National Library of Energy BETA

Sample records for industrial sector output

  1. AEO2014: Preliminary Industrial Output

    Gasoline and Diesel Fuel Update (EIA)

    Elizabeth Sendich, Analyst, and Kay Smith, Team Leader Macroeconomic Analysis Team September 26, 2013 Preliminary AEO2014 Macroeconomic Industrial Results DO NOT CITE OR DISTRIBUTE Overview * Preliminary AEO2014 industrial macroeconomic results; runs as of Sept. 23, 2013. * Macroeconomic results are inputs for a variety of NEMS modules, and cover: - Overall economy (for example GDP, interest rates, exports, etc.) - Sectoral detail (for example output of goods and services, employment, etc.) *

  2. Table 11.5c Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Commercial and Industrial Sectors, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Commercial and Industrial Sectors, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas) Year Carbon Dioxide 1 Sulfur Dioxide Nitrogen Oxides Coal 2 Natural Gas 3 Petroleum 4 Geo- thermal 5 Non- Biomass Waste 6 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Commercial Sector 8<//td> 1989 2,319,630 1,542,083 637,423 [ –] 803,754 5,302,890 37,398 4

  3. Table 8.6c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu Commercial Sector 11<//td> 1989 711,212 202,091 600,653 – –

  4. Table 8.3c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Billion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 Commercial Sector 8<//td> 1989 13,517 3,896 9,920 102 27,435 145 10,305 10,450 – 37,885 1990 14,670 5,406 15,515 118 35,709 387 10,193 10,580 – 46,289 1991 15,967 3,684 20,809 118 40,578 169 8,980 9,149 1 49,728 1992

  5. Market Report for the Industrial Sector, 2009

    SciTech Connect (OSTI)

    Sastri, Bhima; Brueske, Sabine; de los Reyes, Pamela; Jamison, Keith; Justiniano, Mauricio; Margolis, Nancy; Monfort, Joe; Raghunathan, Anand; Sabouni, Ridah

    2009-07-01

    This report provides an overview of trends in industrial-sector energy use. It focuses on some of the largest and most energy-intensive industrial subsectors and several emerging technologies that could transform key segments of industry.

  6. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  7. AEO2016 Preliminary Industrial Output Results

    Gasoline and Diesel Fuel Update (EIA)

    1: Preliminary macroeconomic results For Macro-Industrial Working Group December 3, 2015 | Washington, DC By Kay Smith, Macro Team Leader, Elizabeth Sendich, Russ Tarver, and Vipin Arora DO NOT CITE OR DISTRIBUTE Macro Team's AEO2016 Briefing Plans * Review incorporation of completed AEO macroeconomic initiatives - Revised commercial floorspace model using indices rather than levels so that EIA customers won't have to incur extra data costs to compensate Dodge - Enhancements of the industrial

  8. Fact #619: April 19, 2010 Transportation Sector Revenue by Industry |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 9: April 19, 2010 Transportation Sector Revenue by Industry Fact #619: April 19, 2010 Transportation Sector Revenue by Industry According the latest Economic Census (2002), the trucking industry is the largest contributor of revenue in the transportation sector, contributing more than one-quarter of the sectors revenue. The air industry contributes just under one-quarter, as does other transportation and support activities, which include sightseeing, couriers and

  9. Designing Effective State Programs for the Industrial Sector - New SEE

    Office of Environmental Management (EM)

    Action Publication | Department of Energy Designing Effective State Programs for the Industrial Sector - New SEE Action Publication Designing Effective State Programs for the Industrial Sector - New SEE Action Publication March 24, 2014 - 12:56pm Addthis Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector provides state regulators, utilities, and other program administrators with an overview of U.S. industrial energy efficiency programs delivered by a

  10. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    E. Landfill Gas: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,158 0 415 5 738 2005 994 0 519 212 263 2006 1,034 0 267 549 218 2007 985 0 226 532 228 2008 552 0 271 211 70 2009 440 0 313 91 37 2010 847 0 643 174 30 2011 1,635 0 1,422 165 48 2012 1,630 0 1,441 156 32 2013 414 0 132 206 76 2014 852 88 266 326 173

  11. Model Documentation Report: Industrial Sector Demand Module...

    Gasoline and Diesel Fuel Update (EIA)

    factors are multiplicative for all fuels which have values greater than zero and are additive otherwise. The equation for total industrial electricity consumption is below....

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    F. Other Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) ...

  13. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    F. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric ...

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    F. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) ...

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    F. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric ...

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    F. Natural Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric ...

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    F. Coal: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities ...

  18. EIA Energy Efficiency-Table 4e. Gross Output by Selected Industries...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    e Page Last Modified: May 2010 Table 4e. Gross Output1by Selected Industries, 1998, 2002, and 2006 (Billion 2000 Dollars 2) MECS Survey Years NAICS Subsector and Industry 1998 2002...

  19. EIA Energy Efficiency-Table 3e. Gross Output by Selected Industries...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    e Page Last Modified: May 2010 Table 3e. Gross Output1 by Selected Industries, 1998, 2002, and 2006 (Current Billion Dollars) MECS Survey Years NAICS Subsector and Industry 1998...

  20. United States Industrial Sector Energy End Use Analysis

    SciTech Connect (OSTI)

    Shehabi, Arman; Morrow, William R.; Masanet, Eric

    2012-05-11

    The United States Department of Energys (DOE) Energy Information Administration (EIA) conducts the Manufacturing Energy Consumption Survey (MECS) to provide detailed data on energy consumption in the manufacturing sector. The survey is a sample of approximately 15,000 manufacturing establishments selected from the Economic Census - Manufacturing Sector. MECS provides statistics on the consumption of energy by end uses (e.g., boilers, process, electric drives, etc.) disaggregated by North American Industry Classification System (NAICS) categories. The manufacturing sector (NAICS Sector 31-33) consists of all manufacturing establishments in the 50 States and the District of Columbia. According to the NAICS, the manufacturing sector comprises establishments engaged in the mechanical, physical, or chemical transformation of materials, substances, or components into new products. The establishments are physical facilities such as plants, factories, or mills. For many of the sectors in the MECS datasets, information is missing because the reported energy use is less than 0.5 units or BTUs, or is withheld to avoid disclosing data for individual establishments, or is withheld because the standard error is greater than 50%. We infer what the missing information likely are using several approximations techniques. First, much of the missing data can be easily calculated by adding or subtracting other values reported by MECS. If this is not possible (e.g. two data are missing), we look at historic MECS reports to help identify the breakdown of energy use in the past and assume it remained the same for the current MECS. Lastly, if historic data is also missing, we assume that 3 digit NAICS classifications predict energy use in their 4, 5, or 6 digit NAICS sub-classifications, or vice versa. Along with addressing data gaps, end use energy is disaggregated beyond the specified MECS allocations using additional industry specific energy consumption data. The result is a completed table of energy end use by sector with mechanical drives broken down by pumps, fans, compressed air, and drives.

  1. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    B. Coal: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 24,275 0 3,809 1,540 18,926 2005 23,833 0 3,918 1,544 18,371 2006 23,227 0 3,834 1,539 17,854 2007 22,810 0 3,795 1,566 17,449 2008 22,168 0 3,689 1,652 16,827 2009 20,507 0 3,935 1,481 15,091 2010 21,727 0 3,808 1,406 16,513 2011 21,532 0 3,628 1,321 16,584

  2. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    C. Coal: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,044,798 772,224 244,044 1,917 26,613 2005 1,065,281 761,349 276,135 1,922 25,875 2006 1,053,783 753,390 273,246 1,886 25,262 2007 1,069,606 764,765 280,377 1,927 22,537 2008 1,064,503 760,326 280,254 2,021 21,902 2009 955,190 695,615

  3. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    E. Coal: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 564,497 0 87,981 34,538 441,978 2005 548,666 0 88,364 34,616 425,685 2006 532,561 0 84,335 34,086 414,140 2007 521,717 0 83,838 34,690 403,189 2008 503,096 0 81,416 36,163 385,517 2009 462,674 0 90,867 32,651 339,156 2010 490,931 0 90,184 30,725 370,022 2011

  4. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    B. Petroleum Liquids: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Barrels) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 20,654 0 1,501 1,203 17,951 2005 20,494 0 1,392 1,004 18,097 2006 14,077 0 1,153 559 12,365 2007 13,462 0 1,303 441 11,718 2008 7,533 0 1,311 461 5,762 2009 8,128 0 1,301 293 6,534 2010 4,866 0 1,086 212 3,567 2011 3,826 0 1,004 168 2,654 2012

  5. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    C. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Barrels) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 185,761 103,793 57,843 1,963 22,162 2005 185,631 98,223 63,546 1,584 22,278 2006 87,898 53,529 18,332 886 15,150 2007 95,895 56,910 24,097 691 14,198 2008 61,379 38,995 14,463 621 7,300 2009 51,690 31,847 11,181 477

  6. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    E. Petroleum Liquids: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 124,809 0 8,592 7,219 108,997 2005 125,689 0 8,134 6,145 111,410 2006 87,137 0 6,740 3,481 76,916 2007 82,768 0 7,602 2,754 72,412 2008 45,481 0 7,644 2,786 35,051 2009 48,912 0 7,557 1,802 39,552 2010 29,243 0 6,402 1,297 21,545 2011 22,799 0 5,927

  7. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    B. Petroleum Coke: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,043 0 237 8 798 2005 783 0 206 8 568 2006 1,259 0 195 9 1,055 2007 1,262 0 162 11 1,090 2008 897 0 119 9 769 2009 1,007 0 126 8 873 2010 1,059 0 98 11 950 2011 1,080 0 112 6 962 2012 1,346 0 113 11 1,222 2013 1,486 0 96 11 1,379 2014 1,283 3 90 16

  8. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    C. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 8,721 4,150 3,223 9 1,339 2005 9,113 4,130 3,953 9 1,020 2006 8,622 3,619 3,482 10 1,511 2007 7,299 2,808 2,877 12 1,602 2008 6,314 2,296 2,823 10 1,184 2009 5,828 2,761 1,850 9 1,209 2010 6,053 3,325 1,452 12 1,264 2011

  9. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    E. Petroleum Coke: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 29,342 0 6,768 226 22,347 2005 22,224 0 5,935 228 16,061 2006 38,169 0 5,672 236 32,262 2007 38,033 0 4,710 303 33,019 2008 27,100 0 3,441 243 23,416 2009 29,974 0 3,652 213 26,109 2010 31,303 0 2,855 296 28,152 2011 31,943 0 3,244 153 28,546 2012

  10. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    B. Natural Gas: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,052,100 0 388,424 39,233 624,443 2005 984,340 0 384,365 34,172 565,803 2006 942,817 0 330,878 33,112 578,828 2007 872,579 0 339,796 35,987 496,796 2008 793,537 0 326,048 32,813 434,676 2009 816,787 0 305,542 41,275 469,970 2010 821,775 0 301,769

  11. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    C. Natural Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 6,726,679 1,809,443 3,654,320 72,072 1,190,844 2005 7,020,709 2,134,859 3,734,286 67,957 1,083,607 2006 7,404,432 2,478,396 3,743,704 67,735 1,114,597 2007 7,961,922 2,736,418 4,104,991 70,074 1,050,439 2008 7,689,380

  12. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    E. Natural Gas: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,085,191 0 398,476 40,122 646,593 2005 1,008,404 0 392,842 35,037 580,525 2006 968,574 0 339,047 33,928 595,599 2007 894,272 0 347,181 36,689 510,402 2008 813,794 0 333,197 33,434 447,163 2009 836,863 0 312,553 42,032 482,279 2010 841,521 0 308,246 47,001

  13. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    E. Wood / Wood Waste Biomass: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,016,124 0 14,968 1,493 999,663 2005 997,331 0 19,193 1,028 977,111 2006 1,049,161 0 18,814 1,045 1,029,303 2007 982,486 0 21,435 1,756 959,296 2008 923,889 0 18,075 1,123 904,690 2009 816,285 0 19,587 1,135 795,563 2010 876,041 0 18,357

  14. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    B. Landfill Gas: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 2,174 0 735 10 1,429 2005 1,923 0 965 435 522 2006 2,051 0 525 1,094 433 2007 1,988 0 386 1,102 501 2008 1,025 0 454 433 138 2009 793 0 545 176 72 2010 1,623 0 1,195 370 58 2011 3,195 0 2,753 351 91 2012 3,189 0 2,788 340 61 2013 831 0 261 423 147

  15. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    C. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 146,018 11,250 126,584 4,091 4,093 2005 143,822 11,490 124,030 5,232 3,070 2006 162,084 16,617 136,632 7,738 1,096 2007 168,762 17,442 144,490 5,699 1,131 2008 196,802 20,465 170,001 5,668 668 2009 207,585 19,583 181,234

  16. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    B. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 2,743 0 651 1,628 464 2005 2,719 0 623 1,536 560 2006 2,840 0 725 1,595 520 2007 2,219 0 768 1,136 315 2008 2,328 0 806 1,514 8 2009 2,426 0 823 1,466 137 2010 2,287 0 819 1,316 152 2011 2,044 0 742 1,148 154 2012 1,986 0 522 1,273 190

  17. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    C. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 22,330 444 17,959 3,439 488 2005 22,089 560 17,655 3,289 584 2006 22,469 500 18,068 3,356 545 2007 21,796 553 17,885 2,921 437 2008 22,134 509 18,294 3,323 8 2009 22,095 465 17,872 3,622 137 2010 21,725 402

  18. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    E. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 19,991 0 4,746 12,295 2,950 2005 20,296 0 4,551 11,991 3,754 2006 21,729 0 5,347 12,654 3,728 2007 16,174 0 5,683 8,350 2,141 2008 18,272 0 6,039 12,174 59 2009 18,785 0 6,229 11,535 1,021 2010 17,502 0 6,031 10,333 1,138 2011 16,766 0

  19. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    E. Other Waste Biomass: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 30,228 0 12,055 2,627 15,547 2005 38,010 0 10,275 2,086 25,649 2006 36,966 0 8,561 2,318 26,087 2007 41,757 0 10,294 2,643 28,820 2008 41,851 0 9,674 1,542 30,635 2009 41,810 0 10,355 1,638 29,817 2010 47,153 0 8,436 1,648 37,070 2011 43,483 0

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    F. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all ...

  1. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    F. Wood Wood Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all ...

  2. Energy use and CO2 emissions of Chinas industrial sector from a global perspective

    SciTech Connect (OSTI)

    Zhou, Sheng; Kyle, G. Page; Yu, Sha; Clarke, Leon E.; Eom, Jiyong; Luckow, Patrick W.; Chaturvedi, Vaibhav; Zhang, Xiliang; Edmonds, James A.

    2013-07-10

    The industrial sector has accounted for more than 50% of Chinas final energy consumption in the past 30 years. Understanding the future emissions and emissions mitigation opportunities depends on proper characterization of the present-day industrial energy use, as well as industrial demand drivers and technological opportunities in the future. Traditionally, however, integrated assessment research has handled the industrial sector of China in a highly aggregate form. In this study, we develop a technologically detailed, service-oriented representation of 11 industrial subsectors in China, and analyze a suite of scenarios of future industrial demand growth. We find that, due to anticipated saturation of Chinas per-capita demands of basic industrial goods, industrial energy demand and CO2 emissions approach a plateau between 2030 and 2040, then decrease gradually. Still, without emissions mitigation policies, the industrial sector remains heavily reliant on coal, and therefore emissions-intensive. With carbon prices, we observe some degree of industrial sector electrification, deployment of CCS at large industrial point sources of CO2 emissions at low carbon prices, an increase in the share of CHP systems at industrial facilities. These technological responses amount to reductions of industrial emissions (including indirect emission from electricity) are of 24% in 2050 and 66% in 2095.

  3. Designing Effective State Programs for the Industrial Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (including combined heat and power), according to a comprehensive 2009 analysis by McKinsey & Company. The guide was developed by SEE Action's Industrial Energy Efficiency and...

  4. Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

  5. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    SciTech Connect (OSTI)

    Sathaye, Jayant; de la Rue du Can, Stephane; Iyer, Maithili; McNeil, Michael; Kramer, Klaas Jan; Roy, Joyashree; Roy, Moumita; Chowdhury, Shreya Roy

    2011-04-15

    This report analyzed the potential for increasing energy efficiency and reducing greenhouse gas emissions (GHGs) in the non-residential building and the industrial sectors in India. The first two sections describe the research and analysis supporting the establishment of baseline energy consumption using a bottom up approach for the non residential sector and for the industry sector respectively. The third section covers the explanation of a modeling framework where GHG emissions are projected according to a baseline scenario and alternative scenarios that account for the implementation of cleaner technology.

