Powered by Deep Web Technologies
Note: This page contains sample records for the topic "industrial solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Industrial Solar Technology Corp | Open Energy Information  

Open Energy Info (EERE)

Industrial Solar Technology Corp Industrial Solar Technology Corp Jump to: navigation, search Name Industrial Solar Technology Corp Place Golden, Colorado Zip CO 80403-1 Product IST designs, manufactures, installs and operates large scale parabolic trough collector systems. Coordinates 32.729747°, -95.562678° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.729747,"lon":-95.562678,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

Solar-Assisted Technology Provides Heat for California Industries  

E-Print Network (OSTI)

Solar-Assisted Technology Provides Heat for California Industries Industrial/Agriculture/Water End 2011 The Issue Solar thermal technology focuses the Sun's rays to heat water, and is a promising renewable resource for California's industrial sector. Commercially available solar water heating

3

Test results, Industrial Solar Technology parabolic trough solar collector  

SciTech Connect

Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)

1995-11-01T23:59:59.000Z

4

Solar grade silicon: Technology status and industrial trends  

Science Journals Connector (OSTI)

Abstract Crystalline silicon remains (all variants included) the dominant technology to manufacture solar cells. Currently (20122013) more than 90% of all solar cells produced are based on this vast group of technologies. The availability, the cost and the quality to the silicon feedstock is therefore a strategic issue of paramount importance for the entire photovoltaic sector. The silicon demand/supply balance has evolved from a situation of shortage with rocketing sales prices, in the years 20052008, to currently (20122013) an oversupply situation with record low price level for virgin polysilicon. Between these two extreme periods, production capacity has been multiplied by a factor of nearly 10. A better understanding of the prevailing dynamics in the polysilicon/silicon industry is needed in order for all players in the solar cell industry to make proper planning. In light of the past developments as well as the constraints imposed by a sound competition, the present article reviews the market trends for solar grade silicon including capacity, supply, demand and price. Furthermore, the article reviews the competing commercial technologies i.e. Siemens polysilicon, fluidized bed reactor/FBR polysilicon and upgraded metallurgical/UMG silicon and compares them in terms of maturity, improvement potential, product morphology, purity, applications and cost (actual vs. potential).

Gran Bye; Bruno Ceccaroli

2014-01-01T23:59:59.000Z

5

Comparisons of technological innovation capabilities in the solar photovoltaic industries of Taiwan, China, and Korea  

Science Journals Connector (OSTI)

This paper investigates the technological innovation capabilities of the three Asian latecomers--namely Taiwan, China, and Korea--in the emergent solar photovoltaic industry. For this study, I deploy a new dataset of 75,540 solar photovoltaic patents ... Keywords: Catch-up, Innovation capability, Patent, Photovoltaic (PV), Solar, Technology platform

Ching-Yan Wu

2014-01-01T23:59:59.000Z

6

Integrating bibliometrics and roadmapping methods: A case of dye-sensitized solar cell technology-based industry in China  

Science Journals Connector (OSTI)

Abstract Emerging industries are attracting increasing attention as they engage in innovation activities that transgress the boundaries of science and technology. Policy makers and industrial communities use roadmapping methods to predict future industrial growth, but the existing bibliometric/workshop methods have limitations when analyzing the full-lifecycle industrial emergence, including the transitions between science, technology, application, and the mass market. This paper, therefore, proposes a framework that integrates bibliometrics and a technology roadmapping (TRM) workshop approach to strategize and plan the future development of the new, technology-based industry. The dye-sensitized solar cell technology-based industry in China is selected as a case study. In this case, the bibliometrics method is applied to analyze the existing position of science and technology, and TRM workshops are used to strategize the future development from technology to application and marketing. Key events and impact on the development of the new, technology-based industry have been identified. This paper will contribute to the roadmapping and foresight methodology, and will be of interest to solar photovoltaic industry researchers.

Xin Li; Yuan Zhou; Lan Xue; Lucheng Huang

2014-01-01T23:59:59.000Z

7

Breakout Session: Bringing Solutions to the Solar Industry: Startups...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Breakout Session: Bringing Solutions to the Solar Industry: Startups, Technology Development and Market Entry Breakout Session: Bringing Solutions to the Solar Industry: Startups,...

8

Solar Photovoltaic Technologies Available for Licensing - Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Marketing Summaries (126) Solar Thermal Startup America Vehicles and...

9

Industrial high performance crystalline silicon solar cells and modules based on rear surface passivation technology  

Science Journals Connector (OSTI)

Abstract Stimulated by the extreme market conditions, the increase in performance and the reduction of manufacturing costs of standard crystalline silicon solar cells and modules have been quite significant in the last years. This progress was achieved mainly by process and material improvements avoiding additional process complexity. As todays cells are predominantly limited by optical and recombination losses at the rear surface, dielectric rear surface passivation represents an obvious approach to overcome the limitations. In recent years several concepts have been developed to implement dielectric rear side passivation into industrial-scale mass production. In this paper a short review is given about the evolution of dielectric rear side passivation technologies as well as on state-of-the-art cell and module results. Simple and cost effective cell and module designs utilizing standard as well as innovative manufacturing technologies are presented. Furthermore, it is shown that for all major steps multiple process options are available to further reduce the manufacturing costs. Using an optimized emitter and screen-printed metallization on commercially available 156mm156mm p-type Czochralski-grown crystalline silicon wafers best cell efficiencies of 19.9% without dielectric rear surface passivation and 21.0% with dielectric rear surface passivation are demonstrated. Replacing the screen-printed front contacts by electroplated nickelcopper contacts record efficiencies of up to 21.3% are reached. By optimizing the module design and materials to reduce the resistive and optical losses, a peak module power of up to 306W and 19.5% aperture area efficiency are achieved.

Axel Metz; Dennis Adler; Stefan Bagus; Henry Blanke; Michael Bothar; Eva Brouwer; Stefan Dauwe; Katharina Dressler; Raimund Droessler; Tobias Droste; Markus Fiedler; Yvonne Gassenbauer; Thorsten Grahl; Norman Hermert; Wojtek Kuzminski; Agata Lachowicz; Thomas Lauinger; Norbert Lenck; Mihail Manole; Marcel Martini; Rudi Messmer; Christine Meyer; Jens Moschner; Klaus Ramspeck; Peter Roth; Ruben Schnfelder; Berthold Schum; Jrg Sticksel; Knut Vaas; Michael Volk; Klaus Wangemann

2014-01-01T23:59:59.000Z

10

Window industry technology roadmap  

SciTech Connect

Technology roadmap describing technology vision, barriers, and RD and D goals and strategies compiled by window industry stakeholders and government agencies.

Brandegee

2000-04-27T23:59:59.000Z

11

Solar Industrial Process Heat Production  

Science Journals Connector (OSTI)

An overview of state of the art in producing industrial process heat via solar energy is presented. End-use matching methodology for assessing solar industrial process heat application potential is described f...

E. zil

1987-01-01T23:59:59.000Z

12

Solar Energy Technologies Office  

Energy.gov (U.S. Department of Energy (DOE))

In 2011, the Energy Department's Solar Energy Technologies Office (SETO) became the SunShot Initiative, a collaborative national effort that aggressively drives innovation to make solar energy...

13

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

Department of Energy. Solar Technologies Program and LoanRenewable Energy 2008 SOLAR TECHNOLOGIES MARKET REPORTinvestments by solar technology 108 Figure 5.4.

Price, S.

2010-01-01T23:59:59.000Z

14

Parabolic Trough Solar Technology  

Science Journals Connector (OSTI)

Parabolic trough (solar) collectors (PTCs) are technical devices to collect the energy in form of solar radiation and convert it typically into thermal energy at temperature ranges of 150500C at industrial s...

Dr.-Ing. Eckhard Lpfert

2013-01-01T23:59:59.000Z

15

Parabolic Trough Solar Technology  

Science Journals Connector (OSTI)

Parabolic trough (solar) collectors (PTCs) are technical devices to collect the energy in form of solar radiation and convert it typically into thermal energy at temperature ranges of 150500C at industrial s...

Dr.-Ing. Eckhard Lpfert

2012-01-01T23:59:59.000Z

16

California Solar Energy Industries Association | Open Energy...  

Open Energy Info (EERE)

Solar Energy Industries Association Jump to: navigation, search Name: California Solar Energy Industries Association Place: Rio Vista, California Zip: 94571 Sector: Solar Product:...

17

Cost-Effective Porous Silicon Technology For Solar Cell Industrial Applications  

Science Journals Connector (OSTI)

For porous silicon (PS) layer preparation, only the electrochemical method of DC- anodizing in HF-based electrolytes and the chemical method using HF/HNO3 electrolytes are widely used. In solar cell applications,...

V. Yerokhov; M. Lipinski; A. Mylyanych

2002-01-01T23:59:59.000Z

18

Solar capabilities : promoting, technological learning in South Africa's photovoltaic supply industry  

E-Print Network (OSTI)

I explore the mechanisms through which technological capabilities have been built in the market for photovoltaic (PV) module and balance of system (BOS) manufacture in South Africa. Drawing on the literature on technology ...

Wright, Janelle N., 1978-

2003-01-01T23:59:59.000Z

19

Solar pond technology  

Science Journals Connector (OSTI)

Solar pond technology has made substantial progress in the last ... . This paper reviews the basic principles of solar ponds and the problems encountered in their ... which influence the technical and economic vi...

J Srinivasan

1993-03-01T23:59:59.000Z

20

Flexible Assembly Solar Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

field and secured on steel pylons. PROJECT DESCRIPTION The research team is applying automation processes to the design of a Flexible Assembly Solar Technology (FAST). FAST is an...

Note: This page contains sample records for the topic "industrial solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Chapter IB-3 - Low-Cost Industrial Technologies for Crystalline Silicon Solar Cells  

Science Journals Connector (OSTI)

Publisher Summary Silicon substrates used in commercial solar cell processes contain a near-surface saw-damaged layer, which has to be removed at the beginning of the process. Thickness of the damage depends on the technique used in wafering of the ingot. A layer with thickness of 20 to 30 ?m has to be etched from both sides of wafers cut by an inner-diameter blade saw, while only 10 to 200 ? m is enough when a wire saw is used. The etching process has to be slightly modified when applied to multicrystalline substrates. Too fast or prolonged etching can produce steps at grain boundaries. This can lead to problems with interruptions of metal contacts. This problem can be avoided by an isotropic etching based on a mixture of nitric, acetic, and hydrofluoric acids. However, a strong exothermic reaction makes this etching process difficult to control and toxicity of the solution creates safety and waste disposal problems. The silicon surface after saw damage etching is shiny and reflects more than 35% of incident light. The reflection losses in commercial solar cells are reduced mainly by random chemical texturing. Surface texturing reduces the optical reflection from the single crystalline silicon surface to less than 10% by allowing the reflected ray to be recoupled into the cell.

Jozef Szlufcik; S. Sivoththaman; Johan F. Nijs; Robert P. Mertens; Roger Van Overstraeten

2012-01-01T23:59:59.000Z

22

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

levelized cost of energy, solar resource, and capacitySolar Energy Technologies Program. www.solaramericacities.energy.gov/resources.Renewable Energy System Analysis, Solar Resource Assessment,

Price, S.

2010-01-01T23:59:59.000Z

23

Practical solar energy technology  

SciTech Connect

Focusing on the design, installation, and maintenance of solar energy systems, this text covers solar domestic hot water, space heating, and swimming pool heating systems, with information on state-of-the-art flatplate collector technology and the latest solid-state electronic control devices.

Greenwald, M.L.; McHugh, T.K.

1985-01-01T23:59:59.000Z

24

Flexible Assembly Solar Technology | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Assembly Solar Technology Fact Sheet explains a 2012 SunShot CSP R&D award project led by a team from BrightSource Industries. They will design and deploy a prototype of...

25

Solar Energy Technologies Program: Solar Multimedia  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy EERE Home Programs & Offices Consumer Information Solar Multimedia search Home EERE » SunShot Initiative » Solar Multimedia Printable Version Bookmark and Share Feature Photo of 3 solar dishes, which have reflective, square-shaped material that creates a mirror image of the sky and clouds. Each dish is anchored to the ground by a vertical pole. Solar Dish - Albuquerque, New Mexico Credit: Sandia National Laboratories/Randy Montoya Solar Technologies Photovoltaics Photovoltaics Concentrating Solar Power Concentrating Solar Power Solar Applications Residential Residential Commercial Commercial Large Installations Large Installations City and County City and County Federal Federal Manufacturing Manufacturing Development and Testing

26

Alternative Energy Technologies Solar Power  

E-Print Network (OSTI)

#12;Alternative Energy Technologies Solar Power Photovoltaics Concentrating Solar Power (CSP) Power;Concentrating Solar Power (CSP) Reflector material is Aluminum or Silver Tube material ..... Several possible, Philippines Vanadium ........ Swaziland, Central Africa Zinc ................ Peru, Canada, Mexico Silver

Scott, Christopher

27

Weaving New York's Solar Industry Web | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weaving New York's Solar Industry Web Weaving New York's Solar Industry Web Weaving New York's Solar Industry Web June 29, 2010 - 11:00am Addthis Solar films are manufactured at Precision Flow Technologies in Kingston, N.Y., facility. The factory once served as an IBM plant. | Photo Courtesy of Kevin Brady Solar films are manufactured at Precision Flow Technologies in Kingston, N.Y., facility. The factory once served as an IBM plant. | Photo Courtesy of Kevin Brady Stephen Graff Former Writer & editor for Energy Empowers, EERE These days in New York, it seems whatever The Solar Energy Consortium (TSEC) touches turns to green. The nonprofit has been building up a supply chain across the state for the last three years by helping companies bring on new, solar-related manufacturing processes and jobs.

28

Weaving New York's Solar Industry Web | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weaving New York's Solar Industry Web Weaving New York's Solar Industry Web Weaving New York's Solar Industry Web June 29, 2010 - 11:00am Addthis Solar films are manufactured at Precision Flow Technologies in Kingston, N.Y., facility. The factory once served as an IBM plant. | Photo Courtesy of Kevin Brady Solar films are manufactured at Precision Flow Technologies in Kingston, N.Y., facility. The factory once served as an IBM plant. | Photo Courtesy of Kevin Brady Stephen Graff Former Writer & editor for Energy Empowers, EERE These days in New York, it seems whatever The Solar Energy Consortium (TSEC) touches turns to green. The nonprofit has been building up a supply chain across the state for the last three years by helping companies bring on new, solar-related manufacturing processes and jobs.

29

Solar Integrated Technologies SIT | Open Energy Information  

Open Energy Info (EERE)

SIT SIT Jump to: navigation, search Name Solar Integrated Technologies (SIT) Place Los Angeles, California Zip 90058 Product California-based manufacturer and installer of PV power systems on flat roofs for relatively large-scale commercial and industrial applications and subsidiary of Energy Conversion Devices (ECD). References Solar Integrated Technologies (SIT)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Integrated Technologies (SIT) is a company located in Los Angeles, California . References ↑ "[pointer=1&cHash=a585cf0cd0 Solar Integrated Technologies (SIT)]" Retrieved from "http://en.openei.org/w/index.php?title=Solar_Integrated_Technologies_SIT&oldid=351294

30

Solar probe technology challenges  

Science Journals Connector (OSTI)

A mission close to the sun is only possible if new spacecraft technologies can be developed and incorporated into a state?of?the?art spacecraft concept. The perihelion goal of 4 solar radii requires a shielded spacecraft that can tolerate the almost 3000 suns solar flux while maintaining the electronics components at room temperature. In addition the shield surface should sublimate at a rate of less than 3mg/s at perihelion. Many shield configuration designs have been studied and the most promising is a parabolic shape that functions as both a shield and a large high gain antenna. The shield material chosen for this design is a carbon?carbon material with highly emissive surface properties. A mission requirement for a high telecommunications power stems from the expected interference when attempting to transmit data through the solar corona. It is expected that the large carbon?carbon shield/antenna will have a high power gain even at high temperatures and will return adequate telemetry at the X?band radio frequency chosen for the Solar Probe mission. Other key technology needs include a non?nuclear power subsystem that can function in the extreme environments of the mission from Earth to Jupiter and onward to a 4 solar radii perihelion.

James E. Randolph; Robert N. Miyake; Bill J. Nesmith; Ray B. Dirling Jr.; Richard J. Howard

1996-01-01T23:59:59.000Z

31

Solar Energy Resources and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Solar energy provides electricity, heating, and cooling for Federal facilities through four primary technology types. The four technologies are broken into two categories; technologies for electricity production and thermal energy technologies.

32

Solar Manufacturing Technology 2  

Energy.gov (U.S. Department of Energy (DOE))

The PV awards span the supply chain from novel methods to make silicon wafers, to advanced cell and metallization processes, to innovative module packaging and processing. The CSP award demonstrates manufacturability of an innovative CSP reflective-trough receiver. The first round of the SolarMat program was launched in September 2013 supporting five projects. The second round, announced on October 22, 2014, funds ten photovoltaics (PV) and concentrating solar power (CSP) projects that focus on driving down the cost of manufacturing and implementing efficiency-increasing technology in manufacturing processes.

33

Solar Industry At Work: Streamlining Home Solar Installation | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Industry At Work: Streamlining Home Solar Installation Solar Industry At Work: Streamlining Home Solar Installation Solar Industry At Work: Streamlining Home Solar Installation June 12, 2012 - 11:59am Addthis Sunrun is a home solar installation company based in San Francisco. | Photo by Francis Fine Art Photography. Sunrun is a home solar installation company based in San Francisco. | Photo by Francis Fine Art Photography. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs What are the key facts? Tillie Peterson works at Sunrun a home solar installation company based in San Francisco. As Director of Operations, Tillie works to get solar panels up and running for homeowners as simply and quickly as possible. Our Solar Industry At Work Series shares the personal success of

34

Solar Power Industries SPI | Open Energy Information  

Open Energy Info (EERE)

Solar Power Industries SPI Solar Power Industries SPI Jump to: navigation, search Name Solar Power Industries (SPI) Place Belle Vernon, Pennsylvania Zip 15012 Product US-based manufacturer of mono and multicrystalline PV cells, modules and systems. References Solar Power Industries (SPI)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Power Industries (SPI) is a company located in Belle Vernon, Pennsylvania . References ↑ "Solar Power Industries (SPI)" Retrieved from "http://en.openei.org/w/index.php?title=Solar_Power_Industries_SPI&oldid=351318" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

35

Shunda SolarE Technologies | Open Energy Information  

Open Energy Info (EERE)

Shunda SolarE Technologies Jump to: navigation, search Name: Shunda-SolarE Technologies Sector: Solar Product: US-based JV with vertically integrated operations in the solar...

36

Implementing Solar Technologies at Airports  

SciTech Connect

Federal agencies, such as the Department of Defense and Department of Homeland Security, as well as numerous private entities are actively pursuing the installation of solar technologies to help reduce fossil fuel energy use and associated emissions, meet sustainability goals, and create more robust or reliable operations. One potential approach identified for siting solar technologies is the installation of solar energy technologies at airports and airfields, which present a significant opportunity for hosting solar technologies due to large amounts of open land. This report focuses largely on the Federal Aviation Administration's (FAA's) policies toward siting solar technologies at airports.

Kandt, A.; Romero, R.

2014-07-01T23:59:59.000Z

37

NREL-Solar Technologies Market Report | Open Energy Information  

Open Energy Info (EERE)

NREL-Solar Technologies Market Report NREL-Solar Technologies Market Report Jump to: navigation, search Tool Summary Name: NREL-Solar Technologies Market Report Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Solar Topics: Market analysis, Technology characterizations Website: www.nrel.gov/analysis/pdfs/46025.pdf NREL-Solar Technologies Market Report Screenshot References: NREL Solar Tech Market Report[1] Logo: NREL-Solar Technologies Market Report "The focus of this report is the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The report is organized into five chapters. Chapter 1 provides an overview of global and U.S. installation trends. Chapter 2 presents production and shipment data, material and supply chain issues, and solar industry

38

Advanced cost-effective crystalline silicon solar cell technologies  

Science Journals Connector (OSTI)

An overview is given concerning current industrial technologies, near future improvements and medium-term developments in the field of industrially viable crystalline silicon terrestrial solar cell fabrication (without concentration).

J.F Nijs; J Szlufcik; J Poortmans; S Sivoththaman; R.P Mertens

2001-01-01T23:59:59.000Z

39

Foresight of development of Taiwanese solar photovoltaic industry  

Science Journals Connector (OSTI)

This research attempts to carry out an in-depth exploration into the strategy of Taiwan for the future development of its solar photovoltaic industry from the perspective of technology industry foresight. After the in-depth discussion of problems, the two main suggestions ''make good use of existing advantages of Taiwan'' and ''allocation and proper use of external resources of the industry'' are proposed for the reference of relevant enterprises, industries and government agencies in their future planning for the future development of the solar photovoltaic industry of Taiwan.

Benjamin J.C. Yuan; Kuang-Pin Li; Tsai-Hua Kang; Jia-Horng Shieh

2012-01-01T23:59:59.000Z

40

High Technology and Industrial Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Semiconductor clean room Semiconductor clean room High Technology and Industrial Systems EETD's research on high technology buildings and industrial systems is aimed at reducing energy consumed by the industrial sector in manufacturing facilities, including high technology industries such as data centers, cleanrooms in the such industries as electronics and pharmaceutical manufacturing, and laboratories, improving the competitiveness of U.S. industry. Contacts William Tschudi WFTschudi@lbl.gov (510) 495-2417 Aimee McKane ATMcKane@lbl.gov (518) 782-7002 Links High-Performance Buildings for High-Tech Industries Industrial Energy Analysis Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

Note: This page contains sample records for the topic "industrial solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Advances in solar cell technology  

Science Journals Connector (OSTI)

The advances in solar cell efficiency radiation tolerance and cost over the last decade are reviewed. Potential performance of thin?film solar cells in space are discussed and the cost and the historical trends in production capability of the photovoltaics industry considered with respect to the requirements of satellite solar power systems.

Geoffrey A. Landis; Sheila G. Bailey

1995-01-01T23:59:59.000Z

42

ET Solar Group Formerly CNS Solar Industry | Open Energy Information  

Open Energy Info (EERE)

Solar Group Formerly CNS Solar Industry Solar Group Formerly CNS Solar Industry Jump to: navigation, search Name ET Solar Group (Formerly CNS Solar Industry) Place Nanjing, Jiangsu Province, China Zip 210009 Sector Solar Product A Chinese solar company specializing in ingot, wafer, modules and solar trackers production. Coordinates 32.0485°, 118.778969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.0485,"lon":118.778969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

43

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

Solar One PS10 Puertollano Plant Andasol I PS20 Location Technology Type Year Installed Capacity (MW) California,capacity of solar installed in each utility service area. The CaliforniaCalifornia, Hawaii, Indiana, New Hampshire, North Carolina, Michigan, and Vermont do not have limits on the capacity of interconnected solar

Price, S.

2010-01-01T23:59:59.000Z

44

Applications of solar reforming technology  

SciTech Connect

Research in recent years has demonstrated the efficient use of solar thermal energy for driving endothermic chemical reforming reactions in which hydrocarbons are reacted to form synthesis gas (syngas). Closed-loop reforming/methanation systems can be used for storage and transport of process heat and for short-term storage for peaking power generation. Open-loop systems can be used for direct fuel production; for production of syngas feedstock for further processing to specialty chemicals and plastics and bulk ammonia, hydrogen, and liquid fuels; and directly for industrial processes such as iron ore reduction. In addition, reforming of organic chemical wastes and hazardous materials can be accomplished using the high-efficiency destruction capabilities of steam reforming. To help identify the most promising areas for future development of this technology, we discuss in this paper the economics and market potential of these applications.

Spiewak, I. [Weizmann Inst. of Science, Rehovoth (Israel); Tyner, C.E. [Sandia National Labs., Albuquerque, NM (United States); Langnickel, U. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany)

1993-11-01T23:59:59.000Z

45

The Department of Energy's Solar Industrial Program: New ideas for American industry  

SciTech Connect

As society becomes more and more sensitive to the environment, and energy supplies become more scarce, the application of solar energy is expanding into new areas. The industrial sector is one of the most difficult for solar energy to impact because of its technical diversity and economic requirements. However, the opportunities are still abundant. The Department of Energy's Solar Industrial Program is dedicated to advancing the applications of solar energy in this sector. Research and technology development activities are currently focused in three areas: solar process heat, advanced materials manufacturing, and destruction of chemical wastes. The Solar Energy Research Institute manages these activities for DOE with close interactions with other federal agencies, private industry, and universities. 7 figs.

Anderson, J.V.; Hauser, S.G.; Clyne, R.J.

1991-07-01T23:59:59.000Z

46

2008 Solar Technologies Market Report: January 2010  

SciTech Connect

This report focuses on the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The report provides an overview of global and U.S. installation trends. It also presents production and shipment data, material and supply chain issues, and solar industry employment trends. It also presents cost, price, and performance trends; and discusses policy and market drivers such as recently passed federal legislation, state and local policies, and developments in project financing. The final chapter provides data on private investment trends and near-term market forecasts.

Not Available

2010-01-01T23:59:59.000Z

47

Advanced Solar Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Advanced Solar Technologies Inc Place: San Diego, California Sector: Solar Product: California-based domestic and commercial designer and installer of solar energy equipment....

48

Developing a solar energy industry in Egypt .  

E-Print Network (OSTI)

??This paper assesses Egypt's current energy infrastructure and its problems, the available solar energy resource, and the technologies required to harness this resource. After this (more)

AbdelMessih, Sherife (Sherife Mohsen)

2009-01-01T23:59:59.000Z

49

Solar Industry At Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry At Work Industry At Work Solar Industry At Work Addthis 1 of 11 Vice President Joe Biden talks with staff at the National Renewable Energy Lab's Process Development and Integration Laboratory (PDIL). The PDIL brings together technical experts from NREL, the solar industry, and universities for collaborative research. Image: Dennis Schroeder (NREL) 2 of 11 Steven Bohn, an engineer at SunEdison oversees SunEdison's testing facility at SolarTAC in Aurora, CO. The SolarTAC mission is to increase the efficiency of solar energy products and rapidly deploy them to the commercial market. Image: Dennis Schroeder (NREL) 3 of 11 NREL scientists Ki Ye and Joe Berry peer into the glass siding of a deposition instrument to view the latest results of an experiment with a new material.

50

Modeling Solar Energy Technology Evolution breakout session ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Modeling Solar Energy Technology Evolution breakout session Modeling Solar Energy Technology Evolution breakout session This presentation summarizes the information given on the...

51

Solar Manufacturing Technology 2 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Manufacturing Technology 2 Solar Manufacturing Technology 2 The PV awards span the supply chain from novel methods to make silicon wafers, to advanced cell and metallization...

52

Solar Decathlon Technology Spotlight: Structural Insulated Panels...  

Energy Savers (EERE)

Solar Decathlon Technology Spotlight: Structural Insulated Panels Solar Decathlon Technology Spotlight: Structural Insulated Panels September 20, 2011 - 7:13am Addthis These...

53

Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)  

DOE Data Explorer (OSTI)

Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

54

Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)  

SciTech Connect

Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

2011-02-11T23:59:59.000Z

55

Research Projects in Industrial Technology.  

SciTech Connect

The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

United States. Bonneville Power Administration. Industrial Technology Section.

1990-06-01T23:59:59.000Z

56

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

of Energy. Solar Technologies Program and Loan GuaranteeLoan Guarantee Program 80 4.1.6 Clean Renewable Energy Bonds .. 82 4.1.7 Solarloans. Also, the ARRA removed the $2,000 cap on the ITC for residential solar

Price, S.

2010-01-01T23:59:59.000Z

57

2008 Solar Technologies Market Report  

NLE Websites -- All DOE Office Websites (Extended Search)

JANUARY 2010 JANUARY 2010 Energy Efficiency & Renewable Energy 2008 SOLAR TECHNOLOGIES MARKET REPORT i Table of Contents Table of Contents ........................................................................................................................... i Figures ........................................................................................................................................... iii Tables ............................................................................................................................................. v Acknowledgments ........................................................................................................................ vi List of Acronyms ......................................................................................................................... vii

58

Energy Department Announces New Concentrating Solar Power Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Concentrating Solar Power New Concentrating Solar Power Technology Investments to American Industry, Universities Energy Department Announces New Concentrating Solar Power Technology Investments to American Industry, Universities June 13, 2012 - 2:28pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Building off investments in innovative solar photovoltaic technologies announced at the SunShot Grand Challenge Summit in Denver, Colorado earlier today, the Energy Department announced new investments for 21 total projects to further advance cutting-edge concentrating solar power technologies (CSP). The awards span 13 states for a total of $56 million over three years, subject to congressional appropriations. The research projects, conducted in partnership with private industry, national

59

Breakthrough Furnace Can Cut Solar Industry Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Furnace can Cut Solar Industry Costs A game-changing Optical Cavity Furnace (OCF)-developed by the National Renew- able Energy Laboratory (NREL) with funding from the U.S....

60

NREL: Technology Deployment - Solar Decathlon  

NLE Websites -- All DOE Office Websites (Extended Search)

Decathlon Decathlon Photo of a woman assembling the Team Alberta solar-powered house at the Solar Decathlon, with the U.S. Capitol Building in the background. Solar Decathlon is an international competition that challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. NREL has provided technical expertise for this U.S. Department of Energy (DOE) event since its conception in 1999. Considered one of DOE's most successful efforts, the Solar Decathlon helps remove multiple barriers to the adoption of solar energy technologies by: Educating students and the public about the money-saving opportunities and environmental benefits presented by clean-energy products and design solutions Demonstrating to the public the comfort and affordability of homes

Note: This page contains sample records for the topic "industrial solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Floating Solar Chimney Technology: A Solar Proposal for China  

Science Journals Connector (OSTI)

The Floating Solar Chimney (FSC) Technology Power Plants, are made... A large solar collector with a transparent roof that warms the air...

Christos Papageorgiou

2009-01-01T23:59:59.000Z

62

SunShot Initiative: Solar Manufacturing Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Manufacturing Technology to Solar Manufacturing Technology to someone by E-mail Share SunShot Initiative: Solar Manufacturing Technology on Facebook Tweet about SunShot Initiative: Solar Manufacturing Technology on Twitter Bookmark SunShot Initiative: Solar Manufacturing Technology on Google Bookmark SunShot Initiative: Solar Manufacturing Technology on Delicious Rank SunShot Initiative: Solar Manufacturing Technology on Digg Find More places to share SunShot Initiative: Solar Manufacturing Technology on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Competitive Awards Diversity in Science and Technology Advances National Clean Energy in Solar Grid Engineering for Accelerated Renewable Energy Deployment Physics of Reliability: Evaluating Design Insights for Component

63

Thompson Technology Industries TTI | Open Energy Information  

Open Energy Info (EERE)

TTI TTI Jump to: navigation, search Name Thompson Technology Industries (TTI) Place Novato, California Zip 94949 Sector Solar Product Designer and manufacturer of solar tracking and roof mounting systems. Coordinates 38.106075°, -122.567889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.106075,"lon":-122.567889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

64

TOPCAT Solar Cell Alignment & Energy Concentration Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Solar Thermal Find More Like This Return to Search TOPCAT Solar Cell Alignment & Energy Concentration Technology Sandia National Laboratories Contact SNL About This...

