National Library of Energy BETA

Sample records for industrial sector transportation

  1. Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    SciTech Connect (OSTI)

    David Petti; J. Stephen Herring

    2010-03-01

    As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy security through more effective utilization of our country’s resources while simultaneously providing economic stability and growth (through predictable energy prices and high value jobs), in an environmentally sustainable and secure manner (through lower land and water use, and decreased byproduct emissions). The reduction in imported oil will also increase the retention of wealth within the U.S. economy while still supporting economic growth. Nuclear energy is the only non-fossil fuel that has been demonstrated to reliably supply energy for a growing industrial economy.

  2. Market Report for the Industrial Sector, 2009

    SciTech Connect (OSTI)

    Sastri, Bhima; Brueske, Sabine; de los Reyes, Pamela; Jamison, Keith; Justiniano, Mauricio; Margolis, Nancy; Monfort, Joe; Raghunathan, Anand; Sabouni, Ridah

    2009-07-01

    This report provides an overview of trends in industrial-sector energy use. It focuses on some of the largest and most energy-intensive industrial subsectors and several emerging technologies that could transform key segments of industry.

  3. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  4. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum...

  5. Transitioning the Transportation Sector: Exploring the Intersection...

    Broader source: Energy.gov (indexed) [DOE]

    held the Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles workshop in Washington, D.C., on September 9, 2014....

  6. China's industrial sector in an international context

    SciTech Connect (OSTI)

    Price, Lynn; Worrell, Ernst; Martin, Nathan; Lehman, Bryan; Sinton, Jonathan

    2000-05-01

    The industrial sector accounts for 40% of global energy use. In 1995, developing countries used an estimated 48 EJ for industrial production, over one-third of world total industrial primary energy use (Price et al., 1998). Industrial output and energy use in developing countries is dominated by China, India, and Brazil. China alone accounts for about 30 EJ (National Bureau of Statistics, 1999), or about 23% of world industrial energy use. China's industrial sector is extremely energy-intensive and accounted for almost 75% of the country's total energy use in 1997. Industrial energy use in China grew an average of 6.6% per year, from 14 EJ in 1985 to 30 EJ in 1997 (Sinton et al., 1996; National Bureau of Statistics, 1999). This growth is more than three times faster than the average growth that took place in the world during the past two decades. The industrial sector can be divided into light and heavy industry, reflecting the relative energy-intensity of the manufacturing processes. In China, about 80% of the energy used in the industrial sector is consumed by heavy industry. Of this, the largest energy-consuming industries are chemicals, ferrous metals, and building materials (Sinton et al., 1996). This paper presents the results of international comparisons of production levels and energy use in six energy-intensive subsectors: iron and steel, aluminum, cement, petroleum refining, ammonia, and ethylene. The sectoral analysis results indicate that energy requirements to produce a unit of raw material in China are often higher than industrialized countries for most of the products analyzed in this paper, reflecting a significant potential to continue to improve energy efficiency in heavy industry.

  7. AN ASSESSMENT OF DATA ON OUTPUT INDUSTRIAL SUB-SECTORS

    E-Print Network [OSTI]

    of that sub-sector. This typically includes the "resource" sub-sectors (chemicals, metals, pulp and paper of industry was considered a "sector" of the overall group known as Industry. Thus we spoke of the pulp and paper sector or the petroleum refining sector within industry. Because of increasing references

  8. Land Transport Sector in Bangladesh: An Analysis Toward Motivating...

    Open Energy Info (EERE)

    Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG Emission Reduction Strategies Jump to: navigation, search Name Land Transport Sector in Bangladesh: An...

  9. Cross-Sector Impact Analysis of Industrial Efficiency Measures

    SciTech Connect (OSTI)

    Morrow, William [Lawrence Berkeley National Laboratory (LBNL)] [Lawrence Berkeley National Laboratory (LBNL); CreskoEngineering, Joe [Oak Ridge Institute for Science and Education (ORISE); Carpenter, Alberta [National Renewable Energy Laboratory (NREL)] [National Renewable Energy Laboratory (NREL); Masanet, Eric [Northwestern University, Evanston] [Northwestern University, Evanston; Nimbalkar, Sachin U [ORNL] [ORNL; Shehabi, Arman [Lawrence Berkeley National Laboratory (LBNL)] [Lawrence Berkeley National Laboratory (LBNL)

    2013-01-01

    The industrial or manufacturing sector is a foundational component to all economic activity. In addition to being a large direct consumer of energy, the manufacturing sector also produces materials, products, and technologies that influence the energy use of other economic sectors. For example, the manufacturing of a lighter-weight vehicle component affects the energy required to ship that component as well as the fuel efficiency of the assembled vehicle. Many energy efficiency opportunities exist to improve manufacturing energy consumption, however comparisons of manufacturing sector energy efficiency investment opportunities tend to exclude any impacts that occur once the product leaves the factory. Expanding the scope of analysis to include energy impacts across different stages of product life-cycle can highlight less obvious opportunities and inform actions that create the greatest economy-wide benefits. We present a methodology and associated analysis tool (LIGHTEnUP Lifecycle Industry GHgas, Technology and Energy through the Use Phase) that aims to capture both the manufacturing sector energy consumption and product life-cycle energy consumption implications of manufacturing innovation measures. The tool architecture incorporates U.S. national energy use data associated with manufacturing, building operations, and transportation. Inputs for technology assessment, both direct energy saving to the manufacturing sector, and indirect energy impacts to additional sectors are estimated through extensive literature review and engineering methods. The result is a transparent and uniform system of comparing manufacturing and use-phase impacts of technologies.

  10. Industry Sector Case Study Building Technologies Division

    E-Print Network [OSTI]

    Fischlin, Andreas

    energy supply is based on solar thermal collectors, a photovoltaic system, as well as building technologyIndustry Sector Case Study Building Technologies Division Zug (Switzerland), September 14, 2011,000 m, the New Monte Rosa Hut showcases the latest developments in the building technology field

  11. ANALYSIS OF MEASURES FOR REDUCING TRANSPORTATION SECTOR GREENHOUSE GAS

    E-Print Network [OSTI]

    ANALYSIS OF MEASURES FOR REDUCING TRANSPORTATION SECTOR GREENHOUSE GAS EMISSIONS IN CANADA by Rose: Analysis of Measures for Reducing Transportation Sector Greenhouse Gas Emissions in Canada Project Number the problem of reducing greenhouse gas (GHG) emissions from the Canadian transportation sector. Reductions

  12. Quality of Power in the Industrial Sector 

    E-Print Network [OSTI]

    Marchbanks, G. J.

    1987-01-01

    tortions, overvoltage, undervoltage, momentary interruptions and transients that are inherent in the utility distribution system. The industrial customer turns to the power supplier to provide technical support, monitoring and assistance to upgrade.... * There was a lack of acceptance of responsi bility between customer, equipment supplier and the electrical contractor. The custo mer was unable to find anyone willing to accept responsibility for the problem. The utility can act as a coordinator between...

  13. Energy Intensity Indicators: Industrial Source Energy Consumption

    Office of Energy Efficiency and Renewable Energy (EERE)

    The industrial sector comprises manufacturing and other nonmanufacturing industries not included in transportation or services. Manufacturing includes 18 industry sectors, generally defined at the...

  14. Energy Use and Savings in the Canadian Industrial Sector 

    E-Print Network [OSTI]

    James, B.

    1982-01-01

    The changing role of energy as a production input in the industrial sector in Canada is examined. Energy use patterns are reviewed in terms of the energy input types, both purchased and self-produced, the actual energy form and quality requirements...

  15. High Penetration of Renewable Energy in the Transportation Sector: Scenarios, Barriers, and Enablers; Preprint

    SciTech Connect (OSTI)

    Vimmerstedt, L.; Brown, A.; Heath, G.; Mai, T.; Ruth, M.; Melaina, M.; Simpkins, T.; Steward, D.; Warner, E.; Bertram, K.; Plotkin, S.; Patel, D.; Stephens, T.; Vyas, A.

    2012-06-01

    Transportation accounts for 71% of U.S. petroleum use and 33% of its greenhouse gases emissions. Pathways toward reduced greenhouse gas emissions and petroleum dependence in the transportation sector have been analyzed in considerable detail, but with some limitations. To add to this knowledge, the U.S. Department of Energy has launched a study focused on underexplored greenhouse-gas-abatement and oil-savings opportunities related to transportation. This Transportation Energy Futures study analyzes specific issues and associated key questions to strengthen the existing knowledge base and help cultivate partnerships among federal agencies, state and local governments, and industry.

  16. Garnering the Industrial Sector: A Comparison of Cutting Edge Industrial DSM Programs 

    E-Print Network [OSTI]

    Kyricopoulos, P. F.; Wikler, G. A.; Faruqui, A.; Wood, B. G.

    1995-01-01

    The industrial sector has posed a daunting DSM challenge to utilities throughout North America, even to those with successful and creative residential and commercial DSM programs. Most utilities have had great difficulty ...

  17. United States Industrial Sector Energy End Use Analysis

    SciTech Connect (OSTI)

    Shehabi, Arman; Morrow, William R.; Masanet, Eric

    2012-05-11

    The United States Department of Energy’s (DOE) Energy Information Administration (EIA) conducts the Manufacturing Energy Consumption Survey (MECS) to provide detailed data on energy consumption in the manufacturing sector. The survey is a sample of approximately 15,000 manufacturing establishments selected from the Economic Census - Manufacturing Sector. MECS provides statistics on the consumption of energy by end uses (e.g., boilers, process, electric drives, etc.) disaggregated by North American Industry Classification System (NAICS) categories. The manufacturing sector (NAICS Sector 31-33) consists of all manufacturing establishments in the 50 States and the District of Columbia. According to the NAICS, the manufacturing sector comprises establishments engaged in the mechanical, physical, or chemical transformation of materials, substances, or components into new products. The establishments are physical facilities such as plants, factories, or mills. For many of the sectors in the MECS datasets, information is missing because the reported energy use is less than 0.5 units or BTUs, or is withheld to avoid disclosing data for individual establishments, or is withheld because the standard error is greater than 50%. We infer what the missing information likely are using several approximations techniques. First, much of the missing data can be easily calculated by adding or subtracting other values reported by MECS. If this is not possible (e.g. two data are missing), we look at historic MECS reports to help identify the breakdown of energy use in the past and assume it remained the same for the current MECS. Lastly, if historic data is also missing, we assume that 3 digit NAICS classifications predict energy use in their 4, 5, or 6 digit NAICS sub-classifications, or vice versa. Along with addressing data gaps, end use energy is disaggregated beyond the specified MECS allocations using additional industry specific energy consumption data. The result is a completed table of energy end use by sector with mechanical drives broken down by pumps, fans, compressed air, and drives.

  18. The Market and Technical Potential for Combined Heat and Power in the Industrial Sector, January 2000

    Office of Energy Efficiency and Renewable Energy (EERE)

    Report of an analysis of the market and technical potential for combined heat and power in the industrial sector

  19. Shale Play Industry Transportation Challenges,

    E-Print Network [OSTI]

    Minnesota, University of

    Demand and Supply Factors ­Gas and Oil Commodity Pricing ­Finite Demand ­Rapid · It is three related, but yet independent industries: ­Fracture Sand Industry ­Oil ­ High volume commodi-es flows in and out of shale plays · Sand In....Oil

  20. Cross-sector policy research: insights from the UK energy and transport sectors

    E-Print Network [OSTI]

    Peake, Stephen Robert

    1993-10-26

    : Insights from the UK energy and transport sectors Stephen Robert Peake Darwin College, Cambridge UNIVERSITY I ltBRARY J CAMBRIDGE A dissertation submitted to the University of Cambridge for the Degree of Doctor of Philosophy. June 1993 Dedication... . To Sarah and Charlie, for all their love and support. Declaration. I declare that except for commonly understood and accepted ideas, or where specific reference is made, the work reported in this dissertation is my own. It includes nothing which...

  1. Distributed Energy: Modeling Penetration in Industrial Sector Over the Long-Term 

    E-Print Network [OSTI]

    Greening, L.

    2006-01-01

    : Modeling Penetration in Industrial Sector over the Long-Term Lorna Greening, Private Consultant, Los Alamos, NM Distributed energy (DE) sources provide a number of benefits when utilized. For industrial facilities in the past, turbines have provided...

  2. Biofuels in the U.S. Transportation Sector (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Sustained high world oil prices and the passage of the Energy Policy Act 2005 (EPACT) have encouraged the use of agriculture-based ethanol and biodiesel in the transportation sector; however, both the continued growth of the biofuels industry and the long-term market potential for biofuels depend on the resolution of critical issues that influence the supply of and demand for biofuels. For each of the major biofuelscorn-based ethanol, cellulosic ethanol, and biodieselresolution of technical, economic, and regulatory issues remains critical to further development of biofuels in the United States.

  3. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    in the Pulp and Paper Industry: An Energy Benchmarkingin the Pulp and Paper Industries. Integrated Pollutionin the Pulp and Paper Industry: An Energy Benchmarking

  4. Transportation Sector Energy Use by Mode from EIA AEO 2011 Early...

    Open Energy Info (EERE)

    dataset is an excerpt from the spreadsheet Supplemental Tables to the Annual Energy Outlook 2011, isolating Transportation Sector energy use by Mode. Data and Resources...

  5. Transportation Sector Energy Use by Type from EIA AEO 2011 Early...

    Open Energy Info (EERE)

    dataset is an excerpt from the spreadsheet Supplemental Tables to the Annual Energy Outlook 2011, isolating Transportation Sector energy use by Type. Data and Resources...

  6. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    Cost Reduction in the Pulp and Paper Industry: An EnergyTechniques in the Pulp and Paper Industries. IntegratedCost Reduction in the Pulp and Paper Industry: An Energy

  7. Energy use and CO2 emissions of China’s industrial sector from a global perspective

    SciTech Connect (OSTI)

    Zhou, Sheng; Kyle, G. Page; Yu, Sha; Clarke, Leon E.; Eom, Jiyong; Luckow, Patrick W.; Chaturvedi, Vaibhav; Zhang, Xiliang; Edmonds, James A.

    2013-07-10

    The industrial sector has accounted for more than 50% of China’s final energy consumption in the past 30 years. Understanding the future emissions and emissions mitigation opportunities depends on proper characterization of the present-day industrial energy use, as well as industrial demand drivers and technological opportunities in the future. Traditionally, however, integrated assessment research has handled the industrial sector of China in a highly aggregate form. In this study, we develop a technologically detailed, service-oriented representation of 11 industrial subsectors in China, and analyze a suite of scenarios of future industrial demand growth. We find that, due to anticipated saturation of China’s per-capita demands of basic industrial goods, industrial energy demand and CO2 emissions approach a plateau between 2030 and 2040, then decrease gradually. Still, without emissions mitigation policies, the industrial sector remains heavily reliant on coal, and therefore emissions-intensive. With carbon prices, we observe some degree of industrial sector electrification, deployment of CCS at large industrial point sources of CO2 emissions at low carbon prices, an increase in the share of CHP systems at industrial facilities. These technological responses amount to reductions of industrial emissions (including indirect emission from electricity) are of 24% in 2050 and 66% in 2095.

  8. The role of private participation in enhancing the Indian transport sector

    E-Print Network [OSTI]

    Sharma, Nand, 1979-

    2004-01-01

    The Indian transport sector, one of the largest transport networks in the world, faces some serious issues. These may be identified as follows: * Unmet demand for service and infrastructure * Conflicting responsibilities ...

  9. Integration of renewable energy into the transport and electricity sectors through V2G

    E-Print Network [OSTI]

    Firestone, Jeremy

    Integration of renewable energy into the transport and electricity sectors through V2G Henrik Lund Renewable energy Wind powerQ1 a b s t r a c t Large-scale sustainable energy systems will be necessary replace oil in the transportation sector, and (2) since today's inexpensive and abundant renewable energy

  10. Perform, Achieve and Trade (PAT): An Innovative Mechanism for Enhancing Energy Efficiency in India's Industrial Sector 

    E-Print Network [OSTI]

    Garnik, S. P.; Martin, M.

    2014-01-01

    consumption (SEC) reduction targets for 478 DCs in eight industrial sectors like Cement, Pulp & Paper, Aluminium, Textile, Chlor-Alkali, Iron &Steel, Fertilizer and Thermal Power Plant. Different targets have been assigned to different DCs and to be achieved...

  11. Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

  12. Transportation Sector Model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

  13. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    SciTech Connect (OSTI)

    Sathaye, Jayant; de la Rue du Can, Stephane; Iyer, Maithili; McNeil, Michael; Kramer, Klaas Jan; Roy, Joyashree; Roy, Moumita; Chowdhury, Shreya Roy

    2011-04-15

    This report analyzed the potential for increasing energy efficiency and reducing greenhouse gas emissions (GHGs) in the non-residential building and the industrial sectors in India. The first two sections describe the research and analysis supporting the establishment of baseline energy consumption using a bottom up approach for the non residential sector and for the industry sector respectively. The third section covers the explanation of a modeling framework where GHG emissions are projected according to a baseline scenario and alternative scenarios that account for the implementation of cleaner technology.

  14. APPLICATIONS OF THE INTERNET IN THE TRANSPORTATION INDUSTRY

    E-Print Network [OSTI]

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J-3 History of the InternetAPPLICATIONS OF THE INTERNET IN THE TRANSPORTATION INDUSTRY by Jennifer Messick Professional The Internet is becoming an extremely popular resource in America and the transportation engineering profession

  15. Reducing GHG emissions in the United States' transportation sector

    SciTech Connect (OSTI)

    Das, Sujit [ORNL; Andress, David A [ORNL; Nguyen, Tien [U.S. DOE

    2011-01-01

    Reducing GHG emissions in the U.S. transportation sector requires both the use of highly efficient propulsion systems and low carbon fuels. This study compares reduction potentials that might be achieved in 2060 for several advanced options including biofuels, hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and fuel cell electric vehicles (FCEV), assuming that technical and cost reduction targets are met and necessary fueling infrastructures are built. The study quantifies the extent of the reductions that can be achieved through increasing engine efficiency and transitioning to low-carbon fuels separately. Decarbonizing the fuels is essential for achieving large reductions in GHG emissions, and the study quantifies the reductions that can be achieved over a range of fuel carbon intensities. Although renewables will play a vital role, some combination of coal gasification with carbon capture and sequestration, and/or nuclear energy will likely be needed to enable very large reductions in carbon intensities for hydrogen and electricity. Biomass supply constraints do not allow major carbon emission reductions from biofuels alone; the value of biomass is that it can be combined with other solutions to help achieve significant results. Compared with gasoline, natural gas provides 20% reduction in GHG emissions in internal combustion engines and up to 50% reduction when used as a feedstock for producing hydrogen or electricity, making it a good transition fuel for electric propulsion drive trains. The material in this paper can be useful information to many other countries, including developing countries because of a common factor: the difficulty of finding sustainable, low-carbon, cost-competitive substitutes for petroleum fuels.

  16. Ris Energy Report 5 New and emerging technologies for renewable energy 51 in the transport sector

    E-Print Network [OSTI]

    of energy, rising oil prices and future security of supply have created strong efforts to find new transportRisø Energy Report 5 New and emerging technologies for renewable energy 51 in the transport sector 8 Energy consumption for transport accounts for approxi- mately 20% of all energy used worldwide [1

  17. BC Hydro Industrial Sector: Marketing Sector Marketing Plan (Fiscal 2005/Fiscal 2006) 

    E-Print Network [OSTI]

    Willis, P.; Wallace, K.

    2005-01-01

    BC Hydro, the major electricity utility in the Province of British Columbia has been promoting industrial energy efficiency for more than 15 years. Recently it has launched a new Demand Side Management initiative with the objective of obtaining 2000...

  18. Modeling the Transport Sector: The Role of Existing Fuel Taxes in Climate Policy

    E-Print Network [OSTI]

    Paltsev, Sergey.

    Existing fuel taxes play a major role in determining the welfare effects of exempting the transportation sector from measures to control greenhouse gases. To study this phenomenon we modify the MIT Emissions Prediction and ...

  19. Technology detail in a multi-sector CGE model : transport under climate policy

    E-Print Network [OSTI]

    Schafer, Andreas.

    A set of three analytical models is used to study the imbedding of specific transport technologies within a multi-sector, multi-region evaluation of constraints on greenhouse emissions. Key parameters of a computable general ...

  20. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 1

    SciTech Connect (OSTI)

    1998-01-01

    This volume contains input data and parameters used in the model of the transportation sector of the National Energy Modeling System. The list of Transportation Sector Model variables includes parameters for the following: Light duty vehicle modules (fuel economy, regional sales, alternative fuel vehicles); Light duty vehicle stock modules; Light duty vehicle fleet module; Air travel module (demand model and fleet efficiency model); Freight transport module; Miscellaneous energy demand module; and Transportation emissions module. Also included in these appendices are: Light duty vehicle market classes; Maximum light duty vehicle market penetration parameters; Aircraft fleet efficiency model adjustment factors; and List of expected aircraft technology improvements.

  1. Industrial Utility Webinar: Opportunities for Cost-Effective Energy Efficiency in the Industrial Sector

    SciTech Connect (OSTI)

    2010-01-13

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  2. Comparative analysis of energy data bases for the industrial and commercial sectors

    SciTech Connect (OSTI)

    Roop, J.M.; Belzer, D.B.; Bohn, A.A.

    1986-12-01

    Energy data bases for the industrial and commercial sectors were analyzed to determine how valuable this data might be for policy analysis. The approach is the same for both end-use sectors: first a descrption or overview of relevant data bases identifies the available data; the coverage and methods used to generate the data are then explained; the data are then characterized and examples are provided for the major data sets under consideration. A final step assesses the data bases under consideration and draws conclusions. There are a variety of data bases considered for each of the end-use sectors included in this report. Data bases for the industrial sector include the National Energy Accounts, process-derived data bases such as the Drexel data base and data obtained from industry trade associations. For the commercial sector, three types of data bases are analyzed: the Nonresidential Building Energy Consumption Surveys, Dodge Construction Data and the Building Owners and Manager's Association Experience Exchange Report.

  3. Energy Outlook for the Transport Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outlook for Energy: A View to 2030 The Drive for Energy Diversity and Sustainability: The Impact on Transportation Fuels and Propulsion System Portfolios Algae Biofuels Technology...

  4. Accounting for Co-benefits in Asia's Transportation Sector: Methods...

    Open Energy Info (EERE)

    modeling tools User Interface: Spreadsheet Website: www.iges.or.jpencpactivity20101108.html UN Region: Eastern Asia Accounting for Co-benefits in Asia's Transportation...

  5. The Practice of Cost Benefit Analysis in the Transport Sector...

    Open Energy Info (EERE)

    and greenhouse gas emissions. References Retrieved from "http:en.openei.orgwindex.php?titleThePracticeofCostBenefitAnalysisintheTransportSectoraMexicanPe...

  6. End-Use Sector Flowchart

    Broader source: Energy.gov [DOE]

    This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors—transportation, industry, commercial and residential—identified in Figure 1. By clicking on any of the boxes with the word "Sector" in the title will reveal the more detailed structure within that sector.

  7. International standardization in the petroleum industry status from the subsea sector

    SciTech Connect (OSTI)

    Inderberg, O.

    1995-12-01

    The use of standards in subsea production systems and how the standards should be developed has been a debate for some time in the industry. The initial standardization work springs from the work performed in the API 17 series of recommended practices and specifications. The development within this sector of the industry is still happening rapidly since it is a relative new area. The standardization effort is happening both on national, regional and international levels. This paper will give status of the international standardization ISO work ongoing in the subsea area and give some background for the work. The importance of the work to the industry will be highlighted.

  8. MIT and the Supply Chain Logistics/Transportation Industries MIT Industry Brief

    E-Print Network [OSTI]

    Herr, Hugh

    MIT and the Supply Chain Logistics/Transportation Industries MIT Industry Brief MIT's Industrial Liaison Program (ILP) can bring the intellectual power of MIT to your organization by providing a direct of Technology (MIT) is a leading center of research and education on topics important to companies

  9. Model documentation report: Industrial sector demand module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1997-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects. The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2015) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

  10. Identifying Opportunities and Impacts of Fuel Switching in the Industrial Sector

    SciTech Connect (OSTI)

    Jain, Ramesh C.; Jamison, Keith; Thomas, Daniel E.

    2006-08-01

    The underlying purpose of this white paper is to examine fuel switching opportunities in the U.S. industrial sector and make strategic recommendations—leading to application of the best available technologies and development of new technologies—that will introduce fuel use flexibility as an economically feasible option for plant operators, as a means to condition local fuel demands and a hedge against the local rises in fuel prices.

  11. Energy efficiency programs and policies in the industrial sector in industrialized countries

    E-Print Network [OSTI]

    Galitsky, Christina; Price, Lynn; Worrell, Ernst

    2004-01-01

    company and the Danish Energy Agency. The agreements, whichDanish Energy Authority [1] The Ministry of the Environment [2] and its Environmental Protection Agency [agencies 1. Voluntary Agreements with industry – Danish Energy

  12. Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector

    SciTech Connect (OSTI)

    Industrial Energy Efficiency and Combined Heat and Power Working Group

    2014-03-21

    This report provides state regulators, utilities, and other program administrators with an overview of U.S. industrial energy efficiency programs and assesses some of the key features of programs that have generated increased energy savings.

  13. Integration of renewable energy into the transport and electricity sectors through V2G

    E-Print Network [OSTI]

    Firestone, Jeremy

    Integration of renewable energy into the transport and electricity sectors through V2G Henrik Lund, DE 19716, USA a r t i c l e i n f o Article history: Received 18 March 2008 Accepted 2 June 2008 Keywords: V2G Vehicle to grid Energy system analysis Sustainable energy systems Electric vehicle EV

  14. Toledo Regional Economic PlanToledo Regional Economic Plan Transportation and LogisticsTransportation and Logistics

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    Toledo Regional Economic PlanToledo Regional Economic Plan Transportation and LogisticsTransportation and Logistics Industry SectorIndustry Sector Submitted by:Submitted by: Transportation and Logistics Working GroupTransportation and Logistics Working Group September 2009September 2009 #12;22 Transportation

  15. Fact #561: March 9, 2009 All Sectors' Petroleum Gap

    Office of Energy Efficiency and Renewable Energy (EERE)

    Before 1989 the U.S. produced enough petroleum to meet the needs of the transportation sector, but was still short of meeting the petroleum needs of all the sectors, including industrial,...

  16. Fact #610: February 15, 2010 All Sectors' Petroleum Gap

    Office of Energy Efficiency and Renewable Energy (EERE)

    Before 1989 the U.S. produced enough petroleum to meet the needs of the transportation sector, but was still short of meeting the petroleum needs of all the sectors, including industrial,...

  17. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01

    20april%202006.pdf ETSU, 1999. Industrial Sector CarbonSee discussion of this report in ETSU, AEA Technology, 2001.a report prepared by ETSU (now AEA Energy & Environment) on

  18. Comparison Study of Energy Intensity in the Textile Industry: A Case Study in Five Textile Sub-sectors 

    E-Print Network [OSTI]

    Hasanbeigi, A.; Hasanabadi, A.; Abdorrazaghi, M.

    2011-01-01

    This paper contributes to the understanding of energy use in the textile industry by comparing the energy intensity of textile plants in five major sub-sectors, i.e. spinning, weaving, wet-processing, worsted fabric manufacturing, and carpet...

  19. Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 1: Part 1, Electricity supply sector; Part 2, Residential and commercial buildings sector; Part 3, Industrial sector

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    DOE encourages you to report your achievements in reducing greenhouse gas emissions and sequestering carbon under this program. Global climate change is increasingly being recognized as a threat that individuals and organizations can take action against. If you are among those taking action, reporting your projects may lead to recognition for you, motivation for others, and synergistic learning for the global community. This report discusses the reporting process for the voluntary detailed guidance in the sectoral supporting documents for electricity supply, residential and commercial buildings, industry, transportation, forestry, and agriculture. You may have reportable projects in several sectors; you may report them separately or capture and report the total effects on an entity-wide report.