  6. Number of Large Energy User Manufacturing Facilities by Sector and State (with Industrial Energy Consumption by State and Manufacturing Energy Consumption by Sector)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Number of Large Energy User Manufacturing Facilities by Sector and State (with Industrial Energy Consumption by State and Manufacturing Energy Consumption by Sector) State Industrial Site Energy Consumption (TBtu) by State in 2010* Estimated Number of Large Energy User Manufacturing Facilities** by Sector (NAICS Code) and by State in 2005 Food Manufacturing & Beverage and Tobacco Product Manufacturing Wood Product Manufacturing & Paper Manufacturing Petroleum and Coal Products

  7. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    2. Utility Scale Facility Net Generation from Other Gases by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change Year

  8. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    3. Utility Scale Facility Net Generation from Nuclear Energy by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change

  9. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    4. Utility Scale Facility Net Generation from Hydroelectric (Conventional) Power by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013

  10. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    5. Utility Scale Facility Net Generation from Renewable Sources Excluding Hydroelectric by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year

  11. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    6. Utility Scale Facility Net Generation from Hydroelectric (Pumped Storage) Power by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013

  12. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    7. Utility Scale Facility Net Generation from Other Energy Sources by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage

  13. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    8. Utility Scale Facility Net Generation from Wind by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change Year 2014

  14. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    9. Utility Scale Facility Net Generation from Biomass by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change Year 2014

  15. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    0. Utility Scale Facility Net Generation from Geothermal by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change Year

  16. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    1. Utility Scale Facility Net Generation from Solar Photovoltaic by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change

  17. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    2. Utility Scale Facility Net Generation from Solar Thermal by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change Year

  18. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    6. Revenue from Retail Sales of Electricity to Ultimate Customers: Total by End-Use Sector, 2003 - December 2013 (Million Dollars) Period Residential Commercial Industrial...

  19. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    3. Revenue from Retail Sales of Electricity to Ultimate Customers by Sector, by Provider, 2003 through 2013 (Million Dollars) Year Residential Commercial Industrial Transportation...

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Average Retail Price of Electricity to Ultimate Customers: Total by End-Use Sector, 2003 - December 2013 (Cents per Kilowatthour) Period Residential Commercial Industrial...

  1. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Average Retail Price of Electricity to Ultimate Customers by End-Use Sectors 2003 through 2013 (Cents per kilowatthour) Year Residential Commercial Industrial Transportation...

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Demand Response - Program Costs Category, by Sector, 2013 through 2014 Year Residential Commercial Industrial Transportation Total Customer Incentives (thousand dollars) 2013 ...

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Demand Response - Yearly Energy and Demand Savings Category, by Sector, 2013 through 2014 Year Residential Commercial Industrial Transportation Total Number of Customers ...

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Industrial Sector by State, 2013 Bituminous Subbituminous Lignite Census Division and State Receipts...

  5. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    6. Useful Thermal Output by Energy Source: Industrial Sector Combined Heat and Power, 2004 - 2014 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2004 290,407 70,976 14,008 392,974 107,956 641,058 35,284 1,552,663 2005 279,552 70,273 10,616 364,457 101,775 637,803 31,594 1,496,071 2006 272,229 47,320 21,584 376,822 103,481 662,906 38,630 1,522,971 2007 265,948 43,948 23,290 321,648 95,840 625,413 38,380 1,414,466 2008

  6. Industrial Utility Webinar: Opportunities for Cost-Effective Energy Efficiency in the Industrial Sector

    SciTech Connect (OSTI)

    2010-01-13

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  7. International standardization in the petroleum industry status from the subsea sector

    SciTech Connect (OSTI)

    Inderberg, O.

    1995-12-01

    The use of standards in subsea production systems and how the standards should be developed has been a debate for some time in the industry. The initial standardization work springs from the work performed in the API 17 series of recommended practices and specifications. The development within this sector of the industry is still happening rapidly since it is a relative new area. The standardization effort is happening both on national, regional and international levels. This paper will give status of the international standardization ISO work ongoing in the subsea area and give some background for the work. The importance of the work to the industry will be highlighted.

  8. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    9. Consumption of Coal for Electricity Generation by State by Sector, 2014 and 2013 (Thousand Tons) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2014 Year 2013 Percentage Change Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 New England 2,310 2,773 -17% 544 616 1,753 2,144 0 0 13 13 Connecticut 499 419 19% 0 0 499 419 0 0 0 0 Maine 19 15 27% 0 0 10 7 0 0 9 8

  9. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    4. Consumption of Biogenic Municipal Solid Waste for Electricity Generation by State, by Sector, 2014 and 2013 (Thousand Tons) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2014 Year 2013 Percentage Change Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 New England 3,947 3,913 0.9% 0 0 3,670 3,630 277 283 0 0 Connecticut 1,439 1,416 1.6% 0 0 1,362 1,330 77 86 0 0

  10. Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector

    SciTech Connect (OSTI)

    Amelie Goldberg; Taylor, Robert P.; Hedman, Bruce

    2014-03-21

    This report provides state regulators, utilities, and other program administrators with an overview of U.S. industrial energy efficiency programs and assesses some of the key features of programs that have generated increased energy savings.

  11. Identifying Opportunities and Impacts of Fuel Switching in the Industrial Sector

    SciTech Connect (OSTI)

    Jain, Ramesh C.; Jamison, Keith; Thomas, Daniel E.

    2006-08-01

    The underlying purpose of this white paper is to examine fuel switching opportunities in the U.S. industrial sector and make strategic recommendationsleading to application of the best available technologies and development of new technologiesthat will introduce fuel use flexibility as an economically feasible option for plant operators, as a means to condition local fuel demands and a hedge against the local rises in fuel prices.

  12. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    1. Total Electric Power Industry Summary Statistics, 2014 and 2013 Net Generation and Consumption of Fuels for January through December Total (All Sectors) Electric Power Sector Commercial Industrial Residential Electric Utilities Independent Power Producers Fuel Facility Type Year 2014 Year 2013 Percentage Change Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Net Generation (Thousand Megawatthours) Coal Utility Scale Facilities 1,581,710

  13. Update to industrial drivers in the AEO2015 as a result of new input-output data

    Gasoline and Diesel Fuel Update (EIA)

    Update to industrial drivers in the AEO2015 as a result of new input-output data Elizabeth Sendich May 4, 2015 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration. WORKING PAPER SERIES April 2015 Elizabeth Sendich | U.S. Energy

  14. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    4. Receipts of Petroleum Liquids Delivered for Electricity Generation by State, 2014 and 2013 (Thousand Barrels) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2014 Year 2013 Percentage Change Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 New England 4,554 3,177 43% 755 421 3,748 2,730 0 0 50 25 Connecticut 1,092 594 84% 0 0 1,092 594 0 0 0 0 Maine 637 898 -29% 0

  15. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    6. Receipts of Natural Gas Delivered for Electricity Generation by State, 2014 and 2013 (Million Cubic Feet) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2014 Year 2013 Percentage Change Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 New England 329,008 364,201 -9.7% 1,968 1,600 321,630 348,352 0 0 5,409 14,249 Connecticut 96,817 104,666 -7.5% 0 0 96,817 104,666

  16. ISTUM PC: industrial sector technology use model for the IBM-PC

    SciTech Connect (OSTI)

    Roop, J.M.; Kaplan, D.T.

    1984-09-01

    A project to improve and enhance the Industrial Sector Technology Use Model (ISTUM) was originated in the summer of 1983. The project had dix identifiable objectives: update the data base; improve run-time efficiency; revise the reference base case; conduct case studies; provide technical and promotional seminars; and organize a service bureau. This interim report describes which of these objectives have been met and which tasks remain to be completed. The most dramatic achievement has been in the area of run-time efficiency. From a model that required a large proportion of the total resources of a mainframe computer and a great deal of effort to operate, the current version of the model (ISTUM-PC) runs on an IBM Personal Computer. The reorganization required for the model to run on a PC has additional advantages: the modular programs are somewhat easier to understand and the data base is more accessible and easier to use. A simple description of the logic of the model is given in this report. To generate the necessary funds for completion of the model, a multiclient project is proposed. This project will extend the industry coverage to all the industrial sectors, including the construction of process flow models for chemicals and petroleum refining. The project will also calibrate this model to historical data and construct a base case and alternative scenarios. The model will be delivered to clients and training provided. 2 references, 4 figures, 3 tables.

  17. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    D. Wood / Wood Waste Biomass: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 344,134 19,973 130,248 168 193,745 2005 355,250 27,373 138,407 207 189,263 2006 350,074 27,455 135,546 269 186,803 2007 353,025 31,568 132,953 284 188,220 2008 338,786 29,150 130,122 287 179,227 2009 320,444 29,565 130,894 274 159,712 2010

  18. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    D. Other Waste Biomass: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 19,215 2,014 9,240 4,308 3,654 2005 17,852 2,485 7,365 4,677 3,325 2006 17,727 2,611 7,788 4,436 2,893 2007 19,083 2,992 8,861 4,049 3,181 2008 24,288 3,409 12,745 3,684 4,450 2009 24,847 3,679 13,231 3,760 4,177 2010 29,996 3,668 14,449 3,790

  19. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    SciTech Connect (OSTI)

    Price, Lynn; de la Rue du Can, Stephane; Lu, Hongyou; Horvath, Arpad

    2010-05-21

    The 2006 California Global Warming Solutions Act calls for reducing greenhouse gas (GHG) emissions to 1990 levels by 2020. Meeting this target will require action from all sectors of the California economy, including industry. The industrial sector consumes 25% of the energy used and emits 28% of the carbon dioxide (CO{sub 2}) produced in the state. Many countries around the world have national-level GHG reduction or energy-efficiency targets, and comprehensive programs focused on implementation of energy efficiency and GHG emissions mitigation measures in the industrial sector are essential for achieving their goals. A combination of targets and industry-focused supporting programs has led to significant investments in energy efficiency as well as reductions in GHG emissions within the industrial sectors in these countries. This project has identified program and policies that have effectively targeted the industrial sector in other countries to achieve real energy and CO{sub 2} savings. Programs in Ireland, France, The Netherlands, Denmark, and the UK were chosen for detailed review. Based on the international experience documented in this report, it is recommended that companies in California's industrial sector be engaged in a program to provide them with support to meet the requirements of AB32, The Global Warming Solution Act. As shown in this review, structured programs that engage industry, require members to evaluate their potential efficiency measures, plan how to meet efficiency or emissions reduction goals, and provide support in achieving the goals, can be quite effective at assisting companies to achieve energy efficiency levels beyond those that can be expected to be achieved autonomously.

  20. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    A. Net Generation by Energy Source: Industrial Sector, 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Distributed Generation Net Generation From Utility Scale Facilities and Distributed Generation Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Nuclear Hydroelectric Conventional Solar Renewable Sources Excluding Hydroelectric and Solar Hydroelectric Pumped Storage Other Total Generation at Utility Scale Facilities Estimated Distributed Solar

  1. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    B. Net Generation from Renewable Sources: Industrial Sector, 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Distributed Generation Net Generation From Utility Scale Facilities and Distributed Generation Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Generation at Utility Scale Facilities Estimated Distributed Solar

  2. Economic and environmental impacts of the corn grain ethanol industry on the United States agricultural sector

    SciTech Connect (OSTI)

    Larson, J.A.; English, B.C.; De La Torre Ugarte, D. G.; Menard, R.J.; Hellwinckel, C.M.; West, Tristram O.

    2010-09-10

    This study evaluated the impacts of increased ethanol production from corn starch on agricultural land use and the environment in the United States. The Policy Analysis System simulation model was used to simulate alternative ethanol production scenarios for 2007 through 2016. Results indicate that increased corn ethanol production had a positive effect on net farm income and economic wellbeing of the US agricultural sector. In addition, government payments to farmers were reduced because of higher commodity prices and enhanced net farm income. Results also indicate that if Conservation Reserve Program land was converted to crop production in response to higher demand for ethanol in the simulation, individual farmers planted more land in crops, including corn. With a larger total US land area in crops due to individual farmer cropping choices, total US crop output rose, which decreased crop prices and aggregate net farm income relative to the scenario where increased ethanol production happened without Conservation Reserve Program land. Substantial shifts in land use occurred with corn area expanding throughout the United States, especially in the traditional corn-growing area of the midcontinent region.

  3. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    2. Receipts, Average Cost, and Quality of Fossil Fuels: Industrial Sector, 2004 - 2014 (continued) Petroleum Coke Natural Gas All Fossil Fuels Receipts Average Cost Receipts Average Cost Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMbtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Mcf) (Dollars per MMBtu) (Dollars per Mcf) Percentage of Consumption (Dollars per MMBtu) Annual Totals 2004 14,876 540 0.98 27.01 5.59 40.4

  4. Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    SciTech Connect (OSTI)

    David Petti; J. Stephen Herring

    2010-03-01

    As described in the Department of Energy Office of Nuclear Energys Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, Produce hydrogen for industrial processes and transportation fuels, and Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nations energy security through more effective utilization of our countrys resources while simultaneously providing economic stability and growth (through predictable energy prices and high value jobs), in an environmentally sustainable and secure manner (through lower land and water use, and decreased byproduct emissions). The reduction in imported oil will also increase the retention of wealth within the U.S. economy while still supporting economic growth. Nuclear energy is the only non-fossil fuel that has been demonstrated to reliably supply energy for a growing industrial economy.

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    D. Biogenic Municipal Solid Waste: Consumption for Electricity Generation, by Sector, 2003 - 2013 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities...

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    D. Coal: Consumption for Electricity Generation, by Sector, 2003 - 2013 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power...

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Natural Gas: Consumption for Electricity Generation, by Sector, 2003 - 2013 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent...

  8. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Petroleum Liquids: Consumption for Electricity Generation, by Sector, 2003 - 2013 (Thousand Barrels) Electric Power Sector Period Total (all sectors) Electric Utilities...

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Consumption of Petroleum Coke for Electricity Generation by State, by Sector, 2013 and 2012 (Thousand Tons) Electric Power Sector Census Division and State All Sectors Electric...

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Coal: Consumption for Electricity Generation, by Sector, 2003 - 2013 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power...

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    D. Petroleum Coke: Consumption for Electricity Generation, by Sector, 2003 - 2013 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent...

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Landfill Gas: Consumption for Electricity Generation, by Sector, 2003 - 2013 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent...

  13. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    D. Petroleum Liquids: Consumption for Electricity Generation, by Sector, 2003 - 2013 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent...

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    D. Landfill Gas: Consumption for Electricity Generation, by Sector, 2003 - 2013 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power...

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Petroleum Coke: Consumption for Electricity Generation, by Sector, 2003 - 2013 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent...

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    D. Natural Gas: Consumption for Electricity Generation, by Sector, 2003 - 2013 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power...

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Consumption of Landfill Gas for Electricity Generation by State, by Sector, 2013 and 2012 (Million Cubic Feet) Electric Power Sector Census Division and State All Sectors...

  18. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Consumption of Petroleum Liquids for Electricity Generation by State, by Sector,. 2013 and 2012 (Thousand Barrels) Electric Power Sector Census Division and State All Sectors...

  19. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Biogenic Municipal Solid Waste: Consumption for Electricity Generation, by Sector, 2003 - 2013 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric...

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Consumption of Nautral Gas for Electricity Generation by State, by Sector, 2013 and 2012 (Million Cubic Feet) Electric Power Sector Census Division and State All Sectors...

  1. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Net Generation from Petroleum Liquids by State, by Sector, 2013 and 2012 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities...

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Net Generation from Coal by State, by Sector, 2013 and 2012 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent...

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Generation from Other Gases by State, by Sector, 2013 and 2012 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities...

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Net Generation from Petroleum Coke by State, by Sector, 2013 and 2012 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities...

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Net Generation from Natural Gas by State, by Sector, 2013 and 2012 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities...

