Powered by Deep Web Technologies
Note: This page contains sample records for the topic "industrial sector transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors  

SciTech Connect (OSTI)

As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy security through more effective utilization of our country’s resources while simultaneously providing economic stability and growth (through predictable energy prices and high value jobs), in an environmentally sustainable and secure manner (through lower land and water use, and decreased byproduct emissions). The reduction in imported oil will also increase the retention of wealth within the U.S. economy while still supporting economic growth. Nuclear energy is the only non-fossil fuel that has been demonstrated to reliably supply energy for a growing industrial economy.

David Petti; J. Stephen Herring

2010-03-01T23:59:59.000Z

2

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector...

3

Advanced Vehicle Electrification & Transportation Sector Electrificati...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

4

Transitioning the Transportation Sector: Exploring the Intersection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles Transitioning the Transportation Sector: Exploring the Intersection...

5

Geothermal: Sponsored by OSTI -- Industrial Sector Technology...  

Office of Scientific and Technical Information (OSTI)

Industrial Sector Technology Use Model (ISTUM): industrial energy use in the United States, 1974-2000. Volume 1. Primary model documentation. Final report...

6

Yucca MountainTransportation: Private Sector Perspective  

Broader source: Energy.gov (indexed) [DOE]

Transportation: Private Sector "Lessons Learned" US Transport Council David Blee Executive Director dblee@ustransportcouncil.org DOE Transportation External Coordination (TEC)...

7

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and...

8

Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum...

9

China's industrial sector in an international context  

SciTech Connect (OSTI)

The industrial sector accounts for 40% of global energy use. In 1995, developing countries used an estimated 48 EJ for industrial production, over one-third of world total industrial primary energy use (Price et al., 1998). Industrial output and energy use in developing countries is dominated by China, India, and Brazil. China alone accounts for about 30 EJ (National Bureau of Statistics, 1999), or about 23% of world industrial energy use. China's industrial sector is extremely energy-intensive and accounted for almost 75% of the country's total energy use in 1997. Industrial energy use in China grew an average of 6.6% per year, from 14 EJ in 1985 to 30 EJ in 1997 (Sinton et al., 1996; National Bureau of Statistics, 1999). This growth is more than three times faster than the average growth that took place in the world during the past two decades. The industrial sector can be divided into light and heavy industry, reflecting the relative energy-intensity of the manufacturing processes. In China, about 80% of the energy used in the industrial sector is consumed by heavy industry. Of this, the largest energy-consuming industries are chemicals, ferrous metals, and building materials (Sinton et al., 1996). This paper presents the results of international comparisons of production levels and energy use in six energy-intensive subsectors: iron and steel, aluminum, cement, petroleum refining, ammonia, and ethylene. The sectoral analysis results indicate that energy requirements to produce a unit of raw material in China are often higher than industrialized countries for most of the products analyzed in this paper, reflecting a significant potential to continue to improve energy efficiency in heavy industry.

Price, Lynn; Worrell, Ernst; Martin, Nathan; Lehman, Bryan; Sinton, Jonathan

2000-05-01T23:59:59.000Z

10

Implications for decision making: Industrial sector perspectives  

SciTech Connect (OSTI)

Implications for decision making in areas related to policy towards greenhouse gas emissions are discussed from the perspective of the industrial sector. Industry is presented as supportive of energy conservation measures in spite of the large uncertainties in the global warming issue. Perspectives of developed and developing countries are contrasted, and carbon dioxide emissions are compared. Socioeconomic implications of reducing greenhouse gas emissions, particularly in the form of higher prices for goods and services, are outlined.

Mangelsdorf, F.E. [Texaco, Inc., Beacon, NY (United States)

1992-12-31T23:59:59.000Z

11

Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...  

Broader source: Energy.gov (indexed) [DOE]

Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program 2012 DOE Hydrogen...

12

Designing Effective State Programs for the Industrial Sector...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Effective State Programs for the Industrial Sector provides state regulators, utilities, and other program administrators with an overview of U.S. industrial energy...

13

Sustainable fuel for the transportation sector  

SciTech Connect (OSTI)

A hybrid hydrogen-carbon (H{sub 2}CAR) process for the production of liquid hydrocarbon fuels is proposed wherein biomass is the carbon source and hydrogen is supplied from carbon-free energy. To implement this concept, a process has been designed to co-feed a biomass gasifier with H{sub 2} and CO{sub 2} recycled from the H{sub 2}-CO to liquid conversion reactor. Modeling of this biomass to liquids process has identified several major advantages of the H{sub 2}CAR process. The land area needed to grow the biomass is <40% of that needed by other routes that solely use biomass to support the entire transportation sector. Whereras the literature estimates known processes to be able to produce {approx}30% of the United States transportation fuel from the annual biomass of 1.366 billion tons, the H{sub 2}CAR process shows the potential to supply the entire United States transportation sector from that quantity of biomass. The synthesized liquid provides H{sub 2} storage in an open loop system. Reduction to practice of the H{sub 2}CAR route has the potential to provide the transportation sector for the foreseeable future, using the existing infrastructure. The rationale of using H{sub 2} in the H{sub 2}CAR process is explained by the significantly higher annualized average solar energy conversion efficiency for hydrogen generation versus that for biomass growth. For coal to liquids, the advantage of H{sub 2}CAR is that there is no additional CO{sub 2} release to the atmosphere due to the replacement of petroleum with coal, thus eliminating the need to sequester CO{sub 2}.

Agrawal, R.; Singh, N.R.; Ribeiro, F.H.; Delgass, W.N. [Purdue Univ., West Lafayette, IN (United States). School of Chemical Engineering and Energy Center at Discovery Park

2007-03-20T23:59:59.000Z

14

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

Efficiency Scenario (non-residential sector only) – AssumesIndia: Industry and Non Residential Sectors Jayant Sathaye,and support. The Non Residential sector analysis benefited

Sathaye, Jayant

2011-01-01T23:59:59.000Z

15

Voluntary agreements in the industrial sector in China  

SciTech Connect (OSTI)

China faces a significant challenge in the years ahead to continue to provide essential materials and products for a rapidly-growing economy while addressing pressing environmental concerns. China's industrial sector is heavily dependent on the country's abundant, yet polluting, coal resources. While tremendous energy conservation and environmental protection achievements were realized in the industrial sector in the past, there remains a great gulf between the China's level of energy efficiency and that of the advanced countries of the world. Internationally, significant energy efficiency improvement in the industrial sector has been realized in a number of countries using an innovative policy mechanism called Voluntary Agreements. This paper describes international experience with Voluntary Agreements in the industrial sector as well as the development of a pilot program to test the use of such agreements with two steel mills in Shandong Province, China.

Price, Lynn; Worrell, Ernst; Sinton, Jonathan

2003-03-31T23:59:59.000Z

16

Land Transport Sector in Bangladesh: An Analysis Toward Motivating...  

Open Energy Info (EERE)

Bangladesh: An Analysis Toward Motivating GHG Emission Reduction Strategies Jump to: navigation, search Name Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG...

17

The Practice of Cost Benefit Analysis in the Transport Sector...  

Open Energy Info (EERE)

Practice of Cost Benefit Analysis in the Transport Sector a Mexican Perspective Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Practice of Cost Benefit Analysis in...

18

Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...  

Broader source: Energy.gov (indexed) [DOE]

Overview 3 Relevance FY09101112 Project: Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Project Objective: To promote economic growth and...

19

Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...  

Broader source: Energy.gov (indexed) [DOE]

information. DOE Vehicle Technologies Program Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Robin Erickson, Executive Director Utah Clean Cities...

20

Global Climate Change and the Unique Challenges Posed by the Transportation Sector  

SciTech Connect (OSTI)

Addressing the challenges posed by global climate change will eventually require the active participation of all industrial sectors and consumers on the planet. To date, however, most efforts to address climate change have focused on only a few sectors of the economy (e.g., refineries and fossil-fired electric power plants) and a handful of large industrialized nations. While useful as a starting point, these efforts must be expanded to include other sectors of the economy and other nations. The transportation sector presents some unique challenges, with its nearly exclusive dependence on petroleum based products as a fuel source coupled with internal combustion engines as the prime mover. Reducing carbon emissions from transportation systems is unlikely to be solely accomplished by traditional climate mitigation policies that place a price on carbon. Our research shows that price signals alone are unlikely to fundamentally alter the demand for energy services or to transform the way energy services are provided in the transportation sector. We believe that a technological revolution will be necessary to accomplish the significant reduction of greenhouse gas emissions from the transportation sector.

Dooley, J.J.; Geffen, C.A.; Edmonds, J.A.

2002-08-26T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Energy Use and Savings in the Canadian Industrial Sector  

E-Print Network [OSTI]

The changing role of energy as a production input in the industrial sector in Canada is examined. Energy use patterns are reviewed in terms of the energy input types, both purchased and self-produced, the actual energy form and quality requirements...

James, B.

1982-01-01T23:59:59.000Z

22

Garnering the Industrial Sector: A Comparison of Cutting Edge Industrial DSM Programs  

E-Print Network [OSTI]

The industrial sector has posed a daunting DSM challenge to utilities throughout North America, even to those with successful and creative residential and commercial DSM programs. Most utilities have had great difficulty in going beyond conventional...

Kyricopoulos, P. F.; Wikler, G. A.; Faruqui, A.; Wood, B. G.

23

Analysis of fuel shares in the industrial sector  

SciTech Connect (OSTI)

These studies describe how fuel shares have changed over time; determine what factors are important in promoting fuel share changes; and project fuel shares to the year 1995 in the industrial sector. A general characterization of changes in fuel shares of four fuel types - coal, natural gas, oil and electricity - for the industrial sector is as follows. Coal as a major fuel source declined rapidly from 1958 to the early 1970s, with oil and natural gas substituting for coal. Coal's share of total fuels stabilized after the oil price shock of 1972-1973, and increased after the 1979 price shock. In the period since 1973, most industries and the industrial sector as a whole appear to freely substitute natural gas for oil, and vice versa. Throughout the period 1958-1981, the share of electricity as a fuel increased. These observations are derived from analyzing the fuel share patterns of more than 20 industries over the 24-year period 1958 to 1981.

Roop, J.M.; Belzer, D.B.

1986-06-01T23:59:59.000Z

24

Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings  

SciTech Connect (OSTI)

Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.

Price, Lynn; Worrell, Ernst; Khrushch, Marta

1999-09-01T23:59:59.000Z

25

High Penetration of Renewable Energy in the Transportation Sector: Scenarios, Barriers, and Enablers; Preprint  

SciTech Connect (OSTI)

Transportation accounts for 71% of U.S. petroleum use and 33% of its greenhouse gases emissions. Pathways toward reduced greenhouse gas emissions and petroleum dependence in the transportation sector have been analyzed in considerable detail, but with some limitations. To add to this knowledge, the U.S. Department of Energy has launched a study focused on underexplored greenhouse-gas-abatement and oil-savings opportunities related to transportation. This Transportation Energy Futures study analyzes specific issues and associated key questions to strengthen the existing knowledge base and help cultivate partnerships among federal agencies, state and local governments, and industry.

Vimmerstedt, L.; Brown, A.; Heath, G.; Mai, T.; Ruth, M.; Melaina, M.; Simpkins, T.; Steward, D.; Warner, E.; Bertram, K.; Plotkin, S.; Patel, D.; Stephens, T.; Vyas, A.

2012-06-01T23:59:59.000Z

26

Global Climate Change and the Transportation Sector: An Update on Issues and Mitigation Options  

SciTech Connect (OSTI)

It is clear from numerous energy/economic modeling exercises that addressing the challenges posed by global climate change will eventually require the active participation of all industrial sectors and all consumers on the planet. Yet, these and similar modeling exercises indicate that large stationary CO2 point sources (e.g., refineries and fossil-fired electric power plants) are often the first targets considered for serious CO2 emissions mitigation. Without participation of all sectors of the global economy, however, the challenges of climate change mitigation will not be met. Because of its operating characteristics, price structure, dependence on virtually one energy source (oil), enormous installed infrastructure, and limited technology alternatives, at least in the near-term, the transportation sector will likely represent a particularly difficult challenge for CO2 emissions mitigation. Our research shows that climate change induced price signals (i.e., putting a price on carbon that is emitted to the atmosphere) are in the near term insufficient to drive fundamental shifts in demand for energy services or to transform the way these services are provided in the transportation sector. We believe that a technological revolution will be necessary to accomplish the significant reduction of greenhouse gas emissions from the transportation sector. This paper presents an update of ongoing research into a variety of technological options that exist for decarbonizing the transportation sector and the various tradeoffs among them.

Geffen, CA; Dooley, JJ; Kim, SH

2003-08-24T23:59:59.000Z

27

ANALYSIS OF MEASURES FOR REDUCING TRANSPORTATION SECTOR GREENHOUSE GAS  

E-Print Network [OSTI]

(CO2) emission reduction estimates were obtained for each of the measures. The package of measures the problem of reducing greenhouse gas (GHG) emissions from the Canadian transportation sector. Reductions-makers will require estimates of both the potential emission reductions and the costs or benefits associated

28

End use energy consumption data base: transportation sector  

SciTech Connect (OSTI)

The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

Hooker, J.N.; Rose, A.B.; Greene, D.L.

1980-02-01T23:59:59.000Z

29

Captive power plants and industrial sector in the developing countries  

SciTech Connect (OSTI)

The electrical power and energy is essential for the industrial sector of the countries which are transferring its social structure to the industry oriented one from the agrarian society. In Asian countries, this kind of transformation has actively been achieved in this century starting from Japan and followed by Korea, Taiwan, and it is more actively achieved in the countries of Malaysia, Indonesia, Thailand, Philippine, India and China(PRC) in these days. It is valuable to review the effective utilizing of Power and Energy in the industrial sector of the developing countries. In this paper, it is therefore focussed to the captive power plants comparing those of utility companies such as government owned electrical power company and independent power company. It is noticed that major contribution to the electrical power generation in these days is largely dependent on the fossil fuel such as coal, oil and gas which are limited in source. Fossil energy reserves are assumed 1,194 trillion cubic meters or about 1,182 billion barrels of oil equivalent for natural gas 1,009 billion barrels for oil and at least 930 billion tons for coal in the world. According to the statistic data prepared by the World Energy Council, the fossil fuel contribution to electrical power generation records 92.3% in 1970 and 83.3% in 1990 in the world wide. Primary energy source for electrical power generation is shown in figure 1. It is therefore one of the most essential task of human being on how to utilize the limited fossil energy effectively and how to maximize the thermal efficiency in transferring the fossil fuel to usable energy either electrical power and energy or thermal energy of steam or hot/chilled water.

Lee, Rim-Taig [Hyundai Engineering Co. (Korea, Republic of)

1996-12-31T23:59:59.000Z

30

HOW DO WE CONVERT THE TRANSPORT SECTOR TO RENEWABLE ENERGY AND IMPROVE THE SECTOR'S INTERPLAY WITH THE  

E-Print Network [OSTI]

..........................................................................................................16 #12;2 1. Summary The global energy scene is currently dominated by two overriding concerns relies almost 100 % on oil, and in 2004 transport energy use amounted to 26% of total world energy useHOW DO WE CONVERT THE TRANSPORT SECTOR TO RENEWABLE ENERGY AND IMPROVE THE SECTOR'S INTERPLAY

31

Shale Play Industry Transportation Challenges,  

E-Print Network [OSTI]

­ High volume commodi-es flows in and out of shale plays · Sand In....Oil in excess of 50 MMT/Yr. · Life of current Shale Oil & Gas explora-on trend ­ 2012) #12;Shale Play Oil Industry A Look at the Baaken · 2-3 Unit Trains

Minnesota, University of

32

Biofuels in the U.S. Transportation Sector (released in AEO2007)  

Reports and Publications (EIA)

Sustained high world oil prices and the passage of the Energy Policy Act 2005 (EPACT) have encouraged the use of agriculture-based ethanol and biodiesel in the transportation sector; however, both the continued growth of the biofuels industry and the long-term market potential for biofuels depend on the resolution of critical issues that influence the supply of and demand for biofuels. For each of the major biofuelscorn-based ethanol, cellulosic ethanol, and biodieselresolution of technical, economic, and regulatory issues remains critical to further development of biofuels in the United States.

2007-01-01T23:59:59.000Z

33

Energy use and CO2 emissions of China’s industrial sector from a global perspective  

SciTech Connect (OSTI)

The industrial sector has accounted for more than 50% of China’s final energy consumption in the past 30 years. Understanding the future emissions and emissions mitigation opportunities depends on proper characterization of the present-day industrial energy use, as well as industrial demand drivers and technological opportunities in the future. Traditionally, however, integrated assessment research has handled the industrial sector of China in a highly aggregate form. In this study, we develop a technologically detailed, service-oriented representation of 11 industrial subsectors in China, and analyze a suite of scenarios of future industrial demand growth. We find that, due to anticipated saturation of China’s per-capita demands of basic industrial goods, industrial energy demand and CO2 emissions approach a plateau between 2030 and 2040, then decrease gradually. Still, without emissions mitigation policies, the industrial sector remains heavily reliant on coal, and therefore emissions-intensive. With carbon prices, we observe some degree of industrial sector electrification, deployment of CCS at large industrial point sources of CO2 emissions at low carbon prices, an increase in the share of CHP systems at industrial facilities. These technological responses amount to reductions of industrial emissions (including indirect emission from electricity) are of 24% in 2050 and 66% in 2095.

Zhou, Sheng; Kyle, G. Page; Yu, Sha; Clarke, Leon E.; Eom, Jiyong; Luckow, Patrick W.; Chaturvedi, Vaibhav; Zhang, Xiliang; Edmonds, James A.

2013-07-10T23:59:59.000Z

34

Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)  

Reports and Publications (EIA)

For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

2007-01-01T23:59:59.000Z

35

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

SciTech Connect (OSTI)

This report analyzed the potential for increasing energy efficiency and reducing greenhouse gas emissions (GHGs) in the non-residential building and the industrial sectors in India. The first two sections describe the research and analysis supporting the establishment of baseline energy consumption using a bottom up approach for the non residential sector and for the industry sector respectively. The third section covers the explanation of a modeling framework where GHG emissions are projected according to a baseline scenario and alternative scenarios that account for the implementation of cleaner technology.

Sathaye, Jayant; de la Rue du Can, Stephane; Iyer, Maithili; McNeil, Michael; Kramer, Klaas Jan; Roy, Joyashree; Roy, Moumita; Chowdhury, Shreya Roy

2011-04-15T23:59:59.000Z

36

Distributed Energy: Modeling Penetration in Industrial Sector Over the Long-Term  

E-Print Network [OSTI]

Distributed Energy: Modeling Penetration in Industrial Sector over the Long-Term Lorna Greening, Private Consultant, Los Alamos, NM Distributed energy (DE) sources provide a number of benefits when utilized. For industrial facilities... and the generation of steam. Within the framework of a US energy system model (MARKAL using the assumptions underlying AEO 2005), where all sources of energy supply and demand are depicted, the potential penetration of DE options is evaluated. The industrial...

Greening, L.

2006-01-01T23:59:59.000Z

37

Transportation Sector Model of the National Energy Modeling System. Volume 1  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

NONE

1998-01-01T23:59:59.000Z

38

BC Hydro Industrial Sector: Marketing Sector Marketing Plan (Fiscal 2005/Fiscal 2006)  

E-Print Network [OSTI]

BC Hydro, the major electricity utility in the Province of British Columbia has been promoting industrial energy efficiency for more than 15 years. Recently it has launched a new Demand Side Management initiative with the objective of obtaining 2000...

Willis, P.; Wallace, K.

2005-01-01T23:59:59.000Z

39

Pipeline and vehicle transportation problems in the petroleum industry.  

E-Print Network [OSTI]

???In the petroleum industry, petroleum product logistics can be divided into two phases: first logistics, which is mainly provided through pipeline transportation or railway, refers… (more)

Zhen, Feng ( ??)

2011-01-01T23:59:59.000Z

40

Modeling the Transport Sector: The Role of Existing Fuel Taxes in Climate Policy  

E-Print Network [OSTI]

Existing fuel taxes play a major role in determining the welfare effects of exempting the transportation sector from measures to control greenhouse gases. To study this phenomenon we modify the MIT Emissions Prediction and ...

Paltsev, Sergey.

Note: This page contains sample records for the topic "industrial sector transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Technology detail in a multi-sector CGE model : transport under climate policy  

E-Print Network [OSTI]

A set of three analytical models is used to study the imbedding of specific transport technologies within a multi-sector, multi-region evaluation of constraints on greenhouse emissions. Key parameters of a computable general ...

Schafer, Andreas.

42

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network [OSTI]

energy efficiency. Among industries included are cement, pulp and paper and plasticenergy efficiency in industry. Achievements: Production standards have been set for the engineering, plastics,

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

43

Types of Nuclear Industry Jobs Commercial and Government Sectors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButlerTransportation6/14/11 Page 1Two NovelTwoTypesTypes of

44

Comparative analysis of energy data bases for the industrial and commercial sectors  

SciTech Connect (OSTI)

Energy data bases for the industrial and commercial sectors were analyzed to determine how valuable this data might be for policy analysis. The approach is the same for both end-use sectors: first a descrption or overview of relevant data bases identifies the available data; the coverage and methods used to generate the data are then explained; the data are then characterized and examples are provided for the major data sets under consideration. A final step assesses the data bases under consideration and draws conclusions. There are a variety of data bases considered for each of the end-use sectors included in this report. Data bases for the industrial sector include the National Energy Accounts, process-derived data bases such as the Drexel data base and data obtained from industry trade associations. For the commercial sector, three types of data bases are analyzed: the Nonresidential Building Energy Consumption Surveys, Dodge Construction Data and the Building Owners and Manager's Association Experience Exchange Report.

Roop, J.M.; Belzer, D.B.; Bohn, A.A.

1986-12-01T23:59:59.000Z

45

Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 1  

SciTech Connect (OSTI)

This volume contains input data and parameters used in the model of the transportation sector of the National Energy Modeling System. The list of Transportation Sector Model variables includes parameters for the following: Light duty vehicle modules (fuel economy, regional sales, alternative fuel vehicles); Light duty vehicle stock modules; Light duty vehicle fleet module; Air travel module (demand model and fleet efficiency model); Freight transport module; Miscellaneous energy demand module; and Transportation emissions module. Also included in these appendices are: Light duty vehicle market classes; Maximum light duty vehicle market penetration parameters; Aircraft fleet efficiency model adjustment factors; and List of expected aircraft technology improvements.

NONE

1998-01-01T23:59:59.000Z

46

Fact #619: April 19, 2010 Transportation Sector Revenue by Industry |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report1:Energy 2: MarchDepartment of

47

Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector  

SciTech Connect (OSTI)

The DOE is conducting a comprehensive technical analysis of a flexible-fuel transportation system in the United States -- that is, a system that could easily switch between petroleum and another fuel, depending on price and availability. The DOE Alternative Fuels Assessment is aimed directly at questions of energy security and fuel availability, but covers a wide range of issues. This report examines environmental, health, and safety concerns associated with a switch to alternative- and flexible-fuel vehicles. Three potential alternatives to oil-based fuels in the transportation sector are considered: methanol, compressed natural gas (CNG), and electricity. The objective is to describe and discuss qualitatively potential environmental, health, and safety issues that would accompany widespread use of these three fuels. This report presents the results of exhaustive literature reviews; discussions with specialists in the vehicular and fuel-production industries and with Federal, State, and local officials; and recent information from in-use fleet tests. Each chapter deals with the end-use and process emissions of air pollutants, presenting an overview of the potential air pollution contribution of the fuel --relative to that of gasoline and diesel fuel -- in various applications. Carbon monoxide, particulate matter, ozone precursors, and carbon dioxide are emphasized. 67 refs., 6 figs. , 8 tabs.

Not Available

1991-10-01T23:59:59.000Z

48

Model documentation report: Industrial sector demand module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects. The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2015) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

NONE

1997-01-01T23:59:59.000Z

49

Accounting for Co-benefits in Asia's Transportation Sector: Methods...  

Open Energy Info (EERE)

has two objectives. The first is to examine methodological issues involved in using guidelines to measure co-benefits from transport projects (developing baselines,...

50

FY 16 EERE Budget Webinar-Sustainable Transportation Sector ...  

Broader source: Energy.gov (indexed) [DOE]

requests) and an opportunity to ask questions. Deputy Assistant Secretary Reuben Sarkar will be leading the webinar for Sustainable Transportation on March 3, 2015, from 2:30...

51

Economies of Scale and Scope in Network Industries: Lessons for the UK water and sewerage sectors  

E-Print Network [OSTI]

was directly transferred to 12 private firms. The government sold its remaining share of the power generators in the year 2000.4 The 2001 New Electricity Trading Arrangements (NETA) changed the mechanism for electricity trading and the latest major reform... sectors1 Michael G. Pollitt Steven J. Steer ESRC Electricity Policy Research Group University of Cambridge August 2011 Abstract Many studies of the water and sewerage industries place significant importance on the benefits of economies...

Pollitt, Michael G.; Steer, Stephen J.

52

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network [OSTI]

company and the Danish Energy Agency. The agreements, whichDanish Energy Authority [1] The Ministry of the Environment [2] and its Environmental Protection Agency [agencies 1. Voluntary Agreements with industry – Danish Energy

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

53

The Impact of Oil Prices on the Air Transportation Industry  

E-Print Network [OSTI]

The Impact of Oil Prices on the Air Transportation Industry Final Report Prepared by: John Hansman................................................................................................47 3 EVALUATING THE EFFECTS OF OIL PRICE CHANGE ON THE US DOMESTIC CARGO INDUSTRY .................48 3............................................................................................................................74 4 OIL PRICE IMPACTS IN GENERAL AVIATION

Hill, Wendell T.

54

Published by Oak Ridge National Laboratory No. 1 2010 The industrial sector accounts for nearly one-third of the  

E-Print Network [OSTI]

Published by Oak Ridge National Laboratory No. 1 2010 The industrial sector accounts for nearly one research and development agreements (CRADAs) and two large work-for-others projects. Ev- ery single one

Pennycook, Steve

55

Comparison Study of Energy Intensity in the Textile Industry: A Case Study in Five Textile Sub-sectors  

E-Print Network [OSTI]

This paper contributes to the understanding of energy use in the textile industry by comparing the energy intensity of textile plants in five major sub-sectors, i.e. spinning, weaving, wet-processing, worsted fabric manufacturing, and carpet...

Hasanbeigi, A.; Hasanabadi, A.; Abdorrazaghi, M.

2011-01-01T23:59:59.000Z

56

Transportation resource scheduling in food retail industry  

E-Print Network [OSTI]

The objective of this thesis is to find an appropriate analytical method for scheduling the daily driver tasks in the grocery industry. The goal is to maximize driver utilization. A "Bin-packing" approach is employed to ...

Akkas, Arzum, 1978-

2004-01-01T23:59:59.000Z

57

Long-term Industrial Energy Forecasting (LIEF) model (18-sector version)  

SciTech Connect (OSTI)

The new 18-sector Long-term Industrial Energy Forecasting (LIEF) model is designed for convenient study of future industrial energy consumption, taking into account the composition of production, energy prices, and certain kinds of policy initiatives. Electricity and aggregate fossil fuels are modeled. Changes in energy intensity in each sector are driven by autonomous technological improvement (price-independent trend), the opportunity for energy-price-sensitive improvements, energy price expectations, and investment behavior. Although this decision-making framework involves more variables than the simplest econometric models, it enables direct comparison of an econometric approach with conservation supply curves from detailed engineering analysis. It also permits explicit consideration of a variety of policy approaches other than price manipulation. The model is tested in terms of historical data for nine manufacturing sectors, and parameters are determined for forecasting purposes. Relatively uniform and satisfactory parameters are obtained from this analysis. In this report, LIEF is also applied to create base-case and demand-side management scenarios to briefly illustrate modeling procedures and outputs.

Ross, M.H. (Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Physics); Thimmapuram, P.; Fisher, R.E.; Maciorowski, W. (Argonne National Lab., IL (United States))

1993-05-01T23:59:59.000Z

58

Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 1: Part 1, Electricity supply sector; Part 2, Residential and commercial buildings sector; Part 3, Industrial sector  

SciTech Connect (OSTI)

DOE encourages you to report your achievements in reducing greenhouse gas emissions and sequestering carbon under this program. Global climate change is increasingly being recognized as a threat that individuals and organizations can take action against. If you are among those taking action, reporting your projects may lead to recognition for you, motivation for others, and synergistic learning for the global community. This report discusses the reporting process for the voluntary detailed guidance in the sectoral supporting documents for electricity supply, residential and commercial buildings, industry, transportation, forestry, and agriculture. You may have reportable projects in several sectors; you may report them separately or capture and report the total effects on an entity-wide report.