65

DOE Solar Decathlon: 2007 Building Industry Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

team Puerto Rico student stands over the team's gray-water pool, which is filled with green plants, and explains to visitors surrounding the pool how it recycles water for reuse. team Puerto Rico student stands over the team's gray-water pool, which is filled with green plants, and explains to visitors surrounding the pool how it recycles water for reuse. Universidad de Puerto Rico student Wilfredo Rodriguez explains the team's gray-water pool to visitors at the 2007 Solar Decathlon. The pool is used to filter wash water for reuse. Solar Decathlon 2007 Building Industry Workshops Below are descriptions of the workshops offered at the 2007 Solar Decathlon on Building Industry Day, Thursday, October 18, 2007. Solar Applications for Homes Revised Title: Translating Sustainability to Affordable Housing 9:00 a.m. Presenter: ASHRAE and John Quale, Assistant Professor, University of Virginia School of Architecture The focus of the workshop is translating sustainability to affordable

66

Solar Energy Industries Association | Open Energy Information  

Open Energy Info (EERE)

Solar Energy Industries Association Solar Energy Industries Association Name Solar Energy Industries Association Address 575 7th Street NW #400 Place Washington, DC Zip 20004 Number of employees 11-50 Year founded 1974 Website http://www.seia.org/ Coordinates 38.897162°, -77.021563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.897162,"lon":-77.021563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

67

Denmark Solar Industry DSI | Open Energy Information  

Open Energy Info (EERE)

Industry DSI Industry DSI Jump to: navigation, search Name Denmark Solar Industry (DSI) Place Copenhagen, Denmark Zip DK-1550 Sector Solar Product Manufactures and distributes solar panels and systems. Coordinates 55.67631°, 12.569355° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.67631,"lon":12.569355,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

68

1 Industrial Electron Accelerators type ILU for Industrial Technologies  

E-Print Network (OSTI)

1 Industrial Electron Accelerators type ILU for Industrial Technologies The present work describes industrial electron accelerators of the ILU family. Their main parameters, design, principle of action the pulse linear accelerators type ILU are developed and supplied to the industry. The ILU machines

69

Window Industry Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

Industry Technology Roadmap Industry Technology Roadmap Jump to: navigation, search Logo: Window Industry Technology Roadmap Name Window Industry Technology Roadmap Agency/Company /Organization United States Department of Energy Sector Energy Focus Area Energy Efficiency, Buildings Topics Technology characterizations Resource Type Guide/manual Website http://www.nrel.gov/docs/fy01o References Window Industry Technology Roadmap[1] Abstract The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. Overview "The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. It serves as a resource for government to

70

What is the Industrial Technologies Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Together with our industry partners, we strive to: Together with our industry partners, we strive to: * Accelerate adoption of the many energy-efficient technologies and practices available today * Conduct vigorous technology innovation to radically improve future energy diversity, resource efficiency, and carbon mitigation * Promote a corporate culture of energy efficiency and carbon management What Is the Industrial Technologies Program ? The Industrial Technologies Program (ITP) is the lead federal agency responsible for improving energy efficiency in the largest energy-using sector of the country. Industrial Sector National Initiative Goal: Drive a 25% reduction in industrial energy intensity by 2017. Standards Training Information Assessments * Website * Information Center * Tip Sheets * Case studies * Webcasts * Emerging

71

Solar Industry At Work: Video Interview with Alta Devices' Laila Mattos |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Industry At Work: Video Interview with Alta Devices' Laila Solar Industry At Work: Video Interview with Alta Devices' Laila Mattos Solar Industry At Work: Video Interview with Alta Devices' Laila Mattos June 6, 2012 - 12:07pm Addthis Laila Mattos talks about her work life at Alta Devices -- a solar company based in Silicon Valley. | Video by Hantz Leger. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs What is this video about? Laila Mattos, a technology manager at Alta Devices, talks about her experiences working at a "disruptive" solar company. Our Solar Industry At Work Series shares the personal success of America's solar workforce - from finance experts, to scientists, to engineers. You can learn more about the series here. "Great solar won't go anywhere unless its low cost."

72

The Status of Solar Thermal Electric Technology  

Science Journals Connector (OSTI)

Solar thermal electric technology was evaluated as a future source of power for United States utilities. The technology status was developed using an ... configuration was selected for each of the major solar col...

Richard J. Holl; Edgar A. DeMeo

1990-01-01T23:59:59.000Z

73

Solar Energy Technology Basics | Department of Energy  

Energy Savers (EERE)

Technology Basics August 16, 2013 - 4:37pm Addthis Solar energy technologies produce electricity from the energy of the sun. Small solar energy systems can provide electricity for...

74

Clean Technology Sustainable Industries Organization | Open Energy  

Open Energy Info (EERE)

Sustainable Industries Organization Sustainable Industries Organization Jump to: navigation, search Name Clean Technology & Sustainable Industries Organization Place Royal Oak, Michigan Zip 48073 Product A non-profit membership industry organization formed to advance the global development and deployment of clean and sustainable technologies References Clean Technology & Sustainable Industries Organization[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Clean Technology & Sustainable Industries Organization is a company located in Royal Oak, Michigan . References ↑ "Clean Technology & Sustainable Industries Organization" Retrieved from "http://en.openei.org/w/index.php?title=Clean_Technology_Sustainable_Industries_Organization&oldid=343669"

75

Mulk Renewable Energy Aditya Solar Power Industries JV | Open Energy  

Open Energy Info (EERE)

Mulk Renewable Energy Aditya Solar Power Industries JV Mulk Renewable Energy Aditya Solar Power Industries JV Jump to: navigation, search Name Mulk Renewable Energy & Aditya Solar Power Industries JV Place United Arab Emirates Sector Solar Product UAE-based company that is developing a 200MW solar thermal plant in Sharjah. References Mulk Renewable Energy & Aditya Solar Power Industries JV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Mulk Renewable Energy & Aditya Solar Power Industries JV is a company located in United Arab Emirates . References ↑ "Mulk Renewable Energy & Aditya Solar Power Industries JV" Retrieved from "http://en.openei.org/w/index.php?title=Mulk_Renewable_Energy_Aditya_Solar_Power_Industries_JV&oldid=348970"

76

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

Extending Federal Solar Tax Credits. Prepared for the Solar2008). The Solar Investment Tax Credit Frequently Askedtax credit .

Price, S.

2010-01-01T23:59:59.000Z

77

Trend Detection on Thin-Film Solar Cell Technology Using Cluster Analysis and Modified Data Crystallization  

Science Journals Connector (OSTI)

Thin-film solar cell, one of green energies, is growing ... . To detect the potential trends of this technology is essential for companies and relevant industries ... patterns, the potential trends of thin-film solar

Tzu-Fu Chiu; Chao-Fu Hong; Yu-Ting Chiu

2010-01-01T23:59:59.000Z

78

Solar Energy LLC Industrial Investors Group | Open Energy Information  

Open Energy Info (EERE)

LLC Industrial Investors Group LLC Industrial Investors Group Jump to: navigation, search Name Solar Energy LLC - Industrial Investors Group Place Moscow, Russian Federation Zip 119017 Sector Solar Product The company Solar Energy plans to use turnkey equipment from GT Solar and others to make silicon, ingots, wafers and cells in Russia. References Solar Energy LLC - Industrial Investors Group[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Energy LLC - Industrial Investors Group is a company located in Moscow, Russian Federation . References ↑ "Solar Energy LLC - Industrial Investors Group" Retrieved from "http://en.openei.org/w/index.php?title=Solar_Energy_LLC_Industrial_Investors_Group&oldid=351271

79

Concentrating Solar Power: Technology Overview  

SciTech Connect

Concentrating Solar Power (CSP) has the potential to contribute significantly to the generation of electricity by renewable energy resources in the U.S.. Thermal storage can extend the duty cycle of CSP beyond daytime hours to early evening where the value of electricity is often the highest. The potential solar resource for the southwest U.S. is identified, along with the need to add power lines to bring the power to consumers. CSP plants in the U.S. and abroad are described. The CSP cost of electricity at the busbar is discussed. With current incentives, CSP is approaching competiveness with conventional gas-fired systems during peak-demand hours when the price of electricity is the highest. It is projected that a mature CSP industry of over 4 GWe will be able to reduce the energy cost by about 50%, and that U.S. capacity could be 120 GW by 2050.

Mehos, M.

2008-01-01T23:59:59.000Z

80

Telio Solar Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Telio Solar Technologies Inc Telio Solar Technologies Inc Jump to: navigation, search Name Telio Solar Technologies Inc Place Los Altos Hills, California Zip 94022 Product A CIGS start-up recently completed the construction of pilot line for manufacturing CIGS cell measuring 300 millimeters by 300. References Telio Solar Technologies Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Telio Solar Technologies Inc is a company located in Los Altos Hills, California . References ↑ "Telio Solar Technologies Inc" Retrieved from "http://en.openei.org/w/index.php?title=Telio_Solar_Technologies_Inc&oldid=352104" Categories: Clean Energy Organizations Companies Organizations

Note: This page contains sample records for the topic "industrial solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Bidirectional Technology Transfer: Sabbaticals in Industry  

E-Print Network (OSTI)

Bidirectional Technology Transfer: Sabbaticals in Industry Mark D. Hill University of Wisconsin---not just technology transfer---through a ten­month sabbatical in an industrial product group. I advocate product group. The next sections discuss technology transfer, my recent sabbatical, and conclude

Hill, Mark D.

82

ITP Aluminum: Aluminum Industry Technology Roadmap  

Energy.gov (U.S. Department of Energy (DOE))

In 2002, the industry created this updated Aluminum Industry Technology Roadmap to define the specific research and development priorities, performance targets, and milestones required to achieve the set vision.

83

NREL: Energy Analysis - Solar Technology Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Technology Analysis Solar Technology Analysis NREL conducts analysis to support research and development done by the Solar Energy Technologies Program in three major technology areas: concentrating solar power; solar electricity, also known as photovoltaics or PV; and solar heating and lighting. For example, in the area of photovoltaics, EERE's systems modeling and analysis activity rigorously assesses the performance, reliability, installed costs, and levelized energy costs (LECs) of a wide variety of flat-plate PV system configurations and applications. R&D goals, which are supported by solar technology analysis, include: Investigating the steps needed to improve the impact of PV technologies in the marketplace through technical R&D, market analyses, and value and policy analyses

84

Joint Capability Technology Demonstration (JCTD) Industry Day...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Capability Technology Demonstration Industry Day Presentations Partnering with Utilities for Energy Efficiency & Security 2010 Smart Grid Peer Review Day Two Morning Presentations...

85

US Solar Energy Industries Association SEIA | Open Energy Information  

Open Energy Info (EERE)

Energy Industries Association SEIA Energy Industries Association SEIA Jump to: navigation, search Name US Solar Energy Industries Association (SEIA) Place Washington, Washington, DC Zip 20005 Sector Solar Product US national trade association of solar energy manufacturers, dealers, distributors, consultants, and marketers. References US Solar Energy Industries Association (SEIA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. US Solar Energy Industries Association (SEIA) is a company located in Washington, Washington, DC . References ↑ "US Solar Energy Industries Association (SEIA)" Retrieved from "http://en.openei.org/w/index.php?title=US_Solar_Energy_Industries_Association_SEIA&oldid=352621

86

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

96 4.3.2 Customer Solar Leasefinancing, customer solar lease financing, property-assessedagreement (PPA), the solar lease, and property-assessed

Price, S.

2010-01-01T23:59:59.000Z

87

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

projects, including solar energy projects. The Emergencyinvestment in solar energy projects. The ARRA enhanced thethan $3 billion for solar energy projects with the objective

Price, S.

2010-01-01T23:59:59.000Z

88

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

Commission launched the California Solar Initiative (CSI), aenergy bond California Solar Initiative concentrating solarprograms, such as the California Solar Initiative (CSI) and

Price, S.

2010-01-01T23:59:59.000Z

89

DOE Solar Energy Technologies Program TPP Final Report - A Value Chain Partnership to Accelerate U.S. PV Industry Growth, GE Global Research  

SciTech Connect

General Electrics (GE) DOE Solar Energy Technologies TPP program encompassesd development in critical areas of the photovoltaic value chain that affected the LCOE for systems in the U.S. This was a complete view across the value chain, from materials to rooftops, to identify opportunities for cost reductions in order to realize the Department of Energys cost targets for 2010 and 2015. GE identified a number of strategic partners with proven leadership in their respective technology areas to accelerate along the path to commercialization. GE targeted both residential and commercial rooftop scale systems. To achieve these goals, General Electric and its partners investigated three photovoltaic pathways that included bifacial high-efficiency silicon cells and modules, low-cost multicrystalline silicon cells and modules and flexible thin film modules. In addition to these technologies, the balance of system for residential and commercial installations were also investigated. Innovative system installation strategies were pursed as an additional avenue for cost reduction.

Todd Tolliver; Danielle Merfeld; Charles Korman; James Rand; Tom McNulty; Neil Johnson; Dennis Coyle

2009-07-31T23:59:59.000Z

90

Industry Partnerships | BNL Technology Commercialization and Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Industry Licensing The Office of Technology Commercialization and Partnerships (TCP) grants licenses for BNL-developed intellectual property to existing and start-up companies that are technically and financially capable of turning early-stage technology into commercial products. Nonexclusive and exclusive licenses are granted. TCP is committed to negotiating fair and reasonable license agreements that are beneficial to both parties. Search available technologies | See DOE Tech Transfer Working Group Licensing Guide (PDF) Sponsored Research BNL has many ways of collaborating with industry on emerging technologies that are geared toward bringing new technologies to the marketplace. Learn more | See Guide to Partnering with DOE's National Laboratories (PDF)

91

Aspects of solar technology (for teachers)  

Science Journals Connector (OSTI)

An account is given in general terms of the various types of solar powered devices that are now available with present technology. Electrical and non-electrical energy convertors are described as is the possibility of solar power stations.

B E Smith

1978-01-01T23:59:59.000Z

92

Advanced Materials and Nano Technology for Solar Cells  

E-Print Network (OSTI)

MATERIALS AND NANO TECHNOLOGY FOR SOLAR CELLS A thesisADVANCED MATERIALS AND NANO TECHNOLOGY FOR SOLAR CELLS Insilicon layers. The technology to add the intrinsic layer

Han, Tao

2014-01-01T23:59:59.000Z

93

Advanced Materials and Nano Technology for Solar Cells  

E-Print Network (OSTI)

AND NANO TECHNOLOGY FOR SOLAR CELLS A thesis submitted inMATERIALS AND NANO TECHNOLOGY FOR SOLAR CELLS In order tosolar cells have been introduced with this technology.

Han, Tao

2014-01-01T23:59:59.000Z

94

Solar Photovoltaics Technology: The Revolution Begins  

Science Journals Connector (OSTI)

The prospects of solar-photovoltaic (PV) technologies are envisioned, arguing this electricity source is at a tipping point in the complex, worldwide energy outlook. The emphasis of...

Kazmerski, Lawrence L

95

Recording of SERC Monitoring Technologies- Solar Photovoltaics  

Energy.gov (U.S. Department of Energy (DOE))

This document provides a transcript of the of SERC Monitoring Technologies - Solar Photovoltaics webinar, presented on 10/20/2011 by Peter McNutt.

96

Concentrating Solar Power Resources and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This page provides a brief overview of concentrating solar power (CSP) technologies supplemented by specific information to apply CSP within the Federal sector.

97

Solar Ventilation Preheating Resources and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This page provides a brief overview of solar ventilation preheating (SVP) technologies supplemented by specific information to apply SVP within the Federal sector.

98

Solar Hot Water Resources and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This page provides a brief overview of solar hot water (SHW) technologies supplemented by specific information to apply SHW within the Federal sector.

99

Thin Film Solar Technologies | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Thin Film Solar Technologies Place: South Africa Product: Producers of thin-film copper, indium, gallium, sulphur, selenium modules....

100

SunShot Initiative: Regional Test Centers for Solar Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Test Centers for Solar Technologies Regional Test Centers for Solar Technologies Get the Adobe Flash Player to see this video. Text Alternative At the Regional Test Centers (RTCs) throughout the United States, DOE provides photovoltaic (PV) and concentrating photovoltaic (CPV) validation testing and systems monitoring for businesses and other industry stakeholders. The primary mission of the RTCs is to develop standards and guidelines for validating the performance and operation of PV modules and systems. The RTCs also serve as test beds for large-scale systems and provide independent validation of PV performance and reliability. By establishing the technical basis for bankability, the RTCs serve to increase investor confidence in PV technologies. These efforts support the SunShot Initiative's goal to increase the penetration of large-scale solar energy systems to enable solar-generated power to account for 15% to 18% of America's electricity generation by 2030.

Note: This page contains sample records for the topic "industrial solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

use of renewable energy sources such as solar. Of the totalin solar energy (New Energy Finance 2009) Source: New Energyin solar energy (New Energy Finance 2009) Source: New Energy

Price, S.

2010-01-01T23:59:59.000Z

102

The future steelmaking industry and its technologies  

SciTech Connect

The objective of this report is to develop a vision of the future steelmaking industry including its general characteristics and technologies. In addition, the technical obstacles and research and development opportunities for commercialization of these technologies are identified. The report is being prepared by the Sloan Steel Industry Competitiveness Study with extensive input from the industry. Industry input has been through AISI (American Iron and Steel Institute), SMA (Steel Manufacturers Association) and contacts with individual company executives and technical leaders. The report identifies the major industry drivers which will influence technological developments in the industry for the next 5--25 years. Initially, the role of past drivers in shaping the current industry was examined to help understand the future developments. Whereas this report concentrates on future technologies other major factors such as national and international competition, human resource management and capital concerns are examined to determine their influence on the future industry. The future industry vision does not specify specific technologies but rather their general characteristics. Finally, the technical obstacles and the corresponding research and development required for commercialization are detailed.

Fruehan, R.J.; Paxton, H.W.; Giarratani, F.; Lave, L. [Carnegie-Mellon Univ., Pittsburgh, PA (United States)]|[Pittsburgh Univ., PA (United States)

1995-01-01T23:59:59.000Z

103

Solar Decathlon Technology Spotlight: Structural Insulated Panels |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decathlon Technology Spotlight: Structural Insulated Panels Decathlon Technology Spotlight: Structural Insulated Panels Solar Decathlon Technology Spotlight: Structural Insulated Panels September 20, 2011 - 7:13am Addthis These structural insulated panels consist of foam insulation sandwiched between oriented strand boards. (Courtesy of Michael Bacchler) These structural insulated panels consist of foam insulation sandwiched between oriented strand boards. (Courtesy of Michael Bacchler) Alexis Powers EDITOR'S NOTE: Originally posted on the Solar Decathlon News Blog on September 19, 2011. Editor's Note: This post is one of a series of technology spotlights that introduces common technologies used in U.S. Department of Energy Solar Decathlon team houses. Structural insulated panels (SIPs) are prefabricated structural elements

104

The Emerging Technology of Solar Fuels  

Science Journals Connector (OSTI)

The Emerging Technology of Solar Fuels ... (2) The usable capacity of solar power is estimated to be 600 TW,(3) an order of magnitude larger than the projected energy needs of the entire world in 2050, and most of the solar spectrum is delivered at energies that (thermodynamically) can drive water splitting or CO2 reduction. ...

Thomas E. Mallouk

2010-09-16T23:59:59.000Z

105

2008 Solar Technologies Market Report | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » 2008 Solar Technologies Market Report Jump to: navigation, search Tool Summary Name: 2008 Solar Technologies Market Report Agency/Company /Organization: United States Department of Energy Sector: Energy Focus Area: Renewable Energy, Solar, - Concentrating Solar Power, - Solar PV Topics: Market analysis, Resource assessment Resource Type: Publications Website: www1.eere.energy.gov/solar/pdfs/46025.pdf Cost: Free 2008 Solar Technologies Market Report Screenshot References: 2008 Solar Technologies Market Report[1] Logo: 2008 Solar Technologies Market Report "The focus of this report is the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The

106

SciTech Connect: Solar Energy Education. Industrial arts: teacher...  

NLE Websites -- All DOE Office Websites (Extended Search)

guide. Field test edition. Includes glossary Citation Details In-Document Search Title: Solar Energy Education. Industrial arts: teacher's guide. Field test edition. Includes...

107

Application of solar energy in the oil industryCurrent status and future prospects  

Science Journals Connector (OSTI)

Abstract The scope of this review is to highlight the potential contributions of solar energy in meeting the energy requirements of the oil and gas industry. It includes an assessment of the key factors that impact the world energy scene and the anticipated role of solar energy up to 2035. It appears that oil and gas will continue to play a dominant role in meeting world energy demand over the next two decades, accounting for nearly 60% of total primary energy, and reaching around 9960Mtoe in 2035. The energy consumption of the oil and gas industries is nearly 10% of its total energy production and is expected to grow to a higher value with the growth of the share of unconventional oil and gas resources. The amounts of energy projected to be consumed by the oil and gas industry is estimated to be at least 39.4EJ by 2035. The energy supply to meet the demand of the oil and gas industry is based mostly on hydrocarbon energy sources, which leads to high levels of ecological footprints. Solar energy utilization within the industry will reduce its fossil fuels consumption, and therefore reduce its ecological footprints. Specifically, solar energy will help the industry in meeting part of its energy requirements in locations where conventional fuels, such as natural gas, are limited. This paper reviews various efforts made in developing solar technologies to suit the oil and gas industry. It also shows that some upstream oil and gas industries have already utilized solar energy in demonstration field applications. The review concludes that the application of solar energy in the oil and gas industry presents a very good opportunity for future business of the renewable energy industry. These opportunities includes the use of photovoltaic and solar thermal technologies.

M. Absi Halabi; A. Al-Qattan; A. Al-Otaibi

2015-01-01T23:59:59.000Z

108

Industries & Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(AMO) emphasizes innovative technologies to increase manufacturing agility and open new markets. AMO also maintains a range of projects, analyses, protocols, and strategies to...

109

SLIDESHOW: Solar Industry At Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SLIDESHOW: Solar Industry At Work SLIDESHOW: Solar Industry At Work SLIDESHOW: Solar Industry At Work June 4, 2012 - 9:37am Addthis 1 of 11 Vice President Joe Biden talks with staff at the National Renewable Energy Lab's Process Development and Integration Laboratory (PDIL). The PDIL brings together technical experts from NREL, the solar industry, and universities for collaborative research. Image: Dennis Schroeder (NREL) 2 of 11 Steven Bohn, an engineer at SunEdison oversees SunEdison's testing facility at SolarTAC in Aurora, CO. The SolarTAC mission is to increase the efficiency of solar energy products and rapidly deploy them to the commercial market. Image: Dennis Schroeder (NREL) 3 of 11 NREL scientists Ki Ye and Joe Berry peer into the glass siding of a deposition instrument to view the latest results of an experiment with a

110

SPIDERS Joint Capability Technology Demonstration Industry Day...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Demonstration Industry Day May 2, 2014 - 1:15pm Addthis An image of a patch with a spider on it. The Smart Power Infrastructure Demonstration for Energy...

111

Federal Energy Management Program: Solar Energy Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Energy Solar Energy Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Solar Energy Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Solar Energy Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Solar Energy Resources and Technologies on Google Bookmark Federal Energy Management Program: Solar Energy Resources and Technologies on Delicious Rank Federal Energy Management Program: Solar Energy Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Solar Energy Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

112

China Energy Conservation Solar Energy Technologies CECS | Open...  

Open Energy Info (EERE)

CECS Jump to: navigation, search Name: China Energy Conservation Solar Energy Technologies (CECS) Place: China Sector: Solar Product: China-based solar project developer and...

113

Sandia National Laboratories: Planting the "SEEDS" of Solar Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Systems Planting the "SEEDS" of Solar Technology in the Home On June 12, 2014, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar, Solar...

114

Solar Environmental Technologies Tianjin Corp aka SETC Cenicom...  

Open Energy Info (EERE)

Tianjin Corp aka SETC Cenicom Solar Etc Jump to: navigation, search Name: Solar & Environmental Technologies (Tianjin) Corp (aka SETC, Cenicom, Solar Etc) Place: Tianjin, Tianjin...

115

SolarMission Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Montana Zip: 59801 Sector: Solar Product: US-based company that owns a licence to solar chimney technology; also manufactures and installs. References: SolarMission...

116

SolarEdge Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

search Name: SolarEdge Technologies Inc Place: Hod Hasharon, Israel Zip: 45240 Sector: Solar Product: Israel-based startup developing a power control system for solar systems,...

117

Effective Transfer of Industrial Energy Conservation Technologies  

E-Print Network (OSTI)

. Various avenues exist for transferring energy conservation technologies to industry. Briefing documents, presentations at trade meetings and con ferences, or simple diffusion by word-of-mouth are a few methods. However, when left to chance, tech... of 444 ESL-IE-83-04-68 Proceedings from the Fifth Industrial Energy Technology Conference Volume II, Houston, TX, April 17-20, 1983 TABLE 1. Current Energy Impacts of Foam Processing of Textiles BROADWOVENS AND KNITS User Site (a) Average Production...

Clement, M.; Vallario, R. W.

1983-01-01T23:59:59.000Z

118

Enabling Thin Silicon Solar Cell Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Enabling Thin Silicon Solar Cell Enabling Thin Silicon Solar Cell Technology Enabling Thin Silicon Solar Cell Technology Print Friday, 21 June 2013 10:49 Generic silicon solar cells showing +45°, -45°, and dendritic crack patterns. The effort to shift U.S. energy reliance from fossil fuels to renewable sources has spurred companies to reduce the cost and increase the reliability of their solar photovoltaics (SPVs). The use of thinner silicon in SPV technologies is being widely adopted because it significantly reduces costs; however, silicon is brittle, and thinner silicon, coupled with other recent trends in SPV technologies (thinner glass, lighter or no metal frames, increased use of certain polymers for encapsulation of the silicon cells), is more susceptible to stress and cracking. When the thin

119

GCL Solar Energy Technology Holdings formerly GCL Silicon aka...  

Open Energy Info (EERE)

GCL Solar Energy Technology Holdings formerly GCL Silicon aka Jiangsu Zhongneng Polysilicon Jump to: navigation, search Name: GCL Solar Energy Technology Holdings (formerly GCL...

120

Sunworld Solar Energy Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Sunworld Solar Energy Technology Co Ltd Jump to: navigation, search Name: Sunworld Solar Energy Technology Co Ltd Place: Shanghai, Shanghai Municipality, China Zip: RM1501 Sector:...

Note: This page contains sample records for the topic "industrial solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Ningxia Ninghu Solar Energy Technology Co Ltd | Open Energy Informatio...  

Open Energy Info (EERE)

Ninghu Solar Energy Technology Co Ltd Jump to: navigation, search Name: Ningxia Ninghu Solar Energy Technology Co Ltd Place: Shi Zui Shan, Ningxia Autonomous Region, China Zip:...

122

Regional Test Centers for Solar Technologies | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Integration Regional Test Centers for Solar Technologies Regional Test Centers for Solar Technologies Text Alternative At the Regional Test Centers (RTCs) throughout the...

123

Advanced Materials and Nano Technology for Solar Cells  

E-Print Network (OSTI)

CRUZ ADVANCED MATERIALS AND NANO TECHNOLOGY FOR SOLAR CELLS12 3.2 SILVER NANOHAN ADVANCED MATERIALS AND NANO TECHNOLOGY FOR SOLAR CELLS

Han, Tao

2014-01-01T23:59:59.000Z

124

Opportunities for Minority Students in the Solar Industry | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Opportunities for Minority Students in the Solar Industry Opportunities for Minority Students in the Solar Industry Opportunities for Minority Students in the Solar Industry November 20, 2012 - 9:00am Addthis The Long Island Solar Farm (LISF) -- currently the largest solar photovoltaic power plant in the Eastern United States -- generates enough renewable energy to power approximately 4,500 homes. LISF is located at Brookhaven National Laboratory. | Photo courtesy of Brookhaven National Laboratory. The Long Island Solar Farm (LISF) -- currently the largest solar photovoltaic power plant in the Eastern United States -- generates enough renewable energy to power approximately 4,500 homes. LISF is located at Brookhaven National Laboratory. | Photo courtesy of Brookhaven National Laboratory. Dot Harris Dot Harris

125

Federal Energy Management Program: Solar Energy Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Energy Resources and Technologies Solar Energy Resources and Technologies Photo of a square, tracking, standalone photovoltaic array stands in front of a tree and body of water. The Environmental Protection Agency uses this photovoltaic array as part of its Manchester Laboratory Solar Project. Solar energy provides electricity, heating, and cooling for Federal facilities through four primary technology types. The four technologies are broken into two categories; technologies for electricity production and thermal energy technologies. The following pages provide a brief overview of each solar energy technology supplemented by specific information to apply solar energy within the Federal sector. Technologies for electricity production include: Photovoltaics Concentrating Solar Power Thermal energy technologies include:

126

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 2: ITP Emerging Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

127 DOE Industrial Technologies Program 127 DOE Industrial Technologies Program Appendix 2: ITP Emerging Technologies Aluminum ............................................................................................................................................................................ 130 u Direct Chill Casting Model ................................................................................................................................................................130 Chemicals............................................................................................................................................................................ 130

127

Capturing the Sun, Creating a Clean Energy Future (Brochure), SunShot, Solar Energy Technologies Program (SETP), U.S. Department of Energy (DOE)  

Energy.gov (U.S. Department of Energy (DOE))

Through partnerships with industry academia, and national laboratories, the DOE Solar Energy Technologies Program sponsors research and development (R&D) in addition to activities designed to accelerate solar market development and reduce the cost of solar power.

128

NREL: Learning - Solar Photovoltaic Technology Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Photovoltaic Technology Basics Solar Photovoltaic Technology Basics Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player This video provides an overview of NREL's research in solar photovoltaic technology. Text Version Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the process of converting light (photons) to electricity (voltage), which is called the PV effect. The PV effect was discovered in 1954, when scientists at Bell Telephone discovered that silicon (an element found in sand) created an electric charge when exposed to sunlight. Soon solar cells were being used to power space satellites and smaller items like calculators and watches. Today, thousands of people power their homes and businesses with individual

129

Lotus Solar Technologies | Open Energy Information  

Open Energy Info (EERE)

Solar Technologies Solar Technologies Jump to: navigation, search Name Lotus Solar Technologies Place Cairo, Egypt Sector Solar, Wind energy Product Solar and wind energy consultants and contractors. Coordinates 30.08374°, 31.25536° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.08374,"lon":31.25536,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

ICP Solar Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

ICP Solar Technologies Inc ICP Solar Technologies Inc Jump to: navigation, search Name ICP Solar Technologies Inc Place Montreal, Quebec, Canada Zip H3N 1W5 Sector Solar Product Manufactures amorphous silicon solar PV cells, and battery chargers using these cells. Coordinates 45.512293°, -73.554407° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.512293,"lon":-73.554407,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

131

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

in Albuquerque, New Mexico. Barclays. (2009). Solar Energysolar development on the public lands of six states (Arizona, California, Colorado, New Mexico,

Price, S.

2010-01-01T23:59:59.000Z

132

Monitoring SERC Technologies Solar Photovoltaics  

Energy.gov (U.S. Department of Energy (DOE))

A webinar by National Renewable Energy Laboratory's Market Transformation Center electrical engineer Peter McNutt about Solar Photovoltaics and how to properly monitor its installation.

133

Triple Helix innovation in Chinas dye-sensitized solar cell industry: hybrid methods with semantic TRIZ and technology roadmapping  

Science Journals Connector (OSTI)

In recent years, the Triple Helix model has identified feasible approaches to measuring relations among universities, industries, and governments. Results have been extended to different databases, regions, and p...

Yi Zhang; Xiao Zhou; Alan L. Porter; Jose M. Vicente Gomila; An Yan

2014-04-01T23:59:59.000Z

134

SOLAR CENTER INFORMATION Industrial Extension Service  

E-Print Network (OSTI)

Solar House About the NCSU Solar House The North Carolina State University Solar House was built in 1981- gies. It incorporates passive solar features such as a sunspace, trombe walls, and earth-berm insulation. The house also uses compact fluorescent lighting, a ground- coupled heat pump, and has both

135

Commercial and Industrial Solar Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Solar Rebate Program Commercial and Industrial Solar Rebate Program Commercial and Industrial Solar Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Maximum Rebate The lesser of 25% of the total cost or $50,000 Program Info Funding Source RPS alternative compliance payments Start Date 11/1/2010 State New Hampshire Program Type State Rebate Program Rebate Amount PV: $0.80/W (DC) for new systems; $0.50/W (DC) for additions to existing systems Solar Thermal: $0.12/rated or modeled kBtu/year for new systems with 15 or fewer collectors; $0.07/rated or modeled kBtu/year for new systems with

136

Reliance Industries Limited Solar Group | Open Energy Information  

Open Energy Info (EERE)

Reliance Industries Limited Solar Group Reliance Industries Limited Solar Group Jump to: navigation, search Name Reliance Industries Limited Solar Group Place Bangalore, Karnataka, India Zip 560076 Sector Solar Product String representation "Reliance solar, ... n solar energy." is too long. Coordinates 12.97092°, 77.60482° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":12.97092,"lon":77.60482,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

137

Solar Green Technology S p A SGT | Open Energy Information  

Open Energy Info (EERE)

A SGT Jump to: navigation, search Name: Solar Green Technology S.p.A. (SGT) Place: Italy Sector: Solar Product: Italy-based solar system integrator. References: Solar Green...

138

DOE Solar Decathlon: Team Canada: Advancing Solar Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Northern Lights on the Concordia University campus. Enlarge image Northern Lights on the Concordia University campus. Enlarge image Team Canada's house features solar panels used as a roofing material and triple-glazed, south-facing windows to take advantage of the winter sun that shines on Concordia University's campus. (Courtesy of Concordia University) Who: Team Canada What: Northern Lights Where: Concordia University Loyola Campus 7141 Sherbrooke St. West Montréal, Quebec, Canada H4B 1R6 Map This House Public tours: Not available Solar Decathlon 2005 Team Canada: Advancing Solar Technologies The lone Canadian entry in the U.S. Department of Energy Solar Decathlon 2005 returned to the Loyola campus of Concordia University in Montreal, Quebec, following the competition. The solar-powered house, called Northern Lights, remains in good working order. It is used primarily for research.