  6. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    5. Sales of Electricity to Ultimate Customers: Total by End-Use Sector, 2004 - December 2014 (Thousand Megawatthours) Period Residential Commercial Industrial Transportation All Sectors Annual Totals 2004 1,291,982 1,230,425 1,017,850 7,224 3,547,479 2005 1,359,227 1,275,079 1,019,156 7,506 3,660,969 2006 1,351,520 1,299,744 1,011,298 7,358 3,669,919 2007 1,392,241 1,336,315 1,027,832 8,173 3,764,561 2008 1,380,662 1,336,133 1,009,516 7,653 3,733,965 2009 1,364,758 1,306,853 917,416 7,768

  7. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    8. Sales of Electricity to Ultimate Customers by End-Use Sector, by State, 2014 and 2013 (Thousand Megawatthours) Residential Commercial Industrial Transportation All Sectors Census Division and State Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 New England 47,212 48,369 53,107 44,938 19,107 27,472 557 577 119,983 121,357 Connecticut 12,778 13,135 12,894 13,009 3,515 3,490 169 190 29,354 29,825 Maine 4,661 4,662 3,985 4,016 3,357 3,177 0 0

  8. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    0. Average Price of Electricity to Ultimate Customers by End-Use Sector, by State, 2014 and 2013 (Cents per Kilowatthour) Residential Commercial Industrial Transportation All Sectors Census Division and State Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 New England 17.82 16.22 14.70 13.97 11.84 12.25 10.38 12.15 15.45 14.47 Connecticut 19.75 17.55 15.55 14.63 12.92 12.61 13.08 10.31 17.05 15.66 Maine 15.27 14.35 12.70 11.74 8.95 8.34 -- --

  9. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    . Count of Electric Power Industry Power Plants, by Sector, by Predominant Energy Sources within Plant, 2004 through 2014 Year Coal Petroleum Natural Gas Other Gases Nuclear Hydroelectric Conventional Other Renewables Hydroelectric Pumped Storage Other Energy Sources Total (All Sectors) 2004 625 1,143 1,670 46 66 1,425 749 39 28 2005 619 1,133 1,664 44 66 1,422 781 39 29 2006 616 1,148 1,659 46 66 1,421 843 39 29 2007 606 1,163 1,659 46 66 1,424 929 39 25 2008 598 1,170 1,655 43 66 1,423 1,076

  10. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    3. Supply and Disposition of Electricity, 2004 through 2014 (From Chapter 2.) Supply (Million Megawatthours) Generation Year Electric Utilities IPP (Non-CHP) IPP (CHP) Commercial Sector Industrial Sector Total Imports Total Supply 2004 2,505 1,119 184 8 154 34 4,005 2005 2,475 1,247 180 8 145 44 4,099 2006 2,484 1,259 165 8 148 43 4,107 2007 2,504 1,324 177 8 143 51 4,208 2008 2,475 1,332 167 8 137 57 4,176 2009 2,373 1,278 159 8 132 52 4,003 2010 2,472 1,339 162 9 144 45 4,170 2011 2,461 1,331

  11. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    1. Receipts, Average Cost, and Quality of Fossil Fuels: Industrial Sector, 2004 - 2014 Coal Petroleum Liquids Receipts Average Cost Receipts Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMBtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Barrels) (Dollars per MMBtu) (Dollars per Barrel) Average Sulfur Percent by Weight Percentage of Consumption Annual Totals 2004 326,495 15,324 1.63 34.79 1.43 57.6 25,491 4,107 4.98 30.93

  12. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    3. Useful Thermal Output by Energy Source: Total Combined Heat and Power (All Sectors), 2004 - 2014 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2004 351,871 80,824 16,659 654,242 126,157 667,341 45,456 1,942,550 2005 341,806 79,362 13,021 624,008 138,469 664,691 41,400 1,902,757 2006 332,548 54,224 24,009 603,288 126,049 689,549 49,308 1,878,973 2007 326,803 50,882 25,373 554,394 116,313 651,230 46,822 1,771,816

  13. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    4. Useful Thermal Output by Energy Source: Electric Power Sector Combined Heat and Power, 2004 - 2014 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2004 39,014 5,731 2,486 239,416 18,200 17,347 3,822 326,017 2005 39,652 5,571 2,238 239,324 36,694 18,240 3,884 345,605 2006 38,133 4,812 2,253 207,095 22,567 17,284 4,435 296,579 2007 38,260 5,294 1,862 212,705 20,473 19,166 4,459 302,219 2008 37,220 5,479 1,353 204,167

  14. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    5. Useful Thermal Output by Energy Source: Commercial Sector Combined Heat and Power, 2004 - 2014 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2004 22,450 4,118 165 21,851 0 8,936 6,350 63,871 2005 22,601 3,518 166 20,227 0 8,647 5,921 61,081 2006 22,186 2,092 172 19,370 0.22 9,359 6,242 59,422 2007 22,595 1,640 221 20,040 0 6,651 3,983 55,131 2008 22,991 1,822 177 20,183 0 8,863 6,054 60,091 2009 20,057 1,095 155

  15. Analysis of energy use in building services of the industrial sector in California: A literature review and a preliminary characterization

    SciTech Connect (OSTI)

    Akbari, H.; Borgers, T.; Gadgil, A.; Sezgen, O.

    1991-04-01

    Energy use patterns in many of California's fastest-growing industries are not typical of those in the mix of industries elsewhere in the US. Many California firms operate small and medium-sized facilities, often in buildings used simultaneously or interchangeably for commercial (office, retail, warehouse) and industrial activities. In these industrial subsectors, the energy required for building services'' to provide occupant comfort and necessities (lighting, HVAC, office equipment, computers, etc.) may be at least as important as the more familiar process energy requirements -- especially for electricity and on-peak demand. In this report, published or unpublished information on energy use for building services in the industrial sector have been compiled and analyzed. Seven different sources of information and data relevant to California have been identified. Most of these are studies and/or projects sponsored by the Department of Energy, the California Energy Commission, and local utilities. The objectives of these studies were diverse: most focused on industrial energy use in general, and, in one case, the objective was to analyze energy use in commercial buildings. Only one of these studies focused directly on non-process energy use in industrial buildings. Our analysis of Northern California data for five selected industries shows that the contribution of total electricity consumption for lighting ranges from 9.5% in frozen fruits to 29.1% in instruments; for air-conditioning, it ranges from nonexistent in frozen fruits to 35% in instrument manufacturing. None of the five industries selected had significant electrical space heating. Gas space heating ranges from 5% in motor vehicles facilities to more than 58% in the instrument manufacturing industry. 15 refs., 15 figs., 9 tabs.

  16. Future Public Policy and Ethical Issues Facing the Agricultural and Microbial Genomics Sectors of the Biotechnology Industry: A Roundtable Discussion

    SciTech Connect (OSTI)

    Diane E. Hoffmann

    2003-09-12

    On September 12, 2003, the University of Maryland School of Law's Intellectual Property and Law & Health Care Programs jointly sponsored and convened a roundtable discussion on the future public policy and ethical issues that will likely face the agricultural and microbial genomics sectors of the biotechnology industry. As this industry has developed over the last two decades, societal concerns have moved from what were often local issues, e.g., the safety of laboratories where scientists conducted recombinant DNA research on transgenic microbes, animals and crops, to more global issues. These newer issues include intellectual property, international trade, risks of genetically engineered foods and microbes, bioterrorism, and marketing and labeling of new products sold worldwide. The fast paced nature of the biotechnology industry and its new developments often mean that legislators, regulators and society, in general, must play ''catch up'' in their efforts to understand the issues, the risks, and even the benefits, that may result from the industry's new ways of conducting research, new products, and novel methods of product marketing and distribution. The goal of the roundtable was to develop a short list of the most significant public policy and ethical issues that will emerge as a result of advances in these sectors of the biotechnology industry over the next five to six years. More concretely, by ''most significant'' the conveners meant the types of issues that would come to the attention of members of Congress or state legislators during this time frame and for which they would be better prepared if they had well researched and timely background information. A concomitant goal was to provide a set of focused issues for academic debate and scholarship so that policy makers, industry leaders and regulators would have the intellectual resources they need to better understand the issues and concerns at stake. The goal was not to provide answers to any of the issues or problems, simply to identify those topics that deserve our attention as a society. Some of the issues may benefit from legislation at the federal or state levels, others may be more appropriately addressed by the private sector. Participants at the roundtable included over a dozen experts in the areas of microbiology, intellectual property, agricultural biotechnology, microbial genomics, bioterrorism, economic development, biotechnology research, and bioethics. These experts came from federal and state government, industry and academia. The participants were asked to come to the roundtable with a written statement of the top three to five public policy/ ethical issues they viewed as most likely to be significant to the industry and to policy makers over the next several years.

  17. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    . Number of Ultimate Customers Served by Sector, by Provider, 2004 through 2014 Year Residential Commercial Industrial Transportation Total Total Electric Industry 2004 118,763,768 16,606,783 747,600 1,025 136,119,176 2005 120,760,839 16,871,940 733,862 518 138,367,159 2006 122,471,071 17,172,499 759,604 791 140,403,965 2007 123,949,916 17,377,219 793,767 750 142,121,652 2008 125,037,837 17,582,382 774,808 726 143,395,753 2009 125,208,829 17,562,235 757,537 704 143,529,305 2010 125,717,935

  18. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    2. Sales and Direct Use of Electricity to Ultimate Customers by Sector, by Provider, 2004 through 2014 (Megawatthours) Year Residential Commercial Industrial Transportation Total Direct Use Total End Use Total Electric Industry 2004 1,291,981,578 1,230,424,731 1,017,849,532 7,223,642 3,547,479,483 168,470,002 3,715,949,485 2005 1,359,227,107 1,275,079,020 1,019,156,065 7,506,321 3,660,968,513 150,015,531 3,810,984,044 2006 1,351,520,036 1,299,743,695 1,011,297,566 7,357,543 3,669,918,840

  19. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  20. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    4. Green Pricing Customers by End Use Sector, 2005 through 2012 (Table Discontinued) Year Residential Commercial Industrial Transportation Total 2005 871,774 70,303 695 -- 942,772 2006 606,919 35,414 522 1 642,856 2007 773,391 61,608 553 99 835,651 2008 918,284 63,521 987 203 982,995 2009 1,058,185 64,139 1,454 -- 1,123,778 2010 1,137,047 78,128 1,407 -- 1,216,582 2011 1,187,867 89,677 1,440 -- 1,278,984 2012 2,162,230 102,223 1,509 -- 2,265,963 2012 was the last year this data was collected. In

  1. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    2. Demand-Side Management Program Annual Effects by Program Category, by Sector, 2004 through 2012 (Table Discontinued) Year Residential Commercial Industrial Transportation Total Energy Efficiency - Energy Savings (Thousand MWh) 2004 17,185 24,290 11,137 50 52,663 2005 18,894 28,073 11,986 47 59,000 2006 21,150 28,720 13,155 50 63,076 2007 22,772 30,359 14,038 108 67,278 2008 25,396 34,634 14,766 75 74,871 2009 27,395 34,831 14,610 76 76,912 2010 32,150 37,416 17,259 89 86,914 2011 46,790

  2. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    4. Demand-Side Management Program Incremental Effects by Program Category, by Sector, 2004 through 2012 (Table Discontinued) Year Residential Commercial Industrial Transportation Total Energy Efficiency - Energy Savings (Thousand MWh) 2004 1,827 1,812 894 -- 4,532 2005 2,249 2,559 1,071 -- 5,879 2006 2,127 2,281 986 -- 5,394 2007 3,659 2,830 1,178 13 7,680 2008 4,568 4,383 1,477 1 10,428 2009 5,030 4,959 2,918 1 12,907 2010 6,492 5,325 1,771 5 13,592 2011 9,989 8,166 3,261 6 21,421 2012 9,531

  3. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    6. Energy Efficiency Category, by Sector, 2013 through 2014 Year Residential Commercial Industrial Transportation Total Incremental Annual Savings - Energy Savings (MWh) 2013 11,031,419 10,478,997 3,141,213 29,894 24,681,523 2014 11,442,191 11,928,895 3,074,819 19,316 26,465,221 Incremental Annual Savings - Peak Demand Savings (MW) 2013 6,812 11,319 1,463 5 19,599 2014 3,031 2,920 564 2 6,517 Incremental Costs - Customer Incentive (thousand dollars) 2013 1,252,085 1,274,406 345,676 5 2,872,171

  4. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    7. Energy Efficiency - Life Cycle Category, by Sector, 2013 through 2014 Year Residential Commercial Industrial Transportation Total Life Cycle Savings - Energy Savings (MWh) 2013 84,525,515 128,026,835 38,500,862 448,421 251,464,746 2014 100,729,499 149,493,353 39,631,016 287,925 290,141,793 Life Cycle Savings - Peak Demand Savings (MW) 2013 44,351 70,979 19,524 6 134,861 2014 17,911 46,600 12,248 2 76,760 Life Cycle Costs - Customer Incentive (thousand dollars) 2013 2,698,741 2,875,605 455,357

  5. Analysis of Fuel Flexibility Opportunities and Constraints in the U.S. Industrial Sector

    SciTech Connect (OSTI)

    none,

    2007-03-07

    The purpose of this assessment was to determine if flexible, alternative fuel use in industry, beyond switching from natural gas to petroleum derivatives, presents a sizeable opportunity for the reduction in use of natural gas. Furthermore, the assessment was to determine what programmatic activities the DOE could undertake to accelerate a fuel flexibility program for industry. To this end, a six-part framework (see Figure ES-1) was used to identify the most promising fuel flexibility options, and what level of accomplishment could be achieved, based on DOE leadership.

  6. Table 11.5a Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Total (All Sectors), 1989-2010 (Sum of Tables 11.5b and 11.5c; Metric Tons of Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    a Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Total (All Sectors), 1989-2010 (Sum of Tables 11.5b and 11.5c; Metric Tons of Gas) Year Carbon Dioxide 1 Sulfur Dioxide Nitrogen Oxides Coal 2 Natural Gas 3 Petroleum 4 Geo- thermal 5 Non- Biomass Waste 6 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total 1989 1,573,566,415 218,383,703 145,398,976 363,247 5,590,014 1,943,302,355 14,468,564 1,059 984,406

  7. Table 11.5b Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Electric Power Sector, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    b Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Electric Power Sector, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas) Year Carbon Dioxide 1 Sulfur Dioxide Nitrogen Oxides Coal 2 Natural Gas 3 Petroleum 4 Geo- thermal 5 Non- Biomass Waste 6 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total 1989 1,520,229,870 169,653,294 133,545,718 363,247 4,365,768 1,828,157,897 13,815,263 832 809,873 6,874

  8. Table 8.6a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.6b and 8.6c)

    U.S. Energy Information Administration (EIA) Indexed Site

    a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.6b and 8.6c) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu 1989 16,509,639 1,410,151 16,356,550 353,000 247,409 19,356,746

  9. Table 8.6b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a)

    U.S. Energy Information Administration (EIA) Indexed Site

    b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu 1989 638,798 119,640 1,471,031 762 – 1,591,433 81,669,945 2,804 24,182 5,687

  10. Using Economic Input/Output Tables to Predict a Countrys Nuclear Status

    SciTech Connect (OSTI)

    Weimar, Mark R.; Daly, Don S.; Wood, Thomas W.

    2010-07-15

    Both nuclear power and nuclear weapons programs should have (related) economic signatures which are detectible at some scale. We evaluated this premise in a series of studies using national economic input/output (IO) data. Statistical discrimination models using economic IO tables predict with a high probability whether a country with an unknown predilection for nuclear weapons proliferation is in fact engaged in nuclear power development or nuclear weapons proliferation. We analyzed 93 IO tables, spanning the years 1993 to 2005 for 37 countries that are either members or associates of the Organization for Economic Cooperation and Development (OECD). The 2009 OECD input/output tables featured 48 industrial sectors based on International Standard Industrial Classification (ISIC) Revision 3, and described the respective economies in current country-of-origin valued currency. We converted and transformed these reported values to US 2005 dollars using appropriate exchange rates and implicit price deflators, and addressed discrepancies in reported industrial sectors across tables. We then classified countries with Random Forest using either the adjusted or industry-normalized values. Random Forest, a classification tree technique, separates and categorizes countries using a very small, select subset of the 2304 individual cells in the IO table. A nations efforts in nuclear power, be it for electricity or nuclear weapons, are an enterprise with a large economic footprint -- an effort so large that it should discernibly perturb coarse country-level economics data such as that found in yearly input-output economic tables. The neoclassical economic input-output model describes a countrys or regions economy in terms of the requirements of industries to produce the current level of economic output. An IO table row shows the distribution of an industrys output to the industrial sectors while a table column shows the input required of each industrial sector by a given industry.

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Year-End Coal Stocks by Sector, Census Division, and State, 2013 and 2012" "(thousand ... Operations Report,' Form EIA-3, 'Quarterly Coal Consumption and Quality Report, ...

  12. Table 8.3a Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.3b and 8.3c; Billion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    a Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.3b and 8.3c; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 1989 323,191 95,675 461,905 92,556 973,327 546,354 30,217 576,571 39,041 1,588,939 1990 362,524 127,183 538,063 140,695 1,168,465 650,572 36,433 687,005 40,149 1,895,619 1991 351,834 112,144 546,755 148,216 1,158,949 623,442 36,649

  13. Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 1: Part 1, Electricity supply sector; Part 2, Residential and commercial buildings sector; Part 3, Industrial sector

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    DOE encourages you to report your achievements in reducing greenhouse gas emissions and sequestering carbon under this program. Global climate change is increasingly being recognized as a threat that individuals and organizations can take action against. If you are among those taking action, reporting your projects may lead to recognition for you, motivation for others, and synergistic learning for the global community. This report discusses the reporting process for the voluntary detailed guidance in the sectoral supporting documents for electricity supply, residential and commercial buildings, industry, transportation, forestry, and agriculture. You may have reportable projects in several sectors; you may report them separately or capture and report the total effects on an entity-wide report.

  14. Table 8.11d Electric Net Summer Capacity: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.11a; Kilowatts)

    U.S. Energy Information Administration (EIA) Indexed Site

    d Electric Net Summer Capacity: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.11a; Kilowatts) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage Renewable Energy Other 8 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power Biomass Geo- thermal Solar/PV 7 Wind Total Wood 5 Waste 6 Commercial Sector 9<//td> 1989 258,193 191,487 578,797 – 1,028,477 [–] – 17,942 13,144 166,392 [–] – – 197,478 – 1,225,955 1990

  15. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    1. Stocks of Coal, Petroleum Liquids, and Petroleum Coke: Electric Power Sector, 2004 - 2014 Electric Power Sector Electric Utilities Independent Power Producers Period Coal (Thousand Tons) Petroluem Liquids (Thousand Barrels) Petroleum Coke (Thousand Tons) Coal (Thousand Tons) Petroluem Liquids (Thousand Barrels) Petroleum Coke (Thousand Tons) Coal (Thousand Tons) Petroluem Liquids (Thousand Barrels) Petroleum Coke (Thousand Tons) End of Year Stocks 2004 106,669 46,750 937 84,917 29,144 627

  16. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    3 Stocks of Coal, Petroleum Liquids, and Petroleum Coke: Electric Power Sector, by Census Divison, 2014 and 2013 Electric Power Sector Electric Utilities Independent Power Producers Census Division December 2014 December 2013 Percentage Change December 2014 December 2013 December 2014 December 2013 Coal (Thousand Tons) New England 1,611 1,129 42.7% W W W W Middle Atlantic 8,079 5,973 35.3% W 0 W 5,973 East North Central 33,839 28,279 19.7% 23,394 22,076 10,446 6,203 West North Central 20,648

  17. Public Interest Energy Research (PIER) Program. Final Project Report. California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; Hasanbeigi, Ali; Sathaye, Jayant

    2010-12-01

    This report on the California Energy Balance version 2 (CALEB v2) database documents the latest update and improvements to CALEB version 1 (CALEB v1) and provides a complete picture of how energy is supplied and consumed in the State of California. The CALEB research team at Lawrence Berkeley National Laboratory (LBNL) performed the research and analysis described in this report. CALEB manages highly disaggregated data on energy supply, transformation, and end-use consumption for about 40 different energy commodities, from 1990 to 2008. This report describes in detail California's energy use from supply through end-use consumption as well as the data sources used. The report also analyzes trends in energy demand for the "Manufacturing" and "Building" sectors. Decomposition analysis of energy consumption combined with measures of the activity driving that consumption quantifies the effects of factors that shape energy consumption trends. The study finds that a decrease in energy intensity has had a very significant impact on reducing energy demand over the past 20 years. The largest impact can be observed in the industry sector where energy demand would have had increased by 358 trillion British thermal units (TBtu) if subsectoral energy intensities had remained at 1997 levels. Instead, energy demand actually decreased by 70 TBtu. In the "Building" sector, combined results from the "Service" and "Residential" subsectors suggest that energy demand would have increased by 264 TBtu (121 TBtu in the "Services" sector and 143 TBtu in the "Residential" sector) during the same period, 1997 to 2008. However, energy demand increased at a lesser rate, by only 162 TBtu (92 TBtu in the "Services" sector and 70 TBtu in the "Residential" sector). These energy intensity reductions can be indicative of energyefficiency improvements during the past 10 years. The research presented in this report provides a basis for developing an energy-efficiency performance index to measure progress over time in the State of California.