Not Available

1994-10-01T23:59:59.000Z

59

A review of life-cycle analysis studies on liquid biofuel systems for the transport sector  

E-Print Network [OSTI]

"Advanced" (or second generation) biofuels · Bioethanol (E100, E85, E10, ETBE) from lignocellu- losicA review of life-cycle analysis studies on liquid biofuel systems for the transport sector Eric D interest in biofuels for climate change mitigation. This article reviews the rich literature of published

60

Electric vehicles and renewable energy in the transport sector energy system  

E-Print Network [OSTI]

energy resources, such as wind power. Economic aspects for electric vehicles interactingElectric vehicles and renewable energy in the transport sector ­ energy system consequences Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles Lars Henrik Nielsen and Kaj

Note: This page contains sample records for the topic "industrial sector transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Post-2012 Climate Instruments in the transport sector | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power Inc JumpPortage, NewOR) JumpInformation transport

62

Industry sector analysis, China: Petrochemical industry in east China. Export trade information  

SciTech Connect (OSTI)

The market survey covers the petrochemical equipment and technology market in East China. The analysis contains statistical and narrative information on projected market demand, end-users; receptivity of Chinese consumers to U.S. products; the competitive situation, and market access (tariffs, non-tariff barriers, standards, taxes, distribution channels). It also contains key contact information and information on upcoming trade events related to the industry.

Not Available

1993-01-01T23:59:59.000Z

63

ISTUM PC: industrial sector technology use model for the IBM-PC  

SciTech Connect (OSTI)

A project to improve and enhance the Industrial Sector Technology Use Model (ISTUM) was originated in the summer of 1983. The project had dix identifiable objectives: update the data base; improve run-time efficiency; revise the reference base case; conduct case studies; provide technical and promotional seminars; and organize a service bureau. This interim report describes which of these objectives have been met and which tasks remain to be completed. The most dramatic achievement has been in the area of run-time efficiency. From a model that required a large proportion of the total resources of a mainframe computer and a great deal of effort to operate, the current version of the model (ISTUM-PC) runs on an IBM Personal Computer. The reorganization required for the model to run on a PC has additional advantages: the modular programs are somewhat easier to understand and the data base is more accessible and easier to use. A simple description of the logic of the model is given in this report. To generate the necessary funds for completion of the model, a multiclient project is proposed. This project will extend the industry coverage to all the industrial sectors, including the construction of process flow models for chemicals and petroleum refining. The project will also calibrate this model to historical data and construct a base case and alternative scenarios. The model will be delivered to clients and training provided. 2 references, 4 figures, 3 tables.

Roop, J.M.; Kaplan, D.T.

1984-09-01T23:59:59.000Z

64

Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About UsIndustrial Energy Efficiency AssessmentsJobs

65

Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector: Executive Summary  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About UsIndustrial Energy Efficiency

66

The Potential for Energy-Efficient Technologies to Reduce Carbon Emissions in the United States: Transport Sector  

SciTech Connect (OSTI)

The world is searching for a meaningful answer to the likelihood that the continued build-up of greenhouse gases in the atmosphere will cause significant changes in the earth`s climate. If there is to be a solution, technology must play a central role. This paper presents the results of an assessment of the potential for cost-effective technological changes to reduce greenhouse gas emissions from the U.S. transportation sector by the year 2010. Other papers in this session address the same topic for buildings and industry. U.S.transportation energy use stood at 24.4 quadrillion Btu (Quads) in 1996, up 2 percent over 1995 (U.S. DOE/EIA, 1997, table 2.5). Transportation sector carbon dioxide emissions amounted to 457.2 million metric tons of carbon (MmtC) in 1995, almost one third of total U.S. greenhouse gas emissions (U.S. DOE/EIA,1996a, p. 12). Transport`s energy use and CO{sub 2} emissions are growing, apparently at accelerating rates as energy efficiency improvements appear to be slowing to a halt. Cost-effective and nearly cost-effective technologies have enormous potential to slow and even reverse the growth of transport`s CO{sub 2} emissions, but technological changes will take time and are not likely to occur without significant, new public policy initiatives. Absent new initiatives, we project that CO{sub 2} emissions from transport are likely to grow to 616 MmtC by 2010, and 646 MmtC by 2015. An aggressive effort to develop and implement cost-effective technologies that are more efficient and fuels that are lower in carbon could reduce emissions by about 12% in 2010 and 18% in 2015, versus the business-as- usual projection. With substantial luck, leading to breakthroughs in key areas, reductions over the BAU case of 17% in 2010 and 25% in 2015,might be possible. In none of these case are CO{sub 2} emissions reduced to 1990 levels by 2015.

Greene, D.L.

1997-07-01T23:59:59.000Z

67

Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors  

SciTech Connect (OSTI)

Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

Lee, A.; Zinaman, O.; Logan, J.

2012-12-01T23:59:59.000Z

68

World Best Practice Energy Intensity Values for SelectedIndustrial Sectors  

SciTech Connect (OSTI)

"World best practice" energy intensity values, representingthe most energy-efficient processes that are in commercial use in atleast one location worldwide, are provided for the production of iron andsteel, aluminium, cement, pulp and paper, ammonia, and ethylene. Energyintensity is expressed in energy use per physical unit of output for eachof these commodities; most commonly these are expressed in metric tonnes(t). The energy intensity values are provided by major energy-consumingprocesses for each industrial sector to allow comparisons at the processlevel. Energy values are provided for final energy, defined as the energyused at the production facility as well as for primary energy, defined asthe energy used at the production facility as well as the energy used toproduce the electricity consumed at the facility. The "best practice"figures for energy consumption provided in this report should beconsidered as indicative, as these may depend strongly on the materialinputs.

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky,Christina; Zhou, Nan

2007-06-05T23:59:59.000Z

69

Life cycle GHG emissions from Malaysian oil palm bioenergy development: The impact on transportation sector's energy security  

E-Print Network [OSTI]

on transportation sector's energy security Mohd Nor Azman Hassan a,n , Paulina Jaramillo a , W. Michael Griffin a sector accounts for 41% of the country's total energy use. The country is expected to become a net oil% of total energy consumption. This is expected to increase to about 1100 PJ in 2015 extrapolat- ing

Jaramillo, Paulina

70

Table 3. Top Five Retailers of Electricity, with End Use Sectors...  

U.S. Energy Information Administration (EIA) Indexed Site

of Provider","All Sectors","Residential","Commercial","Industrial","Transportation" 1,"Green Mountain Power Corp","Investor-Owned",2477751,835602,896610,745539,0 2,"Central...

71

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

public sector, and one in the private sector. Total energy consumptionenergy consumption increased by over 60% in the commercial building (including both public and private) sector.public sector ownership. 2.2.3 Energy data At the national or state level, end-use level energy consumption

Sathaye, Jayant

2011-01-01T23:59:59.000Z

72

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

Policies in the Electricity Sector. Discussion Paper 99-51,emissions from the electricity sector. Several states have2020 emissions from the electricity sector by 18%. Extending

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

73

Reduction in tribological energy losses in the transportation and electric utilities sectors  

SciTech Connect (OSTI)

This report is part of a study of ways and means of advancing the national energy conservation effort, particularly with regard to oil, via progress in the technology of tribology. The report is confined to two economic sectors: transportation, where the scope embraces primarily the highway fleets, and electric utilities. Together these two sectors account for half of the US energy consumption. Goal of the study is to ascertain the energy sinks attributable to tribological components and processes and to recommend long-range research and development (R and D) programs aimed at reducing these losses. In addition to the obvious tribological machine components such as bearings, piston rings, transmissions and so on, the study also extends to processes which are linked to tribology indirectly such as wear of machine parts, coatings of blades, high temperature materials leading to higher cycle efficiencies, attenuation of vibration, and other cycle improvements.

Pinkus, O.; Wilcock, D.F.; Levinson, T.M.

1985-09-01T23:59:59.000Z

74

Energy, Industry, and Transport in South-Central Africa’s History  

E-Print Network [OSTI]

Energy must be seen in interaction with transportation and industry in order for its role in South-Central Africa to be fully understood. All three—energy, industry, and transportation—are themselves always socialized and ...

Mavhunga, Clapperton Chakanets

2014-01-01T23:59:59.000Z

75

Stormwater Best Management Practices (BMPs) for Selected Industrial Sectors in the Lower Fraser Basin  

E-Print Network [OSTI]

Concrete Industry Lime Industry Refined Petroleum Products (Bulk Storage) Other Petroleum and Coal Products and Planing Mill Products Industry Wire and Wire Products Industries Hydraulic Cernent Industry Ready Mixed

76

Impacts of Transportation Infrastructure on the U.S. Cotton Industry  

E-Print Network [OSTI]

Impacts of Transportation Infrastructure on the U.S. Cotton Industry Parr Rosson, Flynn Adcock of Transportation Infrastructure on the U.S. Cotton Industry Introduction The U.S. transportation system, including recovery," (Miller Center of Public Affairs). The U.S. cotton industry operates within these constraints

77

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

Energy Through Greater Efficiency: The Potential for Conservation in California’s Residential Sector. Report

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

78

ENCUENTRO EMPRESA-UNIVERSIDAD OPORTUNIDADES DE NEGOCIO EN EL MBITO DEL SECTOR INDUSTRIAL MARINO E  

E-Print Network [OSTI]

. Producción industrial de biomasa de insectos, mediante la valorización de subproductos de origen vegetal

Escolano, Francisco

79

Future Public Policy and Ethical Issues Facing the Agricultural and Microbial Genomics Sectors of the Biotechnology Industry: A Roundtable Discussion  

SciTech Connect (OSTI)

On September 12, 2003, the University of Maryland School of Law's Intellectual Property and Law & Health Care Programs jointly sponsored and convened a roundtable discussion on the future public policy and ethical issues that will likely face the agricultural and microbial genomics sectors of the biotechnology industry. As this industry has developed over the last two decades, societal concerns have moved from what were often local issues, e.g., the safety of laboratories where scientists conducted recombinant DNA research on transgenic microbes, animals and crops, to more global issues. These newer issues include intellectual property, international trade, risks of genetically engineered foods and microbes, bioterrorism, and marketing and labeling of new products sold worldwide. The fast paced nature of the biotechnology industry and its new developments often mean that legislators, regulators and society, in general, must play ''catch up'' in their efforts to understand the issues, the risks, and even the benefits, that may result from the industry's new ways of conducting research, new products, and novel methods of product marketing and distribution. The goal of the roundtable was to develop a short list of the most significant public policy and ethical issues that will emerge as a result of advances in these sectors of the biotechnology industry over the next five to six years. More concretely, by ''most significant'' the conveners meant the types of issues that would come to the attention of members of Congress or state legislators during this time frame and for which they would be better prepared if they had well researched and timely background information. A concomitant goal was to provide a set of focused issues for academic debate and scholarship so that policy makers, industry leaders and regulators would have the intellectual resources they need to better understand the issues and concerns at stake. The goal was not to provide answers to any of the issues or problems, simply to identify those topics that deserve our attention as a society. Some of the issues may benefit from legislation at the federal or state levels, others may be more appropriately addressed by the private sector. Participants at the roundtable included over a dozen experts in the areas of microbiology, intellectual property, agricultural biotechnology, microbial genomics, bioterrorism, economic development, biotechnology research, and bioethics. These experts came from federal and state government, industry and academia. The participants were asked to come to the roundtable with a written statement of the top three to five public policy/ ethical issues they viewed as most likely to be significant to the industry and to policy makers over the next several years.

Diane E. Hoffmann

2003-09-12T23:59:59.000Z

80

Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)  

E-Print Network [OSTI]

energy demand. The energy consumption mix i n China'sstructure and product mix in energy-intensive industries;Table 4). The sector's mix of energy sources that year was

Zhiping, L.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Industry  

SciTech Connect (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

82

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network [OSTI]

Fuels used in the refinery sector were also collected fromof the emissions from the refinery sector are included incommitment of 44% and the refinery and food sectors

Price, Lynn

2010-01-01T23:59:59.000Z

83

Unrestricted. Siemens AG 2013. All rights reserved.Page 2 October 2013 Corporate Technology Siemens is organized in 4 Sectors: Industry,  

E-Print Network [OSTI]

· Smart Grid · Building Technologies · Osram 2) Corporate functions Corporate Technology Corp. Finance Siemens is organized in 4 Sectors: Industry, Energy, Healthcare and Infrastructure & Cities Siemens: Facts ... Corp. Technology Corp. Development Infrastructure & Cities HealthcareEnergyIndustry ~ 14 bn.1) ~ 18 bn

Oak Ridge National Laboratory

84

Rank Residential Sector Commercial Sector Industrial Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S.Feet) Year

85

Model documentation report: Industrial sector demand module of the national energy modeling system  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its model. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

NONE

1998-01-01T23:59:59.000Z

86

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

World Others Share Source: Murthy, 2007 3.3.3 Energy data The productionthe World Bank. 4.2.2 Industrial Production Intensity EnergyEnergy) Production Of crude steel Mt SEC GJ/t cs Coal Elect FO LPG Gas SEC World

Sathaye, Jayant

2011-01-01T23:59:59.000Z

87

A historical view and proposal analysis of the strategic role of the transportation sector in the economic development of post-war Liberia  

E-Print Network [OSTI]

This thesis examines the proposals for building and improving the transportation sector in Liberia, primarily the roads while providing immediate social opportunities and employment for many of the poor in Liberia. As ...

Kwame Corkrum, Ellen

2010-01-01T23:59:59.000Z

88

A State Regulator's View of 'PURPA' And Its Impact on Energy Conservation in the Industrial Sector  

E-Print Network [OSTI]

improving utility production efficiency, lowering costs and possibly reducing the need for new high cost production facilities. On the other hand, time of use rates may ultimately cause some electric users, especially certain large industrial customers... and resources by electric utilities." Two types of efficiency are addressed here. The first, is economic efficiency, which in classical economics implies the setting of prices which result in the appropriate allocation and conservation of society...

Williams, M. L.

1981-01-01T23:59:59.000Z

89

Du, X., Kockelman, K. M. 1 1 TRACKING TRANSPORTATION AND INDUSTRIAL PRODUCTION ACROSS A  

E-Print Network [OSTI]

commodities highlight the importance of food 35 and petroleum manufacturing sectors, in terms of production expansions) and exogenous economic shocks (e.g., increases in14 export demands).15 Other spatial IO commodity flows and transportation network flows to17 evaluate the indirect impacts of an unexpected event

Kockelman, Kara M.

90

Electric Power Interruption Cost Estimates for Individual Industries, Sectors, and the U.S. Economy  

E-Print Network [OSTI]

(Lehtonen et at. 1995) Finland 1992 1993 Industrial- US$15.79/kW - I-Hour Interruption Commercial - US$17.86/kW - I-Hour Interruption Residential- US$3.16/kW - I-Hour Interruption Lehtonen and Lemstroem (Lehtonen et al. 1995) Iceland 1992 1993.... VTT Energy. Jyvaskyla, Finland. (1995). 9. New York City Office of Economic Development. Statistical Profile of Emergency Aid Corrunission Applications. New York, New York. (1977). 10. Ontario Hydro. Ontario Hydro Survey on Power System...

Balducci, P. J.; Roop, J. M.; Schienbein, L. A.; DeSteese, J. G.; Weimar, M. R.

91

2008 Industrial Technologies Market Report, May 2009  

SciTech Connect (OSTI)

The industrial sector is a critical component of the U.S. economy, providing an array of consumer, transportation, and national defense-related goods we rely on every day. Unlike many other economic sectors, however, the industrial sector must compete globally for raw materials, production, and sales. Though our homes, stores, hospitals, and vehicles are located within our borders, elements of our goods-producing industries could potentially be moved offshore. Keeping U.S. industry competitive is essential to maintaining and growing the U.S. economy. This report begins with an overview of trends in industrial sector energy use. The next section of the report focuses on some of the largest and most energy-intensive industrial subsectors. The report also highlights several emerging technologies that could transform key segments of industry. Finally, the report presents policies, incentives, and drivers that can influence the competitiveness of U.S. industrial firms.

Energetics; DOE

2009-07-01T23:59:59.000Z

92

Global Climate Change, Developing Countries and Transport Sector Options in South Africa  

E-Print Network [OSTI]

on Global Climate Change: Developing Countries and Transporton Global Climate Change: Developing Countries and Transporton Global Climate Change: Developing Countries and Transport

2000-01-01T23:59:59.000Z

93

The U. S. transportation sector in the year 2030: results of a two-part Delphi survey.  

SciTech Connect (OSTI)

A two-part Delphi Survey was given to transportation experts attending the Asilomar Conference on Transportation and Energy in August, 2011. The survey asked respondents about trends in the US transportation sector in 2030. Topics included: alternative vehicles, high speed rail construction, rail freight transportation, average vehicle miles traveled, truck versus passenger car shares, vehicle fuel economy, and biofuels in different modes. The survey consisted of two rounds -- both asked the same set of seven questions. In the first round, respondents were given a short introductory paragraph about the topic and asked to use their own judgment in their responses. In the second round, the respondents were asked the same questions, but were also given results from the first round as guidance. The survey was sponsored by Argonne National Lab (ANL), the National Renewable Energy Lab (NREL), and implemented by University of California at Davis, Institute of Transportation Studies. The survey was part of the larger Transportation Energy Futures (TEF) project run by the Department of Energy, Office of Energy Efficiency and Renewable Energy. Of the 206 invitation letters sent, 94 answered all questions in the first round (105 answered at least one question), and 23 of those answered all questions in the second round. 10 of the 23 second round responses were at a discussion section at Asilomar, while the remaining were online. Means and standard deviations of responses from Round One and Two are given in Table 1 below. One main purpose of Delphi surveys is to reduce the variance in opinions through successive rounds of questioning. As shown in Table 1, the standard deviations of 25 of the 30 individual sub-questions decreased between Round One and Round Two, but the decrease was slight in most cases.

Morrison, G.; Stephens, T.S. (Energy Systems); (Univ. of California at Davis); (ES)

2011-10-11T23:59:59.000Z

94

Industry  

E-Print Network [OSTI]

sector’s share of global primary energy use declined fromused 91 EJ of primary energy, 40% of the global total of 227Global and sectoral data on final energy use, primary energy

Bernstein, Lenny

2008-01-01T23:59:59.000Z

95

Advanced Reactors Thermal Energy Transport for Process Industries  

SciTech Connect (OSTI)

The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

2014-07-01T23:59:59.000Z

96

Integration of renewable energy into the transport and electricity sectors through V2G  

E-Print Network [OSTI]

Keywords: V2G Vehicle to grid Energy system analysis Sustainable energy systems Electric vehicle EV for electricity, transport and heat, includes hourly fluctuations in human needs and the environment (wind energy systems allows integration of much higher levels of wind electricity without excess electric

Firestone, Jeremy

97

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector  

SciTech Connect (OSTI)

Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Vyas, A. D.; Patel, D. M.; Bertram, K. M.

2013-03-01T23:59:59.000Z

98

Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector  

SciTech Connect (OSTI)

The primary objective of this report is to provide estimates of volumes and development costs of known nonassociated gas reserves in selected, potentially important supplier nations, using a standard set of costing algorithms and conventions. Estimates of undeveloped nonassociated gas reserves and the cost of drilling development wells, production equipment, gas processing facilities, and pipeline construction are made at the individual field level. A discounted cash-flow model of production, investment, and expenses is used to estimate the present value cost of developing each field on a per-thousand-cubic-foot (Mcf) basis. These gas resource cost estimates for individual accumulations (that is, fields or groups of fields) then were aggregated into country-specific price-quantity curves. These curves represent the cost of developing and transporting natural gas to an export point suitable for tanker shipments or to a junction with a transmission line. The additional costs of LNG or methanol conversion are not included. A brief summary of the cost of conversion to methanol and transportation to the United States is contained in Appendix D: Implications of Gas Development Costs for Methanol Conversion.

none,

1993-01-01T23:59:59.000Z

99

Model documentation report: Transportation sector model of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. This document serves three purposes. First, it is a reference document providing a detailed description of TRAN for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, 57(b)(1)). Third, it permits continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

Not Available

1994-03-01T23:59:59.000Z

100

Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 2  

SciTech Connect (OSTI)

The attachments contained within this appendix provide additional details about the model development and estimation process which do not easily lend themselves to incorporation in the main body of the model documentation report. The information provided in these attachments is not integral to the understanding of the model`s operation, but provides the reader with opportunity to gain a deeper understanding of some of the model`s underlying assumptions. There will be a slight degree of replication of materials found elsewhere in the documentation, made unavoidable by the dictates of internal consistency. Each attachment is associated with a specific component of the transportation model; the presentation follows the same sequence of modules employed in Volume 1. The following attachments are contained in Appendix F: Fuel Economy Model (FEM)--provides a discussion of the FEM vehicle demand and performance by size class models; Alternative Fuel Vehicle (AFV) Model--describes data input sources and extrapolation methodologies; Light-Duty Vehicle (LDV) Stock Model--discusses the fuel economy gap estimation methodology; Light Duty Vehicle Fleet Model--presents the data development for business, utility, and government fleet vehicles; Light Commercial Truck Model--describes the stratification methodology and data sources employed in estimating the stock and performance of LCT`s; Air Travel Demand Model--presents the derivation of the demographic index, used to modify estimates of personal travel demand; and Airborne Emissions Model--describes the derivation of emissions factors used to associate transportation measures to levels of airborne emissions of several pollutants.

NONE

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Technical Report #98T-010, Department of Industrial & Mfg. Systems Egnieering, Lehigh Univerisity COORDINATION PRODUCTION AND TRANSPORTATION  

E-Print Network [OSTI]

. In manufacturing-centric industries such as automotive and electronics, costs constitute the secondtransportation and transportation planning in manufacturing supply chains typical in automotive and electronic industries. Main cost.g., in the automotive industry, a ten- to fourteen-day inventory buffer is a common practice for the very purpose

Wu, David

102

Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector  

SciTech Connect (OSTI)

The Alternative Motor Fuels Act of 1988 (Public Law 100-494), Section 400EE, states that the Secretary of Energy ...shall study methanol plants, including the costs and practicability of such plants that are (A) capable of utilizing current domestic supplies of unutilized natural gas; (B) relocatable; or (C) suitable for natural gas to methanol conversion by natural gas distribution companies...'' The purpose of this report is to characterize unutilized gas within the lower 48 states and to perform an economic analysis of methanol plants required by the act. The approach with regard to unutilized lower 48 gas is to (1) compare the costs of converting such gas to methanol against the expected price of gasoline over the next 20 years, and (2) compare the economics of converting such gas to methanol against the economics of using the gas as a pipeline-transported fuel. This study concludes that remote gas and low-Btu gas generally cannot be converted to methanol at costs near the expected competitive value of gasoline because of the poor economies of scale of small methanol plants.

Not Available

1991-07-01T23:59:59.000Z

103

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network [OSTI]

industry (iron foundries, cold storage and refrigeration,Energy management Cold storage and refrigeration ? Newelectric power; heat/cold storage; heat pumps using ambient

Price, Lynn

2010-01-01T23:59:59.000Z

104

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network [OSTI]

chemicals, light industry (iron foundries, cold storage andindustry ? Use of CHP ? Debottlenecking ? Increased production capacity ? Better use of production capacity ? Energy management Cold storage

Price, Lynn

2010-01-01T23:59:59.000Z

105

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network [OSTI]

to provide training and energy audits and to help industrial1997 to end of March - Energy audits have allow to avoidagrees to undertake an energy audit, develop a management

Price, Lynn

2010-01-01T23:59:59.000Z

106

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network [OSTI]

by ERC, is 448.3 trillion Btu (TBtu). The total CaliforniaBecause the cost of an electrical Btu is roughly 4 timesthat of a source fuel Btu, industrial categories that use

Akbari, H.

2008-01-01T23:59:59.000Z

107

Industry  

E-Print Network [OSTI]

SHIP - Solar heat for industrial processes. Internationalsolar power could be used to provide process heat for

Bernstein, Lenny

2008-01-01T23:59:59.000Z

108

Public/private sector cooperation to promote industrial energy efficiency: Allied partners and the US Department of Energy  

SciTech Connect (OSTI)

Since 1996, the US Department of Energy's Office of Industrial Technologies (USDOE) has been involved in a unique voluntary collaboration with industry called the Allied Partner program. Initially developed under the Motor Challenge program, the partnership concept continues as a central element of USDOE's BestPractices, which in 2001 integrated all of USDOE's near-term industrial program offerings including those in motors, compressed air, pump, fan, process heating and steam systems. Partnerships are sought with end use industrial companies as well as equipment suppliers and manufacturers, utilities, consultants, and state agencies that have extensive existing relationships with industrial customers. Partners are neither paid nor charged a fee for participation. Since the inception of Allied Partners, the assumption has been that these relationships could serve as the foundation for conveying a system energy-efficiency message to many more industrial facilities than could be reached through a typical government-to-end-user program model. An independent evaluation of the Motor Challenge program, reported at the last EEMODS conference, attributed US $16.9 million or nearly 67 percent of the total annual program energy savings to the efforts of Allied Partners in the first three years of operation. A recent evaluation of the Compressed Air Challenger, which grew out of the former Motor Challenger program, attribute additional energy savings from compressed air training alone at US $12.1 million per year. Since the reorganization under BestPractices, the Allied Partner program has been reshaped to extend the impact of all BestPractices program activities. This new model is more ambitious than the former Motor Challenge program concerning the level of collaborative activities negotiated with Allied Partners. This paper describes in detail two new types of program initiatives involving Allied Partners: Qualified Specialist Training and Energy Events. The Qualified Specialist activity was conceived as a way of engaging the supply side of industry, consultants, and utilities to greatly increase use of decision making software developed by USDOE to assist industrial facilities in assessing the energy efficiency of their energy-using systems. To date, USDOE has launched Qualified Specialist training with member companies of the Hydraulic Institute (HI) and with distributors and consultants associated with the Compressed Air Challenge. These activities train and qualify industry professionals to use and to train customers to use USDOE's Pumping System Assessment Tool (PSAT) and AIRMaster + software programs, respectively. The industry experts provide a public benefit by greatly increasing customer access to the software and assessment techniques. Participating Specialists anticipate a business benefit by providing a valuable service to key customers that is associated with USDOE. The Energy Event concept was developed in 2001 in cooperation with the California Energy Commission in response to the state's energy crisis and has been extended to other geographic areas during 2002. The three California events, named ''Energy Solutions for California Industry,'' relied on Allied Partners to provide system-based solutions to industrial companies as both speakers and exhibitors. These one-day events developed a model for a serious solutions-oriented format that avoids the typical trade show atmosphere through strict exhibitor guidelines, careful screening of speaker topics, and reliance on case studies to illustrate cost- and energy-saving opportunities from applying a systems approach. Future plans to use this activity model are discussed as well as lessons learned from the California series.

McKane, Aimee; Cockrill, Chris; Tutterow, Vestal; Radspieler, Anthony

2003-05-18T23:59:59.000Z

109

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network [OSTI]

industry or plants could benefit from new technologies such as cold storagecold storage and space cooling systems technology has. The electricity use in these industriesindustries may also be able to take advan- tage of TES; however, the technology of integrating cold storage

Akbari, H.

2008-01-01T23:59:59.000Z

110

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network [OSTI]

of coupling to the electricity sector. The chapter examinesfrom the transportation and electricity sectors together.transportation and electricity sectors will likely interact

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

111

Workshop on diamond and diamond-like-carbon films for the transportation industry  

SciTech Connect (OSTI)

Applications exist in advanced transportation systems as well as in manufacturing processes that would benefit from superior tribological properties of diamond, diamond-like-carbon and cubic boron nitride coatings. Their superior hardness make them ideal candidates as protective coatings to reduce adhesive, abrasive and erosive wear in advanced diesel engines, gas turbines and spark-ignited engines and in machining and manufacturing tools as well. The high thermal conductivity of diamond also makes it desirable for thermal management not only in tribological applications but also in high-power electronic devices and possibly large braking systems. A workshop has been recently held at Argonne National Laboratory entitled ``Diamond and Diamond-Like-Carbon Films for Transportation Applications`` which was attended by 85 scientists and engineers including top people involved in the basic technology of these films and also representatives from many US industrial companies. A working group on applications endorsed 18 different applications for these films in the transportation area alone. Separate abstracts have been prepared.

Nichols, F.A.; Moores, D.K. [eds.

1993-01-01T23:59:59.000Z

112

To appear in International Journal of Hydrogen Energy 1 Sustainable Convergence of Electricity and Transport Sectors in the  

E-Print Network [OSTI]

grid investments such as new power generation installations. Keywords: Hydrogen economy, fuel cell sector based on fuel cell vehicles (FCVs). A comprehensive robust optimization planning model AFV Alternative-Fuel Vehicle. FCV Fuel Cell Vehicle. GV Gasoline Vehicle. HHV Higher Heating Value

Cañizares, Claudio A.

113

Industry  

E-Print Network [OSTI]

of its electricity requirements in the USA (US DOE, 2002)USA, where motor-driven systems account for 63% of industrial electricity

Bernstein, Lenny

2008-01-01T23:59:59.000Z

114

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

SciTech Connect (OSTI)

Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

Sathaye, J.; Xu, T.; Galitsky, C.

2010-08-15T23:59:59.000Z

115

Transportation Sector Market Transition: Using History and Geography to Envision Possible Hydrogen Infrastructure Development and Inform Public Policy  

SciTech Connect (OSTI)

This report covers the challenges to building an infrastructure for hydrogen, for use as transportation fuel. Deployment technologies and policies that could quicken deployment are addressed.