139

Entech Solar Inc formerly WorldWater Solar Technologies | Open Energy  

Open Energy Info (EERE)

WorldWater Solar Technologies WorldWater Solar Technologies Jump to: navigation, search Name Entech Solar Inc. (formerly WorldWater & Solar Technologies) Place Fort Worth, Texas Zip 76177 Sector Solar Product Texas-based solar energy systems manufacturer. References Entech Solar Inc. (formerly WorldWater & Solar Technologies)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Entech Solar Inc. (formerly WorldWater & Solar Technologies) is a company located in Fort Worth, Texas . References ↑ "Entech Solar Inc. (formerly WorldWater & Solar Technologies)" Retrieved from "http://en.openei.org/w/index.php?title=Entech_Solar_Inc_formerly_WorldWater_Solar_Technologies&oldid=344989

140

EPOD Solar Wales Ltd formerly ICP Solar Technologies Ltd | Open Energy  

Open Energy Info (EERE)

Wales Ltd formerly ICP Solar Technologies Ltd Wales Ltd formerly ICP Solar Technologies Ltd Jump to: navigation, search Name EPOD Solar (Wales) Ltd (formerly ICP Solar Technologies Ltd) Place Mid Glamorgan, United Kingdom Zip CF31 3YN Sector Solar Product Research, development, manufacturing,marketing and sales of leading-edge solar energy products. References EPOD Solar (Wales) Ltd (formerly ICP Solar Technologies Ltd)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. EPOD Solar (Wales) Ltd (formerly ICP Solar Technologies Ltd) is a company located in Mid Glamorgan, United Kingdom . References ↑ "EPOD Solar (Wales) Ltd (formerly ICP Solar Technologies Ltd)" Retrieved from "http://en.openei.org/w/index.php?title=EPOD_Solar_Wales_Ltd_formerly_ICP_Solar_Technologies_Ltd&oldid=34508

Note: This page contains sample records for the topic "industrial solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

s largest PV incentive program (Xcel Energys Solar Rewards25% by 2025* MN: 25% by 2025 (Xcel: 30% by 2020) VT: (1) REpartnership between SunEdison and Xcel Energy. Courtesy of

Price, S.

2010-01-01T23:59:59.000Z

142

ORNL, Industry Collaboration Puts Spotlight on Solar T DOING BUSINESS WITH ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Collaboration Industry Collaboration Puts Spotlight on Solar T DOING BUSINESS WITH ORNL PREPARING FOR THE FUTURE The ORNL Partnerships Directorate seeks to foster economic development and the growth of business and industry by mak- ing available the most innovative equipment, the latest technol- ogy, and the expertise of ORNL researchers to technology-based companies and research universities throughout the nation. F our manu- facturers of solar energy components are working with Oak Ridge National Labo- ratory to address some of their biggest challenges. Through individual cooperative research and development agreements (CRADAs), the companies hope to advance solar cell materials and processing technologies. The $880,000 effort is funded by the American Recovery and Reinvestment

143

Advanced Mechanical Heat Pump Technologies for Industrial Applications  

E-Print Network (OSTI)

, advanced chemical and mechanical heat pump technologies are being developed for industrial application. Determining which technologies are appropriate for particular industrial applications and then developing those technologies is a stepped process which...

Mills, J. I.; Chappell, R. N.

144

SolarIsland aka Yinghua Taian Dazheng Hengyuan Solar Technology Co Ltd |  

Open Energy Info (EERE)

SolarIsland aka Yinghua Taian Dazheng Hengyuan Solar Technology Co Ltd SolarIsland aka Yinghua Taian Dazheng Hengyuan Solar Technology Co Ltd Jump to: navigation, search Name SolarIsland (aka Yinghua, Taian Dazheng Hengyuan Solar Technology Co Ltd) Place Nanguan, Shandong Province, China Zip 271000 Sector Solar Product Manufacturer and exporter of solar passive water heating systems and PV-powered solar road lighting, torches and lamps. References SolarIsland (aka Yinghua, Taian Dazheng Hengyuan Solar Technology Co Ltd)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. SolarIsland (aka Yinghua, Taian Dazheng Hengyuan Solar Technology Co Ltd) is a company located in Nanguan, Shandong Province, China . References ↑ "[ SolarIsland (aka Yinghua, Taian Dazheng Hengyuan Solar

145

STATEMENT OF CONSIDERATIONS REQUEST BY SIEMENS SOLAR INDUSTRIES...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UNDER DOE CONTRACT NO. DE- AC36-83CH10093; W(A)-98-019; CH-0987 The Petitioner, Siemens Solar Industries (hereinafter "SSI"), has requested a waiver of domestic and foreign...

146

Technology Transfer: For Industry:SBIR Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

For Industry Licensing Overview Frequently Asked Questions Partnering with Berkeley Lab Available Technologies See Also Licensed Technologies Start-up Companies Licensing Interest Form Receive New Tech Alerts Partner Smart with Berkeley Lab (Downloadable Copy, 1.4MB, PDF) Berkeley Lab Economic Impact Report Technology Transfer Opportunities (TTOs) for SBIR and STTR Programs FY2014 Phase 1 Release 1 Selected topic and subtopics contained in this page are designated as Technology Transfer Opportunities (TTOs) from Berkeley Lab. 10. BASIC ENERGY SCIENCES (Phase I $225,000 / Phase II: $1,500,000): Contact: Shanshan Li, Shanshanli@lbl.gov, 510-486-5366 For a description of the technology, publications (if available) and latest patent status, click on the TTO tracking number link.

147

American Solar Technology | Open Energy Information  

Open Energy Info (EERE)

American Solar Technology American Solar Technology Address 5265 Turquoise Drive Place Colorado Springs, Colorado Zip 80918 Sector Solar Product Solar installer Coordinates 38.908071°, -104.742645° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.908071,"lon":-104.742645,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

148

Photovoltaic industry manufacturing technology. Final report  

SciTech Connect

This report contains the results of the Photovoltaic (PV) Industry Manufacturing Technology Assessment performed by the Automation and Robotics Research Institute (ARRI) of the University of Texas at Arlington for the National Renewable Energy laboratory. ARRI surveyed eleven companies to determine their state-of-manufacturing in the areas of engineering design, operations management, manufacturing technology, equipment maintenance, quality management, and plant conditions. Interviews with company personnel and plant tours at each of the facilities were conducted and the information compiled. The report is divided into two main segments. The first part of the report presents how the industry as a whole conforms to ``World Class`` manufacturing practices. Conclusions are drawn from the results of a survey as to the areas that the PV industry can improve on to become more competitive in the industry and World Class. Appendix A contains the questions asked in the survey, a brief description of the benefits to performing this task and the aggregate response to the questions. Each company participating in the assessment process received the results of their own facility to compare against the industry as a whole. The second part of the report outlines opportunities that exist on the shop floor for improving Process Equipment and Automation Strategies. Appendix B contains the survey that was used to assess each of the manufacturing processes.

Vanecek, D.; Diver, M.; Fernandez, R. [Automation and Robotics Research Inst., Fort Worth, TX (United States)

1998-08-01T23:59:59.000Z

149

Trony Solar Corporation formerly Shenzhen Trony Science Technology...  

Open Energy Info (EERE)

Trony Solar Corporation formerly Shenzhen Trony Science Technology Development Co Ltd Jump to: navigation, search Name Trony Solar Corporation (formerly Shenzhen Trony Science &...

150

Optics and Photonics in Solar Thermal Energy Technologies  

Science Journals Connector (OSTI)

The complex optical diagnostics employed in the development and application of solar thermal and wind energy technologies are reviewed, with application in particle receivers, solar...

Nathan, G J 'Gus'; Alwahabi, Zeyad; Dally, Bassam B; Medwell, Paul R; Arjomandi, Maziar; Sun, Zhiwei; Lau, Timothy C; van Eyk, Philip

151

Solar Energy Resources and Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

array as part of its Manchester Laboratory Solar Project. Solar energy provides electricity, heating, and cooling for Federal facilities through four primary technology types....

152

Expansion and Improvement of Solar Water Heating Technology in...  

Open Energy Info (EERE)

Expansion and Improvement of Solar Water Heating Technology in China Project Management Office Jump to: navigation, search Name: Expansion and Improvement of Solar Water Heating...

153

Federal technology alert. Parabolic-trough solar water heating  

SciTech Connect

Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

NONE

1998-04-01T23:59:59.000Z

154

Zhangzhou Guolv Solar Science and Technology Co Ltd | Open Energy  

Open Energy Info (EERE)

Zhangzhou Guolv Solar Science and Technology Co Ltd Zhangzhou Guolv Solar Science and Technology Co Ltd Jump to: navigation, search Name Zhangzhou Guolv Solar Science and Technology Co Ltd Place Fujian Province, China Zip 363600 Sector Solar Product A company engaged in producing solar PV-based products such as solar lights and signposts. References Zhangzhou Guolv Solar Science and Technology Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Zhangzhou Guolv Solar Science and Technology Co Ltd is a company located in Fujian Province, China . References ↑ "Zhangzhou Guolv Solar Science and Technology Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Zhangzhou_Guolv_Solar_Science_and_Technology_Co_Ltd&oldid=353481"

155

Industrial Technology Research Institute | Open Energy Information  

Open Energy Info (EERE)

Technology Research Institute Technology Research Institute Jump to: navigation, search Logo: Industrial Technology Research Institute Name Industrial Technology Research Institute Address Rm. 112, Bldg. 24, 195, Sec. 4, Chung Hsing Rd., Place Chutung, Hsinchu Zip 31040 Country Taiwan Sector Marine and Hydrokinetic Company Type Non Profit Technology Point absorber Project ITRI WEC Phone number +886-3-5918579 Website http://www.itri.org.tw Coordinates 24.776467696266°, 121.04182720184° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.776467696266,"lon":121.04182720184,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

156

Application of solar thermal energy to buildings and industry  

SciTech Connect

Flat plate collectors and evacuated tube collectors are described, as are parabolic troughs, Fresnel lenses, and compound parabolic concentrators. Use of solar energy for domestic hot water and for space heating and cooling are discussed. Some useful references and methods of system design and sizing are given. This includes mention of the importance of economic analysis. The suitability of solar energy for industrial use is discussed, and solar ponds, point-focus receivers and central receivers are briefly described. The use of solar energy for process hot water, drying and dehydration, and process steam are examined, industrial process heat field tests by the Department of Energy are discussed, and a solar total energy system in Shenandoah, GA is briefly described. (LEW)

Kutscher, C. F.

1981-05-01T23:59:59.000Z

157

Holographic technology could increase solar efficiency | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Holographic technology could increase solar efficiency Holographic technology could increase solar efficiency Holographic technology could increase solar efficiency October 12, 2010 - 1:00pm Addthis Luminit's co-generation technology could combine photovoltaics (shown in this file photo) and solar thermal energy. | File photo Luminit's co-generation technology could combine photovoltaics (shown in this file photo) and solar thermal energy. | File photo Lorelei Laird Writer, Energy Empowers Co-generation technology could combine photovoltaics and solar thermal Luminit's technology bends and redirects sunlight to produce energy Research funded by Small Business Innovation Research grant There are two major technologies in solar energy: photovoltaics and solar thermal. Most people are more familiar with photovoltaics (PV) - the flat solar

158

Improve Chilled Water System Performance, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program Chilled Water System Analysis Tool (CWSAT) can help optimize the performance of of industrial chilled water systems.

Not Available

2008-12-01T23:59:59.000Z

159

Boost Process Heating Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program Process Heating Assessment and Survey Tool (PHAST) can help industrial plants indentify opportunities to save energy.

Not Available

2008-12-01T23:59:59.000Z

160

Premier Solar Technologies | Open Energy Information  

Open Energy Info (EERE)

Technologies Technologies Jump to: navigation, search Logo: Premier Solar Technologies Name Premier Solar Technologies Place Dubai, United Arab Emirates Sector Renewable Energy Product Integrated Storage Collector Website http://premiersolartechnologie Coordinates 24.985960773822°, 55.194025039673° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.985960773822,"lon":55.194025039673,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "industrial solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NREL: Technology Deployment - Portland, Oregon Grassroots Solarize...  

NLE Websites -- All DOE Office Websites (Extended Search)

30% News Watch a video on the Solarize movement Pallets of PV: Communities Purchase Solar and Drive Down Costs Together Solarize Portland Solarize New York Solarize...

162

DOE to Provide Up to $17.6 Million for Solar Photovoltaic Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Up to $17.6 Million for Solar Photovoltaic Up to $17.6 Million for Solar Photovoltaic Technology Development DOE to Provide Up to $17.6 Million for Solar Photovoltaic Technology Development September 29, 2008 - 3:43pm Addthis WASHINGTON - The U.S. Department of Energy (DOE) today announced up to $17.6 million, subject to annual appropriations, for six early stage photovoltaic (PV) module incubator projects that focus on the initial manufacturing of advanced solar PV technologies. Including the cost share from industry, which will be at least 20 percent, the total research investment is expected to reach up to $35.4 million. These projects support President Bush's Solar America Initiative, which aims to make solar energy cost-competitive with conventional forms of electricity by 2015. Increasing the use of alternative and clean energy technologies such as

163

Energizing American Competitiveness in Solar Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This PowerPoint slide deck was originally presented at the 2012 SunShot Grand Challenge Summit and Technology Forum during a plenary session. Entitled "Energizing American Competitiveness in Solar Technologies," this presentation explains why grand challenges are needed and summarizes the goals of the SunShot program. It also identifies manufacturing as playing a key role in the attainment of a clean energy vision.

164

Wuxi Jiacheng Solar Energy Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Jiacheng Solar Energy Technology Co Ltd Place: Yi Xing, Jiangsu Province, China Zip: 214251 Sector: Solar Product: A high-tech company which designs,makes and sells solar panels....

165

The Actuality and Prospect of Solar Collector Technology in China  

Science Journals Connector (OSTI)

The development tendency and the future of the solar heater utilization product are going to determine the solar energy collector technology development. The vacuum tube solar water heater development direction i...

Luo Yunjun; Liu Airong

2009-01-01T23:59:59.000Z

166

DOE and Industry Showcase New Control Systems Security Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Development Energy Delivery Systems Cybersecurity Control Systems Security News Archive DOE and Industry Showcase New Control Systems Security Technologies at...

167

ITP Mining: Mining Industry Roadmap for Crosscutting Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ccroadmap.pdf More Documents & Publications ITP Mining: Exploration and Mining Technology Roadmap ITP Mining: Mining Industry of the Future Mineral Processing Technology...

168

A technology roadmap for the U.S. aluminum industry  

Science Journals Connector (OSTI)

By partnering with the OIT, the aluminum industry has taken an important step in planning the technology needs of their industry for the next ... in defining its long-term goals and the technology requirements to...

H. S. Kenchington; J. L. Eisenhauer; J. A. S. Green

1997-08-01T23:59:59.000Z

169

NREL: Technology Deployment - Solar Technical Assistance Team  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Assistance Team Technical Assistance Team Strategic Sequencing for State Distributed PV Policies: A Quantitative Analysis of Policy Impacts and Interactions Recent NREL analysis of state policies revealed that the sequence of policy implementation can accelerate solar photovoltaic (PV) markets-and that policy change doesn't have to be costly. Download the full report or summary to learn more, or view the webinar. The Solar Technical Assistance Team (STAT) gathers NREL solar technology and deployment experts to provide information on solar policies, regulations, financing, and other issues for state and local government decision makers. The team provides a variety of technical assistance, including: Quick Response. For state and local governments that require a fast turnaround in response to a time-sensitive question or expert testimony on

170

NREL: Technology Deployment - Solar Deployment and Market Transformation  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Deployment and Market Transformation Solar Deployment and Market Transformation NREL enables faster, easier, and less expensive solar installations by applying our expertise and knowledge to projects that addresses challenges, inefficiencies, and market barriers to solar technology deployment. Northeast Denver Housing Center Solarize Grassroots Movement Drives Down Solar Prices 30% in Portland, Oregon Solarize Northeast Denver Housing Center NREL Identifies PV for 28 Affordable Housing Units Our technical experts work with policymakers, program administrators, regulators, utilities, transmission organizations, technology developers, financial organizations, and insurance companies to help break down barriers to solar technology deployment by: Developing and delivering policy and market design trainings

171

Building design guidelines for solar energy technologies  

SciTech Connect

There are two main objectives to this publication. The first is to find out the communalities in the experience gained in previous studies and in actual applications of solar technologies in buildings, residential as well as nonresidential. The second objective is to review innovative concepts and products which may have an impact on future developments and applications of solar technologies in buildings. The available information and common lessons were collated and presented in a form which, hopefully, is useful for architects and solar engineers, as well as for teachers of solar architecture'' and students in Architectural Schools. The publication is based mainly on the collection and analysis of relevant information. The information included previous studies in which the performance of solar buildings was evaluated, as well as the personal experience of the Author and the research consultants. The state of the art, as indicated by these studies and personal experience, was summarized and has served as basis for the development of the Design Guidelines. In addition to the summary of the state of the art, as was already applied in solar buildings, an account was given of innovative concepts and products. Such innovations have occurred in the areas of thermal storage by Phase Change Materials (PCM) and in glazing with specialized or changeable properties. Interesting concepts were also developed for light transfer, which may enable to transfer sunlight to the core areas of large multi story nonresidential buildings. These innovations may have a significant impact on future developments of solar technologies and their applications in buildings. 15 refs., 19 figs., 3 tabs.

Givoni, B.

1989-01-01T23:59:59.000Z

172

Maharishi Solar Technology Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

Maharishi Solar Technology Pvt Ltd Maharishi Solar Technology Pvt Ltd Jump to: navigation, search Name Maharishi Solar Technology Pvt Ltd Place New Delhi, Andhra Pradesh, India Zip 110044 Sector Solar Product Vertically integrated PV manufacturer with annual production of 2.5MW, under expansion to 10.0MW, also makes solar passive products. References Maharishi Solar Technology Pvt Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Maharishi Solar Technology Pvt Ltd is a company located in New Delhi, Andhra Pradesh, India . References ↑ "Maharishi Solar Technology Pvt Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Maharishi_Solar_Technology_Pvt_Ltd&oldid=348592

173

CEEG Shanghai Solar Science Technology | Open Energy Information  

Open Energy Info (EERE)

Shanghai Solar Science Technology Shanghai Solar Science Technology Jump to: navigation, search Name CEEG (Shanghai) Solar Science & Technology Place Shanghai Municipality, China Zip 200335 Sector Services, Solar Product Shanghai-based PV module manufacturer integrates services including the research, development, production, sales of polysilicon solar panel References CEEG (Shanghai) Solar Science & Technology[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CEEG (Shanghai) Solar Science & Technology is a company located in Shanghai Municipality, China . References ↑ "CEEG (Shanghai) Solar Science & Technology" Retrieved from "http://en.openei.org/w/index.php?title=CEEG_Shanghai_Solar_Science_Technology&oldid=343327"

174

Nantong Qiangsheng Photovoltaic Technology Co Ltd QS Solar | Open Energy  

Open Energy Info (EERE)

Nantong Qiangsheng Photovoltaic Technology Co Ltd QS Solar Nantong Qiangsheng Photovoltaic Technology Co Ltd QS Solar Jump to: navigation, search Name Nantong Qiangsheng Photovoltaic Technology Co Ltd (QS Solar) Place Shanghai Municipality, China Zip 200336 Sector Solar Product Chinese amorphous thin-film solar cell maker. References Nantong Qiangsheng Photovoltaic Technology Co Ltd (QS Solar)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Nantong Qiangsheng Photovoltaic Technology Co Ltd (QS Solar) is a company located in Shanghai Municipality, China . References ↑ "[ Nantong Qiangsheng Photovoltaic Technology Co Ltd (QS Solar)]" Retrieved from "http://en.openei.org/w/index.php?title=Nantong_Qiangsheng_Photovoltaic_Technology_Co_Ltd_QS_Solar&oldid=349037

175

SunShot Initiative: Flexible Assembly Solar Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Flexible Assembly Solar Flexible Assembly Solar Technology to someone by E-mail Share SunShot Initiative: Flexible Assembly Solar Technology on Facebook Tweet about SunShot Initiative: Flexible Assembly Solar Technology on Twitter Bookmark SunShot Initiative: Flexible Assembly Solar Technology on Google Bookmark SunShot Initiative: Flexible Assembly Solar Technology on Delicious Rank SunShot Initiative: Flexible Assembly Solar Technology on Digg Find More places to share SunShot Initiative: Flexible Assembly Solar Technology on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment

176

Beijing Sunda Solar Energy Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Sunda Solar Energy Technology Co Ltd Sunda Solar Energy Technology Co Ltd Jump to: navigation, search Name Beijing Sunda Solar Energy Technology Co Ltd Place Beijing, Beijing Municipality, China Zip 100083 Sector Solar Product Manufacturer of solar thermal water systems, for customers to install themselves. References Beijing Sunda Solar Energy Technology Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Beijing Sunda Solar Energy Technology Co Ltd is a company located in Beijing, Beijing Municipality, China . References ↑ "Beijing Sunda Solar Energy Technology Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Beijing_Sunda_Solar_Energy_Technology_Co_Ltd&oldid=342639

177

SPIDERS Joint Capability Technology Demonstration Industry Day Presentations  

Energy.gov (U.S. Department of Energy (DOE))

Presentations from the SPIDERS Joint Capability Technology Demonstration Industry Day, which occurred on April 22, 2014, at Fort Carson, Colorado.

178

Helping Ensure High-Quality Installation of Solar Power Technologies...  

Energy Savers (EERE)

Ensure High-Quality Installation of Solar Power Technologies Helping Ensure High-Quality Installation of Solar Power Technologies April 15, 2013 - 12:00am Addthis The Midwest...

179

Solar and Wind Technologies for Hydrogen Production Report to Congress  

Fuel Cell Technologies Publication and Product Library (EERE)

DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills t

180

GT Solar Technologies formerly GT Equipment Technologies | Open Energy  

Open Energy Info (EERE)

GT Solar Technologies formerly GT Equipment Technologies GT Solar Technologies formerly GT Equipment Technologies Jump to: navigation, search Name GT Solar Technologies (formerly GT Equipment Technologies) Place Merrimack, New Hampshire Zip 3054 Product US-based manufacturer of turnkey multicrystalline PV wafer, cell, and module fabrication lines; also offers EFG and dentritic growth furnaces. Coordinates 42.872517°, -71.490603° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.872517,"lon":-71.490603,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "industrial solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A review of solar photovoltaic technologies  

Science Journals Connector (OSTI)

Global environmental concerns and the escalating demand for energy, coupled with steady progress in renewable energy technologies, are opening up new opportunities for utilization of renewable energy resources. Solar energy is the most abundant, inexhaustible and clean of all the renewable energy resources till date. The power from sun intercepted by the earth is about 1.8נ1011MW, which is many times larger than the present rate of all the energy consumption. Photovoltaic technology is one of the finest ways to harness the solar power. This paper reviews the photovoltaic technology, its power generating capability, the different existing light absorbing materials used, its environmental aspect coupled with a variety of its applications. The different existing performance and reliability evaluation models, sizing and control, grid connection and distribution have also been discussed.

Bhubaneswari Parida; S. Iniyan; Ranko Goic

2011-01-01T23:59:59.000Z

182

Photovoltaics: Solar Energy Technologies Program (SETP) (Fact Sheet)  

SciTech Connect

Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

Not Available

2009-10-01T23:59:59.000Z

183

Market Transformation: Solar Energy Technologies Program (SETP) (Fact Sheet)  

SciTech Connect

Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its market transformation subprogram.

Not Available

2009-10-01T23:59:59.000Z

184

Collaborating Towards a Common Goal to Advance America's Solar Industry |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Collaborating Towards a Common Goal to Advance America's Solar Collaborating Towards a Common Goal to Advance America's Solar Industry Collaborating Towards a Common Goal to Advance America's Solar Industry June 21, 2012 - 6:07pm Addthis Attendees gather to discuss, collaborate at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by Dennis Schroeder/NREL. Attendees gather to discuss, collaborate at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by Dennis Schroeder/NREL. Justin Vandenbroeck Intern, Office of Energy Efficiency and Renewable Energy Change takes more than desire -- it takes collaboration, communication, and a common goal. This idea was perhaps best exemplified at the SunShot Grand Challenge Summit in Denver. As a former participant in the Solar Decathlon and a current Energy Department intern, I attended the Summit to

185

Collaborating Towards a Common Goal to Advance America's Solar Industry |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Collaborating Towards a Common Goal to Advance America's Solar Collaborating Towards a Common Goal to Advance America's Solar Industry Collaborating Towards a Common Goal to Advance America's Solar Industry June 21, 2012 - 6:07pm Addthis Attendees gather to discuss, collaborate at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by Dennis Schroeder/NREL. Attendees gather to discuss, collaborate at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by Dennis Schroeder/NREL. Justin Vandenbroeck Intern, Office of Energy Efficiency and Renewable Energy Change takes more than desire -- it takes collaboration, communication, and a common goal. This idea was perhaps best exemplified at the SunShot Grand Challenge Summit in Denver. As a former participant in the Solar Decathlon and a current Energy Department intern, I attended the Summit to

186

Ascent Solar Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Technologies Inc Technologies Inc Jump to: navigation, search Name Ascent Solar Technologies Inc Place Littleton, Colorado Zip 80127-4107 Sector Solar Product Ascent Solar develops and plans to manufacture CIGS thin-film solar cells and modules for the satellite and high-altitude airship (“HAA”) markets. Coordinates 39.697285°, -80.51095° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.697285,"lon":-80.51095,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

187

Bosch Solar Sustainable Energy Technologies JV | Open Energy...  

Open Energy Info (EERE)

Sustainable Energy Technologies JV Jump to: navigation, search Name: Bosch Solar & Sustainable Energy Technologies JV Place: Ontario, Canada Product: Canada-based JV to distribute...

188

Silicon Ink Technology Offers Path to Higher Efficiency Solar...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

startup companies cross technological barriers to commercialization while encouraging private investment. The Solar Energy Technologies Office (SETO) focuses on achieving the...

189

Solar Energy Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Energy Resources and Technologies Solar Energy Resources and Technologies Solar Energy Resources and Technologies October 7, 2013 - 9:21am Addthis Photo of a square, tracking, standalone photovoltaic array stands in front of a tree and body of water. The Environmental Protection Agency uses this photovoltaic array as part of its Manchester Laboratory Solar Project. Solar energy provides electricity, heating, and cooling for Federal facilities through four primary technology types. The four technologies are broken into two categories; technologies for electricity production and thermal energy technologies. The following pages provide a brief overview of each solar energy technology supplemented by specific information to apply solar energy within the Federal sector. Technologies for electricity production include:

190

Industrial Conservation Technology Energy Savings Monitoring System  

E-Print Network (OSTI)

steps using t~o i i ! The pape!r concludes with a summary of the system benefits to government and industry. BACKGROUND AND PURPOSE OF THE IMPACT SCOREBOARD SYSTEM FIGURE 1 During the past four years, Argonne National TECHNOLOGY PROCESS FLOW...* *Regions where teetu,ology i.pact is significant Reference 1 The most recent work was sponsored by Argonne National Laboratory and the Department of Energy under contract ANL 39-109-38-5079. I I I I , I I I I I I 819 ESL-IE-80...

Crowell, J. J.; Phipps, H. R., Jr.

1980-01-01T23:59:59.000Z

191

And the Award Goes to... Silicon Ink Solar Technology Supported by  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

And the Award Goes to... Silicon Ink Solar Technology Supported by And the Award Goes to... Silicon Ink Solar Technology Supported by SunShot's PV Incubator And the Award Goes to... Silicon Ink Solar Technology Supported by SunShot's PV Incubator July 19, 2011 - 5:00pm Addthis Innovalight’s silicon ink technology | Photo courtesy of Innovalight Innovalight's silicon ink technology | Photo courtesy of Innovalight What does this mean for me? Pioneering startup Innovalight partnered with NREL to invent the first liquid silicon on the market. When paired with Innovalight's industrial screen printing process, this silicon ink technology offers a novel path to producing solar cells with higher conversion efficiencies at lower cost. A pair of presenters approach the microphone carrying a sealed envelope, a faint drum roll is heard, cameras zoom in on the anxious faces of the

192

And the Award Goes to... Silicon Ink Solar Technology Supported by  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

And the Award Goes to... Silicon Ink Solar Technology Supported by And the Award Goes to... Silicon Ink Solar Technology Supported by SunShot's PV Incubator And the Award Goes to... Silicon Ink Solar Technology Supported by SunShot's PV Incubator July 19, 2011 - 5:00pm Addthis Innovalight’s silicon ink technology | Photo courtesy of Innovalight Innovalight's silicon ink technology | Photo courtesy of Innovalight What does this mean for me? Pioneering startup Innovalight partnered with NREL to invent the first liquid silicon on the market. When paired with Innovalight's industrial screen printing process, this silicon ink technology offers a novel path to producing solar cells with higher conversion efficiencies at lower cost. A pair of presenters approach the microphone carrying a sealed envelope, a faint drum roll is heard, cameras zoom in on the anxious faces of the

193

DOE to Provide Up to $17.6 Million for Solar Photovoltaic Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE to Provide Up to $17.6 Million for Solar Photovoltaic DOE to Provide Up to $17.6 Million for Solar Photovoltaic Technology Development DOE to Provide Up to $17.6 Million for Solar Photovoltaic Technology Development September 29, 2008 - 3:43pm Addthis WASHINGTON - The U.S. Department of Energy (DOE) today announced up to $17.6 million, subject to annual appropriations, for six early stage photovoltaic (PV) module incubator projects that focus on the initial manufacturing of advanced solar PV technologies. Including the cost share from industry, which will be at least 20 percent, the total research investment is expected to reach up to $35.4 million. These projects support President Bush's Solar America Initiative, which aims to make solar energy cost-competitive with conventional forms of electricity by 2015.

194

Arizona Solar Energy Industries Association | Open Energy Information  

Open Energy Info (EERE)

Energy Industries Association Energy Industries Association Jump to: navigation, search Logo: Arizona Solar Energy Industries Association Name Arizona Solar Energy Industries Association Place Arizona Website http://www.arizonasolarindustr Coordinates 34.0489281°, -111.0937311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0489281,"lon":-111.0937311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

195

Technology Roadmap for the Japanese Opto-Electronics Industry  

Science Journals Connector (OSTI)

A technology roadmap for the opto-electronics industry for the ... estimation, we present a system and element technology roadmap for public and business optical-communications network technology Finally, it is e...

Michiharu Nakamura

1999-01-01T23:59:59.000Z

196

Technology projections for solar dynamic power  

Science Journals Connector (OSTI)

Solar Dynamic power systems can offer many potential benefits to Earth orbiting satellites including high solar-to-electric efficiency long life without performance degradation and high power capability. A recent integrated system test of a 2 kilowatt SD power system in a simulated space environment has successfully demonstrated technology readiness for space flight. Conceptual design studies of SD power systems have addressed several potential mission applications: a 10 kilowatt LEO satellite a low power Space Based Radar and a 30 kilowatt GEO communications satellite. The studies show that with moderate component development SD systems can exhibit excellent mass and deployed area characteristics. Using the conceptual design studies as a basis a SD technology roadmap was generated which identifies the component advances necessary to assure SD systems a competitive advantage for future NASA DOD and commercial missions.

Lee S. Mason

1999-01-01T23:59:59.000Z

197

Shenzhen Sumoncle Solar Energy Industrial Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Sumoncle Solar Energy Industrial Co Ltd Sumoncle Solar Energy Industrial Co Ltd Jump to: navigation, search Name Shenzhen Sumoncle Solar Energy Industrial Co Ltd Place Shenzhen, Guangdong Province, China Zip 518040 Sector Solar Product Produces a-Si thin-film solar cells for application in consumer products like calculators, watches, LCD apparatus, battery re-chargers, thermometers and so on. Coordinates 22.546789°, 114.112556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.546789,"lon":114.112556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

198

Maryland DC Virginia Solar Energy Industries Association MDV SEIA | Open  

Open Energy Info (EERE)

DC Virginia Solar Energy Industries Association MDV SEIA DC Virginia Solar Energy Industries Association MDV SEIA Jump to: navigation, search Name Maryland-DC-Virginia Solar Energy Industries Association (MDV-SEIA) Place Bethesda, Maryland Zip 20814-3954 Sector Solar Product Trade associaton to promote solar equipment in the Mid-Atlantic region in US. Coordinates 40.020185°, -81.073819° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.020185,"lon":-81.073819,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

199

Breakthrough Cutting Technology Promises to Reduce Solar Costs | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Breakthrough Cutting Technology Promises to Reduce Solar Costs Breakthrough Cutting Technology Promises to Reduce Solar Costs Breakthrough Cutting Technology Promises to Reduce Solar Costs March 1, 2010 - 4:34am Addthis Using SiGen's new cutting process, less material is wasted in creating solar products like this, a breakthrough that is expected to help make solar power more affordable. | Photo courtesy SiGen Using SiGen's new cutting process, less material is wasted in creating solar products like this, a breakthrough that is expected to help make solar power more affordable. | Photo courtesy SiGen Joshua DeLung Silicon Genesis is a San Jose, Calif., company that is advancing the field of solar energy by developing a process that will virtually eliminate all waste when cutting materials needed to implement solar technology.