  20. ISTUM PC: industrial sector technology use model for the IBM-PC

    SciTech Connect (OSTI)

    Roop, J.M.; Kaplan, D.T.

    1984-09-01

    A project to improve and enhance the Industrial Sector Technology Use Model (ISTUM) was originated in the summer of 1983. The project had dix identifiable objectives: update the data base; improve run-time efficiency; revise the reference base case; conduct case studies; provide technical and promotional seminars; and organize a service bureau. This interim report describes which of these objectives have been met and which tasks remain to be completed. The most dramatic achievement has been in the area of run-time efficiency. From a model that required a large proportion of the total resources of a mainframe computer and a great deal of effort to operate, the current version of the model (ISTUM-PC) runs on an IBM Personal Computer. The reorganization required for the model to run on a PC has additional advantages: the modular programs are somewhat easier to understand and the data base is more accessible and easier to use. A simple description of the logic of the model is given in this report. To generate the necessary funds for completion of the model, a multiclient project is proposed. This project will extend the industry coverage to all the industrial sectors, including the construction of process flow models for chemicals and petroleum refining. The project will also calibrate this model to historical data and construct a base case and alternative scenarios. The model will be delivered to clients and training provided. 2 references, 4 figures, 3 tables.

  1. The Potential for Energy-Efficient Technologies to Reduce Carbon Emissions in the United States: Transport Sector

    SciTech Connect (OSTI)

    Greene, D.L.

    1997-07-01

    The world is searching for a meaningful answer to the likelihood that the continued build-up of greenhouse gases in the atmosphere will cause significant changes in the earth`s climate. If there is to be a solution, technology must play a central role. This paper presents the results of an assessment of the potential for cost-effective technological changes to reduce greenhouse gas emissions from the U.S. transportation sector by the year 2010. Other papers in this session address the same topic for buildings and industry. U.S.transportation energy use stood at 24.4 quadrillion Btu (Quads) in 1996, up 2 percent over 1995 (U.S. DOE/EIA, 1997, table 2.5). Transportation sector carbon dioxide emissions amounted to 457.2 million metric tons of carbon (MmtC) in 1995, almost one third of total U.S. greenhouse gas emissions (U.S. DOE/EIA,1996a, p. 12). Transport`s energy use and CO{sub 2} emissions are growing, apparently at accelerating rates as energy efficiency improvements appear to be slowing to a halt. Cost-effective and nearly cost-effective technologies have enormous potential to slow and even reverse the growth of transport`s CO{sub 2} emissions, but technological changes will take time and are not likely to occur without significant, new public policy initiatives. Absent new initiatives, we project that CO{sub 2} emissions from transport are likely to grow to 616 MmtC by 2010, and 646 MmtC by 2015. An aggressive effort to develop and implement cost-effective technologies that are more efficient and fuels that are lower in carbon could reduce emissions by about 12% in 2010 and 18% in 2015, versus the business-as- usual projection. With substantial luck, leading to breakthroughs in key areas, reductions over the BAU case of 17% in 2010 and 25% in 2015,might be possible. In none of these case are CO{sub 2} emissions reduced to 1990 levels by 2015.

  2. Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors

    SciTech Connect (OSTI)

    Lee, A.; Zinaman, O.; Logan, J.

    2012-12-01

    Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

  3. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    SciTech Connect (OSTI)

    Price, Lynn; de la Rue du Can, Stephane; Lu, Hongyou; Horvath, Arpad

    2010-05-21

    The 2006 California Global Warming Solutions Act calls for reducing greenhouse gas (GHG) emissions to 1990 levels by 2020. Meeting this target will require action from all sectors of the California economy, including industry. The industrial sector consumes 25% of the energy used and emits 28% of the carbon dioxide (CO{sub 2}) produced in the state. Many countries around the world have national-level GHG reduction or energy-efficiency targets, and comprehensive programs focused on implementation of energy efficiency and GHG emissions mitigation measures in the industrial sector are essential for achieving their goals. A combination of targets and industry-focused supporting programs has led to significant investments in energy efficiency as well as reductions in GHG emissions within the industrial sectors in these countries. This project has identified program and policies that have effectively targeted the industrial sector in other countries to achieve real energy and CO{sub 2} savings. Programs in Ireland, France, The Netherlands, Denmark, and the UK were chosen for detailed review. Based on the international experience documented in this report, it is recommended that companies in California's industrial sector be engaged in a program to provide them with support to meet the requirements of AB32, The Global Warming Solution Act. As shown in this review, structured programs that engage industry, require members to evaluate their potential efficiency measures, plan how to meet efficiency or emissions reduction goals, and provide support in achieving the goals, can be quite effective at assisting companies to achieve energy efficiency levels beyond those that can be expected to be achieved autonomously.

  4. Energy, Industry, and Transport in South-Central Africa’s History

    E-Print Network [OSTI]

    Mavhunga, Clapperton Chakanets

    2014-01-01

    Energy must be seen in interaction with transportation and industry in order for its role in South-Central Africa to be fully understood. All three—energy, industry, and transportation—are themselves always socialized and ...

  5. World Best Practice Energy Intensity Values for SelectedIndustrial Sectors

    SciTech Connect (OSTI)

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky,Christina; Zhou, Nan

    2007-06-05

    "World best practice" energy intensity values, representingthe most energy-efficient processes that are in commercial use in atleast one location worldwide, are provided for the production of iron andsteel, aluminium, cement, pulp and paper, ammonia, and ethylene. Energyintensity is expressed in energy use per physical unit of output for eachof these commodities; most commonly these are expressed in metric tonnes(t). The energy intensity values are provided by major energy-consumingprocesses for each industrial sector to allow comparisons at the processlevel. Energy values are provided for final energy, defined as the energyused at the production facility as well as for primary energy, defined asthe energy used at the production facility as well as the energy used toproduce the electricity consumed at the facility. The "best practice"figures for energy consumption provided in this report should beconsidered as indicative, as these may depend strongly on the materialinputs.

  6. Stormwater Best Management Practices (BMPs) for Selected Industrial Sectors in the Lower Fraser Basin

    E-Print Network [OSTI]

    and Preserved Fruit and Vegetable Industry Frozen Fruit and Vegetable Industry Fluid Milk Industry Cane and Beet Sugar Industry Other Food Products Industry (Egg Processing) Brewery Products Industry Sawmill

  7. Industry, Philanthropy, and Universities: The Roles and Influences of the Private Sector in Higher Education

    E-Print Network [OSTI]

    Vest, Charles M

    2006-01-01

    Occasional Paper Series Vest, INDUSTRY, PHILANTHROPY, ANDOccasional Paper Series Vest, INDUSTRY, PHILANTHROPY, ANDOccasional Paper Series Vest, INDUSTRY, PHILANTHROPY, AND

  8. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    Paper Industry .2005. Statistics of the Indian Paper Industry: Directoryof Indian Paper Industry. Volume II. Saharanpur, India.

  9. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    sectors","Residential","Commercial","Industrial","Transportation" 1,"Green Mountain Power Corp","Investor-owned",4295605,1556518,1560705,1178382,0 2,"Vermont Electric...

  10. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"South Carolina Electric&Gas Company","Investor-owne...

  11. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"First Energy Solutions Corp.","Investor-owned",49437270...

  12. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Duke Energy Carolinas, LLC","Investor-owned",553018...

  13. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total sales, top five providers" "Nevada" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Nevada Power...

  14. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Kentucky Utilities Co","Investor-owned",18527337,61...

  15. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Northern States Power Co - Minnesota","Investor-owned...

  16. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Oklahoma Gas & Electric Co","Investor-owned",242030...

  17. Corn Ethanol: The Surprisingly Effective Route for Natural Gas Consumption in the Transportation Sector

    SciTech Connect (OSTI)

    Szybist, James P.; Curran, Scott

    2015-05-01

    Proven reserves and production of natural gas (NG) in the United States have increased dramatically in the last decade, due largely to the commercialization of hydraulic fracturing. This has led to a plentiful supply of NG, resulting in a significantly lower cost on a gallon of gasoline-equivalent (GGE) basis. Additionally, NG is a domestic, non-petroleum source of energy that is less carbon-intensive than coal or petroleum products, and thus can lead to lower greenhouse gas emissions. Because of these factors, there is a desire to increase the use of NG in the transportation sector in the United States (U.S.). However, using NG directly in the transportation sector requires that several non-trivial challenges be overcome. One of these issues is the fueling infrastructure. There are currently only 1,375 NG fueling stations in the U.S. compared to 152,995 fueling stations for gasoline in 2014. Additionally, there are very few light-duty vehicles that can consume this fuel directly as dedicated or bi-fuel options. For example, in model year 2013Honda was the only OEM to offer a dedicated CNG sedan while a number of others offered CNG options as a preparation package for LD trucks and vans. In total, there were a total of 11 vehicle models in 2013 that could be purchased that could use natural gas directly. There are additional potential issues associated with NG vehicles as well. Compared to commercial refueling stations, the at-home refueling time for NG vehicles is substantial – a result of the small compressors used for home refilling. Additionally, the methane emissions from both refueling (leakage) and from tailpipe emissions (slip) from these vehicles can add to their GHG footprint, and while these emissions are not currently regulated it could be a barrier in the future, especially in scenarios with broad scale adoption of CNG vehicles. However, NG consumption already plays a large role in other sectors of the economy, including some that are important to the transportation sector. Examples include steam reforming of natural gas to provide hydrogen for hydrotreating unit operations within the refinery and production of urea for use as a reductant for diesel after treatment in selective catalytic reduction (SCR). This discussion focuses on the consumption of natural gas in the production pathway of conventional ethanol (non-cellulosic) from corn through fermentation. Though it is clear that NG would also play a significant role in the cellulosic production pathways, those cases are not considered in this analysis.

  18. Fact #582: August 3, 2009 Energy Shares by Sector and Source

    Office of Energy Efficiency and Renewable Energy (EERE)

    The transportation sector consumed about 28% of U.S. energy in 2008, nearly all of it (95%) in petroleum use. The industrial sector used about 40% petroleum and 40% natural gas. The electric...

  19. Fact #689: August 22, 2011 Energy Use by Sector and Source

    Broader source: Energy.gov [DOE]

    The transportation sector consumed 28% of U.S. energy in 2010, nearly all of it (93.5%) in petroleum use. The industrial sector used about 40% petroleum and 40% natural gas. The electric utility...

  20. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    Pulp and Paper Industry .in the U.S. Pulp and Paper Industry. Paper accepted forfor Indian Pulp and Paper Industry. Environews Archives,

  1. Coal supply/demand, 1980 to 2000. Task 3. Resource applications industrialization system data base. Final review draft. [USA; forecasting 1980 to 2000; sector and regional analysis

    SciTech Connect (OSTI)

    Fournier, W.M.; Hasson, V.

    1980-10-10

    This report is a compilation of data and forecasts resulting from an analysis of the coal market and the factors influencing supply and demand. The analyses performed for the forecasts were made on an end-use-sector basis. The sectors analyzed are electric utility, industry demand for steam coal, industry demand for metallurgical coal, residential/commercial, coal demand for synfuel production, and exports. The purpose is to provide coal production and consumption forecasts that can be used to perform detailed, railroad company-specific coal transportation analyses. To make the data applicable for the subsequent transportation analyses, the forecasts have been made for each end-use sector on a regional basis. The supply regions are: Appalachia, East Interior, West Interior and Gulf, Northern Great Plains, and Mountain. The demand regions are the same as the nine Census Bureau regions. Coal production and consumption in the United States are projected to increase dramatically in the next 20 years due to increasing requirements for energy and the unavailability of other sources of energy to supply a substantial portion of this increase. Coal comprises 85 percent of the US recoverable fossil energy reserves and could be mined to supply the increasing energy demands of the US. The NTPSC study found that the additional traffic demands by 1985 may be met by the railways by the way of improved signalization, shorter block sections, centralized traffic control, and other modernization methods without providing for heavy line capacity works. But by 2000 the incremental traffic on some of the major corridors was projected to increase very significantly and is likely to call for special line capacity works involving heavy investment.

  2. How managing more efficiently substances in the design process of industrial products? An example from the aeronautics sector

    E-Print Network [OSTI]

    Lemagnen, Maud; Brissaud, Daniel

    2009-01-01

    Lowering environmental impacts of products, i.e. ecodesign, is considered today as a new and promising approach environment protection. This article focuses on ecodesign in the aeronautical sector through the analysis of the practices of a company that designs and produces engine equipments. Noise, gas emissions, fuel consumptions are the main environmental aspects which are targeted by aeronautics. From now on, chemical risk linked to the use of materials and production processes has to be traced, not only because of regulation pressure (e.g. REACh) but also because of customers requirements. So far, the aeronautical sector hasn't been focusing much on managing chemical risks at the design stage. However, new substances regulations notably require that chemical risk management should be by industries used as early as possible in their product development process. The aeronautics sector has therefore to elaborate new chemical risk management. The aim of this paper is to present a new method hat should be adap...

  3. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    from electricity generation, direct fuel combustion tofuel consumption in the commercial sector is assumed to be used entirely for back-up electricity generation.

  4. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    industrial processes For 2007, the percentages of industry GHG emissions by category are industry energy use, 71%; chemical and manufacturing, 18%; waste management,

  5. Zhang and Figliozzi A Survey of China's Logistics Industry and the Impacts of Transport

    E-Print Network [OSTI]

    1 Zhang and Figliozzi A Survey of China's Logistics Industry and the Impacts of Transport Delays chains. This research focuses on the performance of international and domestic transport and logistics logistics industry development is provided. Results and analysis of in-depth interviews with Chinese

  6. Reinventing VAT collection : industry vertical assessment, revenue increase, and public sector reliability

    E-Print Network [OSTI]

    Pinhanez, Monica F. (Monica Fornitani)

    2008-01-01

    This dissertation shows how administrative reforms of the State Tax Administration Bureaus (STABs) in Brazil between 1997 and 2005 contributed to strengthening public sector bureaucracies and institutions at the sub-national ...

  7. Future Public Policy and Ethical Issues Facing the Agricultural and Microbial Genomics Sectors of the Biotechnology Industry: A Roundtable Discussion

    SciTech Connect (OSTI)

    Diane E. Hoffmann

    2003-09-12

    On September 12, 2003, the University of Maryland School of Law's Intellectual Property and Law & Health Care Programs jointly sponsored and convened a roundtable discussion on the future public policy and ethical issues that will likely face the agricultural and microbial genomics sectors of the biotechnology industry. As this industry has developed over the last two decades, societal concerns have moved from what were often local issues, e.g., the safety of laboratories where scientists conducted recombinant DNA research on transgenic microbes, animals and crops, to more global issues. These newer issues include intellectual property, international trade, risks of genetically engineered foods and microbes, bioterrorism, and marketing and labeling of new products sold worldwide. The fast paced nature of the biotechnology industry and its new developments often mean that legislators, regulators and society, in general, must play ''catch up'' in their efforts to understand the issues, the risks, and even the benefits, that may result from the industry's new ways of conducting research, new products, and novel methods of product marketing and distribution. The goal of the roundtable was to develop a short list of the most significant public policy and ethical issues that will emerge as a result of advances in these sectors of the biotechnology industry over the next five to six years. More concretely, by ''most significant'' the conveners meant the types of issues that would come to the attention of members of Congress or state legislators during this time frame and for which they would be better prepared if they had well researched and timely background information. A concomitant goal was to provide a set of focused issues for academic debate and scholarship so that policy makers, industry leaders and regulators would have the intellectual resources they need to better understand the issues and concerns at stake. The goal was not to provide answers to any of the issues or problems, simply to identify those topics that deserve our attention as a society. Some of the issues may benefit from legislation at the federal or state levels, others may be more appropriately addressed by the private sector. Participants at the roundtable included over a dozen experts in the areas of microbiology, intellectual property, agricultural biotechnology, microbial genomics, bioterrorism, economic development, biotechnology research, and bioethics. These experts came from federal and state government, industry and academia. The participants were asked to come to the roundtable with a written statement of the top three to five public policy/ ethical issues they viewed as most likely to be significant to the industry and to policy makers over the next several years.

  8. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  9. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    Developments in the Pulp and Paper Industry,” Energy PolicyUS Chemicals and Pulp and Paper Industries by Applying CHPin the U.S. Pulp and Paper Industry. ” LBNL-46141. July.

  10. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    in the Pulp and Paper Industry,” Energy Policy 25 (7-9):US Chemicals and Pulp and Paper Industries by Applying CHPin the U.S. Pulp and Paper Industry. ” LBNL-46141. July.

  11. Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 2: Part 4, Transportation sector; Part 5, Forestry sector; Part 6, Agricultural sector

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    This volume, the second of two such volumes, contains sector-specific guidance in support of the General Guidelines for the voluntary reporting of greenhouse gas emissions and carbon sequestration. This voluntary reporting program was authorized by Congress in Section 1605(b) of the Energy Policy Act of 1992. The General Guidelines, bound separately from this volume, provide the overall rationale for the program, discuss in general how to analyze emissions and emission reduction/carbon sequestration projects, and address programmatic issues such as minimum reporting requirements, time parameters, international projects, confidentiality, and certification. Together, the General Guidelines and the guidance in these supporting documents will provide concepts and approaches needed to prepare the reporting forms. This second volume of sector-specific guidance covers the transportation sector, the forestry sector, and the agricultural sector.

  12. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    extraction, processing, refining, transport, and distribution of fossil fuels into useful energy products such as natural

  13. Successful public sector enforcement of environmental standards in the Toritama Jeans industry in Pernambuco, Brazil

    E-Print Network [OSTI]

    Lazarte, Maria Ella J

    2005-01-01

    Non-observance of environmental standards among small firms in traditional industries such as garment, footwear, furniture and tanneries have caused major environmental degradation in many places throughout the world. ...

  14. A historical view and proposal analysis of the strategic role of the transportation sector in the economic development of post-war Liberia

    E-Print Network [OSTI]

    Kwame Corkrum, Ellen

    2010-01-01

    This thesis examines the proposals for building and improving the transportation sector in Liberia, primarily the roads while providing immediate social opportunities and employment for many of the poor in Liberia. As ...

  15. Model documentation report: Industrial sector demand module of the national energy modeling system

    SciTech Connect (OSTI)

    NONE

    1998-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its model. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  16. Analysis of Fuel Flexibility Opportunities and Constraints in the U.S. Industrial Sector

    SciTech Connect (OSTI)

    none,

    2007-03-07

    The purpose of this assessment was to determine if flexible, alternative fuel use in industry, beyond switching from natural gas to petroleum derivatives, presents a sizeable opportunity for the reduction in use of natural gas. Furthermore, the assessment was to determine what programmatic activities the DOE could undertake to accelerate a fuel flexibility program for industry. To this end, a six-part framework (see Figure ES-1) was used to identify the most promising fuel flexibility options, and what level of accomplishment could be achieved, based on DOE leadership.

  17. Model documentation report: Transportation sector model of the National Energy Modeling System

    SciTech Connect (OSTI)

    1997-02-01

    Over the past year, several modifications have been made to the NEMS Transportation Model, incorporating greater levels of detail and analysis in modules previously represented in the aggregate or under a profusion of simplifying assumptions. This document is intended to amend those sections of the Model Documentation Report (MDR) which describe these superseded modules. Significant changes have been implemented in the LDV Fuel Economy Model, the Alternative Fuel Vehicle Model, the LDV Fleet Module, and the Highway Freight Model. The relevant sections of the MDR have been extracted from the original document, amended, and are presented in the following pages. A brief summary of the modifications follows: In the Fuel Economy Model, modifications have been made which permit the user to employ more optimistic assumptions about the commercial viability and impact of selected technological improvements. This model also explicitly calculates the fuel economy of an array of alternative fuel vehicles (AFV`s) which are subsequently used in the estimation of vehicle sales. In the Alternative Fuel Vehicle Model, the results of the Fuel Economy Model have been incorporated, and the program flows have been modified to reflect that fact. In the Light Duty Vehicle Fleet Module, the sales of vehicles to fleets of various size are endogenously calculated in order to provide a more detailed estimate of the impacts of EPACT legislation on the sales of AFV`s to fleets. In the Highway Freight Model, the previous aggregate estimation has been replaced by a detailed Freight Truck Stock Model, where travel patterns, efficiencies, and energy intensities are estimated by industrial grouping. Several appendices are provided at the end of this document, containing data tables and supplementary descriptions of the model development process which are not integral to an understanding of the overall model structure.

  18. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    Shipley, and E. Brown, 2003. CHP Five Years Later: Federaland Paper Industries by Applying CHP Technologies. Lawrence112 Table 27. Potential GHG mitigation from CHP

  19. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    within fossil fuel electricity generation are (1) to shiftin electricity generation and transportation fuels. The GHGfossil fuel-based electricity generation, is assumed. After

  20. conf. International Society of Exposure Analysis, Stresa, Italy, 21-25 Sept. 2003 The stakes of air pollution in the transport sector

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of air pollution in the transport sector Robert JOUMARD French National Institute for Transport@inrets.fr Abstract The main pollutants are listed for today and the future according to the progression of air of public concern regarding air pollution and environment. These pollutants are headed by carbon dioxide

  1. The U. S. transportation sector in the year 2030: results of a two-part Delphi survey.

    SciTech Connect (OSTI)

    Morrison, G.; Stephens, T.S.

    2011-10-11

    A two-part Delphi Survey was given to transportation experts attending the Asilomar Conference on Transportation and Energy in August, 2011. The survey asked respondents about trends in the US transportation sector in 2030. Topics included: alternative vehicles, high speed rail construction, rail freight transportation, average vehicle miles traveled, truck versus passenger car shares, vehicle fuel economy, and biofuels in different modes. The survey consisted of two rounds -- both asked the same set of seven questions. In the first round, respondents were given a short introductory paragraph about the topic and asked to use their own judgment in their responses. In the second round, the respondents were asked the same questions, but were also given results from the first round as guidance. The survey was sponsored by Argonne National Lab (ANL), the National Renewable Energy Lab (NREL), and implemented by University of California at Davis, Institute of Transportation Studies. The survey was part of the larger Transportation Energy Futures (TEF) project run by the Department of Energy, Office of Energy Efficiency and Renewable Energy. Of the 206 invitation letters sent, 94 answered all questions in the first round (105 answered at least one question), and 23 of those answered all questions in the second round. 10 of the 23 second round responses were at a discussion section at Asilomar, while the remaining were online. Means and standard deviations of responses from Round One and Two are given in Table 1 below. One main purpose of Delphi surveys is to reduce the variance in opinions through successive rounds of questioning. As shown in Table 1, the standard deviations of 25 of the 30 individual sub-questions decreased between Round One and Round Two, but the decrease was slight in most cases.

  2. Title: Innovation of the Surface Transportation Sector Organizers: Rick Geddes and Al George

    E-Print Network [OSTI]

    Walter, M.Todd

    of transportation that achieves significant improvements in the following areas: · energy efficiency, fossil fuel and security · equitable access · urban design and land use · financial sustainability #12; and Aerospace Engineering, Computer Science, Materials Science, City and Regional Planning, Policy Analysis

  3. 2008 Industrial Technologies Market Report, May 2009

    SciTech Connect (OSTI)

    Energetics; DOE

    2009-07-01

    The industrial sector is a critical component of the U.S. economy, providing an array of consumer, transportation, and national defense-related goods we rely on every day. Unlike many other economic sectors, however, the industrial sector must compete globally for raw materials, production, and sales. Though our homes, stores, hospitals, and vehicles are located within our borders, elements of our goods-producing industries could potentially be moved offshore. Keeping U.S. industry competitive is essential to maintaining and growing the U.S. economy. This report begins with an overview of trends in industrial sector energy use. The next section of the report focuses on some of the largest and most energy-intensive industrial subsectors. The report also highlights several emerging technologies that could transform key segments of industry. Finally, the report presents policies, incentives, and drivers that can influence the competitiveness of U.S. industrial firms.

  4. Advanced Reactors Thermal Energy Transport for Process Industries

    SciTech Connect (OSTI)

    P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

    2014-07-01

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

  5. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01

    and Paper: In the pulp and paper industry, companies usedthe participants, the pulp and paper industry, sawmills,have more paper, pulp, and printing industries, and New

  6. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01

    In the pulp and paper industry, companies used biomass as athe pulp and paper industry, sawmills, chemicals,and carpet), other industry (paper and paperboard, rubber

  7. Towards a low carbon transport sector: electricity or hydrogen?y y g

    E-Print Network [OSTI]

    ! Development market Initial high cost of vehicle Success of alternatives (lock-in) 10 Success of alternatives · Substantial GHG emission reductions needed to limit global warming 2 1 2 needed to limit global warming · We and new actors 8 consumerand new actors #12;Sustainable innovation in road transport: Dutch case study

  8. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  9. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  10. The Practice of Cost Benefit Analysis in the Transport Sector a Mexican

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe Needles Geothermal AreaTransportThe

  11. GIZ Sourcebook Module 5d: The CDM in the Transport Sector | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistarFuelCellsEtcSilicon Co LtdGEOGHD

  12. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    Planta- tion Products and Paper Industry Council, Paper Industry, Confederationof European Paper Industries, Brussels, March 2001. CESP,

  13. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    SciTech Connect (OSTI)

    1993-01-01

    The primary objective of this report is to provide estimates of volumes and development costs of known nonassociated gas reserves in selected, potentially important supplier nations, using a standard set of costing algorithms and conventions. Estimates of undeveloped nonassociated gas reserves and the cost of drilling development wells, production equipment, gas processing facilities, and pipeline construction are made at the individual field level. A discounted cash-flow model of production, investment, and expenses is used to estimate the present value cost of developing each field on a per-thousand-cubic-foot (Mcf) basis. These gas resource cost estimates for individual accumulations (that is, fields or groups of fields) then were aggregated into country-specific price-quantity curves. These curves represent the cost of developing and transporting natural gas to an export point suitable for tanker shipments or to a junction with a transmission line. The additional costs of LNG or methanol conversion are not included. A brief summary of the cost of conversion to methanol and transportation to the United States is contained in Appendix D: Implications of Gas Development Costs for Methanol Conversion.

  14. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    E-Print Network [OSTI]

    Sathaye, J.

    2011-01-01

    de Beer, 1997. "Energy Efficient Technologies in Industry -Tracking Industrial Energy Efficiency and CO2 Emissions.and L. Price. 1999. Energy Efficiency and Carbon Dioxide

  15. Model documentation report: Transportation sector model of the National Energy Modeling System

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. This document serves three purposes. First, it is a reference document providing a detailed description of TRAN for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, 57(b)(1)). Third, it permits continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  16. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 2

    SciTech Connect (OSTI)

    1998-01-01

    The attachments contained within this appendix provide additional details about the model development and estimation process which do not easily lend themselves to incorporation in the main body of the model documentation report. The information provided in these attachments is not integral to the understanding of the model`s operation, but provides the reader with opportunity to gain a deeper understanding of some of the model`s underlying assumptions. There will be a slight degree of replication of materials found elsewhere in the documentation, made unavoidable by the dictates of internal consistency. Each attachment is associated with a specific component of the transportation model; the presentation follows the same sequence of modules employed in Volume 1. The following attachments are contained in Appendix F: Fuel Economy Model (FEM)--provides a discussion of the FEM vehicle demand and performance by size class models; Alternative Fuel Vehicle (AFV) Model--describes data input sources and extrapolation methodologies; Light-Duty Vehicle (LDV) Stock Model--discusses the fuel economy gap estimation methodology; Light Duty Vehicle Fleet Model--presents the data development for business, utility, and government fleet vehicles; Light Commercial Truck Model--describes the stratification methodology and data sources employed in estimating the stock and performance of LCT`s; Air Travel Demand Model--presents the derivation of the demographic index, used to modify estimates of personal travel demand; and Airborne Emissions Model--describes the derivation of emissions factors used to associate transportation measures to levels of airborne emissions of several pollutants.