  18. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    B. Net Generation from Renewable Sources: Total (All Sectors), 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Distributed Generation Net Generation From Utility Scale Facilities and Distributed Generation Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Generation at Utility Scale Facilities Estimated Distributed Solar

  19. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    A. Net Generation by Energy Source: Commercial Sector, 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Distributed Generation Net Generation From Utility Scale Facilities and Distributed Generation Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Nuclear Hydroelectric Conventional Solar Renewable Sources Excluding Hydroelectric and Solar Hydroelectric Pumped Storage Other Total Generation at Utility Scale Facilities Estimated Distributed Solar

  20. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    9. Average Cost of Petroleum Coke Delivered for Electricity Generation by State, 2014 and 2013 (Dollars per MMBtu) Census Division and State Electric Power Sector Electric Utilities Independent Power Producers Year 2014 Year 2013 Percentage Change Year 2014 Year 2013 Year 2014 Year 2013 New England -- -- -- -- -- -- -- Connecticut -- -- -- -- -- -- -- Maine -- -- -- -- -- -- -- Massachusetts -- -- -- -- -- -- -- New Hampshire -- -- -- -- -- -- -- Rhode Island -- -- -- -- -- -- -- Vermont -- --

  1. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1. Electric Power Industry - Electricity Purchases, 2003 through 2013 (Thousand Megawatthours) Year Electric Utilities Energy-Only Providers Independent Power Producers Combined...

  2. SAS Output

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2. Electric Power Industry - Electricity Sales for Resale, 2003 through 2013 (Thousand Megawatthours) Year Electric Utilities Energy-Only Providers Independent Power Producers...

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    l",,"and","Power1","Industrial",,"and",,,"Change" ,,,,"Institutional",,,,"Institutional" "New England",2791,87,"-","-",1920,81,"-","-",2878,2001,43.8 " Connecticut",419,"-","-","-"...

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    ","Power1","Industrial",,"and" ,,,,"Institutional",,,,"Institutional",,,,"Institutional" "New England",86.43,"w","-","-",88.32,165.17,"-","-",-2.14,"w","-","-" "...

  5. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    4. Stocks of Coal by Coal Rank: Electric Power Sector, 2004 - 2014 Electric Power Sector Period Bituminous Coal Subbituminous Coal Lignite Coal Total End of Year Stocks 2004 49,022 53,618 4,029 106,669 2005 52,923 44,377 3,836 101,137 2006 67,760 68,408 4,797 140,964 2007 63,964 82,692 4,565 151,221 2008 65,818 91,214 4,556 161,589 2009 91,922 92,448 5,097 189,467 2010 81,108 86,915 6,894 174,917 2011 82,056 85,151 5,179 172,387 2012 86,437 93,833 4,846 185,116 2013 73,113 69,720 5,051 147,884

  6. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    6. Net Generation by Energy Source: Residential Sector, 2014 (Thousand Megawatthours) Distributed Generation Period Estimated Distributed Solar Photovoltaic Generation Annual Totals 2014 4,243 Year 2014 January 226 February 238 March 328 April 361 May 402 June 410 July 431 August 431 September 404 October 382 November 319 December 311 See Glossary for definitions. Values are final. See Technical Notes for a discussion of the sample design for the Form EIA-923 and predecessor forms. Totals may

  7. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    0. Receipts, Average Cost, and Quality of Fossil Fuels: Commerical Sector, 2004 - 2014 (continued) Petroleum Coke Natural Gas All Fossil Fuels Receipts Average Cost Receipts Average Cost Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMbtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Mcf) (Dollars per MMBtu) (Dollars per Mcf) Percentage of Consumption (Dollars per MMBtu) Annual Totals 2004 0 0 -- -- -- 0.0 16,176 15,804

  8. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    4. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Commercial Sector by State, 2014 Bituminous Subbituminous Lignite Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight New England 0 -- -- 0 -- -- 0 -- -- Connecticut 0 -- -- 0 -- -- 0

  9. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    4. Existing Capacity by Producer Type, 2014 (Megawatts) Producer Type Number of Generators Generator Nameplate Capacity Net Summer Capacity Net Winter Capacity Electric Power Sector Electric Utilities 9,510 675,675.4 616,631.5 637,857.0 Independent Power Producers, Non-Combined Heat and Power Plants 6,975 423,782.6 387,561.6 401,581.5 Independent Power Producers, Combined Heat and Power Plants 559 37,890.2 33,362.6 35,972.8 Total 17,044 1,137,348.2 1,037,555.7 1,075,411.3 Commercial and

  10. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    2 Stocks of Coal, Petroleum Liquids, and Petroleum Coke: Electric Power Sector, by State, 2014 and 2013 Census Division and State Coal (Thousand Tons) Petroleum Liquids (Thousand Barrels) Petroleum Coke (Thousand Tons) December 2014 December 2013 Percentage Change December 2014 December 2013 Percentage Change December 2014 December 2013 Percentage Change New England 1,611 1,129 42.7% 4,989 3,613 38.1% 0 0 -- Connecticut W W W 1,498 1,141 31.3% 0 0 -- Maine 0 0 -- W W W 0 0 -- Massachusetts W 582

  11. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    9. Receipts, Average Cost, and Quality of Fossil Fuels: Commercial Sector, 2004 - 2014 Coal Petroleum Liquids Receipts Average Cost Receipts Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMBtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Barrels) (Dollars per MMBtu) (Dollars per Barrel) Average Sulfur Percent by Weight Percentage of Consumption Annual Totals 2004 10,682 451 2.08 49.32 2.48 23.5 3,066 527 6.19 35.96 0.20

  12. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    8. Average Cost of Petroleum Liquids Delivered for Electricity Generation by State, 2014 and 2013 (Dollars per MMBtu) Census Division and State Electric Power Sector Electric Utilities Independent Power Producers Year 2014 Year 2013 Percentage Change Year 2014 Year 2013 Year 2014 Year 2013 New England 17.53 W W 16.96 18.60 17.64 W Connecticut W W W -- -- W W Maine W W W -- -- W W Massachusetts 18.09 18.16 -0.4% 19.94 21.91 17.75 17.68 New Hampshire W W W 15.16 16.84 W W Rhode Island W W W -- --

  13. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    1. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Total (All Sectors) by State, 2014 Bituminous Subbituminous Lignite Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight New England 1,836 1.20 10.1 741 0.09 2.0 0 -- -- Connecticut 0

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Coal Consumers in the Manufacturing and Coke Sectors, 2013" "Company Name","Plant Location" "Top Ten Manufacturers" "American Crystal Sugar Co","MN, ND" "Archer Daniels Midland","IA, IL, MN, NE" "Carmeuse Lime Stone Inc","AL, IN, KY, MI, OH, PA, TN, WI" "Cemex Inc","AL, CA, CO, FL, GA, KY, OH, TN, TX" "Dakota Gasification Company","ND" "Eastman Chemical

  15. Table 11.2c Carbon Dioxide Emissions From Energy Consumption: Industrial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    c Carbon Dioxide Emissions From Energy Consumption: Industrial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Coal Coke Net Imports Natural Gas 3 Petroleum Retail Elec- tricity 8 Total 2 Biomass 2 Distillate Fuel Oil 4 Kero- sene LPG 5 Lubri- cants Motor Gasoline 6 Petroleum Coke Residual Fuel Oil Other 7 Total Wood 9 Waste 10 Fuel Ethanol 11 Total 1949 500 -1 166 41 18 3 3 16 8 95 25 209 120 995 44 NA NA 44 1950 531 (s) 184 51 20 4 3 18 8 110 26 239 140 1,095 50 NA NA 50

  16. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    A. Existing Net Summer Capacity by Energy Source and Producer Type, 2004 through 2014 (Megawatts) Year Coal Petroleum Natural Gas Other Gases Nuclear Hydroelectric Conventional Other Renewable Sources Hydroelectric Pumped Storage Other Energy Sources Total Total (All Sectors) 2004 313,020.0 59,119.0 371,011.0 2,296.0 99,628.0 77,641.0 18,717.0 20,764.0 746.0 962,942.0 2005 313,380.0 58,548.0 383,061.0 2,063.0 99,988.0 77,541.0 21,205.0 21,347.0 887.0 978,020.0 2006 312,956.0 58,097.0 388,294.0

  17. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    B. Existing Net Summer Capacity of Other Renewable Sources by Producer Type, 2004 through 2014 (Megawatts) Year Wind Solar Thermal and Photovoltaic Wood and Wood-Derived Fuels Geothermal Other Biomass Total (Other Renewable Sources) Total (All Sectors) 2004 6,456.0 398.0 6,182.0 2,152.0 3,529.0 18,717.0 2005 8,706.0 411.0 6,193.0 2,285.0 3,609.0 21,205.0 2006 11,329.0 411.0 6,372.0 2,274.0 3,727.0 24,113.0 2007 16,515.0 502.0 6,704.0 2,214.0 4,134.0 30,069.0 2008 24,651.0 536.0 6,864.0 2,229.0

  18. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    0. Average Cost of Natural Gas Delivered for Electricity Generation by State, 2014 and 2013 (Dollars per MMBtu) Census Division and State Electric Power Sector Electric Utilities Independent Power Producers Year 2014 Year 2013 Percentage Change Year 2014 Year 2013 Year 2014 Year 2013 New England 6.49 5.89 10% 5.65 7.29 6.50 5.88 Connecticut 6.65 6.06 9.7% -- -- 6.65 6.06 Maine W W W -- -- W W Massachusetts 6.46 5.75 12% 5.54 6.84 6.47 5.74 New Hampshire W W W 6.05 8.85 W W Rhode Island W 5.67 W

  19. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    4. Average Costs of Existing Flue Gas Desulfurization Units Operating in Electric Power Sector, 2004 - 2014 Year Average Operation and Maintenance Costs (Dollars per Megawatthour) Average Installed Capital Costs (Dollars per Kilowatt) 2004 1.25 43.25 2005 1.37 142.67 2006 -- 149.62 2007 1.26 240.68 2008 1.44 265.83 2009 1.44 357.46 2010 1.52 360.69 2011 1.79 410.62 2012 1.87 275.49 2013 1.74 235.42 2014 1.84 227.29 Notes: Average Installed Capital Costs reflect units which began operating in the

  20. Industry Partnerships for Cybersecurity of Energy Delivery Systems (CEDS) Research, Development and Demonstration for the Energy Sector Funding Opportunity Announcement

    Broader source: Energy.gov [DOE]

    Modernizing our electric power grid has long been a key priority for the Department of Energy, and this month the Department is moving forward on that front with a series of announcements related to our ongoing Grid Modernization Initiative. As part of that effort, the Office of Electricity Delivery and Energy Reliability announced approximately $23 million in funding for the research and development of advanced cybersecurity technologies to meet the unique requirements of the energy sector.

  1. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    . Receipts, Average Cost, and Quality of Fossil Fuels for the Electric Power Industry, 2004 through 2014 Coal Petroleum Natural Gas All Fossil Fuels Average Cost Average Cost Average Cost Average Cost Period Receipts (Thousand Tons) Average Sulfur Percent by Weight (Dollars per MMBtu) (Dollars per Ton) Receipts (Thousand Barrels) Average Sulfur Percent by Weight (Dollars per MMBtu) (Dollars per Barrel) Receipts (Thousand Mcf) (Dollars per MMBtu) (Dollars per MMBtu) 2004 1,002,032 0.97 1.36 27.42

  2. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    4. Weighted Average Cost of Fossil Fuels for the Electric Power Industry, 2004 through 2014 Coal Petroleum Natural Gas Total Fossil Bituminous Subbituminous Lignite All Coal Ranks Period Receipts (Trillion Btu) Average Cost (Dollars per MMBtu) Receipts (Trillion Btu) Average Cost (Dollars per MMBtu) Receipts (Trillion Btu) Average Cost (Dollars per MMBtu) Receipts (Trillion Btu) Average Cost (Dollars per MMBtu) Receipts (Trillion Btu) Average Cost (Dollars per MMBtu) Receipts (Trillion Btu)

  3. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    . Receipts and Quality of Coal Delivered for the Electric Power Industry, 2004 through 2014 Bituminous Subbituminous Lignite Period Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight 2004 470,619 1.52 10.4 445,603 0.36 6.0 78,268 1.05 14.2 2005 480,179 1.56 10.5 456,856 0.36 6.2 77,677

  4. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    3. Electric Power Industry - U.S. Electricity Imports from and Electricity Exports to Canada and Mexico, 2004-2014 (Megawatthours) Canada Mexico U.S. Total Year Imports from Exports to Imports from Exports to Imports Exports 2004 33,007,487 22,482,109 1,202,576 415,754 34,210,063 22,897,863 2005 42,332,039 18,680,237 1,597,275 470,731 43,929,314 19,150,968 2006 41,544,052 23,405,387 1,147,258 865,948 42,691,310 24,271,335 2007 50,118,056 19,559,417 1,277,646 584,175 51,395,702 20,143,592 2008

  5. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    0. Advanced Metering Count by Technology Type, 2007 through 2014 Year Residential Commercial Industrial Transportation Total Automated Meter Reading (AMR) 2007 25,785,782 2,322,329 44,015 109 28,152,235 2008 36,425,943 3,529,985 77,122 13 40,033,063 2009 41,462,111 4,239,531 107,033 11 45,808,686 2010 43,913,225 4,611,877 159,315 626 48,685,043 2011 41,451,888 4,341,105 172,692 77 45,965,762 2012 43,455,437 4,691,018 185,862 125 48,330,822 2013 42,491,242 4,632,744 196,132 1,202 47,321,320 2014

  6. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    2. Summary Statistics for the United States, 2004 - 2014 (From Table 2.1.) Number of Ultimate Customers Year Residential Commercial Industrial Transportation Other Total 2004 118,763,768 16,606,783 747,600 1,025 N/A 136,119,176 2005 120,760,839 16,871,940 733,862 518 N/A 138,367,159 2006 122,471,071 17,172,499 759,604 791 N/A 140,403,965 2007 123,949,916 17,377,219 793,767 750 N/A 142,121,652 2008 125,037,837 17,582,382 774,808 726 N/A 143,395,753 2009 125,208,829 17,562,235 757,537 704 N/A

  7. OTHER INDUSTRIES

    Broader source: Energy.gov [DOE]

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  8. Cross-sector Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  9. Process Intensification - Chemical Sector Focus

    Energy Savers [EERE]

    Process Intensification - Chemical Sector Focus 1 Technology Assessment 2 Contents 3 1. Introduction ..................................................................................................................................................................... 1 4 2. Technology Assessment and Potential ................................................................................................................. 5 5 2.1 Chemical Industry Focus

  10. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    SciTech Connect (OSTI)

    Sathaye, J.; Xu, T.; Galitsky, C.

    2010-08-15

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

  11. The Industrial Technologies Program: Meeting the Challenge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Technologies Program: Meeting the Challenge STEAB Meeting October 17, 2007 Douglas E. Kaempf Program Manager Industry: Critical to U.S. Energy Security & Economy The U.S. manufacturing sector * Consumes more energy than any sector of the economy * Makes highest contribution to GDP (12%) * Produces nearly 1/4 th of world manufacturing output * Supplies >60% of US exports, worth $50 billion/month 2004 Nominal GDP, $ Billions 15,000 Ranks as 12,000 eighth largest 9,000 economy

  12. Ashkelon Technological Industries ATI | Open Energy Information

    Open Energy Info (EERE)

    Ashkelon Technological Industries (ATI) Place: Israel Sector: Services Product: General Financial & Legal Services ( Government Public sector ) References: Ashkelon...