200

Solar Hot Water Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Hot Water Resources and Technologies Solar Hot Water Resources and Technologies Solar Hot Water Resources and Technologies October 7, 2013 - 11:49am Addthis Photo of a standalone solar hot water system standing in front of a clothesline with a backdrop of evergreen trees. This solar hot water system tracks sunlight using a standalone, single-axis mount to optimize hot water production for residential applications. This page provides a brief overview of solar hot water (SHW) technologies supplemented by specific information to apply SHW within the Federal sector. Overview Although a large variety of solar hot water systems exist, the basic technology is simple. A collector absorbs and transfers heat from the sun to water, which is stored in a tank until needed. Active solar heating systems use circulating pumps and controls. These are more expensive but

Note: This page contains sample records for the topic "industrial solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Industrial heat pumps in Germany -potentials, technological development  

E-Print Network (OSTI)

1 Industrial heat pumps in Germany - potentials, technological development and application examples of Energy (IER) Universität Stuttgart ACHEMA 2012 Application of industrial heat pumps Improving energy-efficiency of industrial processes 13. Juni 2012 #12;ACHEMA 2012 - Industrial heat pumps 21st June 2012 Types of Heat Pumps

Oak Ridge National Laboratory

202

Industrial Revolutions: a graduate seminar Seminar in History of Technology  

E-Print Network (OSTI)

Industrial Revolutions: a graduate seminar HSci 8930 Seminar in History of Technology Jennifer K the question: Was there an Industrial Revolution? Historians have been discussing the Industrial Revolution of industrial revolution itself. This reassessment includes renewed attention to the scientific and technical

Janssen, Michel

203

NREL: News - NREL Assembles Industry Working Group to Advance Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

713 713 NREL Assembles Industry Working Group to Advance Solar Securitization Webinar focusing on SAPC to be held on March 22 March 19, 2013 The U.S. Department of Energy's (DOE)'s National Renewable Energy Laboratory (NREL) recently convened the Solar Access to Public Capital (SAPC) working group with a mission to enable securitization of solar PV assets and associated cash flows in the marketplace. SAPC's primary efforts center on the standardization of power purchase agreements, leases, and other documents relevant to residential and commercial deployment, and the development of robust datasets to assess performance and credit-default risk. These activities are designed to allow projects to be grouped into tradable securities. Securitization is expected to attract additional investors to the solar asset class, enabling the

204

Chemical technology news from across RSC Publishing. Printing solar panels  

E-Print Network (OSTI)

Publishing Chemical technology news from across RSC Publishing. Printing solar panels 22 January size) silicon microcells that connect together to form flexible solar panels. By stamping hundreds solar panels 2/8/2010http://www.rsc.org/Publishing/ChemTech/Volume/2010/02/printing_solar.asp #12;Page 2

Rogers, John A.

205

Energy Conservation through Solar Energy Assisted Dryer for Plastic Processing Industry  

Science Journals Connector (OSTI)

Abstract Consumption of plastics is directly linked with economic growth of plastic industry of respective country. India's plastics consumption is only about 2% of the world. Despite of proposed growth, higher cost of Energy requirement for processing are obstructing growth of plasticulture. Energy efficiency/conservation measures in plastic processing requires attention to harness alternate energy sources through technological modifications during material processing. This paper depicts practical solution for partial usage of non- conventional energy source; solar energy in conventional plastic process method. About3-5% of total energy required for processing is utilized for drying and precondition of material. Thus attempt is made to use solar energy for drying of Nylon-6 and polypropylene (PP) by designing natural convection based Solar Dryer. Drying of Nylon-6 is found to be in the falling rate period. Nylon-6 took nearly 6hrs. (1days) to reach 0.15% moisture content value. Effective diffusivity is varied from 4 - 6.5 X 10-9cm2/sec. Temperature rise for PP material is achieved up to 70C in the dryer, hence preheating is achieved with same dryer design. Solar dryer can certainly reduce conventional energy consumption during plastic processing at industrial scale. Cost benefit analysis shows that adaptation of solar energy dryer for plastic process industry lead to economic production of plastic goods.

D.H. Kokate; D.M. Kale; V.S. Korpale; Y.H. Shinde; S.V. Panse; S.P. Deshmukh; A.B. Pandit

2014-01-01T23:59:59.000Z

206

Sestar Technologies, LLC Revolutionar y Solar Energy Products  

E-Print Network (OSTI)

Sestar Technologies, LLC Revolutionar y Solar Energy Products Sestar Technologies, LLC (SESTAR) is developing revolutionary solar energy products that will be integral components in the ultimate solution to the world's current and future energy pro- grams. It will lead to paradigm shifts in a number of solar

Jawitz, James W.

207

DOE Solar Decathlon: News Blog » Technology Spotlights  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Spotlights Technology Spotlights Below you will find Solar Decathlon news from the Technology Spotlights archive, sorted by date. Technology Spotlight: Solar Water Heating Friday, September 27, 2013 By Solar Decathlon Editor's Note: This post is one of a series of technology spotlights that introduces common technologies used in U.S. Department of Energy Solar Decathlon team houses. Solar water heating systems make hot water for residential uses such as bathing, laundering, and dish washing. Generally less expensive than photovoltaic panels, these systems provide homeowners with a cost-effective way to harness the sun's energy. Photo of a wooden house with PV panels and a solar hot water system on the roof. Middlebury College's U.S. Department of Energy Solar Decathlon 211 entry,

208

Solar refractive secondary concentrator technology overview  

Science Journals Connector (OSTI)

Refractive secondary concentrators coupled with advanced primary concentrators can efficiently convert solar energy to heat for a wide variety of space applications including power generation thermal propulsion and furnaces. These applications typically require very high temperatures (as high as 2000 K) and high concentration ratios (10 000 to 1). To enable concentration systems that meet these requirements the NASA Glenn Research Center is developing the refractive secondary concentrator which uses refraction and total internal reflection to concentrate and direct solar energy. Presented is an overview of the refractive secondary concentrator technology development effort including a description of benefits past accomplishments and future plans. Highlighted is a recent proof-of-concept test of a prototype sapphire refractive secondary concentrator performed in a solar vacuum environment that demonstrated throughput efficiency of 87%. It is anticipated that the application of an optical coating to the inlet surface of the refractive secondary to reduce the reflection losses at this surface can improve the throughput efficiency to 93%. Plans to conduct additional solar thermal vacuum tests to demonstrate high temperatures and high throughput power are also presented (up to 2000 K and 5 kW).

Wayne A. Wong

2001-01-01T23:59:59.000Z

209

Review of the Semiconductor Industry and Technology Roadmap  

Science Journals Connector (OSTI)

The semiconductor industry operates in a constant state of deflation. It is vital to our survival and progress in this knowledge era. The industry is extremely competitive and requires ongoing technological advan...

Sameer Kumar; Nicole Krenner

2002-09-01T23:59:59.000Z

210

DOE Fuel Cell Technologies Office Record 14010: Industry Deployed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0: Industry Deployed Fuel Cell Powered Lift Trucks DOE Fuel Cell Technologies Office Record 14010: Industry Deployed Fuel Cell Powered Lift Trucks This program record from the U.S....

211

DOE Fuel Cell Technologies Office Record 14009: Industry Deployed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

09: Industry Deployed Fuel Cell Backup Power (BuP) DOE Fuel Cell Technologies Office Record 14009: Industry Deployed Fuel Cell Backup Power (BuP) This program record from the U.S....

212

Sustainable solar thermal power generation (STPG) technologies in Indian context  

SciTech Connect

India is a fast developing country. Some of the factors like population growth, industrialization, liberalization in economic policies, green revolution and awareness toward the environment, are increasing the electricity demand rapidly. As per the 14th Power Survey Report, an energy deficit of (+) 9% and peak demand deficit of (+) 18% have been estimated. Keeping in view the liberalization in economic policies, this deficit may be higher by the year 2000 AD. An estimation indicates that India is blessed with solar energy to the tune of 5 x 10{sup 15} kWh/yr. Being clean and inexhaustible source of energy, it can be used for large-scale power generation in the country. Keeping in view the present state-of-art technologies for STPG in MW range, best possible efforts are required to be made by all the concerned, to develop sustainable STPG technology of the future, specially for tropical regions. Standardization of vital equipment is an important aspect. There are a few required criteria like simple and robust technology, its transfer and adaptation in tropical climate conditions; high plant load factor without fossil-fired backup; availability of plant during evening peak and night hours; least use of fragile components, and capacity optimization for MW plants as per solar irradiance and environmental factors. In this paper, efforts have been made to compare the different STPG technologies. On the basis, of literature surveyed and studies carried out by the author, it may be stated that Central Receiver System technologies using molten salt and volumetric air receiver, along with molten salt and ceramic thermal storage respectively seems to be suitable and comparable in Indian context. Performance of SOLAR-TWO and PHOEBUS plants may be decisive.

Sharma, R.S. [Ministry of Non-Conventional Energy Sources, New Delhi (India). Solar Energy Centre

1996-12-31T23:59:59.000Z

213

DOE Solar Decathlon: Stevens Institute of Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Stevens Institute of Technology Stevens Institute of Technology Ecohabit www.stevens.edu/sd2013/ Ecohabit, the U.S. Department of Energy Solar Decathlon 2013 entry from Stevens Institute of Technology, addresses sustainability in all facets-from form, through construction, to the dynamics of its use. The house adapts to its occupants' needs and provides them with feedback on ways to reduce energy use to live more sustainably. Its L shape maximizes views of, and access to, the generous outdoor living space. Design Philosophy Ecohabit aims to redefine the relationship between a house and its occupants. Intelligent energy systems monitor the house, its occupants' behaviors, and regional climate information. In doing so, Ecohabit "cohabits" with its occupants-enabling house and user to learn from each

214

New York Solar Energy Industries Association | Open Energy Information  

Open Energy Info (EERE)

Solar Energy Industries Association Solar Energy Industries Association Name New York Solar Energy Industries Association Address 533 Woodford Avenue Place Endicott, New York Zip 13760 Region Northeast - NY NJ CT PA Area Website http://www.nyseia.org/ Notes Non-profit membership and trade association dedicated solely to advancing solar energy use in New York State Coordinates 42.105025°, -76.065685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.105025,"lon":-76.065685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

215

Colorado Solar Energy Industries Association | Open Energy Information  

Open Energy Info (EERE)

Solar Energy Industries Association Solar Energy Industries Association Name Colorado Solar Energy Industries Association Address 841 Front St. Place Louisville, Colorado Zip 80027 Region Rockies Area Website http://www.coseia.org/ Notes Promote the use of solar energy and conservation to improve the environment and create a sustainable future, CO state chapter of SEIA Coordinates 39.978565°, -105.131049° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.978565,"lon":-105.131049,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

216

Salinity gradient solar pond technology applied to potash solution mining  

SciTech Connect

A solution mining facility at the Eddy Potash Mine, Eddy County, New Mexico has been proposed that will utilize salinity gradient solar pond (SGSP) technology to supply industrial process thermal energy. The process will include underground dissolution of potassium chloride (KCl) from pillars and other reserves remaining after completion of primary room and pillar mining using recirculating solutions heated in the SGSP. Production of KCl will involve cold crystallization followed by a cooling pond stage, with the spent brine being recirculated in a closed loop back to the SGSP for reheating. This research uses SGSP as a renewable, clean energy source to optimize the entire mining process, minimize environmental wastes, provide a safe, more economical extraction process and reduce the need for conventional processing by crushing, grinding and flotation. The applications of SGSP technology will not only save energy in the extraction and beneficiation processes, but also will produce excess energy available for power generation, desalination, and auxiliary structure heating.

Martell, J.A.; Aimone-Martin, C.T.

2000-06-12T23:59:59.000Z

217

Advancing Solar Through Photovoltaic Technology Innovations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder David Moore Presidential Management Fellow, Office of Energy Efficiency & Renewable Energy

218

Advancing Solar Through Photovoltaic Technology Innovations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder David Moore Presidential Management Fellow, Office of Energy Efficiency & Renewable Energy

219

Solar Lanterns: Technology Adoption Model for Indian Villages  

Science Journals Connector (OSTI)

Photovoltaic technology is one of the most promising ways ... in some villages, and so off grid solar power sources are necessary for providing electricity. ... the drivers and barriers for the adoption of solar ...

Ashok Bhatla; Parisa Ghafoori

2013-01-01T23:59:59.000Z

220

Solar Sail Propulsion: An Enabling Technology for Fundamental Physics Missions  

Science Journals Connector (OSTI)

Solar sails enable a wide range of high- ... system. They are also an enabling propulsion technology for two types of deep-space missions ... and the large-scale gravitational field of the solar system: the first...

Bernd Dachwald; Wolfgang Seboldt; Claus Lammerzahl

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Heterojunction solar cells produced by porous silicon layer transfer technology  

Science Journals Connector (OSTI)

In this paper, we present the result of heterojunction solar cells based on porous silicon layer transfer technology. a-Si/c-Si structured solar cells were prepared in which the c-Si ... was investigated. The spe...

Zhihao Yue; Honglie Shen; Lei Zhang; Bin Liu; Chao Gao; Hongjie Lv

2012-09-01T23:59:59.000Z

222

A High Efficiency Silicon Solar Cell Production Technology  

Science Journals Connector (OSTI)

BP Solar have developed a cost-effective production technology for the manufacture of high efficiency laser grooved buried grid (LGBG) crystalline silicon solar cells. The process has demonstrated 1718% ... a ne...

N. B. Mason; D. Jordan; J. G. Summers

1991-01-01T23:59:59.000Z

223

Alternative technology used to manufacture semitransparent monocrystalline silicon solar cells  

Science Journals Connector (OSTI)

This paper presents the manufacturing technology of a new semitransparent solar cell that can be used for building integrated ... anisotropic etching. The efficiency of the semitransparent solar cell is 6.12% in...

Enik? Bndy; Mrta Rencz

2013-06-01T23:59:59.000Z

224

Johanna Solar Technology GmbH JST | Open Energy Information  

Open Energy Info (EERE)

Product: German manufacturer of copper-indium-gallium-sulphide-selenium (CIGSSe) thin-film solar modules. References: Johanna Solar Technology GmbH (JST)1 This article is a...

225

Joint Capability Technology Demonstration (JCTD) Industry Day Agenda  

Energy.gov (U.S. Department of Energy (DOE))

Agenda outlines the activities of the 2014 Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) Joint Capability Technology Demonstration (JCTD) Industry Day in Fort Carson, Colorado.

226

New Membrane Technology Boosts Efficiency in Industrial Gas Processes  

Office of Energy Efficiency and Renewable Energy (EERE)

Fact sheet from Membrane Technology and Research, Inc. about its pilot-scale industrial membrane system that was funded by the SBIR program.

227

Concentrating Solar Power Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concentrating Solar Power Resources and Technologies Concentrating Solar Power Resources and Technologies Concentrating Solar Power Resources and Technologies October 7, 2013 - 11:47am Addthis Photo of a CSP dish glistening in the sun. Multiple solar mirrors reflect sunlight onto a collector. CSP systems concentrate solar heat onto a collector, which powers a turbine to generate electricity. This page provides a brief overview of concentrating solar power (CSP) technologies supplemented by specific information to apply CSP within the Federal sector. Overview Concentrating solar power technologies produce electricity by concentrating the sun's energy using reflective devices, such as troughs or mirror panels, to reflect sunlight onto a receiver. The resulting high-temperature heat is used to power a conventional turbine to produce electricity.

228

DOE Solar Decathlon: News Blog » Technology Spotlights  

NLE Websites -- All DOE Office Websites (Extended Search)

'Technology Spotlights' 'Technology Spotlights' Technology Spotlight: Solar Water Heating Friday, September 27, 2013 By Solar Decathlon Editor's Note: This post is one of a series of technology spotlights that introduces common technologies used in U.S. Department of Energy Solar Decathlon team houses. Solar water heating systems make hot water for residential uses such as bathing, laundering, and dish washing. Generally less expensive than photovoltaic panels, these systems provide homeowners with a cost-effective way to harness the sun's energy. Photo of a wooden house with PV panels and a solar hot water system on the roof. Middlebury College's U.S. Department of Energy Solar Decathlon 211 entry, Self-Reliance, had two roof-mounted solar hot water collector arrays (right) that circulated glycol through vacuum-insulated borosilicate glass

229

Potential Assessment in Mexico for Solar Process Heat Applications in Food and Textile Industries  

Science Journals Connector (OSTI)

Abstract Industrial sector of Mexico is the second energy consumer, approximately 28% of the national consumption, according to the National Balance of Energy. A potential study carried out within the micro and small food and textile industries has established that they are using 68% of the total energy consumption as thermal energy, most supplied by liquefied gas and followed by natural gas and diesel. The processes use water, low and medium pressure steam mainly at temperatures from 60 to 180C. In this context, solar concentrators, especially parabolic troughs, could give an important portion of the required thermal energy. The introduction in the country of a strategy change in the use of the energy is a formidable challenge. Beginning in the country with the erection of small parabolic trough plants in such industries could allow a technical and economic advancement of the technology and the benefits could be presented almost immediately. The methodology for the potential assessment for solar process heat applications in food and textile industries was based on statistical information from the National Balance of Energy, the National Directory of Economic Units and together with questionnaires, phone calls, workshops and in some cases personal interviews. According to such considerations, three scenarios were established and will be described within this paper in terms of the potential of the parabolic trough technology applied in the appropriated industries.

C. Ramos; R. Ramirez; J. Beltran

2014-01-01T23:59:59.000Z

230

Research & Development Needs for Building-Integrated Solar Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Building Integrated Solar Technologies (BIST) can help achieve the Building Technologies Office goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. BIST include technologies for space heating and cooling, water heating, hybrid photovoltaic-thermal systems (PV/T), active solar lighting, and building-integrated photovoltaics (BIPV).

231

Enforcement Letter, Amer Industrial Technologies - April 13, 2010 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amer Industrial Technologies - April 13, 2010 Amer Industrial Technologies - April 13, 2010 Enforcement Letter, Amer Industrial Technologies - April 13, 2010 April 13, 2010 Enforcement Letter issued to Amer Industrial Technologies related to Weld Deficiencies at the Salt Waste Processing Facility at the Savannah River Site, April 13, 2010 This letter refers to the Office of Health, Safety and Security's Office of Enforcement's investigation into the facts and circumstances associated with quality assurance deficiencies in safety significant drain pipe fabricated by Amer Industrial Technologies, Inc. (AIT) as a supplier to Parsons Infrastructure & Technology Group, Inc. (Parsons) for the Salt Waste Processing Facility (SWPF) construction project at the Department of Energy (DOE) Savanuah River Site. The contract between Parsons and AIT was

232

Office of Industry Research and Technology Programs Greetings to Industry  

E-Print Network (OSTI)

vehicles. They have a strong research base and are sup- ported by the U. S. Department of Energy. They have. Cheng, Industrial Engineering. 6 Centers/Laboratories Center Targets Reducing Fuel Consumption

Ginzel, Matthew

233

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network (OSTI)

Renewable Energy. Renewable Energy Policy Project ResearchIndustrial Policy and Renewable Energy Technology.Development of Renewable Energy. Energy Policy, 31, 799-812.

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

234

Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

Not Available

2008-12-01T23:59:59.000Z

235

Big Data Projects on Solar Technology Evolution and Diffusion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Projects on Solar Technology Evolution and Diffusion: Kickoff Meeting Graphic showing a web of people with energy bolts connecting them. Through the SEEDS program, seven projects...

236

Solar Energy Technologies FY'14 Budget At-a-Glance  

Office of Energy Efficiency and Renewable Energy (EERE)

Solar Energy Technologies FY'14 Budget At-a-Glance, a publication of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.

237

Wuxi Jiacheng Solar Energy Technology Co JC Solar | Open Energy Information  

Open Energy Info (EERE)

Wuxi Jiacheng Solar Energy Technology Co JC Solar Wuxi Jiacheng Solar Energy Technology Co JC Solar Jump to: navigation, search Name Wuxi Jiacheng Solar Energy Technology Co (JC Solar) Place Yixing, Jiangsu Province, China Zip 214200 Sector Solar Product A Chinese solar PV module and solar water heater manufacturer. Coordinates 31.36261°, 119.816643° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.36261,"lon":119.816643,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

238

IEA-Technology Roadmap: Concentrating Solar Power | Open Energy Information  

Open Energy Info (EERE)

IEA-Technology Roadmap: Concentrating Solar Power IEA-Technology Roadmap: Concentrating Solar Power Jump to: navigation, search Tool Summary Name: IEA-Technology Roadmap: Concentrating Solar Power Agency/Company /Organization: International Energy Agency Sector: Energy Focus Area: Solar, - Concentrating Solar Power Topics: Implementation, Pathways analysis Resource Type: Guide/manual Website: www.iea.org/papers/2010/csp_roadmap.pdf Cost: Free IEA-Technology Roadmap: Concentrating Solar Power Screenshot References: IEA-CSP Roadmap[1] "This roadmap identifies technology, economy and policy goals and milestones needed to support the development and deployment of CSP, as well as ongoing advanced research in CSF. It also sets out the need for governments to implement strong, balanced policies that favour rapid

239

Applications of salinity gradient solar technologies in the Southwest -- An overview  

SciTech Connect

This paper is an overview of recent applications of salinity gradient solar technologies (SGST) in the Southwest and especially in the State of Texas. SGST is a generic title for using a salinity gradient in a body of water to suppress convection and collect solar energy for a desired application, for example, salinity gradient solar ponds. Following initial work in the early 1980s at the El Paso Solar Pond project and funding of the Texas Solar Pond Consortium by the State of Texas and the Bureau of Reclamation, several applications involving the use of salinity gradient solar technologies have emerged. These applications include a biomass waste to energy project using heat from a solar pond at Bruce Foods Corporation; an industrial process heat application for sodium sulfate mining near Seagraves, Texas; overwintering thermal refuges for mariculture in Palacios, Texas; a potential salt management project on the Brazos River near Abilene, Texas; and use of solar ponds for brine disposal at a water desalting project in a small colonia east of El Paso. This paper discusses salinity gradient solar technology requirements and the abundance of resources available in Texas and the Southwest which makes this an attractive location for the commercial development of salinity gradient projects. Barriers to development as well as catalysts are discussed before a brief overview of the projects listed above is provided.

Swift, A.H.P.; Lu, H. [Univ. of Texas, El Paso, TX (United States)

1996-12-31T23:59:59.000Z

240

Solar Hot Water Technology: Office of Power Technologies (OPT) Success Stories Series Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Program Buildings Program Office of Solar Energy Technologies Every home, commercial building, and indus- trial facility requires hot water. An enormous amount of energy is consumed in the United States producing and maintaining our supply of on-demand hot water; the residential and commercial sectors combined use 3 quads (quadrillion Btus) of energy per year, roughly 3% of the total U.S. energy consumption. As of 1998, 1.2 million systems have been installed on homes in the United States, with 6000 currently being added each year. Yet the potential for growth is huge, as solar hot water systems are supplying less than 2% of the nation's hot water. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors which are being installed in increasing numbers in

Note: This page contains sample records for the topic "industrial solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

New Wire Silicon Slicing Technology for Solar Cell  

Science Journals Connector (OSTI)

Firstly a prototype machine using Multicutting wire technology (MCWT) is described. The influence of ... and damaged layer are suitable for the present solar cell technology. Further decreasing cost steps are com...

H. Lauvray; A. Talpied; J. P. Besselere

1981-01-01T23:59:59.000Z

242

DOE Solar Decathlon: New York Institute of Technology: Instituting  

NLE Websites -- All DOE Office Websites (Extended Search)

New York Institute of Technology's solar house in its permanent location at the U.S. Merchant Marine Academy. New York Institute of Technology's solar house in its permanent location at the U.S. Merchant Marine Academy. Enlarge image Green Machine/Blue Space relies on a hydrogen fuel cell to convert and store energy collected by the house's photovoltaic system. (Courtesy of Kevin Rodgers/U.S. Merchant Marine Academy) Who: New York Institute of Technology What: Green Machine/ Blue Space Where: U.S. Merchant Marine Academy 300 Steamboat Road Kings Point, NY 11024 Map This House Public tours: Not available Solar Decathlon 2005 New York Institute of Technology: Instituting Technology New York Institute of Technology partnered with the U.S. Merchant Marine Academy to develop a solar-powered house for the U.S. Department of Energy Solar Decathlon 2005. The house, called Green Machine/Blue Space, was

243

Pennsylvania Company Develops Solar Cell Printing Technology | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pennsylvania Company Develops Solar Cell Printing Technology Pennsylvania Company Develops Solar Cell Printing Technology Pennsylvania Company Develops Solar Cell Printing Technology April 15, 2010 - 4:20pm Addthis Joshua DeLung What does this project do? The technology uses Plextronics' conductive inks that can be printed by manufacturers worldwide to make solar cells, potentially as easily as they might print a newspaper. This method is much less expensive than many others in terms of raw materials and manufacturing costs. Pittsburgh-based Plextronics, plans to commercialize low-cost solar power globally with its conductive ink technologies, a goal that has been helped by a government incubator program focused on finding marketable prototypes by 2012. "For any technology to be truly successful, you have to enable a new

244

Solar Sail Technology for Nanosatellites Michael D. Souder  

E-Print Network (OSTI)

Solar Sail Technology for Nanosatellites Michael D. Souder Stanford University, Stanford, CA, 94305, USA Matthew West University of Illinois, Urbana, IL, 61801, USA Solar sailing is an attractive means. This allows a solar sail spacecraft to accomplish new classes of missions that would otherwise require

West, Matthew

245

An Overview of Solar Cell Technology Mike McGehee  

E-Print Network (OSTI)

An Overview of Solar Cell Technology Mike McGehee Materials Science and Engineering Global ClimateWatt and Evergreen Solar went bankrupt Jon Stewart, The Daily Show Solyndra, SpectraWatt and Evergreen Solar went provide 20 % of that. It takes a panel rated at 5 W, to average 1 W of power through the day and year, sog

McGehee, Michael

246

Revitalizing American Competitiveness in Solar Technologies ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of the SunShot program, including goals, management structure, funding and various solar energy initiatives, including GEARED, SUNPATH II and the creation of a new solar energy...

247

NREL: Technology Deployment - Solar Technical Assistance Team  

NLE Websites -- All DOE Office Websites (Extended Search)

City Finance Technical Assistance Requested: Assistance finding funding sources for solar development Results: NREL provided information on solar financing options 2014...

248

Sandia National Laboratories: innovative solar technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

249

Bonneville Power Administration and the Industrial Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects program, which works with industries in a traditional fashion to undertake capital improvement projects. Another is the Trade Ally Driven component, which contains...

250

ITP Metal Casting: Metalcasting Industry Technology Roadmap  

Energy.gov (U.S. Department of Energy (DOE))

Castings are essential building blocks of U. S. industry. More than 90% of all mnaufactured, durable good and 100% of all manufacturing machinery contain castings.

251

Energy Secretary Announces $13 Million to Expand Solar Energy Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Secretary Announces $13 Million to Expand Solar Energy Energy Secretary Announces $13 Million to Expand Solar Energy Technologies Energy Secretary Announces $13 Million to Expand Solar Energy Technologies October 12, 2006 - 9:08am Addthis ST. LOUIS, MO - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced more than $13 million to fund new research in solar technologies. This funding, part of President Bush's $148 million Solar America Initiative, will support the development of more efficient solar panels, known as photovoltaic devices. "This investment is a major step in our mission to bring clean, renewable solar power to the nation," Secretary Bodman said. "If we are able to harness more of the sun's power and use it to provide energy to homes and businesses, we can increase our energy diversity and strengthen our

252

Energy Secretary Announces $13 Million to Expand Solar Energy Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Secretary Announces $13 Million to Expand Solar Energy Energy Secretary Announces $13 Million to Expand Solar Energy Technologies Energy Secretary Announces $13 Million to Expand Solar Energy Technologies October 12, 2006 - 9:08am Addthis ST. LOUIS, MO - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced more than $13 million to fund new research in solar technologies. This funding, part of President Bush's $148 million Solar America Initiative, will support the development of more efficient solar panels, known as photovoltaic devices. "This investment is a major step in our mission to bring clean, renewable solar power to the nation," Secretary Bodman said. "If we are able to harness more of the sun's power and use it to provide energy to homes and businesses, we can increase our energy diversity and strengthen our

253

Photo of the Week: Boosting Solar Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photo of the Week: Boosting Solar Technology Photo of the Week: Boosting Solar Technology Photo of the Week: Boosting Solar Technology April 15, 2013 - 4:47pm Addthis Concentrated solar panels are getting a power boost. This summer, Pacific Northwest National Laboratory (PNNL) will be testing a new concentrated solar power system -- one that can help natural gas power plants reduce their fuel usage by up to 20 percent. PNNL has developed a system that uses a thermochemical conversion device to convert natural gas and sunlight into a more energy-rich fuel called syngas. By installing the pictured device in front of a concentrating solar power dish, power plants can burn less fuel. Learn more about concentrated solar energy at PNNL. | Photo courtesy of Pacific Northwest National Laboratory.

254

Solar Energy Education. Industrial arts: teacher's guide. Field test edition. [Includes glossary  

SciTech Connect

An instructional aid is presented which integrates the subject of solar energy into the classroom study of industrial arts. This guide for teachers was produced in addition to the student activities book for industrial arts by the USDOE Solar Energy Education. A glossary of solar energy terms is included. (BCS)

Not Available

1981-05-01T23:59:59.000Z

255

New and Underutilized Technology: Solar Water Heating | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heating Solar Water Heating New and Underutilized Technology: Solar Water Heating October 7, 2013 - 9:02am Addthis The following information outlines key deployment considerations for solar water heating within the Federal sector. Benefits Solar water heating uses solar thermal collectors to heat water. Application Solar water heating is applicable in most building categories. Climate and Regional Considerations Solar water heating is best in regions with high insolation. Key Factors for Deployment The Energy Independence and Security Act (EISA) of 2007 requires 30% of hot water demand in new Federal buildings and major renovations to be met with solar water heating equipment providing it is life-cycle cost effective. Federal agencies must consider collector placement location to optimize

256

Industries of the Future: Creating a Sustainable Technology Edge  

E-Print Network (OSTI)

INDUSTRIES OF THE FUTURE: Creating A Sustainable Technology Edge Sandra L. Glatt Office of Industrial Technologies Energy Efficiency and Renewable Energy U. S. Department of Energy 55 ESL-IE-00-04-10 Proceedings from the Twenty... and Renewable Energy U.S, Department of Energy Industries of the Future: Creating a Sustainable Technology Edge . cUn' OFwlOd CCooI .. LPG .Eleclric~ CNI!hnIG. AgriclAtll'e Mining A1uminu",J Totll1* kldutb't.1 Conllomption: :W, 111 TrtIlion 8tus...

Glatt, S. L.

257

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network (OSTI)

Sharing the Sun, Solar Technology in the Seventies, K, W,Sharing the Sun, Solar Technology in the 70's, Ed. K. W.ll , Sharing the Sun, Solar Technology in the 70's K, W,

Viswanathan, R.

2011-01-01T23:59:59.000Z

258

Department of Energy Lauds Highly Efficient Industrial Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lauds Highly Efficient Industrial Technology Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology November 30, 2007 - 4:45pm Addthis DOE Celebrates One-Year Anniversary of Operation of the Energy Efficient "Super Boiler" WASHINGTON, DC - Representing important technology transfer from Department of Energy (DOE) labs to the marketplace, DOE today announced the successful one-year operation of the first generation "Super Boiler," which can deliver 94 percent thermal efficiency, while producing fewer emissions than conventional boiler technologies. By 2020, this technology could save more than 185 trillion British Thermal Units (Btus) of energy - equivalent to the natural gas consumed by more than two million households. The

259

Department of Energy Lauds Highly Efficient Industrial Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology November 30, 2007 - 4:45pm Addthis DOE Celebrates One-Year Anniversary of Operation of the Energy Efficient "Super Boiler" WASHINGTON, DC - Representing important technology transfer from Department of Energy (DOE) labs to the marketplace, DOE today announced the successful one-year operation of the first generation "Super Boiler," which can deliver 94 percent thermal efficiency, while producing fewer emissions than conventional boiler technologies. By 2020, this technology could save more than 185 trillion British Thermal Units (Btus) of energy - equivalent to the natural gas consumed by more than two million households. The

260

DOE Solar Decathlon: Missouri University of Science and Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Missouri University of Science and Technology Missouri University of Science and Technology Team website: solarhouse.mst.edu Photo of members of the Missouri University of Science and Technology Solar Decathlon 2013 team standing in front of a solar-powered house. Enlarge image The Missouri University of Science and Technology Solar Decathlon 2013 team (Courtesy of the Missouri University of Science and Technology Solar Decathlon 2013 team) he Missouri University of Science and Technology audiovisual presentation Jury Feedback Architecture Contest Market Appeal Contest Engineering Contest Communications Contest Team Deliverables Project Manual Construction Drawings Menu and Recipes Neither the United States, nor the Department of Energy, nor the Alliance for Sustainable Energy LLC, nor any of their contractors, subcontractors,

Note: This page contains sample records for the topic "industrial solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Shanghai ST Solar Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

ST Solar Technology Co Ltd ST Solar Technology Co Ltd Jump to: navigation, search Name Shanghai ST Solar Technology Co Ltd Place Jiading, Shanghai Municipality, China Zip 201800 Sector Solar Product A company engaged in a-Si and crystalline silicon solar module production, solar system design, production and sale. Coordinates 31.3825°, 121.2603° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.3825,"lon":121.2603,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

262

Technology Roadmap Research Program for the Steel Industry  

SciTech Connect

The steel industry's Technology Roadmap Program (TRP) is a collaborative R&D effort jointly sponsored by the steel industry and the United States Department of Energy. The TRP program was designed to develop new technologies to save energy , increase competitiveness, and improve the environment. TRP ran from July, 1997 to December, 2008, with a total program budget of $38 million dollars. During that period 47 R&D projects were performed by 28 unique research organizations; co-funding was provided by DOE and 60 industry partners. The projects benefited all areas of steelmaking and much know-how was developed and transferred to industry. The American Iron and Steel Institute is the owner of all intellectual property developed under TRP and licenses it at commercial rates to all steelmakers. TRP technologies are in widespread use in the steel industry as participants received royalty-free use of intellectual property in return for taking the risk of funding this research.