  17. Public Interest Energy Research (PIER) Program. Final Project Report. California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; Hasanbeigi, Ali; Sathaye, Jayant

    2010-12-01

    This report on the California Energy Balance version 2 (CALEB v2) database documents the latest update and improvements to CALEB version 1 (CALEB v1) and provides a complete picture of how energy is supplied and consumed in the State of California. The CALEB research team at Lawrence Berkeley National Laboratory (LBNL) performed the research and analysis described in this report. CALEB manages highly disaggregated data on energy supply, transformation, and end-use consumption for about 40 different energy commodities, from 1990 to 2008. This report describes in detail California's energy use from supply through end-use consumption as well as the data sources used. The report also analyzes trends in energy demand for the "Manufacturing" and "Building" sectors. Decomposition analysis of energy consumption combined with measures of the activity driving that consumption quantifies the effects of factors that shape energy consumption trends. The study finds that a decrease in energy intensity has had a very significant impact on reducing energy demand over the past 20 years. The largest impact can be observed in the industry sector where energy demand would have had increased by 358 trillion British thermal units (TBtu) if subsectoral energy intensities had remained at 1997 levels. Instead, energy demand actually decreased by 70 TBtu. In the "Building" sector, combined results from the "Service" and "Residential" subsectors suggest that energy demand would have increased by 264 TBtu (121 TBtu in the "Services" sector and 143 TBtu in the "Residential" sector) during the same period, 1997 to 2008. However, energy demand increased at a lesser rate, by only 162 TBtu (92 TBtu in the "Services" sector and 70 TBtu in the "Residential" sector). These energy intensity reductions can be indicative of energyefficiency improvements during the past 10 years. The research presented in this report provides a basis for developing an energy-efficiency performance index to measure progress over time in the State of California.

  18. Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization

    E-Print Network [OSTI]

    Akbari, H.

    2008-01-01

    Organic Industrial Agricultural Plastics and Synthetics Drugs Soaps, detergents, toilet paper Paints,

  19. Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    reported in IEA India transportation energy data. DifferentKeywords: India, transport, energy demand, decomposition,balance for India, transport energy consumption represents

  20. New Zealand Forestry sector looks to $20bn industry by 2025 08 October 2003/Lumber and Building materials Daily

    E-Print Network [OSTI]

    , it also suffered from having small processing capacity to turn raw materials into remanufactured products materials Daily New Zealand's forestry sector is still confident it can expand into a $20 billion dollar

  1. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    for the European Pulp and Paper Industry, Confederation ofin food and pulp and paper industry wastes, turbines tocement, and pulp and paper industries and in the control of

  2. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    E-Print Network [OSTI]

    Sathaye, J.

    2011-01-01

    Technology Support Unit (ETSU), 1988. “High Level Control ofCircle Industries and SIRA (ETSU, 1988). The LINKman system

  3. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01

    energy monitoring system Paper and Paperboard industry ? Integrated energy management system ?monitoring was handled by “accredited organizations that certify the energy management systems” (

  4. Transportation Sector Module

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of the National Energy Modeling System: Model Documentation7)

  5. Industrial Energy Efficiency: Designing Effective State Programs...

    Office of Environmental Management (EM)

    Energy Efficiency: Designing Effective State Programs for the Industrial Sector Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector This...

  6. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    pp. IEA, 2006b: Industrial motor systems energy efficiency:industrial energy efficiency. Presented at Energy Efficiency in Motorenergy-efficient electric motors and motor-systems. These include: (1) industrial

  7. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    and waste management that take place within industrialpolicies Waste management policies can reduce industrialWaste management policies.56 7.10 Co-benefits of industrial

  8. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    R.R. ,et al. , 2004: Eco-industrial park initiatives in theCHP plant) form an eco-industrial park that serves as an ex-

  9. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    cement and pulp and paper industries in China, and in thePulp and Paper Industry, Confederation of European Paper Industries, Brussels, March 2001. CESP, 2004: China’pulp and paper industries (GOI, 2005). There are 39.8 million SMEs in China,

  10. OTHER INDUSTRIES

    Office of Energy Efficiency and Renewable Energy (EERE)

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  11. Incentives to Accelerate the Penetration of Electricity in the Industrial Sector by Promoting New Technologies: A French Experiment 

    E-Print Network [OSTI]

    Bouchet, J.; Froehlich, R.

    1983-01-01

    A major problem encountered when trying to speed up electrification of French industry has been 'hot to finance, at end-user's level, investments related to such a change of technology'. Government incentives, the aims of which are to help saving...

  12. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    specified in the ‘Energy Technology List’ during the yearenergy consumers in the chemical industry, and list examples of technology

  13. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    disposal routes, several countries have set incen- tives to promote the use of various wastes in industrial processes in direct

  14. Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    institute TERI. (2001) TERI Energy Data Directory & Yearbookdesigned. Unfortunately, existing energy data do not provideIndia transportation energy data. Different scenarios were

  15. Transportation Sector Market Transition: Using History and Geography to Envision Possible Hydrogen Infrastructure Development and Inform Public Policy

    SciTech Connect (OSTI)

    Brown, E.

    2008-08-01

    This report covers the challenges to building an infrastructure for hydrogen, for use as transportation fuel. Deployment technologies and policies that could quicken deployment are addressed.

  16. Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report

    SciTech Connect (OSTI)

    Sutton, W.H.

    1997-06-30

    This report encompasses the second year of a proposed three year project with emphasis focused on fundamental research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (1) direct diesel replacement with LNG fuel, and (2) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. The results of this work are expected to enhance utilization of LNG as a transportation fuel. The paper discusses the following topics: (A) Fueling Delivery to the Engine, Engine Considerations, and Emissions: (1) Atomization and/or vaporization of LNG for direct injection diesel-type natural gas engines; (2) Fundamentals of direct replacement of diesel fuel by LNG in simulated combustion; (3) Distribution of nitric oxide and emissions formation from natural gas injection; and (B) Short and long term storage: (1) Modification by partial direct conversion of natural gas composition for improved storage characteristics; (2) LNG vent gas adsorption and recovery using activate carbon and modified adsorbents; (3) LNG storage at moderate conditions.

  17. The DOE s In-Plant Training (INPLT) Model to Promote Energy Efficiency in the Industrial Sector

    SciTech Connect (OSTI)

    Alkadi, Nasr E [ORNL] [ORNL; Nimbalkar, Sachin U [ORNL] [ORNL; De Fontaine, Mr. Andre [United States Department of Energy (DOE), Industrial Technology Program] [United States Department of Energy (DOE), Industrial Technology Program; Schoeneborn, Fred C [ORNL] [ORNL

    2013-01-01

    In-Plant Training (INPLT) is a new model for developing energy efficiency expertise within the US manufacturing companies participating in the U.S. Department of Energy s (DOE s) Better Buildings, Better Plants Program-a nationwide initiative to drive a 25% reduction in industrial energy intensity in 10 years. INPLTs are designed to fill a market niche by providing hands on training in a real world manufacturing plant environment. Through INPLTs, participants from multiple manufacturing plants, supply chains, utilities, and other external stakeholders learn how to conduct energy assessments, use energy analysis tools to analyze energy saving opportunities, develop energy management systems, and implement energy savings projects. Typical INPLT events are led by DOE-certified Energy Experts and range from 2-4 days. Topics discussed include: identification of cross-cutting or system specific opportunities; introduction to ISO 50001 Energy Management Systems; and energy project implementation and replication. This model is flexible, and can be tailored to suit the needs of specific industries. The INPLTs are a significant departure from the traditional single plant energy assessment model previously employed by DOE. INPLTs shift the focus from the concept of a single-plant s energy profile to a broader focus on training and capacity building among multiple industrial participants. The objective is to enable trainees to identify, quantify, implement and replicate future energy saving projects without continued external assistance. This paper discusses the INPLT model and highlights some of the initial outcomes from the successfully delivered INPLTs and the overall impact in terms of numbers of plants/participants trained, impacted energy footprints, and potential replication of identified opportunities.

  18. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    of its electricity requirements in the USA (US DOE, 2002)USA, where motor-driven systems account for 63% of industrial electricity

  19. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    increased use of biomass and energy efficiency improvements,Moreira, J. , 2006: Global biomass energy potential. Journal1971–2004 Notes 1) Biomass energy included 2) Industrial

  20. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    of Industrial Electrical Switchgear and Control Gear in the6 from use in electrical switchgear and magnesium processinggas insulated electrical switchgear, during the production

  1. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    SciTech Connect (OSTI)

    Sathaye, J.; Xu, T.; Galitsky, C.

    2010-08-15

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

  2. Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    consumption. As in the statistic from India Ministry ofTransport In India Ministry of Statistics (MOS), India. (Statistics 4.2 Comparison with IEA data The energy consumption estimates described above were compared with IEA India

  3. Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    consumption reported in IEA India transportation energyin mobility, while the IEA data only shows a 1.7% growthWB, 2004). According to the IEA energy balance for India,

  4. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    options for combined heat and power in Canada. Office ofpolicies to promote combined heat and power in US industry.conversions, such as combined heat and power and coke ovens,

  5. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    iron and steel production. IEA Greenhouse Gas R&D Programme,tempera- ture range. IEA/Caddet, Sittard, The Netherlands.industry. Cheltenham, UK, IEA Greenhouse Gas R&D Programme,

  6. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    developing countries, like India, adoption of efficient electricitydeveloping countries the sugar in- dustry uses bagasse and the edible oils industry uses byproduct wastes to generate steam and/or electricity (

  7. Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)

    E-Print Network [OSTI]

    Zhiping, L.

    2010-01-01

    of Energy Conservation Industrial Energy ConservationIntensity of Selected Industrial Products, 1981-1990 EnergyConservation Projects by Industrial Subsector, 7th FYP Unit

  8. Power Politics: The Political Economy of Russia's Electricity Sector Liberalization

    E-Print Network [OSTI]

    Wengle, Susanne Alice

    2010-01-01

    Private Participation in the Electricity Sector World BankTelecommunications and Electricity Sectors." Governance 19,Power Struggle: Reforming the Electricity Industry." In The

  9. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the U.S. Pulp and Paper Sector

    E-Print Network [OSTI]

    Xu, Tengfang

    2014-01-01

    Opportunities for the Pulp and Paper Industry (LBNL-2268E).in the U.S. Pulp and Paper Industry. Lawrence BerkeleyManagement in the Pulp and Paper Industry. Buehler, E. and

  10. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the U.S. Pulp and Paper Sector

    E-Print Network [OSTI]

    Xu, Tengfang

    2014-01-01

    the U.S. Pulp and Paper Industry. Lawrence Berkeley NationalProfile of the Pulp and Paper Industry, 2 nd Edition. Officefor the Pulp and Paper Industry (No. LBNL-2268E). Berkeley,

  11. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    SciTech Connect (OSTI)

    Xu, T.T.; Sathaye, J.; Galitsky, C.

    2010-09-30

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. With the working of energy programs and policies on carbon regulation, how to effectively analyze and manage the costs associated with GHG reductions become extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions (e.g., carbon emission) for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct brief overview on different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by problem statements, and a description of the basic concepts of quantifying the cost of conserved energy including integrating non-regrets options. A non-regrets option is defined as a GHG reduction option that is cost effective, without considering their additional benefits related to reducing GHG emissions. Based upon these, we develop information on costs of mitigation measures and technological change. These serve as the basis for collating the data on energy savings and costs for their future use in integrated assessment models. In addition to descriptions of the iron and steel making processes, and the mitigation measures identified in this study, the report includes tabulated databases on costs of measure implementation, energy savings, carbon-emission reduction, and lifetimes. The cost curve data on mitigation measures are available over time, which allows an estimation of technological change over a decade-long historical period. In particular, the report will describe new treatment of technological change in energy-climate modeling for this industry sector, i.e., assessing the changes in costs and energy-savings potentials via comparing 1994 and 2002 conservation supply curves. In this study, we compared the same set of mitigation measures for both 1994 and 2002 -- no additional mitigation measure for year 2002 was included due to unavailability of such data. Therefore, the estimated potentials in total energy savings and carbon reduction would most likely be more conservative for year 2002 in this study. Based upon the cost curves, the rate of change in the savings potential at a given cost can be evaluated and be used to estimate future rates of change that can be the input for energy-climate models. Through characterizing energy-efficiency technology costs and improvement potentials, we have developed and presented energy cost curves for energy efficiency measures applicable to the U.S. iron and steel industry for the years 1994 and 2002. The cost curves can change significantly under various scenarios: the baseline year, discount rate, energy intensity, production, industry structure (e.g., integrated versus secondary steel making and number of plants), efficiency (or mitigation) measures, share of iron and steel production to which the individual measures can be applied, and inclusion of other non-energy benefits. Inclusion of other non-energy benefits from implementing mitigation measures can reduce the costs of conserved energy significantly. In addition, costs of conserved energy (CCE) for individual mitigation measures increase with the increases in discount rates, resulting in a general increase in total cost of mitigation measures for implementation and operation with a higher discount rate. In 1994, integrated steel mills in the U.S. produced 55.

  12. The Role of the Sellafield Ltd Centres of Expertise in Engaging with the Science, Environment and Technology Supply Chain and University Sector to Support Site Operations and Decommissioning in the UK Nuclear Industry - 13018

    SciTech Connect (OSTI)

    Butcher, Ed; Connor, Donna; Keighley, Debbie

    2013-07-01

    The development and maintenance of the broad range of the highly technical skills required for safe and successful management of nuclear sites is of vital importance during routine operations, decommissioning and waste treatment activities.. In order to maintain a core team of technical experts, across all of the disciplines required for these tasks, the approach which has been taken by the Sellafield Ltd has been the formation of twenty five Centres of Expertise (CoE), each covering key aspects of the technical skills required for nuclear site operations. Links with the Specialist University Departments: The CoE leads are also responsible for establishing formal links with university departments with specialist skills and facilities relevant to their CoE areas. The objective of these links is to allow these very specialist capabilities within the university sector to be more effectively utilized by the nuclear industry, which benefits both sectors. In addition to the utilization of specialist skills, the university links are providing an important introduction to the nuclear industry for students and researchers. This is designed to develop the pipeline of potential staff, who will be required in the future by both the academic and industrial sectors. (authors)

  13. Large-Scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-08-05

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to meet atmospheric concentrations of CO2 at 400ppm and 450ppm by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced globally by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions - especially the availability of carbon dioxide capture and storage (CCS) technologies - affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent emissions constraints; we find that at carbon prices above 150$/tCO2, over 90% of biomass in the energy system is used in combination with CCS. Despite the higher technology costs of CCS, it is a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. CCS is also used heavily with other fuels such as coal and natural gas, and by 2095 a total of 1530 GtCO2 has been stored in deep geologic reservoirs. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels as two representative conversion processes and shows that both technologies may be important contributors to liquid fuels production, with unique costs and emissions characteristics.

  14. Reducing transportation costs and inventory shrinkage in the Washington State tree fruit industry

    E-Print Network [OSTI]

    Foreman, James Sterling

    2009-01-01

    Perishability and stock-outs are two sources of inventory inefficiency in the Washington State tree fruit industry. This thesis measures the size of these inefficiencies in terms of dollars per box, and describes five ...

  15. NOAA Helps the Construction Sector Build for a Changing Climate The construction industry is comprised of a wide range of business involved in engineering standards,

    E-Print Network [OSTI]

    construction, building techniques, and materials construction workers use. The potential risk of inclement planning purposes, risk management, and assessing environmental footprints. A changing climate can lead by the construction sector: Precipitation data to design and build natural gas pipeline trenc

  16. Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)

    E-Print Network [OSTI]

    Zhiping, L.

    2010-01-01

    industrial motors, fans, and pumps consume approximately 30% of all electricity produced i n China. Improving the energy

  17. An Industrial Network Flow Information Integration Model for Supply Chain Management and Intelligent Transportation

    E-Print Network [OSTI]

    Hsu, Cheng

    using digital connection is proposed to the field of industrial network flow control for application in a way comparable to an adaptive control panel administering an automated material handling system-factory network flows, such as material handling systems, the field of inter-factory network flow control lacks

  18. Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)

    E-Print Network [OSTI]

    Zhiping, L.

    2010-01-01

    of crude oil and oil products; (iii) retrofitting existingof petroleum products, limit proliferation of oil usingand product mix in energy-intensive industries; converting oil-

  19. Unrestricted. Siemens AG 2013. All rights reserved.Page 2 October 2013 Corporate Technology Siemens is organized in 4 Sectors: Industry,

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    pumps High Temp. heat pumps 270PJ/a*330PJ/a* * Source: Lambauer et al, Heat supply industry in Germany ­ the megawatt range. Achema, Frankfurt, 2012 6 Pearson, Nellissen, Application of industrial heat pumps. Achema performance evaluation of new safe and environmentally friendly working fluids for high temperature heat pumps

  20. Energy Intensity Indicators: Transportation Energy Consumption

    Broader source: Energy.gov [DOE]

    This section contains an overview of the aggregate transportation sector, combining both passenger and freight segments of this sector. The specific energy intensity indicators for passenger and freight can be obtained from the links, passenger transportation, or freight transportation. For further detail within the transportation sector, download the appropriate Trend Data worksheet containing detailed data and graphics for specific transportation modes.

  1. BUILDINGS SECTOR DEMAND-SIDE EFFICIENCY TECHNOLOGY SUMMARIES

    E-Print Network [OSTI]

    ........................................................................... 59 End-Use: Water Heating Sector: Residential Author: Jim Lutz VIII. Heat Pump Water Heaters) ................................................................ 5 End-Use: Lighting, HVAC Sector: Commercial, Industrial, Residential Author: Kristin Heinemeier II End-Use: Interior Lighting Sector: Commercial, Industrial Author: Ellen Franconi III. Compact

  2. Energy efficiency in building sector in India through Heat

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;Energy efficiency in building sector in India through Heat Pump Technology By Mr Pradeep Kumar sector in India · Residential building sector in India · HVAC growth in residential sector. · Heat Pump, Sustainable habitat, Biotechnology, Renewable energy, Water technology, Industrial research, Social

  3. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01

    natural gas and liquefied petroleum gas have continued to make small contributions to transportation,transportation actions include electric power sector actions, eg coal to natural gas

  4. Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

    E-Print Network [OSTI]

    Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

    2008-01-01

    22, (4), 10. EIA Annual Energy Outlook 2006 with Projections4. EIA Annual Energy Outlook 2007 with Projections to 2030.to the Annual Energy Outlook 2007. Transportation Demand

  5. Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

    E-Print Network [OSTI]

    Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

    2008-01-01

    leg/leginx.asp 4. EIA Annual Energy Outlook 2007 with22, (4), 10. EIA Annual Energy Outlook 2006 with Projectionsto the Annual Energy Outlook 2007. Transportation Demand

  6. Climate forcing by the on-road transportation and power generation sectors Nadine Unger a,b,*, Drew T. Shindell a

    E-Print Network [OSTI]

    generation (PG) sectors are major contributors to carbon dioxide (CO2) emissions and a host of short-lived well-mixed greenhouse gas (WMGHG) carbon dioxide (CO2). In addition, these human activities influence energy change options to date have neglected non- CO2 air pollutant impacts on radiative forcing (RF

  7. Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01

    the Energy and Transport Sector Unit of the East Asia andthe Energy and Transport Sector Unit of the East Asia and

  8. Industrial sector energy conservation programs in the People`s Republic of China during the seventh five-year plan (1986--1990)

    SciTech Connect (OSTI)

    Liu Zhiping; Sinton, J.E.; Yang Fuqiang; Levine, M.D.; Ting, M.K.

    1994-09-01

    The impetus at the national level to invest in energy conservation is quite strong and has long been reflected not only in official pronouncements, but also in the investments and organizational activities of the Chinese government. In the early 1980s the central government began a program of direct investments in industrial energy conservation that continues to the present. In addition, concurrently established governmental and quasi-governmental agencies have pursued conservation through administrative and educational measures. In Section 2 of this paper the authors outline the policies and institutions that supported China`s program of energy conservation investments in the Sixth and Seventh Five-Year Plans (FYPs) (1981--1985 and 1986--1990). In Section 3 they describe examples of the types of conservation projects pursued in four industrial subsectors: ferrous metals manufacturing; non-ferrous metals mining and manufacturing; chemicals manufacturing; and building materials manufacturing. Section 4 presents a simple methodology for comparing the costs of energy conservation to those of energy supply. Further discussion points out the applicability and limitations of this methodology to State Planning Commission published statistical material on the overall results of energy conservation investments. Though problematic, such analysis indicates that energy conservation investments were probably substantially cheaper than investments in equivalent energy supply would have been. They end with a discussion of some of the difficulties encountered in carrying out the conservation investment programs.

  9. Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout / Transforming Y-12Capacity-Forum Sign InTransportation

  10. Industrial policy and the Indian electronics industry

    E-Print Network [OSTI]

    Love, Robert (Robert Eric)

    2008-01-01

    Recently, production within India's Electronics sector amounted to a low $12 billion when compared to the global output of $1400 billion. The slow growth in the local industry is often judged to be the result of late ...

  11. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    of Labor Statistics. Energy Efficiency Services Sector:of Energy Engineers 2009a. “Energy Independence and MarketTrends: AEE Survey of the Energy Industry 2009. ” http://

  12. Innovative New Industrial Technologies: An Industry/DOE Joint Endeavor 

    E-Print Network [OSTI]

    Gross, T. J.

    1986-01-01

    The Department of Energy’s Office of Industrial Programs supports research and development leading to improved energy efficiency and greater overall productivity in the industrial sector. Its basic strategy is a program of cost-shared R...

  13. Economic Impact of the Texas Forest Sector

    E-Print Network [OSTI]

    and paper products. The Texas forest sector also produces many value-added forest products such as millwork, wood kitchen cabinets, prefabricated wood buildings, wood furniture, and various paper products in terms of total industry output, value-added, employment, and labor income. Total industry output

  14. Transportation Equipment (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment (2010 MECS) Transportation Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Transportation Equipment Sector (NAICS 336) Energy use data source:...

  15. Bacteria in Ballast Water: The Shipping Industry's Contributions to the Transport and Distribution of Microbial Species in Texas 

    E-Print Network [OSTI]

    Neyland, Elizabeth B.

    2010-10-12

    The transportation of organisms in the ballast water of cargo ships has been recognized as a source of invasive species despite current control measures. Pathogenic bacteria in the ballast tank have been studied but the total diversity...

  16. The Importance of Air Transportation to the U.S. Economy: Analysis of Industry Use and Proximity to Airports

    E-Print Network [OSTI]

    Stilwell, Justin

    2013-05-16

    This thesis investigates broader impacts of air transportation on U.S. economic productivity, as well as market access and business location, in order to help identify how aviation supports the national economy. More ...

  17. The importance of air transportation to the U.S. economy : analysis of industry use and proximity to airports

    E-Print Network [OSTI]

    Stilwell, Justin Daniel Lawrence

    2013-01-01

    This thesis investigates broader impacts of air transportation on U.S. economic productivity, as well as market access and business location, in order to help identify how aviation supports the national economy. More ...

  18. Energy Savings in Industrial Buildings 

    E-Print Network [OSTI]

    Zhou, A.; Tutterow, V.; Harris, J.

    2009-01-01

    The industrial sector accounts for more than one-third of total energy use in the United States and emits 28.7 percent of the country’s greenhouse gases. Energy use in the industrial sector is largely for steam and process heating systems...

  19. Asymmetry in In-Degree and Out-Degree Distributions of Large-Scale Industrial Networks

    E-Print Network [OSTI]

    Luo, Jianxi; Whitney, Daniel E.

    2015-01-01

    Network structures in industrial pricing: the effect ofrecession? ranking U.S. industrial sectors by the Power-of-distributions of large-scale industrial networks Jianxi Luo

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01

    Experiences with Industrial Heat Pumps. Analyses Series #23.of Energy (DOE) (2003). Industrial Heat Pumps for Steam andin the industrial sector. However, geothermal heat pumps may

  1. Industrial Rates and Demand-Side Management Programs 

    E-Print Network [OSTI]

    Kasprowicz, L. M.; House, R.

    1993-01-01

    The industrial sector in Texas is large and energy intensive. Industrial sales constitute a major portion of total sales for several utilities in Texas. Industrial demand-side management (DSM) can be used by utilities to provide industrial customers...

  2. Industry Sector Fallstudie Building Technologies Division

    E-Print Network [OSTI]

    Fischlin, Andreas

    Vorteile, wie das Beispiel des Abwasserreinigungsprozesses illustriert: Wenn die Batterie und der zu schnelles Aufladen der Batterie Sonnenenergie ungenutzt bleibt. Bei schlechter Wetterprognose wird der Reinigungsprozess gestoppt. Sonst bestünde die Gefahr, dass die Stromreserven der Batterie

  3. International industrial sector energy efficiency policies

    E-Print Network [OSTI]

    Price, Lynn; Worrell, Ernst

    2000-01-01

    and Opportunities,” Energy Policy 26(11): 859-872. Hall,1999. “Incentives in Energy Policy – A Comparison BetweenVoluntary Agreements in Energy Policy – Implementation and

  4. International industrial sector energy efficiency policies

    E-Print Network [OSTI]

    Price, Lynn; Worrell, Ernst

    2000-01-01

    company and the Danish Energy Agency (Ezban et al. , 1994;company and the Danish Energy Agency. The agreements, whichagreements with the Danish Energy Agency, representing 45%

  5. electrifyingthefuture transportation

    E-Print Network [OSTI]

    Birmingham, University of

    programme of electrification and the potential introduction of diesel hybrids. The Department for Transport vehicles Wind turbine systems Industrial equipment The lab has full ethernet capability which will enable

  6. United States Industrial Motor-Driven Systems Market Assessment...

    Broader source: Energy.gov (indexed) [DOE]

    sectors. United States Industrial Motor-Driven Systems Market Assessment: Charting a Roadmap to Energy Savings for Industry (June 1998) More Documents & Publications U.S....

  7. Technical Report #98T-010, Department of Industrial & Mfg. Systems Egnieering, Lehigh Univerisity COORDINATION PRODUCTION AND TRANSPORTATION

    E-Print Network [OSTI]

    Wu, David

    . David Wu and Laura I. Burke The Manufacturing Logistics Institute Department of Industrial and logistic functions across facilities and companies is key to supply chain integration. In this paper, we decisions, and the value of integration. #12;-1- 1. Introduction Supply chain management attracts central

  8. Sectoral trends in global energy use and greenhouse gasemissions

    SciTech Connect (OSTI)

    Price, Lynn; de la Rue du Can, Stephane; Sinton, Jonathan; Worrell, Ernst; Zhou, Nan; Sathaye, Jayant; Levine, Mark

    2006-07-24

    In 2000, the Intergovernmental Panel on Climate Change (IPCC) published a new set of baseline greenhouse gas (GHG) emissions scenarios in the Special Report on Emissions Scenarios (SRES) (Nakicenovic et al., 2000). The SRES team defined four narrative storylines (A1, A2, B1 and B2) describing the relationships between the forces driving GHG and aerosol emissions and their evolution during the 21st century. The SRES reports emissions for each of these storylines by type of GHG and by fuel type to 2100 globally and for four world regions (OECD countries as of 1990, countries undergoing economic reform, developing countries in Asia, rest of world). Specific assumptions about the quantification of scenario drivers, such as population and economic growth, technological change, resource availability, land-use changes, and local and regional environmental policies, are also provided. End-use sector-level results for buildings, industry, or transportation or information regarding adoption of particular technologies and policies are not provided in the SRES. The goal of this report is to provide more detailed information on the SRES scenarios at the end use level including historical time series data and a decomposition of energy consumption to understand the forecast implications in terms of end use efficiency to 2030. This report focuses on the A1 (A1B) and B2 marker scenarios since they represent distinctly contrasting futures. The A1 storyline describes a future of very rapid economic growth, low population growth, and the rapid introduction of new and more efficient technologies. Major underlying themes are convergence among regions, capacity building, and increased cultural and social interactions, with a substantial reduction in regional differences in per capita income. The B2 storyline describes a world with an emphasis on economic, social, and environmental sustainability, especially at the local and regional levels. It is a world with moderate population growth, intermediate levels of economic development, and less rapid and more diverse technological change (Nakicenovic et al., 2000). Data were obtained from the SRES modeling teams that provide more detail than that reported in the SRES. For the A1 marker scenario, the modeling team provided final energy demand and carbon dioxide (CO{sub 2}) emissions by fuel for industry, buildings, and transportation for nine world regions. Final energy use and CO{sub 2} emissions for three sectors (industry, transport, buildings) for the four SRES world regions were provided for the B2 marker scenario. This report describes the results of a disaggregation of the SRES projected energy use and energy-related CO{sub 2} emissions for the industrial, transport, and buildings sectors for 10 world regions (see Appendix 1) to 2030. An example of further disaggregation of the two SRES scenarios for the residential buildings sector in China is provided, illustrating how such aggregate scenarios can be interpreted at the end use level.