Brown, E.

2008-08-01T23:59:59.000Z

116

Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report  

SciTech Connect (OSTI)

This report encompasses the second year of a proposed three year project with emphasis focused on fundamental research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (1) direct diesel replacement with LNG fuel, and (2) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. The results of this work are expected to enhance utilization of LNG as a transportation fuel. The paper discusses the following topics: (A) Fueling Delivery to the Engine, Engine Considerations, and Emissions: (1) Atomization and/or vaporization of LNG for direct injection diesel-type natural gas engines; (2) Fundamentals of direct replacement of diesel fuel by LNG in simulated combustion; (3) Distribution of nitric oxide and emissions formation from natural gas injection; and (B) Short and long term storage: (1) Modification by partial direct conversion of natural gas composition for improved storage characteristics; (2) LNG vent gas adsorption and recovery using activate carbon and modified adsorbents; (3) LNG storage at moderate conditions.

Sutton, W.H.

1997-06-30T23:59:59.000Z

117

Industry  

E-Print Network [OSTI]

options for combined heat and power in Canada. Office ofpolicies to promote combined heat and power in US industry.with fuel inputs in combined heat and power plants being

Bernstein, Lenny

2008-01-01T23:59:59.000Z

118

Industry  

E-Print Network [OSTI]

EJ of primary energy, 40% of the global total of 227 EJ. Bytotal energy use by industry and on the fraction of electricity use consumed by motor driven systems was taken as representative of global

Bernstein, Lenny

2008-01-01T23:59:59.000Z

119

The waters of Southeastern Wisconsin are vast but vulnerable. We depend on our waters for drinking water, irrigation, industry, transportation,  

E-Print Network [OSTI]

The waters of Southeastern Wisconsin are vast but vulnerable. We depend on our waters for drinking for drinking water is rising in the United States and around the world due to population growth. At the same water, irrigation, industry, transportation, power production, recreation and scenic beauty

Saldin, Dilano

120

Type B package for the transport of large medical and industrial sources  

SciTech Connect (OSTI)

AREVA Federal Services LLC, under contract to the Los Alamos National Laboratory's Offsite Source Recovery Project, is developing a new Type B(U)-96 package for the transport of unwanted or abandoned high activity gamma and neutron radioactive sealed sources (sources). The sources were used primarily in medical or industrial devices, and are of domestic (USA) or foreign origin. To promote public safety and mitigate the possibility of loss or misuse, the Offsite Source Recovery Project is recovering and managing sources worldwide. The package, denoted the LANL-B, is designed to accommodate the sources within an internal gamma shield. The sources are located either in the IAEA's Long Term Storage Shield (LTSS), or within intact medical or industrial irradiation devices. As the sources are already shielded separately, the package does not include any shielding of its own. A particular challenge in the design of the LANL-B has been weight. Since the LTSS shield weighs approximately 5,000 lb [2,270 kg], and the total package gross weight must be limited to 10,000 lb [4,540 kg], the net weight of the package was limited to 5,000 lb, for an efficiency of 50% (i.e., the payload weight is 50% of the gross weight of the package). This required implementation of a light-weight bell-jar concept, in which the containment takes the form of a vertical bell which is bolted to a base. A single impact limiter is used on the bottom, to protect the elastomer seals and bolted joint. A top-end impact is mitigated by the deformation of a tori spherically-shaped head. Impacts in various orientations on the bottom end are mitigated by a cylindrical, polyurethane foam-filled impact limiter. Internally, energy is absorbed using honeycomb blocks at each end, which fill the torispherical head volumes. As many of the sources are considered to be in normal form, the LANL-B package offers leak-tight containment using an elastomer seal at the joint between the bell and the base, as well as on the single vent port. Leak testing prior to transport may be either using helium mass spectrometry or the pressure-rise concept.

Brown, Darrell Dwaine [Los Alamos National Laboratory; Noss, Philip W [AREVA FEDERAL SERVICES

2010-09-14T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Freight Transportation Electronic Marketplaces: A Survey of the Industry and Exploration of Important Research Issues  

E-Print Network [OSTI]

Coia, A. , Evolving transportation exchanges, World trade,of Carrier strategies in an auction based transportationmarketplace, Transportation Research Board, Journal of the

Nandiraju, Srinivas; Regan, Amelia

2008-01-01T23:59:59.000Z

122

Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach  

SciTech Connect (OSTI)

Transportation mobility in India has increased significantly in the past decades. From 1970 to 2000, motorized mobility (passenger-km) has risen by 888%, compared with an 88% population growth (Singh,2006). This contributed to many energy and environmental issues, and an energy strategy incorporates efficiency improvement and other measures needs to be designed. Unfortunately, existing energy data do not provide information on driving forces behind energy use and sometime show large inconsistencies. Many previous studies address only a single transportation mode such as passenger road travel; did not include comprehensive data collection or analysis has yet been done, or lack detail on energy demand by each mode and fuel mix. The current study will fill a considerable gap in current efforts, develop a data base on all transport modes including passenger air and water, and freight in order to facilitate the development of energy scenarios and assess significance of technology potential in a global climate change model. An extensive literature review and data collection has been done to establish the database with breakdown of mobility, intensity, distance, and fuel mix of all transportation modes. Energy consumption was estimated and compared with aggregated transport consumption reported in IEA India transportation energy data. Different scenarios were estimated based on different assumptions on freight road mobility. Based on the bottom-up analysis, we estimated that the energy consumption from 1990 to 2000 increased at an annual growth rate of 7% for the mid-range road freight growth case and 12% for the high road freight growth case corresponding to the scenarios in mobility, while the IEA data only shows a 1.7% growth rate in those years.

Zhou, Nan; McNeil, Michael A.

2009-05-01T23:59:59.000Z

123

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors  

E-Print Network [OSTI]

of which: CHP ele generation Residential Nonspecified (OtherOther Services (CHP heat Fuel use) Residential End Use (non-Residential Nonspecified (Other Sector) NEW Office (CHP heat

de la Rue du Can, Stephane

2014-01-01T23:59:59.000Z

124

Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector  

SciTech Connect (OSTI)

Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. With the working of energy programs and policies on carbon regulation, how to effectively analyze and manage the costs associated with GHG reductions become extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions (e.g., carbon emission) for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct brief overview on different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by problem statements, and a description of the basic concepts of quantifying the cost of conserved energy including integrating non-regrets options. A non-regrets option is defined as a GHG reduction option that is cost effective, without considering their additional benefits related to reducing GHG emissions. Based upon these, we develop information on costs of mitigation measures and technological change. These serve as the basis for collating the data on energy savings and costs for their future use in integrated assessment models. In addition to descriptions of the iron and steel making processes, and the mitigation measures identified in this study, the report includes tabulated databases on costs of measure implementation, energy savings, carbon-emission reduction, and lifetimes. The cost curve data on mitigation measures are available over time, which allows an estimation of technological change over a decade-long historical period. In particular, the report will describe new treatment of technological change in energy-climate modeling for this industry sector, i.e., assessing the changes in costs and energy-savings potentials via comparing 1994 and 2002 conservation supply curves. In this study, we compared the same set of mitigation measures for both 1994 and 2002 -- no additional mitigation measure for year 2002 was included due to unavailability of such data. Therefore, the estimated potentials in total energy savings and carbon reduction would most likely be more conservative for year 2002 in this study. Based upon the cost curves, the rate of change in the savings potential at a given cost can be evaluated and be used to estimate future rates of change that can be the input for energy-climate models. Through characterizing energy-efficiency technology costs and improvement potentials, we have developed and presented energy cost curves for energy efficiency measures applicable to the U.S. iron and steel industry for the years 1994 and 2002. The cost curves can change significantly under various scenarios: the baseline year, discount rate, energy intensity, production, industry structure (e.g., integrated versus secondary steel making and number of plants), efficiency (or mitigation) measures, share of iron and steel production to which the individual measures can be applied, and inclusion of other non-energy benefits. Inclusion of other non-energy benefits from implementing mitigation measures can reduce the costs of conserved energy significantly. In addition, costs of conserved energy (CCE) for individual mitigation measures increase with the increases in discount rates, resulting in a general increase in total cost of mitigation measures for implementation and operation with a higher discount rate. In 1994, integrated steel mills in the U.S. produced 55.

Xu, T.T.; Sathaye, J.; Galitsky, C.

2010-09-30T23:59:59.000Z

125

Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)  

E-Print Network [OSTI]

Plans Organization and Implementation of Energy ConservationIndustrial Energy Conservation Investment Funding 3.Case Studies of Energy Conservation Investments by Industry

Zhiping, L.

2010-01-01T23:59:59.000Z

126

The Role of the Sellafield Ltd Centres of Expertise in Engaging with the Science, Environment and Technology Supply Chain and University Sector to Support Site Operations and Decommissioning in the UK Nuclear Industry - 13018  

SciTech Connect (OSTI)

The development and maintenance of the broad range of the highly technical skills required for safe and successful management of nuclear sites is of vital importance during routine operations, decommissioning and waste treatment activities.. In order to maintain a core team of technical experts, across all of the disciplines required for these tasks, the approach which has been taken by the Sellafield Ltd has been the formation of twenty five Centres of Expertise (CoE), each covering key aspects of the technical skills required for nuclear site operations. Links with the Specialist University Departments: The CoE leads are also responsible for establishing formal links with university departments with specialist skills and facilities relevant to their CoE areas. The objective of these links is to allow these very specialist capabilities within the university sector to be more effectively utilized by the nuclear industry, which benefits both sectors. In addition to the utilization of specialist skills, the university links are providing an important introduction to the nuclear industry for students and researchers. This is designed to develop the pipeline of potential staff, who will be required in the future by both the academic and industrial sectors. (authors)

Butcher, Ed [Uranium and Reactive Metals Centre of Expertise Lead, Technical Directorate, Sellafield Ltd, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)] [Uranium and Reactive Metals Centre of Expertise Lead, Technical Directorate, Sellafield Ltd, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom); Connor, Donna [Technical Capability Manager, Technical Directorate, Sellafield Ltd, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)] [Technical Capability Manager, Technical Directorate, Sellafield Ltd, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom); Keighley, Debbie [Head of Profession, Technical Directorate, Sellafield Ltd, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)] [Head of Profession, Technical Directorate, Sellafield Ltd, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)

2013-07-01T23:59:59.000Z

127

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors  

E-Print Network [OSTI]

Losses CHP, Commercial Power CHP, Electric Power CHP, Industrial Power Electric Generators, Utilities

de la Rue du Can, Stephane

2014-01-01T23:59:59.000Z

128

E-Print Network 3.0 - air transportation industry Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and information that characterize the biomass industry, from the production of biomass feedstocks to their end use... of Energy Efficiency and Renewable Energy. Center for...

129

Large-Scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios  

SciTech Connect (OSTI)

This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to meet atmospheric concentrations of CO2 at 400ppm and 450ppm by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced globally by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions - especially the availability of carbon dioxide capture and storage (CCS) technologies - affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent emissions constraints; we find that at carbon prices above 150$/tCO2, over 90% of biomass in the energy system is used in combination with CCS. Despite the higher technology costs of CCS, it is a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. CCS is also used heavily with other fuels such as coal and natural gas, and by 2095 a total of 1530 GtCO2 has been stored in deep geologic reservoirs. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels as two representative conversion processes and shows that both technologies may be important contributors to liquid fuels production, with unique costs and emissions characteristics.

Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

2010-08-05T23:59:59.000Z

130

Reducing transportation costs and inventory shrinkage in the Washington State tree fruit industry  

E-Print Network [OSTI]

Perishability and stock-outs are two sources of inventory inefficiency in the Washington State tree fruit industry. This thesis measures the size of these inefficiencies in terms of dollars per box, and describes five ...

Foreman, James Sterling

2009-01-01T23:59:59.000Z

131

Energy-economy interactions revisited within a comprehensive sectoral model  

SciTech Connect (OSTI)

This paper describes a computable general equilibrium (CGE) model with considerable sector and technology detail, the ``All Modular Industry Growth Assessment'' Model (AMIGA). It is argued that a detailed model is important to capture and understand the several rolls that energy plays within the economy. Fundamental consumer and industrial demands are for the services from energy; hence, energy demand is a derived demand based on the need for heating, cooling mechanical, electrical, and transportation services. Technologies that provide energy-services more efficiently (on a life cycle basis), when adopted, result in increased future output of the economy and higher paths of household consumption. The AMIGA model can examine the effects on energy use and economic output of increases in energy prices (e.g., a carbon charge) and other incentive-based policies or energy-efficiency programs. Energy sectors and sub-sector activities included in the model involve energy extraction conversion and transportation. There are business opportunities to produce energy-efficient goods (i.e., appliances, control systems, buildings, automobiles, clean electricity). These activities are represented in the model by characterizing their likely production processes (e.g., lighter weight motor vehicles). Also, multiple industrial processes can produce the same output but with different technologies and inputs. Secondary recovery, i.e., recycling processes, are examples of these multiple processes. Combined heat and power (CHP) is also represented for energy-intensive industries. Other modules represent residential and commercial building technologies to supply energy services. All sectors of the economy command real resources (capital services and labor).

Hanson, D. A.; Laitner, J. A.

2000-07-24T23:59:59.000Z

132

620 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 59, NO. 1, JANUARY 2012 Low-Speed Longitudinal Controllers for  

E-Print Network [OSTI]

620 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 59, NO. 1, JANUARY 2012 Low unsolved by the automotive sector: managing autonomously a gasoline-propelled vehicle at very low speeds euros [1]. This problem is being tackled by both the automotive industry and transport research groups

Paris-Sud XI, Université de

133

202-328-5000 www.rff.orgSector Effects of the Shale Gas Revolution in the United States  

E-Print Network [OSTI]

This paper reviews the impact of the shale gas revolution on the sectors of electricity generation, transportation, and manufacturing in the United States. Natural gas is being substituted for other fuels, particularly coal, in electricity generation, resulting in lower greenhouse gas emissions from this sector. The use of natural gas in the transportation sector is currently negligible but is projected to increase with investments in refueling infrastructure and natural gas vehicle technologies. Petrochemical and other manufacturing industries have responded to lower natural gas prices by investing in domestically located manufacturing projects. This paper also speculates on the impact of a possible shale gas boom in China. Key Words: shale gas, electricity, transportation, and manufacturing JEL Classification Numbers: L71, L9, Q4 © 2013 Resources for the Future. All rights reserved. No portion of this paper may be reproduced without permission of the authors. Discussion papers are research materials circulated by their authors for purposes of information and discussion.

134

Transportation  

E-Print Network [OSTI]

Transportation in ancient Egypt entailed the use of boats2007 Land transport in Roman Egypt: A study of economics andDieter 1991 Building in Egypt: Pharaonic stone masonry. New

Vinson, Steve

2013-01-01T23:59:59.000Z

135

Industrial Energy Efficiency: Designing Effective State Programs...  

Office of Environmental Management (EM)

State Programs for the Industrial Sector This report provides state regulators, utilities, and other program administrators an overview of the spectrum of U.S. industrial...

136

Industrial policy and the Indian electronics industry  

E-Print Network [OSTI]

Recently, production within India's Electronics sector amounted to a low $12 billion when compared to the global output of $1400 billion. The slow growth in the local industry is often judged to be the result of late ...

Love, Robert (Robert Eric)

2008-01-01T23:59:59.000Z

137

Industrial sector energy conservation programs in the People`s Republic of China during the seventh five-year plan (1986--1990)  

SciTech Connect (OSTI)

The impetus at the national level to invest in energy conservation is quite strong and has long been reflected not only in official pronouncements, but also in the investments and organizational activities of the Chinese government. In the early 1980s the central government began a program of direct investments in industrial energy conservation that continues to the present. In addition, concurrently established governmental and quasi-governmental agencies have pursued conservation through administrative and educational measures. In Section 2 of this paper the authors outline the policies and institutions that supported China`s program of energy conservation investments in the Sixth and Seventh Five-Year Plans (FYPs) (1981--1985 and 1986--1990). In Section 3 they describe examples of the types of conservation projects pursued in four industrial subsectors: ferrous metals manufacturing; non-ferrous metals mining and manufacturing; chemicals manufacturing; and building materials manufacturing. Section 4 presents a simple methodology for comparing the costs of energy conservation to those of energy supply. Further discussion points out the applicability and limitations of this methodology to State Planning Commission published statistical material on the overall results of energy conservation investments. Though problematic, such analysis indicates that energy conservation investments were probably substantially cheaper than investments in equivalent energy supply would have been. They end with a discussion of some of the difficulties encountered in carrying out the conservation investment programs.

Liu Zhiping [State Planning Commission, Beijing (China). Energy Research Inst.; Sinton, J.E.; Yang Fuqiang; Levine, M.D.; Ting, M.K. [Lawrence Berkeley Lab., CA (United States)

1994-09-01T23:59:59.000Z

138

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

E-Print Network [OSTI]

leg/leginx.asp 4. EIA Annual Energy Outlook 2007 with22, (4), 10. EIA Annual Energy Outlook 2006 with Projectionsto the Annual Energy Outlook 2007. Transportation Demand

Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

2008-01-01T23:59:59.000Z

139

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network [OSTI]

Chapter 2 Climate and Transportation Solutions Chapter 3:Gas Emissions in the Transportation Sector by John Conti,Chase, and John Maples Transportation is the single largest

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

140

Industry Supply Chain Development (Ohio)  

Broader source: Energy.gov [DOE]

Supply Chain Development programs are focused on targeted industries that have significant growth opportunities for Ohio's existing manufacturing sector from emerging energy resources and...

Note: This page contains sample records for the topic "industrial sector transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Research Projects in Industrial Technology.  

SciTech Connect (OSTI)

The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

United States. Bonneville Power Administration. Industrial Technology Section.

1990-06-01T23:59:59.000Z

142

Proposal for the award of an industrial service contract for stores operations and relatedlogistics, in-house mail distribution and transport services on the CERN site  

E-Print Network [OSTI]

This document concerns the award of an industrial support contract for stores operations and related logistics, in-house mail distribution and transport services on the CERN site. The Finance Committee is invited to agree to the negotiation of a contract with the consortium ISS (CH) - ISS (ES), for stores operations and related logistics, in-house mail distribution and transport services on the CERN site for a period of three years for a total amount not exceeding 10 312 028 Swiss francs not subject to revision. The contract will include options for two one-year extensions beyond the initial three-year period.

2006-01-01T23:59:59.000Z

143

Energy End-Use Flow Maps for the Buildings Sector  

SciTech Connect (OSTI)

Graphical presentations of energy flows are widely used within the industrial sector to depict energy production and use. PNNL developed two energy flow maps, one each for the residential and commercial buildings sectors, in response to a need for a clear, concise, graphical depiction of the flows of energy from source to end-use in the building sector.

Belzer, David B.

2006-12-04T23:59:59.000Z

144

Canada's Voluntary Industrial Energy Conservation Program  

E-Print Network [OSTI]

Industrial Energy Conservation in Canada is organized and promoted through a voluntary program that is administered by industry. Industry is divided into fifteen sectors, each of which is represented by a Voluntary Task Force. Information exchange...

Wolf, C. A., Jr.

1980-01-01T23:59:59.000Z

145

Energy Savings in Industrial Buildings  

E-Print Network [OSTI]

The industrial sector accounts for more than one-third of total energy use in the United States and emits 28.7 percent of the country’s greenhouse gases. Energy use in the industrial sector is largely for steam and process heating systems...

Zhou, A.; Tutterow, V.; Harris, J.

146

Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler TinaContact-Information-Transmission SignTransport

147

Industry Alliance Industry Alliance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century October, 2010...

148

Vehicle Technologies Office: Transitioning the Transportation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Office: Transitioning the Transportation Sector - Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles Vehicle Technologies Office: Transitioning the Transportation...

149

Reducing Emissions Through Sustainable Transport: Proposal for...  

Open Energy Info (EERE)

Through Sustainable Transport: Proposal for a Sectoral Approach Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Reducing Emissions Through Sustainable Transport:...

150

International industrial sector energy efficiency policies  

E-Print Network [OSTI]

company and the Danish Energy Agency (Ezban et al. , 1994;company and the Danish Energy Agency. The agreements, whichagreements with the Danish Energy Agency, representing 45%

Price, Lynn; Worrell, Ernst

2000-01-01T23:59:59.000Z

151

Quality of Power in the Industrial Sector  

E-Print Network [OSTI]

and assistance to upgrade the quality of power into the plant. Even though studies have shown only 20% of the problems identified are actually utility generated it is the responsibility of the utility to help the customer isolate and solve the problem.... The motto of the Oklahoma Gas and Electric Quality of Power program is "If a customer perceives he has a problem, we have a problem." The commitment has been made to assist the customer until he is satis fied the problem is in fact solved. INTRODUCTION...

Marchbanks, G. J.

152

China's industrial sector in an international context  

E-Print Network [OSTI]

steam reforming plants consume 30 to 31 GJ/tonne, and recent estimates for energy use for ammonia production

Price, Lynn; Worrell, Ernst; Martin, Nathan; Lehman, Bryan; Sinton, Jonathan

2000-01-01T23:59:59.000Z

153

Industry Sector Case Study Building Technologies Division  

E-Print Network [OSTI]

's remote location far away from any infrastructure, planning focused on making it as self and its control components. If needed, the system is backed up by a combined heat and power (CHP) plant might be used up, necessitating a switch to LP gas, a scarce resource at this remote location. Desigo

Fischlin, Andreas

154

Abstract--The profound change in the electric industry worldwide in the last twenty years assigns an increasing  

E-Print Network [OSTI]

Value. I. INTRODUCTION He reformed electric industry scheme sets the transmission sector at the center

Catholic University of Chile (Universidad Católica de Chile)

155

The importance of air transportation to the U.S. economy : analysis of industry use and proximity to airports  

E-Print Network [OSTI]

This thesis investigates broader impacts of air transportation on U.S. economic productivity, as well as market access and business location, in order to help identify how aviation supports the national economy. More ...

Stilwell, Justin Daniel Lawrence

2013-01-01T23:59:59.000Z

156

The Importance of Air Transportation to the U.S. Economy: Analysis of Industry Use and Proximity to Airports  

E-Print Network [OSTI]

This thesis investigates broader impacts of air transportation on U.S. economic productivity, as well as market access and business location, in order to help identify how aviation supports the national economy. More ...

Stilwell, Justin

2013-05-16T23:59:59.000Z

157

The Contribution of Services and other Sectors to Australian Productivity Growth 1980-2004  

E-Print Network [OSTI]

The Contribution of Services and other Sectors to Australian Productivity Growth 1980-2004 A Report pointers to the Australian literature on sectoral productivity growth. Finally, we would like to thank ................................................................................................................................6 Labour Productivity: Macroeconomic Trends and Industry Patterns

de Gispert, Adrià

158

Sectoral trends in global energy use and greenhouse gasemissions  

SciTech Connect (OSTI)

In 2000, the Intergovernmental Panel on Climate Change (IPCC) published a new set of baseline greenhouse gas (GHG) emissions scenarios in the Special Report on Emissions Scenarios (SRES) (Nakicenovic et al., 2000). The SRES team defined four narrative storylines (A1, A2, B1 and B2) describing the relationships between the forces driving GHG and aerosol emissions and their evolution during the 21st century. The SRES reports emissions for each of these storylines by type of GHG and by fuel type to 2100 globally and for four world regions (OECD countries as of 1990, countries undergoing economic reform, developing countries in Asia, rest of world). Specific assumptions about the quantification of scenario drivers, such as population and economic growth, technological change, resource availability, land-use changes, and local and regional environmental policies, are also provided. End-use sector-level results for buildings, industry, or transportation or information regarding adoption of particular technologies and policies are not provided in the SRES. The goal of this report is to provide more detailed information on the SRES scenarios at the end use level including historical time series data and a decomposition of energy consumption to understand the forecast implications in terms of end use efficiency to 2030. This report focuses on the A1 (A1B) and B2 marker scenarios since they represent distinctly contrasting futures. The A1 storyline describes a future of very rapid economic growth, low population growth, and the rapid introduction of new and more efficient technologies. Major underlying themes are convergence among regions, capacity building, and increased cultural and social interactions, with a substantial reduction in regional differences in per capita income. The B2 storyline describes a world with an emphasis on economic, social, and environmental sustainability, especially at the local and regional levels. It is a world with moderate population growth, intermediate levels of economic development, and less rapid and more diverse technological change (Nakicenovic et al., 2000). Data were obtained from the SRES modeling teams that provide more detail than that reported in the SRES. For the A1 marker scenario, the modeling team provided final energy demand and carbon dioxide (CO{sub 2}) emissions by fuel for industry, buildings, and transportation for nine world regions. Final energy use and CO{sub 2} emissions for three sectors (industry, transport, buildings) for the four SRES world regions were provided for the B2 marker scenario. This report describes the results of a disaggregation of the SRES projected energy use and energy-related CO{sub 2} emissions for the industrial, transport, and buildings sectors for 10 world regions (see Appendix 1) to 2030. An example of further disaggregation of the two SRES scenarios for the residential buildings sector in China is provided, illustrating how such aggregate scenarios can be interpreted at the end use level.

Price, Lynn; de la Rue du Can, Stephane; Sinton, Jonathan; Worrell, Ernst; Zhou, Nan; Sathaye, Jayant; Levine, Mark

2006-07-24T23:59:59.000Z

159

NEMS industrial module documentation report  

SciTech Connect (OSTI)

The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2010) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of output of industrial activity. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

Not Available

1994-01-01T23:59:59.000Z

160

Romanian refining industry assesses restructuring  

SciTech Connect (OSTI)

The Romanian crude oil refining industry, as all the other economic sectors, faces the problems accompanying the transition from a centrally planned economy to a market economy. At present, all refineries have registered as joint-stock companies and all are coordinated and assisted by Rafirom S.A., from both a legal and a production point of view. Rafirom S.A. is a joint-stock company that holds shares in refineries and other stock companies with activities related to oil refining. Such activities include technological research, development, design, transportation, storage, and domestic and foreign marketing. This article outlines the market forces that are expected to: drive rationalization and restructuring of refining operations and define the targets toward which the reconfigured refineries should strive.

Tanasescu, D.G. (General Consulting and Procurement, Poolgec Ltd., Bucharest (RO))

1991-12-30T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network [OSTI]

industry’s share of global primary energy use declined toused 91 EJ of primary energy, 40% of the global total of 227eq/yr. Global and sectoral data on final energy use, primary

Worrell, Ernst

2009-01-01T23:59:59.000Z

162

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

vehicles. dDoes not include lease, plant, and pipeline fuel. eNatural gas consumed in the residential and commercial sectors. f Includes consumption for industrial combined heat...

163

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

cDoes not includes lease, plant, and pipeline fuel. dNatural gas consumed in the residential and commercial sectors. eIncludes consumption for industrial combined heat and...

164

Energy intensity in China's iron and steel sector  

E-Print Network [OSTI]

In this study, I examine the spatial and economic factors that influence energy intensity in China's iron and steel sector, namely industrial value added, renovation investment, coke consumption, and local coke supply. ...

Xu, Jingsi, M.C.P. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

165

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

only 19 percent from 2011 to 2040 in the AEO2013 Reference case. The continued decline in energy intensity of the industrial sector is explained in part by a shift in the share of...

166

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Natural Gas Industrial and electric power sectors lead U.S. growth in natural gas consumption figure data U.S. total natural gas consumption grows from 24.4 trillion cubic feet in...

167

China's Pathways to Achieving 40percent 45percent Reduction in CO2 Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential  

E-Print Network [OSTI]

heater Residential CO2 Emissions (Mt CO2) 2020 ResidentialEnergy Industrial Sector CO2 Emissions (Mt CO2) IndustrialFigure 5. Power Sector CO2 Emissions by Scenario E3 Max Tech

Zheng, Nina

2013-01-01T23:59:59.000Z

168

The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport...  

Open Energy Info (EERE)

for emissions from purchased electricity, stationary combustion, refrigeration and air conditioning equipment, and several industrial sectors. References Retrieved from...

169

E-Print Network 3.0 - annular sector cascade Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear industries where two-phase mixtures coexist. In the petroleum sector, gas... of inclination, and holdup were used as input. The output layer was consisted of slug,...

170

Industrial Use of Infrared Inspections  

E-Print Network [OSTI]

Infrared is and has been an established technology in the military and aerospace fields. However, only relatively recently has this technology found a "use" in the industrial sector. Many reasons exist why the technology has not been used...

Duch, A. A.