Joseph R. Vehec

2010-12-30T23:59:59.000Z

263

ITP Metal Casting: Metalcasting Industry Technology Roadmap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A partial listing of these projects is provided below. Products and Markets ' Casting Conversions Materials Technology ' Development of Material Data Bases for HPNb and HPNb+...

264

Alternative Application of Solar Sail Technology  

Science Journals Connector (OSTI)

The development of Gossamer sail structures for solar sails contributes to a large field of future space applications like thin film solar generators, membrane antennas and drag sails. ... the development of a dr...

Nino Wolff; Patric Seefeldt; Wolfgang Bauer

2014-01-01T23:59:59.000Z

265

Some Recent Research on Solar Energy Technology  

Science Journals Connector (OSTI)

Mexico is located in the Earths sunbelt, where solar energy is plentiful for potential applications of solar energy conversion systems. According to several estimations (Renn et al. 2000...), the average insola...

Camilo A Arancibia-Bulnes; Antonio E Jimnez; Oscar A Jaramillo

2007-01-01T23:59:59.000Z

266

Appropriate Technology Approach to Solar Energy Conversion  

Science Journals Connector (OSTI)

When we want to introduce Solar Energy into the energy system, there are two main approaches possible. The first one consists in transforming Solar energy into some traditional primary or secondary energy form...

B. Bartoli

1980-01-01T23:59:59.000Z

267

Understanding the adoption of solar power technologies in the UK domestic sector.  

E-Print Network (OSTI)

??The aim of this thesis was to provide new insights into the adoption of solar power technologies. Policy has identified solar technologies capable of providing (more)

Faiers, Adam

2009-01-01T23:59:59.000Z

268

Identification of Business Opportunities within the solar industry for Saudi Arabian Companies.  

E-Print Network (OSTI)

?? This master thesis report presents a prefeasibility analysis for a Saudi Company to enter the solar industry.Section one of this report illustrates the value (more)

Retana Herrera, Julio

2013-01-01T23:59:59.000Z

269

MAP: Watch 30 Years of U.S. Solar Industry Growth  

Office of Energy Efficiency and Renewable Energy (EERE)

Over the last 30 years, the U.S. has seen expansive growth in our Solar Industry. Check out our map to watch this happen.

270

Technological assessment of light-trapping technology for thin-film Si solar cell.  

E-Print Network (OSTI)

??The proposed light trapping technology of Distributed Bragg Reflector (DBR) with Diffraction Grating (DG) and Anti-Reflection Coating (ARC) for thin film Si solar cell was (more)

Susantyoko, Rahmat Agung

2009-01-01T23:59:59.000Z

271

DOE and Industry Showcase New Control Systems Security Technologies at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Development » Energy Delivery Systems Technology Development » Energy Delivery Systems Cybersecurity » Control Systems Security News Archive » DOE and Industry Showcase New Control Systems Security Technologies at DistribuTECH DOE and Industry Showcase New Control Systems Security Technologies at DistribuTECH DistribuTECH Conference Tuesday-Thursday, March 23-25, 2010 Tampa Convention Center Booth #231 Tampa, FL Join the Department of Energy and its industry partners as they showcase six new products and technologies designed to secure the nation's energy infrastructure from cyber attack on Tuesday through Thursday, March 23-25. Visit Booth #231 at the DistribuTECH 2010 Conference & Exhibition in Tampa, FL, to see first-hand demonstrations of several newly commercialized control systems security products-each developed through a

272

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network (OSTI)

Products Industry Technology Roadmap. Agenda 2020 Technology2011. "The IEA CCS Technology Roadmap: One Year On". Energy1287- Reitzer, R. 2007. Technology Roadmap - Applications of

Kong, Lingbo

2014-01-01T23:59:59.000Z

273

Improve the Energy Efficiency of Fan Systems, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program Fan System Assessment Tool (FSAT) can help quantify energy consumption and savings opportunities in industrial fan systems.

Not Available

2008-12-01T23:59:59.000Z

274

Indian Solar Thermal Technology Technology to Protect Environment and Ecology  

Science Journals Connector (OSTI)

Rising fuel costs and global warming are pushing the development of renewable energy supplies. Solar energy is most promising as unlike wind ... and more predictable. 1 % of the solar energy received on earth wou...

Deepak Gadhia

2011-01-01T23:59:59.000Z

275

DOE Outlines Research Needed to Improve Solar Energy Technologies |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Outlines Research Needed to Improve Solar Energy Technologies Outlines Research Needed to Improve Solar Energy Technologies DOE Outlines Research Needed to Improve Solar Energy Technologies August 12, 2005 - 2:39pm Addthis WASHINGTON, D.C. - To help achieve the Bush Administration's goal of increased use of solar and other renewable forms of energy, the Department of Energy's (DOE) Office of Science has released a report describing the basic research needed to produce "revolutionary progress in bringing solar energy to its full potential in the energy marketplace." The report resulted from a workshop of 200 scientists held earlier this year. "The tax credits contained in the historic energy bill signed by President Bush will greatly help expand the use of renewable energy," said Dr. Raymond L. Orbach, Director of DOE's Office of Science. "This research

276

Dongguan Yecool Solar Energy Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Dongguan Yecool Solar Energy Technology Co Ltd Dongguan Yecool Solar Energy Technology Co Ltd Jump to: navigation, search Name Dongguan Yecool Solar Energy Technology Co Ltd Place Dongguan, Guangdong Province, China Zip 523460 Sector Solar Product A hi-tech corporation that produces solar energy photoelectrical products. Coordinates 23.046499°, 113.735817° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":23.046499,"lon":113.735817,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

277

Kinmac Solar formerly Lucky Power Technology Co Ltd | Open Energy  

Open Energy Info (EERE)

Kinmac Solar formerly Lucky Power Technology Co Ltd Kinmac Solar formerly Lucky Power Technology Co Ltd Jump to: navigation, search Name Kinmac Solar (formerly Lucky Power Technology Co Ltd) Place Hsinchu, Taiwan Sector Solar Product Taiwan-based manufacturer of solar modules, chargers, inverters, batteries and related products. Coordinates 24.69389°, 121.148064° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.69389,"lon":121.148064,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

278

MAGI Solar Energy Technology Co | Open Energy Information  

Open Energy Info (EERE)

MAGI Solar Energy Technology Co MAGI Solar Energy Technology Co Jump to: navigation, search Name MAGI Solar Energy Technology Co Place Yixing, Jiangsu Province, China Zip 214203 Sector Solar Product Chinese PV cell and module manufacturer adopts the technoloy from Germany GP Solar. Coordinates 31.36261°, 119.816643° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.36261,"lon":119.816643,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

279

Shanshan Ulica Solar Energy Science Technology Co Ltd | Open Energy  

Open Energy Info (EERE)

Shanshan Ulica Solar Energy Science Technology Co Ltd Shanshan Ulica Solar Energy Science Technology Co Ltd Jump to: navigation, search Name Shanshan Ulica Solar Energy Science&Technology Co Ltd Place Shanghai, Shanghai Municipality, China Sector Solar Product A solar PV cell and PV module manufacturer Coordinates 31.247709°, 121.472618° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.247709,"lon":121.472618,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

280

Emerging Opportunities in Industrial Electrification Technologies  

E-Print Network (OSTI)

Safe EI Uncertain 0 Vulnerable Figure 7a - Competitive Position of Natural Gas: Metals Industries 1000 j ! J ~ i - 200 ~ Safe ? Uncertain 0 Vulnerable 800 600 400 Melling F1.Ht. Drying Calcining Firing Appllcallon Figure 7b...-frred systems. Drying, on the other hand, is considered a relatively vulnerable or uncertain market, with significant competition from both coal-fired steam-heated dryers and such electrotechnologies as infrared and dielectric heating. Gas use for calcining...

Schmidt, P. S.

Note: This page contains sample records for the topic "industrial solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Aide Solar Jiangsu Aide Solar Energy Technology Co Ltd | Open Energy  

Open Energy Info (EERE)

Aide Solar Jiangsu Aide Solar Energy Technology Co Ltd Aide Solar Jiangsu Aide Solar Energy Technology Co Ltd Jump to: navigation, search Name Aide Solar (Jiangsu Aide Solar Energy Technology Co Ltd) Place Xuzhou, Jiangsu Province, China Product Chinese manufacturer of PV cells and modules. Coordinates 34.255489°, 117.190201° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.255489,"lon":117.190201,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

282

DOE Industrial Technologies Program Overview of Nanomanufacturing Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Technologies Program Industrial Technologies Program Overview of Nanomanufacturing Initiative Ron Ott March 26, 2009 Nanotechnology: The purposeful engineering of matter at scales of less than 100 nanometers to achieve size- dependent properties and functions. (Lux Research) Today's Outline * ITP R&D Program * ITP Nanomanufacturing Initiative * Nanomanufacturing Project examples * Questions Industrial Technologies Program (ITP): Mission Improve our nation's energy security, climate, environment, and economic competitiveness by transforming the way U.S. industry uses energy * Consumes more energy than any other sector of the economy (~32 quads) * Responsible for ~1,660 MMTCO 2 /year from energy consumption * Manufacturing makes the highest contribution to U.S. GDP (12%) * Produces nearly 1/4th of world

283

Technology Transfer: Success Stories: Industry-Lab Research Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry-Lab Collaboration Industry-Lab Collaboration Below are some of Berkeley Lab's collaborative research projects performed with industry. Companies Technologies Applied Materials, Inc. Particle -Free Wafer Processing Boeing, StatOil Hydro Techno Economic Model for Commercial Cellulosic Biorefineries Capintec, Inc. Compact Scintillation Camera for Medical Imaging Catalytica, Inc. Optimized Catalysts For The Cracking of Heavier Petroleum Feedstocks Chiron Corporation High Throughput Assay for Screening Novel Anti-Cancer Compounds CVC-Commonwealth Scientific Corp. Advanced Hard Carbon Plasma Deposition System with Application to the Magnetic Storage Industry E.I. du Pont de Nemours & Company Catalytic Conversion of Chloro-Fluorocarbons over Palladium-Carbon Catalysts Empire Magnetics, Inc.

284

Smart grid technologies and applications for the industrial sector  

Science Journals Connector (OSTI)

Smart grids have become a topic of intensive research, development, and deployment across the world over the last few years. The engagement of consumer sectorsresidential, commercial, and industrialis widely acknowledged as crucial for the projected benefits of smart grids to be realized. Although the industrial sector has traditionally been involved in managing power use with what today would be considered smart grid technologies, these applications have mostly been one-of-a-kind, requiring substantial customization. Our objective in this article is to motivate greater interest in smart grid applications in industry. We provide an overview of smart grids and of electricity use in the industrial sector. Several smart grid technologies are outlined, and automated demand response is discussed in some detail. Case studies from aluminum processing, cement manufacturing, food processing, industrial cooling, and utility plants are reviewed. Future directions in interoperable standards, advances in automated demand response, energy use optimization, and more dynamic markets are discussed.

Tariq Samad; Sila Kiliccote

2012-01-01T23:59:59.000Z

285

Development of Non?Tracking Solar Thermal Technology  

Science Journals Connector (OSTI)

The aims of this research is to develop high temperature solar thermal collectors that do not require complex solar tracking devices to maintain optimal performance. The collector technology developed through these efforts uses non?imaging optics and is referred to as an external compound parabolic concentrator. It is able to operate with a solar thermal efficiency of approximately 50% at a temperature of 200??C and can be readily manufactured at a cost between $15 and $18 per square foot.

2011-01-01T23:59:59.000Z

286

Technological assessment of light-trapping technology for thin-film Si solar cell  

E-Print Network (OSTI)

The proposed light trapping technology of Distributed Bragg Reflector (DBR) with Diffraction Grating (DG) and Anti-Reflection Coating (ARC) for thin film Si solar cell was analyzed from the technology, market, and ...

Susantyoko, Rahmat Agung

2009-01-01T23:59:59.000Z

287

DOE Solar Decathlon: Team Austria: Vienna University of Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Austria: Vienna University of Technology Austria: Vienna University of Technology Team website: www.solardecathlon.at Photo collage of members of the Vienna University of Technology Solar Decathlon 2013 team. The LISI logo is in the middle. Enlarge image The Vienna University of Technology Solar Decathlon 2013 team (Courtesy of the Vienna University of Technology Solar Decathlon 2013 team) he Vienna University of Technology audiovisual presentation Jury Feedback Architecture Contest Market Appeal Contest Engineering Contest Communications Contest Team Deliverables Project Manual Construction Drawings Menu and Recipes Neither the United States, nor the Department of Energy, nor the Alliance for Sustainable Energy LLC, nor any of their contractors, subcontractors, or their employees make any warranty, express or implied, or assume any

288

Monitoring SERC Technologies Solar Hot Water  

Energy.gov (U.S. Department of Energy (DOE))

A webinar by National Renewable Energy Laboratory analyst Eliza Hotchkiss on Solar Hot Water systems and how to properly monitor their installation.

289

Sandia National Laboratories: solar thermal electric technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Design and Analysis...

290

Gossamer Roadmap Technology Reference Study for a Solar Polar Mission  

Science Journals Connector (OSTI)

A technology reference study for a solar polar mission is presented. The study uses novel analytical methods to quantify the mission design space including the required sail performance to achieve a given sola...

M. Macdonald; C. McGrath; T. Appourchaux; B. Dachwald

2014-01-01T23:59:59.000Z

291

Process Technology and Advanced Concepts: Organic Solar Cells (Fact Sheet)  

SciTech Connect

Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts: Organic Solar Cell that includes scope, core competencies and capabilities, and contact/web information.

Not Available

2011-06-01T23:59:59.000Z

292

Diverse Applications of Pinch Technology Within the Process Industries  

E-Print Network (OSTI)

design and retrofit processes. The technology offers a new approach to process integration based on the applic?tion of the pinch principle. Early applications were mostly in the petrochemical and bulk chemical industries. In this paper we report... mostly confined to petrochemical or bulk chemical plants. The technology has now been proven in many more successful projects and this paper describes some of the latest results which demonstrate the applicability of pinch technology in a wide range...

Spriggs, H. D.; Ashton, G.

293

Balancing industry outlooks and technology policy as response  

Science Journals Connector (OSTI)

Technology policy has been blamed for its supply side orientation. In other words, there have always been possibilities that technology policy could be abused to justify new R&D investments in many countries. This does not mean that emphasising the demand side would always bring guaranteed success, which suggests that there should be a fine balance between demand and supply side issues in discussing 'correct' technology policy. With this backdrop, this research, utilising the Korean industry data, tried to perform forecasting of technology change for selected sectors to discuss implications for technology policy, preceded by a literature review on the merits and demerits of demand and supply side policies.

Junmo Kim

2010-01-01T23:59:59.000Z

294

Technological Change, Industry Structure and the Environment  

E-Print Network (OSTI)

applied to the projection of GHG emissions from the energy sector" (p.141). This paper extends the work qualitatively in terms of changes in production scale and resource intensity and their resulting impact technological changes are bound to have important implications for the future state of the environment

Watson, Andrew

295

Office of Industrial Technologies: Summary of program results  

SciTech Connect

Working in partnership with industry, the US Department of Energy`s (DOE`s) Office of Industrial Technologies (OIT) is helping reduce industrial energy use, emissions, and waste while boosting productivity. Operating within the Office of Energy Efficiency and Renewable Energy (EE), OIT conducts research, development, demonstration, and technology transfer efforts that are producing substantial, measurable benefits to industry. This document summarizes some of the impacts of OIT`s programs through 1997. OIT tracks energy savings as well as other benefits associated with the successfully commercialized technologies resulting from OIT-supported research partnerships. Specifically, a chart shows current and cumulative energy savings as well as cumulative reductions of various air pollutants including particulates, volatile organic compounds (VOCs), nitrogen oxides (NO{sub x}), sulfur oxides (SO{sub x}), and the greenhouse gas, carbon dioxide (CO{sub 2}). The bulk of the document consists of four appendices. Appendix 1 describes the technologies currently available commercially, along with their applications and benefits; Appendix 2 describes the OIT-supported emerging technologies that are likely to be commercialized within the next year or two; Appendix 3 describes OIT-sponsored technologies used in commercial applications in the past that are no longer tracked; and Appendix 4 describes the methodology used to assess and track OIT-supported technologies.

NONE

1999-01-01T23:59:59.000Z

296

Energy Technology Solutions: Public-Private Partnerships Transforming Industry, November 2010  

Energy.gov (U.S. Department of Energy (DOE))

Public-private partnerships transforming industry and list of commercialized technologies, knowledge-based results, and promising technologies

297

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 1: ITP-Sponsored Technologies Commercially Available  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15 DOE Industrial Technologies Program 15 DOE Industrial Technologies Program Appendix 1: ITP-Sponsored Technologies Commercially Available Aluminum ........................................................................................................................................... 19 u Aluminum Reclaimer for Foundry Applications .................................................................................................................................. 20 u Isothermal Melting................................................................................................................................................................................ 21 Chemicals........................................................................................................................................... 23

298

Solar electricity-a low power technology  

Science Journals Connector (OSTI)

The author examines the future potential of solar power with regard to its applications. He suggests that although the large size and small power output of solar cell electric systems are obstacles to high power usage, realistic low power applications can make a valuable contribution to world energy needs

L.B. Harris

1982-01-01T23:59:59.000Z

299

SEMATECH: A Model for Advancing Solar Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SEMATECH: A Model for Advancing Solar Technology SEMATECH: A Model for Advancing Solar Technology SEMATECH: A Model for Advancing Solar Technology May 24, 2011 - 11:22am Addthis SEMATECH brings 14 companies together to help them share and collaborate in their most expensive and difficult manufacturing development projects. Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs One of the hardest parts for start-up companies producing an emerging technology is the cost to test and develop more efficient manufacturing processes -- and to win the clean energy race, energy technologies not only need to be invented in America, but made in America too. That's why consortiums like SEMATECH in Albany, New York, are so important. Back in the '80s and '90s, SEMATECH breathed new life into the

300

STATEMENT OF CONSIDERATIONS REQUEST BY SIEMENS SOLAR INDUSTRIES FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE DOE COOPERATIVE AGREEMENT NO. DE-FG48-97R8810617; W(A)-97- 034; CH-0937 The Petitioner, Siemens Solar Industries, has requested a waiver of domestic and foreign patent rights for all subject inventions arising from its participation under the above referenced cooperative agreement entitled "Commercialization of CIS Thin Film Photovoltaics." This cooperative agreement is to assist the Petitioner in commercializing its proprietary copper indium diselenide (CIS) thin film photovoltaic technology. The thin film technology promises better than average efficiency and lower-cost manufacturing. This is a two year program designed to purchase equipment for pilot production of CIS modules, and for Petitioner to demonstrate, on a pilot scale, process capabilities and cost

Note: This page contains sample records for the topic "industrial solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

SunShot Incubator Spurs Solar Industry Innovation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SunShot Incubator Spurs Solar Industry Innovation SunShot Incubator Spurs Solar Industry Innovation SunShot Incubator Spurs Solar Industry Innovation November 18, 2011 - 11:15am Addthis As much as half of the price of solar energy, represented in red above graph, is made up of non-hardware costs. | Data source: Goodrich et al 2011. | Image courtesy of the Energy Department's SunShot Initiative. As much as half of the price of solar energy, represented in red above graph, is made up of non-hardware costs. | Data source: Goodrich et al 2011. | Image courtesy of the Energy Department's SunShot Initiative. Minh Le Minh Le Program Manager, Solar Program What does this project do? The SunShot Initiative is investing approximately $7 million over 18 months in a new Incubator Program for Soft Cost Reduction. The price for solar modules is now nearly $1 per watt and continues to

302

SunShot Incubator Spurs Solar Industry Innovation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spurs Solar Industry Innovation Spurs Solar Industry Innovation SunShot Incubator Spurs Solar Industry Innovation November 18, 2011 - 11:15am Addthis As much as half of the price of solar energy, represented in red above graph, is made up of non-hardware costs. | Data source: Goodrich et al 2011. | Image courtesy of the Energy Department's SunShot Initiative. As much as half of the price of solar energy, represented in red above graph, is made up of non-hardware costs. | Data source: Goodrich et al 2011. | Image courtesy of the Energy Department's SunShot Initiative. Minh Le Minh Le Program Manager, Solar Program What does this project do? The SunShot Initiative is investing approximately $7 million over 18 months in a new Incubator Program for Soft Cost Reduction. The price for solar modules is now nearly $1 per watt and continues to

303

STATEMENT OF CONSIDERATIONS REQUEST BY CHEMICAL INDUSTRY ENVIRONMENTAL TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CHEMICAL INDUSTRY ENVIRONMENTAL TECHNOLOGY CHEMICAL INDUSTRY ENVIRONMENTAL TECHNOLOGY PROJECTS, LLC (CIETP) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC02-97CH10895; W(A)-97-032; CH-0935 The Petitioner, CIETP, has requested a waiver of domestic and foreign patent rights for all subject inventions arising under the above referenced cooperative agreement and subcontracts entered thereunder. The cooperative agreement is entitled, "DOE/CIETP Vision 2020." Both the DOE and the Petitioner support programs which offer clean, energy efficient, and environmentally sound technologies. This cooperative agreement is a partnership based on these similar missions and strategies to facilitate collaborative effort within the chemical industry which will benefit the

304

Solar Cells, Wound Repair Winning GVC Technologies | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Cells, Wound Repair Winning GVC Technologies Solar Cells, Wound Repair Winning GVC Technologies March 26, 2010 Graduate student teams from the University of Arkansas and the University of Maryland earned first place in the energy and security categories at the 2010 GVC hosted by ORNL March 24-26. The competition, in its fourth year, attracts students developing new technologies and venture investors with expertise in the market. The first-prize winners each received $25,000. Douglas Hutchings, Stephen Ritterbush, and Seth Shumate from Arkansas won first place in the energy division for Silicon Solar Solutions. "Our method replaces the expensive top layer of solar cells with a thinner, large-grain polysilicon at lower temperatures, which reduces cost and is appealing to manufacturers," said Ritterbush.

305

Growing a Solar Industry in the Sacramento Clean Tech Zone  

Energy.gov (U.S. Department of Energy (DOE))

This summary report documents the assessment and evaluation process and results, with conclusions that can be used as guidelines for solar and solar supply chain focused investments.

306

Application of lasers in solar cell technologies  

Science Journals Connector (OSTI)

The possibilities for applying lasers to the fabrication of solar cells (the laser texturing of silicon surfaces and pulsed laser deposition of indium tin oxide (ITO) thin films) are demonstrated.

D. A. Zuev; A. A. Lotin; O. A. Novodvorsky

2012-10-01T23:59:59.000Z

307

Environmental Energy Technologies Division An Evaluation of Solar Valuation  

NLE Websites -- All DOE Office Websites (Extended Search)

An Evaluation of Solar Valuation An Evaluation of Solar Valuation Methods Used in Utility Planning and Procurement Processes Andrew Mills and Ryan Wiser Lawrence Berkeley National Laboratory - Report Summary - December 2012 The work described in this presentation was funded by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy and Office of Electricity Delivery and Energy Reliability 2 Environmental Energy Technologies Division Motivation and scope * Motivations: * As the cost of solar generation falls, solar is being considered as one of many viable options for supplying electricity * Recognizing and evaluating the economic value of solar will become progressively important for justifying its expanded use * Objectives: * Analyze the treatment of solar in current planning studies and

308

Transfer of security technology from Sandia to industry  

SciTech Connect

The National Competitiveness Technology Transfer Act of 1989 made technology transfer a mission for the national laboratories. The intent is to maximize the benefit from public monies and to improve the economic position of US industry in the world marketplace. A key instrument created by this legislation is the Cooperative Research and Development Agreement (CRADA) between a private company and a government-owned contractor-operated R D lab. Under these provisions, the national laboratories can negotiate directly with industry, grant title to intellectual property developed in a CRADA, and withhold publication of commercially-valuable information developed in a CRADA for up to five years. Sandia National Laboratories is very proactive in the transfer of technology developed as the DOE lead laboratory for physical security R D and from work for other government agencies. Specific security-related products have frequently evolved from government user needs into initial concepts followed by research and development into field prototypes which finally have a system design package appropriate for transfer to industry. In the past year several meetings announced in the Commerce Business Daily (CBD) were held with industry to present specific systems and to initiate discussions toward establishing a GRADA and/or granting a product license. Several examples and updates will be presented to illustrate this new process for security technology transfer from Sandia to industry. 2 refs.

Williams, J.D.; Matter, J.C.

1991-01-01T23:59:59.000Z

309

Technology transfer: solar power and distributed rural electrification  

Science Journals Connector (OSTI)

The research objective is to assess and transfer high efficiency multi-junction photovoltaic cell technology developed at the National Renewable Energy Lab to a start-up venture. The technology integrates a rooftop satellite-dish sized reflector that tracks and concentrates solar energy onto the target cell. There are still rural communities in the world where

Stephen W. Jordan; Tugrul U. Daim

2012-01-01T23:59:59.000Z

310

Office of Hydrogen, Fuel Cells & Infrastructure Technologies  

E-Print Network (OSTI)

DAS Associate DASIndustrial Technologies Implementation A Director Solar Energy Technologies Director Deputy Directors Wind and Geothermal Technologies Director Industrial Technologies Implementation B Efficiency and Renewable Energy EERE Program Offices Solar Wind & Hydropower Geothermal DE, Elec

311

A Review of Energy Use and Energy Efficiency Technologies for the Textile Industry  

E-Print Network (OSTI)

s Office of Industrial Technology and Oak Ridge NationalGunnar Hovstadius of ITT Fluid Technology Corporation. 2002.of Demonstrated Energy Technologies (CADDET), Sittard, the

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

312

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network (OSTI)

Biomass Gasification Technologies for Fuels, Chemicals andEnergy, National Energy Technology Laboratory. CO ? Solution01GO10621. Industrial Technologies Progarm (ITP). 2006e.

Kong, Lingbo

2014-01-01T23:59:59.000Z

313

Development of Commercial Technology for Thin Film Silicon Solar Cells on Glass: Cooperative Research and Development Final Report, CRADA Number CRD-07-209  

SciTech Connect

NREL has conducted basic research relating to high efficiency, low cost, thin film silicon solar cell design and the method of making solar cells. Two patents have been issued to NREL in the above field. In addition, specific process and metrology tools have been developed by NREL. Applied Optical Sciences Corp. (AOS) has expertise in the manufacture of solar cells and has developed its own unique concentrator technology. AOS wants to complement its solar cell expertise and its concentrator technology by manufacturing flat panel thin film silicon solar cell panels. AOS wants to take NREL's research to the next level, using it to develop commercially viable flat pane, thin film silicon solar cell panels. Such a development in equipment, process, and metrology will likely produce the lowest cost solar cell technology for both commercial and residential use. NREL's fundamental research capability and AOS's technology and industrial background are complementary to achieve this product development.

Sopori, B.

2013-03-01T23:59:59.000Z

314

Shanghai Comtec Solar Technology Ltd aka Comtec Solar System Group Ltd |  

Open Energy Info (EERE)

Comtec Solar Technology Ltd aka Comtec Solar System Group Ltd Comtec Solar Technology Ltd aka Comtec Solar System Group Ltd Jump to: navigation, search Name Shanghai Comtec Solar Technology Ltd (aka Comtec Solar System Group Ltd) Place Shanghai, Shanghai Municipality, China Zip 201300 Sector Solar Product Chinese manufacturer of monocrystalline silicon ingots and wafers for solar-use. Coordinates 31.247709°, 121.472618° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.247709,"lon":121.472618,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

315

Shenzhen Xintian Solar Technology Co Ltd Sun Tech Solar Co Ltd | Open  

Open Energy Info (EERE)

Xintian Solar Technology Co Ltd Sun Tech Solar Co Ltd Xintian Solar Technology Co Ltd Sun Tech Solar Co Ltd Jump to: navigation, search Name Shenzhen Xintian Solar Technology Co Ltd (Sun Tech Solar Co Ltd) Place Shenzhen, Guangdong Province, China Sector Solar Product A company that specializes in research and manufacturing of solar PV products and a wide range of related applications. Coordinates 22.546789°, 114.112556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.546789,"lon":114.112556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

316

Clean Technology & Sustainable Industries Organization | Open Energy  

Open Energy Info (EERE)

Technology & Sustainable Industries Organization Technology & Sustainable Industries Organization Jump to: navigation, search Logo: Clean Technology & Sustainable Industries Organization Name Clean Technology & Sustainable Industries Organization Address 4255 Coolidge Hwy Place Royal Oak, Michigan Zip 48073 Number of employees 1-10 Year founded 2007 Phone number 512.692.7267 Website http://www.ct-si.org/ Coordinates 42.5261046°, -83.1842756° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5261046,"lon":-83.1842756,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

317

Beijing Four Seasons Solar Power Technology Co Ltd | Open Energy  

Open Energy Info (EERE)

Beijing Four Seasons Solar Power Technology Co Ltd Beijing Four Seasons Solar Power Technology Co Ltd Place Beijing, Beijing Municipality, China Sector Solar Product Company involved in selling solar power equipment in China. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

318

A case study of the feasibility of using solar concentrating technologies for manufacturing ceramics  

Science Journals Connector (OSTI)

Abstract The goal of this case study is to determine for the first time the feasibility of using concentrated solar radiation as the source of thermal energy for the various high-temperature thermal processes involved in the manufacturing of construction ceramics. A specific test device, consisting of a volumetric-type solar receiver and a treatment chamber, has been designed and built for this purpose. This has been installed and operated in the 60 kWth solar furnace at the R&D Center Plataforma Solar de Almera. The methodology followed consisted of testing the device for the lowest temperature cycles first to go then for the higher ones successively. It has been concluded that the maximum temperature needed for thermal processes such as drying of raw materials, third-firing or double-firing is achievable with this solar technology (up to 1050 C). Further development of this solar device has turned out to be necessary to meet the requirements of higher-temperature processes like the single-firing one (1150 C) and to improve other aspects like the achievable heating and cooling rates or the uniformity of the thermal treatment over the sample, as well. This project studies the energy transfer processes between a non-conventional, high-quality energy source (concentrated solar radiation), a thermal fluid and a solid matter piece in the search of very specific optical and mechanical properties which confer it a commercial value. Though it iswas considered some time ago for the production of the so-called solar fuels (hydrogen, pure metals, etc..), this project explores for the first time the integration of very high-temperature solar energy technology into existing ceramics manufacturing industrial process.

Diego Martinez Plaza; Inmaculada Caadas Martinez; Gustavo Mallol Gasch; Flix Tllez Sufrategui; Jos Rodrguez Garca

2014-01-01T23:59:59.000Z

319

Enabling Thin Silicon Solar Cell Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

cracking problem in silicon cell technology," says Budiman. "The ALS provides us with a light that allows us to measure and characterize molecular stress in a very quantitative...