  9. Industrial Energy Audit Guidebook: Guidelines for Conducting...

    Open Energy Info (EERE)

    Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Energy Efficiency, Industry Resource Type: Guidemanual Website: china.lbl.govsiteschina.lbl.gov...

  10. Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report, May 10, 1994--December 30, 1995

    SciTech Connect (OSTI)

    Sutton, W.H.

    1995-12-31

    This report encompasses the first year of a proposed three year project with emphasis focused on LNG research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (i) direct diesel replacement with LNG fuel, and (ii) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. Since this work was for fundamental research in a number of related areas to the use of LNG as a transportation fuel for long haul trucking, many of those results have appeared in numerous refereed journal and conference papers, and significant graduate training experiences (including at least one M.S. thesis and one Ph.D. dissertation) in the first year of this project. In addition, a potential new utilization of LNG fuel has been found, as a part of this work on the fundamental nature of adsorption of LNG vent gases in higher hydrocarbons; follow on research for this and other related applications and transfer of technology are proceeding at this time.

  11. The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport...

    Open Energy Info (EERE)

    emissions from purchased electricity, stationary combustion, refrigeration and air conditioning equipment, and several industrial sectors. References Retrieved from "http:...

  12. Advanced Vehicle Electrification and Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Manufacturing Energy and Carbon Footprint - Sector: Transportation...

    Broader source: Energy.gov (indexed) [DOE]

    1 6 44 0 3 4 41 11 1 14 8 47 16 7 5 0 480 78 195 2 0 2 Conventional Boilers 10 CHP Cogeneration Nonprocess Energy Process Cooling and Refrigeration Machine Drive Electro-Chemical...

  14. Manufacturing Energy and Carbon Footprint - Sector: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Export 1 Combustion Emissions (MMT CO 2 e Million Metric Tons Carbon Dioxide Equivalent) Total Emissions Offsite Emissions + Onsite Emissions Energy (TBtu ...

  15. Restructuring our Transportation Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct.7,Breakout SessionsEnergy ResponsesRestructuring our

  16. Advanced Vehicle Electrification & Transportation Sector Electrification |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NREL Advanced PetroleumDepartment

  17. Advanced Vehicle Electrification and Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NREL Advanced PetroleumDepartment| Department of

  18. Advanced Vehicle Electrification and Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NREL Advanced PetroleumDepartment| Department of|

  19. Vehicle Technologies Office: Transitioning the Transportation Sector -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobsAdvanced EngineFebruaryVehicle

  20. Optimization of Maritime Transportation

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    and Technology Management Norwegian University of Science and Technology, Trondheim, Norway Enterprise and D. Ronen (2007). Maritime transportation. Handbooks in Operations Research and Management Science (consolidation in the manufacturing sector, increasing competition, profit margins reduced, mergers and pooling

  1. Energy intensity in China's iron and steel sector

    E-Print Network [OSTI]

    Xu, Jingsi, M.C.P. Massachusetts Institute of Technology

    2011-01-01

    In this study, I examine the spatial and economic factors that influence energy intensity in China's iron and steel sector, namely industrial value added, renovation investment, coke consumption, and local coke supply. ...

  2. Residential and Transport Energy Use in India: Past Trend and Future Outlook

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; Letschert, Virginie; McNeil, Michael; Zhou, Nan; Sathaye, Jayant

    2009-03-31

    The main contribution of this report is to characterize the underlying residential and transport sector end use energy consumption in India. Each sector was analyzed in detail. End-use sector-level information regarding adoption of particular technologies was used as a key input in a bottom-up modeling approach. The report looks at energy used over the period 1990 to 2005 and develops a baseline scenario to 2020. Moreover, the intent of this report is also to highlight available sources of data in India for the residential and transport sectors. The analysis as performed in this way reveals several interesting features of energy use in India. In the residential sector, an analysis of patterns of energy use and particular end uses shows that biomass (wood), which has traditionally been the main source of primary energy used in households, will stabilize in absolute terms. Meanwhile, due to the forces of urbanization and increased use of commercial fuels, the relative significance of biomass will be greatly diminished by 2020. At the same time, per household residential electricity consumption will likely quadruple in the 20 years between 2000 and 2020. In fact, primary electricity use will increase more rapidly than any other major fuel -- even more than oil, in spite of the fact that transport is the most rapidly growing sector. The growth in electricity demand implies that chronic outages are to be expected unless drastic improvements are made both to the efficiency of the power infrastructure and to electric end uses and industrial processes. In the transport sector, the rapid growth in personal vehicle sales indicates strong energy growth in that area. Energy use by cars is expected to grow at an annual growth rate of 11percent, increasing demand for oil considerably. In addition, oil consumption used for freight transport will also continue to increase .

  3. Industrial Use of Infrared Inspections 

    E-Print Network [OSTI]

    Duch, A. A.

    1979-01-01

    Infrared is and has been an established technology in the military and aerospace fields. However, only relatively recently has this technology found a "use" in the industrial sector. Many reasons exist why the technology has not been used...

  4. ImSET: Impact of Sector Energy Technologies

    SciTech Connect (OSTI)

    Roop, Joseph M.; Scott, Michael J.; Schultz, Robert W.

    2005-07-19

    This version of the Impact of Sector Energy Technologies (ImSET) model represents the ''next generation'' of the previously developed Visual Basic model (ImBUILD 2.0) that was developed in 2003 to estimate the macroeconomic impacts of energy-efficient technology in buildings. More specifically, a special-purpose version of the 1997 benchmark national Input-Output (I-O) model was designed specifically to estimate the national employment and income effects of the deployment of Office of Energy Efficiency and Renewable Energy (EERE) -developed energy-saving technologies. In comparison with the previous versions of the model, this version allows for more complete and automated analysis of the essential features of energy efficiency investments in buildings, industry, transportation, and the electric power sectors. This version also incorporates improvements in the treatment of operations and maintenance costs, and improves the treatment of financing of investment options. ImSET is also easier to use than extant macroeconomic simulation models and incorporates information developed by each of the EERE offices as part of the requirements of the Government Performance and Results Act.

  5. Fundamentals of public-private partnerships in the transportation sector : international methodologies of highway public-private partnerships and a framework to increase the probability of success and allocate risk

    E-Print Network [OSTI]

    Butler, Ryan, S.M. Massachusetts Institute of Technology

    2013-01-01

    In 2009 the American Society of Civil Engineers (ASCE) gave the US infrastructure sector a grade D, based on the current and future needs of the nation's infrastructure and estimates that by year 2020, the US surface ...

  6. Deregulating and regulatory reform in the U.S. electric power sector

    E-Print Network [OSTI]

    Joskow, Paul L.

    2000-01-01

    This paper discusses the evolution of wholesale and retail competition in the U.S electricity sector and associated industry restructuring and regulatory reforms. It begins with a discussion of the industry structure and ...

  7. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Masanet, Eric

    2008-01-01

    of Energy (DOE) (2003). Industrial Heat Pumps for Steam andExperiences with Industrial Heat Pumps. Analyses Series #23.in the industrial sector. However, geothermal heat pumps may

  8. Delivered Energy Consumption Projections by Industry in the Annual Energy Outlook 2002

    Reports and Publications (EIA)

    2002-01-01

    This paper presents delivered energy consumption and intensity projections for the industries included in the industrial sector of the National Energy Modeling System.

  9. Economic Crisis and the Logistics Industry: Financial Insecurity for Warehouse Workers in the Inland Empire

    E-Print Network [OSTI]

    Bonacich, Edna; De Lara, Juan David

    2009-01-01

    Growing the SACOG Region’s Logistics Sector: How Much, HowEconomic Crisis and the Logistics Industry Acknowledgements13 Economic Crisis and the Logistics Industry: Financial

  10. Steel Industry Profile

    Broader source: Energy.gov [DOE]

    The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of manufacturing, construction, transportation, and various consumer products. Traditionally...

  11. Reducing Emissions Through Sustainable Transport: Proposal for...

    Open Energy Info (EERE)

    Reducing Emissions Through Sustainable Transport: Proposal for a Sectoral Approach Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Reducing Emissions Through Sustainable...

  12. 35 Alternative Transportation Fuels in California ALTERNATIVE TRANSPORTATION

    E-Print Network [OSTI]

    potential means for diversifying an energy resource base for the transportation sector. Largely as a result, there is a potential for the entrance of an estimated one million alternative fuel vehicles (AFVs) into the California35 Alternative Transportation Fuels in California Chapter 4 ALTERNATIVE TRANSPORTATION FUELS

  13. Institutional change in the forest sector : the Russian experience

    E-Print Network [OSTI]

    Ulybina, Olga

    In 1987, the share of forestry, mechanical wood industry, and the pulp and paper industry was seventh of all sectors in Russia with 5.62% of total industrial output (Nilsson and Shvidenko, 1997: 33). By 1993, domestic production of wood products (the... of Forest Certification schemes SGS Société Générale de Surveillance, an inspection, verification, testing and certification company SPOK An environmental NGO in Karelia UPM UPM-Kymmene Oyj, a pulp, paper and timber manufacturer VLTP Validation...

  14. Macomb College Transportation and Energy Technology 126.09

    SciTech Connect (OSTI)

    2010-12-31

    The objectives for this project were to create the laboratory facilities to deliver recently created and amended curriculum in the areas of energy creation, storage, and delivery in the transportation and stationary power sectors. The project scope was to define the modules, courses and programs in the emerging energy sectors of the stationary power and transportation industries, and then to determine the best equipment to support instruction, and procure it and install it in the laboratories where courses will be taught. Macomb Community College had a curriculum development grant through the Department of Education that ran parallel to this one where the energy curriculum at the school was revised to better permit students to gain comprehensive education in a targeted area of the renewable energy realm, as well as enhance the breadth of jobs addressed by curriculum in the transportation sector. The curriculum development and experiment and equipment definition ran in parallel, and resulted in what we believe to be a cogent and comprehensive curriculum supported with great hands-on experiments in modern labs. The project has been completed, and this report will show how the equipment purchases under the Department of Energy Grant support the courses and programs developed and amended under the Department of Education Grant. Also completed is the tagging documentation and audit tracking process required by the DOE. All materials are tagged, and the documentation is complete as required.

  15. Government and Industry A Force for Collaboration at the Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Act Blog Leadership Budget Our Organization Strategic Plan Our History Offices Roadmap to Secure Control Systems in the Energy Sector Government and Industry A Force for...

  16. China’s Defense Electronics Industry: Innovation, Adaptation, and Espionage

    E-Print Network [OSTI]

    Mulvenon, James; Luce, Matthew

    2010-01-01

    2010 China’s Defense Electronics Industry: Innovation,of the Chinese defense electronics sector can be attributedAdvanced defense electronics components and systems play a

  17. Secretary Chu Announces More than $155 Million for Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    industrial sector and help to usher in a clean energy economy," said Secretary Chu. "Many companies already realize that improving efficiency saves money while helping the...

  18. Modeling regional transportation demand in China and the impacts of a national carbon constraint

    E-Print Network [OSTI]

    Kishimoto, Paul

    2015-01-30

    Climate and energy policy in China will have important and uneven impacts on the country’s regionally heterogeneous transport system. In order to simulate these impacts, transport sector detail is added to a multi-sector, ...

  19. Sustainable Transportation Program | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with government, industry, and academia, Oak Ridge National Laboratory's (ORNL) Sustainable Transportation Program research and development efforts are resulting in...

  20. President Obama Announces Major Initiative to Spur Biofuels Industry...

    Energy Savers [EERE]

    years in partnership with the private sector to produce advanced drop-in aviation and marine biofuels to power military and commercial transportation. The initiative responds to a...

  1. Energy Use in China: Sectoral Trends and Future Outlook

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.; Fridley, David; Lin, Jiang; Price,Lynn; de la Rue du Can, Stephane; Sathaye, Jayant; Levine, Mark

    2007-10-04

    This report provides a detailed, bottom-up analysis ofenergy consumption in China. It recalibrates official Chinese governmentstatistics by reallocating primary energy into categories more commonlyused in international comparisons. It also provides an analysis of trendsin sectoral energy consumption over the past decades. Finally, itassesses the future outlook for the critical period extending to 2020,based on assumptions of likely patterns of economic activity,availability of energy services, and energy intensities. The followingare some highlights of the study's findings: * A reallocation of sectorenergy consumption from the 2000 official Chinese government statisticsfinds that: * Buildings account for 25 percent of primary energy, insteadof 19 percent * Industry accounts for 61 percent of energy instead of 69percent * Industrial energy made a large and unexpected leap between2000-2005, growing by an astonishing 50 percent in the 3 years between2002 and 2005. * Energy consumption in the iron and steel industry was 40percent higher than predicted * Energy consumption in the cement industrywas 54 percent higher than predicted * Overall energy intensity in theindustrial sector grew between 2000 and 2003. This is largely due tointernal shifts towards the most energy-intensive sub-sectors, an effectwhich more than counterbalances the impact of efficiency increases. *Industry accounted for 63 percent of total primary energy consumption in2005 - it is expected to continue to dominate energy consumption through2020, dropping only to 60 percent by that year. * Even assuming thatgrowth rates in 2005-2020 will return to the levels of 2000-2003,industrial energy will grow from 42 EJ in 2005 to 72 EJ in 2020. * Thepercentage of transport energy used to carry passengers (instead offreight) will double from 37 percent to 52 percent between 2000 to 2020,.Much of this increase is due to private car ownership, which willincrease by a factor of 15 from 5.1 million in 2000 to 77 million in2020. * Residential appliance ownership will show signs of saturation inurban households. The increase in residential energy consumption will belargely driven by urbanization, since rural homes will continue to havelow consumption levels. In urban households, the size of appliances willincrease, but its effect will be moderated by efficiency improvements,partially driven by government standards. * Commercial energy increaseswill be driven both by increases in floor space and by increases inpenetration of major end uses such as heating and cooling. Theseincreases will be moderated somewhat, however, by technology changes,such as increased use of heat pumps. * China's Medium- and Long-TermDevelopment plan drafted by the central government and published in 2004calls for a quadrupling of GDP in the period from 2000-2020 with only adoubling in energy consumption during the same period. A bottom-upanalysis with likely efficiency improvements finds that energyconsumption will likely exceed the goal by 26.12 EJ, or 28 percent.Achievements of these goals will there fore require a more aggressivepolicy of encouraging energy efficiency.

  2. SASKATCHEWAN FORESTRY SECTOR OVERVIEW

    E-Print Network [OSTI]

    3% Other 1% Lumber Plywood & OSB Pulp & Paper 2005 2013 US 59% Canada 39% Japan 2% Change In Forest Branch · Timber Resource · Forest Industry Overview · Current Sales, Exports and Markets · Investment; ·Facilitate export market growth; ·Enhance industry competitiveness; ·Explore new forest products; ·Monitor

  3. Demand Response Enabling Technologies and Approaches for Industrial Facilities 

    E-Print Network [OSTI]

    Epstein, G.; D'Antonio, M.; Schmidt, C.; Seryak, J.; Smith, C.

    2005-01-01

    , there are also huge opportunities for demand response in the industrial sector. This paper describes some of the demand response initiatives that are currently active in New York State, explaining applicability of industrial facilities. Next, we discuss demand...

  4. Technologies and Policies to Improve Energy Efficiency in Industry

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01

    CO2 Emissions (MtCO2) Transport Residential Buildings Commercial Buildings Agriculture Agriculture Commercial Buildings Residential Buildings Transport Industry Source:

  5. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the National Pollutant Discharge Elimination System....

  6. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    the demand for energy from the supply. Vehicle efficiency isreductions in energy demand, rather than the supply of low-supply of low-carbon biofuels available for use in the transportation sector and other sectors of the energy

  7. ITP Petroleum Refining: Profile of the Petroleum Refining Industry in California: California Industries of the Future Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy (DOE) Industrial Technologies Program (ITP) established the Industries of the Future (IOF) program to increase energy efficiency, reduce waste production and to improve competitiveness, currently focusing on nine sectors.

  8. Estimated United States Transportation Energy Use 2005

    SciTech Connect (OSTI)

    Smith, C A; Simon, A J; Belles, R D

    2011-11-09

    A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

  9. Hepp and Speer Sectors within Modern Strategies of Sector Decomposition

    E-Print Network [OSTI]

    A. V. Smirnov; V. A. Smirnov

    2008-12-26

    Hepp and Speer sectors were successfully used in the sixties and seventies for proving mathematical theorems on analytically or/and dimensionally regularized and renormalized Feynman integrals at Euclidean external momenta. We describe them within recently developed strategies of introducing iterative sector decompositions. We show that Speer sectors are reproduced within one of the existing strategies.

  10. Industrial energy efficiency policy in China

    E-Print Network [OSTI]

    Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

    2001-01-01

    Economic Indicators," Energy Policy 25(7'-9): 727-744. X u ,Best Practice Energy Policies in the Industrial Sector, Mayand Intensity Change," Energy Policy 22(3): Sinton, J.E.

  11. Development Requirements for Advanced Industrial Heat Pumps 

    E-Print Network [OSTI]

    Chappell, R. N.; Priebe, S. J.; Bliem, C. J.; Mills, J. I.

    1985-01-01

    DOE is attempting to advance the use of heat pumps to save energy in industrial processes. The approach has emphasized developing better heat pump technology and transferring that technology to the private sector. DOE requires that heat pump...

  12. Industrial Energy Use and Energy Efficiency in Developing Countries 

    E-Print Network [OSTI]

    Price, L.; Martin, N.; Levine, M. D.; Worrell, E.

    1996-01-01

    The industrial sector accounts for over 50% of energy used in developing countries. Growth in this sector has been over 4.5% per year since 1980. Energy intensity trends for four energy-intensive sub-sectors (iron and steel, chemicals, building...

  13. Source sector and region contributions to BC and PM2.5 in Central Asia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kulkarni, S.; Sobhani, N.; Miller-Schulze, J. P.; Shafer, M. M.; Schauer, J. J.; Solomon, P. A.; Saide, P. E.; Spak, S. N.; Cheng, Y. F.; Denier van der Gon, H. A. C.; et al

    2015-02-18

    Particulate matter (PM) mass concentrations, seasonal cycles, source sector, and source region contributions in Central Asia (CA) are analyzed for the period April 2008–July 2009 using the Sulfur Transport and dEposition Model (STEM) chemical transport model and modeled meteorology from the Weather Research and Forecasting (WRF) model. Predicted aerosol optical depth (AOD) values (annual mean value ~0.2) in CA vary seasonally, with lowest values in the winter. Surface PM2.5 concentrations (annual mean value ~10 ?g m-3) also exhibit a seasonal cycle, with peak values and largest variability in the spring/summer, and lowest values and variability in the winter (hourly valuesmore »from 2 to 90 ?g m-3). Surface concentrations of black carbon (BC) (mean value ~0.1 ?g m-3) show peak values in the winter. The simulated values are compared to surface measurements of AOD as well as PM2.5, PM10, BC, and organic carbon (OC) mass concentrations at two regional sites in Kyrgyzstan (Lidar Station Teplokluchenka (LST) and Bishkek). The predicted values of AOD and PM mass concentrations and their seasonal cycles are fairly well captured. The carbonaceous aerosols are underpredicted in winter, and analysis suggests that the winter heating emissions are underestimated in the current inventory. Dust, from sources within and outside CA, is a significant component of the PM mass and drives the seasonal cycles of PM and AOD. On an annual basis, the power and industrial sectors are found to be the most important contributors to the anthropogenic portion of PM2.5. Residential combustion and transportation are shown to be the most important sectors for BC. Biomass burning within and outside the region also contributes to elevated PM and BC concentrations. The analysis of the transport pathways and the variations in particulate matter mass and composition in CA demonstrates that this region is strategically located to characterize regional and intercontinental transport of pollutants. Aerosols at these sites are shown to reflect dust, biomass burning, and anthropogenic sources from Europe; South, East, and Central Asia; and Russia depending on the time period. Simulations for a reference 2030 emission scenario based on pollution abatement measures already committed to in current legislation show that PM2.5 and BC concentrations in the region increase, with BC growing more than PM2.5 on a relative basis. This suggests that both the health impacts and the climate warming associated with these particles may increase over the next decades unless additional control measures are taken. The importance of observations in CA to help characterize the changes that are rapidly taking place in the region are discussed.« less

  14. Source sector and region contributions to BC and PM??? in Central Asia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kulkarni, S.; Sobhani, N.; Miller-Schulze, J. P.; Shafer, M. M.; Schauer, J. J.; Solomon, P. A.; Saide, P. E.; Spak, S. N.; Cheng, Y. F.; Denier van der Gon, H. A. C.; et al

    2015-01-01

    Particulate matter (PM) mass concentrations, seasonal cycles, source sector, and source region contributions in Central Asia (CA) are analyzed for the period April 2008–July 2009 using the Sulfur Transport and dEposition Model (STEM) chemical transport model and modeled meteorology from the Weather Research and Forecasting (WRF) model. Predicted aerosol optical depth (AOD) values (annual mean value ~0.2) in CA vary seasonally, with lowest values in the winter. Surface PM??? concentrations (annual mean value ~10 ?g m?³) also exhibit a seasonal cycle, with peak values and largest variability in the spring/summer, and lowest values and variability in the winter (hourly valuesmore »from 2 to 90 ?g m?³). Surface concentrations of black carbon (BC) (mean value ~0.1 ?g m?³) show peak values in the winter. The simulated values are compared to surface measurements of AOD as well as PM???, PM??, BC, and organic carbon (OC) mass concentrations at two regional sites in Kyrgyzstan (Lidar Station Teplokluchenka (LST) and Bishkek). The predicted values of AOD and PM mass concentrations and their seasonal cycles are fairly well captured. The carbonaceous aerosols are underpredicted in winter, and analysis suggests that the winter heating emissions are underestimated in the current inventory. Dust, from sources within and outside CA, is a significant component of the PM mass and drives the seasonal cycles of PM and AOD. On an annual basis, the power and industrial sectors are found to be the most important contributors to the anthropogenic portion of PM???. Residential combustion and transportation are shown to be the most important sectors for BC. Biomass burning within and outside the region also contributes to elevated PM and BC concentrations. The analysis of the transport pathways and the variations in particulate matter mass and composition in CA demonstrates that this region is strategically located to characterize regional and intercontinental transport of pollutants. Aerosols at these sites are shown to reflect dust, biomass burning, and anthropogenic sources from Europe; South, East, and Central Asia; and Russia depending on the time period. Simulations for a reference 2030 emission scenario based on pollution abatement measures already committed to in current legislation show that PM??? and BC concentrations in the region increase, with BC growing more than PM??? on a relative basis. This suggests that both the health impacts and the climate warming associated with these particles may increase over the next decades unless additional control measures are taken. The importance of observations in CA to help characterize the changes that are rapidly taking place in the region are discussed.« less

  15. Electrotechnologies in Process Industries 

    E-Print Network [OSTI]

    Amarnath, K. R.

    1989-01-01

    applications of innovative electrotechnologies in these sectors. APPLICATIONS Electricity is predominantly used in three ways in process industries: 1. Motor Drives 2. Process Heating 3. Electrochemical Processes Motor drives are mainly used in prime..., infrared, and ultraviolet heating have found a variety of applications, and more are under development. ElectrOChemical processes for separation and synthesis (such as Chlor-Alkali production) are significant users of electricity. New processes...

  16. Mixed financial trend for global forest products sector continues Written by PricewaterhouseCoopers

    E-Print Network [OSTI]

    annual Global Forest, Paper and Packaging Industry Survey the three top regions in terms of return the industry's 10 - 12% target range. "The global forest, paper and packaging products sector continues forest and paper industry, and author of the PwC survey. "Mills with the lowest production cost

  17. Pollution prevention in the electronics industry

    SciTech Connect (OSTI)

    Yazdani, A. [Pollution Prevention International, Inc., Brea, CA (United States)

    1995-09-01

    The electronics industry manufacturers components and electronics packages. The demand for industry products is expected to go above $370 billion in the US by the mid-90s. The industry is comprised of three major sectors: printed circuit board (PCB) fabrication, PCB assembly, and semiconductor manufacturing. This chapter describes the industrial processes and pollution prevention measures related to PCB assembly, and to a lesser extent the semiconductor manufacturing process.

  18. Energy Department Awards $45 Million to Deploy Advanced Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is helping to build a strong 21st century transportation sector that cuts harmful pollution, creates jobs and leads to a more sustainable energy future," said Energy Secretary...

  19. Technology Mapping of the Renewable Energy, Buildings and Transport...

    Open Energy Info (EERE)

    Technology Mapping of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects Jump to: navigation, search Tool Summary LAUNCH TOOL...

  20. Mainstreaming Transport Co-benefits Approach: A Guide to Evaluating...

    Open Energy Info (EERE)

    Focus Area: Multi-sector Impact Evaluation Topics: Best Practices Website: pub.iges.or.jpmodulesenvirolibupload3209attachtransport%20co-ben Transport Toolkit Region(s):...

  1. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    aviation, marine and rail sectors. Energy use, broken out bysuch as aviation and marine. California’s Energy Future -and marine. We believe that the CEF transportation energy

  2. Chemical Sector Analysis | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene NetworkNuclear SecurityChattan ooga EagNISACChemical Sector

  3. Searching for Dark Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcomingmagnetoresistance |Komlov,Search / Search Search EnterDark Sector

  4. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    shown as changes in oil demand for elec- trical energyindustry fuel. ity Oil demand is specified by four majorft /year) II. Annual Oil Demand (10 Transportation Industry

  5. Managing steam: An engineering guide to industrial, commercial, and utility systems

    SciTech Connect (OSTI)

    Makansi, J.

    1985-01-01

    This book is a guide to steam production, utilization, handling, transport, system optimization, and condensation and recovery. This book incudes a description of how steam, condensate, and hot water are used in various industrial, commercial, institutional, and utility sectors and explains how steam is generated and distributed. Waste-heat recovery, fluidized-bed boilers, and cogeneration systems and boiler control theory are discussed. The book also describes different types of valves, valve components, regulators, steam traps, and metering devices available for managing steam and condensate and discusses maintaining steam systems for optimum service and longer life.

  6. DRAFT DRAFT Electricity and Natural Gas Sector Description

    E-Print Network [OSTI]

    DRAFT DRAFT Electricity and Natural Gas Sector Description For Public Distribution AB 32 Scoping of electricity and natural gas; including electricity generation, combined heat and power, and electricity and natural gas end uses for residential and commercial purposes. Use of electricity and/or gas for industrial

  7. Energy Sector Cybersecurity Framework Implementation Guidance

    Broader source: Energy.gov (indexed) [DOE]

    FOR PUBLIC COMMENT SEPTEMBER, 2014 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE Energy Sector Cybersecurity Framework Implementation Guidance Table of Contents...