1979-01-01T23:59:59.000Z

171

NOAA's National Climatic Data Center Sectoral Engagement Fact Sheet  

E-Print Network [OSTI]

Ecosystems National Security Tourism Transportation Water Resources NOAA Satellite and Information Service National Environmental Satellite, Data, and Information Service (NESDIS) National Climatic DataNOAA's National Climatic Data Center Sectoral Engagement Fact Sheet AGRICULTURE Overview A wide

172

NOAA's National Climatic Data Center Sectoral Engagement Fact Sheet  

E-Print Network [OSTI]

2010 NOAA Satellite and Information Service National Environmental Satellite, Data, and Information Ecosystems National Security Tourism Transportation Water Resources Climate information can be usedNOAA's National Climatic Data Center Sectoral Engagement Fact Sheet COASTAL HAZARDS OVERVIEW Global

173

NOAA's National Climatic Data Center Sectoral Engagement Fact Sheet  

E-Print Network [OSTI]

be used most effectively. #12;NOAA Satellite and Information Service National Environmental Satellite Insurance Litigation Marine and Coastal Ecosystems National Security TOURISM Transportation WaterNOAA's National Climatic Data Center Sectoral Engagement Fact Sheet TOURISM Overview Tourism

174

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

Agency (IEA), 2004c. CO2 emissions from fuel combustion,12. Global Energy-Related CO2 Emissions by End-Use Sector,2030. Energy-Related CO2 Emissions (GtC) Transport Buildings

2006-01-01T23:59:59.000Z

175

Fuel Cells for Transportation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE R&D Activities Fuel Cells for Transportation Fuel Cells for Transportation Photo of Ford Focus fuel cell car in front of windmills The transportation sector is the single...

176

Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report, May 10, 1994--December 30, 1995  

SciTech Connect (OSTI)

This report encompasses the first year of a proposed three year project with emphasis focused on LNG research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (i) direct diesel replacement with LNG fuel, and (ii) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. Since this work was for fundamental research in a number of related areas to the use of LNG as a transportation fuel for long haul trucking, many of those results have appeared in numerous refereed journal and conference papers, and significant graduate training experiences (including at least one M.S. thesis and one Ph.D. dissertation) in the first year of this project. In addition, a potential new utilization of LNG fuel has been found, as a part of this work on the fundamental nature of adsorption of LNG vent gases in higher hydrocarbons; follow on research for this and other related applications and transfer of technology are proceeding at this time.

Sutton, W.H.

1995-12-31T23:59:59.000Z

177

Advanced Vehicle Electrification and Transportation Sector Electrification  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

178

Advanced Vehicle Electrification & Transportation Sector Electrification |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2| DepartmentEnergy 2Waste

179

Advanced Vehicle Electrification and Transportation Sector Electrification  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2| DepartmentEnergy 2Waste| Department

180

Advanced Vehicle Electrification and Transportation Sector Electrification  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2| DepartmentEnergy 2Waste| Department|

Note: This page contains sample records for the topic "industrial sector transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Restructuring our Transportation Sector | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN RENEWABLE ENERGYWorld OilEnergyRestructuring our

182

Vehicle Technologies Office: Transitioning the Transportation Sector -  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is onModeling andReport ||Student Competitions

183

Manufacturing Energy and Carbon Footprint - Sector: Transportation...  

Broader source: Energy.gov (indexed) [DOE]

for) Electricity Export 1 Combustion Emissions (MMT CO 2 e Million Metric Tons Carbon Dioxide Equivalent) Total Emissions Offsite Emissions + Onsite Emissions Energy...

184

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

SciTech Connect (OSTI)

The main contribution of this report is to characterize the underlying residential and transport sector end use energy consumption in India. Each sector was analyzed in detail. End-use sector-level information regarding adoption of particular technologies was used as a key input in a bottom-up modeling approach. The report looks at energy used over the period 1990 to 2005 and develops a baseline scenario to 2020. Moreover, the intent of this report is also to highlight available sources of data in India for the residential and transport sectors. The analysis as performed in this way reveals several interesting features of energy use in India. In the residential sector, an analysis of patterns of energy use and particular end uses shows that biomass (wood), which has traditionally been the main source of primary energy used in households, will stabilize in absolute terms. Meanwhile, due to the forces of urbanization and increased use of commercial fuels, the relative significance of biomass will be greatly diminished by 2020. At the same time, per household residential electricity consumption will likely quadruple in the 20 years between 2000 and 2020. In fact, primary electricity use will increase more rapidly than any other major fuel -- even more than oil, in spite of the fact that transport is the most rapidly growing sector. The growth in electricity demand implies that chronic outages are to be expected unless drastic improvements are made both to the efficiency of the power infrastructure and to electric end uses and industrial processes. In the transport sector, the rapid growth in personal vehicle sales indicates strong energy growth in that area. Energy use by cars is expected to grow at an annual growth rate of 11percent, increasing demand for oil considerably. In addition, oil consumption used for freight transport will also continue to increase .

de la Rue du Can, Stephane; Letschert, Virginie; McNeil, Michael; Zhou, Nan; Sathaye, Jayant

2009-03-31T23:59:59.000Z

185

Sustainable Transportation Energy Pathways Research  

E-Print Network [OSTI]

/Security of Energy Supply, esp. in transportation sector · Air Pollutant Emissions · Greenhouse Gas Emissions (GHG of air pollutant emissions. · World transportation sector 97% dependent on oil. · # vehicles projected strategy should have a "portfolio" approach with multiple solutions Fuel Alternatives · Hydrogen · Biofuels

Handy, Susan L.

186

Deregulating and regulatory reform in the U.S. electric power sector  

E-Print Network [OSTI]

This paper discusses the evolution of wholesale and retail competition in the U.S electricity sector and associated industry restructuring and regulatory reforms. It begins with a discussion of the industry structure and ...

Joskow, Paul L.

2000-01-01T23:59:59.000Z

187

Delivered Energy Consumption Projections by Industry in the Annual Energy Outlook 2002  

Reports and Publications (EIA)

This paper presents delivered energy consumption and intensity projections for the industries included in the industrial sector of the National Energy Modeling System.

2002-01-01T23:59:59.000Z

188

METR 4713/5713 Private Sector Meteorology Spring 2011  

E-Print Network [OSTI]

quality, wind and solar power, weather derivatives, energy production, commodity marketing and trading, transportation, industrial and commercial business, construction, and city and state government. The course

Droegemeier, Kelvin K.

189

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Industrial and commercial... Renewable sources... Transportation uses... U.S. average energy use per person and per dollar of GDP declines through 2035 Growth in energy use is...

190

Fundamentals of public-private partnerships in the transportation sector : international methodologies of highway public-private partnerships and a framework to increase the probability of success and allocate risk  

E-Print Network [OSTI]

In 2009 the American Society of Civil Engineers (ASCE) gave the US infrastructure sector a grade D, based on the current and future needs of the nation's infrastructure and estimates that by year 2020, the US surface ...

Butler, Ryan, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

191

THE IMPACT OF INTERREGIONAL AND INTRAREGIONAL TRANSPORTATION COSTS  

E-Print Network [OSTI]

to concentrate particular industries in special localities." Indeed, during the industrial revolution, MarshallTHE IMPACT OF INTERREGIONAL AND INTRAREGIONAL TRANSPORTATION COSTS ON INDUSTRIAL LOCATION costs on industrial location and efficient transport policies March 2011 Paul CHIAMBARETTO1

Paris-Sud XI, Université de

192

Process Intensification - Chemical Sector Focus  

Office of Environmental Management (EM)

Process Intensification - Chemical Sector Focus 1 Technology Assessment 2 Contents 3 1. Introduction ......

193

Advanced, Energy-Efficient Hybrid Membrane System for Industrial...  

Energy Savers [EERE]

(1 slide) Develo Project Objecve Current StateChallenges Heavy industrial water utilization footprint Freshwater Withdrawals in the U.S. by Sector (2005) Domestic...

194

Energy Use in China: Sectoral Trends and Future Outlook  

SciTech Connect (OSTI)

This report provides a detailed, bottom-up analysis ofenergy consumption in China. It recalibrates official Chinese governmentstatistics by reallocating primary energy into categories more commonlyused in international comparisons. It also provides an analysis of trendsin sectoral energy consumption over the past decades. Finally, itassesses the future outlook for the critical period extending to 2020,based on assumptions of likely patterns of economic activity,availability of energy services, and energy intensities. The followingare some highlights of the study's findings: * A reallocation of sectorenergy consumption from the 2000 official Chinese government statisticsfinds that: * Buildings account for 25 percent of primary energy, insteadof 19 percent * Industry accounts for 61 percent of energy instead of 69percent * Industrial energy made a large and unexpected leap between2000-2005, growing by an astonishing 50 percent in the 3 years between2002 and 2005. * Energy consumption in the iron and steel industry was 40percent higher than predicted * Energy consumption in the cement industrywas 54 percent higher than predicted * Overall energy intensity in theindustrial sector grew between 2000 and 2003. This is largely due tointernal shifts towards the most energy-intensive sub-sectors, an effectwhich more than counterbalances the impact of efficiency increases. *Industry accounted for 63 percent of total primary energy consumption in2005 - it is expected to continue to dominate energy consumption through2020, dropping only to 60 percent by that year. * Even assuming thatgrowth rates in 2005-2020 will return to the levels of 2000-2003,industrial energy will grow from 42 EJ in 2005 to 72 EJ in 2020. * Thepercentage of transport energy used to carry passengers (instead offreight) will double from 37 percent to 52 percent between 2000 to 2020,.Much of this increase is due to private car ownership, which willincrease by a factor of 15 from 5.1 million in 2000 to 77 million in2020. * Residential appliance ownership will show signs of saturation inurban households. The increase in residential energy consumption will belargely driven by urbanization, since rural homes will continue to havelow consumption levels. In urban households, the size of appliances willincrease, but its effect will be moderated by efficiency improvements,partially driven by government standards. * Commercial energy increaseswill be driven both by increases in floor space and by increases inpenetration of major end uses such as heating and cooling. Theseincreases will be moderated somewhat, however, by technology changes,such as increased use of heat pumps. * China's Medium- and Long-TermDevelopment plan drafted by the central government and published in 2004calls for a quadrupling of GDP in the period from 2000-2020 with only adoubling in energy consumption during the same period. A bottom-upanalysis with likely efficiency improvements finds that energyconsumption will likely exceed the goal by 26.12 EJ, or 28 percent.Achievements of these goals will there fore require a more aggressivepolicy of encouraging energy efficiency.

Zhou, Nan; McNeil, Michael A.; Fridley, David; Lin, Jiang; Price,Lynn; de la Rue du Can, Stephane; Sathaye, Jayant; Levine, Mark

2007-10-04T23:59:59.000Z

195

Energy Efficiency Improvement in the Petroleum RefiningIndustry  

SciTech Connect (OSTI)

Information has proven to be an important barrier inindustrial energy efficiency improvement. Voluntary government programsaim to assist industry to improve energy efficiency by supplyinginformation on opportunities. ENERGY STAR(R) supports the development ofstrong strategic corporate energy management programs, by providingenergy management information tools and strategies. This paper summarizesENERGY STAR research conducted to develop an Energy Guide for thePetroleum Refining industry. Petroleum refining in the United States isthe largest in the world, providing inputs to virtually every economicsector, including the transport sector and the chemical industry.Refineries spend typically 50 percent of the cash operating costs (e.g.,excluding capital costs and depreciation) on energy, making energy amajor cost factor and also an important opportunity for cost reduction.The petroleum refining industry consumes about 3.1 Quads of primaryenergy, making it the single largest industrial energy user in the UnitedStates. Typically, refineries can economically improve energy efficiencyby 20 percent. The findings suggest that given available resources andtechnology, there are substantial opportunities to reduce energyconsumption cost-effectively in the petroleum refining industry whilemaintaining the quality of the products manufactured.

Worrell, Ernst; Galitsky, Christina

2005-05-01T23:59:59.000Z

196

Transportation and Stationary Power Integration Workshop Session...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Integration Workshop Session II: State and Industry Perspectives Transportation and Stationary Power Integration Workshop Session II: State and Industry Perspectives Opportunities...

197

Modeling regional transportation demand in China and the impacts of a national carbon constraint  

E-Print Network [OSTI]

Climate and energy policy in China will have important and uneven impacts on the country’s regionally heterogeneous transport system. In order to simulate these impacts, transport sector detail is added to a multi-sector, ...

Kishimoto, Paul

2015-01-30T23:59:59.000Z

198

Macomb College Transportation and Energy Technology 126.09  

SciTech Connect (OSTI)

The objectives for this project were to create the laboratory facilities to deliver recently created and amended curriculum in the areas of energy creation, storage, and delivery in the transportation and stationary power sectors. The project scope was to define the modules, courses and programs in the emerging energy sectors of the stationary power and transportation industries, and then to determine the best equipment to support instruction, and procure it and install it in the laboratories where courses will be taught. Macomb Community College had a curriculum development grant through the Department of Education that ran parallel to this one where the energy curriculum at the school was revised to better permit students to gain comprehensive education in a targeted area of the renewable energy realm, as well as enhance the breadth of jobs addressed by curriculum in the transportation sector. The curriculum development and experiment and equipment definition ran in parallel, and resulted in what we believe to be a cogent and comprehensive curriculum supported with great hands-on experiments in modern labs. The project has been completed, and this report will show how the equipment purchases under the Department of Energy Grant support the courses and programs developed and amended under the Department of Education Grant. Also completed is the tagging documentation and audit tracking process required by the DOE. All materials are tagged, and the documentation is complete as required.

None

2010-12-31T23:59:59.000Z

199

Industrial Energy Use and Energy Efficiency in Developing Countries  

E-Print Network [OSTI]

The industrial sector accounts for over 50% of energy used in developing countries. Growth in this sector has been over 4.5% per year since 1980. Energy intensity trends for four energy-intensive sub-sectors (iron and steel, chemicals, building...

Price, L.; Martin, N.; Levine, M. D.; Worrell, E.

200

Industrial Permit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Protection Obeying Environmental Laws Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the...

Note: This page contains sample records for the topic "industrial sector transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Development Requirements for Advanced Industrial Heat Pumps  

E-Print Network [OSTI]

DOE is attempting to advance the use of heat pumps to save energy in industrial processes. The approach has emphasized developing better heat pump technology and transferring that technology to the private sector. DOE requires that heat pump...

Chappell, R. N.; Priebe, S. J.; Bliem, C. J.; Mills, J. I.

202

Carbon dioxide emissions from the U.S. electricity sector  

SciTech Connect (OSTI)

As climate change negotiators from around the world prepared together in 1996 to consider new international targets and policies for greenhouse-gas reductions, the US Department of Energy asked the authors to review the options available to the electricity sector to reduce CO{sub 2} emissions. The charge was to focus on supply-side options and utility demand-side management (DSM) programs because other researchers were considered energy efficiency options for the residential, commercial, and industrial sectors. The next section presents the EIA baseline projections of electricity production, use, and CO{sub 2} emissions to the year 2010. Subsequent sections briefly summarize the options available to the electricity industry to reduce its CO{sub 2} emissions, speculate on how industry restructuring might affect the ability of the industry and its regulators to reduce CO{sub 2} emissions, and discuss the policies available to affect those emissions: research and development, voluntary programs, regulation, and fiscal policies.

Hirst, E.; Baxter, L. [Oak Ridge National Lab., TN (United States)

1998-02-01T23:59:59.000Z

203

Northwestern University Transportation Center  

E-Print Network [OSTI]

Northwestern University Transportation Center 2011 Business Advisory Committee NUTC #12;#12;I have the pleasure of presenting our Business Advisory Committee members--a distinguished group of transportation industry lead- ers who have partnered with the Transportation Center in advancing the state of knowledge

Bustamante, Fabián E.

204

Sustainable Transportation Program | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with government, industry, and academia, Oak Ridge National Laboratory's (ORNL) Sustainable Transportation Program research and development efforts are resulting in...

205

Private sector cautious on Pemex reorganization  

SciTech Connect (OSTI)

Private sector interest in the privatization of the petrochemical subsidiaries of Mexico`s state oil company Petroleos Mexicanos (Pemex) will hinge on the government`s decisions on minority ownership, says Raul Millares, president of Aniq, the Mexican chemical industry association. The murkiest issues are how the subsidiaries will be operated and what rights minority owners will have. {open_quotes}The question is who is going to manage the subsidiaries on a day-to-day basis,{close_quotes} says Millares. {open_quotes}There is a lot of doubt as to whether private companies will be able to get the flexibility they need.{close_quotes}

Sissell, K.

1997-03-19T23:59:59.000Z

206

Searching for Dark Sector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2)ScienceScientists InSearchsuperconduct* FindDark Sector

207

Sector1 Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) SrEvaluating the Seasonalsw ' b 0 % bP. May,2015Sector 1

208

Sector4 FAQs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) SrEvaluating the Seasonalsw ' b 0 % bP. May,2015Sector 1FAQs

209

Sector4 redirect  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) SrEvaluating the Seasonalsw ' b 0 % bP. May,2015Sector 1FAQs

210

Estimated United States Transportation Energy Use 2005  

SciTech Connect (OSTI)

A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

Smith, C A; Simon, A J; Belles, R D

2011-11-09T23:59:59.000Z

211

Energy Sector Cybersecurity Framework Implementation Guidance  

Broader source: Energy.gov (indexed) [DOE]

DRAFT FOR PUBLIC COMMENT SEPTEMBER, 2014 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE Energy Sector Cybersecurity Framework Implementation Guidance Table of...

212

Behavioral Assumptions Underlying California Residential Sector...  

Broader source: Energy.gov (indexed) [DOE]

Behavioral Assumptions Underlying California Residential Sector Energy Efficiency Programs (2009 CIEE Report) Behavioral Assumptions Underlying California Residential Sector Energy...

213

Transportation Policy Analysis and Systems Planning Fall 2009/2010  

E-Print Network [OSTI]

SYLLABUS WWS 527a Transportation Policy Analysis and Systems Planning Fall 2009/2010 Course Description Part 1. Perspective on the Transportation Sector of the Economy: Its Function, Its Players, Its of Course Elements of the transportation sector of the economy, the player, the technologies

Singh, Jaswinder Pal

214

Promoting Green Jobs in the Building and Construction Sector  

E-Print Network [OSTI]

Promoting Green Jobs in the Building and Construction Sector BUILDING FOR ECOLOGICALLY RESPONSIVE Industries" SMX Convention Center, Pasay City CHRISTOPHER CRUZ DE LA CRUZ Philippine Green Building Council 8 the ability of future generations to meet their own needs" #12;· "The fastest growing regional green building

215

DRAFT DRAFT Electricity and Natural Gas Sector Description  

E-Print Network [OSTI]

DRAFT DRAFT Electricity and Natural Gas Sector Description For Public Distribution AB 32 Scoping of electricity and natural gas; including electricity generation, combined heat and power, and electricity and natural gas end uses for residential and commercial purposes. Use of electricity and/or gas for industrial

216

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network [OSTI]

electricity sector assets and prices to prevent de- industrialization and cushion the impact of hyperinflation on householdelectricity to “households and other socially-important consumer groups” at priceshousehold incomes, and price increases will not go unnoticed. 862 Russians also care about reliable electricity

Wengle, Susanne Alice

2010-01-01T23:59:59.000Z

217

NOAA's National Climatic Data Center Sectoral Engagement Fact Sheet  

E-Print Network [OSTI]

2010 NOAA Satellite and Information Service National Environmental Satellite, Data, and Information Ecosystems National Security Tourism Transportation Water Resources Climate information can be usedNOAA's National Climatic Data Center Sectoral Engagement Fact Sheet COAStAl HAzArDS Overview Global

218

Public Sector Electric Efficiency Programs  

Broader source: Energy.gov [DOE]

The Illinois Department of Commerce and Economic Opportunity (DCEO) Bureau of Energy and Recycling administers the public sector energy efficiency programs required by the Illinois Energy...

219

Energy Sector Market Analysis  

SciTech Connect (OSTI)

This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

2006-10-01T23:59:59.000Z

220

Technology Mapping of the Renewable Energy, Buildings and Transport...  

Open Energy Info (EERE)

of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects AgencyCompany Organization: International Centre for Trade and...

Note: This page contains sample records for the topic "industrial sector transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Mainstreaming Transport Co-benefits Approach: A Guide to Evaluating...  

Open Energy Info (EERE)

Guide to Evaluating Transport Projects AgencyCompany Organization: Institute for Global Environmental Strategies Focus Area: Multi-sector Impact Evaluation Topics: Best Practices...

222

Energy Department Awards $45 Million to Deploy Advanced Transportation...  

Energy Savers [EERE]

is helping to build a strong 21st century transportation sector that cuts harmful pollution, creates jobs and leads to a more sustainable energy future," said Energy...

223

Transportation Energy Futures Study: The Key Results and Conclusions...  

Open Energy Info (EERE)

Energy Futures study, which highlights underexplored opportunities to reduce petroleum use and greenhouse gas emissions from the U.S. transportation sector. There will be...

224

Industrial energy efficiency policy in China  

SciTech Connect (OSTI)

Chinese industrial sector energy-efficiency policy has gone through a number of distinct phases since the founding of the People s Republic in 1949. An initial period of energy supply growth in the 1950s, 1960s, and 1970s was followed by implementation of significant energy efficiency programs in the 1980s. Many of these programs were dismantled in the 1990s during the continuing move towards a market-based economy. In an effort to once again strengthen energy efficiency, the Chinese government passes the Energy Conservation Law in 1997 which provides broad guidance for the establishment of energy efficiency policies. Article 20 of the Energy Conservation Law requires substantial improvement in industrial energy efficiency in the key energy-consuming industrial facilities in China. This portion of the Law declares that ''the State will enhance energy conservation management in key energy consuming entities.'' In 1999, the industrial sector consumed nearly 30 EJ, or 76 percent of China's primary energy. Even though primary energy consumption has dropped dramatically in recent years, due mostly to a decline in coal consumption, the Chinese government is still actively developing an overall policy for energy efficiency in the industrial sector modeled after policies in a number of industrialized countries. This paper will describe recent Chinese government activities to develop industrial sector energy-efficiency targets as a ''market-based'' mechanism for improving the energy efficiency of key industrial facilities.

Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

2001-05-01T23:59:59.000Z

225

Industrial Engineering Industrial Advisory Board  

E-Print Network [OSTI]

Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

Gelfond, Michael

226

The waters of Southeastern Wisconsin are vast but vulnerable. We depend on our waters for drinking water, irrigation, industry, transportation, power production,  

E-Print Network [OSTI]

. Understanding our region's water-related issues and future challenges can help us protect clean, abundant water and industry, public health and ecosystem health. Water quality gains more at- tention during summer, when cause illness. The bacteria and other pollutants that affect our water quality come from a variety

Saldin, Dilano

227

CEC-500-2010-FS-002 Assess New Transportation  

E-Print Network [OSTI]

CEC-500-2010-FS-002 Assess New Transportation and Land-Use Patterns in a Carbon-Constrained Future TRANSPORTATION ENERGY RESEARCH PIER Transportation Research www.energy.ca.gov/research/ transportation/ March 2010 The Issue California's transportation sector is the single largest contributor of greenhouse gas

228

Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector. Technical report twelve: Economic analysis of alternative uses for Alaskan North Slope natural gas  

SciTech Connect (OSTI)

As part of the Altemative Fuels Assessment, the Department of Energy (DOE) is studying the use of derivatives of natural gas, including compressed natural gas and methanol, as altemative transportation fuels. A critical part of this effort is determining potential sources of natural gas and the economics of those sources. Previous studies in this series characterized the economics of unutilized gas within the lower 48 United States, comparing its value for methanol production against its value as a pipelined fuel (US Department of Energy 1991), and analyzed the costs of developing undeveloped nonassociated gas reserves in several countries (US Department of Energy 1992c). This report extends those analyses to include Alaskan North Slope natural gas that either is not being produced or is being reinjected. The report includes the following: A description of discovered and potential (undiscovered) quantities of natural gas on the Alaskan North Slope. A discussion of proposed altemative uses for Alaskan North Slope natural gas. A comparison of the economics of the proposed alternative uses for Alaskan North Slope natural gas. The purpose of this report is to illustrate the costs of transporting Alaskan North Slope gas to markets in the lower 48 States as pipeline gas, liquefied natural gas (LNG), or methanol. It is not intended to recommend one alternative over another or to evaluate the relative economics or timing of using North Slope gas in new tertiary oil recovery projects. The information is supplied in sufficient detail to allow incorporation of relevant economic relationships (for example, wellhead gas prices and transportation costs) into the Altemative Fuels Trade Model, the analytical framework DOE is using to evaluate various policy options.

Not Available

1993-12-01T23:59:59.000Z

229

Climate Action Plans and Long-Range Transportation  

E-Print Network [OSTI]

Climate Action Plans and Long-Range Transportation Plans in the Pacific Northwest: A Review Climate Change and Impacts Mitigation versus Adaptation Impacts of Climate Change: Nation & the Pacific Northwest Climate Change Planning Efforts Transportation Sector Response - Survey Recommendations Continued

Bertini, Robert L.

230

Quantitative analysis of alternative transportation under environmental constraints  

E-Print Network [OSTI]

This thesis focuses on the transportation sector and its role in emissions of carbon dioxide (CO2) and conventional pollutant emissions. Specifically, it analyzes the potential for hydrogen based transportation, introducing ...

Sandoval López, Reynaldo

2006-01-01T23:59:59.000Z

231

Labor's Share By Sector And Industry, 1948-1965  

E-Print Network [OSTI]

.6548 0.8667 0.8742 0.6078 0.6050 0.4867 0.7133 0.7113 0.6700 0.6553 0.8821 0.8888 0.6007 0.5978 0.4652 0.7465 0.7445 0.6829 0.6641 0.8709 0.8760 0.5934 0.5909 0.4666 0.7409 0.7389 0.6809 0.6649 0.8686 0.8810 0.5784 0.5757 0.4640 0.7393 0.7372 0.6828 0...

Close, Frank A.; Shulenburger, David E.

1971-01-01T23:59:59.000Z

232

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

1996. COREX, Revolution in Ironmaking, Linz, Austria:VAI. ;GJ/t Material Preparation Ironmaking Sintering PelletizingGJ/t Material Preparation Ironmaking Sintering Pelletizing

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

233

Industrial Sector Energy Efficiency Modeling (ISEEM) Framework Documentation  

E-Print Network [OSTI]

INVESTMENT COST . anninvcost Annualized investment cost of a technology bound_Total of discounted investment costs discinvcost Discounted

Karali, Nihan

2014-01-01T23:59:59.000Z

234

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

world best practice energy intensity values for productionWorld best practice energy intensity values for productionWorld Best Practice Final Energy Intensity Values for Aluminium Production (

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

235

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

and 30% of total energy consumption in China. During the30 kWh/ADt 54 for total energy consumption of 11.2 GJ/ADt (leads to a total overall energy consumption value of 11.1

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

236

Greenhouse Gas Programs, Energy Efficiency, and the Industrial Sector  

E-Print Network [OSTI]

The United States has made significant progress in reducing total energy use through energy efficiency improvements over the past decade, yet the United States still ranks as the highest absolute greenhouse gas (GHG) emitter in the world with 23...

Zhou, A.; Tutterow, V.; Harris, J.

237

Efficient Energy Utilization in the Industrial Sector - Case Studies  

E-Print Network [OSTI]

. Leakage and misuse of compressed air can normally be reduced by 10 percent, resulting in an annual savings of approximately $10,000 to $20,000. Heat recovery, using air compressor cooling water, can and is being used for space heating...

Davis, S. R.

1984-01-01T23:59:59.000Z

238

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

recovered from the black liquor recovery process (combustingand development in black liquor gasification has not yetgreen liquor”, similar to the black liquor recovery process,

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

239

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

can be produced onsite at the smelter or in separate plants19, 20 The most efficient smelters consume 400-440 kg ofyears five aluminum smelter types have become widespread:

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

240

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

Best Practice Final Energy Intensity Values for Stand-AloneBest Practice Final Energy Intensity Values for Stand-AloneBest Practice Primary Energy Intensity Values for Stand-

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

report describes best practices in energy efficiency for keyImproving Energy Efficiency of shape casting. Best practice

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

242

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

feedstock would use a coal gasifier to convert the coal tosynthesis gas. Most coal gasifier-based ammonia plants areof a modern entrained bed gasifier, selexol gas cleanup and

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

243

Table E5. Industrial Sector Energy Price Estimates, 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefinerMotorSummary5.E4.E5.

244

Industrial Sector Energy Efficiency Modeling (ISEEM) Framework Documentation  

E-Print Network [OSTI]

Model Part I, Energy Technology Systems Analysis Programme,A Report of the Energy Technology Systems Analysis Project,Energy Efficiency Technologies in Integrated Assessment

Karali, Nihan

2014-01-01T23:59:59.000Z

245

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

in a back-pressure steam turbine to generate electricity (compressor uses a steam turbine, using internally generatedwith a gas turbine, producing steam and electricity. The hot

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

246

Designing Effective State Programs for the Industrial Sector - New SEE  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit Services AuditTransatlantic Relations &Energy FTCPEnergyAction

247

Climate VISION: PrivateSector Initiatives: Minerals - Industry Associations  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -ResultsLinks -

248

Coal Industry Annual 1995  

SciTech Connect (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

NONE

1996-10-01T23:59:59.000Z

249

Coal industry annual 1996  

SciTech Connect (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

NONE

1997-11-01T23:59:59.000Z

250

Solar-Assisted Technology Provides Heat for California Industries  

E-Print Network [OSTI]

Solar-Assisted Technology Provides Heat for California Industries Industrial/Agriculture/Water End 2011 The Issue Solar thermal technology focuses the Sun's rays to heat water, and is a promising renewable resource for California's industrial sector. Commercially available solar water heating

251

Understanding Sectoral Labor Market Dynamics: An Equilibrium Analysis of the Oil and Gas Field Services  

E-Print Network [OSTI]

Understanding Sectoral Labor Market Dynamics: An Equilibrium Analysis of the Oil and Gas Field examines the response of employment and wages in the US oil and gas ...eld services industry to changes the dynamic response of wages and employment in the U.S. Oil and Gas Field Services (OGFS) industry to changes

Sadoulet, Elisabeth

252

Hydrogen Energy Storage for Grid and Transportation Services...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage for Grid and Transportation Services Workshop Hydrogen Energy Storage for Grid and Transportation Services Workshop The U.S. Department of Energy (DOE) and Industry...