320

China Singyes Solar Technologies Holdings Ltd formerly known as Singyes  

Open Energy Info (EERE)

Singyes Solar Technologies Holdings Ltd formerly known as Singyes Singyes Solar Technologies Holdings Ltd formerly known as Singyes Curtain Wall Engineering Jump to: navigation, search Name China Singyes Solar Technologies Holdings Ltd (formerly known as Singyes Curtain Wall Engineering) Place Zhuhai, Guangdong Province, China Sector Solar Product The company China Singyes is a curtain wall engineering company that has partnered with Solar Thin Films to build solar module capacity in China for the domestic BIPV market. Coordinates 22.277°, 113.556808° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.277,"lon":113.556808,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "industrial solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Eti Solar Energy Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Eti Solar Energy Technologies Inc Eti Solar Energy Technologies Inc Jump to: navigation, search Name Eti Solar Energy Technologies Inc. Place Edmonton, Canada Zip T5S 2K9 Sector Renewable Energy, Solar Product ETI SOLAR is a renewable energy company specializing in designing, manufacturing, marketing and installing solar power systems. Coordinates 36.979335°, -85.610864° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.979335,"lon":-85.610864,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

322

Modeling The Potential For Thermal Concentrating Solar Power Technologies  

SciTech Connect

In this paper we explore the tradeoffs between thermal storage capacity, cost, and other system parameters in order to examine possible evolutionary pathways for thermal Concen-trating Solar Power (CSP) technologies. A representation of CSP performance that is suit-able for incorporation into economic modeling tools is developed. We find that, as the fraction of electricity supplied by CSP technologies grows, the application of thermal CSP technologies might progress from current hybrid plants, to plants with a modest amount of thermal storage, and potentially even to plants with sufficient thermal storage to provide base load generation capacity. The representation of CSP cost and performance developed here was implemented in the ObjECTS MiniCAM long-term integrated assessment model. Datasets for global solar resource characteristics as applied to CSP technology were also developed. The regional and global potential of thermal CSP technologies is examined.

Zhang, Yabei; Smith, Steven J.; Kyle, G. Page; Stackhouse, Jr., Paul W.

2010-10-25T23:59:59.000Z

323

Breakout Session: Disruptive Solar Technologies: Frontiers in New Materials and Approaches  

Energy.gov (U.S. Department of Energy (DOE))

Disruptive solar technologies entering the PV and CSP landscape today hold the potential to greatly impact the future of solar energy conversion. This session will highlight new techniques,...

324

E-Print Network 3.0 - advanced technology solar Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

physics. Wafer silicon photovoltaic technology. Survey... Photovoltaics: Advanced Solar Energy Conversion, by M. A. Green (Springer, 2006) Solar Electricity, by T... Spring 2012...

325

University of Colorado Technologies Available for Licensing ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners...

326

Guangxi Chengjiyongxin Solar Technology Engineering Co Ltd | Open Energy  

Open Energy Info (EERE)

Chengjiyongxin Solar Technology Engineering Co Ltd Chengjiyongxin Solar Technology Engineering Co Ltd Jump to: navigation, search Name Guangxi Chengjiyongxin Solar Technology Engineering Co Ltd Place Nanning, Guangxi Autonomous Region, China Zip 530022 Sector Solar Product Mainly engages in the research, production, sale, installing, maintenance of solar technology and integration of energy-saving engineering. Coordinates 23.26252°, 108.648003° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":23.26252,"lon":108.648003,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

327

Solar Energy Education. Industrial arts: student activities. Field test edition  

SciTech Connect

In this teaching manual several activities are presented to introduce students to information on solar energy through classroom instruction. Wind power is also included. Instructions for constructing demonstration models for passive solar systems, photovoltaic cells, solar collectors and water heaters, and a bicycle wheel wind turbine are provided. (BCS)

Not Available

1981-02-01T23:59:59.000Z

328

Apricus Solar Co Ltd aka Focus Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Ltd aka Focus Technology Co Ltd Ltd aka Focus Technology Co Ltd Jump to: navigation, search Name Apricus Solar Co Ltd (aka Focus Technology Co Ltd) Place Nanjing, Jiangsu Province, China Zip 210061 Sector Solar Product Designs, manufactures and exports solar tube thermal solar collectors, solar storage tanks, waste heat recovery systems, solar controllers and related components. References Apricus Solar Co Ltd (aka Focus Technology Co Ltd)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Apricus Solar Co Ltd (aka Focus Technology Co Ltd) is a company located in Nanjing, Jiangsu Province, China . References ↑ "Apricus Solar Co Ltd (aka Focus Technology Co Ltd)" Retrieved from "http://en.openei.org/w/index.php?title=Apricus_Solar_Co_Ltd_aka_Focus_Technology_Co_Ltd&oldid=342253

329

Sunovia Energy Technologies Inc formerly Sun Energy Solar Inc | Open Energy  

Open Energy Info (EERE)

Sunovia Energy Technologies Inc formerly Sun Energy Solar Inc Sunovia Energy Technologies Inc formerly Sun Energy Solar Inc Jump to: navigation, search Name Sunovia Energy Technologies Inc (formerly Sun Energy Solar Inc) Place Sarasota, Florida Zip 34243 Sector Solar Product Developing PV encapsulates, next generation solar cells, solar power storage, and LED lightings. References Sunovia Energy Technologies Inc (formerly Sun Energy Solar Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sunovia Energy Technologies Inc (formerly Sun Energy Solar Inc) is a company located in Sarasota, Florida . References ↑ "Sunovia Energy Technologies Inc (formerly Sun Energy Solar Inc)" Retrieved from "http://en.openei.org/w/index.php?title=Sunovia_Energy_Technologies_Inc_formerly_Sun_Energy_Solar_Inc&oldid=351820"

330

Revitalizing American Competitiveness in Solar Technologies  

Energy.gov (U.S. Department of Energy (DOE))

These slides correspond to a presentation given by Oak Ridge National Laboratory Deputy Director for Science and Technology and former SunShot Initiative Director, Dr. Ramamoorthy Ramesh at the...

331

Human Impact on Direct and Diffuse Solar Radiation during the Industrial Era  

Science Journals Connector (OSTI)

In this study the direct and diffuse solar radiation changes are estimated, and they contribute to the understanding of the observed global dimming and the more recent global brightening during the industrial era. Using a multistream radiative ...

Maria M. Kvalevg; Gunnar Myhre

2007-10-01T23:59:59.000Z

332

Improve Motor System Efficiency with MotorMaster+, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program MotorMaster+ software tool aids industrial plants with finding energy-efficient motor replacement options and managing motor systems.

Not Available

2008-12-01T23:59:59.000Z

333

Selling the solar home '80: market findings for the housing industry  

SciTech Connect

An overview of the current 1980's market for solar heated and cooled houses is presented. The study is based on the first, second, and third demonstration program grants awarded by HUD under the Solar Heating and Cooling Demonstration Act of 1974. The market data collection process included interviews with industry, public officials, and consumers. Profiles are provided of the typical demonstration solar house, builder, and purchaser. Considerations in planning the solar home and designing and building the home for the local market are reviewed. The attitudes and interests of the potential solar home purchaser are discussed and a profile of buyers and nonbuyers is presented; frequently asked questions are listed. Techniques and promotional tools for attracting solar home buyers are reviewed and the reactions of purchasers living in a solar house are cited. The general outlook for the solar housing market is discussed and is considered encouraging.

Not Available

1980-01-01T23:59:59.000Z

334

GCL Solar Energy Technology Holdings formerly GCL Silicon aka Jiangsu  

Open Energy Info (EERE)

Solar Energy Technology Holdings formerly GCL Silicon aka Jiangsu Solar Energy Technology Holdings formerly GCL Silicon aka Jiangsu Zhongneng Polysilicon Jump to: navigation, search Name GCL Solar Energy Technology Holdings (formerly GCL Silicon, aka Jiangsu Zhongneng Polysilicon) Place Xuzhou, Jiangsu Province, China Zip 221131 Sector Solar Product China-based solar grade polysilicon producer. Coordinates 34.255489°, 117.190201° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.255489,"lon":117.190201,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

335

Trony Solar Corporation formerly Shenzhen Trony Science Technology  

Open Energy Info (EERE)

Trony Solar Corporation formerly Shenzhen Trony Science Technology Trony Solar Corporation formerly Shenzhen Trony Science Technology Development Co Ltd Jump to: navigation, search Name Trony Solar Corporation (formerly Shenzhen Trony Science & Technology Development Co Ltd) Place Shenzhen, Guangdong Province, China Zip 518029 Sector Solar Product China-based manufacturer of amorphous and crystalline solar cells, modules, and related application products. Coordinates 22.546789°, 114.112556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.546789,"lon":114.112556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

336

Shanghai Chaori Solar Energy Science Technology Development Co Ltd | Open  

Open Energy Info (EERE)

Shanghai Chaori Solar Energy Science Technology Development Co Ltd Shanghai Chaori Solar Energy Science Technology Development Co Ltd Jump to: navigation, search Name Shanghai Chaori Solar Energy Science & Technology Development Co Ltd Place Shanghai, Shanghai Municipality, China Zip 200063 Sector Solar Product Manufacturer of solar PV cells based on outsourced CRM mono-crystalline and CRM multi-crystalline materials, as well as lighting and other PV systems. Coordinates 31.247709°, 121.472618° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.247709,"lon":121.472618,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

337

Expansion and Improvement of Solar Water Heating Technology in China  

Open Energy Info (EERE)

Improvement of Solar Water Heating Technology in China Improvement of Solar Water Heating Technology in China Project Management Office Jump to: navigation, search Name Expansion and Improvement of Solar Water Heating Technology in China Project Management Office Place Beijing, Beijing Municipality, China Zip 100038 Sector Buildings, Solar Product The programme focuses on the development of high-quality and attractive-looking model designs for integrating solar water heaters (SWH) into buildings in China. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

338

Xiamen Topunive Technology Co Ltd TP Solar | Open Energy Information  

Open Energy Info (EERE)

Xiamen Topunive Technology Co Ltd TP Solar Xiamen Topunive Technology Co Ltd TP Solar Jump to: navigation, search Name Xiamen Topunive Technology Co Ltd (TP Solar) Place Xiamen, Fujian Province, China Zip 361022 Sector Solar Product Produce thin-film PV module based flexible solar lighting system, portable and mobile power supplier and other related products. Coordinates 24.45252°, 118.079117° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.45252,"lon":118.079117,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

339

New Membrane Technology Boosts Efficiency in Industrial Gas Processes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Membrane Technology and Membrane Technology and Research, Inc. (MTR), based in Menlo Park, CA, is a privately- owned developer, manufacturer, and supplier of customized membrane process solutions. Currently, the company's principal membrane products are * VaporSep® systems to remove organic vapors from air and nitrogen * NitroSep TM and fuel gas conditioning systems for natural gas treatment * Hydrogen recovery systems for refinery and other applications MTR's current R&D is extending use of membranes to carbon sequestration and biofuels separations. www.mtrinc.com New Membrane Technology Boosts Efficiency in Industrial Gas Processes Challenge Membrane technology was first commercialized in the 1960s and 1970s for well-known applications such as water filtration

340

Application and development of solar energy in building industry and its prospects in China  

Science Journals Connector (OSTI)

China is the second largest country in energy consumption. More and more energy demand pressures cause the Chinese government to review its economy and energy policies in order to support the sustainable development. In China, the building sector amounts to 27.8% total energy consumption, which is only behind the industry sector. China has abundant solar energy resource, which is extensively applied to buildings. Therefore, solar energy utilization in buildings has become one of the most important issues to help China optimize the energy proportion, increasing energy efficiency and protecting the environment. Solar energy resource and its district distribution in China are introduced in detail in this paper, and the representative solar energy application to the building sector is highlighted as well. The solar energy utilization obstacles, especially policy disadvantages in building sector in China, are reviewed. Moreover, the application prospects of solar energy in building sector are presented in combination with the China economic and household industry growth.

Zhi-Sheng Li; Guo-Qiang Zhang; Dong-Mei Li; Jin Zhou; Li-Juan Li; Li-Xin Li

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The Improvement of Natural Ventilation in an Industrial Workshop by Solar Chimney  

Science Journals Connector (OSTI)

This paper presents a numerical simulation based on computational fluid dynamics (CFD) method on the enhancement of natural ventilation in an industrial workshop with heat source induced by solar chimney (SC). Four types of SC were designed to attach ... Keywords: natural ventilation, solar chimney, industrtial workshop, numerical simulation, thermal comfort

Yu-feng Xue; Ya-xin Su

2011-02-01T23:59:59.000Z

342

Impact of Control System Technologies on Industrial Energy Savings  

E-Print Network (OSTI)

Modify temperature and pressure setpoints to meet requirements while optimizing energy use CHILLER ROOM TB Static Pressure Setpoint Reset Thermostatic Temperature Setpoint ESL-IE-14-05-40 Proceedings of the Thrity-Sixth Industrial Energy Technology... Conference New Orleans, LA. May 20-23, 2014 1. HVAC: Seasonal Temperature Resets I. SETPOINT ADJUSTMENT Low payback, high savings! Image: http://www.ncelectriccooperatives.com/electricity/homeEnergy/thermostats_intro.htm Average Savings: $10,000 per year...

Parikh, P.; Pasmussen, B. P.

2014-01-01T23:59:59.000Z

343

SolarBridge Technologies formerly SmartSpark Energy Systems | Open Energy  

Open Energy Info (EERE)

SolarBridge Technologies formerly SmartSpark Energy Systems SolarBridge Technologies formerly SmartSpark Energy Systems Jump to: navigation, search Name SolarBridge Technologies (formerly SmartSpark Energy Systems) Place Austin, Texas Zip 78731 Sector Solar Product Developing a micro-inverter for residential solar panels, and charge equalisers to improve life for battery-powered equipment. References SolarBridge Technologies (formerly SmartSpark Energy Systems)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. SolarBridge Technologies (formerly SmartSpark Energy Systems) is a company located in Austin, Texas . References ↑ "SolarBridge Technologies (formerly SmartSpark Energy Systems)" Retrieved from "http://en.openei.org/w/index.php?title=SolarBridge_Technologies_formerly_SmartSpark_Energy_Systems&oldid=351355"

344

Breakthrough Furnace Can Cut Solar Industry Costs (Fact Sheet)  

SciTech Connect

A game-changing Optical Cavity Furnace (OCF), developed by NREL, uses optics to heat and purify solar cells at unmatched precision, while also boosting the cells' efficiency.

Not Available

2013-08-01T23:59:59.000Z

345

Solar Technology Acceleration Center (SolarTAC): Cooperative Research and Development Final Report, CRADA Number CRD-07-259  

SciTech Connect

This agreement allowed NREL to serve as an advisor on SolarTAC - a collaborative effort between Xcel Energy, NREL, and the University of Colorado at Boulder. The collaboration was formed to accelerate pre-commercial and early commercial solar energy technologies to the marketplace. Through this CRADA, NREL participated in the deployment of solar energy generation technologies and related solar equipment for research, testing, validation, and demonstration purposes.

Kramer, W.

2011-10-01T23:59:59.000Z

346

DOE Solar Decathlon: Missouri University of Science and Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Missouri University of Science and Technology Missouri University of Science and Technology Chameleon House solarhouse.mst.edu Missouri University of Science and Technology designed Chameleon House for the U.S. Department of Energy Solar Decathlon 2013 to epitomize an adaptable living environment. With versatile features that form a chameleon skin-and spaces designed to maximize flexibility, comfort, and convenience-the Chameleon House flexes easily to meet as many market and regional needs as possible. Design Philosophy Chameleon House rejects a paradigm of technology for technology's sake. Instead, its creators were guided by the belief that technology is important only to the extent that it significantly enhances a user's experience. The design avoids unnecessary complexity in favor of a simple approach that uses seamless engineering of systems to prove that

347

Activity dependence of solar supergranular fractal dimension  

Science Journals Connector (OSTI)

......Activity dependence of solar supergranular fractal...NIE Institute of Technology, Hootagalli Industrial...of supergranular cells using the intensity...at the Kodaikanal Solar Observatory during...Zoomed-in view of the solar chromosphere. Cell A is present in......

U. Paniveni; V. Krishan; Jagdev Singh; R. Srikanth

2010-02-11T23:59:59.000Z

348

U.S. Department of Energy Solar Energy Technologies Program | Open Energy  

Open Energy Info (EERE)

Department of Energy Solar Energy Technologies Program Department of Energy Solar Energy Technologies Program Jump to: navigation, search Logo: U.S. Department of Energy Solar Energy Technologies Program Name U.S. Department of Energy Solar Energy Technologies Program Agency/Company /Organization United States Department of Energy Sector Energy Focus Area Solar Topics Policies/deployment programs, Technology characterizations Website http://en.openei.org/wiki/Gate References U.S. Department of Energy Solar Energy Technologies Program[1] This article is a stub. You can help OpenEI by expanding it. References ↑ "U.S. Department of Energy Solar Energy Technologies Program" Retrieved from "http://en.openei.org/w/index.php?title=U.S._Department_of_Energy_Solar_Energy_Technologies_Program&oldid=375298"

349

Applying Chance Discovery with Dummy Event in Technology Monitoring of Solar Cell  

Science Journals Connector (OSTI)

One of the green energy, solar cell, is growing rapidly; the monitoring of ... scenarios, and to explain the overview of solar cell technology. Finally, the relationships between technology and companies, between...

Tzu-Fu Chiu; Chao-Fu Hong; Ming-Yeu Wang

2009-01-01T23:59:59.000Z

350

SOLAR ENERGY: ITS TECHNOLOGIES AND APPLICATIONS P  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY: ENERGY: ITS TECHNOLOGIES AND APPLICATIONS P a u l C . Auh June 1978 BNL- 24832 7go75;a S o l a r Technology Group Department of Energy and Environment Brookhaven N a t i o n a l L a b o r a t o r y Upton, New York 11973 _ . . NOTICE ma report was prepared as an account of work sponsored by the United Stater Government. Neither the United Stater nor the United Stater Department of Encrw, nor any of their employees, nor any of their contractors, subcontractors, or their employees. makes any warranty, express or mplied, or assumes any legal liability or rcrponribdity far the accuracy. completeness or usefulness of any dormallon. apparatus, product or p r o w s daclased, or reprcsenU that 81s use would no1 infringe privately owned 6ghU. Date, Gs DISCLAIMER This report was prepared as an account of work sponsored by an

351

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009  

Office of Energy Efficiency and Renewable Energy (EERE)

Describes the impacts in energy savings and environmental pollution reduction of the Industrial Technologies Program's commercialized and emerging technologies for CY2009.

352

Low NOx firing technology of Mitsubishi Heavy Industries  

SciTech Connect

This paper presents super low NO{sub x} combustion technologies successfully developed by MHI (Mitsubishi Heavy Industries, Ltd.) and its use in practice. PM (Pollution Minimum) burners directly reduce NO{sub x} from the burners themselves and MACT (Mitsubishi Advanced Combustion Technology) system, an in-furnace NO{sub x} removal system, reduces NO{sub x} generated from the main burners within the boiler. These firing systems are applicable to coal, oil, gas and also to other exotic fuels like Orimulsion or CWM (Coal Water Mixture). MRS (Mitsubishi Rotary Separator) mills minimizes unburnt carbon with its reliable ultra-fine grinding of coal and hence contribute to low NO{sub x}. These technologies have been applied in various combinations to 227 boilers for both new installation and retrofit jobs. Large 1,000 MWe oil or gas fired boilers and 700 MWe coal fired boilers have been put into commercial use, and a 1,000 MWe coal fired boiler is under commissioning. The technologies have been applied to small sized boilers for industrial use as well. All the delivered systems have been working both domestic and overseas to the customers` satisfaction.

Kaneko, Shozo; Tokuda, Kimishiro; Sato, Susumu [Mitsubishi Heavy Industries, Yokohama (Japan)

1996-01-01T23:59:59.000Z

353

ALSO: ISRC Technologies Meet The Challenge RIM Industry Booms  

NLE Websites -- All DOE Office Websites (Extended Search)

SUMMER* 2000 SUMMER* 2000 ALSO: ISRC Technologies Meet The Challenge RIM Industry Booms SMART MACHINES The Robotics Revolution ALSO: Smart Scalpel Detects Cancer Cells Shrinking Prostate Glands Without Surgery SMART MACHINES The Robotics Revolution ALSO: Smart Scalpel Detects Cancer Cells Shrinking Prostate Glands Without Surgery A QUARTERLY RESEARCH & DEVELOPMENT JOURNAL VOLUME 2, NO. 2 S A N D I A T E C H N O L O G Y ON THE COVER: MARV (Miniature Autonomous Robotic Vehicle) is one of the world's smallest autonomous vehicles, containing all necessary power, sensors, computers, and controls on board. MARV is a three-year-old technology measuring one cubic inch in size. (Photo by Randy Montoya) Sandia Technology is a quarterly journal published by Sandia National Laboratories. Sandia is a multiprogram

354

Solar pond technology for large-scale heat processing in a Chilean mine  

Science Journals Connector (OSTI)

Coppermining is the largest industrial activity in Northern Chile a region that relies mostly on imported energy resources thus making the mining sector vulnerable to the rising cost of fuel oil and electricity. The extraction of copper is mostly accomplished by hydrometallurgy a three-step low energy process consisting of heap leaching concentration by solvent extraction and metal recovery by electro-winning. Since the content of copper in its ore tends to degrade as the mining operation proceeds higher leaching temperatures would be needed along with increasing energy requirements. In order to address this demand and considering that the region has one of the highest levels of solar radiation and clear skies the authors assessed the solar pond technology for rising the temperature of the leaching stream. The working principle of such technology is presented as well as its mathematical formulation restrictions and assumptions aiming to simulate the performance of a solar pond and to size a suitable setup. The results indicate that this technology can provide sufficient heat to raise the temperature to a range of 50 to 70?C throughout the year with an annual gross thermal supply of 626?GWh. In order to minimize the loss of water and salt from the pond a closed salt cycle is suggested. Savings of up to 59 000 tons of diesel oil per year and the avoidance of 164 000 tons of CO2 per year could be achieved with a solar pond effective area of 1.43 km2 reaching an average efficiency of 19.4%. Thus solar pond technology is suitable for attaining the goal of increasing the leaching temperature while diminishing fuel costs and greenhouse emissions.

F. Garrido; R. Soto; J. Vergara; M. Walczak; P. Kanehl; R. Nel; J. Garca

2012-01-01T23:59:59.000Z

355

Execution of rapid prototyping technology - an Indian manufacturing industry's perspective  

Science Journals Connector (OSTI)

Since independence, India has endeavoured to bring economic and social change through science and technology. While India's economic growth in the recent years has been impressive, many challenges remain to be met to create a strong and vibrant innovation eco-system. This requires a culture and value system which supports both basic and applied research and technology development. One of those technologies, rapid prototyping (RP) technology, is the automatic construction of physical objects using additive manufacturing technology. It can be defined as an automated and patternless process which allows solid physical parts to be made directly from computer data in a short time. RP acts as the 'manufacturing middle' to link up the computer-aided design (CAD) process and manufacturing processes. It includes the making of prototypes for design verification and even the making of tooling for production. With the trend towards concurrent engineering and the widespread use of CAD, RP has quickly become a booming business in the past few years. This paper aims to provide a comprehensive overview of the execution of RP technology in India and the critical decision factors in executing RP for the Indian manufacturing industry.

Rajesh Kumar; Rupinder Singh; I.P.S. Ahuja

2013-01-01T23:59:59.000Z

356

A Review of Sloped Solar Updraft Power Technology  

Science Journals Connector (OSTI)

Abstract The Solar Updraft Power Plant (SUPP) concept was successfully proven in the last few decades through many experimental and analytical approaches. However, the high investment cost compared to the plant efficiency and the limited height of the chimney due to the technological constraints are considered the main disadvantages of the SUPP. In order to overcome these problems, many novel concepts were proposed; One being the Sloped Solar Updraft Power Plant (SSUPP). This paper provides a comprehensive overall review for all SSUPP researches up-to-date including the principle with a description of the plant, physical process, theoretical and experimental studies.

Shadi Kalash; Wajih Naimeh; Salman Ajib

2014-01-01T23:59:59.000Z

357

Plant Energy Profiler Tool for the Chemicals Industry (ChemPEP Tool), Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program ChemPEP Tool can help chemical plants assess their plant-wide energy consumption.

Not Available

2008-12-01T23:59:59.000Z

358

NREL Invention Speeds Solar Cell Quality Testing for Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy within the U.S. Department of Energy. QE is a measurement of how cells respond to light across the solar spectrum, but traditional methods for measuring QE had been too...

359

Solar Thermal Power Generation and Industrial Process Heat  

Science Journals Connector (OSTI)

A solar chimney power plant consists of a transparent tubular chimney over 200m tall rising from a...2 covered with a transparent material (Haaf et al. 1983). At the base of the chimney is located a turbine driv...

Brian Norton

2014-01-01T23:59:59.000Z

360

EUROPEAN TECHNOLOGY PLATFORM ON INDUSTRIAL SAFETY (ETPIS), A VISION TO GAIN SAFETY FOR A SUSTAINABLE INDUSTRY GROWTH  

E-Print Network (OSTI)

Safety (ETPIS). It is a result of a collective work made by research- ers from organisationsEUROPEAN TECHNOLOGY PLATFORM ON INDUSTRIAL SAFETY (ETPIS), A VISION TO GAIN SAFETY that consider industrial safety as a strategic issue for the sustainable growth of the European Industry

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "industrial solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Technologies and Policies to Improve Energy Efficiency in Industry  

Science Journals Connector (OSTI)

The industrial sector consumes nearly 40% of annual global primary energy use and is responsible for a similar share of global energy?related carbon dioxide ( CO 2 ) emissions. Many studies and actual experience indicate that there is considerable potential to reduce the amount of energy used to manufacture most commodities concurrently reducing CO 2 emissions. With the support of strong policies and programs energy?efficient technologies and measures can be implemented that will reduce global CO 2 emissions. A number of countries including the Netherlands the UK and China have experience implementing aggressive programs to improve energy efficiency and reduce related CO 2 emissions from industry. Even so there is no silver bullet and all options must be pursued if greenhouse gas emissions are to be constrained to the level required to avoid significant negative impacts from global climate change.

Lynn Price

2008-01-01T23:59:59.000Z

362

Early Stage R&D Technologies - Energy Innovation Portal  

NLE Websites -- All DOE Office Websites (Extended Search)

Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America...

363

Enabling Technologies for High Penetration of Wind and Solar Energy  

SciTech Connect

High penetration of variable wind and solar electricity generation will require modifications to the electric power system. This work examines the impacts of variable generation, including uncertainty, ramp rate, ramp range, and potentially excess generation. Time-series simulations were performed in the Texas (ERCOT) grid where different mixes of wind, solar photovoltaic and concentrating solar power provide up to 80% of the electric demand. Different enabling technologies were examined, including conventional generator flexibility, demand response, load shifting, and energy storage. A variety of combinations of these technologies enabled low levels of surplus or curtailed wind and solar generation depending on the desired penetration of renewable sources. At lower levels of penetration (up to about 30% on an energy basis) increasing flexible generation, combined with demand response may be sufficient to accommodate variability and uncertainty. Introduction of load-shifting through real-time pricing or other market mechanisms further increases the penetration of variable generation. The limited time coincidence of wind and solar generation presents increasing challenges as these sources provide greater than 50% of total demand. System flexibility must be increased to the point of virtually eliminating must-run baseload generators during periods of high wind and solar generation. Energy storage also becomes increasingly important as lower cost flexibility options are exhausted. The study examines three classes of energy storage - electricity storage, including batteries and pumped hydro, hybrid storage (compressed-air energy storage), and thermal energy storage. Ignoring long-distance transmission options, a combination of load shifting and storage equal to about 12 hours of average demand may keep renewable energy curtailment below 10% in the simulated system.

Denholm, P.

2011-01-01T23:59:59.000Z

364

The technology development status of the Solar Probe  

Science Journals Connector (OSTI)

The continuing development of new spacecraft technologies promises to enable the Solar Probe to be the first mission to travel in the atmosphere or corona of the sun. The most significant technology challenge is the thermal shield that would protect the spacecraft from the flux of 3000 suns (400? W/cm ? ** ??2) at the perihelion radius of 4 solar radii while allowing the spacecraft subsystems to operate at near room temperature. One of the key design issues of the shield is not simply surviving but operating at temperatures well above 2000K while minimizing the sublimation from the shield surface. Excessive sublimation could cause interference with the plasma science experiments that are fundamental to the Solar Probes scientific objectives of measuring the birth and development of the solar wind. The selection of a special type of carbon-carbon as the shield material seems assured at this time. Tests of this material in late 1996 were designed to confirm its optical surface properties and mass loss characteristics and the results are encouraging. The shield concept incorporates dual functions as a thermal shield and as a large high gain antenna. This latter function is important because of the difficult communications environment encountered within the solar corona. A high temperature feed concept under development is discussed here. The NASA guideline requiring non-nuclear power sources has introduced the requirement for alternative power sources. The current concept uses high temperature photovoltaic arrays as well as high energy low mass batteries to provide power during the perihelion phase of the mission. Testing of photovoltaic cells at high sun angles was completed in 1996 and the results are presented here. Finally a miniaturized science payload which relies on the latest advances in analyzer and detector technologies will be developed to minimize mass and power requirements.

James E. Randolph; Juan A. Ayon; Geoffrey D. Harvey; William A. Imbriale; Robert N. Miyake; Robert L. Mueller; Bill J. Nesmith; P. Richard Turner; Ray B. Dirling Jr.; Jeffrey C. Preble; Suraj Rawal; Wallace L. Vaughn

1997-01-01T23:59:59.000Z

365

DOE Solar Decathlon: News Blog » Technology Spotlights  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Water Heating Solar Water Heating http://www.solardecathlon.gov/blog/archives/2504 http://www.solardecathlon.gov/blog/archives/2504#comments Sat, 28 Sep 2013 00:49:13 +0000 http://www.solardecathlon.gov/blog/?p=2504 http://www.solardecathlon.gov/blog/archives/2504/feed 0 Technology Spotlight: Structural Insulated Panels http://www.solardecathlon.gov/blog/archives/1530 http://www.solardecathlon.gov/blog/archives/1530#comments Mon, 19 Sep 2011 17:42:18 +0000 http://www.solardecathlon.gov/blog/?p=1530 http://www.solardecathlon.gov/blog/archives/1530/feed 1 Technology Spotlight: Radiant Heating Systems http://www.solardecathlon.gov/blog/archives/1418 http://www.solardecathlon.gov/blog/archives/1418#comments Thu, 15 Sep 2011 19:52:35 +0000 http://www.solardecathlon.gov/blog/?p=1418

366

DOE Solar Decathlon: Team Austria: Vienna University of Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Austria: Vienna University of Technology Austria: Vienna University of Technology LISI www.solardecathlon.at Team Austria's U.S. Department of Energy Solar Decathlon 2013 entry is a simple, smart, and sustainable house. Powered by a rooftop solar photovoltaic system, Living Inspired by Sustainable Innovation (LISI) generates more power than it uses over the course of a year. The house adapts to a range of climate zones and flexes to meet a variety of lifestyles. Design Philosophy In developing LISI, Team Austria was guided by a vision for a healthy, sustainable future and a concept that could adapt to many lifestyles and climates. Viewing the house as a "social creature" eager to find its place in a richly diverse community, Team Austria honors a sense of stewardship in the use of our planet's most precious resources.

367

Prospects for conversion of solar energy into chemical fuels: the concept of a solar fuels industry  

Science Journals Connector (OSTI)

...associated with solar energy conversion in a non-intense...clear that solar energy conversion could be invaluable...to 30 per cent conversion efficiency are...breakdown of our energy needs (DECC...biggest single factor. This is critical...

2013-01-01T23:59:59.000Z

368

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 3: Historical ITP Technology Successes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

157 DOE Industrial Technologies Program 157 DOE Industrial Technologies Program Appendix 3: Historical ITP Technology Successes u Absorption Heat Pump/Refrigeration Unit ........................................................................................................................................160 u Advanced Turbine System..................................................................................................................................................................160 u Aerocylinder Replacement for Single-Action Cylinders....................................................................................................................160 u Aluminum Roofing System................................................................................................................................................................160

369

TrendSetter Solar Products Inc aka Trendsetter Industries formerly Six  

Open Energy Info (EERE)

TrendSetter Solar Products Inc aka Trendsetter Industries formerly Six TrendSetter Solar Products Inc aka Trendsetter Industries formerly Six River Solar Jump to: navigation, search Name TrendSetter Solar Products Inc (aka Trendsetter Industries, formerly Six River Solar) Place Fairhaven, California Zip 95564 Sector Solar Product Manufacturer of solar hot water heating and storage systems. Coordinates 41.63548°, -70.903856° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.63548,"lon":-70.903856,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

370

Bates solar industrial process-steam application: preliminary design review  

SciTech Connect

The design is analyzed for a parabolic trough solar process heat system for a cardboard corrugation fabrication facility in Texas. The program is briefly reviewed, including an analysis of the plant and process. The performance modeling for the system is discussed, and the solar system structural design, collector subsystem, heat transport and distribution subsystem are analyzed. The selection of the heat transfer fluid, and ullage and fluid maintenance are discussed, and the master control system and data acquisition system are described. Testing of environmental degradation of materials is briefly discussed. A brief preliminary cost analysis is included. (LEW)

Not Available

1980-01-07T23:59:59.000Z

371

Using federal technology policy to strength the US microelectronics industry  

SciTech Connect

A review of US and Japanese experiences with using microelectronics consortia as a tool for strengthening their respective industries reveals major differences. Japan has established catch-up consortia with focused goals. These consortia have a finite life targeted from the beginning, and emphasis is on work that supports or leads to product and process-improvement-driven commercialization. Japan`s government has played a key role in facilitating the development of consortia and has used consortia promote domestic competition. US consortia, on the other hand, have often emphasized long-range research with considerably less focus than those in Japan. The US consortia have searched for and often made revolutionary technology advancements. However, technology transfer to their members has been difficult. Only SEMATECH has assisted its members with continuous improvements, compressing product cycles, establishing relationships, and strengthening core competencies. The US government has not been a catalyst nor provided leadership in consortia creation and operation. We propose that in order to regain world leadership in areas where US companies lag foreign competition, the US should create industry-wide, horizontal-vertical, catch-up consortia or continue existing consortia in the six areas where the US lags behind Japan -- optoelectronics, displays, memories, materials, packaging, and manufacturing equipment. In addition, we recommend that consortia be established for special government microelectronics and microelectronics research integration and application. We advocate that these consortia be managed by an industry-led Microelectronics Alliance, whose establishment would be coordinated by the Department of Commerce. We further recommend that the Semiconductor Research Corporation, the National Science Foundation Engineering Research Centers, and relevant elements of other federal programs be integrated into this consortia complex.