  8. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector. Technical report twelve: Economic analysis of alternative uses for Alaskan North Slope natural gas

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    As part of the Altemative Fuels Assessment, the Department of Energy (DOE) is studying the use of derivatives of natural gas, including compressed natural gas and methanol, as altemative transportation fuels. A critical part of this effort is determining potential sources of natural gas and the economics of those sources. Previous studies in this series characterized the economics of unutilized gas within the lower 48 United States, comparing its value for methanol production against its value as a pipelined fuel (US Department of Energy 1991), and analyzed the costs of developing undeveloped nonassociated gas reserves in several countries (US Department of Energy 1992c). This report extends those analyses to include Alaskan North Slope natural gas that either is not being produced or is being reinjected. The report includes the following: A description of discovered and potential (undiscovered) quantities of natural gas on the Alaskan North Slope. A discussion of proposed altemative uses for Alaskan North Slope natural gas. A comparison of the economics of the proposed alternative uses for Alaskan North Slope natural gas. The purpose of this report is to illustrate the costs of transporting Alaskan North Slope gas to markets in the lower 48 States as pipeline gas, liquefied natural gas (LNG), or methanol. It is not intended to recommend one alternative over another or to evaluate the relative economics or timing of using North Slope gas in new tertiary oil recovery projects. The information is supplied in sufficient detail to allow incorporation of relevant economic relationships (for example, wellhead gas prices and transportation costs) into the Altemative Fuels Trade Model, the analytical framework DOE is using to evaluate various policy options.

  9. Industrial Relations

    E-Print Network [OSTI]

    Ulman, Lloyd

    1987-01-01

    S. Tannenbaum. Madison: Industrial 1955. The Rise of the N ai a Working Paper 8733 INDUSTRIAL RELATIONS L l o y d UlmanEconomic Theory and Doctrine INDUSTRIAL RELATIONS Two great

  10. Industrial Engineering Industrial Advisory Board

    E-Print Network [OSTI]

    Gelfond, Michael

    Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

  11. Hybrid modeling of industrial energy consumption and greenhouse gas emissions with an application to Canada

    E-Print Network [OSTI]

    Hybrid modeling of industrial energy consumption and greenhouse gas emissions with an application explore the implications for Canada's industrial sector of an economy-wide, compulsory greenhouse gas of the Canadian industrial sector to GHG charges implemented throughout the economy, starting in the year 2006

  12. Energy Sector Market Analysis

    SciTech Connect (OSTI)

    Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

    2006-10-01

    This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

  13. Quantitative analysis of alternative transportation under environmental constraints

    E-Print Network [OSTI]

    Sandoval López, Reynaldo

    2006-01-01

    This thesis focuses on the transportation sector and its role in emissions of carbon dioxide (CO2) and conventional pollutant emissions. Specifically, it analyzes the potential for hydrogen based transportation, introducing ...

  14. Climate Action Plans and Long-Range Transportation

    E-Print Network [OSTI]

    Bertini, Robert L.

    Climate Action Plans and Long-Range Transportation Plans in the Pacific Northwest: A Review Climate Change and Impacts Mitigation versus Adaptation Impacts of Climate Change: Nation & the Pacific Northwest Climate Change Planning Efforts Transportation Sector Response - Survey Recommendations Continued

  15. Preliminary Analysis Framework for State Sustainable Transportation system

    E-Print Network [OSTI]

    Naganathan, Hariharan

    2013-12-31

    Sustainable practices have become the cornerstone of the transportation sector, and widely adopted by many states' transportation agencies. The nerve center of the economic development today circles around resource utilization and energy use...

  16. FEATURED SECTOR The New Zealand Sectors Report 2013

    E-Print Network [OSTI]

    Report consists of the Main Report covering all sectors in the economy and six additional, separate) 3 High technology manufacturing 4 Construction 5 Petroleum and minerals 6 Tourism (this report) 7 emerging high-value sectors such as information technology services and high- technology manufacturing

  17. Turkey energy and environmental review - Task 7 energy sector modeling : executive summary.

    SciTech Connect (OSTI)

    Conzelmann, G.; Koritarov, V.; Decision and Information Sciences

    2008-02-28

    Turkey's demand for energy and electricity is increasing rapidly. Since 1990, energy consumption has increased at an annual average rate of 4.3%. As would be expected, the rapid expansion of energy production and consumption has brought with it a wide range of environmental issues at the local, regional and global levels. With respect to global environmental issues, Turkey's carbon dioxide (CO2) emissions have grown along with its energy consumption. Emissions in 2000 reached 211 million metric tons. With GDP projected to grow at over 6% per year over the next 25 years, both the energy sector and the pollution associated with it are expected to increase substantially. This is expected to occur even if assuming stricter controls on lignite and hard coal-fired power generation. All energy consuming sectors, that is, power, industrial, residential, and transportation, will contribute to this increased emissions burden. Turkish Government authorities charged with managing the fundamental problem of carrying on economic development while protecting the environment include the Ministry of Environment (MOE), the Ministry of Energy and Natural Resources (MENR), and the Ministry of Health, as well as the Turkish Electricity Generation & Transmission Company (TEAS). The World Bank, working with these agencies, is planning to assess the costs and benefits of various energy policy alternatives under an Energy and Environment Review (EER). Eight individual studies have been conducted under this activity to analyze certain key energy technology issues and use this analysis to fill in the gaps in data and technical information. This will allow the World Bank and Turkish authorities to better understand the trade-offs in costs and impacts associated with specific policy decisions. The purpose of Task 7-Energy Sector Modeling, is to integrate information obtained in other EER tasks and provide Turkey's policy makers with an integrated systems analysis of the various options for addressing the various energy and environmental concerns. The work presented in this report builds on earlier analyses presented at the COP 6 conference in Bonn.

  18. Private Sector Initiative Between the U.S. and Japan

    SciTech Connect (OSTI)

    1998-09-30

    OAK-A258 Private Sector Initiative Between the U.S. and Japan. This report for calendar years 1993 through September 1998 describes efforts performed under the Private Sector Initiatives contract. The report also describes those efforts that have continued with private funding after being initiated under this contract. The development of a pyrochemical process, called TRUMP-S, for partitioning actinides from PUREX waste, is described in this report. This effort is funded by the Central Research Institute of Electric Power Industry (CRIEPI), KHI, the United States Department of Energy, and Boeing.

  19. HTGR Industrial Application Functional and Operational Requirements

    SciTech Connect (OSTI)

    L. E. Demick

    2010-08-01

    This document specifies the functional and performance requirements to be used in the development of the conceptual design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to a typical industrial facility. These requirements were developed from collaboration with industry and HTGR suppliers over the preceding three years to identify the energy needs of industrial processes for which the HTGR technology is technically and economically viable. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a conceptual design of the plant that will serve the broadest range of industrial applications.

  20. Fuel cells at the crossroads : attitudes regarding the investment climate for the US fuel cell industry and a projection of industry job creation potential.

    SciTech Connect (OSTI)

    NONE

    2004-05-27

    Fuel Cells at the Crossroads examines financial community and fuel cell industry views on the investment climate for the fuel cell industry. It also explores the investment history of the US fuel cell industry and projects potential future job creation. The scope of the study included the transportation, stationary power generation and portable sectors. Interviews were conducted with industry and financial experts. The results of the interviews provide a snapshot of industry perspective just prior to President Bush's endorsement of a hydrogen economy in his 2003 State of the Union address. In April 2003, we conducted a spot check to test whether the State of the Union address had changed opinions. We found little change among the financial and investment communities, but some guarded new optimism among industry leaders. The general outlook of our sample was cautiously hopeful. There is no question, however, that the current climate is one of great uncertainty, particularly when compared with the enthusiasm that existed just a few years ago. Among other things: (1) Respondents generally believed that the energy industry will undergo profound change over the next few decades, resulting in some form of hydrogen economy. They acknowledged, however, that huge technology and cost hurdles must be overcome to achieve a hydrogen economy. (2) Respondents were worried about the future of the industry, including timeframes for market development, foreign competition, technical problems, and the current poor investment environment. (3) Respondents generally believed that the US federal government must provide strong leadership to ensure American leadership in the fuel cell industry. They believe that governments in Europe and Japan are highly committed to fuel cells, thus providing European and Japanese companies with significant advantages. (4) Respondents frequently mentioned several areas of concern, including the situation in Iraq, the increased commitment to fuel cells in Europe, and recent actions by Toyota and Honda.

  1. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    1996. COREX, Revolution in Ironmaking, Linz, Austria:VAI. ;GJ/t Material Preparation Ironmaking Sintering PelletizingGJ/t Material Preparation Ironmaking Sintering Pelletizing

  2. Industrial Sector Energy Efficiency Modeling (ISEEM) Framework Documentation

    E-Print Network [OSTI]

    Karali, Nihan

    2014-01-01

    of the Edmonds-Reilly Model to Energy Related Greenhouse GasCapros, P. , 1993, The PRIMES Energy System Model SummaryModel for Studying Economy-Energy-Environment Interactions,

  3. Efficient Energy Utilization in the Industrial Sector - Case Studies 

    E-Print Network [OSTI]

    Davis, S. R.

    1984-01-01

    The need for more efficient use of the world's energy resources has become one of the major concerns of technology today. Over the past 50 years, during which our population has doubled, our requirements for energy has quadrupled. Recent figures...

  4. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    1 2. World Best Practice Energy IntensityBrussels: IISI. Best practice energy use is also determinedalong with the best practice energy intensity value for

  5. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    Best Practice Final and Primary Energy Intensity Values forWorld Best Practice Primary Energy Intensity Values forRecovered Pulp Note: Primary energy includes electricity

  6. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    5 2.1.1 Blast Furnace – BasicOxygen Furnace Route……………………….Basic Oxygen Furnace………………………… 10 2.1.3 Direct Reduced

  7. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    in a back-pressure steam turbine to generate electricity (compressor uses a steam turbine, using internally generatedwith a gas turbine, producing steam and electricity. The hot

  8. Designing Effective State Programs for the Industrial Sector...

    Energy Savers [EERE]

    6,420 trillion British thermal units of primary energy (including combined heat and power), according to a comprehensive 2009 analysis by McKinsey & Company. The guide...

  9. Industry Trends in the U.S. Wind Energy Sector

    Broader source: Energy.gov [DOE]

    Electricity supplied by wind energy exceeded 4.5 percent in the U.S. in 2013 and has the potential to reach as much as 35 percent by 2050. Join The Pew Charitable Trusts for a webinar with the...

  10. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    ammonia is made from heavy oil and coal, which is much lessfeedstock, followed by heavy oil, which requires an averagepartial oxidization of heavy fuel oil, gasification of coal,

  11. Greenhouse Gas Programs, Energy Efficiency, and the Industrial Sector 

    E-Print Network [OSTI]

    Zhou, A.; Tutterow, V.; Harris, J.

    2009-01-01

    The United States has made significant progress in reducing total energy use through energy efficiency improvements over the past decade, yet the United States still ranks as the highest absolute greenhouse gas (GHG) emitter in the world with 23...

  12. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    Cement Portland Cement Fly Ash Cement Blast Furnace SlagCement Portland Cement Fly Ash Cement Blast Furnace SlagCEM II), up to 35% can be fly ash and 65% clinker; for blast

  13. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    15 2.1.5 Casting……………………………………………………………….. 16 2.1.6 Rolling20 2.2.4 Ingot Casting…………………………………………………………. 20 2.2.5smelting, and ingot casting. This assessment excludes

  14. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    iron and steel, petroleum and petrochemical, chemical, non-ferrous metal, building materials, pulp and paper, electricity production, coal mining,

  15. United States Industrial Sector Energy End Use Analysis

    E-Print Network [OSTI]

    Shehabi, Arman

    2014-01-01

    by end uses (e.g. , boilers, process, electric drives,MECS 2002, and MECS 1998 data. Indirect Uses-Boiler FuelConventional Boiler Use CHP and/or Cogeneration Process

  16. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    feedstock, followed by heavy oil, which requires an averageammonia is made from heavy oil and coal, which is much lesspartial oxidization of heavy fuel oil, gasification of coal,

  17. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    steam cracking and alternative processes,” Energy 31 (2006),steam cracking and alternative processes,” Energy 31 (2006),steam cracking and alternative processes,” Energy 31 (2006),

  18. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    feedstock would use a coal gasifier to convert the coal tosynthesis gas. Most coal gasifier-based ammonia plants areof a modern entrained bed gasifier, selexol gas cleanup and

  19. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    energy includes electricity generation, transmission, andenergy includes electricity generation, transmission, andenergy includes electricity generation, transmission, and

  20. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    products such as propylene, butadiene and aromatics are co-ethylene, propylene, and butadiene) are separated usingHVC Propylene – HVC Butadiene – HVC Aromatics and C4+ –HVC

  1. Types of Nuclear Industry Jobs Commercial and Government Sectors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two Electron Holes in HematiteType Ia SupernovaeTypes of

  2. Industrial Sector Demand Module of the National Energy Modeling System

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYear JanDecade Year-0per6,167,371 6,826,1925)

  3. Designing Effective State Programs for the Industrial Sector - New SEE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us|of EnergySmall BusinessDesign and

  4. Coal Industry Annual 1995

    SciTech Connect (OSTI)

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  5. Coal industry annual 1996

    SciTech Connect (OSTI)

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  6. Solar-Assisted Technology Provides Heat for California Industries

    E-Print Network [OSTI]

    Solar-Assisted Technology Provides Heat for California Industries Industrial/Agriculture/Water End 2011 The Issue Solar thermal technology focuses the Sun's rays to heat water, and is a promising renewable resource for California's industrial sector. Commercially available solar water heating

  7. Understanding Sectoral Labor Market Dynamics: An Equilibrium Analysis of the Oil and Gas Field Services

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    Understanding Sectoral Labor Market Dynamics: An Equilibrium Analysis of the Oil and Gas Field examines the response of employment and wages in the US oil and gas ...eld services industry to changes the dynamic response of wages and employment in the U.S. Oil and Gas Field Services (OGFS) industry to changes

  8. Characteristics of spot-market rate indexes for truckload transportation

    E-Print Network [OSTI]

    Bignell, Andrew (Andrew Souglas)

    2013-01-01

    In the truckload transportation industry in the United States, a number of indexes are published that attempt to measure changes in rates, but no single index has emerged as an industry standard. Industry participants, ...

  9. Known Challenges Associated with the Production, Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Known Challenges Associated with the Production, Transportation, Storage and Usage of Pyrolysis Oil in Residential and Industrial Settings Known Challenges Associated with the...

  10. Program Program Organization Country Region Topic Sector Sector

    Open Energy Info (EERE)

    Technology characterizations Climate Energy Renewable Energy Economic Development Energy Efficiency Greenhouse Gas Grid Assessment and Integration Industry People and Policy...

  11. Coal industry annual 1997

    SciTech Connect (OSTI)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  12. Energy Sector Cybersecurity Framework Implementation Guidance

    Broader source: Energy.gov (indexed) [DOE]

    JANUARY 2015 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY Energy Sector...

  13. Federal Sector Renewable Energy Project Implementation: ""What...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by...

  14. Federal Sector Renewable Energy Project Implementation: ""What...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sector Renewable Energy Project Implementation: ""What's Working and Why Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by Robert...

  15. Market study for direct utilization of geothermal resources by selected sectors of economy

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    A comprehensive analysis is presented of industrial markets potential for direct use of geothermal energy by a total of six industry sectors: food and kindred products; tobacco manufactures; textile mill products; lumber and wood products (except furniture); chemicals and allied products; and leather and leather products. A brief statement is presented regarding sectors of the economy and major manufacturing processes which can readily utilize direct geothermal energy. Previous studies on plant location determinants are summarized and appropriate empirical data provided on plant locations. Location determinants and potential for direct use of geothermal resources are presented. The data was gathered through interviews with 30 senior executives in the six sectors of economy selected for study. Probable locations of plants in geothermal resource areas and recommendations for geothermal resource marketing are presented. Appendix A presents factors which impact on industry location decisions. Appendix B presents industry executives interviewed during the course of this study. (MHR)

  16. Electricity savings potentials in the residential sector of Bahrain

    SciTech Connect (OSTI)

    Akbari, H.; Morsy, M.G.; Al-Baharna, N.S.

    1996-08-01

    Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to the peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.

  17. Sustainable Transport

    E-Print Network [OSTI]

    Webber, Melvin

    2006-01-01

    THOUGHT PIECE Sustainable Transport by Melvin M. Webberwant to sustain any mode of transport only if we judge it todraconian in rejecting transport modes that have failed in

  18. Coal sector profile

    SciTech Connect (OSTI)

    Not Available

    1990-06-05

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  19. Expanding the Industrial Assessment Center Program: Building an Industrial Efficiency Workforce 

    E-Print Network [OSTI]

    Trombley, D.; Elliott, R. N.; Chittum, A.

    2009-01-01

    the Industrial Assessment Center Program: Building an Industrial Efficiency Workforce Daniel Trombley Engineering Associate R. Neal Elliott, Ph.D., P.E. Associate Director of Research American Council for an Energy-Efficient Economy Washington... to technical information and trained workforce. One of the most successful programs for achieving energy efficiency savings in the manufacturing sector is the US Department of Energy (DOE)'s Industrial Assessment Center (IAC) program. In addition...

  20. High-Tech Industries in California: Panacea or Problem?

    E-Print Network [OSTI]

    Raphael, Stephen; Brown, Claire; Campbell, Ben

    2001-01-01

    of its employees are high-tech. We should also note that toemployment growth in high-tech industries, such as computerand speculate that as the high-tech sector expands, wages

  1. DOE and Industry Showcase New Control Systems Security Technologies...

    Office of Environmental Management (EM)

    efforts. Industry leaders worked closely with national laboratories in the National SCADA Test Bed and other private-sector partners to develop, test, and gather end-user input...

  2. Barriers to Industrial Energy Efficiency - Report to Congress, June 2015

    SciTech Connect (OSTI)

    2015-06-01

    This report examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This report also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  3. Barriers to Industrial Energy Efficiency - Study (Appendix A), June 2015

    SciTech Connect (OSTI)

    2015-06-01

    This study examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This study also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  4. Cross-sector policy research: insights from the UK energy and transport sectors

    E-Print Network [OSTI]

    Peake, Stephen Robert

    1993-10-26

    , to agricultural policy, imbuing their development with whatever dominant political and social culture characterises them. Yet from another point of view, penal reform, arms technology development, and farmers' agricultural subsidies have very little in common... ). 4. Policy as decisio1lS of govemment. In 'moments of choice' governments embody certain 'decisions' in legislation. For example, the British Government's early policy for nuclear power is embodied in the White Paper 'A Programme for Nuclear Power...

  5. FY 2016 EERE Budget Webinar—Sustainable Transportation Sector

    Broader source: Energy.gov [DOE]

    The Energy Department’s Office of Energy Efficiency and Renewable Energy (EERE) hosted a webinar series featuring our deputy assistant secretaries and the technology office directors as they dove deep into EERE’s fiscal year (FY) 2016 budget request

  6. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Post-2012 Climate Instruments in the transport sector | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) |Texas: EnergyOklahoma:Ewen,RiskInformation Post-2012

  8. Reducing Emissions Through Sustainable Transport: Proposal for a Sectoral

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergyRedfield Campus GeothermalApproach | Open Energy

  9. Annual Energy Outlook 2015 Modeling updates in the Transportation sector

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32Elements)Grossc.:OctoberElectricity1

  10. Rail Coal Transportation Rates to the Electric Power Sector

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand Cubic Feet)698 1.873 -CoalRail

  11. Coal Transportation Rates to the Electric Power Sector

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948CaliforniaFeet) (Million

  12. DOE/EIA-M070(2010) Transportation Sector

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul AugAdditions1 0 0 0 09)6)8)10)

  13. Copenhagen Accord NAMA Submissions Implications for the Transport Sector |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,CoalConcordiaConsumer Connection JumpCooperbioOpen Energy

  14. Policies to Reduce Emissions from the Transportation Sector | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC JumpPhono SolarPlexus Sol JumpLowLow

  15. Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar HydroElectricColorado: EnergyLamartine Navarro

  16. Technologies for Climate Change Mitigation: Transport Sector | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarketMemberI PLLC Jump

  17. Transitioning the Transportation Sector: Exploring the Intersection of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternational Affairs,Department ofARPA-E Top 10Hydrogen Fuel Cell and Natural Gas

  18. Utah Clean Cities Transportation Sector Petroleum Reduction Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobs SearchWater-Saving Projects | DepartmentProgram |

  19. Utah Clean Cities Transportation Sector Petroleum Reduction Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobs SearchWater-Saving Projects | DepartmentProgram |Program

  20. Utah Clean Cities Transportation Sector Petroleum Reduction Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobs SearchWater-Saving Projects | DepartmentProgram

  1. The Transportation Sector Model of the National Energy Modeling System

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672(MillionFeet) Oil4) The

  2. The Transportation Sector Model of the National Energy Modeling System

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672(MillionFeet) Oil4) The5) The

  3. Transportation Sector Module of the National Energy Modeling System

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of the National Energy Modeling System: Model

  4. Supply chain network optimization : low volume industrial chemical product

    E-Print Network [OSTI]

    Dacha, Fred (Frederick Omondi)

    2013-01-01

    The chemical industry is a highly competitive and low margin industry. Chemical transportation faces stringent safety regulations meaning that Cost-To-Serve (C2S), costs associated with products net flow from manufacturers ...

  5. Electronic Vehicle Identification: Industry Standards, Performance, and Privacy Issues

    E-Print Network [OSTI]

    Texas at Austin, University of

    0-5217-P2 Electronic Vehicle Identification: Industry Standards, Performance, and Privacy Issues Administration and the Texas Department of Transportation. Abstract: In this research product, industry standards functions. Keywords: Tolling, electronic vehicle identification, DSRC, standards, performance, electronic

  6. Design of regulated velocity flow assurance device for petroleum industry 

    E-Print Network [OSTI]

    Yardi, Chaitanya Narendra

    2005-02-17

    ABSTRACT Design of Regulated Velocity Flow Assurance Device for the Petroleum Industry. (December 2004) Chaitanya Yardi, B.E., Gujarat University Chair of Advisory Committee: Dr. Reza Langari The petroleum industry faces problems in transportation of crude...

  7. Transportation Energy Futures Analysis Snapshot

    Broader source: Energy.gov [DOE]

    Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. The TEF project explores how combining multiple strategies could reduce GHG emissions and petroleum use by 80%. Researchers examined four key areas – lightduty vehicles, non-light-duty vehicles, fuels, and transportation demand – in the context of the marketplace, consumer behavior, industry capabilities, technology and the energy and transportation infrastructure. The TEF reports support DOE long-term planning. The reports provide analysis to inform decisions about transportation energy research investments, as well as the role of advanced transportation energy technologies and systems in the development of new physical, strategic, and policy alternatives.

  8. The Office of Industrial Technologies technical reports

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    The US Department of Energy's Office of Industrial Technologies (OIT) conducts R D activities which focus on the objectives of improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial energy conservation. The Office also conducts programs to reduce waste generation, increase recycling efforts, and improve the use of wastes as process feedstocks. An active program of technology transfer and education supports these activities and encourages adoption of new technologies. To accomplish these objectives OIT cooperates with the private sector to identify its technological needs and to share R D efforts. R D is conducted to the point that a new technology is shown to work and that it can be transferred to the private sector end-users. This bibliography contains information on all scientific and technical reports sponsored by the DOE Industrial Energy Conservation Program during the years 1988--1990.

  9. Process Intensification - Chemical Sector Focus

    Office of Environmental Management (EM)

    with opportunity space in 76 chemicals, petroleum refining, plastics, forest products, oil and gas production, and food industries 77 among others. PI innovation could deliver...

  10. Energy Sector Vulnerability to Climate Change: Adaptation Options to Increase Resilience (Presentation)

    SciTech Connect (OSTI)

    Newmark, R. L.; Bilello, D.; Macknick, J.; Hallet, K. C.; Anderson, R.; Tidwell, V.; Zamuda, C.

    2013-02-01

    The U.S. Department of Energy is conducting an assessment of vulnerabilities of the U.S. energy sector to climate change and extreme weather. Emphasizing peer reviewed research, it seeks to quantify vulnerabilities and identify specific knowledge or technology gaps. It draws upon a July 2012 workshop, ?Climate Change and Extreme Weather Vulnerability Assessment of the US Energy Sector?, hosted by the Atlantic Council and sponsored by DOE to solicit industry input.

  11. Solar energy research and development: federal and private sector roles

    SciTech Connect (OSTI)

    Not Available

    1982-09-01

    The Energy Research Advisory Board convened a Solar R and D Panel to determine the status of the solar industry and solar R and D in the United States and to recommend to DOE appropriate roles for the Federal and private sectors. The Panel's report acknowledges the new Administration policy reorienting the Federal role in energy development to long-term, high-risk, high-payoff R and D, and leaving commercialization to the private sector. The Panel's recommendations are further predicated on an assumption of continued, substantially reduced funding in the near-term. The Panel found that solar energy technologies have progressed significantly in the past 10 years and represent a group of highly promising energy options for the United States. However, it also found the solar industry to be in a precarious condition, fluctuating energy demand and prices, and uncertain Federal tax and regulatory policies. The Business Energy and Residential Tax Credits are essential to the near-term health of the solar industry. Commercialization has already begun for some solar technologies; for others, decreases in Federal funding will result in a slowdown or termination. The primary Federal roles in solar R and D should be in support of basic and applied research, high-risk, high-payoff technology development and other necessary research for which there are insufficient market incentives. The Federal Government should also move strongly to transfer technology to the private sector for near-commerical technologies. Large demonstration and commercialization projects cannot be justified for Federal funding under current economic conditions. These should be pursued by the private sector. The Panel examined seven technology areas and made specific findings and recommendations for each.

  12. Maritime Industry in Washington Washington's maritime industry is central to the economic and cultural history of the

    E-Print Network [OSTI]

    Van Volkenburgh, Elizabeth

    Maritime Industry in Washington Washington's maritime industry is central the backbone of our economy, providing the transportation critical to Washington to destination is a well-choreographed and profitable venture. Washington's Ferry System

  13. DOE Seeks Industry Participation for Engineering Services to...

    Broader source: Energy.gov (indexed) [DOE]

    cutting-edge technology in the effort to reduce greenhouse gas emissions by enabling nuclear energy to replace fossil fuels in the petrochemical and transportation industries....

  14. Infrastructure Requirements for an Expanded Fuel Ethanol Industry

    SciTech Connect (OSTI)

    Reynolds, Robert E.

    2002-01-15

    This report provides technical information specifically related to ethanol transportation, distribution, and marketing issues. This report required analysis of the infrastructure requirements for an expanded ethanol industry.

  15. Gasification world database 2007. Current industry status

    SciTech Connect (OSTI)

    NONE

    2007-10-15

    Information on trends and drivers affecting the growth of the gasification industry is provided based on information in the USDOE NETL world gasification database (available on the www.netl.doe.gov website). Sectors cover syngas production in 2007, growth planned through 2010, recent industry changes, and beyond 2010 - strong growth anticipated in the United States. A list of gasification-based power plant projects, coal-to-liquid projects and coal-to-SNG projects under consideration in the USA is given.

  16. Canonical Sectors and Evolution of Firms in the US Stock Markets

    E-Print Network [OSTI]

    Chachra, Ricky; Hayden, Lorien X; Ginsparg, Paul H; Sethna, James P

    2015-01-01

    A classification of companies into sectors of the economy is important for macroeconomic analysis and for investments into the sector-specific financial indices and exchange traded funds (ETFs). Major industrial classification systems and financial indices have historically been based on expert opinion and developed manually. Here we show how unsupervised machine learning can provide a more objective and comprehensive broad-level sector decomposition of stocks. An emergent low-dimensional structure in the space of historical stock price returns automatically identifies "canonical sectors" in the market, and assigns every stock a participation weight into these sectors. Furthermore, by analyzing data from different periods, we show how these weights for listed firms have evolved over time.