  13. Multi-Sector General Permit (MSGP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MSGP Multi-Sector General Permit (MSGP) The Multi-Sector General Permit authorizes the discharge of stormwater associated with industrial activity. What's New Documents submitted to EPRR in last 30 Days TBD What is the Multi-Sector General Permit? Storm water discharges from EPA specified industrial activities are regulated under the National Pollutant Discharge Elimination System (NPDES) Multi-Sector General Permit (MSGP). LANL regulated industrial activities include: Metal fabrication Power

  14. Chemical Sector Analysis | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACChemical Sector Analysis content top Chemical Supply Chain Analysis Posted by Admin on Mar 1, 2012 in | Comments 0 comments Chemical Supply Chain Analysis NISAC has developed a range of capabilities for analyzing the consequences of disruptions to the chemical manufacturing industry. Each capability provides a different but complementary perspective on the questions of interest-questions like Given an event, will the entire chemical sector be impacted or just parts? Which chemicals, plants,

  15. Changing Trends in the Bulk Chemicals and Pulp and Paper Industries (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    Compared with the experience of the 1990s, rising energy prices in recent years have led to questions about expectations of growth in industrial output, particularly in energy-intensive industries. Given the higher price trends, a review of expected growth trends in selected industries was undertaken as part of the production of Annual Energy Outlook 2005 (AEO). In addition, projections for the industrial value of shipments, which were based on the Standard Industrial Classification (SIC) system in AEO2004, are based on the North American Industry Classification System (NAICS) in AEO2005. The change in industrial classification leads to lower historical growth rates for many industrial sectors. The impacts of these two changes are highlighted in this section for two of the largest energy-consuming industries in the U.S. industrial sector-bulk chemicals and pulp and paper.

  16. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    SciTech Connect (OSTI)

    Xu, T.T.; Sathaye, J.; Galitsky, C.

    2010-09-30

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. With the working of energy programs and policies on carbon regulation, how to effectively analyze and manage the costs associated with GHG reductions become extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions (e.g., carbon emission) for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct brief overview on different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by problem statements, and a description of the basic concepts of quantifying the cost of conserved energy including integrating non-regrets options. A non-regrets option is defined as a GHG reduction option that is cost effective, without considering their additional benefits related to reducing GHG emissions. Based upon these, we develop information on costs of mitigation measures and technological change. These serve as the basis for collating the data on energy savings and costs for their future use in integrated assessment models. In addition to descriptions of the iron and steel making processes, and the mitigation measures identified in this study, the report includes tabulated databases on costs of measure implementation, energy savings, carbon-emission reduction, and lifetimes. The cost curve data on mitigation measures are available over time, which allows an estimation of technological change over a decade-long historical period. In particular, the report will describe new treatment of technological change in energy-climate modeling for this industry sector, i.e., assessing the changes in costs and energy-savings potentials via comparing 1994 and 2002 conservation supply curves. In this study, we compared the same set of mitigation measures for both 1994 and 2002 -- no additional mitigation measure for year 2002 was included due to unavailability of such data. Therefore, the estimated potentials in total energy savings and carbon reduction would most likely be more conservative for year 2002 in this study. Based upon the cost curves, the rate of change in the savings potential at a given cost can be evaluated and be used to estimate future rates of change that can be the input for energy-climate models. Through characterizing energy-efficiency technology costs and improvement potentials, we have developed and presented energy cost curves for energy efficiency measures applicable to the U.S. iron and steel industry for the years 1994 and 2002. The cost curves can change significantly under various scenarios: the baseline year, discount rate, energy intensity, production, industry structure (e.g., integrated versus secondary steel making and number of plants), efficiency (or mitigation) measures, share of iron and steel production to which the individual measures can be applied, and inclusion of other non-energy benefits. Inclusion of other non-energy benefits from implementing mitigation measures can reduce the costs of conserved energy significantly. In addition, costs of conserved energy (CCE) for individual mitigation measures increase with the increases in discount rates, resulting in a general increase in total cost of mitigation measures for implementation and operation with a higher discount rate. In 1994, integrated steel mills in the U.S. produced 55.

  17. The Role of the Sellafield Ltd Centres of Expertise in Engaging with the Science, Environment and Technology Supply Chain and University Sector to Support Site Operations and Decommissioning in the UK Nuclear Industry - 13018

    SciTech Connect (OSTI)

    Butcher, Ed; Connor, Donna; Keighley, Debbie

    2013-07-01

    The development and maintenance of the broad range of the highly technical skills required for safe and successful management of nuclear sites is of vital importance during routine operations, decommissioning and waste treatment activities.. In order to maintain a core team of technical experts, across all of the disciplines required for these tasks, the approach which has been taken by the Sellafield Ltd has been the formation of twenty five Centres of Expertise (CoE), each covering key aspects of the technical skills required for nuclear site operations. Links with the Specialist University Departments: The CoE leads are also responsible for establishing formal links with university departments with specialist skills and facilities relevant to their CoE areas. The objective of these links is to allow these very specialist capabilities within the university sector to be more effectively utilized by the nuclear industry, which benefits both sectors. In addition to the utilization of specialist skills, the university links are providing an important introduction to the nuclear industry for students and researchers. This is designed to develop the pipeline of potential staff, who will be required in the future by both the academic and industrial sectors. (authors)

  18. Sector 9

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sector 9 About Science and Research Beamlines Operations and Schedule Safety Search APS ... Search Argonne Home > Advanced Photon Source > Contacts Advisory Committee Beamlines...

  19. Energy Intensity Indicators: Industrial Source Energy Consumption |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Industrial Source Energy Consumption Energy Intensity Indicators: Industrial Source Energy Consumption The industrial sector comprises manufacturing and other nonmanufacturing industries not included in transportation or services. Manufacturing includes 18 industry sectors, generally defined at the three-digit level of the North American Industrial Classification System (NAICS). The nonmanufacturing sectors are agriculture, forestry and fisheries, mining, and

  20. U.S. Energy Information Administration (EIA) - Sector

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    RenewableAlternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand Other Emissions Prices Macroeconomic International Efficiency Publication...

  1. Eolica Industrial | Open Energy Information

    Open Energy Info (EERE)

    Industrial Jump to: navigation, search Name: Eolica Industrial Place: Sao Paulo, Sao Paulo, Brazil Zip: 01020-901 Sector: Wind energy Product: Brazil based wind turbine steel...

  2. Agriculture Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Industrial Federal Agriculture SIS Variable Frequency Drives Irrigation Pump Testing Irrigation Hardware Upgrades LESA Agricultural Marketing Toolkit BPA's...

  3. Equity Industrial Partners | Open Energy Information

    Open Energy Info (EERE)

    Equity Industrial Partners Jump to: navigation, search Name Equity Industrial Partners Facility Equity Industrial Partners Sector Wind energy Facility Type Community Wind Facility...

  4. MRL Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    MRL Industries Inc Jump to: navigation, search Name: MRL Industries Inc Place: Sonora, California Zip: 95370 Sector: Solar Product: MRL Industries is a US company committed to...

  5. Commercial & Industrial Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  6. Federal Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News & Events Skip navigation links Residential Commercial Industrial Federal Agriculture About five percent of BPA's total electric supply goes to power facilities around...

  7. Industrial sector energy conservation programs in the People`s Republic of China during the seventh five-year plan (1986--1990)

    SciTech Connect (OSTI)

    Liu Zhiping; Sinton, J.E.; Yang Fuqiang; Levine, M.D.; Ting, M.K.

    1994-09-01

    The impetus at the national level to invest in energy conservation is quite strong and has long been reflected not only in official pronouncements, but also in the investments and organizational activities of the Chinese government. In the early 1980s the central government began a program of direct investments in industrial energy conservation that continues to the present. In addition, concurrently established governmental and quasi-governmental agencies have pursued conservation through administrative and educational measures. In Section 2 of this paper the authors outline the policies and institutions that supported China`s program of energy conservation investments in the Sixth and Seventh Five-Year Plans (FYPs) (1981--1985 and 1986--1990). In Section 3 they describe examples of the types of conservation projects pursued in four industrial subsectors: ferrous metals manufacturing; non-ferrous metals mining and manufacturing; chemicals manufacturing; and building materials manufacturing. Section 4 presents a simple methodology for comparing the costs of energy conservation to those of energy supply. Further discussion points out the applicability and limitations of this methodology to State Planning Commission published statistical material on the overall results of energy conservation investments. Though problematic, such analysis indicates that energy conservation investments were probably substantially cheaper than investments in equivalent energy supply would have been. They end with a discussion of some of the difficulties encountered in carrying out the conservation investment programs.

  8. Climate Model Output Rewriter

    Energy Science and Technology Software Center (OSTI)

    2004-06-21

    CMOR comprises a set of FORTRAN 90 dunctions that can be used to produce CF-compliant netCDF files. The structure of the files created by CMOR and the metadata they contain fulfill the requirements of many of the climate community’s standard model experiments (which are referred to here as "MIPS", which stands for "model intercomparison project", including, for example, AMIP, CMIP, CFMIP, PMIP, APE, and IPCC scenario runs), CMOR was not designed to serve as anmore » all-purpose wfiter of CF-compliant netCDF files, but simply to reduce the effort required to prepare and manage MIP data. Although MIPs encourage systematic analysis of results across models, this is only easy to do if the model output is written in a common format with files structured similarly and with sufficient metadata uniformly stored according to a common standard. Individual modeling groups store their data in different ways. but if a group can read its own data with FORTRAN, then it should easily be able to transform the data, using CMOR, into the common format required by the MIPs, The adoption of CMOR as a standard code for exchanging climate data will facilitate participation in MIPs because after learning how to satisfy the output requirements of one MIP, it will be easy to prepare output for the other MIPs.« less

  9. SEADS 3.0 Sectoral Energy/Employment Analysis and Data System

    SciTech Connect (OSTI)

    Roop, Joseph M.; Anderson, David A.; Schultz, Robert W.; Elliott, Douglas B.

    2007-12-17

    SEADS 3.0, the Sectoral Energy/Employment Analysis and Data System, is a revision and upgrading of SEADS--PC, a software package designed for the analysis of policy that could be described by modifying final demands of consumer, businesses, or governments (Roop, et al., 1995). If a question can be formulated so that implications can be translated into changes in final demands for goods and services, then SEADS 3.0 provides a quick and easy tool to assess preliminary impacts. And SEADS 3.0 should be considered just that: a quick and easy way to get preliminary results. Often a thorough answer, even to such a simple question as, What would be the effect on U. S. energy use and employment if the Federal Government doubled R&D expenditures? requires a more sophisticated analytical framework than the input-output structure embedded in SEADS 3.0. This tool uses a static, input-output model to assess the impacts of changes in final demands on first industry output, then employment and energy use. The employment and energy impacts are derived by multiplying the industry outputs (derived from the changed final demands) by industry-specific energy and employment coefficients. The tool also allows for the specification of regional or state employment impacts, though this option is not available for energy impacts.

  10. Everbrite Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Everbrite Industries Inc. Place: Toronto, Ontario, Canada Zip: M1R 2T6 Sector: Solar Product: Everbrite Industries is an electrical contractor...

  11. Angelantoni Industrie Spa | Open Energy Information

    Open Energy Info (EERE)

    Angelantoni Industrie Spa Jump to: navigation, search Name: Angelantoni Industrie Spa Place: Massa Martana, Italy Zip: 6056 Sector: Renewable Energy Product: String representation...

  12. Guardian Industries Corp | Open Energy Information

    Open Energy Info (EERE)

    Industries Corp Jump to: navigation, search Name: Guardian Industries Corp Place: Auburn Hills, Michigan Zip: 48326-1714 Sector: Solar Product: Michigan-based firm that...

  13. Green Energy Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Industries Inc Jump to: navigation, search Name: Green Energy Industries Inc Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the...

  14. CRV industrial Ltda | Open Energy Information

    Open Energy Info (EERE)

    CRV industrial Ltda Jump to: navigation, search Name: CRV industrial Ltda Place: Carmo do Rio Verde, Goias, Brazil Sector: Biomass Product: Ethanol and biomass energy producer...

  15. Yusheng Industrial Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Yusheng Industrial Co Ltd Jump to: navigation, search Name: Yusheng Industrial Co., Ltd Place: Hunan Province, China Zip: 415000 Sector: Hydro Product: Hunan-based small hydro...

  16. Aditya Solar Power Industries | Open Energy Information

    Open Energy Info (EERE)

    Aditya Solar Power Industries Jump to: navigation, search Name: Aditya Solar Power Industries Place: India Sector: Solar Product: Bangalore-based solar project developer....

  17. PAIS Industries Group | Open Energy Information

    Open Energy Info (EERE)

    PAIS Industries Group Jump to: navigation, search Name: PAIS Industries Group Sector: Solar Product: Plans to supply solar-grade silicon, conditional on an agreement with the Inner...

  18. Danish Wind Industry Association | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Danish Wind Industry Association Place: Copenhagen V, Denmark Zip: DK-1552 Sector: Wind energy Product: The Danish Wind Industry Association...

  19. Industrial Applications for Micropower: A Market Assessment,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and reciprocating engines offers promise to renew growth in the U.S. industrial sector. ... Opportunities for Micropower and Fuel CellGas Turbine Hybrid Systems in Industrial ...

  20. California Solar Energy Industries Association | Open Energy...

    Open Energy Info (EERE)

    Solar Energy Industries Association Jump to: navigation, search Name: California Solar Energy Industries Association Place: Rio Vista, California Zip: 94571 Sector: Solar Product:...

  1. South Jersey Industries | Open Energy Information

    Open Energy Info (EERE)

    Jersey Industries Jump to: navigation, search Name: South Jersey Industries Place: Folsom, New Jersey Zip: 8037 Sector: Services Product: An energy services holding company....

  2. Canyon Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Industries Inc Jump to: navigation, search Name: Canyon Industries Inc Place: Deming, Washington State Zip: 98244 Sector: Hydro Product: Canyon Hydro produces a range of small...

  3. Toray Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Industries Inc Jump to: navigation, search Name: Toray Industries Inc Place: Tokyo, Japan Zip: 103 8666 Sector: Carbon, Vehicles, Wind energy Product: String representation "A...

  4. Millennium Energy Industries | Open Energy Information

    Open Energy Info (EERE)

    Industries Place: Jordan Zip: 1182 Sector: Solar Product: Jordan-based solar energy firm focused in MENA region. References: Millennium Energy Industries1 This article is a...

  5. Humboldt Industrial Park Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Industrial Park Wind Farm Jump to: navigation, search Name Humboldt Industrial Park Wind Farm Facility Humboldt Industrial Park Sector Wind energy Facility Type Community Wind...

  6. LARGE INDUSTRIAL FACILITIES BY STATE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LARGE INDUSTRIAL FACILITIES BY STATE LARGE INDUSTRIAL FACILITIES BY STATE PDF icon Number of Large Energy User Manufacturing Facilities by Sector and State (with Industrial Energy...

  7. End-Use Sector Flowchart | Department of Energy

    Office of Environmental Management (EM)

    End-Use Sector Flowchart End-Use Sector Flowchart This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors-transportation, industry, commercial and residential-identified in Figure 1. By clicking on any of the boxes with the word "Sector" in the title will reveal the more detailed structure within that sector. PDF icon End-Use Sector Flowchart More Documents & Publications Barriers to Industrial Energy

  8. End-Use Sector Flowcharts, Energy Intensity Indicators

    Broader source: Energy.gov (indexed) [DOE]

    Economy Transportation Sector Commercial Sector Residential Sector Electric Power Sector Industrial Sector Manufacturing NAICS 311-339 Food, Beverages, & Tobacco NAICS 311/312 Textile Mills and Products NAICS 313/314 Apparel & Leather Products NAICS 315/316 Wood Products NAICS 321 Paper NAICS 322 Printing & Related Support NAICS 323 Petroleum & Coal Products NAICS 324 Chemicals NAICS 325 Plastics & Rubber Products NAICS 326 Nonmetallic Mineral Products NAICS 327 Primary

  9. Energy Intensity Indicators: Indicators for Major Sectors

    Broader source: Energy.gov [DOE]

    This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors—transportation, industry, commercial, and residential, as well as the electric power sector. These sectors are shown in Figure 1.

  10. Public Finance Mechanisms to Catalyze Sustainable Energy Sector...

    Open Energy Info (EERE)

    all aspects of the sector including technology innovation, project development, (SME) business and industry support, consumer awareness and end-user finance. Regardless of...

  11. Indonesia-NAMA Programme for the Construction Sector in Asia...

    Open Energy Info (EERE)

    United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market...

  12. Thailand-NAMA Programme for the Construction Sector in Asia ...

    Open Energy Info (EERE)

    United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market...

  13. Philippines-NAMA Programme for the Construction Sector in Asia...

    Open Energy Info (EERE)

    United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market...

  14. Vietnam-NAMA Programme for the Construction Sector in Asia |...

    Open Energy Info (EERE)

    United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market...

  15. Malaysia-NAMA Programme for the Construction Sector in Asia ...

    Open Energy Info (EERE)

    United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market...

  16. The Greenhouse Gas Protocol Initiative: Sector Specific Tools...

    Open Energy Info (EERE)

    World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Industry, Greenhouse Gas Phase: Determine Baseline, Evaluate...

  17. Enhanced performance CCD output amplifier

    DOE Patents [OSTI]

    Dunham, Mark E. (Los Alamos, NM); Morley, David W. (Santa Fe, NM)

    1996-01-01

    A low-noise FET amplifier is connected to amplify output charge from a che coupled device (CCD). The FET has its gate connected to the CCD in common source configuration for receiving the output charge signal from the CCD and output an intermediate signal at a drain of the FET. An intermediate amplifier is connected to the drain of the FET for receiving the intermediate signal and outputting a low-noise signal functionally related to the output charge signal from the CCD. The amplifier is preferably connected as a virtual ground to the FET drain. The inherent shunt capacitance of the FET is selected to be at least equal to the sum of the remaining capacitances.

  18. Motor vehicle output and GDP, 1968-2007.

    SciTech Connect (OSTI)

    Santini, D. J.; Poyer, D. A.