Gover, J.E.; Gwyn, C.W.

1994-07-01T23:59:59.000Z

372

Advanced Energy Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Industries is using the ESIF's Power Systems Integration Laboratory (PSIL) to test its new solar photovoltaic (PV) inverter technology with the facility's hardware-in-the-loop...

373

Federal/Industry Development of Energy-Conserving Technologies for the Chemical and Petroleum Refining Industries  

E-Print Network (OSTI)

-btu gasification of coal or petroleum coke in a petroleum refinery can reduce imports to the refinery of scarce natural gas and can provide additional energy supplies through sale of high-btu refinery fuel gas. The potential gain in national energy supplies... through industry-wide application of this technology is on the order of 0.5-1 quad per year. 2. Depending on the sales price which can be ob tained for refinery fuel gas displaced by coke generated MBG, the economics of coke gasification can appear...

Alston, T. G.; Humphrey, J. L.

1981-01-01T23:59:59.000Z

374

Science and Technology of BOREXINO: A Real Time Detector for Low Energy Solar Neutrinos SOLAR NEUTRINOS  

E-Print Network (OSTI)

BOREXINO, a real-time device for low energy neutrino spectroscopy is nearing completion of construction in the underground laboratories at Gran Sasso, Italy (LNGS). The experiment's goal is the direct measurement of the flux of 7Be solar neutrinos of all flavors via neutrino-electron scattering in an ultra-pure scintillation liquid. Seeded by a series of innovations which were brought to fruition by large scale operation of a 4-ton test detector at LNGS, a new technology has been developed for BOREXINO. It enables sub-MeV solar neutrino spectroscopy for the first time. This paper describes the design of BOREXINO, the various facilities essential to its operation, its spectroscopic and background suppression capabilities and a prognosis of the impact of its results towards resolving the solar neutrino problem. BOREXINO will also address several other frontier questions in particle physics, astrophysics and geophysics.

Borexino Collaboration; G. Alimonti

2000-12-11T23:59:59.000Z

375

Shenzhen Prosunpro PengSangPu Solar Industrial Products Corporation | Open  

Open Energy Info (EERE)

Prosunpro PengSangPu Solar Industrial Products Corporation Prosunpro PengSangPu Solar Industrial Products Corporation Jump to: navigation, search Name Shenzhen Prosunpro/ PengSangPu Solar Industrial Products Corporation Place Shenzhen, Guangdong Province, China Zip 518055 Sector Solar Product Shenzhen Prosunpro makes and installs flat panel solar passive energy collectors and engineers central solar hot water systems. Coordinates 22.546789°, 114.112556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.546789,"lon":114.112556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

376

Co-authorship Networks in Development of Solar Cell Technology: International and Regional Knowledge Interaction  

Science Journals Connector (OSTI)

This paper examines the development of new science-based technology in the research area of nanostructured solar cells development a science-based technology with potential for advancing renewable energy technology

Katarina Larsen

2009-01-01T23:59:59.000Z

377

Beijing Sunpu Solar PV Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Municipality, China Zip: 100083 Sector: Solar Product: Manufacturers of PV-powered street lights, inverters and other solar PV systems. References: Beijing Sunpu Solar PV...

378

Is Germany?s energy transition a case of successful green industrial policy? Contrasting wind and solar PV  

Science Journals Connector (OSTI)

Abstract In this paper, we address the challenge of Germany?s energy transition (Energiewende) as the centrepiece of the country?s green industrial policy. In addition to contributing to global climate change objectives, the Energiewende is intended to create a leading position for German industry in renewable energy technologies, boost innovative capabilities and create employment opportunities in future growth markets at the least possible cost. The success in reaching these aims, and indeed the future of the entire concept, is hotly debated. The paper aims to provide an up-to-date assessment of what has become a fierce controversy by comparing solar photovoltaic (PV) and wind energy along five policy objectives: (1) competitiveness, (2) innovation, (3) job creation, (4) climate change mitigation, and (5) cost. We find mixed evidence that Germany reaches its green industrial policy aims at reasonable costs. Wind energy seems to perform better against all policy objectives, while the solar PV sector has come under intense pressure from international competition. However, this is only a snapshot of current performance, and the long term and systemic perspective required for the energy sector transformation suggests a need for a balanced mix of a variety of clean energy sources.

Anna Pegels; Wilfried Ltkenhorst

2014-01-01T23:59:59.000Z

379

Modeling and co-simulation of a parabolic trough solar plant for industrial process heat  

Science Journals Connector (OSTI)

In the present paper a tri-dimensional non-linear dynamic thermohydraulic model of a parabolic trough collector was developed in the high-level acausal object-oriented language Modelica and coupled to a solar industrial process heat plant modeled in TRNSYS. The integration is performed in an innovative co-simulation environment based on the TLK interconnect software connector middleware. A discrete Monte Carlo ray-tracing model was developed in SolTrace to compute the solar radiation heterogeneous local concentration ratio in the parabolic trough collector absorber outer surface. The obtained results show that the efficiency predicted by the model agrees well with experimental data with a root mean square error of 1.2%. The dynamic performance was validated with experimental data from the Acurex solar field, located at the Plataforma Solar de Almeria, South-East Spain, and presents a good agreement. An optimization of the IST collector mass flow rate was performed based on the minimization of an energy loss cost function showing an optimal mass flow rate of 0.22kg/sm2. A parametric analysis showed the influence on collector efficiency of several design properties, such as the absorber emittance and absorptance. Different parabolic trough solar field model structures were compared showing that, from a thermal point of view, the one-dimensional model performs close to the bi-dimensional. Co-simulations conducted on a reference industrial process heat scenario on a South European climate show an annual solar fraction of 67% for a solar plant consisting on a solar field of 1000m2, with thermal energy storage, coupled to a continuous industrial thermal demand of 100kW.

R. Silva; M. Prez; A. Fernndez-Garcia

2013-01-01T23:59:59.000Z

380

DOE Solar Decathlon: News Blog » Blog Archive » Technology Spotlight:  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Spotlight: Solar Water Heating Technology Spotlight: Solar Water Heating Friday, September 27, 2013 By Solar Decathlon Editor's Note: This post is one of a series of technology spotlights that introduces common technologies used in U.S. Department of Energy Solar Decathlon team houses. Solar water heating systems make hot water for residential uses such as bathing, laundering, and dish washing. Generally less expensive than photovoltaic panels, these systems provide homeowners with a cost-effective way to harness the sun's energy. Photo of a wooden house with PV panels and a solar hot water system on the roof. Middlebury College's U.S. Department of Energy Solar Decathlon 211 entry, Self-Reliance, had two roof-mounted solar hot water collector arrays (right) that circulated glycol through vacuum-insulated borosilicate glass

Note: This page contains sample records for the topic "industrial solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Near-Earth Asteroid Flyby Survey Mission Using Solar Sailing Technology  

Science Journals Connector (OSTI)

The purpose of this paper is to investigate the possibility of on asteroid (NEA) survey mission enabled by advanced solar sailing technology. The study is focused not on the solar sail spacecraft itself but on it...

Mai Bando; Hiroshi Yamakawa

2011-10-01T23:59:59.000Z

382

Multiple EFG Silicon Ribbon Technology as the Basis for Manufacturing Low-Cost Terrestrial Solar Cells  

Science Journals Connector (OSTI)

The development of a technology for production of low-cost silicon sheet substrates for solar cells based on the EFG process has been...2) solar cells prepared from this 10 cm wide ribbon...

B. Mackintosh; J. P. Kalejs; C. T. Ho; F. V. Wald

1981-01-01T23:59:59.000Z

383

The impact of manufacturing offshore on technology development paths in the automotive and optoelectronics industries  

E-Print Network (OSTI)

This dissertation presents a two-case study of the impact of manufacturing offshore on the technology trajectory of the firm and the industry. It looks in particular at the automotive and optoelectronics industries. The ...

Fuchs, Erica R. H. (Erica Renee H.), 1977-

2006-01-01T23:59:59.000Z

384

Defying value-shift : how incumbents regain values in the industry with new technologies  

E-Print Network (OSTI)

Historically, incumbent assembly firms with unquestionable strong positions in such industries as the automobile, consumer electronics, computer and mobile phone industries, have lost power when new technology is introduced; ...

Kuramoto, Yukari

2010-01-01T23:59:59.000Z

385

21-389 Technology and Environmental Deterioration in Pre-Industrial Societies Chapter 21. TECHNOLOGY AND ENVIRONMENTAL  

E-Print Network (OSTI)

21-389 Technology and Environmental Deterioration in Pre-Industrial Societies Chapter 21. TECHNOLOGY AND ENVIRONMENTAL DETERIORATION IN PRE-INDUSTRIAL SOCIETIES One assumption made by most... [is... Robert Heizer 1955 More than one half [of the extent of the Roman Em- pire] is either deserted

Richerson, Peter J.

386

Apollo Solar Energy Technology Holdings Ltd former RBI Holdings Ltd | Open  

Open Energy Info (EERE)

Ltd former RBI Holdings Ltd Ltd former RBI Holdings Ltd Jump to: navigation, search Name Apollo Solar Energy Technology Holdings Ltd (former RBI Holdings Ltd) Place Kowloon, Hong Kong Sector Solar Product Hong Kong-based manufacturer of silicon-based thin film solar PV modules. References Apollo Solar Energy Technology Holdings Ltd (former RBI Holdings Ltd)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Apollo Solar Energy Technology Holdings Ltd (former RBI Holdings Ltd) is a company located in Kowloon, Hong Kong . References ↑ "Apollo Solar Energy Technology Holdings Ltd (former RBI Holdings Ltd)" Retrieved from "http://en.openei.org/w/index.php?title=Apollo_Solar_Energy_Technology_Holdings_Ltd_former_RBI_Holdings_Ltd&oldid=342234

387

Advanced Materials and Nano Technology for Solar Cells  

E-Print Network (OSTI)

Therefore, solar energy is a very promising resource toand the solar energy is a sort of inexhaustible resource. In

Han, Tao

2014-01-01T23:59:59.000Z

388

A Global Technology Roadmap on Carbon Capture and Storage in Industry |  

Open Energy Info (EERE)

A Global Technology Roadmap on Carbon Capture and Storage in Industry A Global Technology Roadmap on Carbon Capture and Storage in Industry Jump to: navigation, search Tool Summary LAUNCH TOOL Name: A Global Technology Roadmap on Carbon Capture and Storage in Industry Agency/Company /Organization: United Nations Industrial Development Organization Focus Area: Industry Topics: Pathways analysis, Technology characterizations Resource Type: Publications Website: www.unido.org/index.php?id=1000821 References: A Global Technology Roadmap on Carbon Capture and Storage in Industry[1] CO2 Capture and Storage (CCS) is a key technology option for greenhouse gas (GHG) emissions mitigation. Recent studies suggest that CCS would contribute 19% of the total global mitigation that is needed for halving global GHG emissions by 2050. Overview

389

Novel Thermal Storage Technologies for Concentrating Solar Power Generation  

SciTech Connect

The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

2013-06-20T23:59:59.000Z

390

Solar Energy Technologies Office FY 2015 Budget At-A-Glance  

Office of Energy Efficiency and Renewable Energy (EERE)

The Solar Energy Technologies Office supports the SunShot Initiative goal to make solar energy technologies cost competitive with conventional energy sources by 2020. Reducing the total installed cost for utility?scale solar electricity by approximately 75% (2010 baseline) to roughly $0.06 per kWh without subsidies will enable rapid, large?scale adoption of solar electricity across the United States. This investment will help re?establish American technological and market leadership in solar energy, reduce environmental impacts of electricity generation, and strengthen U.S. economic competitiveness.

391

A Critical Analysis of Technological Innovation and Economic Development in Southern California's Urban Water Reuse And Recycling Industry  

E-Print Network (OSTI)

country also targeted clean technologies, such as waters renewable energy and clean technology industries. (ibid,and clean tech. In clean technologies, in which water

Pilip-Florea, Shadrach Jay

2012-01-01T23:59:59.000Z

392

Solar Assisted Air Heating Process?Implementing Solar Collectors in Sri Lankan Tea Industry.  

E-Print Network (OSTI)

?? Sri Lanka is one of the greatest producers and exporters of quality tea in the world. The tea industry plays a key role in (more)

Erikson Brangstrup, Paulina

2014-01-01T23:59:59.000Z

393

Stevens Institute of Technology Solar Decathlon 2011 Menu and Recipes  

NLE Websites -- All DOE Office Websites (Extended Search)

A taste of our home Hoboken, New Jersey 2 Stevens Institute of Technology Ecohabit Dinner Party Welcome WElcoME To oUR hoME The team from Stevens Institute of Technology in Hoboken, NJ, is delighted to share both our home and our favorite foods as a part of the U.S. Department of Energy Solar Decathlon 2013 competition. In 2012, our state endured the severe devastation to both our shores and local communities from Hurricane Sandy. In an effort to celebrate the seasonal treasures of our state's cuisine, and revive the "down the shore" tradition, our two menus feature the best of New Jersey produce, local delights, and historic boardwalk treats. Each of our menu items presents a unique blend of local, seasonal ingredients infused with

394

Prospects for conversion of solar energy into chemical fuels: the concept of a solar fuels industry  

Science Journals Connector (OSTI)

...depleting stock of fossil fuels with renewable energy sources. Many obstacles have...immediate, introduction of renewable energy sources presents serious challenges...Objective Of the potential renewable energy sources, solar energy is the...

2013-01-01T23:59:59.000Z

395

DOE Fuel Cell Technologies Office Record 14009: Industry Deployed Fuel Cell Backup Power (BuP)  

Energy.gov (U.S. Department of Energy (DOE))

This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about fuel cell backup power deployed by industry.

396

AMO Industrial Distributed Energy: Immediate Deployment of Waste Energy Technologies at Multiple Sites  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet overviewing Verso Paper Corp. project that will deploy industrial technologies to recover and reuse water and steam at pulp and paper facilities.

397

DOE Fuel Cell Technologies Office Record 14010: Industry Deployed Fuel Cell Powered Lift Trucks  

Energy.gov (U.S. Department of Energy (DOE))

This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about fuel cell powered lift trucks deployed by industry.

398

" Row: Industry-Specific Technologies within Selected NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Number of Establishments by Usage of Energy-Saving Technologies for Specific Industries, 1998;" 3. Number of Establishments by Usage of Energy-Saving Technologies for Specific Industries, 1998;" " Level: National Data; " " Row: Industry-Specific Technologies within Selected NAICS Codes;" " Column: Usage;" " Unit: Establishment Counts." ,,,,,"RSE" "NAICS"," ",,,,"Row" "Code(a)","Industry-Specific Technology","In Use(b)","Not in Use","Don't Know","Factors" ,,"Total United States" ,"RSE Column Factors:",1.3,0.5,1.5 , 311,"FOOD" ," Infrared Heating",762,13727,2064,1.8 ," Microwave Drying",270,14143,2140,2.5

399

Commercial development of environmental technologies for the automotive industry towards a new model of technological innovation  

Science Journals Connector (OSTI)

Economic importance of environmental issues is increasing, and new technologies are expected to reduce pollution derived both from productive processes and products, with costs that are still unknown. Until now, there is still little knowledge concerning the process of technological innovation in this field. What does exist is outdated due to rapid change in technology. In this paper, we analyse the development of Zinc Air Fuel Cells (ZAFC) and their transfer from research laboratories to large mass production. ZAFC are a new ''environmental technology'', proved to have a commercial value, that can be used for building Zero Emission Vehicles (ZEV). Although ZAFC performances are higher than traditional lead-acid batteries ones, difficulties in funding ZAFC engineering and ''moving'' them from laboratories to production caused some years delay in their diffusion. On the basis of this ''paradigmatic'' case, we argue that existing economic and organisational literature concerning technological innovation is not able to fully explain steps followed in developing environmental technologies. Existing models mainly consider adoption problems as due to market uncertainty, weak appropriability regime, lack of a dominant design, and difficulties in reconfiguring organisational routines. Additionally, the following aspects play a fundamental role in developing environmental technologies, pointing out how technological trajectories depend both on exogenous market conditions and endogenous firm competencies: 1. regulations concerning introduction of ZEV ''create'' market demand and business development for new technologies; they impose constraints that can be met only by segmenting transportation market at each stage of technology development; 2. each stage of technology development requires alternative forms of division and coordination of innovative labour; upstream and downstream industries are involved in new forms of inter-firm relationships, causing a reconfiguration of product architecture and reducing effects of path dependency; 3. product differentiation increases firm capabilities to plan at the same time technology introduction and customer selection, while meeting requirements concerning ''network externalities''; 4. it is necessary to find and/or create alternative funding sources for each research, development and design stage of the new technologies. From this discussion, we will draw some conclusions and issues for further researches concerning government policy and firms' strategies for sustaining the process of technological innovation and transfer.

Woodrow W. Clark II; Emilio Paolucci

2001-01-01T23:59:59.000Z

400

NREL: TroughNet - Parabolic Trough Technology Solar Resource Data and Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Resource Data and Tools Solar Resource Data and Tools Here you'll find resources on solar radiation data and tools for siting parabolic trough power plants. This includes solar radiation data for power plants in the United States and worldwide. You'll also find resources for direct solar radiation instrumentation. For an overview on solar resource terms and direct beam radiation used for concentrating solar power technologies, see NREL's Shining On Web site. U.S. Solar Radiation Resource Data The following resources include maps, and hourly metrological and solar resource data for parabolic trough power plants sites in the United States. NREL Concentrating Solar Power Resource Maps Features direct normal solar radiation maps of the southwestern United States, including state maps for Arizona, California, Colorado, New Mexico,

Note: This page contains sample records for the topic "industrial solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Force-optimized alignment for optical control of the Advanced Technology Solar Telescope  

Science Journals Connector (OSTI)

We present formalism and analysis of three active alignment reconstruction techniques applied to the Advanced Technology Solar Telescope. The three reconstructors generate optical...

Upton, Robert; Cho, Myung; Rimmele, Thomas

2010-01-01T23:59:59.000Z

402

Study of Mono or Polycrystalline Solar Cell Process Using Screen Printing Technology  

Science Journals Connector (OSTI)

The objectives of this contract were to develop a cost effective process for solar cell manufacturing. Dry etching technologies and general use of screen printing have...

J. Donon; H. Lauvray; P. Loubly; P. Aubril

1983-01-01T23:59:59.000Z

403

Big Data Projects on Solar Technology Evolution and Diffusion: Kickoff Meeting  

Energy.gov (U.S. Department of Energy (DOE))

Through the SEEDS program, seven projects are investigating strategies to accelerate the pace of change for solar energy technologies using cutting-edge analytical and computational tools, real...

404

Advanced Heat/Mass Exchanger Technology for Geothermal and solar Renewable Energy Systems  

Energy.gov (U.S. Department of Energy (DOE))

Advanced Heat/Mass Exchanger Technology for Geothermal and solar Renewable Energy Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

405

Considering the customer : determinants and impact of using technology on industry evolution  

E-Print Network (OSTI)

This dissertation raises two questions: How do customers come to understand and use a technology? What is the influence of customers using a technology on industry evolution and competition? I use two historical cases to ...

Kahl, Steven J. (Steven John)

2007-01-01T23:59:59.000Z

406

The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry  

SciTech Connect

For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-05-01T23:59:59.000Z

407

South Korean technology policies for the industrial competitiveness between Japan and China  

E-Print Network (OSTI)

(cont.) In addition, this paper will propose new technology policies for Korea in order to secure its position as a leader in the information technology (IT) industry, particularly in the context of its relationships with ...

Lee, Sanghoon, S.M. Massachusetts Institute of Technology, Dept. of Urban Studies and Planning

2006-01-01T23:59:59.000Z

408

DOE Announces $87 Million in Funding to Support Solar Energy Technologies |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$87 Million in Funding to Support Solar Energy $87 Million in Funding to Support Solar Energy Technologies DOE Announces $87 Million in Funding to Support Solar Energy Technologies October 8, 2009 - 12:00am Addthis WASHINGTON, DC - At the opening of the U.S. Department of Energy's Solar Decathlon on the National Mall, Energy Secretary Steven Chu announced up to $87 million will be made available to support the development of new solar energy technologies and the rapid deployment of available carbon-free solar energy systems. Of this funding, $50 million comes from the American Recovery and Reinvestment Act. The 47 projects with universities, electric power utilities, DOE's National Laboratories, and local governments have been selected to support use of solar technologies in U.S. cities, help address technical challenges, ensure reliable connectivity

409

Science for Energy Technology: The Industry Perspective (2011 EFRC Summit, panel session)  

ScienceCinema (OSTI)

A distinguished panel of industry leaders discussed how basic science impacts energy technology at the 2011 EFRC Summit. Panel members are Jeffrey Wadworth, President and CEO of Battelle Memorial Institute; David E. Carlson, the Chief Scientist for BP Solar; Yet-Ming Chiang, Professor at MIT and the founder of A123 Systems; and Catherine T. Hunt, the R&D Director of Innovation Sourcing and Sustainable Technologies at the Dow Chemical Company. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss 'Science for our Nation's Energy Future.' In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

Wadsworth, Jeffrey (Battelle Memorial Institute); Carlson, David E. (BP Solar); Chiang, Yet-Ming (MIT and A123 Systems); Hunt, Catherine T. (Dow Chemical)

2012-03-20T23:59:59.000Z

410

Solar cooling in the food industry in Mexico: A case study  

Science Journals Connector (OSTI)

In Mexico efforts are being made to promote the use of solar energy for cooling in the Agro-Food Industries (AFI), 120 industries were contacted in order to assess the solar cooling potential application in the sector. One case study was selected among the visited potential end users according to the size of the facility, the information available and their willingness to collaborate in the present project. Data from the industry was used to select the appropriate solar cooling concept and therefore the collectors typology, and the absorption cooling system. Moreover, the operation of the system was simulated in order to define the optimal size of the collector field required. The proposed cooling system was composed by a Fresnel concentrating collector field to activate a series of air cooled single-effect ammoniawater absorption chillers. The cooling system simulation was carried out with the Transient Systems Simulation Programme (TRNSYS) which allowed to model the collector system that fulfill the required load. The calculated saved electricity was around 19% of the total consumption, this small fraction is due to the fact that the selected facility is operating continuously with very large refrigeration capacities. The specifications of the simulated solar cooling system arepresented.

Roberto Best B.; Juan M. Aceves H.; Jorge M. Islas S.; Fabio L. Manzini P.; Isaac Pilatowsky F.; Rossano Scoccia; Mario Motta

2013-01-01T23:59:59.000Z

411

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

An Exploration of Innovation and An Exploration of Innovation and Energy Efficiency in an Appliance Industry Prepared by Margaret Taylor, K. Sydny Fujita, Larry Dale, and James McMahon For the European Council for an Energy Efficient Economy March 29, 2012 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL - 5689E An Exploration of Innovation and Energy Efficiency in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and direction of technological change of product industries; the factors that underlie the outcomes of innovation in these industries; and the ways the innovation system might respond to any given intervention. The report provides an overview of the dynamics of energy efficiency policy and innovation in the appliance

412

The Solar Power Tower Jlich A Solar Thermal Power Plant for Test and Demonstration of Air Receiver Technology  

Science Journals Connector (OSTI)

The open volumetric receiver technology allows the use of air as heat transfer medium at high temperatures in solar thermal power tower plants. It combines porous ceramic ... a strictly modular receiver design. H...

K. Hennecke; P. Schwarzbzl; G. Koll

2009-01-01T23:59:59.000Z

413

Demand Response Enabling Technologies and Approaches for Industrial Facilities  

E-Print Network (OSTI)

, there are also huge opportunities for demand response in the industrial sector. This paper describes some of the demand response initiatives that are currently active in New York State, explaining applicability of industrial facilities. Next, we discuss demand...

Epstein, G.; D'Antonio, M.; Schmidt, C.; Seryak, J.; Smith, C.

2005-01-01T23:59:59.000Z

414

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network (OSTI)

Chinas Largest Industrial Enterprises Through the Top-1000Top-1000 Energy-Consuming Enterprises Program:Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China.

Price, Lynn

2008-01-01T23:59:59.000Z

415

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network (OSTI)

and V.U. Ho?mann. Photovoltaic Solar Energy Gen- eration.e?ciency for photovoltaic solar energy collections, reviewedenergy sources, the manufacturing of solar cells and photovoltaic

Wang, Chunhua

2011-01-01T23:59:59.000Z

416

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network (OSTI)

glass. . . 18 Figure 2.4: IV curve of a solar cell. . . . .+ 05, Ric06]. IV curve The IV curve of a solar cell is thesuperposition of the IV curve of the solar cell diode in the

Wang, Chunhua

2011-01-01T23:59:59.000Z

417

Advanced Technology Solar Telescope 4.2 m Off-axis Primary Mirror Fabrication  

Science Journals Connector (OSTI)

Advanced optical surfacing technologies are applied for the Advanced Technology Solar Telescope 4.2 m off-axis primary mirror fabrication. A newly developed Stressed lap and IR...

Kim, Dae Wook; Oh, Chang Jin; Su, Peng; Burge, James H

418

Potential Impact of ZT = 4 Thermoelectric Materials on Solar Thermal Energy Conversion Technologies  

Science Journals Connector (OSTI)

Photovoltaic and solar-thermal are two conversion technologies receiving a great deal of attention. ... Solar-thermal conversion uses the full solar spectrum and generates electricity by conventional electromagnetic induction methods. ... Resource and environmental impact considerations will play an increasingly important role in reaching decisions concerning the practicality of thermoelectric power generation systems. ...

Ming Xie; Dieter M. Gruen

2010-03-02T23:59:59.000Z

419

China Singyes Solar Technologies Holdings Ltd formerly known...  

Open Energy Info (EERE)

with Solar Thin Films to build solar module capacity in China for the domestic BIPV market. Coordinates: 22.277, 113.556808 Show Map Loading map......

420

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network (OSTI)

Diaz, Chair Solar energy is a prominent renewable source ofalternative energy sources [Abb11]. Solar energy, radiantsolar energy will become a very prominent renewable source

Wang, Chunhua

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

How to use Big Data technologies to optimize operations in Upstream Petroleum Industry  

E-Print Network (OSTI)

How to use Big Data technologies to optimize operations in Upstream Petroleum Industry Abdelkader generated by the Petroleum Industry and particularly its upstream segment? Upstream is no stranger to Big the desired outcomes? Keywords Big Data; Analytics; Upstream Petroleum Industry; Knowledge Management; KM

Paris-Sud XI, Université de

422

How to use Big Data technologies to optimize operations in Upstream Petroleum Industry  

E-Print Network (OSTI)

How to use Big Data technologies to optimize operations in Upstream Petroleum Industry Abdelkader for it to have value. But what about Big Data generated by the Petroleum Industry and particularly its upstream; Analytics; Upstream Petroleum Industry; Knowledge Management; KM; Business Intelligence; BI; Innovation

Boyer, Edmond

423

Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program  

E-Print Network (OSTI)

Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program U.S. Department of Energy Office of Energy Efficiency and Renewable Energy for a comprehensive, physics- based model of dimensional changes and hot tearing. Hot Tear #12;Industrial Technologies

Beckermann, Christoph

424

The Use of Smart Materials Technologies in Radiation Environment and Nuclear Industry  

E-Print Network (OSTI)

1 The Use of Smart Materials Technologies in Radiation Environment and Nuclear Industry Victor ABSTRACT Application of smart materials technology in nuclear industry offer new opportunities a unique challenge to the testing, qualification and use of smart materials. The present study assesses

Giurgiutiu, Victor

425

Introduction to the Industrial Technologies Program (ITP) Webinar, January 15, 2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jim Quinn Jim Quinn Industrial Technologies Program U.S. Department of Energy Introduction to the Industrial Technologies Program (ITP) Webinar January 15, 2009 2 U.S. Industry and Energy Use R&D Program Technology Delivery Partnerships Energy Management Approach Opportunities Outline 3 Industrial Technologies Program (ITP) Mission Improve national energy security, climate, environment, and economic competitiveness by transforming the way U.S. industry uses energy. 4 Industry: Key to U.S. Economic & Energy Security U.S. manufacturing sector * Consumes more energy than any other economic sector (~32 quads) * Produces about 1,670 MMT CO 2 per year from energy use * Makes highest contribution to GDP (12%) * Produces nearly a quarter of world manufacturing output * Supplies >60% of US exports, worth $50

426

DOE to Provide up to $2.5 Million to Implement Solar Energy Technologies in  

NLE Websites -- All DOE Office Websites (Extended Search)

Image layout spacer Printer-friendly icon Printer-Friendly June 20, 2007 DOE to Provide up to $2.5 Million to Implement Solar Energy Technologies in Utah Salt Lake City, Utah, named 2007 Solar America City NEW YORK, NY � U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that DOE will make available nearly $2.5 million to thirteen cities to increase the use of solar power across the country, building on the President�s commitment to further the development of clean, renewable energy technologies. Cities selected for the Solar America Cities cooperative agreements will receive awards to promote solar-powered technologies throughout Salt Lake City, UT. These awards will further President Bush�s Solar America Initiative (SAI), which seeks to make solar energy cost-competitive with conventional sources of electricity by 2015.

427

Recent Technological Developments in Industrialized Production of Housing  

Science Journals Connector (OSTI)

...Technology Review" article "Man-Centered Standards for Technology"8 called for the early development of such evaluation standards for the application of technologies...prefabrication of plumbing, electrical, and HVAC services in either utility panels or...

T. Y. Lin; S. D. Stotesbury

1970-01-01T23:59:59.000Z

428

Solar hot water demonstration project at Red Star Industrial Laundry, Fresno, California  

SciTech Connect

The Final Report of the Solar Hot Water System located at the Red Star Industrial Laundry, 3333 Sabre Avenue, Fresno, California, is presented. The system was designed as an integrated wastewater heat recovery and solar preheating system to supply a part of the hot water requirements. It was estimated that the natural gas demand for hot water heating could be reduced by 56 percent (44 percent heat reclamation and 12 percent solar). The system consists of a 16,500 gallon tube-and-shell wastewater heat recovery subsystem combined with a pass-through 6,528 square foot flat plate Ying Manufacturing Company Model SP4120 solar collector subsystem, a 12,500 gallon fiber glass water storage tank subsystem, pumps, heat exchangers, controls, and associated plumbing. The design output of the solar subsystem is approximately 2.6 x 10/sup 9/ Btu/year. Auxiliary energy is provided by a gas fired low pressure boiler servicing a 4,000 gallon service tank. This project is part of the US Department of Energy's Solar Demonstration Program with DOE sharing $184,841 of the $260,693 construction cost. The system was turned on in July 1977, and acceptance tests completed in September 1977. The demonstration period for this project ends September 2, 1982.

None

1980-07-01T23:59:59.000Z

429

Overview and Challenges of Thin Film Solar Electric Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

and Challenges of Thin and Challenges of Thin Film Solar Electric Technologies H.S. Ullal Presented at the World Renewable Energy Congress X and Exhibition 2008 Glasgow, Scotland, United Kingdom July 19-25, 2008 Conference Paper NREL/CP-520-43355 December 2008 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

430

New GE Plant to Produce Thin Film PV Solar Panels Based on NREL Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New GE Plant to Produce Thin Film PV Solar Panels Based on NREL New GE Plant to Produce Thin Film PV Solar Panels Based on NREL Technology New GE Plant to Produce Thin Film PV Solar Panels Based on NREL Technology April 22, 2011 - 10:17am Addthis Photo courtesy of General Electric Photo courtesy of General Electric Minh Le Minh Le Program Manager, Solar Program Earlier this month, General Electric announced plans to enter the global marketplace for solar photovoltaic (PV) panels in a big way - and to do it, they will be using technology pioneered at the Department of Energy's National Renewable Energy Lab (NREL). The record-breaking Cadmium-Telluride (CdTe) thin film photovoltaic technology GE has chosen for its solar panels was originally developed more than a decade ago by a team of scientists led by NREL's Xuanzhi Wu, and

431

Industry  

SciTech Connect

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

432

Advanced Methods for Incorporating Solar Energy Technologies into Electric Sector Capacity-Expansion Models: Literature Review and Analysis  

SciTech Connect

Because solar power is a rapidly growing component of the electricity system, robust representations of solar technologies should be included in capacity-expansion models. This is a challenge because modeling the electricity system--and, in particular, modeling solar integration within that system--is a complex endeavor. This report highlights the major challenges of incorporating solar technologies into capacity-expansion models and shows examples of how specific models address those challenges. These challenges include modeling non-dispatchable technologies, determining which solar technologies to model, choosing a spatial resolution, incorporating a solar resource assessment, and accounting for solar generation variability and uncertainty.