  17. Number of Natural Gas Industrial Transported Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb MarthroughFeet)Feet)

  18. Entity State Ownership Residential Commercial Industrial Transportation

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969Central RegionReportingElectricity GlossaryNaturalRevenue for

  19. State Residential Commercial Industrial Transportation Total

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand7,Year Jan Feb MarDecadeState

  20. Control Systems Security Center Comparison Study of Industrial Control System Standards against the Control Systems Protection Framework Cyber-Security Requirements

    SciTech Connect (OSTI)

    Robert P. Evans

    2005-09-01

    Cyber security standards, guidelines, and best practices for control systems are critical requirements that have been delineated and formally recognized by industry and government entities. Cyber security standards provide a common language within the industrial control system community, both national and international, to facilitate understanding of security awareness issues but, ultimately, they are intended to strengthen cyber security for control systems. This study and the preliminary findings outlined in this report are an initial attempt by the Control Systems Security Center (CSSC) Standard Awareness Team to better understand how existing and emerging industry standards, guidelines, and best practices address cyber security for industrial control systems. The Standard Awareness Team comprised subject matter experts in control systems and cyber security technologies and standards from several Department of Energy (DOE) National Laboratories, including Argonne National Laboratory, Idaho National Laboratory, Pacific Northwest National Laboratory, and Sandia National Laboratories. This study was conducted in two parts: a standard identification effort and a comparison analysis effort. During the standard identification effort, the Standard Awareness Team conducted a comprehensive open-source survey of existing control systems security standards, regulations, and guidelines in several of the critical infrastructure (CI) sectors, including the telecommunication, water, chemical, energy (electric power, petroleum and oil, natural gas), and transportation--rail sectors and sub-sectors. During the comparison analysis effort, the team compared the requirements contained in selected, identified, industry standards with the cyber security requirements in ''Cyber Security Protection Framework'', Version 0.9 (hereafter referred to as the ''Framework''). For each of the seven sector/sub-sectors listed above, one standard was selected from the list of standards identified in the identification effort. The requirements in these seven standards were then compared against the requirements given in the Framework. This comparison identified gaps (requirements not covered) in both the individual industry standards and in the Framework. In addition to the sector-specific standards reviewed, the team compared the requirements in the cross-sector Instrumentation, Systems, and Automation Society (ISA) Technical Reports (TR) 99 -1 and -2 to the Framework requirements. The Framework defines a set of security classes separated into families as functional requirements for control system security. Each standard reviewed was compared to this template of requirements to determine if the standard requirements closely or partially matched these Framework requirements. An analysis of each class of requirements pertaining to each standard reviewed can be found in the comparison results section of this report. Refer to Appendix A, ''Synopsis of Comparison Results'', for a complete graphical representation of the study's findings at a glance. Some of the requirements listed in the Framework are covered by many of the standards, while other requirements are addressed by only a few of the standards. In some cases, the scope of the requirements listed in the standard for a particular industry greatly exceeds the requirements given in the Framework. These additional families of requirements, identified by the various standards bodies, could potentially be added to the Framework. These findings are, in part, due to the maturity both of the security standards themselves and of the different industries current focus on security. In addition, there are differences in how communication and control is used in different industries and the consequences of disruptions via security breaches to each particular industry that could affect how security requirements are prioritized. The differences in the requirements listed in the Framework and in the various industry standards are due, in part, to differences in the level and purpose of the standards. While the requir

  1. State Demand-Side Management Programs Funds are Exploding! How Industries Can Best Use These Programs to Maximize Their Benefits 

    E-Print Network [OSTI]

    Nicol, J.

    2008-01-01

    Find out from an Industrial Program Manager that runs a successful state DSM/Energy Efficiency program for the industrial sector how to best find, use and benefit from these types of programs. The amount of money that ...

  2. Current and future industrial energy service characterizations

    SciTech Connect (OSTI)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-10-01

    Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

  3. Industry Economist

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will report to the Manager of Load Forecasting and Analysis of the Customer Services Organization. He/she serves as an industry economist engaged in load...

  4. Transportation Infrastructure

    Office of Environmental Management (EM)

    Infrastructure New Technologies * Potential need for dual-use casks * DOE should look toward industry & international communities for innovations * Industry unclear about delivery...

  5. China's Pathways to Achieving 40% ~ 45% Reduction in CO{sub 2} Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential

    SciTech Connect (OSTI)

    Zheng, Nina; Fridley, David; Zhou, Nan; Levine, Mark; Price, Lynn; Ke, Jing

    2011-09-30

    Achieving China’s goal of reducing its carbon intensity (CO{sub 2} per unit of GDP) by 40% to 45% percent below 2005 levels by 2020 will require the strengthening and expansion of energy efficiency policies across the buildings, industries and transport sectors. This study uses a bottom-up, end-use model and two scenarios -- an enhanced energy efficiency (E3) scenario and an alternative maximum technically feasible energy efficiency improvement (Max Tech) scenario – to evaluate what policies and technical improvements are needed to achieve the 2020 carbon intensity reduction target. The findings from this study show that a determined approach by China can lead to the achievement of its 2020 goal. In particular, with full success in deepening its energy efficiency policies and programs but following the same general approach used during the 11th Five Year Plan, it is possible to achieve 49% reduction in CO{sub 2} emissions per unit of GDP (CO{sub 2} emissions intensity) in 2020 from 2005 levels (E3 case). Under the more optimistic but feasible assumptions of development and penetration of advanced energy efficiency technology (Max Tech case), China could achieve a 56% reduction in CO{sub 2} emissions intensity in 2020 relative to 2005 with cumulative reduction of energy use by 2700 Mtce and of CO{sub 2} emissions of 8107 Mt CO{sub 2} between 2010 and 2020. Energy savings and CO{sub 2} mitigation potential varies by sector but most of the energy savings potential is found in energy-intensive industry. At the same time, electricity savings and the associated emissions reduction are magnified by increasing renewable generation and improving coal generation efficiency, underscoring the dual importance of end-use efficiency improvements and power sector decarbonization.

  6. Water Impacts of the Electricity Sector (Presentation)

    SciTech Connect (OSTI)

    Macknick, J.

    2012-06-01

    This presentation discusses the water impacts of the electricity sector. Nationally, the electricity sector is a major end-user of water. Water issues affect power plants throughout the nation.

  7. Coal Transportation Rate Sensitivity Analysis

    Reports and Publications (EIA)

    2005-01-01

    On December 21, 2004, the Surface Transportation Board (STB) requested that the Energy Information Administration (EIA) analyze the impact of changes in coal transportation rates on projected levels of electric power sector energy use and emissions. Specifically, the STB requested an analysis of changes in national and regional coal consumption and emissions resulting from adjustments in railroad transportation rates for Wyoming's Powder River Basin (PRB) coal using the National Energy Modeling System (NEMS). However, because NEMS operates at a relatively aggregate regional level and does not represent the costs of transporting coal over specific rail lines, this analysis reports on the impacts of interregional changes in transportation rates from those used in the Annual Energy Outlook 2005 (AEO2005) reference case.

  8. Energy efficiency programs and policies in the industrial sector in industrialized countries

    E-Print Network [OSTI]

    Galitsky, Christina; Price, Lynn; Worrell, Ernst

    2004-01-01

    Agency (IEA), 2002. Energy Policies of IEA Countries, 20021998. White Paper on Energy Policy, March 1999. White Paper,References: 1. Sustainable Energy Policy Network website:

  9. Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartment of Energy In Austin,IndianDepartment of

  10. Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector: Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartment of Energy In Austin,IndianDepartment ofExecutive Summary

  11. SEP Special Projects Report: Buildings Sector

    SciTech Connect (OSTI)

    2009-01-18

    The buildings section of this Sharing Success document describes SEP special projects in the buildings sector including funding.

  12. Sector Profiles of Significant Large CHP Markets, March 2004...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sector Profiles of Significant Large CHP Markets, March 2004 Sector Profiles of Significant Large CHP Markets, March 2004 In this 2004 report, three sectors were identified as...

  13. Making Africa's Power Sector Sustainable: An Analysis of Power...

    Open Energy Info (EERE)

    Making Africa's Power Sector Sustainable: An Analysis of Power Sector Reforms in Africa Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Making Africa's Power Sector...

  14. Workforce Training for the Electric Power Sector: Awards | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workforce Training for the Electric Power Sector: Awards Workforce Training for the Electric Power Sector: Awards List of Workforce Training Awards for the Electric Power Sector...

  15. Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave INFORME para la Sostenibilidad Energética y Ambiental, FUNSEAM. #12;Smart Grids: Sectores y actividades clave eléctrica y los diferentes sectores que forman la smart grid. 6 Figura 2. Evolución y previsión de

  16. Fact #560: March 2, 2009 The Transportation Petroleum Gap

    Broader source: Energy.gov [DOE]

    In 1989 the transportation sector petroleum consumption surpassed U.S. petroleum production for the first time, creating a gap that must be met with imports of petroleum. By the year 2030,...

  17. Fact #687: August 8, 2011 The Transportation Petroleum Gap

    Broader source: Energy.gov [DOE]

    In 1989 the transportation sector petroleum consumption surpassed U.S. petroleum production for the first time, creating a gap that must be met with imports of petroleum. By the year 2035,...

  18. Fact #609: February 8, 2010 The Transportation Petroleum Gap

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 1989 the transportation sector petroleum consumption surpassed U.S. petroleum production for the first time, creating a gap that must be met with imports of petroleum. By the year 2035,...

  19. The role of natural gas as a vehicle transportation fuel

    E-Print Network [OSTI]

    Murphy, Paul Jarod

    2010-01-01

    This thesis analyzes pathways to directly use natural gas, as compressed natural gas (CNG) or liquefied natural gas (LNG), in the transportation sector. The thesis focuses on identifying opportunities to reduce market ...

  20. Changing Trends in the Bulk Chemicals and Pulp and Paper Industries (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    Compared with the experience of the 1990s, rising energy prices in recent years have led to questions about expectations of growth in industrial output, particularly in energy-intensive industries. Given the higher price trends, a review of expected growth trends in selected industries was undertaken as part of the production of Annual Energy Outlook 2005 (AEO). In addition, projections for the industrial value of shipments, which were based on the Standard Industrial Classification (SIC) system in AEO2004, are based on the North American Industry Classification System (NAICS) in AEO2005. The change in industrial classification leads to lower historical growth rates for many industrial sectors. The impacts of these two changes are highlighted in this section for two of the largest energy-consuming industries in the U.S. industrial sector-bulk chemicals and pulp and paper.

  1. Singlet Portal to the Hidden Sector

    E-Print Network [OSTI]

    Clifford Cheung; Yasunori Nomura

    2010-08-30

    Ultraviolet physics typically induces a kinetic mixing between gauge singlets which is marginal and hence non-decoupling in the infrared. In singlet extensions of the minimal supersymmetric standard model, e.g. the next-to-minimal supersymmetric standard model, this furnishes a well motivated and distinctive portal connecting the visible sector to any hidden sector which contains a singlet chiral superfield. In the presence of singlet kinetic mixing, the hidden sector automatically acquires a light mass scale in the range 0.1 - 100 GeV induced by electroweak symmetry breaking. In theories with R-parity conservation, superparticles produced at the LHC invariably cascade decay into hidden sector particles. Since the hidden sector singlet couples to the visible sector via the Higgs sector, these cascades necessarily produce a Higgs boson in an order 0.01 - 1 fraction of events. Furthermore, supersymmetric cascades typically produce highly boosted, low-mass hidden sector singlets decaying visibly, albeit with displacement, into the heaviest standard model particles which are kinematically accessible. We study experimental constraints on this broad class of theories, as well as the role of singlet kinetic mixing in direct detection of hidden sector dark matter. We also present related theories in which a hidden sector singlet interacts with the visible sector through kinetic mixing with right-handed neutrinos.

  2. Energy Efficiency Opportunities in the Stone and Asphalt Industry 

    E-Print Network [OSTI]

    Moray, S.; Throop, N.; Seryak, J.; Schmidt, C.; Fisher, C.; D'Antonio, M.

    2006-01-01

    of locations use underground mines. Mining methods involve removing the overburden to extract the underlying rock deposits. Tricone rotary drills, long-hole percussion drills, and churn drills are used to create the blast holes in the rocks. Blasting... Energy & Resource Solutions, Inc. Haverhill, MA Abstract The highly energy-intensive stone mining and crushing industry, grouped with other mining industries, has been one of the focal sectors of the US Department of Energy’s Industries...

  3. Dissipative hidden sector dark matter

    E-Print Network [OSTI]

    R. Foot; S. Vagnozzi

    2014-12-15

    A simple way of explaining dark matter without modifying known Standard Model physics is to require the existence of a hidden (dark) sector, which interacts with the visible one predominantly via gravity. We consider a hidden sector containing two stable particles charged under an unbroken $U(1)^{'}$ gauge symmetry, hence featuring dissipative interactions. The massless gauge field associated with this symmetry, the dark photon, can interact via kinetic mixing with the ordinary photon. In fact, such an interaction of strength $\\epsilon \\sim 10 ^{-9}$ appears to be necessary in order to explain galactic structure. We calculate the effect of this new physics on Big Bang Nucleosynthesis and its contribution to the relativistic energy density at Hydrogen recombination. We then examine the process of dark recombination, during which neutral dark states are formed, which is important for large-scale structure formation. Galactic structure is considered next, focussing on spiral and irregular galaxies. For these galaxies we modelled the dark matter halo (at the current epoch) as a dissipative plasma of dark matter particles, where the energy lost due to dissipation is compensated by the energy produced from ordinary supernovae (the core-collapse energy is transferred to the hidden sector via kinetic mixing induced processes in the supernova core). We find that such a dynamical halo model can reproduce several observed features of disk galaxies, including the cored density profile and the Tully-Fisher relation. We also discuss how elliptical and dwarf spheroidal galaxies could fit into this picture. Finally, these analyses are combined to set bounds on the parameter space of our model, which can serve as a guideline for future experimental searches.

  4. Cross-sector Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding in Actinide SandwichCray eraSkillsCross-Sector Sign In

  5. Private Sector | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)Energy Technology JumpWilliam County,| OpenEIPrism SolarSector

  6. WINDExchange: Wind Energy Market Sectors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopmentat LENA|UpcomingVisit UsNews This pageMarket Sectors

  7. Industrial ecology Prosperity Game{trademark}

    SciTech Connect (OSTI)

    Beck, D.; Boyack, K.; Berman, M.

    1998-03-01

    Industrial ecology (IE) is an emerging scientific field that views industrial activities and the environment as an interactive whole. The IE approach simultaneously optimizes activities with respect to cost, performance, and environmental impact. Industrial Ecology provides a dynamic systems-based framework that enables management of human activity on a sustainable basis by: minimizing energy and materials usage; insuring acceptable quality of life for people; minimizing the ecological impact of human activity to levels that natural systems can sustain; and maintaining the economic viability of systems for industry, trade and commerce. Industrial ecology applies systems science to industrial systems, defining the system boundary to incorporate the natural world. Its overall goal is to optimize industrial activities within the constraints imposed by ecological viability, globally and locally. In this context, Industrial systems applies not just to private sector manufacturing and services but also to government operations, including provision of infrastructure. Sandia conducted its seventeenth Prosperity Game{trademark} on May 23--25, 1997, at the Hyatt Dulles Hotel in Herndon, Virginia. The primary sponsors of the event were Sandia National Laboratories and Los Alamos National Laboratory, who were interested in using the format of a Prosperity Game to address some of the issues surrounding Industrial Ecology. Honorary game sponsors were: The National Science Foundation; the Committee on Environmental Improvement, American Chemical Society; the Industrial and Engineering Chemistry Division, American Chemical Society; the US EPA--The Smart Growth Network, Office of Policy Development; and the US DOE-Center of Excellence for Sustainable Development.

  8. Electricity Use in the Pacific Northwest: Utility Historical Sales by Sector, 1990 and Preceding Years.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1991-06-01

    This report officially releases the compilation of regional 1990 retail customer sector sales data by the Bonneville Power Administration. The report is intended to enable detailed examination of annual regional electricity consumption. It also provides observations based on statistics covering the 1983--1990 time period, and gives statistics covering the time period 1970--1990. The electricity use report is the only information source that provides data obtained from each utility in the region based on the amount of electricity they sell annually to four sectors. Data is provided on each retail customer sector and also on the customers Bonneville serves directly: residential, commercial, industrial, direct-service industrial, and irrigation. 21 figs., 40 tabs.

  9. Promoting policy development and an EU Action Plan for the Woody Energy Crops Sector

    E-Print Network [OSTI]

    Promoting policy development and an EU Action Plan for the Woody Energy Crops Sector Kevin Lindegaard, Crops for Energy Ltd #12;What are short rotation plantations (SRPs)? · Woody crops grown at close, Germany, Poland, Belgium Industry Public bodies Research Institutions Joint Action Plan Common Strategies

  10. Using Transportation Technology to Increase Efficiencies in Shipping...

    Office of Environmental Management (EM)

    industry best practices to develop and maintain a cost effective and sustainable logistics and inventory management system. Using Transportation Technology to Increase...

  11. Power Politics: The Political Economy of Russia's Electricity Sector Liberalization

    E-Print Network [OSTI]

    Wengle, Susanne Alice

    2010-01-01

    Electricity Sector in Russia: Regional Aspects " In Economics EducationElectricity Sector in Russia: Regional Aspects " in Economics Education

  12. Industrial CASE and CASE-Plus Studentship Competition Guidance for Applicants

    E-Print Network [OSTI]

    1 Industrial CASE and CASE-Plus Studentship Competition Guidance for Applicants Introduction RCUK Introduction The Industrial CASE Studentship collaborative training competition gives PhD students experience of a non-academic organisation such as a UK industrial firm, public sector organisation or charity

  13. Energy Conservation Progress and Opportunities in the Pulp and Paper Industry 

    E-Print Network [OSTI]

    Watkins, J. J.; Hunter, W. D.

    1984-01-01

    In 1980 the pulp and paper industry was the third ranking consumer of total purchased fuels and energy in the U.S. industrial sector and the highest single industry in terms of residual oil consumption. Over the past decade in response to rapidly...

  14. A 2002 Update on Internet Use in the U.S. Lumber Industry Richard Vlosky

    E-Print Network [OSTI]

    Wu, Qinglin

    A 2002 Update on Internet Use in the U.S. Lumber Industry Richard Vlosky Professor, Forest Products, Kumasi, Ghana Louisiana Forest Products Development Center Working Paper #63 May 25, 2004 #12;2 Abstract-business applications and functions. Relative to other U.S. industrial sectors, the forest products industry has been

  15. Deployment of Formal Methods in Industry: the Legacy of the FP7 ICT DEPLOY Integrated Project

    E-Print Network [OSTI]

    Southampton, University of

    , initially in the four sectors which are key to European industry and society. Paper [2] written whenDeployment of Formal Methods in Industry: the Legacy of the FP7 ICT DEPLOY Integrated Project) on Industrial Deployment of Advanced System Engineering Methods for High Productivity and Dependability [1

  16. Non-Tracial Free Transport and Applications

    E-Print Network [OSTI]

    Nelson, Brent Andrew

    2015-01-01

    tracial transport . . . . . . . . . . . . . . . . . . . .the transport element . . . . . . . . . . . . . .Free Transport . . . . . . . . . . . .

  17. The impact on photovoltaic worth of utulity rate and reform and of specific market, financial, and policy variables : a commercialindustrialinstitution sector analysis

    E-Print Network [OSTI]

    Dinwoodie, Thomas L.

    1980-01-01

    This work provides an assessment of the economic outlook for photovoltaic systems in the commercial, industrial and institutional sectors in the year 1986. We first summarize the expected cost and performance goals for ...

  18. High Assurance Aerospace CPS & Implications for the Automotive Industry

    E-Print Network [OSTI]

    Poovendran, Radha

    High Assurance Aerospace CPS & Implications for the Automotive Industry Scott A. Lintelman1 assurance CPS can mutually benefit aerospace and automotive industries. I. INTRODUCTION Commercial aviation]. In the automotive industry, recent trends in intelligent transportation systems can be evidently mapped to e

  19. MIT and Automotive Industries MIT Industry Brief

    E-Print Network [OSTI]

    Herr, Hugh

    MIT and Automotive Industries MIT Industry Brief MIT's Industrial Liaison Program (ILP) can bring@ilp.mit.edu, or visit http://ilp.mit.edu. MIT and Automotive Industries The Massachusetts Institute of Technology (MIT) is a leading center of research and education on topics important to the automotive industry and its suppliers

  20. Table 24. Productivity and related data, business and nonfarm business sectors, 1947-2000 (Index, 1992=100)

    E-Print Network [OSTI]

    Rauch, Erik

    - Non- Busi- Non- Busi- Non- Busi- Non- Busi- Non- ness farm ness farm ness farm ness farm ness farm ness farm ness farm sector busi- sector busi- sector busi- sector busi- sector busi- sector busi- sector busi- ness ness ness ness ness ness ness sector sector sector sector sector sector sector 1947

  1. Examination of the factors and issues for an environmental technology utilization partnership between the private sector and the Department of Energy. Final report

    SciTech Connect (OSTI)

    Brouse, P.

    1997-05-01

    The Department of Energy (DOE) held a meeting on November 12, 1992 to evaluate the DOE relations with industry and university partners concerning environmental technology utilization. The goal of this meeting was to receive feedback from DOE industry and university partners for the identification of opportunities to improve the DOE cooperative work processes with the private sector. The meeting was designed to collect information and to turn that information into action to improve private sector partnerships with DOE.

  2. Accelerating Investments in the Geothermal Sector, Indonesia...

    Open Energy Info (EERE)

    Accelerating Investments in the Geothermal Sector, Indonesia (Presentation) Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Accelerating...

  3. Energy Sector Cybersecurity Framework Implementation Guidance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    released guidance to help the energy sector establish or align existing cybersecurity risk management programs to meet the objectives of the Cybersecurity Framework released by...

  4. DOE Issues Energy Sector Cyber Organization NOI

    Energy Savers [EERE]

    between the federal government and energy sector stakeholders to protect the bulk power electric grid and aid the integration of smart grid technology to enhance the...

  5. Tennessee's Manufacturing Sector Before and After the

    E-Print Network [OSTI]

    Grissino-Mayer, Henri D.

    Tennessee's Manufacturing Sector Before and After the Great Recession Prepared by Matthew N. Murray....................................................................................................................................... 1 Manufacturing in the Post Great Recession Era............................................................................... 2 Manufacturing Employment Trends

  6. Decoupling limits in multi-sector supergravities

    SciTech Connect (OSTI)

    Achúcarro, Ana; Hardeman, Sjoerd; Schalm, Koenraad; Aalst, Ted van der [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, Leiden (Netherlands); Oberreuter, Johannes M., E-mail: achucar@lorentz.leidenuniv.nl, E-mail: j.m.oberreuter@uva.nl, E-mail: kschalm@lorentz.leidenuniv.nl, E-mail: vdaalst@lorentz.leidenuniv.nl [Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Science Park 904, Amsterdam (Netherlands)

    2013-03-01

    Conventional approaches to cosmology in supergravity assume the existence of multiple sectors that only communicate gravitationally. In principle these sectors decouple in the limit M{sub pl}??. In practice such a limit is delicate: for generic supergravities, where sectors are combined by adding their Kähler functions, the separate superpotentials must contain non-vanishing vacuum expectation values supplementing the naïve global superpotential. We show that this requires non-canonical scaling in the naïve supergravity superpotential couplings to recover independent sectors of globally supersymmetric field theory in the decoupling limit M{sub pl} ? ?.

  7. Industrial Engineering (IE) is concerned with the design, analysis and implementation of any production or service system with the goal of improving its quality and productivity. The system could be a manufacturing plant, a transportation or a distributio

    E-Print Network [OSTI]

    Bustamante, Fabián E.

    and Analysis IEMS 385: Introduction to Health Systems Management RESEARCH AREAS Financial Engineering Healthcare Engineering Humanitarian Logistics Social and Organizational Networks Optimization Learn More 5, Engineers for a Sustainable World, Design for America, Formula SAE, Institute of Industrial Engineers

  8. Deregulation-restructuring: Evidence for individual industries

    SciTech Connect (OSTI)

    Costello, K.W.; Graniere, R.J.

    1997-05-01

    Several studies have measured the effects of regulation on a particular industry. These studies range widely in sophistication, from simple observation (comparison) of pre-transformation and post-transformation actual industry performance to econometric analysis that attempt to separate the effects of deregulation from other factors in explaining changes in an industry`s performance. The major problem with observation studies is that they are unable to measure the effect of one particular event, such as deregulation, on an industry`s performance. For example, at the same time that the United Kingdom privatized its electric power industry, it also radically restructured the industry to encourage competition and instituted a price-cap mechanism to regulate the prices of transmission, distribution, and bundled retail services. Subsequent to these changes in 1991, real prices for most UK electricity customers have fallen. It is not certain however, which of these factors was most important or even contributed to the decline in price. In any event, one must be cautious in interpreting the results of studies that attempt to measure the effect of deregulation per se for a specific industry. This report highlights major outcomes for five industries undergoing deregulation or major regulatory and restructuring reforms. These include the natural gas, transportation, UK electric power, financial, and telecommunications industries. Particular attention was given to the historical development of events in the telecommunications industry.

  9. Guam Transportation Petroleum-Use Reduction Plan

    SciTech Connect (OSTI)

    Johnson, C.

    2013-04-01

    The island of Guam has set a goal to reduce petroleum use 20% by 2020. Because transportation is responsible for one-third of on-island petroleum use, the Guam Energy Task Force (GETF), a collaboration between the U.S. Department of Energy and numerous Guam-based agencies and organizations, devised a specific plan by which to meet the 20% goal within the transportation sector. This report lays out GETF's plan.

  10. Why is energy use rising in the freight sector

    SciTech Connect (OSTI)

    Mintz, M.; Vyas, A.D.

    1991-01-01

    Trends in transportation sector energy use and carbon dioxide emissions are analyzed with an emphasis on three freight modes -- rail, truck, and marine. A recent set of energy use projections is presented and freight mode energy characteristics are discussed. Transportation sector energy use, which nearly doubled between 1960 and 1985, is projected to grow more slowly during the period 1985{endash}2010. Most of the growth is projected to come from non-personal modes (freight and commercial air). Trends in freight mode energy intensities are discussed and a variety of factors behind these trends are analyzed. Rail and marine modes improved their energy intensities during sudden fuel price rises of the 1970s. Though there is room for further technological improvement, long power plant life cycles preclude rapid penetration of new technologies. Thus, energy intensities in these modes are more likely to improve through operational changes. Because of relatively stable fuel prices, the energy share of truck operating expenses is likely to remain low. Coupled with increasing labor costs, this portends only modest improvements in truck energy efficiency over the next two decades.

  11. Why is energy use rising in the freight sector?

    SciTech Connect (OSTI)

    Mintz, M.; Vyas, A.D.

    1991-12-31

    Trends in transportation sector energy use and carbon dioxide emissions are analyzed with an emphasis on three freight modes -- rail, truck, and marine. A recent set of energy use projections is presented and freight mode energy characteristics are discussed. Transportation sector energy use, which nearly doubled between 1960 and 1985, is projected to grow more slowly during the period 1985{endash}2010. Most of the growth is projected to come from non-personal modes (freight and commercial air). Trends in freight mode energy intensities are discussed and a variety of factors behind these trends are analyzed. Rail and marine modes improved their energy intensities during sudden fuel price rises of the 1970s. Though there is room for further technological improvement, long power plant life cycles preclude rapid penetration of new technologies. Thus, energy intensities in these modes are more likely to improve through operational changes. Because of relatively stable fuel prices, the energy share of truck operating expenses is likely to remain low. Coupled with increasing labor costs, this portends only modest improvements in truck energy efficiency over the next two decades.