253

A New, Stochastic, Energy Model of the U.S. is Under Construction: SEDS and Its Industrial Structure  

E-Print Network [OSTI]

-duty vehicles and heavy-duty vehicles. The industrial sector is currently modeled as a single sector, using the latest Manufacturing Energy Consumption Survey (MECS) to calibrate energy consumption to end-use energy categories: boilers, process heating...

Roop, J. M.

254

Federal Sector Renewable Energy Project Implementation: ""What...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by...

255

Energy Sector Cybersecurity Framework Implementation Guidance  

Broader source: Energy.gov (indexed) [DOE]

JANUARY 2015 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY Energy Sector...

256

Coal industry annual 1997  

SciTech Connect (OSTI)

Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

NONE

1998-12-01T23:59:59.000Z

257

Coal industry annual 1993  

SciTech Connect (OSTI)

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

258

Electricity savings potentials in the residential sector of Bahrain  

SciTech Connect (OSTI)

Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to the peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.

Akbari, H. [Lawrence Berkeley National Lab., CA (United States); Morsy, M.G.; Al-Baharna, N.S. [Univ. of Bahrain, Manama (Bahrain)

1996-08-01T23:59:59.000Z

259

ORNL/TM-2009/222 Center for Transportation Analysis  

E-Print Network [OSTI]

. ESTIMATION OF GASOLINE CONSUMPTION BY PUBLIC SECTOR..............41 5.1 Federal Civilian Motor/Commercial Sectors..............................................29 4.3 Off-highway Gasoline Consumption by EquipmentORNL/TM-2009/222 Center for Transportation Analysis Energy and Transportation Science Division OFF

260

Interfuel Substitution and Energy Use in the UK Manufacturing Sector  

E-Print Network [OSTI]

of the following reasons. First, studies based on the aggregate data fail to account for large di¤erences in technological requirements for fuel types used in speci?c industries. For ex- ample, most cement kilns today use coal and petroleum coke as primary fuels... in the manufacturing processes. Waverman (1992) pointed out that fuels used by industrial sectors for non-energy purposes, such as coking coal, petrochemical feedstocks, or lubricants, have few available substitutes, and should therefore be excluded from the data...

Steinbuks, Jevgenijs

Note: This page contains sample records for the topic "industrial sector transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Analysis of the Energy Intensity of Industries in California  

E-Print Network [OSTI]

the aggregate energy-intensity of industry. Applied Energyindustries with final energy intensities of 12.3 Billion BtuAs mentioned, the energy intensity of this sector is much

Can, Stephane de la Rue du

2014-01-01T23:59:59.000Z

262

An Overview of the Louisiana Primary Solid Wood Products Industry  

E-Print Network [OSTI]

Laboratory can better serve Louisiana companies in this industry sector. Results include a discussion in Louisiana consists of 81 companies compared to approximately 750 companies in the secondary wood products sector. * Just over 36 percent of companies surveyed have 50 employees or more and 18.2 percent have 200

263

Charting a Path to Net Zero Energy: Public-Private Sector Perspectives of the Commercial Buildings Consortium  

E-Print Network [OSTI]

Transforming the commercial buildings market to become "net-zero-energy-capable" will require dramatically lower levels of energy use sector wide. A comprehensive and concerted industry effort, partnering with utilities and government, must...

Harris, J.

2011-01-01T23:59:59.000Z

264

BTU Accounting for Industry  

E-Print Network [OSTI]

, salesmen cars, over the highway trucks, facilities startup, waste used as fuel and fuels received for storage. This is a first step in the DOE's effort to establish usage guidelines for large industrial users and, we note, it requires BTU usage data...-generated electricity, heating, ventilating, air conditioning, in-plant transportation, ore hauling, raw material storage and finished product warehousing. Categories which are excluded are corporate and divisional offices, basic research, distribution centers...

Redd, R. O.

1979-01-01T23:59:59.000Z

265

Program Program Organization Country Region Topic Sector Sector  

Open Energy Info (EERE)

Industrial Energy Efficiency Deployment Project United States Department of Energy USDOE Oak Ridge National Laboratory ORNL Alliance for Energy Efficient Economy India...

266

Characteristics of spot-market rate indexes for truckload transportation  

E-Print Network [OSTI]

In the truckload transportation industry in the United States, a number of indexes are published that attempt to measure changes in rates, but no single index has emerged as an industry standard. Industry participants, ...

Bignell, Andrew (Andrew Souglas)

2013-01-01T23:59:59.000Z

267

Energy Sector Vulnerability to Climate Change: Adaptation Options to Increase Resilience (Presentation)  

SciTech Connect (OSTI)

The U.S. Department of Energy is conducting an assessment of vulnerabilities of the U.S. energy sector to climate change and extreme weather. Emphasizing peer reviewed research, it seeks to quantify vulnerabilities and identify specific knowledge or technology gaps. It draws upon a July 2012 workshop, ?Climate Change and Extreme Weather Vulnerability Assessment of the US Energy Sector?, hosted by the Atlantic Council and sponsored by DOE to solicit industry input.

Newmark, R. L.; Bilello, D.; Macknick, J.; Hallet, K. C.; Anderson, R.; Tidwell, V.; Zamuda, C.

2013-02-01T23:59:59.000Z

268

Industrial Hygienist  

Broader source: Energy.gov [DOE]

A successful candidate in this position wil l serve as an Industrial Hygienist in the Operations Division, providing technical oversight of the Pacific Northwest National Laboratory contractors...

269

The Office of Industrial Technologies technical reports  

SciTech Connect (OSTI)

The US Department of Energy's Office of Industrial Technologies (OIT) conducts R D activities which focus on the objectives of improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial energy conservation. The Office also conducts programs to reduce waste generation, increase recycling efforts, and improve the use of wastes as process feedstocks. An active program of technology transfer and education supports these activities and encourages adoption of new technologies. To accomplish these objectives OIT cooperates with the private sector to identify its technological needs and to share R D efforts. R D is conducted to the point that a new technology is shown to work and that it can be transferred to the private sector end-users. This bibliography contains information on all scientific and technical reports sponsored by the DOE Industrial Energy Conservation Program during the years 1988--1990.

Not Available

1992-01-01T23:59:59.000Z

270

Known Challenges Associated with the Production, Transportation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Associated with the Production, Transportation, Storage and Usage of Pyrolysis Oil in Residential and Industrial Settings Known Challenges Associated with the Production,...

271

Industrial Demand-Side Management in Texas  

E-Print Network [OSTI]

of programs result in lower consumption and/or lower peak demand, and ultimately reduce the need to build new capacity. Hence demand-side management can be used as a resource option to be considered alongside more traditional supply-side resources in a...INDUSTRIAL DEMAND-SIDE MANAGEMENT IN TEXAS Danielle Jaussaud Economic Analysis Section Public Utility Commission of Texas Austin, Texas ABSTRACT The industrial sector in Texas is highly energy intensive and represents a large share...

Jaussaud, D.

272

Amarillo Metropolitan Transportation Plan 2010-2035  

E-Print Network [OSTI]

of historical data and are listed in Table 3.2. According to the Texas Workforce Commission employment by industry for the Amarillo Panhandle area (from 2000 to 2010) is AMARILLO METROPOLITAN TRANSPORTATION PLAN 2010-2035 15 projected to increase 15... amarillo metropolitan transportation plan 2010-2035 AMARILLO METROPOLITAN TRANSPORTATION PLAN 2010-2035 AMARILLO URBAN TRANSPORTATION STUDY AMARILLO METROPOLITAN...

Amarillo Metropolitan Planning Organization

2009-10-15T23:59:59.000Z

273

U.S. Department of Energy (DOE) Industrial Programs and Their Impacts  

E-Print Network [OSTI]

P.O. Box 999 Battelle Blvd. MS: K6-05 P.O. Box 999 Battelle Blvd. MS: K6-05 Richland, Washington 99352 Richland, Washington 99352 ABSTRACT The U.S. Department of Energy?s Industrial Technologies Program (ITP) has been working... in the nation's indus- trial sector far exceeds any other sector and is more diverse. In 2006, the industrial sector used 32.43 Figure 1. Industrial Energy Flows (Quad), 2006 ESL-IE-08-05-33 Proceedings from the Thirtieth Industrial Energy Technology...

Weakley, S. A.; Roop, J. M.

2008-01-01T23:59:59.000Z

274

Supply chain network optimization : low volume industrial chemical product  

E-Print Network [OSTI]

The chemical industry is a highly competitive and low margin industry. Chemical transportation faces stringent safety regulations meaning that Cost-To-Serve (C2S), costs associated with products net flow from manufacturers ...

Dacha, Fred (Frederick Omondi)

2013-01-01T23:59:59.000Z

275

4 September 2014 Industry Skills Fund  

E-Print Network [OSTI]

pertaining to future activities to be funded and the scope of the Single Business Service Initiative on behalf of the broader ATN network. The ATN supports the creation of the Single Business Service with industry figures, including from SME's, in the Government-identified priority sectors of: Food

University of Technology, Sydney

276

Control Systems Security Center Comparison Study of Industrial Control System Standards against the Control Systems Protection Framework Cyber-Security Requirements  

SciTech Connect (OSTI)

Cyber security standards, guidelines, and best practices for control systems are critical requirements that have been delineated and formally recognized by industry and government entities. Cyber security standards provide a common language within the industrial control system community, both national and international, to facilitate understanding of security awareness issues but, ultimately, they are intended to strengthen cyber security for control systems. This study and the preliminary findings outlined in this report are an initial attempt by the Control Systems Security Center (CSSC) Standard Awareness Team to better understand how existing and emerging industry standards, guidelines, and best practices address cyber security for industrial control systems. The Standard Awareness Team comprised subject matter experts in control systems and cyber security technologies and standards from several Department of Energy (DOE) National Laboratories, including Argonne National Laboratory, Idaho National Laboratory, Pacific Northwest National Laboratory, and Sandia National Laboratories. This study was conducted in two parts: a standard identification effort and a comparison analysis effort. During the standard identification effort, the Standard Awareness Team conducted a comprehensive open-source survey of existing control systems security standards, regulations, and guidelines in several of the critical infrastructure (CI) sectors, including the telecommunication, water, chemical, energy (electric power, petroleum and oil, natural gas), and transportation--rail sectors and sub-sectors. During the comparison analysis effort, the team compared the requirements contained in selected, identified, industry standards with the cyber security requirements in ''Cyber Security Protection Framework'', Version 0.9 (hereafter referred to as the ''Framework''). For each of the seven sector/sub-sectors listed above, one standard was selected from the list of standards identified in the identification effort. The requirements in these seven standards were then compared against the requirements given in the Framework. This comparison identified gaps (requirements not covered) in both the individual industry standards and in the Framework. In addition to the sector-specific standards reviewed, the team compared the requirements in the cross-sector Instrumentation, Systems, and Automation Society (ISA) Technical Reports (TR) 99 -1 and -2 to the Framework requirements. The Framework defines a set of security classes separated into families as functional requirements for control system security. Each standard reviewed was compared to this template of requirements to determine if the standard requirements closely or partially matched these Framework requirements. An analysis of each class of requirements pertaining to each standard reviewed can be found in the comparison results section of this report. Refer to Appendix A, ''Synopsis of Comparison Results'', for a complete graphical representation of the study's findings at a glance. Some of the requirements listed in the Framework are covered by many of the standards, while other requirements are addressed by only a few of the standards. In some cases, the scope of the requirements listed in the standard for a particular industry greatly exceeds the requirements given in the Framework. These additional families of requirements, identified by the various standards bodies, could potentially be added to the Framework. These findings are, in part, due to the maturity both of the security standards themselves and of the different industries current focus on security. In addition, there are differences in how communication and control is used in different industries and the consequences of disruptions via security breaches to each particular industry that could affect how security requirements are prioritized. The differences in the requirements listed in the Framework and in the various industry standards are due, in part, to differences in the level and purpose of the standards. While the requir

Robert P. Evans

2005-09-01T23:59:59.000Z

277

Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...  

Broader source: Energy.gov (indexed) [DOE]

Presented by Kay Kelly Utah Clean Cities Coalition May 3, 2010 Project ID ARRAVT043 This presentation does not contain any proprietary, confidential, or otherwise restricted...

278

FY 2016 EERE Budget Webinar-Sustainable Transportation Sector...  

Broader source: Energy.gov (indexed) [DOE]

3, 2015 2:30PM to 3:30PM EST Online The Energy Department's Office of Energy Efficiency and Renewable Energy (EERE) hosted a webinar series featuring our deputy assistant...

279

Policies to Reduce Emissions from the Transportation Sector | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilips Color KineticsGrowth Jump to:

280

Technologies for Climate Change Mitigation: Transport Sector | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place: MissouriProgramsCentralMWacTampaInformation

Note: This page contains sample records for the topic "industrial sector transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Table E13. Transportation Sector Energy Expenditure Estimates, 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefinerMotorSummary Topic:0.1.3.

282

Table E6. Transportation Sector Energy Price Estimates, 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefinerMotorSummary5.E4.E5.E6.

283

Annual Energy Outlook 2015 Modeling updates in the Transportation sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear JanYear Jan FebNaturalWorking Group1 st

284

Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJuno Beach,October, 2012 - 08:20Emission Reduction

285

Rail Coal Transportation Rates to the Electric Power Sector  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomicper8,170Thousand2.442 3.028 3.803 3.971Feet)06CoalRail

286

Energy Outlook for the Transport Sector | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE:2009 DOEDeploymentHenry C.February 4, 2011AprilOutlook

287

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas |DOE

288

Reducing Emissions Through Sustainable Transport: Proposal for a Sectoral  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRausWyoming: EnergyElec AssnRedmond,OpenApproach |

289

Transitioning the Transportation Sector: Exploring the Intersection of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe SunMelissa Howell | Department of

290

FY 2016 EERE Budget Webinar-Sustainable Transportation Sector |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment, Safety and Health AssessmentsEthanolFEMA-6 VolumeHawaii

291

Copenhagen Accord NAMA Submissions Implications for the Transport Sector |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text is derivedCoReturnCookson Hills Elec

292

Coal Transportation Rates to the Electric Power Sector  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 47 62CarbonCubic

293

Utah Clean Cities Transportation Sector Petroleum Reduction Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New12.'6/0.2 ......UraniumEfficiency |Using

294

Utah Clean Cities Transportation Sector Petroleum Reduction Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New12.'6/0.2 ......UraniumEfficiency |UsingProgram |

295

Utah Clean Cities Transportation Sector Petroleum Reduction Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New12.'6/0.2 ......UraniumEfficiency |UsingProgram

296

PUTTING TRANSPORT INTO CLIMATE POLICY AGENDA  

E-Print Network [OSTI]

sector in the climate change negotiation. WCTRS could help UNFCCC and the IPCC to promote this processPUTTING TRANSPORT INTO CLIMATE POLICY AGENDA World Conference on Transport Research Society (WCTRS Africa Other LA Brazil Middle East India Other Asia China Eastern Europe Asian TE Russia Korea Japan

Takahashi, Ryo

297

Water Impacts of the Electricity Sector (Presentation)  

SciTech Connect (OSTI)

This presentation discusses the water impacts of the electricity sector. Nationally, the electricity sector is a major end-user of water. Water issues affect power plants throughout the nation.

Macknick, J.

2012-06-01T23:59:59.000Z

298

TRANSPORTATION CENTER--NORTHWESTERN UNIVERSITY Aviation Symposium: The Future for Aviation  

E-Print Network [OSTI]

TRANSPORTATION CENTER--NORTHWESTERN UNIVERSITY Aviation Symposium: The Future for Aviation April The Transportation Center has organized a special Aviation Symposium focusing on important aviation industry topics, Professor of Transportation at Northwestern University and former Director of the Transportation Center

Bustamante, Fabián E.

299

USDA, Departments of Energy and Navy Seek Input from Industry...  

Broader source: Energy.gov (indexed) [DOE]

USDA, Departments of Energy and Navy Seek Input from Industry to Advance Biofuels for Military and Commercial Transportation USDA, Departments of Energy and Navy Seek Input from...

300

China's Pathways to Achieving 40% ~ 45% Reduction in CO{sub 2} Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential  

SciTech Connect (OSTI)

Achieving China’s goal of reducing its carbon intensity (CO{sub 2} per unit of GDP) by 40% to 45% percent below 2005 levels by 2020 will require the strengthening and expansion of energy efficiency policies across the buildings, industries and transport sectors. This study uses a bottom-up, end-use model and two scenarios -- an enhanced energy efficiency (E3) scenario and an alternative maximum technically feasible energy efficiency improvement (Max Tech) scenario – to evaluate what policies and technical improvements are needed to achieve the 2020 carbon intensity reduction target. The findings from this study show that a determined approach by China can lead to the achievement of its 2020 goal. In particular, with full success in deepening its energy efficiency policies and programs but following the same general approach used during the 11th Five Year Plan, it is possible to achieve 49% reduction in CO{sub 2} emissions per unit of GDP (CO{sub 2} emissions intensity) in 2020 from 2005 levels (E3 case). Under the more optimistic but feasible assumptions of development and penetration of advanced energy efficiency technology (Max Tech case), China could achieve a 56% reduction in CO{sub 2} emissions intensity in 2020 relative to 2005 with cumulative reduction of energy use by 2700 Mtce and of CO{sub 2} emissions of 8107 Mt CO{sub 2} between 2010 and 2020. Energy savings and CO{sub 2} mitigation potential varies by sector but most of the energy savings potential is found in energy-intensive industry. At the same time, electricity savings and the associated emissions reduction are magnified by increasing renewable generation and improving coal generation efficiency, underscoring the dual importance of end-use efficiency improvements and power sector decarbonization.

Zheng, Nina; Fridley, David; Zhou, Nan; Levine, Mark; Price, Lynn; Ke, Jing

2011-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

METR 4713/5713 Private Sector Meteorology Spring 2011  

E-Print Network [OSTI]

meteorologists are active. These topics may include support to air quality, wind and solar power, weather derivatives, energy production, commodity marketing and trading, transportation, industrial and commercial business, construction, and city and state government. The course is designed to build background knowledge

Droegemeier, Kelvin K.

302

Private Sector Outreach and Partnerships | Department of Energy  

Energy Savers [EERE]

Private Sector Outreach and Partnerships Private Sector Outreach and Partnerships ISER's partnerships with the private sector are a strength which has enabled the division to...

303

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

in Building Sector Electricity Consumption parameterin Building Sector Electricity Consumption Appendix 1. WorldElectricity in Building Sector Electricity Consumption iii

2006-01-01T23:59:59.000Z

304

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network [OSTI]

Private Participation in the Electricity Sector World BankTelecommunications and Electricity Sectors." Governance 19,41 with journalist covering electricity sector, Vladivostok,

Wengle, Susanne Alice

2010-01-01T23:59:59.000Z

305

Panel 4 - applications to transportation  

SciTech Connect (OSTI)

The aim of this group was to compile a listing of current and anticipated future problem areas in the transportation industry where the properties of diamond and DLC films make them especially attractive and where the panel could strongly endorse the establishment of DOE/Transportation Industry cooperative research efforts. This section identifies the problem areas for possible applications of diamond/DLC technology and presents indications of current approaches to these problems.

Nichols, F. [Argonne National Lab., IL (United States); Au, J. [Sundstrand Aerospace, Rockford, IL (United States); Bhattacharya, R. [Universal Energy Systems, Inc., Dayton, OH (United States); Bhushan, B. [Ohio State Univ., Columbus (United States); Blunier, D. [Caterpillar, Inc., Peoria, IL (United States); Boardman, B. [Deere & Co., Moline, IL (United States); Brombolich, L. [Compu-Tec Engineering, Chesterfield, MO (United States); Davidson, J. [Vanderbilt Univ., Nashville, TN (United States); Graham, M. [Northwestern Univ., Evanston, IL (United States); Hakim, N. [Detroit Diesel Corp., MI (United States); Harris, K. [Dubbeldee Harris Diamond Corp., Mt. Arlington, NJ (United States); Hay, R. [Norton Diamond Film, Northboro, MA (United States); Herk, L. [Southwest Research Inst., Southfield, MI (United States); Hojnacki, H.; Rourk, D. [Intelligent Structures Incorporated, Canton, MI (United States); Kamo, R. [Adiabatics, Inc., Columbus, IN (United States); Nieman, B. [Allied-Signal Inc., Des Plaines, IL (United States); O`Neill, D. [3M, St. Paul, MN (United States); Peterson, M.B. [Wear Sciences, Arnold, MD (United States); Pfaffenberger, G. [Allison Gas Turbine, Indianapolis, IN (United States); Pryor, R.W. [Wayne State Univ., Detroit, MI (United States); Russell, J. [Superconductivity Publications, Inc., Somerset, NJ (United States); Syniuta, W. [Advanced Mechanical Technology, Inc., Newton, MA (United States); Tamor, M. [Ford Motor Co., Dearborn, MI (United States); Vojnovich, T. [Dept. of Energy, Washington, DC (United States); Yarbrough, W. [Pennsylvania State Univ., University Park (United States); Yust, C.S. [Oak Ridge National Lab., TN (United States)

1993-01-01T23:59:59.000Z

306

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network [OSTI]

sustainable energy system was begun, further supporting those goals of increased renewable energy sources and energy efficiency. Sweden

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

307

Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave  

E-Print Network [OSTI]

Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave INFORME para la Sostenibilidad Energética y Ambiental, FUNSEAM. #12;Smart Grids: Sectores y actividades clave eléctrica y los diferentes sectores que forman la smart grid. 6 Figura 2. Evolución y previsión de

Politècnica de Catalunya, Universitat

308

Financial Sector Ups and Downs and the Real Sector: Up by the Stairs and Down by the Parachute  

E-Print Network [OSTI]

May 2012 Financial Sector Ups and Downs and the Real Sector:to reclassifying financial sector ups and downs as turning

Aizenman, Joshua; Pinto, Brian; Sushko, Vladyslav

2012-01-01T23:59:59.000Z

309

The Changing US Electric Sector Business Model  

E-Print Network [OSTI]

The Changing US Electric Sector Business Model CATEE 2013 Clean Air Through Energy Efficiency Conference San Antonio, Texas December 17, 2013 ESL-KT-13-12-57 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16...-18 Copyright © 2013 Deloitte Development LLC. All rights reserved. • Fundamentals of the US Electric Sector Business Model • Today’s Challenges Faced by U.S. Electric Sector • The Math Does Not Lie: A Look into the Sector’s Future • Disruption to Today...

Aliff, G.

2013-01-01T23:59:59.000Z

310

Essays on the Effect of Climate Change on Agriculture and Agricultural Transportation  

E-Print Network [OSTI]

climate change impacts on grain transportation flows, this study employs two modeling systems, a U.S. agricultural sector model and an international grain transportation model, with linked inputs/outputs. The main findings are that under climate change: 1...

Attavanich, Witsanu

2012-02-14T23:59:59.000Z

311

Changing Trends in the Bulk Chemicals and Pulp and Paper Industries (released in AEO2005)  

Reports and Publications (EIA)

Compared with the experience of the 1990s, rising energy prices in recent years have led to questions about expectations of growth in industrial output, particularly in energy-intensive industries. Given the higher price trends, a review of expected growth trends in selected industries was undertaken as part of the production of Annual Energy Outlook 2005 (AEO). In addition, projections for the industrial value of shipments, which were based on the Standard Industrial Classification (SIC) system in AEO2004, are based on the North American Industry Classification System (NAICS) in AEO2005. The change in industrial classification leads to lower historical growth rates for many industrial sectors. The impacts of these two changes are highlighted in this section for two of the largest energy-consuming industries in the U.S. industrial sector-bulk chemicals and pulp and paper.

2005-01-01T23:59:59.000Z

312

Entity State Ownership Residential Commercial Industrial Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.Wyoming

313

State Commercial Electric Power Residential Industrial Transportation  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael Schaal Director, Oil and10: "The

314

Number of Natural Gas Industrial Transported Consumers  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year JanProduction 4 12 7311,925 177,995811.129,119

315

Private Sector | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowderClimateMeadows, NewPrior Lake,Sector Jump to:

316

Cross-sector Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases on &gamma;-Al2O3.Winter (Part 2) |IOCriticalCross-Sector Sign

317

Industrial Energy Efficiency Technical Review Guidelines and Best Practices  

E-Print Network [OSTI]

of commercial and other sector programs. The following programs were deemed to represent the best combination of applicability and access to relevant information: ? BC Hydro?s Power Smart Partners - Industrial (Transmission and Distribution...) ? Wisconsin?s Focus on Energy ? Industrial ? California Public Utilities Commission?s (CPUC) Southern California Industrial and Agricultural (SCIA) and Pacific Gas & Electric?s (PG&E) Fabrication, Process and Manufacturing Review of Impact Evaluation...

Dalziel, N.

2013-01-01T23:59:59.000Z

318

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network [OSTI]

Electricity Sector in Russia: Regional Aspects " In Economics EducationElectricity Sector in Russia: Regional Aspects " in Economics Education

Wengle, Susanne Alice

2010-01-01T23:59:59.000Z

319

Transportation Energy Efficiency Trends, 1972--1992  

SciTech Connect (OSTI)

The US transportation sector, which remains 97% dependent on petroleum, used a record 22.8 quads of energy in 1993. Though growing much more slowly than the economy from 1975 to 1985, energy use for transportation is now growing at nearly the same rate as GDP. This report describes the analysis of trends in energy use and energy intensity in transportation into components due to, (1) growth in transportation activity, (2) changes in energy intensity, and (3) changes in the modal structure of transportation activities.

Greene, D.L. [Oak Ridge National Lab., TN (United States); Fan, Y. [Oak Ridge Associated Universities, Inc., TN (United States)

1994-12-01T23:59:59.000Z

320

The impact of the European Union Emission Trading Scheme on electricity generation sectors  

E-Print Network [OSTI]

. This paper will be presented at the 2009 International Energy Workshop meeting (Venice, June 17th - 19th). 1 break, Non Parametric Approach, Energy prices. JEL classi...cation: C14 C32 C51 Q49 Q58 Centre d the energy1 and industrial sectors major emitters. The market is based on a mechanism of "cap and trade

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "industrial sector transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

U.S. Energy Sector Vulnerability Report | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sector Transportation EnergyGlossary API gravity: AnU.S.

322

Macroscopic theory of dark sector  

E-Print Network [OSTI]

A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant. Massive fields {\\phi}_{I} with {\\phi}^{K}{\\phi}_{K}0 describe two different forms of dark matter. The space-like ({\\phi}^{K}{\\phi}_{K}0) massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the universe. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerate expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the boundary of existence of regular oscillating solutions in the absence of vector fields. The simplicity of the general covariant expression for the energy-momentum tensor allows to display the main properties of the dark sector analytically and avoid unnecessary model assumptions.

Boris E. Meierovich

2014-10-06T23:59:59.000Z

323

INDUST: An Industrial Data Base  

E-Print Network [OSTI]

.5% of the natural gas consump tion, 98.1% of the fuel oil consumption, 99.2% of the coal/coke consumption, and 99.7% of a class of fuels called "other" fuels. Within these 13 indus try groups, INDUST addresses a wide variety of energy-intense industries... the manufac turing sector, Table 1 shows the latest EIA pro visional estimate of energy consumption (in trillion Btu) for 1985. The EIA reports fuel consumption according to five categories: electricity, fuel oil, natural gas, coal and coke, and other...

Wilfert, G. L.; Moore, N. L.

324

The impact on photovoltaic worth of utulity rate and reform and of specific market, financial, and policy variables : a commercialindustrialinstitution sector analysis  

E-Print Network [OSTI]

This work provides an assessment of the economic outlook for photovoltaic systems in the commercial, industrial and institutional sectors in the year 1986. We first summarize the expected cost and performance goals for ...

Dinwoodie, Thomas L.