Sullivan, P.; Eurek, K.; Margolis, R.

2014-07-01T23:59:59.000Z

433

TECHNOLOGY VISION 2020: The U.S. Chemical Industry  

Energy.gov (U.S. Department of Energy (DOE))

The chemical industry faces heightened challenges as it enters the 21st century. Five major forces are among those shaping the topography of its business landscape

434

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network (OSTI)

60% of total primary energy consumption, compared to theShare of Total Primary Energy Consumption World US Chinaof industrial primary energy consumption in The Netherlands.

Price, Lynn

2008-01-01T23:59:59.000Z

435

Fuel Cell Technologies Office Record 14010 ? Industry Deployed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

10 (Rev. 1) Date: 08122014 Title: Industry Deployed Fuel Cell Powered Lift Trucks Originators: Pete Devlin, Kristian Kiuru Approved by: Sunita Satyapal and Rick Farmer Date: 08...

436

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 7: Methodology for Technology Tracking and Assessment of Benefits  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

191 DOE Industrial Technologies Program 191 DOE Industrial Technologies Program Appendix 7: Methodology for Technology Tracking and Assessment of Benefits u Technology Tracking............................................................................................................................................ 192 u Methods of Estimating Benefits.............................................................................................................................. 192 u Deriving the ITP Cost/Benefit Curve ...................................................................................................................... 193 Methodology for Technology Tracking and Assessment of Benefits

437

Technology roadmap development process (TRDP) in the medical electronic device industry  

Science Journals Connector (OSTI)

Technology intelligence using techniques such as data mining or patent analyses is not a new concept in the management of technology. Nevertheless, there is a lack of useful, user-friendly techniques that incorporate quantitative data and expert judgements in technology forecasting, especially if the application targets the medical electronic device industry. This study aims to develop a new model that integrates quantitative data from a variety of sources and expert judgements to develop a technology roadmap for emerging technologies.

Tugrul U. Daim; Fredy A. Gomez; Hilary Martin; Nasir Sheikh

2013-01-01T23:59:59.000Z

438

Wireless electricity (Power) transmission using solar based power satellite technology  

Science Journals Connector (OSTI)

In the near future due to extensive use of energy, limited supply of resources and the pollution in environment from present resources e.g. (wood, coal, fossil fuel) etc, alternative sources of energy and new ways to generate energy which are efficient, cost effective and produce minimum losses are of great concern. Wireless electricity (Power) transmission (WET) has become a focal point as research point of view and nowadays lies at top 10 future hot burning technologies that are under research these days. In this paper, we present the concept of transmitting power wirelessly to reduce transmission and distribution losses. The wired distribution losses are 70 75% efficient. We cannot imagine the world without electric power which is efficient, cost effective and produce minimum losses is of great concern. This paper tells us the benefits of using WET technology specially by using Solar based Power satellites (SBPS) and also focuses that how we make electric system cost effective, optimized and well organized. Moreover, attempts are made to highlight future issues so as to index some emerging solutions.

M Maqsood; M Nauman Nasir

2013-01-01T23:59:59.000Z

439

Techno-economic evaluation of hybrid energy storage technologies for a solarwind generation system  

Science Journals Connector (OSTI)

Huazhong University of Science and Technology is planning to establish a hybrid solarwind generation dynamic simulation laboratory. Energy storage technologies will be vital to this system for load leveling, power quality control and stable output. In this paper, the technical feasibility of energy storage technologies for renewable intermittent sources like wind and solar generation is analyzed. Furthermore, the different combination modes of energy storage technologies are proposed. The involved energy storage technologies include superconducting magnetic energy storage systems (SMESs), flywheels (FWs), electrochemical super-capacitors (SCs) and redox flow batteries (RFBs). Based on that, the economic analysis of hybrid energy storage technologies is conducted.

L. Ren; Y. Tang; J. Shi; J. Dou; S. Zhou; T. Jin

2013-01-01T23:59:59.000Z

440

STATEMENT OF CONSIDERATIONS REQUEST BY SHELL SOLAR INDUSTRIES, LP FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INDUSTRIES, LP FOR AN ADVANCE INDUSTRIES, LP FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER NREL SUBCONTRACT NO. ZDJ-2-30630-16 UNDER DOE CONTRACT NO. DE-AC36-98GO10337; W(A)-03-010; CH-1136 As set out in the attached waiver petition and in subsequent discussions with DOE, Shell Solar Industries, LP (SSI) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above-identified cooperative agreement by its employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible to retain title to inventions pursuant to P.L. 96-517, as amended, and National Laboratories. Referring to item 2 of SSl's waiver petition, the purpose of the subcontract encompasses the development of thin-film module processing and cell and module reliability.

Note: This page contains sample records for the topic "industrial solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

New World Record Achieved in Solar Cell Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

World Record Achieved in Solar Cell Technology World Record Achieved in Solar Cell Technology New World Record Achieved in Solar Cell Technology December 5, 2006 - 9:34am Addthis New Solar Cell Breaks the "40 Percent Efficient" Sunlight-to-Electricity Barrier WASHINGTON, DC - U.S. Department of Energy (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner today announced that with DOE funding, a concentrator solar cell produced by Boeing-Spectrolab has recently achieved a world-record conversion efficiency of 40.7 percent, establishing a new milestone in sunlight-to-electricity performance. This breakthrough may lead to systems with an installation cost of only $3 per watt, producing electricity at a cost of 8-10 cents per kilowatt/hour, making solar electricity a more cost-competitive and integral part of our nation's

442

The Impact of Manufacturing Offshore on Technology Development Paths in the Automotive and Optoelectronics Industries  

E-Print Network (OSTI)

The Impact of Manufacturing Offshore on Technology Development Paths in the Automotive Systems and Civil and Environmental Engineering #12;The Impact of Manufacturing Offshore on Technology of the impact of manufacturing offshore on the technology trajectory of the firm and the industry. It looks

de Weck, Olivier L.

443

Research and development separation technology: The DOE Industrial Energy Conservation Program  

SciTech Connect

This brochure summarizes the Office of Industrial Programs' RandD efforts in the advancement of separation technology. The purpose of this brochure is to provide interested parties with information on federal industrial energy conservation activities in separation technology. The brochure is comprised of the following sections: Separation Technology, summarizes the current state of separation technology and its uses. Potential Energy Savings, discusses the potential for industrial energy conservation through the implementation of advanced separation processes. Office of Industrial Programs' RandD Efforts in Separation Technology Development, describes the separation RandD projects conducted by IP. RandD Data Base, lists contractor, principal investigator, and location of each separation-related RandD effort sponsored by IP.

Not Available

1987-07-01T23:59:59.000Z

444

CERN News - A major contract has been signed for the supply of solar panels derived from CERN technology  

E-Print Network (OSTI)

CERN News - A major contract has been signed for the supply of solar panels derived from CERN technology

CERN Video Productions; Marion Viguier

2012-01-01T23:59:59.000Z

445

Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller  

E-Print Network (OSTI)

solar thermal technologies. ..Advances in solar thermal electricity technology. Solar107 1. Introduction Solar thermal technologies have been

Poiry, Heather Marie

2011-01-01T23:59:59.000Z

446

Solar Site Survey for the Advanced Technology Solar Telecope. I. Analysis of the Seeing Data  

E-Print Network (OSTI)

The site survey for the Advanced Technology Solar Telescope concluded recently after more than two years of data gathering and analysis. Six locations, including lake, island and continental sites, were thoroughly probed for image quality and sky brightness. The present paper describes the analysis methodology employed to determine the height stratification of the atmospheric turbulence. This information is crucial because day-time seeing is often very different between the actual telescope aperture (~30 m) and the ground. Two independent inversion codes have been developed to analyze simultaneously data from a scintillometer array and a solar differential image monitor. We show here the results of applying them to a sample subset of data from May 2003, which was used for testing. Both codes retrieve a similar seeing stratification through the height range of interest. A quantitative comparison between our analysis procedure and actual in situ measurements confirms the validity of the inversions. The sample data presented in this paper reveal a qualitatively different behavior for the lake sites (dominated by high-altitude seeing) and the rest (dominated by near-ground turbulence).

H. Socas-Navarro; J. Beckers; P. Brandt; J. Briggs; T. Brown; W. Brown; M. Collados; C. Denker; S. Fletcher; S. Hegwer; F. Hill; T. Horst; M. Komsa; J. Kuhn; A. Lecinski; H. Lin; S. Oncley; M. Penn; T. Rimmele; K. Streander

2005-08-31T23:59:59.000Z

447

Solar Hot Water Technology and Approach to Popularise the same  

Science Journals Connector (OSTI)

Indian scientists had realised the importance of solar energy just after Independence when a beginning to develop solar thermal devices was made at the National Physical Laboratory in early 1950s. At that time...

G. D. Sootha

1986-01-01T23:59:59.000Z

448

In Solis Pacem Dialogue between modern technology and nature is developed through celebrating solar panels and a styl-  

E-Print Network (OSTI)

with a discussion about technology and nature. A field of solar panels to produce economic revenue to consider technology and energy, a Solar Garden exists among the panels. In contrast, an Asian-inspired PondIn Solis Pacem Dialogue between modern technology and nature is developed through celebrating solar

Goodman, Robert M.

449

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network (OSTI)

I. , 2005. Envisaging Feed-in Tariffs for Solar PhotovoltaicResch, G. , 1998. Feed-in Tariffs and Regulation ConcerningThe Performance of Feed-in Tariffs to Promote Renewable

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

450

ScienceforEnergyTechnology: StrengtheningtheLinkBetweenBasicResearchandIndustry  

E-Print Network (OSTI)

economic and jobs growth. These challenges are linked: the global demand for clean sustainable energy is an unprecedented economic opportunity for creating jobs and exporting energy technology to the developing, and low-carbon energy technologies such as solar energy, carbon sequestration, nuclear energy, electricity

Rollins, Andrew M.

451

Showcasing Solar Technologies from San Jos Companies at the Tech Museum of Innovation  

Energy.gov (U.S. Department of Energy (DOE))

In May 2007, the City of San Jos won a Solar America Showcase award from the US Department of Energy. This award offers technical assistance to help the City realize its ambitious solar technology deployment goals on large buildings and complexes mainly in the revitalized downtown area. In July 2007, a DOE Tiger Team led by Ccile Warner of the National Renewable Energy Laboratory (NREL) met with numerous city officials to discuss the Citys solar plans in detail and visit the various sites under consideration for solar technology adoption.

452

To Construct a Technology Roadmap for Technical Trend Recognition on Thin-Film Solar Cell  

Science Journals Connector (OSTI)

To recognize technical trends is essential for the interested parties to understand the development directions of a technology at the industry level. Therefore, a research design has been formed for conducting technology

Tzu-Fu Chiu; Chao-Fu Hong; Leuo-hong Wang

2011-01-01T23:59:59.000Z

453

ITP Glass: Glass Industry Technology Roadmap; April 2002  

Energy.gov (U.S. Department of Energy (DOE))

Glass is a unique material that has been produced for thousands of years. The glass industry's products are an integral part of the American economy and everyday life. Glass products are used in food and beverage packaging, lighting, communications, etc.

454

Emerging Technologies for Industrial Demand-Side Management  

E-Print Network (OSTI)

this problem is to move the loads from peak to off-peak periods without changing overall electricity consumption. By using cool storage systems, energy consumption for businesses and industry can be shifted, reducing electricity costs to the consumer...

Neely, J. E.; Kasprowicz, L. M.

455

Fuel Cell Technologies Office Record 14009 ? Industry Deployed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

09 (Rev. 1) Date: 08122014 Title: Industry Deployed Fuel Cell Backup Power (BuP) Originators: Pete Devlin, Kristian Kiuru Approved by: Sunita Satyapal and Rick Farmer Date: 08...

456

The Impact of Control Technology on the Demand Response Potential of California Industrial Refrigerated Facilities Final Report  

E-Print Network (OSTI)

and Automated Demand Response in Industrial RefrigeratedDemand Response .. ..Technology on the Demand Response Potential of California

Scott, Doug

2014-01-01T23:59:59.000Z

457

Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies, June 1999  

Energy.gov (U.S. Department of Energy (DOE))

Assessment of the potential of CHP technologies to reduce carbon emissions in the US chemicals and pulp and paper industries.

458

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IMPACTS IMPACTS Industrial Technologies Program: Summary of Program Results for CY 2009 Boosting the Productivity and Competitiveness of U.S. Industry Foreword Foreword A robust U.S. industrial sector relies on a secure and affordable energy supply. While all Americans are feeling the pinch of volatile energy prices, project financial-constriction impacts on industry are especially acute. Uncertainty over energy prices, emission regulations, and sources of financing not only hurt industrial competitiveness - together they have the potential to push U.S. manufacturing operations offshore, eliminate jobs that are the lifeline for many American

459

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Introduction  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IMPACTS IMPACTS Industrial Technologies Program: Summary of Program Results for CY 2009 Boosting the Productivity and Competitiveness of U.S. Industry Foreword Foreword A robust U.S. industrial sector relies on a secure and affordable energy supply. While all Americans are feeling the pinch of volatile energy prices, project financial-constriction impacts on industry are especially acute. Uncertainty over energy prices, emission regulations, and sources of financing not only hurt industrial competitiveness - together they have the potential to push U.S. manufacturing operations offshore, eliminate jobs that are the lifeline for many American families, and weaken a sector of the economy that serves as the backbone of U.S. gross domestic product. The Industrial Technologies Program (ITP) is actively

460

Recent Advancements in Energy-Saving Technologies for the Metallurgical and Mining Industries  

Science Journals Connector (OSTI)

A large portion of the collected articles are dedicated to address the technological advancements and convention-defying concepts for the iron and steel industry. In the article titled Methods for Calculating Energy

Cong Wang

2014-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Energy Technology Transfer for Industry Through the Texas Energy Extension Service  

E-Print Network (OSTI)

ENERGY TECHNOLOGY TRANSFER FOR INDUSTRY THROUGH THE TEXAS ENERGY EXTENSION SERVICE Stephen Riter Texas Energy Extension Service. Texas A&M University College Station, Texas ABSTRACT The Texas Energy Extension Service (EES) is one of ten...

Riter, S.

1979-01-01T23:59:59.000Z

462

The impact of angel investors on founders of new ventures in the medical technology industry  

E-Print Network (OSTI)

Founders of new ventures in the medical technology (Medtech) industry require capital to establish, sustain, and grow their companies. Most founders must seek some form of external capital to meet these demands; in Medtech, ...

Braly, Alan R. (Alan Ryan)

2011-01-01T23:59:59.000Z

463

Technologies, markets and challenges for development of the Canadian Oil Sands industry  

E-Print Network (OSTI)

This paper provides an overview of the current status of development of the Canadian oil sands industry, and considers possible paths of further development. We outline the key technology alternatives, critical resource ...

Lacombe, Romain H.

2007-01-01T23:59:59.000Z

464

ITP Mining: Mining Industry of the Future Mineral Processing Technology Roadmap  

Energy.gov (U.S. Department of Energy (DOE))

In June 1998, the Chairman of the National Mining Association and the Secretary of energy entered into a Compact to pursue a collaborative technology research partnership, the Mining Industry of the Future.

465

Technological innovation in industry and the role of the Royal Society  

Science Journals Connector (OSTI)

...in areas of built environment, clean technology...and the built-environment innovators Professor...Council, Natural Environment Research Council...alternatively, a scientist or engineer in industry to work...parental or caring responsibilities and health issues...

2010-01-01T23:59:59.000Z

466

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network (OSTI)

and Renewable Energy, Wind & Hydropower Technologiesand Renewable Energy, Wind & Hydropower Technologies2004. International Wind Energy Development, World Market

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

467

Concentrator Solar Cell Modules and Systems Developed in Japan  

Science Journals Connector (OSTI)

Dissemination of photovoltaic (PV) systems has advanced, and solar cell module production has also significantly increased in ... Japan organized by the New Energy and Industrial Technology Development Organizati...

2007-01-01T23:59:59.000Z

468

NORTH CAROLINA 2013-2014 CLEAN TRANSPORTATION TECHNOLOGY INDUSTRY DIRECTORY  

E-Print Network (OSTI)

on following categories to jump to specific section Biodiesel Electric Vehicles Hybrid Electric Vehicles (Light Duty) Plug-In Hybrid Vehicles (Light Duty) Electric Low-Speed Vehicles Ethanol Natural Gas and Propane (CNG/LPG) Heavy Duty Vehicles Diesel Retrofit Technologies Idle Reduction Technologies Motor

469

Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output  

SciTech Connect

Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products.

Dinetta, L.C.; Hannon, M.H.

1995-10-01T23:59:59.000Z

470

Rising Solar Energy Science and Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Rising Solar Energy Science and Technology Co Ltd Rising Solar Energy Science and Technology Co Ltd Jump to: navigation, search Name Rising Solar Energy Science and Technology Co Ltd Place Qinhuangdao, Hebei Province, China Zip 66600 Sector Solar Product Chinese solar module laminator manufacturer Coordinates 39.931011°, 119.597221° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.931011,"lon":119.597221,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

471

Shen Zhen Bico Solar Energy Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Shen Zhen Bico Solar Energy Technology Co Ltd Shen Zhen Bico Solar Energy Technology Co Ltd Jump to: navigation, search Name Shen Zhen Bico Solar Energy Technology Co Ltd Place Shenzhen, China Zip 518000 Sector Solar Product A company engaged in research, manufacture and sales of Solar products. Coordinates 22.546789°, 114.112556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.546789,"lon":114.112556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

472

Polymer solar cell as an emerging PV technology  

Science Journals Connector (OSTI)

In the presentation, I will present progresses in polymer solar cell in recent years. Advances in material, device structure, morphology are the focus of the talk. ...

Li, Gang

473

Advanced Materials and Nano Technology for Solar Cells  

E-Print Network (OSTI)

for public use." Photovoltaic Energy Conversion, 2003.and challenges." Photovoltaic Energy Conversion, ConferencePhotovoltaic Effect using a specific potential barrier and convert the solar energy

Han, Tao

2014-01-01T23:59:59.000Z

474

List of Solar Space Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Space Heat Incentives Space Heat Incentives Jump to: navigation, search The following contains the list of 499 Solar Space Heat Incentives. CSV (rows 1 - 499) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat

475

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 6: Method of Calculating Results from DOE's Combined Heat and Power Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

87 DOE Industrial Technologies Program 87 DOE Industrial Technologies Program Appendix 6: Method of Calculating Results from DOE's Combined Heat and Power Activities u CHP Table........................................................................................................................................................................................... 189 Method of Calculating Results from DOE's Combined Heat and Power Activities Industrial Distributed Energy, a cross-cutting activity within the Industrial Technologies Program (ITP), builds on activities conducted by DOE's Office of Industrial Technologies

476

Materials Constraints in the High Temperature Industrial Technologies  

Science Journals Connector (OSTI)

This topic is concerned solely with those aspects of combustion technology where materials are exposed directly to the combustion gas. It will be considered in two parts; first, materials requirements within t...

Dr. B. Meadowcroft; D. Lloyd; K. Joon

1989-01-01T23:59:59.000Z

477

Access to glacial and subglacial environments in the Solar System by melting probe technology  

Science Journals Connector (OSTI)

The use of power intensive devices such as ice-melting probes in the outer Solar System strongly points to radioactive units for ... traditional space application RHU (Radioactive Heater Unit) technology is based...

Stephan Ulamec; Jens Biele; Oliver Funke

2007-08-01T23:59:59.000Z

478

Introduction Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells  

Science Journals Connector (OSTI)

Although photovoltaic solar energy technology (PV) is not the sole answer to the challenges posed by the ever-growing energy consumption worldwide, this renewable energy option can make an important contributi...

Wilfried van Sark; Lars Korte

2012-01-01T23:59:59.000Z

479

Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar  

Energy.gov (U.S. Department of Energy (DOE))

The SunShot Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar (PREDICTS) program is taking a physics- and chemistry-based approach to identifying failure modes...

480

Simulation of a green wafer fab featuring solar photovoltaic technology and storage system  

Science Journals Connector (OSTI)

A semiconductor wafer fab requires a significant amount of energy to maintain its daily operations. Solar photovoltaics (PV) is a clean and renewable technology that can be potentially used to power large wafer fabs. There exist some critical factors ...

Leann Sanders; Stephanie Lopez; Greg Guzman; Jesus Jimenez; Tongdan Jin

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Vienna University of Technology Solar Decathlon 2011 Construction Drawings  

NLE Websites -- All DOE Office Websites (Extended Search)

,29 ,29 6 13,10 32 3 2,02 2 1,68 1,68 1,68 1,68 1,69 2,04 5 30 34 3 2,19 3 7 4 28 1,57 1,52 1,52 1,52 1,62 6 28 15 7 3,83 2 30 9 1,52 1,52 1,52 1,52 1,62 1 2 3 4 5 6 7 A B C D E 1 2 3 4 5 6 7 A B C D E SHEET TITLE LOT NUMBER: DRAWN BY: CHECKED BY: COPYRIGHT: CLIENT U.S. DEPARTMENT OF ENERGY SOLAR DECATHLON 2013 WWW.SOLARDECATHLON.GOV TEAM NAME: ADDRESS: CONTACT: CONSULTANTS VIENNA UNIVERSITY OF TECHNOLOGY TEAM AUSTRIA CHECKER ALL PLANS ARE DRAWN IN METRIC SYSTEM (M/CM) 23.08.2013 05:02:04 A-101 SITE PLAN 109 VUT TEAM AUSTRIA FLORAGASSE 7 / 4 / ZI 407 1040 VIENNA AUSTRIA OFFICE@SOLARDECATHLON.AT WWW.SOLARDECATHLON.AT 0 2' 4' 8' MARK DATE DESCRIPTION 1 : 48 1 SITE PLAN ERSTELLT MIT DER STUDENTENVERSION EINES PRODUKTS VON AUTODESK ERSTELLT MIT DER STUDENTENVERSION EINES PRODUKTS VON AUTODESK E R S T E L L T M I T D E R S T U D E N T E N V E R S I O N E I N E S P R O D U K T S V O N A U T O D E S

482

Thompson Technology Industries Inc TTI | Open Energy Information  

Open Energy Info (EERE)

Industries, Inc. (TTI) Industries, Inc. (TTI) Place Novato, California Zip 94949 Product California-based maker of PV tracking systems, mounting and monitoring systems. Coordinates 38.106075°, -122.567889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.106075,"lon":-122.567889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

483

Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program  

E-Print Network (OSTI)

Technologies Program A Strong Energy Portfolio for a Strong America Energy efficiency and clean, renewableBringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program U.S. Department of Energy Office of Energy Efficiency and Renewable Energy

Beckermann, Christoph

484

Roadmap: Industrial Trades Technology Associate of Technical Study [RE-ATS-ITTN  

E-Print Network (OSTI)

Roadmap: Industrial Trades Technology ­ Associate of Technical Study [RE-ATS-ITTN] Regional College Catalog Year: 2013-2014 Page 1 of 1 | Last Updated: 25-Nov-13/LNHD This roadmap is a recommended semester Technology may be pursued at any Kent State campus Course Subject and Title Credit Hours Min. Grade Major GPA

Khan, Javed I.

485

Industrial clusters and regional innovation based on hydrogen and fuel cell technologies  

E-Print Network (OSTI)

Industrial clusters and regional innovation based on hydrogen and fuel cell technologies-Westphalia (Germany): Fuel Cell and Hydrogen Network in North Rhine-Westphalia Regional authorities develops fully or regions in Europe with a potential to develop clusters based on hydrogen and fuel cell technologies? 3

486

Industrial  

NLE Websites -- All DOE Office Websites (Extended Search)

Products Industrial Institutional Multi-Sector Residential Momentum Savings Regional Efficiency Progress Report Utility Toolkit Energy Smart Industrial - Energy Management...

487

Industry  

E-Print Network (OSTI)

2004). US DOEs Industrial Assessment Centers (IACs) are anof Energys Industrial Assessment Center program in SMEs

Bernstein, Lenny

2008-01-01T23:59:59.000Z

488

Safety management in the Dutch oil and gas industry: the effect on the technological regime  

Science Journals Connector (OSTI)

This paper deals with the recent trend in Europe, from the formulation of detailed instructions and specifications with respect to the safety of industrial installations by governments, towards regulation on the level of safety management systems and risk analyses. The development sketched is studied with respect to the offshore oil and gas industry in the Netherlands. The government inspectorate responsible for this industry, the Staatstoezicht op de Mijnen (SodM), has, since the early 1990s, changed its approach from hardware-based inspections to inspection at the level of management systems. To assess the effects of this change in approach on industry practice the concept of ''technological regime'' is employed.

I.R. van de Poel; A.R. Hale; L.H.J. Goossens

2002-01-01T23:59:59.000Z

489

OSEGT Eligibility Listing Procedure Updated 6/2/14 Other solar electric generating technologies (OSEGTs) are defined as all technologies other than  

E-Print Network (OSTI)

OSEGT Eligibility Listing Procedure Updated 6/2/14 Other solar of full safety certification. The eligibility process for other solar electric generating technologies suitable estimates of capacity and energy production prior to reservation of funds. #12;OSEGT

490

NREL: Technology Deployment - Updated Solar Resource Maps Available for  

NLE Websites -- All DOE Office Websites (Extended Search)

Updated Solar Resource Maps Available for India Updated Solar Resource Maps Available for India July 15, 2013 Through funding from the U.S. Department of Energy and U.S. Department of State, and in collaboration with India's Ministry of New and Renewable Energy, NREL has updated its 10-kilometer (km) solar resource maps for India. The new maps incorporate updated 10-km hourly solar resource data developed using weather satellite measurements combined with site-time specific solar modeling. Additionally, the maps expand the time of analysis by four years, from 2002-2007 to 2002-2011 and include enhanced aerosols information to improve estimates of direct normal irradiance. The data is available in both geographic information system and static map formats on NREL's website for both global horizontal irradiance and

491

Technical assessment of solar thermal energy storage technologies  

Science Journals Connector (OSTI)

Solar energy is recognized as one of the most promising alternative energy options. On sunny days, solar energy systems generally collect more energy than necessary for direct use. Therefore, the design and development of solar energy storage systems, is of vital importance and nowadays one of the greatest efforts in solar research. These systems, being part of a complete solar installation, provide an optimum tuning between heat demand and heat supply. This paper reviews the basic concepts, systems design, and the latest developments in (sensible and latent heat) thermal energy storage. Parameters influencing the storage system selection, the advantages and disadvantages of each system, and the problems encountered during the systems operation are highlighted.

Hassan E.S. Fath

1998-01-01T23:59:59.000Z

492

Review: Solar Revolution: The Economic Transformation of the Global Energy Industry by Travis Bradford  

E-Print Network (OSTI)

are renewable as well. Solar energy, one such resource, isThe Inevitability of Solar Energy," contains one chapter inenergy system, introduces solar energy with its merits and

Mirza, Umar Karim

2007-01-01T23:59:59.000Z

493

Technological diversity of emerging eco-innovations: a case study of the automobile industry  

Science Journals Connector (OSTI)

The automobile industry is in a remarkable state as not one, but multiple alternative fuel powertrain technologies are challenging the gasoline/diesel fueled internal combustion engine (ICE). This indicates a high level of uncertainty and suggests that the automobile industry might be transitioning past the ICE powertrain as the dominant design. Our research analyzed the technological diversity of alternative fuel vehicles (AFVs) from 1991 to 2011. We collected an unique database of 884AFVs from the 15 largest auto manufacturers. This data was analyzed on a firm, technological, and industrial level. Results showed an increase in technological diversity over the study period. Although electric vehicles are the technology du jour, auto manufacturers are continuing to develop a variety of AFVs. This indicates that incumbent firms do not know if/which powertrain design will emerge as the dominant technology. Indeed, high heterogeneity in vehicle demand through influences such as government policies could lead to several different types of \\{AFVs\\} competing in distinct markets. In addition to analyzing industrial dynamics in the automobile industry, we also provided policy recommendations for how governments can support the transition toward more sustainable automobile transportation.

William Sierzchula; Sjoerd Bakker; Kees Maat; Bert van Wee

2012-01-01T23:59:59.000Z

494

Rapid Deposition Technology Holds the Key for the World's Largest Manufacturer of Thin-Film Solar Modules (Fact Sheet)  

SciTech Connect

First Solar, Inc. has been collaborating with NREL since 1991, advancing its thin-film cadmium telluride solar technology to grow from a startup company to become one of the world's largest manufacturers of solar modules, and the world's largest manufacturer of thin-film solar modules.

Not Available

2013-08-01T23:59:59.000Z

495

3S Industries AG Formerly 3S Swiss Solar Systems AG | Open Energy  

Open Energy Info (EERE)

AG Formerly 3S Swiss Solar Systems AG AG Formerly 3S Swiss Solar Systems AG Jump to: navigation, search Name 3S Industries AG (Formerly 3S Swiss Solar Systems AG) Place Bern, Switzerland Zip CH-3006 Product Swiss-based manufacturer of manual and semi-automatic PV module production lines; provides turnkey integration service for PV and BIPV. Coordinates 46.948432°, 7.440461° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.948432,"lon":7.440461,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

496

Solar Energy for Village Development  

Science Journals Connector (OSTI)

...solar technologies (mini-hydroelectric generators...from the national grid. Each of the five...Bethel et al., "Renewable Resources for Industrial...solar technologies (mini-hydroelectric generators...from the national grid. Each of the five...tech-nologies that use renewable energy sources coming...

Norman L. Brown; James W. Howe

1978-02-10T23:59:59.000Z

497

The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry  

E-Print Network (OSTI)

technologies Conventional ammonia-based refrigeration systems Production growth through 2020 1%/year Specific energy consumption of base technologies (delivered) 0.008 kWh/lb. (electricity) Regional weighted average fossil fuel intensity of electricity... consumption and improve productivity by increasing the energy efficiency of industrial processes and systems. Therefore, the adoption of such technologies is important because they enable manufacturing plants to become both more competitive and productive...

Lung, R. B.; Masanet, E.; McKane, A.

2006-01-01T23:59:59.000Z

498

Socio-economic prospects of solar technology utilization in Abbottabad, Pakistan  

Science Journals Connector (OSTI)

Abstract Social evaluation is placed at low levels of the technical architecture, for this reason the findings of this study would be useful. This study evaluates the socio-economic prospects of solar technology utilization (STU) in Abbottabad, Pakistan. The objective of the study is to underline the variables of existing and inclined trends for alternate technology that come into consideration to assess the potential for STU by the consumers. The study finds out the type of need of the consumers have that solar technology could address to enhance the quality of life. On the bases of income, comparative user friendliness and comparative cost analysis, the study suggests the STU is the best market competitive technologies available. The potential for STU exists at 65% as frequency distribution of the survey showed. This study is a contribution to practical knowledge of solar technology to mitigate the energy crisis in Pakistan.

Musarrat Jabeen; Muhammad Umar; Muhammad Zahid; Masood Ur Rehaman; Rubeena Batool; Khalid Zaman

2014-01-01T23:59:59.000Z

499

Load Management - An Industrial Perspective on This Developing Technology  

E-Print Network (OSTI)

Load Management is a rapidly developing technology which can have a significant impact on all electric users, especially large users. It is mandated by P.U.R.P.A. (Public Utility Regulatory Policy Act) and is akin to energy conservation but its...

Delgado, R. M.

1983-01-01T23:59:59.000Z

500

"Diffusion of Innovation: Solar Oven Use in Lesotho (Africa)." Grundy, William and Roy Grundy. Advances in Solar Cooking: Proceedings of the 2nd International Conference on Solar Cooker Use and Technology. Shyam S. Nandwani, ed. July 12-15, 1994.  

E-Print Network (OSTI)

"Diffusion of Innovation: Solar Oven Use in Lesotho (Africa)." Grundy, William and Roy Grundy. Advances in Solar Cooking: Proceedings of the 2nd International Conference on Solar Cooker Use and Technology. Shyam S. Nandwani, ed. July 12-15, 1994. pp. 240-247. 1 DIFFUSION OF INNOVATION: SOLAR OVEN USE

Noble, William Stafford