    2008-01-01

    In this paper, we assess the performance of the BEA series 'value of motor vehicle output' as an indicator of the business cycle over the period 1968-2007. We statistically assess the causal relationship between real motor vehicle output (RMVO) and real gross domestic product (RGDP). This is accomplished by standard estimation and statistical methods used to assess vector autoregressive models. This assessment represents the initial results of a more encompassing research project, the intent of which is to determine the dynamic interaction of the transport sector with the overall economy. It's a start to a more comprehensive assessment of how transport and economic activity interrelate.

  19. ImSET: Impact of Sector Energy Technologies

    SciTech Connect (OSTI)

    Roop, Joseph M.; Scott, Michael J.; Schultz, Robert W.

    2005-07-19

    This version of the Impact of Sector Energy Technologies (ImSET) model represents the ''next generation'' of the previously developed Visual Basic model (ImBUILD 2.0) that was developed in 2003 to estimate the macroeconomic impacts of energy-efficient technology in buildings. More specifically, a special-purpose version of the 1997 benchmark national Input-Output (I-O) model was designed specifically to estimate the national employment and income effects of the deployment of Office of Energy Efficiency and Renewable Energy (EERE) -developed energy-saving technologies. In comparison with the previous versions of the model, this version allows for more complete and automated analysis of the essential features of energy efficiency investments in buildings, industry, transportation, and the electric power sectors. This version also incorporates improvements in the treatment of operations and maintenance costs, and improves the treatment of financing of investment options. ImSET is also easier to use than extant macroeconomic simulation models and incorporates information developed by each of the EERE offices as part of the requirements of the Government Performance and Results Act.

  20. OTHER INDUSTRIES | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OTHER INDUSTRIES OTHER INDUSTRIES AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy savings to a wide array of industries from information and communications technologies to food and beverage and others. Many more of the technologies developed with AMO support have applications across multiple industries because they target common industrial processes.

  1. 2015 Energy Sector-Specific Plan

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE), as the Sector-Specific Agency for the Energy Sector, has worked closely with government and industry partners to develop the 2015 Energy Sector-Specific Plan (SSP). DOE conducted much of this work in collaboration with the Energy Sector Coordinating Councils (SCCs) and the Energy Government Coordinating Council (GCC). The Energy SCCs represent the interests of the Electricity and Oil and Natural Gas Subsectors; the Energy GCC represents government at various levels—Federal, State, local, territorial, and tribal—as well as international partners. The 2015 Energy SSP is closely aligned with the National Infrastructure Protection Plan 2013: Partnering for Critical Infrastructure Security and Resilience (NIPP 2013) and the joint national priorities, which were developed in collaboration by representatives from all critical infrastructure sectors, including Energy.

  2. Energy Sector-Specific Plan: An Annex to the National Infrastructure

    Energy Savers [EERE]

    Protection Plan | Department of Energy Sector-Specific Plan: An Annex to the National Infrastructure Protection Plan Energy Sector-Specific Plan: An Annex to the National Infrastructure Protection Plan In its role as the lead Sector-Specific Agency for the Energy Sector, the Department of Energy has worked closely with dozens of government and industry partners to prepare this updated 2010 Energy Sector-Specific Plan (SSP). Much of that work was conducted through the two Energy Sector

  3. Cooling, heating, and power for industry: A market assessment

    SciTech Connect (OSTI)

    None, None

    2003-08-01

    The focus of this study was to assess the market for cooling, heating, and power applications in the industrial sector.

  4. Brazilian Association of Biomass Industries ABIB | Open Energy...

    Open Energy Info (EERE)

    Brazilian Association of Biomass Industries ABIB Jump to: navigation, search Name: Brazilian Association of Biomass Industries (ABIB) Place: Curitiba, Parana, Brazil Sector:...

  5. Solar Energy LLC Industrial Investors Group | Open Energy Information

    Open Energy Info (EERE)

    LLC Industrial Investors Group Jump to: navigation, search Name: Solar Energy LLC - Industrial Investors Group Place: Moscow, Russian Federation Zip: 119017 Sector: Solar Product:...

  6. ET Solar Group Formerly CNS Solar Industry | Open Energy Information

    Open Energy Info (EERE)

    Solar Group Formerly CNS Solar Industry Jump to: navigation, search Name: ET Solar Group (Formerly CNS Solar Industry) Place: Nanjing, Jiangsu Province, China Zip: 210009 Sector:...

  7. Companhia Industrial do Nordeste Brasileiro | Open Energy Information

    Open Energy Info (EERE)

    Industrial do Nordeste Brasileiro Jump to: navigation, search Name: Companhia Industrial do Nordeste Brasileiro Place: Pernambuco, Brazil Sector: Biomass Product: Brazil based...

  8. Dapu Huatai Industrial Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Dapu Huatai Industrial Co Ltd Jump to: navigation, search Name: Dapu Huatai Industrial Co., Ltd. Place: Meizhou, Guangdong Province, China Zip: 715403 Sector: Hydro Product:...

  9. Jiangxi Huahui Industrial Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Huahui Industrial Co Ltd Jump to: navigation, search Name: Jiangxi Huahui Industrial Co., Ltd. Place: Fuzhou, Jiangxi Province, China Zip: 335300 Sector: Hydro Product: China-based...

  10. Companhia Agro Industrial de Goiana | Open Energy Information

    Open Energy Info (EERE)

    Companhia Agro Industrial de Goiana Jump to: navigation, search Name: Companhia Agro Industrial de Goiana Place: Recife, Pernambuco, Brazil Sector: Biomass Product: Ethanol and...

  11. Shenzhen Youth Industrial Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Youth Industrial Development Co Ltd Jump to: navigation, search Name: Shenzhen Youth Industrial Development Co., Ltd. Place: Shenzhen, Guangdong Province, China Zip: 518109 Sector:...

  12. Xi an Kaixin Industrial Development | Open Energy Information

    Open Energy Info (EERE)

    Kaixin Industrial Development Jump to: navigation, search Name: Xi(tm)an Kaixin Industrial Development Place: Xian, Shaanxi Province, China Sector: Hydro Product: China-based...

  13. Amrit Bio Energy Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    Amrit Bio Energy Industries Ltd Jump to: navigation, search Name: Amrit Bio Energy & Industries Ltd. Place: Kolkata, West Bengal, India Zip: 700017 Sector: Biomass Product:...

  14. Nanjing Dalu Industry Investment Group | Open Energy Information

    Open Energy Info (EERE)

    Dalu Industry Investment Group Jump to: navigation, search Name: Nanjing Dalu Industry Investment Group Place: Beijing Municipality, China Zip: 100055 Sector: Solar Product:...

  15. Henan Yinge Industrial Investment Corporation | Open Energy Informatio...

    Open Energy Info (EERE)

    Yinge Industrial Investment Corporation Jump to: navigation, search Name: Henan Yinge Industrial Investment Corporation Place: Henan Province, China Sector: Biomass Product:...

  16. UK Department of Trade and Industry Renewables Group | Open Energy...

    Open Energy Info (EERE)

    Trade and Industry Renewables Group Jump to: navigation, search Name: UK Department of Trade and Industry Renewables Group Place: London, United Kingdom Sector: Renewable Energy...

  17. US Solar Energy Industries Association SEIA | Open Energy Information

    Open Energy Info (EERE)

    Energy Industries Association SEIA Jump to: navigation, search Name: US Solar Energy Industries Association (SEIA) Place: Washington, Washington, DC Zip: 20005 Sector: Solar...

  18. BOC Lienhwa Industrial Gases BOCLH | Open Energy Information

    Open Energy Info (EERE)

    Lienhwa Industrial Gases (BOCLH) Place: Taipei, Taiwan Sector: Solar Product: BOCLH is a joint venture between the Lien Hwa Industrial Corporation and the BOC Group in the United...

  19. Guangdong Global Power and Water Industries Ltd | Open Energy...

    Open Energy Info (EERE)

    Global Power and Water Industries Ltd Jump to: navigation, search Name: Guangdong Global Power and Water Industries Ltd Place: Meizhou, Guangdong Province, China Sector: Solar...

  20. Shanghai New Energy industry Association SNEIA | Open Energy...

    Open Energy Info (EERE)

    (SNEIA) Place: Shanghai Municipality, China Zip: 200235 Product: Shanghai-based industrial association for new energy sector References: Shanghai New Energy industry...

  1. Nahar Industrial Enterprises Limited NIEL | Open Energy Information

    Open Energy Info (EERE)

    Industrial Enterprises Limited NIEL Jump to: navigation, search Name: Nahar Industrial Enterprises Limited (NIEL) Place: Punjab, India Zip: 140506 Sector: Biomass Product:...

  2. Industrial Carbon Management Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Carbon Management Initiative Fact Sheets Research Team Members Key Contacts Industrial Carbon Management Initiative (ICMI) Background The ICMI project is part of a larger program called Carbon Capture Simulation and Storage Initiative (C2S2I). The C2S2I has a goal of expanding the DOE's focus on Carbon Capture Utilization and Storage (CCUS) for advanced coal power systems and other applications, including the use of petroleum coke as a feedstock for the industrial sector. The American

  3. Sustainable Nanomaterials Industry Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Perspective U.S. Department of Energy Advanced Manufacturing Office Sustainable Nanomaterials Workshop Washington, DC Mark Watkins Senior Vice President MeadWestvaco Corporation July 26, 2012 Transforming the forest products industry through innovation 2 The U.S. Forest Products Industry's Economic Impact  5% of U.S. manufacturing GDP  Ninth largest manufacturing sector in U.S.  On par with plastics and automotive  Top 10 manufacturing employer in 48 states  418 pulp and

  4. Industrial Research Ltd IRL | Open Energy Information

    Open Energy Info (EERE)

    Research Ltd IRL Jump to: navigation, search Name: Industrial Research Ltd (IRL) Place: New Zealand Sector: Services Product: General Financial & Legal Services ( State-owned...

  5. Thompson Technology Industries TTI | Open Energy Information

    Open Energy Info (EERE)

    TTI Jump to: navigation, search Name: Thompson Technology Industries (TTI) Place: Novato, California Zip: 94949 Sector: Solar Product: Designer and manufacturer of solar tracking...

  6. SLS Power Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd. Place: Bangalore, Karnataka, India Sector: Hydro Product: Bangalore-based small hydro project developer. References: SLS Power Industries Ltd.1 This article is a stub....

  7. Minxing Industry Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co. Ltd. Place: Sichuan Province, China Zip: 625700 Sector: Hydro Product: Sichuan-based small hydro project developer. References: Minxing Industry Co. Ltd.1 This article is a...

  8. Microcab Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    Microcab Industries Ltd Place: Coventry, United Kingdom Zip: CV1 2TT Sector: Hydro, Hydrogen Product: Urban taxi and light freight vehicle powered by a hydrogen fuel cell....

  9. Kishimura Industry Co | Open Energy Information

    Open Energy Info (EERE)

    Co Jump to: navigation, search Name: Kishimura Industry Co Place: Kanagawa-Ken, Japan Sector: Solar, Vehicles Product: Developer of solar power systems and 'Eco-Mobile',...

  10. Beckons Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: Beckons Industries Ltd Place: Mohali, Chandigarh, India Zip: 160055 Sector: Biofuels Product: India-based algae technology developer for...

  11. Industrial Energy Efficiency: Designing Effective State Programs for the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Sector | Department of Energy Energy Efficiency: Designing Effective State Programs for the Industrial Sector Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector This report provides state regulators, utilities, and other program administrators an overview of the spectrum of U.S. industrial energy efficiency (IEE) programs delivered by a variety of entities including utilities and program administrators. The report also assesses some of the

  12. Energy Sector-Specific Plan: An Annex to the National Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    In its role as the lead Sector-Specific Agency for the Energy Sector, the Department of Energy has worked closely with dozens of government and industry partners to prepare this...

  13. Chemicals Sector (NAICS 325) Energy and GHG Combustion Emissions Profile, November 2012

    Office of Environmental Management (EM)

    39 2.2 CHEMICALS SECTOR (NAICS 325) 2.2.1. Overview of the Chemicals Manufacturing Sector The chemicals manufacturing sector is an integral component of the U.S. economy, converting raw materials such as petroleum, natural gas, minerals, coal, air, and water into more than 70,000 diverse products. Chemical products are critical components of consumer goods and are found in everything from automobiles to plastics to electronics. This sector creates its diverse output from raw materials of two

  14. SEADS 3.0. Sectoral Energy/Employment Analysis and Data System Methodology, Description, and Users Guide. Two Policy Scenarios Examined: An Increase in Government R&D Implementation of Voluntary Intensity. Reductions in Industry

    SciTech Connect (OSTI)

    Roop, J. M.; Anderson, D. M.; Elliott, D. B.; Schultz, R. W.

    2007-12-01

    This report describes the tool and the underlying methodology for SEADS 3.0, the Sectoral Energy/Employment Analysis and Data System, which is a software package designed for the analysis of policy that could be described by modifying final demands of consumer, businesses, or governments. The report also provides a users manual, examples for two analyses and the results for them.

  15. Commercial Sector Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  16. 2008 Industrial Technologies Market Report, May 2009

    SciTech Connect (OSTI)

    Energetics; DOE

    2009-07-01

    The industrial sector is a critical component of the U.S. economy, providing an array of consumer, transportation, and national defense-related goods we rely on every day. Unlike many other economic sectors, however, the industrial sector must compete globally for raw materials, production, and sales. Though our homes, stores, hospitals, and vehicles are located within our borders, elements of our goods-producing industries could potentially be moved offshore. Keeping U.S. industry competitive is essential to maintaining and growing the U.S. economy. This report begins with an overview of trends in industrial sector energy use. The next section of the report focuses on some of the largest and most energy-intensive industrial subsectors. The report also highlights several emerging technologies that could transform key segments of industry. Finally, the report presents policies, incentives, and drivers that can influence the competitiveness of U.S. industrial firms.

  17. Number of Customers by State by Sector, 1990-2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Number of Customers by State by Sector, 1990-2014" "Year","State","Industry Sector Category","Residential","Commercial","Industrial","Transportation","Other","Total" 2014,"AK","Total Electric Industry",281438,51017,1287,0,"NA",333742 2014,"AL","Total Electric Industry",2169790,360901,7236,0,"NA",2537927 2014,"AR","Total Electric

  18. Study of domestic social and economic impacts of ocean thermal energy conversion (OTEC) commercial development. Volume II. Industry profiles

    SciTech Connect (OSTI)

    1981-12-22

    Econoimc profiles of the industries most affected by the construction, deployment, and operation of Ocean Thermal Energy Conversion (OTEC) powerplants are presented. Six industries which will contribute materials and/or components to the construction of OTEC plants have been identified and are profiled here. These industries are: steel industry, concrete industry, titanium metal industry, fabricated structural metals industry, fiber glass-reinforced plastics industry, and electrical transmission cable industry. The economic profiles for these industries detail the industry's history, its financial and economic characteristics, its technological and production traits, resource constraints that might impede its operation, and its relation to OTEC. Some of the historical data collected and described in the profile include output, value of shipments, number of firms, prices, employment, imports and exports, and supply-demand forecasts. For most of the profiled industries, data from 1958 through 1980 were examined. In addition, profiles are included on the sectors of the economy which will actualy construct, deploy, and supply the OTEC platforms.

  19. India-NAMA Programme for the Construction Sector in Asia | Open...

    Open Energy Info (EERE)

    United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market...

  20. NAMA-Programme for the construction sector in Asia | Open Energy...

    Open Energy Info (EERE)

    United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Market analysis Website http:www.unep.orgsbcipdfs...

  1. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"NextEra Energy Power Marketing","Investor-owned",19844...

  2. Industrial Energy Efficiency

    Office of Environmental Management (EM)

    Barriers to Industrial Energy Efficiency Report to Congress June 2015 United States Department of Energy Washington, DC 20585 Department of Energy | June 2015 Message from the Assistant Secretary The industrial sector has shown steady progress in improving energy efficiency over the past few decades and energy efficiency improvements are expected to continue. Studies suggest, however, that there is potential to accelerate the rate of adopting energy efficient technologies and practices that

  3. Overload protection circuit for output driver

    DOE Patents [OSTI]

    Stewart, Roger G.

    1982-05-11

    A protection circuit for preventing excessive power dissipation in an output transistor whose conduction path is connected between a power terminal and an output terminal. The protection circuit includes means for sensing the application of a turn on signal to the output transistor and the voltage at the output terminal. When the turn on signal is maintained for a period of time greater than a given period without the voltage at the output terminal reaching a predetermined value, the protection circuit decreases the turn on signal to, and the current conduction through, the output transistor.

  4. Delivered Energy Consumption Projections by Industry in the Annual Energy Outlook 2002

    Reports and Publications (EIA)

    2002-01-01

    This paper presents delivered energy consumption and intensity projections for the industries included in the industrial sector of the National Energy Modeling System.

  5. Fact #689: August 22, 2011 Energy Use by Sector and Source | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 9: August 22, 2011 Energy Use by Sector and Source Fact #689: August 22, 2011 Energy Use by Sector and Source The transportation sector consumed 28% of U.S. energy in 2010, nearly all of it (93.5%) in petroleum use. The industrial sector used about 40% petroleum and 40% natural gas. The electric utility sector used little petroleum, but was dependent on coal for nearly half of the energy it consumed. Renewables, such as biofuels for transportation, were being used in every sector in

  6. Forest Products Sector (NAICS 321 and 322) Energy and GHG Combustion Emissions Profile, November 2012

    Office of Environmental Management (EM)

    U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis 2.3 FOREST PRODUCTS SECTOR (NAICS 321 AND 322) 2.3.1. Overview of the Forest Products Manufacturing Sector The forest products sector produces thousands of products from renewable raw materials (wood) that are essential for communication, packaging, consumer goods, and construction. The sector is divided into two major categories: Wood Product Manufacturing (NAICS 321) and Paper Manufacturing (NAICS 322). These industries are

  7. Longchuan County Yuming Industrial Development Co Ltd | Open...

    Open Energy Info (EERE)

    Development Co Ltd Jump to: navigation, search Name: Longchuan County Yuming Industrial Development Co., Ltd. Place: Guangdong Province, China Sector: Hydro Product: China based...