1980-01-01T23:59:59.000Z

325

Industrial ecology Prosperity Game{trademark}  

SciTech Connect (OSTI)

Industrial ecology (IE) is an emerging scientific field that views industrial activities and the environment as an interactive whole. The IE approach simultaneously optimizes activities with respect to cost, performance, and environmental impact. Industrial Ecology provides a dynamic systems-based framework that enables management of human activity on a sustainable basis by: minimizing energy and materials usage; insuring acceptable quality of life for people; minimizing the ecological impact of human activity to levels that natural systems can sustain; and maintaining the economic viability of systems for industry, trade and commerce. Industrial ecology applies systems science to industrial systems, defining the system boundary to incorporate the natural world. Its overall goal is to optimize industrial activities within the constraints imposed by ecological viability, globally and locally. In this context, Industrial systems applies not just to private sector manufacturing and services but also to government operations, including provision of infrastructure. Sandia conducted its seventeenth Prosperity Game{trademark} on May 23--25, 1997, at the Hyatt Dulles Hotel in Herndon, Virginia. The primary sponsors of the event were Sandia National Laboratories and Los Alamos National Laboratory, who were interested in using the format of a Prosperity Game to address some of the issues surrounding Industrial Ecology. Honorary game sponsors were: The National Science Foundation; the Committee on Environmental Improvement, American Chemical Society; the Industrial and Engineering Chemistry Division, American Chemical Society; the US EPA--The Smart Growth Network, Office of Policy Development; and the US DOE-Center of Excellence for Sustainable Development.

Beck, D.; Boyack, K.; Berman, M.

1998-03-01T23:59:59.000Z

326

The energy sector is comprised of a wide range of businesses involved in the exploration, extraction, production, refining, distribution, and sale of energy. The primary  

E-Print Network [OSTI]

, extraction, production, refining, distribution, and sale of energy. The primary industries within this sector of ways. Some examples include: · Using global surface hourly data for studies of wind energy potentialOVERVIEW The energy sector is comprised of a wide range of businesses involved in the exploration

327

Voluntary agreements for increasing energy-efficiency in industry: Case study of a pilot project with the steel industry in Shandong Province, China  

SciTech Connect (OSTI)

China faces a significant challenge in the years ahead to continue to provide essential materials and products for a rapidly-growing economy while addressing pressing environmental concerns. China's industrial sector is heavily dependent on the country's abundant, yet polluting, coal resources. While tremendous energy conservation and environmental protection achievements were realized in the industrial sector in the past, there remains a great gulf between the China's level of energy efficiency and that of the advanced countries of the world. Internationally, significant energy efficiency improvement in the industrial sector has been realized in a number of countries using an innovative policy mechanism called Voluntary Agreements. This paper describes international experience with Voluntary Agreements in the industrial sector as well as the development of a pilot program to test the use of such agreements with two steel mills in Shandong Province, China.

Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

2003-03-01T23:59:59.000Z

328

Energy Conservation Progress and Opportunities in the Pulp and Paper Industry  

E-Print Network [OSTI]

In 1980 the pulp and paper industry was the third ranking consumer of total purchased fuels and energy in the U.S. industrial sector and the highest single industry in terms of residual oil consumption. Over the past decade in response to rapidly...

Watkins, J. J.; Hunter, W. D.

1984-01-01T23:59:59.000Z

329

Hybrid modeling of industrial energy consumption and greenhouse gas emissions with an application to Canada  

E-Print Network [OSTI]

implemented in Canada, what would be the response of the industrial sector in terms of energy consumptionHybrid modeling of industrial energy consumption and greenhouse gas emissions with an application for modeling industrial energy consumption, among them a series of environmental and security externalities

330

The role of natural gas as a vehicle transportation fuel  

E-Print Network [OSTI]

This thesis analyzes pathways to directly use natural gas, as compressed natural gas (CNG) or liquefied natural gas (LNG), in the transportation sector. The thesis focuses on identifying opportunities to reduce market ...

Murphy, Paul Jarod

2010-01-01T23:59:59.000Z

331

Examination of the factors and issues for an environmental technology utilization partnership between the private sector and the Department of Energy. Final report  

SciTech Connect (OSTI)

The Department of Energy (DOE) held a meeting on November 12, 1992 to evaluate the DOE relations with industry and university partners concerning environmental technology utilization. The goal of this meeting was to receive feedback from DOE industry and university partners for the identification of opportunities to improve the DOE cooperative work processes with the private sector. The meeting was designed to collect information and to turn that information into action to improve private sector partnerships with DOE.

Brouse, P.

1997-05-01T23:59:59.000Z

332

Decoupling limits in multi-sector supergravities  

SciTech Connect (OSTI)

Conventional approaches to cosmology in supergravity assume the existence of multiple sectors that only communicate gravitationally. In principle these sectors decouple in the limit M{sub pl}??. In practice such a limit is delicate: for generic supergravities, where sectors are combined by adding their Kähler functions, the separate superpotentials must contain non-vanishing vacuum expectation values supplementing the naïve global superpotential. We show that this requires non-canonical scaling in the naïve supergravity superpotential couplings to recover independent sectors of globally supersymmetric field theory in the decoupling limit M{sub pl} ? ?.

Achúcarro, Ana; Hardeman, Sjoerd; Schalm, Koenraad; Aalst, Ted van der [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, Leiden (Netherlands); Oberreuter, Johannes M., E-mail: achucar@lorentz.leidenuniv.nl, E-mail: j.m.oberreuter@uva.nl, E-mail: kschalm@lorentz.leidenuniv.nl, E-mail: vdaalst@lorentz.leidenuniv.nl [Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Science Park 904, Amsterdam (Netherlands)

2013-03-01T23:59:59.000Z

333

DOE Issues Energy Sector Cyber Organization NOI  

Broader source: Energy.gov (indexed) [DOE]

sector stakeholders to protect the bulk power electric grid and aid the integration of smart grid technology to enhance the security of the grid. The cyber organization is...

334

Accelerating Investments in the Geothermal Sector, Indonesia...  

Open Energy Info (EERE)

in the Geothermal Sector, Indonesia (Presentation) Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Accelerating Investments in the Geothermal...

335

Draft Energy Sector Cybersecurity Framework Implementation Guidance...  

Broader source: Energy.gov (indexed) [DOE]

and Technology (NIST) released a Cybersecurity Framework. DOE has collaborated with private sector stakeholders through the Electricity Subsector Coordinating Council (ESCC)...

336

Public Sector New Construction and Retrofit Program  

Broader source: Energy.gov [DOE]

The Illinois Department of Commerce and Economic Opportunity (DCEO) Bureau of Energy and Recycling administers the public sector energy efficiency programs required by the Illinois Energy...

337

Public Sector Energy Efficiency Aggregation Program  

Broader source: Energy.gov [DOE]

The Illinois Department of Commerce and Economic Opportunity (DCEO) administers the Illinois Energy Now programs, including the Public Sector Energy Efficiency Aggregation Program. The program will...

338

Energy Sector Cybersecurity Framework Implementation Guidance...  

Broader source: Energy.gov (indexed) [DOE]

Technology (NIST) released a Cybersecurity Framework. DOE has collaborated with private sector stakeholders through the Electricity Subsector Coordinating Council (ESCC) and the...

339

Energy Sector Cybersecurity Framework Implementation Guidance...  

Broader source: Energy.gov (indexed) [DOE]

Cybersecurity Framework Implementation Guidance - Notice of Public Comment: Federal Register Notice, Volume 79, No. 177, September 12, 2014 Energy Sector Cybersecurity Framework...

340

Planning of feeding station installment for elec-tric urban public mass-transportation system  

E-Print Network [OSTI]

especially in the transportation sector, a key and viable approach is to use renewable energy such as wind 13th Swiss Transport Research Conference Monte Verità / Ascona, April 24 ­ 26, 2013 #12;Planning-based transportation infrastructure has led to renewed interest in electric transportation infrastructure, especially

Bierlaire, Michel

Note: This page contains sample records for the topic "industrial sector transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Transportation Services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Services Transporting nuclear materials within the United States and throughout the world is a complicated and sometimes highly controversial effort requiring...

342

Local Transportation  

E-Print Network [OSTI]

Local Transportation. Transportation from the Airport to Hotel. There are two types of taxi companies that operate at the airport: special and regular taxis (

343

Greening Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Goal 2: Greening Transportation LANL supports and encourages employees to reduce their personal greenhouse gas emissions by offering various commuting and work...

344

National Electric Sector Cybersecurity Organization Resource (NESCOR)  

SciTech Connect (OSTI)

The goal of the National Electric Sector Cybersecurity Organization Resource (NESCOR) project was to address cyber security issues for the electric sector, particularly in the near and mid-term. The following table identifies the strategies from the DOE Roadmap to Achieve Energy Delivery Systems Cybersecurity published in September 2011 that are applicable to the NESCOR project.

None, None

2014-06-30T23:59:59.000Z

345

Institute of Public Sector Accounting Research  

E-Print Network [OSTI]

THE STATE" New Public Sector Seminar, Edinburgh, 6-7th November 2014 Co-Chairs: Liisa Kurunmaki, Irvine and consultants depend on in the management of public service organisations, and what is the statusInstitute of Public Sector Accounting Research I·P·S·A·R In Government, Public Services

Edinburgh, University of

346

Managing Technical Risk: Understanding Private Sector  

E-Print Network [OSTI]

action. Our study seeks to inform the decisions of both government managers and private entrepreneursApril 2000 Managing Technical Risk: Understanding Private Sector Decision Making on Early Stage 00-787 Managing Technical Risk Understanding Private Sector Decision Making on Early Stage Technology

347

Sustainability Policy and Green Growth of the South Korean Construction Industry  

E-Print Network [OSTI]

South Korea is among a host of countries trying to achieve sustainable development across whole industry sectors by adopting "Green Growth" as the vision of the national development in the Korean government. The government has executed a vast effort...

Jeong, Hwayeon

2011-10-21T23:59:59.000Z

348

'Tilted' Industrial Electric Rates: A New Negative Variable for Energy Engineers  

E-Print Network [OSTI]

The cost of purchased electricity for industry is rising even faster than for other sectors. Conventional means of reducing power costs include internal techniques like load management, demand controls and energy conservation. External mechanisms...

Greenwood, R. W.

1981-01-01T23:59:59.000Z

349

Modeling ruminant methane emissions from the U.S. beef cattle industry  

E-Print Network [OSTI]

Computer models were constructed to estimate methane emissions from cow/calf, replacement heifers, burs, stockers and feedlot sectors of the U.S. beef cattle industry. Methane (CH4) yields were calculated based on net energy values and forage...

Turk, Danny Carroll

1993-01-01T23:59:59.000Z

350

Technology partnerships: Enhancing the competitiveness, efficiency, and environmental quality of American industry  

SciTech Connect (OSTI)

An overview of the Department of Energy`s Office of Industrial Technologies and its private sector partnerships is presented. Commercial success stories and real-world benefits of the technology partnerships are discussed.

NONE

1995-04-01T23:59:59.000Z

351

Economic Contributions of the Green Industry in the United States, 2007  

E-Print Network [OSTI]

include wholesale nursery, greenhouse and sod growers, landscape architects, contractors and maintenance, albeit slowing somewhat in recent years. The landscape design, construction, and maintenance sector has associated with ornamental plants, landscape and garden supplies and equipment. Segments of the industry

Florida, University of

352

Chamber transport  

SciTech Connect (OSTI)

Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system.

OLSON,CRAIG L.

2000-05-17T23:59:59.000Z

353

“What Efficiency Projects are Being Installed in the Pulp and Paper Industry  

E-Print Network [OSTI]

for this industrial sector. This paper would discuss these projects and trends to show what is working for the real investments in efficiency for the Pulp and Paper Sector. Also included in this paper will be a description of the Pulp and Paper Energy Best Practices...

Nicol, J.

2008-01-01T23:59:59.000Z

354

Industrial Users  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planningtoA Journey Inside the Complex andIndustrial

355

Industry Economists  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planningtoA Journey Inside the ComplexIndustry

356

Industry @ ALS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portaldefault Sign In AboutIn theIndustry @ ALS

357

Surety of the nation`s critical infrastructures: The challenge restructuring poses to the telecommunications sector  

SciTech Connect (OSTI)

The telecommunications sector plays a pivotal role in the system of increasingly connected and interdependent networks that make up national infrastructure. An assessment of the probable structure and function of the bit-moving industry in the twenty-first century must include issues associated with the surety of telecommunications. The term surety, as used here, means confidence in the acceptable behavior of a system in both intended and unintended circumstances. This paper outlines various engineering approaches to surety in systems, generally, and in the telecommunications infrastructure, specifically. It uses the experience and expectations of the telecommunications system of the US as an example of the global challenges. The paper examines the principal factors underlying the change to more distributed systems in this sector, assesses surety issues associated with these changes, and suggests several possible strategies for mitigation. It also studies the ramifications of what could happen if this sector became a target for those seeking to compromise a nation`s security and economic well being. Experts in this area generally agree that the U. S. telecommunications sector will eventually respond in a way that meets market demands for surety. Questions remain open, however, about confidence in the telecommunications sector and the nation`s infrastructure during unintended circumstances--such as those posed by information warfare or by cascading software failures. Resolution of these questions is complicated by the lack of clear accountability of the private and the public sectors for the surety of telecommunications.

Cox, R.; Drennen, T.E.; Gilliom, L.; Harris, D.L.; Kunsman, D.M.; Skroch, M.J.

1998-04-01T23:59:59.000Z

358

Pacific Rim Summit on Industrial Biotechnology & Bioenergy  

Broader source: Energy.gov [DOE]

The ninth annual Pacific Rim Summit on Industrial Biotechnology and Bioenergy will be held from December 7–9, 2014, in San Diego, California, at the Westin Gaslamp Quarter. Bringing together representatives from various countries all around the Pacific Rim, this event will focus on the growth of the industrial biotechnology and bioenergy sectors in North America and the Asia-Pacific region. Glenn Doyle, BETO's Deployment & Demonstration Technology Manager, will be moderating and speaking at a session on entitled "Utilizing Strategic Partnerships to Grow Your Business" on December 9.

359

Encouraging Industrial Demonstrations of Fuel Cell Applications  

E-Print Network [OSTI]

amounts of electricity and process heat; yet none of these have tested a fuel cell. THE HARKET A recent study performed by the Department of Energy (reference 1) stated, "It is possi ble that the on-site market for fuel cells may eventually become... as large worldwide as that for electric utility fuel cell systems." The study included the industrial sector as part of the on-site market. It went on to state, "The potential industrial cogenera tion market is at present unknown. It may be as much...

Anderson, J. M.

360

India's Fertilizer Industry: Productivity and Energy Efficiency  

SciTech Connect (OSTI)

Historical estimates of productivity growth in India's fertilizer sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Our analysis shows that in the twenty year period, 1973 to 1993, productivity in the fertilizer sector increased by 2.3% per annum. An econometric analysis reveals that technical progress in India's fertilizer sector has been biased towards the use of energy, while it has been capital and labor saving. The increase in productivity took place during the era of total control when a retention price system and distribution control was in effect. With liberalization of the fertilizer sector and reduction of subsidies productivity declined substantially since the early 1990s. Industrial policies and fiscal incentives still play a major role in the Indian fertilizer sect or. As substantial energy savings and carbon reduction potential exists, energy policies can help overcome barriers to the adoption of these measures in giving proper incentives and correcting distorted prices.

Schumacher, K.; Sathaye, J.

1999-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

CEC-500-2010-FS-XXX California Transportation  

E-Print Network [OSTI]

Transportation Research www.energy.ca.gov/research/ transportation/ February 2012 The Issue The 2006 Bioenergy and industrial markets. · Determine costs. · Determine energy balance of production. · Identify barriers

362

Impact of risk sharing on competitive bidding in truckload transportation  

E-Print Network [OSTI]

The purpose of this research was to evaluate whether a shipper's fuel surcharge (FSC) program affected its per-load transportation costs in the United States full-truckload (TL) transportation industry. In this study, we ...

Abramson, Molly (Molly Elizabeth)

2012-01-01T23:59:59.000Z

363

Mechanical & Industrial Engineering  

E-Print Network [OSTI]

Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board October 15, 2010 #12;Mechanical & Industrial Engineering 2 MIE Dorothy Adams Undergraduate/Graduate Secretary David Schmidt Associate Professor & Graduate Program Director #12;Mechanical & Industrial Engineering 3 MIE James Rinderle

Mountziaris, T. J.

364

Research in Industrial Combustion Systems - Current and Future R&D  

E-Print Network [OSTI]

/DIP have funded R&D primarily directed to applications that would benefit the industrial sector. The following material briefly describes some of the GRI2.3 and DOE/Olp3.4 program activi ties in industrial combustion systems. The overall goal of DOE... technology develop ments in gas-fired equipment. GRI's emphasis is on developing generic technologies which have diverse applications in many industries and on integrating these technologies in selected industries where the present gas load...

Rebello, W. J.; Keller, J. G.

365

Engineering Industrial & Systems  

E-Print Network [OSTI]

Industrial Engineering Department of Industrial & Systems Engineering Leslie Monplaisir, Ph powerful tool sets used in industry today. -Brent Gillett, BSIE 2007 Advanced Planning Engineer at BMW I is available at: http://ise.wayne.edu/bs-industrial/index What is Industrial Engineering? The industrial

Berdichevsky, Victor

366

INDUSTRIAL ENGINEERING Industrial engineering is concerned  

E-Print Network [OSTI]

INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. Industrial engineers design and run the factories and systems

367

INDUSTRIAL ENGINEERING Industrial engineering is concerned  

E-Print Network [OSTI]

INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. The focus of industrial engineering is on process improvement

368

Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States  

SciTech Connect (OSTI)

Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil-fuel; Carbon dioxide emissions; Sectoral; Spatial cluster; Emissions mitigation policy

Zhou, Yuyu; Gurney, Kevin R.

2011-07-01T23:59:59.000Z

369

Stuck with the bill, but why? : an analysis of the Portuguese public finance system with respect to surface transportation policy and investments  

E-Print Network [OSTI]

Despite decentralization progress in other sectors, the Portuguese central government maintains significant administrative and fiscal power over national and sub-national surface transportation operations and infrastructure. ...

Nelson, Joshua S

2008-01-01T23:59:59.000Z

370

Guam Transportation Petroleum-Use Reduction Plan  

SciTech Connect (OSTI)

The island of Guam has set a goal to reduce petroleum use 20% by 2020. Because transportation is responsible for one-third of on-island petroleum use, the Guam Energy Task Force (GETF), a collaboration between the U.S. Department of Energy and numerous Guam-based agencies and organizations, devised a specific plan by which to meet the 20% goal within the transportation sector. This report lays out GETF's plan.

Johnson, C.

2013-04-01T23:59:59.000Z

371

Energy Department Announces New Private Sector Partnership to...  

Office of Environmental Management (EM)

Energy Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate...

372

Energy Department Announces New Private Sector Partnership to...  

Office of Environmental Management (EM)

Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate Renewable...

373

Combined Heat & Power Technology Overview and Federal Sector...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat & Power Technology Overview and Federal Sector Deployment Combined Heat & Power Technology Overview and Federal Sector Deployment Presentation covers the Combined...

374

Climate Change and the Transporation Sector - Challenges and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Climate Change and the Transporation Sector - Challenges and Mitigation Options Climate Change and the Transporation Sector - Challenges and Mitigation Options 2003 DEER Conference...

375

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

Building Sector Electricity Consumption parameter logisticin Building Sector Electricity Consumption iii iv Sectoralsome water with electricity consumption, it is not possible

2006-01-01T23:59:59.000Z

376

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

values. Figure 7. Global Primary Energy by End-Use Sector,Scenario Figure 8. Global Primary Energy by End-Use Sector,

2006-01-01T23:59:59.000Z

377

Changes Sweeping Through the Electricity Sector: Moving toward...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Changes Sweeping Through the Electricity Sector: Moving toward a 21st Century Electricity System Changes Sweeping Through the Electricity Sector: Moving toward a 21st Century...

378

EIA Energy Efficiency-Commercial Buildings Sector Energy Intensities...  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities: 1992- 2003 Released Date: December 2004 Page Last Revised: August 2009 These tables...

379

Energy-Sector Stakeholders Attend the Department of Energy's...  

Broader source: Energy.gov (indexed) [DOE]

Energy-Sector Stakeholders Attend the Department of Energy's 2010 Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's...

380

Electricity sector restructuring and competition : lessons learned  

E-Print Network [OSTI]

We now have over a decade of experience with the privatization, restructuring, regulatory reform, and wholesale and retail competition in electricity sectors around the world. The objectives and design attributes of these ...

Joskow, Paul L.

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Estimating the Impact (Energy, Emissions and Economics) of the US Fluid Power Industry  

SciTech Connect (OSTI)

The objective of this report is to estimate the impact (energy, emissions and economics) of United Fluid power (hydraulic and pneumatic actuation) is the generation, control, and application of pumped or compressed fluids when this power is used to provide force and motion to mechanisms. This form of mechanical power is an integral part of United States (U.S.) manufacturing and transportation. In 2008, according to the U.S. Census Bureau, sales of fluid power components exceeded $17.7B, sales of systems using fluid power exceeded $226B. As large as the industry is, it has had little fundamental research that could lead to improved efficiency since the late 1960s (prior to the 1970 energy crisis). While there have been some attempts to replace fluid powered components with electric systems, its performance and rugged operating condition limit the impact of simple part replacement. Oak Ridge National Laboratory and the National Fluid Power Association (NFPA) collaborated with 31 industrial partners to collect and consolidate energy specific measurements (consumption, emissions, efficiency) of deployed fluid power systems. The objective of this study was to establish a rudimentary order of magnitude estimate of the energy consumed by fluid powered systems. The analysis conducted in this study shows that fluid powered systems consumed between 2.0 and 2.9 Quadrillion (1015) Btus (Quads) of energy per year; producing between 310 and 380 million metric tons (MMT) of Carbon Dioxide (CO2). In terms of efficiency, the study indicates that, across all industries, fluid power system efficiencies range from less than 9% to as high as 60% (depending upon the application), with an average efficiency of 22%. A review of case studies shows that there are many opportunities to impact energy savings in both the manufacturing and transportation sectors by the development and deployment of energy efficient fluid power components and systems.

Love, Lonnie J [ORNL

2012-12-01T23:59:59.000Z

382

Photovoltaic industry progress through 1984  

SciTech Connect (OSTI)

The growth of the US photovoltaics (PV) industry over the past decade has been impressive. First designed to provide power for satellites using high-cost production techniques, PV is now the economical choice in many remote terrestrial applications. The remarkable growth of PV in terms of quality of cells and modules, production techniques, and system design, was initiated by a cooperative effort of the US Government and the domestic PV manufacturers. European and Japanese firms entered the PV industry later, but are also growing rapidy. The Europeans continue to supply PV systems for village electrification and water pumping to many Third World countries. The Japanese have been developing the amorphous silicon (A-Si) technology by expanding its use in consumer goods. The world PV industry saw dramatic changes in industry ownership and in the emphasis on developing new and improved technology during 1984. The objective of this report is to present information on the developments of the world PV industry and focuses on developments occurring in 1984. Information is presented on a regional basis (US, Europe, Japan, other) to avoid disclosing company-confidential data. All information was gleaned from several sources, including a review of the technical literature and direct contacts with PV manufacturers. Prior to publishing the regional totals, all numbers were compared with those of other sources. The information contained in this report is prepared for use by the Department of Energy for their use in long-term R and D planning. However, this information should also be of interest by PV manufacturers and to those who may be contemplating entering the PV market. PV shipments for 1984, government supports for PV, and various PV market sectors are discussed.

Watts, R.L.; Smith, S.A.; Dirks, J.A.

1985-04-01T23:59:59.000Z

383

India's pulp and paper industry: Productivity and energy efficiency  

SciTech Connect (OSTI)

Historical estimates of productivity growth in India's pulp and paper sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both statistical and econometric estimates of productivity growth for this sector. Their results show that productivity declined over the observed period from 1973-74 to 1993-94 by 1.1% p.a. Using a translog specification the econometric analysis reveals that technical progress in India's pulp and paper sector has been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protection afforded by high tariffs on imported paper products and other policies, which allowed inefficient, small plants to enter the market and flourish. Will these trends continue into the future, particularly where energy use is concerned? The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with liberalization of the sector, and tighter environmental controls, the industry is moving towards higher efficiency and productivity. However, the analysis also shows that because these improvements are being hampered by significant financial and other barriers the industry might have a long way to go.

Schumacher, Katja

1999-07-01T23:59:59.000Z

384

The Economics of Public Sector Information  

E-Print Network [OSTI]

result in incentives for over-investment in quality and capacity improvements because, by over-investing, the PSIH stimulates demand and obtains a larger subsidy. In terms of responsiveness an organization operating a more ‘commercial’ pricing policy (e... area (building especially), or keeping up to date with the decisions of their elected representatives. While much data is supplied from outside the public sector, compared to many other areas of the economy, the public sector plays an unusually...

Pollock, Rufus

385

Broadening Industry Governance to Include Nonproliferation  

SciTech Connect (OSTI)

As industry is the first line of defense in detecting and thwarting illicit trade networks, the engagement of the private sector is critical to any government effort to strengthen existing mechanisms to protect goods and services throughout the supply chain. This study builds on previous PNNL work to continue to evaluate means for greater industry engagement to complement and strengthen existing governmental efforts to detect and stem the trade of illicit goods and to protect and secure goods that could be used in making a weapon of mass destruction. Specifically, the study evaluates the concept of Industry Self Regulation, defined as a systematic voluntary program undertaken by an industry or by individual companies to anticipate, implement, supplement, or substitute for regulatory requirements in a given field, generally through the adoption of best practices. Through a series of interviews with companies with a past history of non-compliance, trade associations and NGOs, the authors identify gaps in the existing regulatory infrastructure, drivers for a self regulation approach and the form such an approach might take, as well as obstacles to be overcome. The authors conclude that it is at the intersection of industry, government, and security that—through collaborative means—the effectiveness of the international nonproliferation system—can be most effectively strengthened to the mutual benefit of both government and the private sector. Industry has a critical stake in the success of this regime, and has the potential to act as an integrating force that brings together the existing mechanisms of the global nonproliferation regime: export controls, physical protection, and safeguards. The authors conclude that industry compliance is not enough; rather, nonproliferation must become a central tenant of a company’s corporate culture and be viewed as an integral component of corporate social responsibility (CSR).

Hund, Gretchen; Seward, Amy M.

2008-11-11T23:59:59.000Z

386

Energy Efficiency Services Sector: Workforce Size and Expectations for Growth  

SciTech Connect (OSTI)

The energy efficiency services sector (EESS) is poised to become an increasingly important part of the U.S. economy. Climate change and energy supply concerns, volatile and increasing energy prices, and a desire for greater energy independence have led many state and national leaders to support an increasingly prominent role for energy efficiency in U.S. energy policy. The national economic recession has also helped to boost the visibility of energy efficiency, as part of a strategy to support economic recovery. We expect investment in energy efficiency to increase dramatically both in the near-term and through 2020 and beyond. This increase will come both from public support, such as the American Recovery and Reinvestment Act (ARRA) and significant increases in utility ratepayer funds directed toward efficiency, and also from increased private spending due to codes and standards, increasing energy prices, and voluntary standards for industry. Given the growing attention on energy efficiency, there is a concern among policy makers, program administrators, and others that there is an insufficiently trained workforce in place to meet the energy efficiency goals being put in place by local, state, and federal policy. To understand the likelihood of a potential workforce gap and appropriate response strategies, one needs to understand the size, composition, and potential for growth of the EESS. We use a bottom-up approach based upon almost 300 interviews with program administrators, education and training providers, and a variety of EESS employers and trade associations; communications with over 50 sector experts; as well as an extensive literature review. We attempt to provide insight into key aspects of the EESS by describing the current job composition, the current workforce size, our projections for sector growth through 2020, and key issues that may limit this growth.

Goldman, Charles; Fuller, Merrian C.; Stuart, Elizabeth; Peters, Jane S.; McRae, Marjorie; Albers, Nathaniel; Lutzenhiser, Susan; Spahic, Mersiha

2010-03-22T23:59:59.000Z

387

Rigs to reefs: a petroleum industry perspective  

E-Print Network [OSTI]

, by implementing an ocean dumping program in conjunction with a rigs-to-reefs program, and through the development of new technology and methods to reduce transportation costs. Zn addition, the overall cost to industry participation can be reduced through... Environmental Enhancement and Fishing in the Seas (REEFS)" Task Force. This task force was comprised of representatives of federal and state government agencies, the oil and ocean industries, and the commercial and recreational fishing communities. Secretary...

Dubose, William Perry

1988-01-01T23:59:59.000Z

388

Electricity Use in the Pacific Northwest: Utility Historical Sales by Sector, 1989 and Preceding Years.  

SciTech Connect (OSTI)

This report officially releases the compilation of regional 1989 retail customer sector sales data by the Bonneville Power Administration. This report is intended to enable detailed examination of annual regional electricity consumption. It gives statistics covering the time period 1970--1989, and also provides observations based on statistics covering the 1983--1989 time period. The electricity use report is the only information source that provides data obtained from each utility in the region based on the amount of electricity they sell to consumers annually. Data is provided on each retail customer sector: residential, commercial, industrial, direct-service industrial, and irrigation. The data specifically supports forecasting activities, rate development, conservation and market assessments, and conservation and market program development and delivery. All of these activities require a detailed look at electricity use. 25 figs., 34 tabs.