  12. Customer loyalty in the public transportation context

    E-Print Network [OSTI]

    Webb, Valerie (Valerie Nichole)

    2010-01-01

    Public transportation agencies, much like other service industries, have a constant churn of their customer base. New customers are entering and current customers are defecting every day. Traditionally, efforts to increase ...

  13. Grain Handling and Transportation Policy in Canada: Implications for the United States

    SciTech Connect (OSTI)

    Nolan, James; Peterson, Steven K

    2015-01-01

    The grain handling and transportation system in Canada (GHTS) is currently going through a major transition, both with respect to handling and transportation. Historically, the system has pitted farmers against the railways with respect to securing individual fair shares of grain revenues. But with the removal of the single desk marketing and logistics function of the Canadian Wheat Board (CWB) in late 2012, a very interesting and potentially game-changing outcome is emerging with respect to the new functionality of the grain companies in the Canadian system. While historical awareness of rail s natural monopoly position in the grain handling system has kept that sector regulated (in several ways) for close to a century, we are now starting to see the effects of a less than competitive Canadian grain handling sector on revenue sharing, along with renewed movement in the industry with respect to buyouts and potential mergers. This overview will highlight some of the changes now occurring and how they are potentially going to interact or evolve as the system moves forward. For example, the on-going regulatory instrument used to regulate grain transportation rates in Canada (called the maximum revenue entitlement (MRE) or revenue cap) is under current debate because of the introduction a few months ago of a modification to an old regulatory instrument known as extended (or reciprocal) interswitching. As opposed to the revenue cap which is a direct intervention on monopoly behavior, extended interswitching is designed to encourage the major Canadian grain carriers to compete with one another and potentially seek out new traffic (Nolan and Skotheim, 2008). But the most intriguing aspect of extended interswitching is how it might allow a major rail carrier from the U.S. to solicit grain traffic in some areas of the Canadian grain transportation system.

  14. Source sector and region contributions to BC and PM2.5 in Central Asia

    SciTech Connect (OSTI)

    Kulkarni, S.; Sobhani, N.; Miller-Schulze, J. P.; Shafer, M. M.; Schauer, J. J.; Solomon, P. A.; Saide, P. E.; Spak, S. N.; Cheng, Y. F.; Denier van der Gon, H. A. C.; Lu, Z.; Streets, D. G.; Janssens-Maenhout, G.; Wiedinmyer, C.; Lantz, J.; Artamonova, M.; Chen, B.; Imashev, S.; Sverdlik, L.; Deminter, J. T.; Adhikary, B.; D'Allura, A.; Wei, C.; Carmichael, G. R.

    2015-02-18

    Particulate matter (PM) mass concentrations, seasonal cycles, source sector, and source region contributions in Central Asia (CA) are analyzed for the period April 2008–July 2009 using the Sulfur Transport and dEposition Model (STEM) chemical transport model and modeled meteorology from the Weather Research and Forecasting (WRF) model. Predicted aerosol optical depth (AOD) values (annual mean value ~0.2) in CA vary seasonally, with lowest values in the winter. Surface PM2.5 concentrations (annual mean value ~10 ?g m-3) also exhibit a seasonal cycle, with peak values and largest variability in the spring/summer, and lowest values and variability in the winter (hourly values from 2 to 90 ?g m-3). Surface concentrations of black carbon (BC) (mean value ~0.1 ?g m-3) show peak values in the winter. The simulated values are compared to surface measurements of AOD as well as PM2.5, PM10, BC, and organic carbon (OC) mass concentrations at two regional sites in Kyrgyzstan (Lidar Station Teplokluchenka (LST) and Bishkek). The predicted values of AOD and PM mass concentrations and their seasonal cycles are fairly well captured. The carbonaceous aerosols are underpredicted in winter, and analysis suggests that the winter heating emissions are underestimated in the current inventory. Dust, from sources within and outside CA, is a significant component of the PM mass and drives the seasonal cycles of PM and AOD. On an annual basis, the power and industrial sectors are found to be the most important contributors to the anthropogenic portion of PM2.5. Residential combustion and transportation are shown to be the most important sectors for BC. Biomass burning within and outside the region also contributes to elevated PM and BC concentrations. The analysis of the transport pathways and the variations in particulate matter mass and composition in CA demonstrates that this region is strategically located to characterize regional and intercontinental transport of pollutants. Aerosols at these sites are shown to reflect dust, biomass burning, and anthropogenic sources from Europe; South, East, and Central Asia; and Russia depending on the time period. Simulations for a reference 2030 emission scenario based on pollution abatement measures already committed to in current legislation show that PM2.5 and BC concentrations in the region increase, with BC growing more than PM2.5 on a relative basis. This suggests that both the health impacts and the climate warming associated with these particles may increase over the next decades unless additional control measures are taken. The importance of observations in CA to help characterize the changes that are rapidly taking place in the region are discussed.

  15. Industry @ ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat Pumps Heat Pumpsfacility doe logoInIndustry @ ALS

  16. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy,ImpactScientific andIndividualEvent Sign InIndustrial

  17. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy,ImpactScientific andIndividualEvent SignIndustrial Users -

  18. Industry Economists

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural GasEIA lowerslong4,Guide toHighHowIndustry

  19. Transportation Statistics Annual Report 1997

    SciTech Connect (OSTI)

    Fenn, M.

    1997-01-01

    This document is the fourth Transportation Statistics Annual Report (TSAR) prepared by the Bureau of Transportation Statistics (BTS) for the President and Congress. As in previous years, it reports on the state of U.S. transportation system at two levels. First, in Part I, it provides a statistical and interpretive survey of the system—its physical characteristics, its economic attributes, aspects of its use and performance, and the scale and severity of unintended consequences of transportation, such as fatalities and injuries, oil import dependency, and environment impacts. Part I also explores the state of transportation statistics, and new needs of the rapidly changing world of transportation. Second, Part II of the report, as in prior years, explores in detail the performance of the U.S. transportation system from the perspective of desired social outcomes or strategic goals. This year, the performance aspect of transportation chosen for thematic treatment is “Mobility and Access,” which complements past TSAR theme sections on “The Economic Performance of Transportation” (1995) and “Transportation and the Environment” (1996). Mobility and access are at the heart of the transportation system’s performance from the user’s perspective. In what ways and to what extent does the geographic freedom provided by transportation enhance personal fulfillment of the nation’s residents and contribute to economic advancement of people and businesses? This broad question underlies many of the topics examined in Part II: What is the current level of personal mobility in the United States, and how does it vary by sex, age, income level, urban or rural location, and over time? What factors explain variations? Has transportation helped improve people’s access to work, shopping, recreational facilities, and medical services, and in what ways and in what locations? How have barriers, such as age, disabilities, or lack of an automobile, affected these accessibility patterns? How are commodity flows and transportation services responding to global competition, deregulation, economic restructuring, and new information technologies? How do U.S. patterns of personal mobility and freight movement compare with other advanced industrialized countries, formerly centrally planned economies, and major newly industrializing countries? Finally, how is the rapid adoption of new information technologies influencing the patterns of transportation demand and the supply of new transportation services? Indeed, how are information technologies affecting the nature and organization of transportation services used by individuals and firms?

  20. Market leadership by example: Government sector energy efficiency in developing countries

    SciTech Connect (OSTI)

    Van Wie McGrory, Laura; Harris, Jeffrey; Breceda, Miguel; Campbell, Stephanie; Sachu, Constantine; della Cava, Mirka; Gonzalez Martinez, Jose; Meyer, Sarah; Romo, Ana Margarita

    2002-05-20

    Government facilities and services are often the largest energy users and major purchasers of energy-using equipment within a country. In developing as well as industrial countries, government ''leadership by example'' can be a powerful force to shift the market toward energy efficiency, complementing other elements of a national energy efficiency strategy. Benefits from more efficient energy management in government facilities and operations include lower government energy bills, reduced greenhouse gas emissions, less demand on electric utility systems, and in many cases reduced dependence on imported oil. Even more significantly, the government sector's buying power and example to others can generate broader demand for energy-efficient products and services, creating entry markets for domestic suppliers and stimulating competition in providing high-efficiency products and services. Despite these benefits, with the exception of a few countries government sector actions have often lagged behind other energy efficiency policies. This is especially true in developing countries and transition economies - even though energy used by public agencies in these countries may represent at least as large a share of total energy use as the public sector in industrial economies. This paper summarizes work in progress to inventory current programs and policies for government sector energy efficiency in developing countries, and describes successful case studies from Mexico's implementation of energy management in the public sector. We show how these policies in Mexico, begun at the federal level, have more recently been extended to state and local agencies, and consider the applicability of this model to other developing countries.

  1. Institute of Public Sector Accounting Research

    E-Print Network [OSTI]

    Edinburgh, University of

    Institute of Public Sector Accounting Research I·P·S·A·R In Government, Public Services and Charities http://www.business-school.ed.ac.uk/research/centres/public-sector-accounting-research CALL FOR PAPERS for a RESEARCH WORKSHOP and a special issue of QUALITATIVE RESEARCH IN ACCOUNTING & MANAGEMENT

  2. Introduction Actual Industrial Problems

    E-Print Network [OSTI]

    Nigam, Nilima

    Introduction Actual Industrial Problems What's needed? Is there really interesting mathematics in Industry? Can mathematicians contribute to society, and do we want to...? Nilima Nigam Department Mathematics in Industry #12;Introduction Actual Industrial Problems What's needed? Some controversial

  3. Mechanical & Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board October 15, 2010 #12;Mechanical & Industrial Engineering 2 MIE Dorothy Adams Undergraduate/Graduate Secretary David Schmidt Associate Professor & Graduate Program Director #12;Mechanical & Industrial Engineering 3 MIE James Rinderle

  4. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    energy demand along with the potential for technologies in different transportation sectors to reduce fuelpotential for reductions in energy demand, rather than the supply of low-carbon transportation fuel.potential for reductions in fuel use is provided. California’s Energy

  5. Research in transportation: the shape of the future

    SciTech Connect (OSTI)

    Chenea, P.F.

    1981-01-01

    The individual mobility now enjoyed due to advancements in the transportation sector is being threatened by higher fuel costs and declining petroleum resources. Transportation research approaches must address these problems. Automotive engineers must redesign existing vehicles to make them smaller, lighter, and so more fuel efficient. Alternatives to the gasoline engine, such as gas turbine and stratified charge engines, must be commercialized.

  6. Technology partnerships: Enhancing the competitiveness, efficiency, and environmental quality of American industry

    SciTech Connect (OSTI)

    NONE

    1995-04-01

    An overview of the Department of Energy`s Office of Industrial Technologies and its private sector partnerships is presented. Commercial success stories and real-world benefits of the technology partnerships are discussed.

  7. New 3E Plus Computer Program- A Tool for Improving Industrial Energy Efficiency 

    E-Print Network [OSTI]

    Brayman, N. J.

    1997-01-01

    The task of determining how much insulation is necessary in the US industrial and manufacturing sector to save money, use less energy, reduce plant emissions and improve process efficiency has been greatly simplified thanks to a software program...

  8. Characterization of the U.S. Industrial/Commercial Boiler Population- Final Report, May 2005

    Broader source: Energy.gov [DOE]

    The U.S. industrial and commercial sectors consume large quantities of energy. Much of this energy is used in boilers to generate steam and hot water. This 2005 report characterizes the boilers in...

  9. Cultural production and politics of the digital games industry: the case of independent game production 

    E-Print Network [OSTI]

    Guevara Villalobos, Orlando; Villalobos, Orlando Guevara

    2013-11-27

    This thesis sheds light on the social relationships, work practices and identities that shape the small scale sector of independent game production. Harnessing elements of the Production of Culture and Cultural Industries/Work ...

  10. Pacific Rim Summit on Industrial Biotechnology & Bioenergy

    Broader source: Energy.gov [DOE]

    The ninth annual Pacific Rim Summit on Industrial Biotechnology and Bioenergy will be held from December 7–9, 2014, in San Diego, California, at the Westin Gaslamp Quarter. Bringing together representatives from various countries all around the Pacific Rim, this event will focus on the growth of the industrial biotechnology and bioenergy sectors in North America and the Asia-Pacific region. Glenn Doyle, BETO's Deployment & Demonstration Technology Manager, will be moderating and speaking at a session on entitled "Utilizing Strategic Partnerships to Grow Your Business" on December 9.

  11. Stuck with the bill, but why? : an analysis of the Portuguese public finance system with respect to surface transportation policy and investments

    E-Print Network [OSTI]

    Nelson, Joshua S

    2008-01-01

    Despite decentralization progress in other sectors, the Portuguese central government maintains significant administrative and fiscal power over national and sub-national surface transportation operations and infrastructure. ...

  12. Interaction in the dark sector

    E-Print Network [OSTI]

    Sergio del Campo; Ramon Herrera; Diego Pavon

    2015-07-01

    It may well happen that the two main components of the dark sector of the Universe, dark matter and dark energy, do not evolve separately but interact nongravitationally with one another. However, given our current lack of knowledge on the microscopic nature of these two components there is no clear theoretical path to determine their interaction. Yet, over the years, phenomenological interaction terms have been proposed on mathematical simplicity and heuristic arguments. In this paper, based on the likely evolution of the ratio between the energy densities of these dark components, we lay down reasonable criteria to obtain phenomenological, useful, expressions of the said term independent of any gravity theory. We illustrate this with different proposals which seem compatible with the known evolution of the Universe at the background level. Likewise, we show that two possible degeneracies with noninteracting models are only apparent as they can be readily broken at the background level. Further, we analyze some interaction terms that appear in the literature.

  13. Engineering Industrial & Systems

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Industrial Engineering Department of Industrial & Systems Engineering Leslie Monplaisir, Ph powerful tool sets used in industry today. -Brent Gillett, BSIE 2007 Advanced Planning Engineer at BMW I is available at: http://ise.wayne.edu/bs-industrial/index What is Industrial Engineering? The industrial

  14. INDUSTRIAL ENGINEERING Industrial engineering is concerned

    E-Print Network [OSTI]

    INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. Industrial engineers design and run the factories and systems

  15. INDUSTRIAL ENGINEERING Industrial engineering is concerned

    E-Print Network [OSTI]

    INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. The focus of industrial engineering is on process improvement

  16. Surety of the nation`s critical infrastructures: The challenge restructuring poses to the telecommunications sector

    SciTech Connect (OSTI)

    Cox, R.; Drennen, T.E.; Gilliom, L.; Harris, D.L.; Kunsman, D.M.; Skroch, M.J.

    1998-04-01

    The telecommunications sector plays a pivotal role in the system of increasingly connected and interdependent networks that make up national infrastructure. An assessment of the probable structure and function of the bit-moving industry in the twenty-first century must include issues associated with the surety of telecommunications. The term surety, as used here, means confidence in the acceptable behavior of a system in both intended and unintended circumstances. This paper outlines various engineering approaches to surety in systems, generally, and in the telecommunications infrastructure, specifically. It uses the experience and expectations of the telecommunications system of the US as an example of the global challenges. The paper examines the principal factors underlying the change to more distributed systems in this sector, assesses surety issues associated with these changes, and suggests several possible strategies for mitigation. It also studies the ramifications of what could happen if this sector became a target for those seeking to compromise a nation`s security and economic well being. Experts in this area generally agree that the U. S. telecommunications sector will eventually respond in a way that meets market demands for surety. Questions remain open, however, about confidence in the telecommunications sector and the nation`s infrastructure during unintended circumstances--such as those posed by information warfare or by cascading software failures. Resolution of these questions is complicated by the lack of clear accountability of the private and the public sectors for the surety of telecommunications.

  17. Industrial Scale Energy Systems Integration; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Ruth, Mark

    2015-07-28

    The industrial sector consumes 25% of the total energy in the U.S. and produces 18% of the greenhouse gas (GHG) emissions. Energy Systems Integration (ESI) opportunities can reduce those values and increase the profitability of that sector. This presentation outlines several options. Combined heat and power (CHP) is an option that is available today for many applications. In some cases, it can be extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed. extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed.

  18. Sustainable Transportation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  19. Industry-identified combustion research needs: Special study

    SciTech Connect (OSTI)

    Keller, J.G.; Soelberg, N.R.; Kessinger, G.F.

    1995-11-01

    This report discusses the development and demonstration of innovative combustion technologies that improve energy conservation and environmental practices in the US industrial sector. The report includes recommendations by industry on R&D needed to resolve current combustion-related problems. Both fundamental and applied R&D needs are presented. The report assesses combustion needs and suggests research ideas for seven major industries, which consume about 78% of all energy used by industry. Included are the glass, pulp and paper, refinery, steel, metal casting, chemicals, and aluminum industries. Information has been collected from manufacturers, industrial operators, trade organizations, and various funding organizations and has been supplemented with expertise at the Idaho National Engineering Laboratory to develop a list of suggested research and development needed for each of the seven industries.

  20. Assessment of the Potential to Reduce Emissions from Road Transportation, Notably NOx, Through the Use of Alternative Vehicles and Fuels in the Great Smoky Mountains Region

    SciTech Connect (OSTI)

    Sheffield, J.

    2001-08-30

    Air pollution is a serious problem in the region of the Great Smoky Mountains. The U.S. Environmental Protection Agency (EPA) may designate non-attainment areas by 2003 for ozone. Pollutants include nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), carbon monoxide (CO), volatile organic compounds (VOCs), lead, and particulate matter (PM), which are health hazards, damage the environment, and limit visibility. The main contributors to this pollution are industry, transportation, and utilities. Reductions from all contributors are needed to correct this problem. While improvements are projected in each sector over the next decades, the May 2000 Interim Report issued by the Southern Appalachian Mountains Initiative (SAMI) suggests that the percentage of NO{sub x} emissions from transportation may increase.

  1. IMF sector behavior deduced from geomagnetic data

    SciTech Connect (OSTI)

    Matsushita, S.; Trotter, D.E.

    1980-05-01

    Interplanetary magnetic field (IMF) sector structures, such as 'toward' the sun and 'away' from the sun on each day, have been objectivly estimated from daily and monthly mean values of the horizontal component of the geomagnetic variation field at Godhavn during the period 1926--1970. The agreement between this estimation and actual satellite observations of the sector structures of the interval 1964--1970 is 88, 79, and 58% in summer, equinox, and winter, respectively. A remarkable agreement (more than 95%) is obtained for the summers of 1964, 1969, and 1970. Various types of IMF sector behavior are examined by taking this seasonal factor into consideration. Approximately 27-day recurrences of the same structure are often found, and 5- to 14-day consecutive occurrences of the same sector are frequently noted. Furthermore, the total number of occurrences for each estimated sector in each year shows an apparently good correlation with smoothed sunspot numbers and geomagnetic aa index. After a brief introduction of the production mechanism of sector effects on polar geomagnetic fields the limitations and merits of IMF sector inference from geomagnetic data are emphasized.

  2. On the Road to Transportation Efficiency (Video)

    SciTech Connect (OSTI)

    Not Available

    2014-03-01

    Reducing emissions and oil consumption are crucial worldwide goals. Reducing transportation emissions, in particular, is key to reducing overall emissions. Electric vehicles driving on electrified roadways could be a significant part of the solution. E-roadways offer a variety of benefits: reduce petroleum consumption (electricity is used instead of gasoline), decrease vehicular operating costs (from about 12 cents per mile to 4 cents per mile), and extend the operational range of electric vehicles. Plus, e-roadway power can come from renewable sources. This animation was sponsored by the Clean Transportation Sector Initiative, and interagency effort between the U.S. Department of Transportation and the U.S. Department of Energy.

  3. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  4. Photovoltaic industry progress through 1984

    SciTech Connect (OSTI)

    Watts, R.L.; Smith, S.A.; Dirks, J.A.

    1985-04-01

    The growth of the US photovoltaics (PV) industry over the past decade has been impressive. First designed to provide power for satellites using high-cost production techniques, PV is now the economical choice in many remote terrestrial applications. The remarkable growth of PV in terms of quality of cells and modules, production techniques, and system design, was initiated by a cooperative effort of the US Government and the domestic PV manufacturers. European and Japanese firms entered the PV industry later, but are also growing rapidy. The Europeans continue to supply PV systems for village electrification and water pumping to many Third World countries. The Japanese have been developing the amorphous silicon (A-Si) technology by expanding its use in consumer goods. The world PV industry saw dramatic changes in industry ownership and in the emphasis on developing new and improved technology during 1984. The objective of this report is to present information on the developments of the world PV industry and focuses on developments occurring in 1984. Information is presented on a regional basis (US, Europe, Japan, other) to avoid disclosing company-confidential data. All information was gleaned from several sources, including a review of the technical literature and direct contacts with PV manufacturers. Prior to publishing the regional totals, all numbers were compared with those of other sources. The information contained in this report is prepared for use by the Department of Energy for their use in long-term R and D planning. However, this information should also be of interest by PV manufacturers and to those who may be contemplating entering the PV market. PV shipments for 1984, government supports for PV, and various PV market sectors are discussed.

  5. Broadening Industry Governance to Include Nonproliferation

    SciTech Connect (OSTI)

    Hund, Gretchen; Seward, Amy M.

    2008-11-11

    As industry is the first line of defense in detecting and thwarting illicit trade networks, the engagement of the private sector is critical to any government effort to strengthen existing mechanisms to protect goods and services throughout the supply chain. This study builds on previous PNNL work to continue to evaluate means for greater industry engagement to complement and strengthen existing governmental efforts to detect and stem the trade of illicit goods and to protect and secure goods that could be used in making a weapon of mass destruction. Specifically, the study evaluates the concept of Industry Self Regulation, defined as a systematic voluntary program undertaken by an industry or by individual companies to anticipate, implement, supplement, or substitute for regulatory requirements in a given field, generally through the adoption of best practices. Through a series of interviews with companies with a past history of non-compliance, trade associations and NGOs, the authors identify gaps in the existing regulatory infrastructure, drivers for a self regulation approach and the form such an approach might take, as well as obstacles to be overcome. The authors conclude that it is at the intersection of industry, government, and security that—through collaborative means—the effectiveness of the international nonproliferation system—can be most effectively strengthened to the mutual benefit of both government and the private sector. Industry has a critical stake in the success of this regime, and has the potential to act as an integrating force that brings together the existing mechanisms of the global nonproliferation regime: export controls, physical protection, and safeguards. The authors conclude that industry compliance is not enough; rather, nonproliferation must become a central tenant of a company’s corporate culture and be viewed as an integral component of corporate social responsibility (CSR).

  6. Research-Technology Management November--December 2013 | 1 Before the Industrial Revolution, goods were produced by

    E-Print Network [OSTI]

    Research-Technology Management · November--December 2013 | 1 Before the Industrial Revolution linked to the producer; there was no middleman and no supply chain. The Industrial Revolution ushered to the manufacturing sector as the Industrial Revolution was--the age of 3D printing and the digital tools that support

  7. Cosmology of hidden sector with Higgs portal

    E-Print Network [OSTI]

    Cabi, Serkan

    2009-01-01

    In this thesis, we are investigating cosmological implications of hidden sector models which involve scalar fields that do not interact with the Standard Model gauge interactions, but couple directly to the Higgs field. ...

  8. Top partner probes of extended Higgs sectors

    E-Print Network [OSTI]

    Kearney, John

    Natural theories of the weak scale often include fermionic partners of the top quark. If the electroweak symmetry breaking sector contains scalars beyond a single Higgs doublet, then top partners can have sizable branching ...

  9. Electricity sector restructuring and competition : lessons learned

    E-Print Network [OSTI]

    Joskow, Paul L.

    2003-01-01

    We now have over a decade of experience with the privatization, restructuring, regulatory reform, and wholesale and retail competition in electricity sectors around the world. The objectives and design attributes of these ...

  10. Energy Department Announces New Private Sector Partnership to...

    Energy Savers [EERE]

    Energy Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate...

  11. Energy Department Announces New Private Sector Partnership to...

    Energy Savers [EERE]

    New Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects October 9,...

  12. Power Politics: The Political Economy of Russia's Electricity Sector Liberalization

    E-Print Network [OSTI]

    Wengle, Susanne Alice

    2010-01-01

    across regions. Up-stream energy conglomerates and down-the electricity sector: “up-stream” energy conglomerates areother energy sectors – for example the Nord-Stream pipeline

  13. Climate Change and the Transporation Sector - Challenges and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Change and the Transporation Sector - Challenges and Mitigation Options Climate Change and the Transporation Sector - Challenges and Mitigation Options 2003 DEER Conference...

  14. EIA Energy Efficiency-Residential Sector Energy Intensities,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Sector Energy Intensities RESIDENTIAL SECTOR ENERGY INTENSITIES: 1978-2005 Released Date: August 2004 Page Last Modified:June 2009 These tables provide estimates of...

  15. Combined Heat & Power Technology Overview and Federal Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat & Power Technology Overview and Federal Sector Deployment Combined Heat & Power Technology Overview and Federal Sector Deployment Presentation covers the Combined...

  16. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    11 Calibration of the Energy Consumption Data forSectoral energy consumption data are available in publishedof the sectoral energy consumption data in the statistics

  17. Climate Change and China's Agricultural Sector: An Overview of...

    Open Energy Info (EERE)

    Climate Change and China's Agricultural Sector: An Overview of Impacts, Adaptation and Mitigation Jump to: navigation, search Name Climate Change and China's Agricultural Sector:...

  18. Workforce Training for the Electric Power Sector: Map of Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workforce Training for the Electric Power Sector: Map of Projects Workforce Training for the Electric Power Sector: Map of Projects Map showing the number of projects awarded in...

  19. Roadmap to Secure Control Systems in the Energy Sector - January...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap to Secure Control Systems in the Energy Sector - January 2006 Roadmap to Secure Control Systems in the Energy Sector - January 2006 This document, the Roadmap to Secure...

  20. Overcoming Multifamily Sector Barriers in Austin, Texas | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overcoming Multifamily Sector Barriers in Austin, Texas Overcoming Multifamily Sector Barriers in Austin, Texas Presents techniques on overcoming the barriers of multifamily energy...

  1. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    SciTech Connect (OSTI)

    Goldman, Charles; Fuller, Merrian C.; Stuart, Elizabeth; Peters, Jane S.; McRae, Marjorie; Albers, Nathaniel; Lutzenhiser, Susan; Spahic, Mersiha

    2010-03-22

    The energy efficiency services sector (EESS) is poised to become an increasingly important part of the U.S. economy. Climate change and energy supply concerns, volatile and increasing energy prices, and a desire for greater energy independence have led many state and national leaders to support an increasingly prominent role for energy efficiency in U.S. energy policy. The national economic recession has also helped to boost the visibility of energy efficiency, as part of a strategy to support economic recovery. We expect investment in energy efficiency to increase dramatically both in the near-term and through 2020 and beyond. This increase will come both from public support, such as the American Recovery and Reinvestment Act (ARRA) and significant increases in utility ratepayer funds directed toward efficiency, and also from increased private spending due to codes and standards, increasing energy prices, and voluntary standards for industry. Given the growing attention on energy efficiency, there is a concern among policy makers, program administrators, and others that there is an insufficiently trained workforce in place to meet the energy efficiency goals being put in place by local, state, and federal policy. To understand the likelihood of a potential workforce gap and appropriate response strategies, one needs to understand the size, composition, and potential for growth of the EESS. We use a bottom-up approach based upon almost 300 interviews with program administrators, education and training providers, and a variety of EESS employers and trade associations; communications with over 50 sector experts; as well as an extensive literature review. We attempt to provide insight into key aspects of the EESS by describing the current job composition, the current workforce size, our projections for sector growth through 2020, and key issues that may limit this growth.