  8. Chongqing Lanxi Power Industry Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    City, Chongqing Municipality, China Sector: Hydro Product: Chongqing-based small hydro project developer. References: Chongqing Lanxi Power Industry Co Ltd1 This article...

  9. DOE Announces Awardees for the Industrial Energy Efficiency Grand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    interests, the industrial sector remains a major part of the Nation's clean energy equation. This funding announced today will promote breakthrough achievements in the...

  10. Nanjing Auheng Industrial Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd Place: Nanjing, Jiangsu Province, China Zip: 210005 Sector: Hydro, Solar, Wind energy Product: Manufactures industrial components, including electric vehicle...

  11. Sumitomo Metal Industries Ltd Sumitomo Metals | Open Energy Informatio...

    Open Energy Info (EERE)

    Industries Ltd (Sumitomo Metals) Place: Osaka-shi, Osaka, Japan Zip: 540-0041 Sector: Solar Product: Engaged in the steel, engineering, and electronics businesses; works on...

  12. Alerion Clean Power Spa previously known as Alerion Industries...

    Open Energy Info (EERE)

    20122 Sector: Renewable Energy Product: Alerion Industries Spa is a quoted independent power producer that specialises in renewable energies. Coordinates: 45.468945, 9.18103...

  13. Austin Utilities (Gas and Electric) - Commercial and Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    commercial location per year, 5,000 per industrial location per year Program Info Sector Name Utility Administrator Austin Utilities Website http:www.austinutilities.compages...

  14. Bayer ABS Ltd formerly ABS Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    (formerly ABS Industries Ltd) Place: Vadodara, Gujarat, India Zip: 335871 Sector: Wind energy Product: Bayer ABS is a plastic, chemical, and pharmaceutical company. Has...

  15. Tamil Nadu Small and Tiny Industries Association TANSTIA | Open...

    Open Energy Info (EERE)

    Association TANSTIA Jump to: navigation, search Name: Tamil Nadu Small and Tiny Industries Association (TANSTIA) Place: India Sector: Services Product: Services & Support...

  16. India-International Industrial Energy Efficiency Deployment Project...

    Open Energy Info (EERE)

    Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory (ORNL), Alliance for Energy Efficient Economy (India), Confederation of Indian Industry Sector Energy Focus...

  17. Barriers to Industrial Energy Efficiency- Study (Appendix A), June 2015

    Broader source: Energy.gov [DOE]

    This study examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these...

  18. Midstate Electric Cooperative- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Midstate Electric Cooperative (MEC) encourages energy efficiency in the commercial and industrial sectors by giving customers a choice of several different financial incentive programs. First, ...

  19. Advanced, Energy-Efficient Hybrid Membrane System for Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    services in U.S. industrial sector Minimal to no water reuse Wide spectrum of ... feed TDS Product water for reuse FOMD Minimal pretreatment microfiltration 96 - 80% ...

  20. Daiwa House Industry Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd Jump to: navigation, search Name: Daiwa House Industry Co Ltd Place: Osaka, Japan Zip: 530-8241 Sector: Wind energy Product: Japanese construction company; builds wind...

  1. Buildings Sector Working Group

    Gasoline and Diesel Fuel Update (EIA)

    July 22, 2013 AEO2014 Model Development For discussion purposes only Not for citation Overview Builldings Working Group Forrestal 2E-069 / July 22, 2013 2 * Residential projects - RECS update - Lighting model - Equipment, shell subsidies - ENERGY STAR benchmarking - Housing stock formation and decay * Commercial projects - Major end-use capacity factors - Hurdle rates - ENERGY STAR buildings * Both sectors - Consumer behavior workshop - Comparisons to STEO - AER  MER - Usual annual updates -

  2. Bayesian approaches for combining computational model output...

    Office of Scientific and Technical Information (OSTI)

    for combining computational model output and physical observations Authors: Higdon, David M 1 ; Lawrence, Earl 1 ; Heitmann, Katrin 2 ; Habib, Salman 2 + Show Author...

  3. Dissemination of Climate Model Output to the Public and Commercial Sector

    SciTech Connect (OSTI)

    Robert Stockwell, PhD

    2010-09-23

    Climate is defined by the Glossary of Meteorology as the mean of atmospheric variables over a period of time ranging from as short as a few months to multiple years and longer. Although the term climate is often used to refer to long-term weather statistics, the broader definition of climate is the time evolution of a system consisting of the atmosphere, hydrosphere, lithosphere, and biosphere. Physical, chemical, and biological processes are involved in interactions among the components of the climate system. Vegetation, soil moisture, and glaciers are part of the climate system in addition to the usually considered temperature and precipitation (Pielke, 2008). Climate change refers to any systematic change in the long-term statistics of climate elements (such as temperature, pressure, or winds) sustained over several decades or longer. Climate change can be initiated by external forces, such as cyclical variations in the Earth's solar orbit that are thought to have caused glacial and interglacial periods within the last 2 million years (Milankovitch, 1941). However, a linear response to astronomical forcing does not explain many other observed glacial and interglacial cycles (Petit et al., 1999). It is now understood that climate is influenced by the interaction of solar radiation with atmospheric greenhouse gasses (e.g., carbon dioxide, chlorofluorocarbons, methane, nitrous oxide, etc.), aerosols (airborne particles), and Earth's surface. A significant aspect of climate are the interannual cycles, such as the El Nino La Nina cycle which profoundly affects the weather in North America but is outside the scope of weather forecasts. Some of the most significant advances in understanding climate change have evolved from the recognition of the influence of ocean circulations upon the atmosphere (IPCC, 2007). Human activity can affect the climate system through increasing concentrations of atmospheric greenhouse gases, air pollution, increasing concentrations of aerosol, and land alteration. A particular concern is that atmospheric levels of CO{sub 2} may be rising faster than at any time in Earth's history, except possibly following rare events like impacts from large extraterrestrial objects (AMS, 2007). Atmospheric CO{sub 2} concentrations have increased since the mid-1700s through fossil fuel burning and changes in land use, with more than 80% of this increase occurring since 1900. The increased levels of CO{sub 2} will remain in the atmosphere for hundreds to thousands of years. The complexity of the climate system makes it difficult to predict specific aspects of human-induced climate change, such as exactly how and where changes will occur, and their magnitude. The Intergovernmental Panel for Climate Change (IPCC) was established by World Meteorological Organization (WMO) and the United Nations in 1988. The IPCC was tasked with assessing the scientific, technical and socioeconomic information needed to understand the risk of human-induced climate change, its observed and projected impacts, and options for adaptation and mitigation. The IPCC concluded in its Fourth Assessment Report (AR4) that warming of the climate system is unequivocal, and that most of the observed increase in globally averaged temperatures since the mid-20th century is very likely due to the observed increased in anthropogenic greenhouse gas concentrations (IPCC, 2007).

  4. Sales to Ultimate Customers (Megawatthours) by State by Sector by Provider, 1990

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales to Ultimate Customers (Megawatthours) by State by Sector by Provider, 1990-2014" "Year","State","Industry Sector Category","Residential","Commercial","Industrial","Transportation","Other","Total" 2014,"AK","Total Electric Industry",2043614,2761518,1359680,0,"NA",6164812 2014,"AL","Total Electric

  5. Industrial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Industrial Manufacturing Buildings Industrialmanufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey...

  6. Searching for Dark Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dark Sector Physics with MiniBooNE Georgia Karagiorgi, Columbia University On behalf of the MiniBooNE Collaboration 3 rd International Conference on New Frontiers in Physics August 6, 2014 MiniBooNE: Past & current highlights MiniBooNE, an accelerator-based neutrino experiment at Fermilab, has run for 10 years with neutrino and antineutrino beams, collecting data for ~2x10 21 POT, amounting to 100k's of neutrino interactions. It has been able to address the two-neutrino oscillation

  7. Implementing an Industrial Energy Efficiency Program in Minnesota

    Broader source: Energy.gov [DOE]

    Minnesota implemented an Industrial Energy Efficiency Program utilizing the state award from AMO to develop and implement an industrial energy efficiency program that identified key manufacturing sectors and accelerated technology adoption to reduce energy intensity.

  8. VAWT Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Nevada Zip: 89118 Sector: Wind energy Product: Focused on design, production, and marketing of wind turbines in the 0.1-0.5MW range. References: VAWT Industries Inc1 This...

  9. Water Power Calculator Temperature and Analog Input/Output Module Ambient Temperature Testing

    SciTech Connect (OSTI)

    Mark D. McKay

    2011-02-01

    Water Power Calculator Temperature and Analog input/output Module Ambient Temperature Testing A series of three ambient temperature tests were conducted for the Water Power Calculator development using the INL Calibration Laboratorys Tenney Environmental Chamber. The ambient temperature test results demonstrate that the Moore Industries Temperature Input Modules, Analog Input Module and Analog Output Module, ambient temperature response meet or exceed the manufactures specifications

  10. LARGE INDUSTRIAL FACILITIES BY STATE | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Number of Large Energy User Manufacturing Facilities by Sector and State (with Industrial Energy Consumption by State and Manufacturing Energy Consumption by Sector) More Documents & Publications U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis Energy Use Loss and Opportunities Analysis: U.S. Manufacturing & Mining End-Use Sector Flowchart

  11. Fact #582: August 3, 2009 Energy Shares by Sector and Source | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 2: August 3, 2009 Energy Shares by Sector and Source Fact #582: August 3, 2009 Energy Shares by Sector and Source The transportation sector consumed about 28% of U.S. energy in 2008, nearly all of it (95%) in petroleum use. The industrial sector used about 40% petroleum and 40% natural gas. The electric utility sector used little petroleum, but was dependent on coal for more than half of the energy it consumed. Renewables, such as biofuels for transportation, were being used in

  12. Iron and Steel Sector (NAICS 3311 and 3312) Energy and GHG Combustion Emissions Profile, November 2012

    Office of Environmental Management (EM)

    99 2.6 IRON AND STEEL SECTOR (NAICS 3311, 3312) 2.6.1. Overview of the Iron and Steel Manufacturing Sector The iron and steel sector is an essential part of the U.S. manufacturing sector, providing the necessary raw material for the extensive industrial supply chain. U.S. infrastructure is heavily reliant on the U.S. iron and steel sector, as it provides the foundation for construction (bridges, buildings), transportation systems (railroads, cars, trucks), utility systems (municipal water

  13. High Energy Output Marx Generator Design

    SciTech Connect (OSTI)

    Monty Lehmann

    2011-07-01

    High Energy Output Marx Generator Design a design of a six stage Marx generator that has a unipolar pulse waveform of 200 kA in a 50500 microsecond waveform is presented. The difficulties encountered in designing the components to withstand the temperatures and pressures generated during the output pulse are discussed. The unique methods and materials used to successfully overcome these problems are given. The steps necessary to increase the current output of this Marx generator design to the meg-ampere region or higher are specified.

  14. Energy Sector Cybersecurity Framework Implementation Guidance

    Broader source: Energy.gov (indexed) [DOE]

    FOR PUBLIC COMMENT SEPTEMBER, 2014 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE Energy Sector Cybersecurity Framework Implementation Guidance Table of Contents...

  15. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies ...

  16. Energy Sector Market Analysis

    SciTech Connect (OSTI)

    Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

    2006-10-01

    This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

  17. Industrial Energy Efficiency Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics The industrial sector is vital to the U.S. economy, but at the same time consumes the most energy in the country to manufacture products we use every day. Among the most energy-intensive industries are aluminum, chemicals, forest product, glass, metal casting, mining, petroleum refining, and steel. The energy supply chain begins with electricity, steam, natural gas, coal, and other fuels supplied to a manufacturing plant

  18. Major models and data sources for residential and commercial sector energy conservation analysis. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    Major models and data sources are reviewed that can be used for energy-conservation analysis in the residential and commercial sectors to provide an introduction to the information that can or is available to DOE in order to further its efforts in analyzing and quantifying their policy and program requirements. Models and data sources examined in the residential sector are: ORNL Residential Energy Model; BECOM; NEPOOL; MATH/CHRDS; NIECS; Energy Consumption Data Base: Household Sector; Patterns of Energy Use by Electrical Appliances Data Base; Annual Housing Survey; 1970 Census of Housing; AIA Research Corporation Data Base; RECS; Solar Market Development Model; and ORNL Buildings Energy Use Data Book. Models and data sources examined in the commercial sector are: ORNL Commercial Sector Model of Energy Demand; BECOM; NEPOOL; Energy Consumption Data Base: Commercial Sector; F.W. Dodge Data Base; NFIB Energy Report for Small Businesses; ADL Commercial Sector Energy Use Data Base; AIA Research Corporation Data Base; Nonresidential Buildings Surveys of Energy Consumption; General Electric Co: Commercial Sector Data Base; The BOMA Commercial Sector Data Base; The Tishman-Syska and Hennessy Data Base; The NEMA Commercial Sector Data Base; ORNL Buildings Energy Use Data Book; and Solar Market Development Model. Purpose; basis for model structure; policy variables and parameters; level of regional, sectoral, and fuels detail; outputs; input requirements; sources of data; computer accessibility and requirements; and a bibliography are provided for each model and data source.

  19. Boosting America's Hydropower Output | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boosting America's Hydropower Output Boosting America's Hydropower Output October 9, 2012 - 2:10pm Addthis The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado. The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado. City of Boulder employees celebrate the completion of the Boulder Canyon Hydroelectric Modernization project. | Photo courtesy of the city of

  20. Sector Collaborative on Energy Efficiency

    SciTech Connect (OSTI)

    none,

    2008-06-01

    Helps stakeholders identify and act on cost-effective opportunities for expanding energy efficiency resources in the hospitality, retail, commercial real estate, grocery, and municipal sectors.

  1. Energy Sector Control Systems Working Group to Meet March 25, 2008 |

    Energy Savers [EERE]

    Department of Energy Control Systems Working Group to Meet March 25, 2008 Energy Sector Control Systems Working Group to Meet March 25, 2008 The Energy Sector Control Systems Working Group is a unique public-private partnership recently formed to help guide implementation of the priorities identified in the industry-led Roadmap to Secure Control Systems in the Energy Sector. The group seeks to provide a platform for pursuing innovative and practical activities that will improve the security

  2. Types of Nuclear Industry Jobs Commercial and Government Sectors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technician Chemical Engineer Boilermaker CraftTechnician Trainer Electrical Technician CivilStructural Engineer Carpenter Emergency Management Engineering Draftsman Computer...

  3. Industry Trends in the U.S. Wind Energy Sector

    Broader source: Energy.gov [DOE]

    Electricity supplied by wind energy exceeded 4.5 percent in the U.S. in 2013 and has the potential to reach as much as 35 percent by 2050. Join The Pew Charitable Trusts for a webinar with the...

  4. Industrial Sector Demand Module of the National Energy Modeling...

    Gasoline and Diesel Fuel Update (EIA)

    factors are multiplicative for all fuels which have values greater than zero and are additive otherwise. ( ) ( ) ( ) ( ) ( ) ( ) - - - fg...

  5. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users The facility has been used for more than a decade by a virtual Who's Who of the semiconductor industry to simulate the potential failures posed by cosmic-ray-induced neutrons upon miniature electronic devices, such as chips that help control aircraft or complex integrated circuits in automobiles. Industrial User Information The Neutron and Nuclear Science (WNR) Facility welcomes proposals for beam time experiments from industry users. Proprietary and non-proprietary industrial

  6. PV output smoothing with energy storage.

    SciTech Connect (OSTI)

    Ellis, Abraham; Schoenwald, David Alan

    2012-03-01

    This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.

  7. Porous radiant burners having increased radiant output

    DOE Patents [OSTI]

    Tong, Timothy W. (Tempe, AZ); Sathe, Sanjeev B. (Tempe, AZ); Peck, Robert E. (Tempe, AZ)

    1990-01-01

    Means and methods for enhancing the output of radiant energy from a porous radiant burner by minimizing the scattering and increasing the adsorption, and thus emission of such energy by the use of randomly dispersed ceramic fibers of sub-micron diameter in the fabrication of ceramic fiber matrix burners and for use therein.

  8. Multiple output timing and trigger generator

    SciTech Connect (OSTI)

    Wheat, Robert M.; Dale, Gregory E

    2009-01-01

    In support of the development of a multiple stage pulse modulator at the Los Alamos National Laboratory, we have developed a first generation, multiple output timing and trigger generator. Exploiting Commercial Off The Shelf (COTS) Micro Controller Units (MCU's), the timing and trigger generator provides 32 independent outputs with a timing resolution of about 500 ns. The timing and trigger generator system is comprised of two MCU boards and a single PC. One of the MCU boards performs the functions of the timing and signal generation (the timing controller) while the second MCU board accepts commands from the PC and provides the timing instructions to the timing controller. The PC provides the user interface for adjusting the on and off timing for each of the output signals. This system provides 32 output or timing signals which can be pre-programmed to be in an on or off state for each of 64 time steps. The width or duration of each of the 64 time steps is programmable from 2 {micro}s to 2.5 ms with a minimum time resolution of 500 ns. The repetition rate of the programmed pulse train is only limited by the time duration of the programmed event. This paper describes the design and function of the timing and trigger generator system and software including test results and measurements.