United States. Bonneville Power Administration.

1990-06-01T23:59:59.000Z

389

Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity  

SciTech Connect (OSTI)

In November 2012, the Joint Institute for Strategic Energy Analysis (JISEA) released a new report, 'Natural Gas and the Transformation of the U.S. Energy Sector: Electricity.' The study provides a new methodological approach to estimate natural gas related greenhouse gas (GHG) emissions, tracks trends in regulatory and voluntary industry practices, and explores various electricity futures. The Executive Summary provides key findings, insights, data, and figures from this major study.

Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

2013-01-01T23:59:59.000Z

390

Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity  

SciTech Connect (OSTI)

Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

Selldorff, John; Atwell, Monte

2014-09-23T23:59:59.000Z

391

Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity  

ScienceCinema (OSTI)

Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

Selldorff, John; Atwell, Monte

2014-12-03T23:59:59.000Z

392

Centers for manufacturing technology: Industrial Advisory Committee Review  

SciTech Connect (OSTI)

An advisory committee, composed of senior managers form industrial- sector companies and major manufacturing trade associations and representatives from appropriate educational institutions, meets semi-annually to review and advise the Oak Ridge Centers for Manufacturing Technology (ORCMT) on its economic security program. Individual papers have been indexed separately for the database.

NONE

1995-10-01T23:59:59.000Z

393

Industrial Energy Efficiency Achieving Success in a Difficult Environment  

E-Print Network [OSTI]

Energy use and the resulting environmental impacts are major points of concern for the world in the 21st century. Opinions that define the challenges of sustainable energy options are as diverse as the proposed solutions. The industrial sector is a...

Castellow, C.

2011-01-01T23:59:59.000Z

394

Industrial Structure and Monetary Policy in a Small Open Economy  

E-Print Network [OSTI]

Industrial Structure and Monetary Policy in a Small Open Economy Thomas A. Lubik Department supply which is empirically quite small. In principle, this link can be broken in a multisectoral economy sectors. This paper reinterprets this line of reasoning in a small open economy with a traded and a non

Niebur, Ernst

395

Transportation Statistics Annual Report 1997  

SciTech Connect (OSTI)

This document is the fourth Transportation Statistics Annual Report (TSAR) prepared by the Bureau of Transportation Statistics (BTS) for the President and Congress. As in previous years, it reports on the state of U.S. transportation system at two levels. First, in Part I, it provides a statistical and interpretive survey of the system—its physical characteristics, its economic attributes, aspects of its use and performance, and the scale and severity of unintended consequences of transportation, such as fatalities and injuries, oil import dependency, and environment impacts. Part I also explores the state of transportation statistics, and new needs of the rapidly changing world of transportation. Second, Part II of the report, as in prior years, explores in detail the performance of the U.S. transportation system from the perspective of desired social outcomes or strategic goals. This year, the performance aspect of transportation chosen for thematic treatment is “Mobility and Access,” which complements past TSAR theme sections on “The Economic Performance of Transportation” (1995) and “Transportation and the Environment” (1996). Mobility and access are at the heart of the transportation system’s performance from the user’s perspective. In what ways and to what extent does the geographic freedom provided by transportation enhance personal fulfillment of the nation’s residents and contribute to economic advancement of people and businesses? This broad question underlies many of the topics examined in Part II: What is the current level of personal mobility in the United States, and how does it vary by sex, age, income level, urban or rural location, and over time? What factors explain variations? Has transportation helped improve people’s access to work, shopping, recreational facilities, and medical services, and in what ways and in what locations? How have barriers, such as age, disabilities, or lack of an automobile, affected these accessibility patterns? How are commodity flows and transportation services responding to global competition, deregulation, economic restructuring, and new information technologies? How do U.S. patterns of personal mobility and freight movement compare with other advanced industrialized countries, formerly centrally planned economies, and major newly industrializing countries? Finally, how is the rapid adoption of new information technologies influencing the patterns of transportation demand and the supply of new transportation services? Indeed, how are information technologies affecting the nature and organization of transportation services used by individuals and firms?

Fenn, M.

1997-01-01T23:59:59.000Z

396

Life Cycle Assessment Comparing the Use of Jatropha Biodiesel in the Indian Road and Rail Sectors  

SciTech Connect (OSTI)

This life cycle assessment of Jatropha biodiesel production and use evaluates the net greenhouse gas (GHG) emission (not considering land-use change), net energy value (NEV), and net petroleum consumption impacts of substituting Jatropha biodiesel for conventional petroleum diesel in India. Several blends of biodiesel with petroleum diesel are evaluated for the rail freight, rail passenger, road freight, and road-passenger transport sectors that currently rely heavily on petroleum diesel. For the base case, Jatropha cultivation, processing, and use conditions that were analyzed, the use of B20 results in a net reduction in GHG emissions and petroleum consumption of 14% and 17%, respectively, and a NEV increase of 58% compared with the use of 100% petroleum diesel. While the road-passenger transport sector provides the greatest sustainability benefits per 1000 gross tonne kilometers, the road freight sector eventually provides the greatest absolute benefits owing to substantially higher projected utilization by year 2020. Nevertheless, introduction of biodiesel to the rail sector might present the fewest logistic and capital expenditure challenges in the near term. Sensitivity analyses confirmed that the sustainability benefits are maintained under multiple plausible cultivation, processing, and distribution scenarios. However, the sustainability of any individual Jatropha plantation will depend on site-specific conditions.

Whitaker, M.; Heath, G.

2010-05-01T23:59:59.000Z

397

Industrial recovered-materials-utilization targets for the metals and metal-products industry  

SciTech Connect (OSTI)

The National Energy Conservation Policy Act of 1978 directs DOE to set targets for increased utilization of energy-saving recovered materials for certain industries. These targets are to be established at levels representing the maximum feasible increase in utilization of recovered materials that can be achieved progressively by January 1, 1987 and is consistent with technical and economic factors. A benefit to be derived from the increased use of recoverable materials is in energy savings, as state in the Act. Therefore, emhasis on different industries in the metals sector has been related to their energy consumption. The ferrous industry (iron and steel, ferrour foundries and ferralloys), as defined here, accounts for approximately 3%, and all others for the remaining 3%. Energy consumed in the lead and zinc segments is less than 1% each. Emphasis is placed on the ferrous scrap users, followed by the aluminum and copper industries. A bibliography with 209 citations is included.

None

1980-03-01T23:59:59.000Z

398

Formulating a VET roadmap for the waste and recycling sector: A case study from Queensland, Australia  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Existing qualifications do not meet the needs of the sector in Queensland. Black-Right-Pointing-Pointer Businesses may not be best positioned to identify training needs. Black-Right-Pointing-Pointer Companies are developing training internally to meet their own specific needs. Black-Right-Pointing-Pointer Smaller companies lack the resources to develop internal training are disadvantaged. Black-Right-Pointing-Pointer There is industry support for an entry-level, minimum industry qualification. - Abstract: Vocational Education and Training (VET) is an essential tool for providing waste management and recycling workers with the necessary skills and knowledge needed to beneficially influence their own employment and career development; and to also ensure productivity and safe working conditions within the organisations in which they are employed. Current training opportunities within Queensland for the sector are limited and not widely communicated or marketed; with other States, particularly Victoria and New South Wales, realising higher numbers of VET enrollments for waste management courses. This paper presents current VET opportunities and trends for the Queensland waste management sector. Results from a facilitated workshop to identify workforce requirements and future training needs organised by the Waste Contractors and Recyclers Association of Queensland (WCRAQ) are also presented and discussion follows on the future training needs of the industry within Queensland.

Davis, G., E-mail: gudavis@cytanet.com.cy [Dr Georgina Davis, ABN 12 744 598 837, Banksia Beach, Brisbane, QLD 4507 (Australia)

2012-10-15T23:59:59.000Z

399

The petrochemical industry in developing Asia  

SciTech Connect (OSTI)

This paper addresses the need for information on the petrochemical industry in Asia in view of the fast-evolving situation of the industry in the region and the growing involvement of the World Bank with operations and studies in a number of Asian countries. It reviews the current trends of the industry with relevance for Asian-based producers and documents the substantial increases in activity and rates of growth of the sector in Asia. The current market situation in seven countries (Republic of Korea, India, China, Thailand, Malaysia and Indonesia) is also reviewed in some detail, including data on consumption, production and installed capacity for key petrochemical products and derivatives. The main issues in each country are summarized.

Vergava, W.; Bebelon, D.

1990-01-01T23:59:59.000Z

400

Distributed Generation Potential of the U.S. Commercial Sector  

E-Print Network [OSTI]

residential and commercial sector installations, for a total of 9 GW. Clearly, commercial DG with CHP

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Gumerman, Etan; Marnay, Chris

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Live Webinar on Better Buildings Challenge: Public-Sector Update  

Broader source: Energy.gov [DOE]

The Energy Department will present a live webinar titled "Better Buildings Challenge: Public-Sector Update."

402

On the Road to Transportation Efficiency (Video)  

SciTech Connect (OSTI)

Reducing emissions and oil consumption are crucial worldwide goals. Reducing transportation emissions, in particular, is key to reducing overall emissions. Electric vehicles driving on electrified roadways could be a significant part of the solution. E-roadways offer a variety of benefits: reduce petroleum consumption (electricity is used instead of gasoline), decrease vehicular operating costs (from about 12 cents per mile to 4 cents per mile), and extend the operational range of electric vehicles. Plus, e-roadway power can come from renewable sources. This animation was sponsored by the Clean Transportation Sector Initiative, and interagency effort between the U.S. Department of Transportation and the U.S. Department of Energy.

Not Available

2014-03-01T23:59:59.000Z

403

Using E-Commerce in the Forest Products Industry Chapter 1.2.  

E-Print Network [OSTI]

Using E-Commerce in the Forest Products Industry Chapter 1.2. Using E-Commerce in the Forest The forest products industry is rapidly adopting e-commerce solutions as it advances in the information age. In this chapter, the unique e-commerce needs of this sector's small businesses are discussed. Current experience

404

Industrial and Systems engineering  

E-Print Network [OSTI]

Industrial and Systems engineering COLLEGE of ENGINEERING DepartmentofIndustrialandSystemsEngineering EDGE Engineering Entrepreneur Certificate Program is a great addition to an industrial and systems to expert clinical recommendations. engineering.wayne.edu/isefaculty Industrial and systems engineering

Berdichevsky, Victor

405

Constraining Energy Consumption of China's Largest Industrial Enterprises Through the Top-1000 Energy-Consuming Enterprise Program  

E-Print Network [OSTI]

China’s total primary energy consumption in 2005, along withthe industrial sector primary energy consumption was 1,416of China’s total primary energy consumption (Lin et al. ,

Price, Lynn; Wang, Xuejun

2007-01-01T23:59:59.000Z

406

Varieties of innovation : the creation of wind and solar industries in China, Germany, and the United States  

E-Print Network [OSTI]

Where and how does innovation take place in contemporary high-technology sectors? Theories of innovation presume a division of labor between firms in industrialized economies that invent and commercialize new technologies ...

Nahm, Jonas M

2014-01-01T23:59:59.000Z

407

Industrial energy-efficiency-improvement program  

SciTech Connect (OSTI)

Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

Not Available

1980-12-01T23:59:59.000Z

408

CASL Industry Council Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IndustryCouncil.shtml The new members that joined the Industry Council include NPP owneroperators with analysis capability: Tyrone Stevens of Exelon, and SMR vendors:...

409

Uranium industry annual 1997  

SciTech Connect (OSTI)

This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

NONE

1998-04-01T23:59:59.000Z

410

Electric Utility Industry Update  

Broader source: Energy.gov [DOE]

Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

411

Characterization of industrial process waste heat and input heat streams  

SciTech Connect (OSTI)

The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

1984-05-01T23:59:59.000Z

412

Surety applications in transportation  

SciTech Connect (OSTI)

Infrastructure surety can make a valuable contribution to the transportation engineering industry. The lessons learned at Sandia National Laboratories in developing surety principles and technologies for the nuclear weapons complex and the nuclear power industry hold direct applications to the safety, security, and reliability of the critical infrastructure. This presentation introduces the concepts of infrastructure surety, including identification of the normal, abnormal, and malevolent threats to the transportation infrastructure. National problems are identified and examples of failures and successes in response to environmental loads and other structural and systemic vulnerabilities are presented. The infrastructure surety principles developed at Sandia National Laboratories are described. Currently available technologies including (a) three-dimensional computer-assisted drawing packages interactively combined with virtual reality systems, (b) the complex calculational and computational modeling and code-coupling capabilities associated with the new generation of supercomputers, and (c) risk-management methodologies with application to solving the national problems associated with threats to the critical transportation infrastructure are discussed.

Matalucci, R.V.; Miyoshi, D.S.

1998-01-01T23:59:59.000Z

413

Status and Path Forward for the Department of Energy Used Fuel Disposition Storage and Transportation Program - 12571  

SciTech Connect (OSTI)

The U.S. Department of Energy, Office of Nuclear Energy (DOE/NE) has sponsored a program since Fiscal Year (FY) 09 to develop the technical basis for extended dry storage of used fuel. This program is also working to develop the transportation technical basis for the transport of used fuel after the extended storage period. As this program has progressed, data gaps associated with dry storage systems (e.g., fuel, cask internals, canister, closure, overpack, and pad) have been identified that need to be addressed to develop the technical bases for extended storage and transportation. There has also been an initiation of experimental testing and analyses based on the identified data gaps. The technical aspects of the NE program are being conducted by a multi-lab team made up of the DOE laboratories. As part of this program, a mission objective is to also collaborate closely with industry and the international sector to ensure that all the technical issues are addressed and those programs outside the DOE program can be leveraged, where possible, to maximize the global effort in storage and transportation research. The DOE/NE program is actively pursuing the development of the technical basis to demonstrate the feasibility of storing UNF for extended periods of time with subsequent transportation of the UNF to its final disposition. This program is fully integrated with industry, the U.S. regulator, and the international community to assure that programmatic goals and objectives are consistent with a broad perspective of technical and regulatory opinion. As the work evolves, assessments will be made to ensure that the work continues to focus on the overall goals and objectives of the program. (authors)

Sorenson, Ken [Sandia National Laboratories (United States); Williams, Jeffrey [U.S. Department of Energy, Office of Nuclear Energy (United States)

2012-07-01T23:59:59.000Z

414

Advanced Industrial Materials (AIM) Program annual progress report, FY 1997  

SciTech Connect (OSTI)

The Advanced Industrial Materials (AIM) Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The mission of AIM is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. OIT has embarked on a fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrating on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans, some of which have been completed. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support.

NONE

1998-05-01T23:59:59.000Z

415

Profile of the chemicals industry in California: Californiaindustries of the future program  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Industrial Technologies (OIT) established the Industries of the Future (IOF) program to increase energy efficiency, reduce waste production and to improve competitiveness, currently focusing on nine sectors. The IOF is a partnership strategy involving industry, the research community and the government, working together to identify technology needs, promote industrial partnerships and implement joint measures with all partners involved. The State Industries of the Future (SIOF) program delivers the accomplishments of the national Industries of the Future strategy to the local level, to expand the technology opportunities to a larger number of partners and reach smaller businesses and manufacturers that were not initially involved in the IOF effort. The state programs bring together industry, academia, and state agencies to address the important issues confronting industry in the state. These public-private coalitions facilitate industry solutions locally and enhance economic development. California has started a State Industries of the Future effort, in collaboration with the U.S. Department of Energy. The California Energy Commission (CEC) is leading the SIOF program in California, as part of many other programs to improve the energy efficiency and performance of industries in California. The California State IOF program aims to build a network of participants from industry, academia and government in four selected industrial sectors as a basis for the development of a strategic partnership for industrial energy efficient technology in the state. In California the IOF effort focuses petroleum refining, chemical processing, food processing and electronics. As part of this effort, the SIOF program will develop roadmaps for technology development for the selected sectors. On the basis of the roadmap, the program will develop successful projects with co-funding from state and federal government, and promote industry-specific energy-efficiency. An important element of the SIOF-program is the preparation of R&D roadmaps for each of the selected industries. The roadmap will help to identify priority needs for the participating industries to meet their energy challenges. The roadmap effort builds on the roadmaps developed by DOE, and on the conditions specific for the industry in California. Key to the successful preparation of a roadmap in the selected industries is the development of a profile of the industries. The profile provides a basis for the participants in the roadmap-effort, especially as the structure of the industries in California can be different than in the nation. The sector profiles describe the current economic and energy situation of these industries in California, the processes and energy uses, and the potential future developments in each industry. The profiles are an integral part of the roadmap, to help working group partners to evaluate the industry's R&D needs for their industry in California. In this report, we focus on the chemicals industry. The industry is an important economic factor in the state, providing over 82,300 jobs directly, and more in indirect employment. Value of shipments in 2001 was just under $25.7 Billion, or 6% of all manufacturing in California. There are over 1,500 chemical plants in California, of which 52% are pharmaceutical companies. Many companies operate chemical plants in California. The industry consumes 8% of the electricity and 5% of the natural gas in California. In this report, we start with a description of the chemical industry in the United States and California. This is followed by a discussion of the energy consumption and energy intensity of the Californian chemical industry. Chapter 3 focuses on the main sub-sectors. For each of the sub-sectors a general process description is provided in Chapter 4. Based on this analysis, in Chapter 5, we discuss potential technology developments that can contribute to further improving the energy efficiency in chemical plants, with a focus on the situation in California.

Galitsky, Christina; Worrell, Ernst

2004-06-01T23:59:59.000Z

416

Transportation Security  

Broader source: Energy.gov (indexed) [DOE]

Preliminary Draft - For Review Only 1 Transportation Security Draft Annotated Bibliography Review July 2007 Preliminary Draft - For Review Only 2 Work Plan Task * TEC STG Work...

417

Computational Transportation  

E-Print Network [OSTI]

), in-vehicle computers, and computers in the transportation infrastructure are integrated ride- sharing, real-time multi-modal routing and navigation, to autonomous/assisted driving

Illinois at Chicago, University of

418

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network [OSTI]

international integration through industrial policies, protection of infant industries and investment

Wengle, Susanne Alice

2010-01-01T23:59:59.000Z

419

Reshaping the electricity supply industry  

SciTech Connect (OSTI)

Cigre`s Electra magazine published this interview with Alfonso Limbruno, CEO of ENEL S.p.A. To put the interview in perspective, this article begins with a brief overview of ENEL and a biographical sketch of Alfonso Limbruno, and also carries comments from Y. Thomas, secretary general of CIGRE. ENEL is a vertically integrated nationwide electricity company engaged in the generation, transmission, distribution, and sale of electricity, predominantly in Italy. ENEL`s share accounts for approximately 80 percent of Italian electricity demand. Measured by amount of electricity sold, ENEL is the third largest electric utility in the OECD countries and the second largest electric utility in Europe. Measured by revenues, ENEL is one of the largest companies in Italy, with a turnover of Lit. 37,632 billion. In 1995, ENEL served approximately 28.5 million customers and sold 211,607 GWh of electricity. ENEL`s gross installed generating capacity at December 31, 1995 was 55,906 MW. Alfonso Limbruno made all his career in the Italian electricity supply industry (ESI) and has had quite a unique experience: he went through a complete cycle of change of the ESI in his country, the nationalization of the sector in 1962 with the merging in ENEL of over 1,200 undertakings, and now the privatization of the company, along with a far reaching restructuring of the industry. He was appointed CEO of ENEL in August 1992.

NONE

1997-03-01T23:59:59.000Z

420

INDUSTRIAL ENGINEERING GRADUATE PROGRAMS  

E-Print Network [OSTI]

INDUSTRIAL ENGINEERING GRADUATE PROGRAMS The Master of Science in Industrial Engineering (M Systems and Engineering (M.S.M.S.E.), the Doctor of Philosophy in Industrial Engineering, and the Doctor of Philosophy in Systems and Engineering Management programs prepare competent industrial engineers

Gelfond, Michael

Note: This page contains sample records for the topic "industrial sector transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Mechanical & Industrial Engineering  

E-Print Network [OSTI]

Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board May 5th, 2011 #12;Mechanical & Industrial Engineering 2 IAB 2010-2011 · David K. Anderson ­ Alden Research Laboratory, Inc went on for three weeks Mechanical & Industrial Engineering 6 #12;Reza Shahbazian Yassar Mechanical

Mountziaris, T. J.

422

Industry Analysis February 2013  

E-Print Network [OSTI]

technology ­ Clean tech/ clean technology #12;7 Industry Studies · IbisWorld ­ U.S. and global industry-Industries · Biodiesel ­ Biofuel ­ Alternate fuels ­ Green fuels ­ Renewable fuels/energy ­ Green energy ­ Green Canada, Census, Industry Canada, the OECD, European Union, IMF, World Bank, UN . . . Never pay for stats

Abolmaesumi, Purang

423

Integrating regional strategic transportation planning and supply chain management : along the path to sustainability  

E-Print Network [OSTI]

A systems perspective for regional strategic transportation planning (RSTP) for freight movements involves an understanding of Supply Chain Management (SCM). This thesis argues that private sector freight shippers and ...

Sgouridis, Sgouris P

2005-01-01T23:59:59.000Z

424

The climate impacts of high-speed rail and air transportation : a global comparative analysis  

E-Print Network [OSTI]

Growing concerns about the energy use and climate impacts of the transportation sector have prompted policymakers to consider a variety of options to meet the future mobility needs of the world's population, while ...

Clewlow, Regina Ruby Lee

2012-01-01T23:59:59.000Z

425

An assessment of the video analytics technology gap for transportation facilities  

E-Print Network [OSTI]

We conduct an assessment of existing video analytic technology as applied to critical infrastructure protection, particularly in the transportation sector. Based on discussions with security personnel at multiple facilities, ...

Thornton, Jason R.

426

Experimental characterization of adsorption and transport properties for advanced thermo-adsorptive batteries  

E-Print Network [OSTI]

Thermal energy storage has received significant interest for delivering heating and cooling in both transportation and building sectors. It can minimize the use of on-board electric batteries for heating, ventilation and ...

Kim, Hyunho, S.M. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

427

NATURAL GAS ADVISORY COMMITTEE Name Affiliation Sector  

E-Print Network [OSTI]

NATURAL GAS ADVISORY COMMITTEE 2011-2013 Name Affiliation Sector Dernovsek, David Bonneville Power Defenbach, Byron Intermountain Gas Distribution Dragoon, Ken NWPCC Council Friedman, Randy NW Natural Gas Distribution Gopal, Jairam Southern CA Edison Electric Utility Hamilton, Linda Shell Trading Gas & Power

428

WATER AND ENERGY SECTOR VULNERABILITY TO CLIMATE  

E-Print Network [OSTI]

WATER AND ENERGY SECTOR VULNERABILITY TO CLIMATE WARMING IN THE SIERRA NEVADA: Water Year explores the sensitivity of water indexing methods to climate change scenarios to better understand how water management decisions and allocations will be affected by climate change. Many water management

429

Conceptualising Inventory Prepositioning in the Humanitarian Sector  

E-Print Network [OSTI]

Conceptualising Inventory Prepositioning in the Humanitarian Sector Delia Richardson, Sander de chain to reduce delivery time of relief inventory improves responsiveness. This is the essence of inventory pre-positioning (IPP). IPP is yet to be clearly defined; and the main factors affecting IPP

Boyer, Edmond

430

Retail competition in the UK electricity sector  

E-Print Network [OSTI]

experience · Outcome: switching & market shares · Variety of contracts & Nordic market · Benefits and costs retail market #12;Schedule for UK market opening · 1990 large users (above 1 MW max demand) · about 30Retail competition in the UK electricity sector Stephen Littlechild Workshops on Retail Competition

Rudnick, Hugh

431

Training & Research in the Indian Power Sector  

E-Print Network [OSTI]

Training & Research in the Indian Power Sector An academic perspective Rangan Banerjee, Energy requirements, financing investments, providing reliable electricity at affordable costs #12;Need for Training France ­ Power Generation & Transmission Group ­ Average 80 hours of training/year (14% of budget) 3

Banerjee, Rangan

432

Center for Transportation Training and Research Texas Southern University  

E-Print Network [OSTI]

Center for Transportation Training and Research Texas Southern University Lei Yu, Ph.D., P.E. Professor of Transportation and Dean College of Science and Technology, and SWUTC Executive Committee Member and Technology, Industrial Technol- ogy, Mathematics, Physics, and Transportation Studies. He also oversees

433

End User Functional and Performance Requirements for HTGR Energy Supply to Industrial Processes  

SciTech Connect (OSTI)

This document specifies end user functional and performance requirements to be used in the development of the design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to industrial processes. These requirements were developed from collaboration with industry and HTGR suppliers and from detailed evaluation of integration of the HTGR technology in industrial processes. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a plant design that will serve the broadest range of industrial applications.

L.E. Demick

2010-09-01T23:59:59.000Z

434

Transportation Market Distortions  

E-Print Network [OSTI]

of Highways, Volpe National Transportation Systems Center (Evaluating Criticism of Transportation Costing, VictoriaFrom Here: Evaluating Transportation Diversity, Victoria

Litman, Todd

2006-01-01T23:59:59.000Z

435

SUPPLIERS WITHIN AN ECOLOGICALLY AWARE AUTOMOTIVE SECTOR  

E-Print Network [OSTI]

, materials recyclers and shredders, as represented in figure 1. Figure 1 - Automobile life cycle and Maintenance Recycling industries Energy valorisation Landfill DismantlerOEMOEM Raw material producers psychological advertising are key drivers for the auto industry. Over the last 30 years, the automobile has

Instituto de Sistemas e Robotica

436

Green Industrial Policy: Trade and Theory  

E-Print Network [OSTI]

of electricity capacity controlled by the private sector.The private sector dominates in renewable electricity, much

Karp, Larry; Stevenson, Megan

2012-01-01T23:59:59.000Z

437

EIA - Annual Energy Outlook 2013 Early Release  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

A6 Industrial Sector Key Indicators and Consumption A7 Transportation Sector Key Indicators and Delivered Energy Consumption A8 Electricity Supply, Disposition, Prices,...

438

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Consumption XLS Table 17. Renewable Energy Consumption by Sector and Source XLS Table 18. Carbon Dioxide Emissions by Sector and Source - United States XLS Table 18.1. Carbon...

439

Laser experiments explore the hidden sector  

E-Print Network [OSTI]

Recently, the laser experiments BMV and GammeV, searching for light shining through walls, have published data and calculated new limits on the allowed masses and couplings for axion-like particles. In this note we point out that these experiments can serve to constrain a much wider variety of hidden-sector particles such as, e.g., minicharged particles and hidden-sector photons. The new experiments improve the existing bounds from the older BFRT experiment by a factor of two. Moreover, we use the new PVLAS constraints on a possible rotation and ellipticity of light after it has passed through a strong magnetic field to constrain pure minicharged particle models. For masses <~0.05 eV, the charge is now restricted to be less than (3-4)x10^(-7) times the electron electric charge. This is the best laboratory bound and comparable to bounds inferred from the energy spectrum of the cosmic microwave background.

M. Ahlers; H. Gies; J. Jaeckel; J. Redondo; A. Ringwald

2007-11-30T23:59:59.000Z

440

Constraining Dark Sectors with Monojets and Dijets  

E-Print Network [OSTI]

We consider dark sector particles (DSPs) that obtain sizeable interactions with Standard Model fermions from a new mediator. While these particles can avoid observation in direct detection experiments, they are strongly constrained by LHC measurements. We demonstrate that there is an important complementarity between searches for DSP production and searches for the mediator itself, in particular bounds on (broad) dijet resonances. This observation is crucial not only in the case where the DSP is all of the dark matter but whenever - precisely due to its sizeable interactions with the visible sector - the DSP annihilates away so efficiently that it only forms a dark matter subcomponent. To highlight the different roles of DSP direct detection and LHC monojet and dijet searches, as well as perturbativity constraints, we first analyse the exemplary case of an axial-vector mediator and then generalise our results. We find important implications for the interpretation of LHC dark matter searches in terms of simpli...

Chala, Mikael; McCullough, Matthew; Nardini, Germano; Schmidt-Hoberg, Kai

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The Lepton Sector of a Fourth Generation  

E-Print Network [OSTI]

In extensions of the standard model with a heavy fourth generation one important question is what makes the fourth-generation lepton sector, particularly the neutrinos, so different from the lighter three generations. We study this question in the context of models of electroweak symmetry breaking in warped extra dimensions, where the flavor hierarchy is generated by the localization of the zero-mode fermions in the extra dimension. In this setup the Higgs sector is localized near the infrared brane, whereas the Majorana mass term is localized at the ultraviolet brane. As a result, light neutrinos are almost entirely Majorana particles, whereas the fourth generation neutrino is mostly a Dirac fermion. We show that it is possible to obtain heavy fourth-generation leptons in regions of parameter space where the light neutrino masses and mixings are compatible with observation. We study the impact of these bounds, as well as the ones from lepton flavor violation, on the phenomenology of these models.

