant), etc. As a result, the gas and steam temperature profiles in the HRSG, steam production and the steam temperature differ from the design conditions, affecting the entire plant performance and economics. Also, consultants and process engineers who are involved in evaluating the performance of the steam system as a whole, often would like to simulate the performance of an HRSG under different gas flows, inlet gas temperature and analysis, steam pressure and feed water temperature to optimize the entire steam system and select proper auxiliaries such as steam turbines, condensers, deaerators, etc.

Ganapathy, V. (ABCO Industries, Abilene, TX (US))

1990-03-01T23:59:59.000Z

488

Steam Field | Open Energy Information  

Open Energy Info (EERE)

Field Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Steam Field Dictionary.png Steam Field: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in 2005 at the request of DOE and GEA, as reported in Classification of Geothermal Systems: A Possible Scheme. Extremely Low Temperature Very Low Temperature Low Temperature Moderate Temperature High Temperature Ultra High Temperature Steam Field Steam field reservoirs are special cases where the fluid is predominantly found in a gas phase between 230°C to 240°C. "This special class of resource needs to be recognized, its uniqueness being the remarkably consistent initial temperature and pressure

489

Computer Optimization of Steam Production  

E-Print Network (OSTI)

As fuel costs continued to rise sharply during the 1970' s, the staff at Exxon's Benicia Refinery realized there was a growing economic incentive to optimize the production of high pressure steam. A significant percentage of the Refinery's total energy is consumed in generating high pressure steam. Recently, a computer program was implemented to optimize high pressure steam production. The first challenge in developing the program was to provide reliable analog and digital instrumentation allowing simultaneous analog header control along with effective digital steam flow control. Once appropriate instrumentation became available, the effort focused on identifying the best approach for developing the computer control program. After screening several alternatives, it became apparent that we were dealing with an allocation problem which could be effectively handled with a linear program. The control program has performed well since it was commissioned. It has experienced a service factor of greater than 95% while reducing energy consumption of the boilers by over 500 million Btu's per day.

Todd, C. H.

1982-01-01T23:59:59.000Z

490

Heat Recovery Steam Generator Simulation  

E-Print Network (OSTI)

The paper discusses the applications of Heat Recovery Steam Generator Simulation. Consultants, plant engineers and plant developers can evaluate the steam side performance of HRSGs and arrive at the optimum system which matches the needs of the process plant, cogeneration or combined cycle plant. There is no need to design the HRSG per se and hence simulation is a valuable tool for anyone interested in evaluating the HRSG performance even before it is designed. It can also save a lot of time for specification writers as they need not guess how the steam side performance will vary with different gas/steam parameters. A few examples are given to show how simulation methods can be applied to real life problems.

Ganapathy, V.

1993-03-01T23:59:59.000Z