  2. Policy Options for Encouraging Energy Efficiency Best Practices in Shandong Province's Cement Industry

    SciTech Connect (OSTI)

    Price, Lynn; Zhou, Nan; Lu, Hongyou; Sambeek, Emiel van; Yowargana, Ping; Shuang, Liu; Kejun, Jiang

    2012-07-12

    This research intends to explore possible design options for a sectoral approach in the cement sector in Shandong Province and to consider its respective advantages and disadvantages for future application. An effort has been made in this research to gather and analyze data that will provide a transparent and robust basis for development of a Business-As-Usual (BAU) scenario, maximum technology potential scenario, and ultimately a sector crediting baseline. Surveys among cement companies and discussions with stakeholders were also conducted in order to better understand the industry and local needs related to the sectoral approach.

  3. Electricity Use in the Pacific Northwest: Utility Historical Sales by Sector, 1989 and Preceding Years.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1990-06-01

    This report officially releases the compilation of regional 1989 retail customer sector sales data by the Bonneville Power Administration. This report is intended to enable detailed examination of annual regional electricity consumption. It gives statistics covering the time period 1970--1989, and also provides observations based on statistics covering the 1983--1989 time period. The electricity use report is the only information source that provides data obtained from each utility in the region based on the amount of electricity they sell to consumers annually. Data is provided on each retail customer sector: residential, commercial, industrial, direct-service industrial, and irrigation. The data specifically supports forecasting activities, rate development, conservation and market assessments, and conservation and market program development and delivery. All of these activities require a detailed look at electricity use. 25 figs., 34 tabs.

  4. Energy Management in a Multi-Industry Organization 

    E-Print Network [OSTI]

    Lawrence, J.

    1981-01-01

    Tenneco operates in seven of the nation's ten most energy intensive industries: Petroleum Refining, Chemicals Manufacturing, Pulp and Paper, Transportation Equipment, Primary Metals, Food Processing, and Machinery. This diversification...

  5. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    SciTech Connect (OSTI)

    Selldorff, John; Atwell, Monte

    2014-09-23

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  6. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    ScienceCinema (OSTI)

    Selldorff, John; Atwell, Monte

    2014-12-03

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  7. Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    SciTech Connect (OSTI)

    Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

    2013-01-01

    In November 2012, the Joint Institute for Strategic Energy Analysis (JISEA) released a new report, 'Natural Gas and the Transformation of the U.S. Energy Sector: Electricity.' The study provides a new methodological approach to estimate natural gas related greenhouse gas (GHG) emissions, tracks trends in regulatory and voluntary industry practices, and explores various electricity futures. The Executive Summary provides key findings, insights, data, and figures from this major study.

  8. Mechanical, Industrial & Manufacturing

    E-Print Network [OSTI]

    Balasubramanian, Ravi

    Mechanical, Industrial & Manufacturing Engineering (MIME) COLLEGE OF ENGINEERING FY2013 Oregon graduate degrees (MS, MEng, PhD) in mechanical engineering, industrial engineering, and materials science. We offer bachelor's degrees in mechanical, industrial, manufacturing, and energy systems engineering

  9. Chemicals Industry Vision

    SciTech Connect (OSTI)

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  10. Industrial and Systems engineering

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Industrial and Systems engineering COLLEGE of ENGINEERING DepartmentofIndustrialandSystemsEngineering EDGE Engineering Entrepreneur Certificate Program is a great addition to an industrial and systems to expert clinical recommendations. engineering.wayne.edu/isefaculty Industrial and systems engineering

  11. Life Cycle Assessment Comparing the Use of Jatropha Biodiesel in the Indian Road and Rail Sectors

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G.

    2010-05-01

    This life cycle assessment of Jatropha biodiesel production and use evaluates the net greenhouse gas (GHG) emission (not considering land-use change), net energy value (NEV), and net petroleum consumption impacts of substituting Jatropha biodiesel for conventional petroleum diesel in India. Several blends of biodiesel with petroleum diesel are evaluated for the rail freight, rail passenger, road freight, and road-passenger transport sectors that currently rely heavily on petroleum diesel. For the base case, Jatropha cultivation, processing, and use conditions that were analyzed, the use of B20 results in a net reduction in GHG emissions and petroleum consumption of 14% and 17%, respectively, and a NEV increase of 58% compared with the use of 100% petroleum diesel. While the road-passenger transport sector provides the greatest sustainability benefits per 1000 gross tonne kilometers, the road freight sector eventually provides the greatest absolute benefits owing to substantially higher projected utilization by year 2020. Nevertheless, introduction of biodiesel to the rail sector might present the fewest logistic and capital expenditure challenges in the near term. Sensitivity analyses confirmed that the sustainability benefits are maintained under multiple plausible cultivation, processing, and distribution scenarios. However, the sustainability of any individual Jatropha plantation will depend on site-specific conditions.

  12. Industrial energy-efficiency-improvement program

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

  13. Transportation Plan 

    E-Print Network [OSTI]

    Boreo, Andrea; Li, Wei; Wunnenbuger, Douglas; Giusti, Cecilia; Cooper, John T.; Masterson, Jaimie

    2015-01-01

    Mobility throughout a community ensures freedom of movement and enhances quality of life. Traffic congestion, pollution, urban sprawl, social exclusion, safety and health can decrease mobility and should be a part of a sustainable transportation...

  14. 25 November 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER -FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP

    E-Print Network [OSTI]

    25 November 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER - FOREST SECTOR://www.scientificamerican.com/article/should-american-wood-fuel-european-power/Energy & Sustainability a seafaring protest during a forest industry conference. Participants at this week's Mid-Atlantic Forest

  15. 24 September 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER -FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP

    E-Print Network [OSTI]

    with biochar companies to help make the product marketable to the oil and gas industry24 September 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER - FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP 1 (in) Biochar used successfully to treat fracking water Post Date: 19

  16. Essays on sectoral shifts of labor demand: measurements and effects on the incidence and the duration of unemployment 

    E-Print Network [OSTI]

    Byun, Yanggyu

    2009-05-15

    industries. Abraham and Katz (1984) point out that this as- 1 The idea of sectoral shifts hypothesis has also been used in recent studies to introduce persistent unemployment in a real business cycle model (Mikhail et al. (2003)), to study the macroeconomic e...

  17. Formulating a VET roadmap for the waste and recycling sector: A case study from Queensland, Australia

    SciTech Connect (OSTI)

    Davis, G.

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Existing qualifications do not meet the needs of the sector in Queensland. Black-Right-Pointing-Pointer Businesses may not be best positioned to identify training needs. Black-Right-Pointing-Pointer Companies are developing training internally to meet their own specific needs. Black-Right-Pointing-Pointer Smaller companies lack the resources to develop internal training are disadvantaged. Black-Right-Pointing-Pointer There is industry support for an entry-level, minimum industry qualification. - Abstract: Vocational Education and Training (VET) is an essential tool for providing waste management and recycling workers with the necessary skills and knowledge needed to beneficially influence their own employment and career development; and to also ensure productivity and safe working conditions within the organisations in which they are employed. Current training opportunities within Queensland for the sector are limited and not widely communicated or marketed; with other States, particularly Victoria and New South Wales, realising higher numbers of VET enrollments for waste management courses. This paper presents current VET opportunities and trends for the Queensland waste management sector. Results from a facilitated workshop to identify workforce requirements and future training needs organised by the Waste Contractors and Recyclers Association of Queensland (WCRAQ) are also presented and discussion follows on the future training needs of the industry within Queensland.

  18. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  19. Uranium industry annual 1997

    SciTech Connect (OSTI)

    NONE

    1998-04-01

    This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

  20. Industry Analysis February 2013

    E-Print Network [OSTI]

    Fletcher, Robin

    -Industries · Biodiesel ­ Biofuel ­ Alternate fuels ­ Green fuels ­ Renewable fuels/energy ­ Green energy ­ Green) · Business Source Complete - Company, market, industry news and articles · CBCA and Canadian Newsstand

  1. Chemical Industry Corrosion Management

    SciTech Connect (OSTI)

    2003-02-01

    Improved Corrosion Management Could Provide Significant Cost and Energy Savings for the Chemical Industry. In the chemical industry, corrosion is often responsible for significant shutdown and maintenance costs.

  2. Coal Transportation Issues (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Most of the coal delivered to U.S. consumers is transported by railroads, which accounted for 64% of total domestic coal shipments in 2004. Trucks transported approximately 12% of the coal consumed in the United States in 2004, mainly in short hauls from mines in the East to nearby coal-fired electricity and industrial plants. A number of minemouth power plants in the West also use trucks to haul coal from adjacent mining operations. Other significant modes of coal transportation in 2004 included conveyor belt and slurry pipeline (12%) and water transport on inland waterways, the Great Lakes, and tidewater areas (9%).

  3. The climate impacts of high-speed rail and air transportation : a global comparative analysis

    E-Print Network [OSTI]

    Clewlow, Regina Ruby Lee

    2012-01-01

    Growing concerns about the energy use and climate impacts of the transportation sector have prompted policymakers to consider a variety of options to meet the future mobility needs of the world's population, while ...

  4. Fact #699: October 31, 2011 Transportation Energy Use by Mode and Fuel Type, 2009

    Broader source: Energy.gov [DOE]

    Highway vehicles are responsible for most of the energy consumed by the transportation sector. Most of the fuel used in light vehicles is gasoline, while most of the fuel used in med/heavy trucks...

  5. Integrating regional strategic transportation planning and supply chain management : along the path to sustainability

    E-Print Network [OSTI]

    Sgouridis, Sgouris P

    2005-01-01

    A systems perspective for regional strategic transportation planning (RSTP) for freight movements involves an understanding of Supply Chain Management (SCM). This thesis argues that private sector freight shippers and ...

  6. Experimental characterization of adsorption and transport properties for advanced thermo-adsorptive batteries

    E-Print Network [OSTI]

    Kim, Hyunho, S.M. Massachusetts Institute of Technology

    2014-01-01

    Thermal energy storage has received significant interest for delivering heating and cooling in both transportation and building sectors. It can minimize the use of on-board electric batteries for heating, ventilation and ...

  7. Fact #749: October 15, 2012 Petroleum and Natural Gas Consumption for Transportation by State, 2010

    Broader source: Energy.gov [DOE]

    The map below shows the amount of petroleum and natural gas consumed in the transportation sector by state for 2010. The pie charts for each state are scaled based on total consumption of petroleum...

  8. Industrial lead paint removal specifications

    SciTech Connect (OSTI)

    Stone, R.C.

    1997-06-01

    The purpose of this paper is to inform the reader as to some of the pertinent rules and regulations promulgated by the Environmental Protection Agency (EPA) and the Occupational Safety and Health Administration (OSHA) that may effect an industrial lead paint removal project. The paper discusses a recommended schedule of procedures and preparations to be followed by the lead paint removal specification writer when analyzing the possible impact of the project on the environment, the public and workers. Implications of the Clean Air Act, the Clean Water Act and the Resource Conservation and Recovery Act (RCRA) along with hazardous waste handling, manifesting, transporting and disposal procedures are discussed with special emphasis placed as to their impact on the writer and the facility owner. As the rules and regulations are highly complex, the writer has attempted to explain the methodology currently being used in state-of-the-art industrial lead abatement specifications.

  9. Delivering the Green: The Future of California's Freight Transportation System Summary and Reading List

    E-Print Network [OSTI]

    California at Davis, University of

    Delivering the Green: The Future of California's Freight Transportation System Summary and Reading List California's freight sector is a critical part of California's economic engine, generating. California's freight sector, including trucks, trains, and ships is also the largest contributor to ozone

  10. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    number of themes about the structure of the energy efficiency services sector (EESS). For some companies

  11. Characterization of industrial process waste heat and input heat streams

    SciTech Connect (OSTI)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  12. Within-Industry Technological Specialization, Collective Action, and Trade Policy 

    E-Print Network [OSTI]

    Urbanski, Piotr

    2015-01-21

    . I tie this with the logic of collective action and classical trade models to de- 6See Jones (2009). Also Wuchty et al. (2007); Jones et al. 2007. 6 rive an industry’s ability and intensity of lobbying over trade policy. The proposed theory helps us... has continued to de- velop. Arguably at an ever increasing rate. However, some industries have developed faster than others. At the same time some sectors of the American economy have lib- eralized more or less. Are the two trends related...

  13. China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01

    03/06/content_7729607.htm ETSU, 1999. Industrial SectorSee discussion of this report in ETSU, AEA Technology, 2001.environment/ccl/pdf/etsu-analysis.pdf Feng, F. , 2007. “

  14. Varieties of innovation : the creation of wind and solar industries in China, Germany, and the United States

    E-Print Network [OSTI]

    Nahm, Jonas M

    2014-01-01

    Where and how does innovation take place in contemporary high-technology sectors? Theories of innovation presume a division of labor between firms in industrialized economies that invent and commercialize new technologies ...

  15. Profile of the chemicals industry in California: Californiaindustries of the future program

    SciTech Connect (OSTI)

    Galitsky, Christina; Worrell, Ernst

    2004-06-01

    The U.S. Department of Energy (DOE) Office of Industrial Technologies (OIT) established the Industries of the Future (IOF) program to increase energy efficiency, reduce waste production and to improve competitiveness, currently focusing on nine sectors. The IOF is a partnership strategy involving industry, the research community and the government, working together to identify technology needs, promote industrial partnerships and implement joint measures with all partners involved. The State Industries of the Future (SIOF) program delivers the accomplishments of the national Industries of the Future strategy to the local level, to expand the technology opportunities to a larger number of partners and reach smaller businesses and manufacturers that were not initially involved in the IOF effort. The state programs bring together industry, academia, and state agencies to address the important issues confronting industry in the state. These public-private coalitions facilitate industry solutions locally and enhance economic development. California has started a State Industries of the Future effort, in collaboration with the U.S. Department of Energy. The California Energy Commission (CEC) is leading the SIOF program in California, as part of many other programs to improve the energy efficiency and performance of industries in California. The California State IOF program aims to build a network of participants from industry, academia and government in four selected industrial sectors as a basis for the development of a strategic partnership for industrial energy efficient technology in the state. In California the IOF effort focuses petroleum refining, chemical processing, food processing and electronics. As part of this effort, the SIOF program will develop roadmaps for technology development for the selected sectors. On the basis of the roadmap, the program will develop successful projects with co-funding from state and federal government, and promote industry-specific energy-efficiency. An important element of the SIOF-program is the preparation of R&D roadmaps for each of the selected industries. The roadmap will help to identify priority needs for the participating industries to meet their energy challenges. The roadmap effort builds on the roadmaps developed by DOE, and on the conditions specific for the industry in California. Key to the successful preparation of a roadmap in the selected industries is the development of a profile of the industries. The profile provides a basis for the participants in the roadmap-effort, especially as the structure of the industries in California can be different than in the nation. The sector profiles describe the current economic and energy situation of these industries in California, the processes and energy uses, and the potential future developments in each industry. The profiles are an integral part of the roadmap, to help working group partners to evaluate the industry's R&D needs for their industry in California. In this report, we focus on the chemicals industry. The industry is an important economic factor in the state, providing over 82,300 jobs directly, and more in indirect employment. Value of shipments in 2001 was just under $25.7 Billion, or 6% of all manufacturing in California. There are over 1,500 chemical plants in California, of which 52% are pharmaceutical companies. Many companies operate chemical plants in California. The industry consumes 8% of the electricity and 5% of the natural gas in California. In this report, we start with a description of the chemical industry in the United States and California. This is followed by a discussion of the energy consumption and energy intensity of the Californian chemical industry. Chapter 3 focuses on the main sub-sectors. For each of the sub-sectors a general process description is provided in Chapter 4. Based on this analysis, in Chapter 5, we discuss potential technology developments that can contribute to further improving the energy efficiency in chemical plants, with a focus on the situation in California.

  16. Mechanical & Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board May 5th, 2011 #12;Mechanical & Industrial Engineering 2 IAB 2010-2011 · David K. Anderson ­ Alden Research Laboratory, Inc went on for three weeks Mechanical & Industrial Engineering 6 #12;Reza Shahbazian Yassar Mechanical

  17. INDUSTRIAL ENGINEERING GRADUATE PROGRAMS

    E-Print Network [OSTI]

    Gelfond, Michael

    INDUSTRIAL ENGINEERING GRADUATE PROGRAMS The Master of Science in Industrial Engineering (M Systems and Engineering (M.S.M.S.E.), the Doctor of Philosophy in Industrial Engineering, and the Doctor of Philosophy in Systems and Engineering Management programs prepare competent industrial engineers

  18. Industry Analysis October 2010

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    Industry and Company research ­ they build on each other #12;Industry Studies Standard & Poor's Net of competitors Standard & Poor's NetAdvantage - See 'Industry Surveys' under the "Quick Links" #12;Where Common technologies are there industry standards, platforms manufacturing processes, outsourcing? #12

  19. Philippines' downstream sector poised for growth

    SciTech Connect (OSTI)

    Not Available

    1992-05-11

    This paper reports that the Philippines' downstream sector is poised for sharp growth. Despite a slip in refined products demand in recent years, Philippines products demand will rebound sharply by 2000, East-West Center (EWC), Honolulu, predicts. Philippines planned refinery expansions are expected to meet that added demand, EWC Director Fereidun Fesharaki says. Like the rest of the Asia-Pacific region, product specifications are changing, but major refiners in the area expect to meet the changes without major case outlays. At the same time, Fesharaki says, push toward deregulation will further bolster the outlook for the Philippines downstream sector.

  20. More visible effects of the hidden sector

    SciTech Connect (OSTI)

    Murayama, Hitoshi; Murayama, Hitoshi; Nomura, Yasunori; Poland, David

    2007-09-06

    There is a growing appreciation that hidden sector dynamics may affect the supersymmetry breaking parameters in the visible sector (supersymmetric standard model), especially when the dynamics is strong and superconformal. We point out that there are effects that have not been previously discussed in the literature. For example, the gaugino masses are suppressed relative to the gravitino mass. We discuss their implications in the context of various mediation mechanisms. The issues discussed include anomaly mediation with singlets, the mu (B mu) problem in gauge and gaugino mediation, and distinct mass spectra for the superparticles that have not been previously considered.

  1. Air transportation in the 1980's, and the role of IATA : address :

    E-Print Network [OSTI]

    Hammarskjl?d, Knut

    1980-01-01

    "(Ladies &) Gentlemen, I am grateful for this opportunity to talk to you about the developing scene in the civil air transport industry. And to take a look at the evolving role of IATA - the International Air Transport ...

  2. Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities

    SciTech Connect (OSTI)

    Hasanbeigi, Ali; Price, Lynn

    2010-10-07

    Various studies in different countries have shown that significant energy-efficiency improvement opportunities exist in the industrial sector, many of which are cost-effective. These energy-efficiency options include both cross-cutting as well as sector-specific measures. However, industrial plants are not always aware of energy-efficiency improvement potentials. Conducting an energy audit is one of the first steps in identifying these potentials. Even so, many plants do not have the capacity to conduct an effective energy audit. In some countries, government policies and programs aim to assist industry to improve competitiveness through increased energy efficiency. However, usually only limited technical and financial resources for improving energy efficiency are available, especially for small and medium-sized enterprises. Information on energy auditing and practices should, therefore, be prepared and disseminated to industrial plants. This guidebook provides guidelines for energy auditors regarding the key elements for preparing for an energy audit, conducting an inventory and measuring energy use, analyzing energy bills, benchmarking, analyzing energy use patterns, identifying energy-efficiency opportunities, conducting cost-benefit analysis, preparing energy audit reports, and undertaking post-audit activities. The purpose of this guidebook is to assist energy auditors and engineers in the plant to conduct a well-structured and effective energy audit.

  3. The North American Forest Sector Outlook Study

    E-Print Network [OSTI]

    to consumption patterns for wood products and bioenergy. Markets for wood products, which mainly are destined in the forest sector of North America 21 3.1 Forest inventory 21 3.2 Aggregate production, consumption, Canada, carbon sequestration, climate change, consumption, demand, econometric, EFSOS, export, fellings

  4. WATER AND ENERGY SECTOR VULNERABILITY TO CLIMATE

    E-Print Network [OSTI]

    WATER AND ENERGY SECTOR VULNERABILITY TO CLIMATE WARMING IN THE SIERRA NEVADA: Water Year explores the sensitivity of water indexing methods to climate change scenarios to better understand how water management decisions and allocations will be affected by climate change. Many water management

  5. NATURAL GAS ADVISORY COMMITTEE Name Affiliation Sector

    E-Print Network [OSTI]

    NATURAL GAS ADVISORY COMMITTEE 2011-2013 Name Affiliation Sector Dernovsek, David Bonneville Power Defenbach, Byron Intermountain Gas Distribution Dragoon, Ken NWPCC Council Friedman, Randy NW Natural Gas Distribution Gopal, Jairam Southern CA Edison Electric Utility Hamilton, Linda Shell Trading Gas & Power

  6. Retail competition in the UK electricity sector

    E-Print Network [OSTI]

    Rudnick, Hugh

    retail market #12;Schedule for UK market opening · 1990 large users (above 1 MW max demand) · about 30Retail competition in the UK electricity sector Stephen Littlechild Workshops on Retail Competition that in electricity · but agreed need to have further separation · Now require separate legal entities & licenses

  7. ECONOMIC IMPACT OF THE CLEANTECH SECTOR

    E-Print Network [OSTI]

    Ghosh, Joydeep

    ! ECONOMIC IMPACT OF THE CLEANTECH SECTOR In the Austin-Round Rock-San Marcos MSA Prepared by: #12 Manufacturing $2.5 Billion Cleantech contributes $2.5 Billion to Austin's regional GDP. 20,000 Jobs Cleantech directly employs 20,000 people in the Austin MSA. Rapid Growth Employment in cleantech is projected to grow

  8. Testing Higgs sector of 2HDM

    E-Print Network [OSTI]

    Maria Krawczyk

    2005-12-30

    Properties of the Higgs sector of Two Higgs Doublet Model (2HDM) and existing constraints on its parameters are discussed. Potential of the Photon Linear Collider in testing various Higgs scenarios of 2HDM, including the MSSM, based on the realistic simulations is also presented.

  9. Transportation Equipment Footprint, December 2010 (MECS 2006)

    SciTech Connect (OSTI)

    none,

    2010-06-01

    Manufacturing energy and carbon footprints map fuel energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing industry sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released due to the combustion of fuel. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high-level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The energy data is primarily provided by the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), and therefore reflects consumption in the year 2006, when the survey was last completed.

  10. End User Functional and Performance Requirements for HTGR Energy Supply to Industrial Processes

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01

    This document specifies end user functional and performance requirements to be used in the development of the design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to industrial processes. These requirements were developed from collaboration with industry and HTGR suppliers and from detailed evaluation of integration of the HTGR technology in industrial processes. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a plant design that will serve the broadest range of industrial applications.

  11. Transportation Energy Data Book, Edition 18

    SciTech Connect (OSTI)

    Davis, Stacy C.

    1998-09-01

    The Transportation Energy Data Book: Edition 18 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. This edition of the Data Book has 11 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy Chapter 3 - emissions; Chapter 4 - transportation and the economy; Chapter 5 - highway vehicles; Chapter 6 - Light vehicles; Chapter 7 - heavy vehicles; Chapter 8 - alternative fuel vehicles; Chapter 9 - fleet vehicles; Chapter 10 - household vehicles; and Chapter 11 - nonhighway modes. The sources used represent the latest available data.

  12. Preface: Nonclassical Transport

    E-Print Network [OSTI]

    Bolshov, L.

    2010-01-01

    models of solute transport in highly heterogeneous geologicSemenov. 2008b. Nonclassical transport processes in geologicand L. Matveev. 2008. Transport regimes and concentration

  13. Intelligent Transport Systems

    E-Print Network [OSTI]

    Deakin, Elizabeth; Frick, Karen Trapenberg; Skabardonis, Alexander

    2009-01-01

    in Sustainable Urban Transport: City Interview Synthesis (of Leeds, Institute for Transport Studies, forthcoming.I NTELLIGENT TRANSPORT SYSTEMS LINKING TECHNOLOGY AND

  14. Sustainability and Transport

    E-Print Network [OSTI]

    Gilbert, Richard

    2006-01-01

    Gilbert is a Toronto-based transport and energy consultantof the forthcoming book Transport Revolutions: Making theand substantial transition to transport systems based on

  15. Sandia Energy - Transportation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Safety Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Safety Technologies Risk and Safety Assessment Transportation Safety Transportation SafetyTara...

  16. UFD Storage and Transportation - Transportation Working Group Report

    SciTech Connect (OSTI)

    Maheras, Steven J.; Ross, Steven B.

    2011-08-01

    The Used Fuel Disposition (UFD) Transportation Task commenced in October 2010. As its first task, Pacific Northwest National Laboratory (PNNL) compiled a list of structures, systems, and components (SSCs) of transportation systems and their possible degradation mechanisms during extended storage. The list of SSCs and the associated degradation mechanisms [known as features, events, and processes (FEPs)] were based on the list of used nuclear fuel (UNF) storage system SSCs and degradation mechanisms developed by the UFD Storage Task (Hanson et al. 2011). Other sources of information surveyed to develop the list of SSCs and their degradation mechanisms included references such as Evaluation of the Technical Basis for Extended Dry Storage and Transportation of Used Nuclear Fuel (NWTRB 2010), Transportation, Aging and Disposal Canister System Performance Specification, Revision 1 (OCRWM 2008), Data Needs for Long-Term Storage of LWR Fuel (EPRI 1998), Technical Bases for Extended Dry Storage of Spent Nuclear Fuel (EPRI 2002), Used Fuel and High-Level Radioactive Waste Extended Storage Collaboration Program (EPRI 2010a), Industry Spent Fuel Storage Handbook (EPRI 2010b), and Transportation of Commercial Spent Nuclear Fuel, Issues Resolution (EPRI 2010c). SSCs include items such as the fuel, cladding, fuel baskets, neutron poisons, metal canisters, etc. Potential degradation mechanisms (FEPs) included mechanical, thermal, radiation and chemical stressors, such as fuel fragmentation, embrittlement of cladding by hydrogen, oxidation of cladding, metal fatigue, corrosion, etc. These degradation mechanisms are discussed in Section 2 of this report. The degradation mechanisms have been evaluated to determine if they would be influenced by extended storage or high burnup, the need for additional data, and their importance to transportation. These categories were used to identify the most significant transportation degradation mechanisms. As expected, for the most part, the transportation importance was mirrored by the importance assigned by the UFD Storage Task. A few of the more significant differences are described in Section 3 of this report

  17. Optimal capital structure of deep sea foreign freight transportation companies

    E-Print Network [OSTI]

    Georgiadis, Vasilis

    2014-01-01

    This thesis aims to understand the optimal leverage range for shipping companies (maritime foreign freight transportation companies - SIC 4412), through data analysis. This study confirms that in a traditional industry ...

  18. The Industrial Electrification Program 

    E-Print Network [OSTI]

    Harry, I. L.

    1982-01-01

    EPRI's role as the research organization of the electric power industry, in coordination with potential user industries, is to 1) define the viability of candidate electrification technologies by monitoring the state-of-the-art and continuously...

  19. INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY

    E-Print Network [OSTI]

    Pohl, Karsten

    INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY SUMMER 2013 Industrial Engineering COOP Student needed-Fri, for summer 2013. Student must be enrolled in BS Engineering program. (Preferably completed 2-3 yrs

  20. The US textile industry: An energy perspective

    SciTech Connect (OSTI)

    Badin, J. S.; Lowitt, H. E.

    1988-01-01

    This report investigates the state of the US textile industry in terms of energy consumption and conservation. Specific objectives were: To update and verify energy and materials consumption data at the various process levels in 1984; to determine the potential energy savings attainable with current (1984), state-of-the-art, and future production practices and technologies (2010); and to identify new areas of research and development opportunity that will enable these potential future savings to be achieved. Results of this study concluded that in the year 2010, there is a potential to save between 34% and 53% of the energy used in current production practices, dependent on the projected technology mix. RandD needs and opportunities were identified for the industry in three categories: process modification, basic research, and improved housekeeping practices that reduce energy consumption. Potential RandD candidates for DOE involvement with the private sector were assessed and selected from the identified list.