Gustavo Burdman; Leandro Da Rold; Ricardo D. Matheus

2010-05-10T23:59:59.000Z

442

DOE Encourages Utility Sector Nominations to the Federal Communication...  

Broader source: Energy.gov (indexed) [DOE]

the Federal Communications Commission's Communications, Security, Reliability, and Interoperability Council DOE Encourages Utility Sector Nominations to the Federal Communications...

443

Financing Energy Efficiency Retrofits in the Commercial Sector Webinar  

Broader source: Energy.gov [DOE]

Financing Energy Efficiency Retrofits in the Commercial Sector Webinar, from the U.S. Department of Energy's Better Buildings program.

444

Coal Transportation Issues (released in AEO2007)  

Reports and Publications (EIA)

Most of the coal delivered to U.S. consumers is transported by railroads, which accounted for 64% of total domestic coal shipments in 2004. Trucks transported approximately 12% of the coal consumed in the United States in 2004, mainly in short hauls from mines in the East to nearby coal-fired electricity and industrial plants. A number of minemouth power plants in the West also use trucks to haul coal from adjacent mining operations. Other significant modes of coal transportation in 2004 included conveyor belt and slurry pipeline (12%) and water transport on inland waterways, the Great Lakes, and tidewater areas (9%).

2007-01-01T23:59:59.000Z

445

A Thermodynamic Sector of Quantum Gravity  

E-Print Network [OSTI]

The connection between gravity and thermodynamics is explored. Examining a perfect fluid in gravitational equilibrium we find that the entropy is extremal only if Einstein's equations are satisfied. Conversely, one can derive part of Einstein's equations from ordinary thermodynamical considerations. This allows the theory of this system to be recast in such a way that a sector of general relativity is purely thermodynamical and should not be quantized.

J. Oppenheim

2001-12-04T23:59:59.000Z

446

WHEN DOES FINANCIAL SECTOR (IN)STABILITY INDUCE FINANCIAL REFORMS?  

E-Print Network [OSTI]

WHEN DOES FINANCIAL SECTOR (IN)STABILITY INDUCE FINANCIAL REFORMS? Susie LEE Ingmar SCHUMACHER (in)stability induce financial reforms? Susie Lee1 Ingmar Schumacher2 October 26, 2011 Abstract The article studies whether financial sector (in)stability had an effect on reforms in the fi- nancial sector

Boyer, Edmond

447

Energy efficiency in building sector in India through Heat  

E-Print Network [OSTI]

electricity consumption in India (2012) #12;Growth in electricity consumption by building sector At a conservative 9 % growth rate electricity consumption of building sector by 2020 will be more than 2 times ( Source: DB Research) #12;Electricity Consumption Pattern in Residential Sector (Source: BEE, Figure taken

Oak Ridge National Laboratory

448

Country Review of Energy-Efficiency Financial Incentives in the Residential Sector  

E-Print Network [OSTI]

Financial Incentives in the Residential Sector Stephane deFinancial Incentives in the Residential Sector Stephane desavings achieved in the residential sector. In contrast,

Can, Stephane de la Rue du

2011-01-01T23:59:59.000Z

449

E-Print Network 3.0 - agriculture sector plan Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

identify trends in key economic sectors and demographic measures... primary sectors. Electricity consumed in private homes is included in the residential sector. ... Source:...

450

DSM Electricity Savings Potential in the Buildings Sector in APP Countries  

E-Print Network [OSTI]

Management (DSM) in the Electricity Sector: Urgent Need for¼rcan, 2007, Electricity and natural gas sectors in Korea: aand commercial sub-sectors, electricity use is distributed

McNeil, MIchael

2011-01-01T23:59:59.000Z

451

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network [OSTI]

rates from the electricity sector to assumed values inrates from the electricity sector to assumed values intend to underestimate electricity sector emissions, and it

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

452

The Rise and Decline of U.S. Private Sector Investments in Energy R&D since the Arab Oil Embargo of 1973  

SciTech Connect (OSTI)

This paper presents two distinct datasets that describe investments in energy research and development (R&D) by the US private sector since the mid1970s, which is when the US government began to systematically collect these data. The first dataset is based upon a broad survey of more than 20,000 firms’ industrial R&D activities. This broad survey of US industry is coordinated by the US National Science Foundation. The second dataset discussed here is a much narrower accounting of the energy R&D activities of the approximately two dozen largest US oil and gas companies conducted by the US Department of Energy’s Energy Information Agency. Even given the large disparity in the breadth and scope of these two surveys of the private sector’s support for energy R&D, both datasets tell the same story in terms of the broad outlines of the private sector’s investments in energy R&D since the mid 1970s. The broad outlines of the US private sector’s support for energy R&D since the mid 1970s is: (1) In the immediate aftermath of the Arab Oil Embargo of 1973, there is a large surge in US private sector investments in energy R&D that peaked in the period between 1980 and 1982 at approximately $3.7 billion to $6.7 billion per year (in inflation adjusted 2010 US dollars) depending upon which survey is used (2) Private sector investments in energy R&D declined from this peak until bottoming out at approximately $1.8 billion to $1 billion per year in 1999; (3) US private sector support for energy R&D has recovered somewhat over the past decade and stands at $2.2 billion to $3.4 billion. Both data sets indicate that the US private sector’s support for energy R&D has been and remains dominated by fossil energy R&D and in particular R&D related to the needs of the oil and gas industry.

Dooley, James J.

2010-11-01T23:59:59.000Z

453

INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY  

E-Print Network [OSTI]

INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY SUMMER 2013 Industrial Engineering COOP Student needed-Fri, for summer 2013. Student must be enrolled in BS Engineering program. (Preferably completed 2-3 yrs

Pohl, Karsten

454

Demographics and industry returns  

E-Print Network [OSTI]

Industry category Child care Children’s books Children’s clothing Toysindustry Child care Children’s books Children’s clothing ToysIndustries are associated with high demand by children (child care, toys) and

Pollet, Joshua A.; DellaVigna, Stefano

2007-01-01T23:59:59.000Z

455

Electrotechnologies in Process Industries  

E-Print Network [OSTI]

The Industrial Program at the Electric Power Research Institute (EPRI) promotes the efficient use of electricity to improve the competitive position of the American industry. Electrotechnologies that improve productivity, improve quality...

Amarnath, K. R.

456

The Industrial Electrification Program  

E-Print Network [OSTI]

EPRI's role as the research organization of the electric power industry, in coordination with potential user industries, is to 1) define the viability of candidate electrification technologies by monitoring the state-of-the-art and continuously...

Harry, I. L.

1982-01-01T23:59:59.000Z

457

The Importance of Natural Gas in the Industrial Sector With a Focus on Energy-Intensive Industries  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data9c :0.1 HousingBiofuels: U.S. (and

458

Development of an energy conservation voluntary agreement pilot project in the steel sector in Shandong  

SciTech Connect (OSTI)

China faces a significant challenge in the years ahead to continue to provide essential materials and products for a rapidly-growing economy while addressing pressing environmental concerns. Energy is a fundamental element of the national economy and the conditions of its use have a direct impact on China's ability to reach its sustainable development goals. China's industrial sector, which accounts for over 70 percent of the nation's total energy consumption each year, provides materials such as steel and cement that build the nation's roads, bridges, homes, offices and other buildings. Industrial products include bicycles, cars, buses, trains, ships, office equipment, appliances, furniture, packaging, pharmaceuticals, and many other components of everyday life in an increasingly modern society. This vital production of materials and products, however, comes with considerable problems. China's industrial sector is heavily dependent on the country's abundant, yet polluting, coal resources. Industrial production locally pollutes the air with emissions of particulates, carbon monoxide, sulfur dioxide, and nitrogen oxides, uses scarce water and oil resources, emits greenhouse gases contributing to the warming global atmosphere, and often produces hazardous and polluting wastes. Fostering innovative approaches to reduce the use of polluting energy resources and to diminish pollution from industrial production that are tailored to China's emerging market-based economy is one of the most important challenges facing the nation today. The pressures of rapid industrial production growth, continued environmental degradation, and increased competition create a situation that calls for a strategically-planned evolution of China's industries into world-class production facilities that are competitive, energy-efficient and less polluting. Such a transition requires the complete commitment of industrial enterprises and the government to work together to transform the industrial facilities of China. Internationally, such a transformation of the industrial sector has been realized in a number of countries using an innovative policy mechanism called Voluntary Agreements. Voluntary Agreements are essentially a contract between the government and industry, or negotiated targets with commitments and time schedules on the part of all participating parties. These agreements typically have a long-term outlook, covering a period of five to ten years, so that strategic energy-efficiency investments can be planned and implemented. A key element of Voluntary Agreements is that they focus the attention of all actors on energy efficiency or emission reduction goals. Internationally, Voluntary Agreements have been shown to result in increased energy efficiency, with the more successful programs even doubling autonomous energy efficiency improvement rates. In addition, Voluntary Agreements have important longer-term impacts including changes of attitudes and awareness of manage rial and technical staff regarding energy efficiency, addressing barriers to technology adoption and innovation, creating market transformation to establish greater potential for sustainable energy-efficiency investments, promoting positive dynamic interactions between different actors involved in technology research and development, deployment, and market development, and facilitating cooperative arrangements that provide learning mechanisms within an industry. The essential steps for reaching a Voluntary Agreement are the assessment of the energy-efficiency potential of the participants as well as target-setting through a negotiated process. Participation by industries is motivated through the use of carrots and sticks, which refers to incentives and disincentives. Supporting programs and policies (the carrots), such as enterprise audits, assessments, benchmarking, monitoring, information dissemination, and financial incentives all play an important role in assisting the participants in meeting the target goals. Some of the more successful Voluntary Agreement programs are base

Price, Lynn; Yun, Jiang; Worrell, Ernst; Wenwei, Du; Sinton, Jonathan E.

2004-02-05T23:59:59.000Z

459

Advanced Industrial Materials (AIM) Program: Annual progress report FY 1995  

SciTech Connect (OSTI)

In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This Annual Report for FY 1995 contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Areas covered here are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

NONE

1996-04-01T23:59:59.000Z

460

Geothermal Industry Partnership Opportunities  

Broader source: Energy.gov [DOE]

Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

Note: This page contains sample records for the topic "industrial sector transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Demonstrating and Deploying Private Sector Technologies at DOE Sites - Issues to be Overcome  

SciTech Connect (OSTI)

The Department of Energy (DOE), Office of Environmental Management (EM) continues to pursue cost-effective, environmental cleanup of the weapons complex sites with a concomitant emphasis on deployment of innovative technologies as a means to this end. The EM Office of Science and Technology (OST) pursues a strategy that entails identification of technologies that have potential applications throughout the DOE complex: at multiple DOE sites and at multiple facilities on those sites. It further encourages a competitive procurement process for the various applications entailed in the remediation of a given facility. These strategies require a competitive private-sector supplier base to help meet EM needs. OST supports technology development and deployment through investments in partnerships with private industry to enhance the acceptance of their technology products within the DOE market. Since 1992, OST and the National Energy Technology Laboratory (NETL) have supported the re search and development of technology products and services offered by the private sector. During this time, NETL has managed over 140 research and development projects involving industrial and university partners. These projects involve research in a broad range of EM related topics, including deactivation and decommissioning, characterization, monitoring, sensors, waste separation, groundwater remediation, robotics, and mixed waste treatment. Successful partnerships between DOE and Industry have resulted in viable options for EM's cleanup needs, and require continued marketing efforts to ensure that these technology solutions are used at multiple DOE sites and facilities.

Bedick, R. C.

2002-02-27T23:59:59.000Z

462

Photovoltaics industry profile  

SciTech Connect (OSTI)

A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

None

1980-10-01T23:59:59.000Z

463

Mechanical & Industrial Engineering  

E-Print Network [OSTI]

Mechanical & Industrial Engineering Mario A. Rotea Professor and Department Head #12;2Mechanical & Industrial Engineering Outline · Undergraduate Degree Programs · Graduate Degree Programs · The Faculty · The Research · Summary #12;3Mechanical & Industrial Engineering Undergraduate Programs ­ BSME & BSIE 0 20 40 60

Mountziaris, T. J.

464

INDUSTRIAL AND BIOMEDICAL APPLICATIONS  

E-Print Network [OSTI]

INDUSTRIAL AND BIOMEDICAL APPLICATIONS Frank Smith, Nicholas Ovenden and Richard Purvis University are described, one industrial on violent water-air interaction during an impact process and the other biomedical: industrial, biomedical, impacts, networks, theory, computation, scales. 1. INTRODUCTION It is a pleasure

Purvis, Richard

465

Pre-bid network analysis for transportation procurement auction under stochastic demand  

E-Print Network [OSTI]

Transportation procurement is one of the most critical sourcing decisions to be made in many companies. This thesis addresses a real-life industrial problem of creating package bids for a company's transportation procurement ...

Wang, Qian

2007-01-01T23:59:59.000Z

466

Air transportation in the 1980's, and the role of IATA : address :  

E-Print Network [OSTI]

"(Ladies &) Gentlemen, I am grateful for this opportunity to talk to you about the developing scene in the civil air transport industry. And to take a look at the evolving role of IATA - the International Air Transport ...

Hammarskjl?d, Knut

1980-01-01T23:59:59.000Z

467

Stimulating Manufacturing Excellence in Small and Medium Enterprises, SMESME 2005 Stimulating Industrial Excellence in European Textile SME's  

E-Print Network [OSTI]

Industrial Excellence in European Textile SME's Nicholas Bilalis 1 , Emmanuel Alvizos 1 , Emmanuel There are more than 100.000 European SME's, in the whole chain of operation from spinning to clothing. Keywords: Industrial Excellence, Textile Sector, IEA, SME 1. Introduction The findings presented

Aristomenis, Antoniadis

468

Energy Intensity Development of the German Iron and Steel Industry between 1991 and 2007 Marlene Arensa), 1)  

E-Print Network [OSTI]

1 Energy Intensity Development of the German Iron and Steel Industry between 1991 and 2007 Marlene industry, energy intensity 1) Corresponding Author. Tel: +49 721 6809 408, fax: +49 721 6809 272, marlene a decomposition method [25]. Kim and Worrell (2002) compared energy and CO2intensity in the steel sector among

Paris-Sud XI, Université de

469

State Demand-Side Management Programs Funds are Exploding! How Industries Can Best Use These Programs to Maximize Their Benefits  

E-Print Network [OSTI]

Find out from an Industrial Program Manager that runs a successful state DSM/Energy Efficiency program for the industrial sector how to best find, use and benefit from these types of programs. The amount of money that states are investing in DSM...

Nicol, J.

2008-01-01T23:59:59.000Z

470

UK and Italian EIA systems: A comparative study on management practice and performance in the construction industry  

SciTech Connect (OSTI)

This study evaluates and contrasts the management practice and the performance that characterise Environmental Impact Assessments (EIA) in Italy and in the UK. The methodology relies on the investigation of six carefully selected case studies, critically reviewed by referring to EIA and project design information, as well as collecting the opinion of key project participants. The study focuses on the construction industry and on specific key sectors like infrastructure for transport and renewable energy and commercial and tourism development. A main term of reference for the analyses has been established by critically reviewing international literature so as to outline common good practice, requirements for the enhancement of sustainability principles and typically incurred drawbacks. The proposed approach enhances transfer of knowledge and of experiences between the analyzed contexts and allows the provision of guidelines for practitioners. Distinctive differences between the UK and the Italian EIA systems have been detected for pivotal phases and elements of EIA, like screening, scoping, analysis of alternatives and of potential impacts, definition of mitigation strategies, review, decision making, public participation and follow up. - Highlights: Black-Right-Pointing-Pointer The Italian and the UK Environmental Impact Assessment systems are compared. Black-Right-Pointing-Pointer The research is centred on the construction industry. Black-Right-Pointing-Pointer Issues and shortcomings are analysed by investigating six case studies. Black-Right-Pointing-Pointer Integration of EIA with sustainability principles is appraised. Black-Right-Pointing-Pointer General guidelines are provided to assist practitioners in the two national contexts.

Bassi, Andrea, E-mail: ab395@bath.co.uk [University of Bath, Faculty of Engineering and Design, Claverton Down, Bath BA2 7AY (United Kingdom); Howard, Robert, E-mail: robhoward@constcom.demon.co.uk [Construction Communications, 8 Cotton& #x27; s Field, Dry Drayton, Cambridge CB23 8DG (United Kingdom); Geneletti, Davide, E-mail: davide.geneletti@ing.unitn.it [Sustainability Science Program, Harvard University, 79 JFK Street, Cambridge, MA 02138 (United States); Dept. of Civil and Environmental Engineering, University of Trento, Via Mesiano, 77 38123 Trento (Italy); Ferrari, Simone, E-mail: simone.ferrari@polimi.it [Dept. BEST, Building Environment Science and Technology, Politecnico di Milano, Via Bonardi, 3 20133 Milano (Italy)

2012-04-15T23:59:59.000Z

471

Interacting With the Pharmaceutical Industry  

E-Print Network [OSTI]

INTERACTING WITH THE PHARMACEUTICAL INDUSTRY Stephen R.to interactions with the pharmaceutical industry! This is ancome from the pharmaceutical industry. It is also reality

Hayden, Stephen R

2003-01-01T23:59:59.000Z

472

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect (OSTI)

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model's parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. (Lawrence Berkeley Lab., CA (United States) Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.); Hwang, R. (Lawrence Berkeley Lab., CA (United States))

1992-02-01T23:59:59.000Z

473

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect (OSTI)

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model`s parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. [Lawrence Berkeley Lab., CA (United States)]|[Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics]|[Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Hwang, R. [Lawrence Berkeley Lab., CA (United States)

1992-02-01T23:59:59.000Z

474

Presentation 1.1: An overview of existing and emerging EU policies relating to energy from biomass and their effects on forest based industries  

E-Print Network [OSTI]

products and wood-energy markets. Bearing in mind present EU forest resources and trends, the scope debate. 25 #12;International Seminar on Energy & the Forest Products' Industry FAO HQ, Rome, 30, Energy & Environment EU forest-based sector ­ NB no EU sectoral policy Communication on implementing

475

Uranium industry annual 1994  

SciTech Connect (OSTI)

The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

NONE

1995-07-05T23:59:59.000Z

476

INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering  

E-Print Network [OSTI]

78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take of industries including consulting, technology development, software, supply chain manufacturing, engineering

Rohs, Remo

477

Industry Research and Recommendations for New Commercial Buildings  

SciTech Connect (OSTI)

Researchers evaluated industry needs and developed logic models to support possible future commercial new construction research and deployment efforts that could be led or supported by DOE's Commercial Building Integration program or other national initiatives. The authors believe that these recommendations support a proposed course of action from the current state of commercial building energy efficiency to a possible long-term goal of achieving significant market penetration of cost-effective NZE buildings in all building sectors and climates by 2030.

Hendron, B.; Leach, M.; Gregory, N.; Pless, S.; Selkowitz, S.; Matthew, P.

2014-05-01T23:59:59.000Z

478

Wind Energy Workforce Development: A Roadmap to a Sustainable Wind Industry (Poster)  

SciTech Connect (OSTI)

As the United States moves toward a vision of greatly expanded wind energy use as outlined in the U.S. Department of Energy's 20% Wind Energy by 2030 report, the need for skilled workers at all levels in the industry is repeatedly identified as a critical issue. This presentation is an overview of the educational infrastructure and expected industry needs to support the continued development of a vibrant U.S. wind industry through a discussion of the activities identified that must be put in place to train workers. The paper will also provide a framework to address issues raised from each of the education and industry sectors, identifying a roadmap for developing an educational infrastructure to support wind technology. The presentation will also provide an understanding of the available resources, materials, and programs available across the industry. This presentation provides an overview of the educational infrastructure and expected industry needs to support the continued development of a vibrant U.S. wind industry as part of a collaborative effort to develop a wind workforce roadmap. This presentation will provide 1) A review of needed programs to train workers for the wind industry; 2) An overview of the importance education will play if the nation is to expand wind energy (both in development and deployment terms) and a review of ongoing activities with a focus on federal efforts; 3) A review of the materials and resources available across the industry and a framework to address issues raised from each of the education and industry sectors.

Baring-Gould, I.; Kelly, M.

2010-05-01T23:59:59.000Z

479

Decoupled Sectors and Wolf-Rayet Galaxies  

E-Print Network [OSTI]

The universe may contain several decoupled matter sectors which primarily couple through gravity to the Standard Model degrees of freedom. We focus here on the description of astrophysical environments that allow for comparable densities and spatial distributions of visible matter and decoupled dark matter. We discuss four Wolf-Rayet galaxies (NGC 1614, NGC 3367, NGC 4216 and NGC 5430) which should contain comparable amounts of decoupled dark and visible matter in the star forming regions. This could lead to the observation of Gamma Ray Burst events with physics modified by jets of dark matter radiation.

Willy Fischler; Jimmy Lorshbough; Dustin Lorshbough

2015-02-27T23:59:59.000Z

480

Property:DeploymentSector | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyoCoolingTowerWaterUseSummerConsumed Jump to:DOEInvolveDeploymentSector Jump to:

Note: This page contains sample records for the topic "industrial sector transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Transportation Energy Data Book, Edition 18  

SciTech Connect (OSTI)

The Transportation Energy Data Book: Edition 18 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. This edition of the Data Book has 11 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy Chapter 3 - emissions; Chapter 4 - transportation and the economy; Chapter 5 - highway vehicles; Chapter 6 - Light vehicles; Chapter 7 - heavy vehicles; Chapter 8 - alternative fuel vehicles; Chapter 9 - fleet vehicles; Chapter 10 - household vehicles; and Chapter 11 - nonhighway modes. The sources used represent the latest available data.

Davis, Stacy C.

1998-09-01T23:59:59.000Z

482

Assessment of industrial attitudes toward generic research needs in tribology  

SciTech Connect (OSTI)

Based on extended discussions during visits with 27 companies representing 13 different parts of the tribology industry (such as bearings, lubricants, coatings, powerplants), it is apparent that only a tiny fraction of the large sums publicly reported as R and D expenditures by industry are used to fund generic tribology research. For example, of the greater than $2 B expenditures reported for R and D in the lubricants sector for 1982, the estimated total for generic tribology research was $12 M. This was the largest expenditure in any sector of the tribology industry and one-third of the total of $36 M. In the automotive industry out of a reported expenditure of $4 B, the estimated generic tribology research was $3 M. In some segments of the tribology industry, for example coatings and filters, there were no expenditures on generic research. There was little tendency to improve the state of the art of the tribology industry through long-term investment in generic R and D in ways that would foster innovation and productivity of energy conservation technology. Expenditures were oriented to development of specific commercial and military products, or to basic research focused on unspecified far term results, although useful spin-off of military developments into commercial fields sometimes occurs. There was a broad consensus in the companies visited that existing research results were not always made easily accessible to potential users in industry. The implication was that industry might benefit more if a larger fraction of the funds were devoted to putting the research results into a form design and development engineers could more readily apply. The need for a more effective presentation of research results was expressed with greater urgency at the smaller companies, but there seemed to be a broad consensus on the need for improvement. Recommendations are given.

Sibley, L.B.; Zlotnick, M.; Levinson, T.M.

1985-09-01T23:59:59.000Z

483

Neurotransmitter Transporters  

E-Print Network [OSTI]

at specialized synaptic junctions where electrical excitability in the form of an action potential is translated membrane of neurons and glial cells. Transporters harness electrochemical gradients to force the movement.els.net #12;The response produced when a transmitter interacts with its receptors, the synaptic potential

Bergles, Dwight

484

Greenhouse gas emissions and the surface transport of freight in Canada  

E-Print Network [OSTI]

of several pre-defined factors to changes in energy consumption and energy-related gas emissions (Ang appearing to be rising proportionally as a transportation mode. Federal government initiatives on the US the transportation sector (Office of Energy Efficiency, 2004); a rise of nearly 25% over 1990. The geographical

485

Intermodal transportation of spent fuel  

SciTech Connect (OSTI)

Concepts for transportation of spent fuel in rail casks from nuclear power plant sites with no rail service are under consideration by the US Department of Energy in the Commercial Spent Fuel Management program at the Pacific Northwest Laboratory. This report identifies and evaluates three alternative systems for intermodal transfer of spent fuel: heavy-haul truck to rail, barge to rail, and barge to heavy-haul truck. This report concludes that, with some modifications and provisions for new equipment, existing rail and marine systems can provide a transportation base for the intermodal transfer of spent fuel to federal interim storage facilities. Some needed land transportation support and loading and unloading equipment does not currently exist. There are insufficient shipping casks available at this time, but the industrial capability to meet projected needs appears adequate.

Elder, H.K.

1983-09-01T23:59:59.000Z

486

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

Energy (PJ) Total Final Energy (PJ) Coal Electricity CementInvestment Energy Recovered Fuel (Coal) Saved / AnnumEnergy Use (PJ) Final Energy Use (PJ) Coal Electricity Fuel

Sathaye, Jayant

2011-01-01T23:59:59.000Z

487

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

of medium / poor coking coals (i.e. Partial Briquetting andNevertheless, the Indian non-coking coals, suitable for SSI,blast furnaces require coking coal that is mostly imported.

Sathaye, Jayant

2011-01-01T23:59:59.000Z

488

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

Cell 2006. Detailed Energy Audit Report for Udyog Bhawan,Cell 2006. Detailed Energy Audit Report for NationalCell 2006. Detailed Energy Audit Report for Vigyan Bhawan,

Sathaye, Jayant

2011-01-01T23:59:59.000Z

489

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

71 Figure 25. Refinery Throughput, Exports and77 Figure 27. Indian Refinery78 Figure 28. Conservation Supply Curve for Refinery

Sathaye, Jayant

2011-01-01T23:59:59.000Z

490

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

of commodity produced and carbon intensity as CO 2 emissionsubsectors in 2007 and carbon intensity. The table alsowhich represents a carbon intensity of 0.82 tCO 2 /t cement.

Sathaye, Jayant

2011-01-01T23:59:59.000Z

491

he agricultural sector is rapidly being trans-formed into an industry of major importance  

E-Print Network [OSTI]

are becoming essential components of the next generation of plant and animal "factories" in the new millennium to the no- madic age. It initially depended solely on human labor, then captured animal power, and followed next by reliance on mechanical developments such as steam/diesel-engine tractors and mechanical

Antsaklis, Panos

492

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

India Country Report 2005-06. Deutsch Bank Report 2006.India, 2007, “Energy Statistics, 2005-06”, New Delhi, web:generated by steel plants in 2005-06 are currently used to

Sathaye, Jayant

2011-01-01T23:59:59.000Z

493

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

for compressing air and syngas. In energy efficient plants,heat Air compressor turbine Syngas compressor turbine Flue-

Sathaye, Jayant

2011-01-01T23:59:59.000Z

494

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

consumption, total electricity demand of each building type is calibrated to governmentElectricity Consumption in Hospitals Hospital No. of Beds Estimated (kWh/Bed/year) Government

Sathaye, Jayant

2011-01-01T23:59:59.000Z

495

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

of crude oil in the future. 3.6.3 Energy Consumption Thecrude oil throughput (Sathaye et al, 2005). Energy consumptioncrude oil throughput 15 (Sathaye et al, 2005). We estimated this consumption

Sathaye, Jayant

2011-01-01T23:59:59.000Z

496

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

Management Cell Electrical Power Survey Energy Use IntensityAs per the 17th Electrical Power Survey (EPS) of the Central

Sathaye, Jayant

2011-01-01T23:59:59.000Z

497

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

uses heat and yields black liquor that can potentially be2007). However, the black liquor recovery in agro-residueHigh concentration of black liquor Continuous digester

Sathaye, Jayant

2011-01-01T23:59:59.000Z

498

Electric Power Interruption Cost Estimates for Individual Industries, Sectors, and U.S. Economy  

SciTech Connect (OSTI)

During the last 20 years, utilities and researchers have begun to understand the value in the collection and analysis of interruption cost data. The continued investigation of the monetary impact of power outages will facilitate the advancement of the analytical methods used to measure the costs and benefits from the perspective of the energy consumer. More in-depth analysis may be warranted because of the privatization and deregulation of power utilities, price instability in certain regions of the U.S. and the continued evolution of alternative auxiliary power systems.

Balducci, Patrick J.; Roop, Joseph M.; Schienbein, Lawrence A.; DeSteese, John G.; Weimar, Mark R.

2002-02-27T23:59:59.000Z

499

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

best practices and demonstrates that large energy efficiencyscope for energy efficiency improvements. Best practices forbest practices subsists, which suggests that room for energy efficiency

Sathaye, Jayant

2011-01-01T23:59:59.000Z

500

Perform, Achieve and Trade (PAT): An Innovative Mechanism for Enhancing Energy Efficiency in India's Industrial Sector  

E-Print Network [OSTI]

by Energy Conservation Act, 2001 of India and National Mission on Enhanced Energy Efficiency (NMEEE) under National Action Plan on Climate Change (NAPCC). The Energy Conservation Act, 2001 which is the first legislative initiative by Govt. of India to give...

Garnik, S. P.; Martin, M.

2014-01-01T23:59:59.000Z