  9. Private Sector Initiative Between the U.S. and Japan

    SciTech Connect (OSTI)

    1998-09-30

    OAK-A258 Private Sector Initiative Between the U.S. and Japan. This report for calendar years 1993 through September 1998 describes efforts performed under the Private Sector Initiatives contract. The report also describes those efforts that have continued with private funding after being initiated under this contract. The development of a pyrochemical process, called TRUMP-S, for partitioning actinides from PUREX waste, is described in this report. This effort is funded by the Central Research Institute of Electric Power Industry (CRIEPI), KHI, the United States Department of Energy, and Boeing.

  10. Infrastructure opportunities in South America: Energy sector. Export trade information

    SciTech Connect (OSTI)

    1995-06-01

    The report, conducted by CG/LA, Inc., was funded by the U.S. Trade and Development Agency. The report was assembled for the South American Infrastructure Conference held in New Orleans. It contains a regional overview of infrastructure activities in ten countries represented at the conference. Also covered are project listings in five sectors, including Energy, Transportation, Environment, Telecommunications, and Industry. The study covers TDA case studies as well as project financeability. The ten countries covered in the report include the following: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Paraguay, Peru, Uruguay, and Venezuela. This volume focuses on the Energy Sector in South America.

  11. Industrial & Manufacturing Processes | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial & Manufacturing Processes Developing technologies, processes for optimal manufacturing As the world increasingly demands technological goods, companies are strained to optimize their manufacturing processes and manage waste and materials recycling. As part of Argonne's mission to contribute to a sustainable world, our scientists are creating next-generation catalysts, processes, coatings and technologies that will advance industrial development and output without compromising

  12. Coal industry annual 1996

    SciTech Connect (OSTI)

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  13. Coal Industry Annual 1995

    SciTech Connect (OSTI)

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  14. Neutron light output and detector efficiency (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Neutron light output and detector efficiency Citation Details In-Document Search Title: Neutron light output and detector efficiency You are accessing a document from the...

  15. Error estimates for fission neutron outputs (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Error estimates for fission neutron outputs Citation Details In-Document Search Title: Error estimates for fission neutron outputs You are accessing a document from the...

  16. Low Capital Photovoltaic Panel Electrical Output-Booster System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Capital Photovoltaic Panel Electrical Output-Booster System Low Capital Photovoltaic Panel Electrical Output-Booster System This presentation summarizes the information given ...

  17. WINDExchange: Wind Energy Market Sectors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Wind Energy Market Sectors U.S. power plants generate electricity for homes, factories, and businesses from a variety of resources, including coal, hydro, natural gas, nuclear, petroleum, and (non-hydro) renewable resources such as wind and solar energy. This power generation mix varies significantly across the country depending on

  18. New trends in industrial energy efficiency in the Mexico iron and steel industry

    SciTech Connect (OSTI)

    Ozawa, Leticia; Martin, Nathan; Worrell, Ernst; Price, Lynn; Sheinbaum, Claudia

    1999-07-31

    Energy use in the Mexican industrial sector experienced important changes in the last decade related to changes in the Mexican economy. In previous studies, we have shown that a real change in energy-intensity was the most important factor in the overall decline of energy use and CO2 emissions in the Mexican industrial sector. Real changes in energy intensity were explained by different factors, depending on the industrial sub-sector. In this paper, we analyze the factors that influenced energy use in the Mexican iron and steel industry, the largest energy consuming and energy-intensive industry in the country. To understand the trends in this industry we used a decomposition analysis based on physical indicators to decompose the changes in intra-sectoral structural changes and efficiency improvements. Also, we use a structure-efficiency analysis for international comparisons, considering industrial structure and the best available technology. In 1995, Mexican iron and steel industry consumed 17.7 percent of the industrial energy consumption. Between 1970 and 1995, the steel production has increased with an annual growth rate of 4.7 percent, while the specific energy consumption (SEC) has decreased from 28.4 to 23.8 GJ/tonne of crude steel. This reduction was due to energy efficiency improvements (disappearance of the open hearth production, increase of the share of the continuous casting) and to structural changes as well (increase of the share of scrap input in the steelmaking).

  19. Fact #561: March 9, 2009 All Sectors' Petroleum Gap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: March 9, 2009 All Sectors' Petroleum Gap Fact #561: March 9, 2009 All Sectors' Petroleum Gap Before 1989 the U.S. produced enough petroleum to meet the needs of the transportation sector, but was still short of meeting the petroleum needs of all the sectors, including industrial, residential and commercial, and electric utilities. In 1973 the gap between what the U.S. produced and what was consumed was 5.6 million barrels per day. By 2030, the gap is expected to be at least 9.2 million

  20. Fact #610: February 15, 2010 All Sectors' Petroleum Gap | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 10: February 15, 2010 All Sectors' Petroleum Gap Fact #610: February 15, 2010 All Sectors' Petroleum Gap Before 1989 the U.S. produced enough petroleum to meet the needs of the transportation sector, but was still short of meeting the petroleum needs of all the sectors, including industrial, residential and commercial, and electric utilities. In 1973 the gap between what the U.S. produced and what was consumed was 5.6 million barrels per day. By 2035, the gap is expected to be at

  1. Fact #688: August 15, 2011 All Sectors' Petroleum Gap | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 688: August 15, 2011 All Sectors' Petroleum Gap Fact #688: August 15, 2011 All Sectors' Petroleum Gap Before 1989 the U.S. produced enough petroleum to meet the needs of the transportation sector, but was still short of meeting the petroleum needs of all the sectors, including industrial, residential and commercial, and electric utilities. In 1973 the gap between what the U.S. produced and what was consumed was 5.6 million barrels per day. By 2035, the gap is expected to be at least

  2. NERSC Seeks Industry Partners for Collaborative Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seeks Industry Partners for Collaborative Research NERSC Seeks Industry Partners for Collaborative Research January 28, 2015 Contact: David Skinner, NERSC Strategic Partnerships Lead, deskinner@lbl.gov, 510-486-4748 Edison7 The National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory has launched a private sector partnership program (PSP) to make its computing capabilities available to industry partners working in key technology areas. Led by David

  3. Federal Sector Renewable Energy Project Implementation: ""What...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sector Renewable Energy Project Implementation: ""What's Working and Why Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by Robert...

  4. Technologies for Climate Change Mitigation: Transport Sector...

    Open Energy Info (EERE)

    Technologies for Climate Change Mitigation: Transport Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technologies for Climate Change Mitigation: Transport Sector...

  5. Transitioning the Transportation Sector: Exploring the Intersection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles Transitioning the Transportation Sector: Exploring the Intersection of ...

  6. Property:DeploymentSector | Open Energy Information

    Open Energy Info (EERE)

    search Property Name DeploymentSector Property Type String Description Depolyment Sector as used in cleanenergysolutions.org Allows the following values: Commercial...

  7. Coal industry annual 1997

    SciTech Connect (OSTI)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  8. Coal industry annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  9. HTGR Industrial Application Functional and Operational Requirements

    SciTech Connect (OSTI)

    L. E. Demick

    2010-08-01

    This document specifies the functional and performance requirements to be used in the development of the conceptual design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to a typical industrial facility. These requirements were developed from collaboration with industry and HTGR suppliers over the preceding three years to identify the energy needs of industrial processes for which the HTGR technology is technically and economically viable. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a conceptual design of the plant that will serve the broadest range of industrial applications.

  10. Industry Outreach and Coalition Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Outreach and Coalition Resources Industry Outreach and Coalition Resources Involving the industrial sector in energy efficiency programs can assist jurisdictions in reaching energy reduction goals. Industry outreach programs may involve encouraging and supporting implementation of energy efficiency programs at commercial enterprises as well as the adoption of energy efficiency technologies in the production process and final goods. Find industry outreach and coalition resources below.

  11. Colorado Dairy Industry Boosts Energy Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dairy Industry Boosts Energy Efficiency Colorado Dairy Industry Boosts Energy Efficiency December 21, 2015 - 2:12pm Addthis Colorado Dairy Industry Boosts Energy Efficiency Historically, the U.S. dairy industry has been one of the most energy-intensive forms of agriculture. Colorado is at the forefront of the fight to increase energy efficiency in this sector. In 2014, the Colorado Energy Office invested $240,000 of State Energy Program funds to help reduce the dairy industry's electricity

  12. Multiple-Input Multiple-Output (MIMO) Linear Systems Extreme Inputs/Outputs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smallwood, David O.

    2007-01-01

    A linear structure is excited at multiple points with a stationary normal random process. The response of the structure is measured at multiple outputs. If the autospectral densities of the inputs are specified, the phase relationships between the inputs are derived that will minimize or maximize the trace of the autospectral density matrix of the outputs. If the autospectral densities of the outputs are specified, the phase relationships between the outputs that will minimize or maximize the trace of the input autospectral density matrix are derived. It is shown that other phase relationships and ordinary coherence less than one willmore » result in a trace intermediate between these extremes. Least favorable response and some classes of critical response are special cases of the development. It is shown that the derivation for stationary random waveforms can also be applied to nonstationary random, transients, and deterministic waveforms.« less

  13. Electricity savings potentials in the residential sector of Bahrain

    SciTech Connect (OSTI)

    Akbari, H.; Morsy, M.G.; Al-Baharna, N.S.

    1996-08-01

    Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to the peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.

  14. Industrial Technologies Program - A Clean, Secure Energy Future via Industrial Energy Efficiency

    SciTech Connect (OSTI)

    2010-05-01

    The Industrial Technologies Program (ITP) leads the national effort to save energy and reduce greenhouse gas emissions in the largest energy-using sector of the U.S. economy. ITP drives energy efficiency improvements and carbon dioxide reductions throughout the manufacturing supply chain, helping develop and deploy innovative technologies that transform the way industry uses energy.

  15. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the National Pollutant Discharge Elimination System. October 15, 2012 Outfall from the Laboratory's Data Communications Center cooling towers Intermittent flow of discharged water from the Laboratory's Data Communications Center eventually reaches perennial segment of Sandia Canyon during storm events (Outfall 03A199). Contact Environmental Communication & Public

  16. Industry Economists

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Economists The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the Industry Economist, whose work is associated with the performance of economic analyses using economic techniques. Responsibilities: Industry Economists perform or participate in one or more of the following

  17. Market study for direct utilization of geothermal resources by selected sectors of economy

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    A comprehensive analysis is presented of industrial markets potential for direct use of geothermal energy by a total of six industry sectors: food and kindred products; tobacco manufactures; textile mill products; lumber and wood products (except furniture); chemicals and allied products; and leather and leather products. A brief statement is presented regarding sectors of the economy and major manufacturing processes which can readily utilize direct geothermal energy. Previous studies on plant location determinants are summarized and appropriate empirical data provided on plant locations. Location determinants and potential for direct use of geothermal resources are presented. The data was gathered through interviews with 30 senior executives in the six sectors of economy selected for study. Probable locations of plants in geothermal resource areas and recommendations for geothermal resource marketing are presented. Appendix A presents factors which impact on industry location decisions. Appendix B presents industry executives interviewed during the course of this study. (MHR)

  18. Off-set stabilizer for comparator output

    DOE Patents [OSTI]

    Lunsford, James S. (Los Alamos, NM)

    1991-01-01

    A stabilized off-set voltage is input as the reference voltage to a comparator. In application to a time-interval meter, the comparator output generates a timing interval which is independent of drift in the initial voltage across the timing capacitor. A precision resistor and operational amplifier charge a capacitor to a voltage which is precisely offset from the initial voltage. The capacitance of the reference capacitor is selected so that substantially no voltage drop is obtained in the reference voltage applied to the comparator during the interval to be measured.

  19. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users - Media Publications and Information The Invisible Neutron Threat Neutron-Induced Failures in Semiconductor Devices Nuclear Science Research at the LANSCE-WNR Facility Links About WNR Industrial Users 4FP30L-A/ICE House 4FP30R/ICE II Media

  20. World crude output overcomes Persian Gulf disruption

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    Several OPEC producers made good on their promises to replace 2.7 MMbpd of oil exports that vanished from the world market after Iraq took over Kuwait. Even more incredibly, they accomplished this while a breathtaking 1.2- MMbopd reduction in Soviet output took place during the course of 1991. After Abu Dhabi, Indonesia, Iran, Libya, Nigeria, Saudi Arabia and Venezuela turned the taps wide open, their combined output rose 2.95 MMbopd. Put together with a 282,000-bopd increase by Norway and contributions from smaller producers, this enabled world oil production to remain within 400,000 bopd of its 1990 level. The 60.5-MMbopd average was off by just 0.7%. This paper reports that improvement took place in five of eight regions. Largest increases were in Western Europe and Africa. Greatest reductions occurred in Eastern Europe and the Middle East. Fifteen nations produced 1 MMbopd or more last year, compared with 17 during 1990.

  1. Characterization of the U.S. Industrial/Commercial Boiler Population -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Report, May 2005 | Department of Energy U.S. Industrial/Commercial Boiler Population - Final Report, May 2005 Characterization of the U.S. Industrial/Commercial Boiler Population - Final Report, May 2005 The U.S. industrial and commercial sectors consume large quantities of energy. Much of this energy is used in boilers to generate steam and hot water. This 2005 report characterizes the boilers in the industrial and commercial sector in terms of number of units, aggregate capacity,

  2. Measuring industrial energy efficiency: Physical volume versus economic value

    SciTech Connect (OSTI)

    Freeman, S.L.; Niefer, M.J.; Roop, J.M.

    1996-12-01

    This report examines several different measures of industrial output for use in constructing estimates of industrial energy efficiency and discusses some reasons for differences between the measures. Estimates of volume-based measures of output, as well as 3 value-based measures of output (value of production, value of shipments, and value added), are evaluated for 15 separate 4-digit industries. Volatility, simple growth rate, and trend growth rate estimates are made for each industry and each measure of output. Correlations are made between the volume- and value-based measures of output. Historical energy use data are collected for 5 of the industries for making energy- intensity estimates. Growth rates in energy use, energy intensity, and correlations between volume- and value-based measures of energy intensity are computed. There is large variability in growth trend estimates both long term and from year to year. While there is a high correlation between volume- and value-based measures of output for a few industries, typically the correlation is low, and this is exacerbated for estimates of energy intensity. Analysis revealed reasons for these low correlations. It appears that substantial work must be done before reliable measures of trends in the energy efficiency of industry can be accurately characterized.

  3. Solar energy research and development: federal and private sector roles

    SciTech Connect (OSTI)

    Not Available

    1982-09-01

    The Energy Research Advisory Board convened a Solar R and D Panel to determine the status of the solar industry and solar R and D in the United States and to recommend to DOE appropriate roles for the Federal and private sectors. The Panel's report acknowledges the new Administration policy reorienting the Federal role in energy development to long-term, high-risk, high-payoff R and D, and leaving commercialization to the private sector. The Panel's recommendations are further predicated on an assumption of continued, substantially reduced funding in the near-term. The Panel found that solar energy technologies have progressed significantly in the past 10 years and represent a group of highly promising energy options for the United States. However, it also found the solar industry to be in a precarious condition, fluctuating energy demand and prices, and uncertain Federal tax and regulatory policies. The Business Energy and Residential Tax Credits are essential to the near-term health of the solar industry. Commercialization has already begun for some solar technologies; for others, decreases in Federal funding will result in a slowdown or termination. The primary Federal roles in solar R and D should be in support of basic and applied research, high-risk, high-payoff technology development and other necessary research for which there are insufficient market incentives. The Federal Government should also move strongly to transfer technology to the private sector for near-commerical technologies. Large demonstration and commercialization projects cannot be justified for Federal funding under current economic conditions. These should be pursued by the private sector. The Panel examined seven technology areas and made specific findings and recommendations for each.

  4. Industry Economist

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will report to the Manager of Load Forecasting and Analysis of the Customer Services Organization. He/she serves as an industry economist engaged in load...

  5. Room-return scattering in fission neutron outputs (Conference...

    Office of Scientific and Technical Information (OSTI)

    Room-return scattering in fission neutron outputs Citation Details In-Document Search Title: Room-return scattering in fission neutron outputs You are accessing a document from...

  6. Industry @ ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry @ ALS Industry @ ALS ALS, Molecular Foundry, and aBeam Technologies Collaborate to Make Metrology History Print Thursday, 21 January 2016 12:47 A collaboration between Bay Area company aBeam Technologies, the ALS, and the Molecular Foundry is bringing cutting-edge metrology instrumentation to the semiconductor market, which will enable a new level of quality control. Summary Slide Read more... Takeda Advances Diabetes Drug Development at the ALS Print Tuesday, 19 May 2015 12:25 Type 2

  7. The Office of Industrial Technologies technical reports

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    The US Department of Energy's Office of Industrial Technologies (OIT) conducts R D activities which focus on the objectives of improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial energy conservation. The Office also conducts programs to reduce waste generation, increase recycling efforts, and improve the use of wastes as process feedstocks. An active program of technology transfer and education supports these activities and encourages adoption of new technologies. To accomplish these objectives OIT cooperates with the private sector to identify its technological needs and to share R D efforts. R D is conducted to the point that a new technology is shown to work and that it can be transferred to the private sector end-users. This bibliography contains information on all scientific and technical reports sponsored by the DOE Industrial Energy Conservation Program during the years 1988--1990.

  8. Information Technology Industry Council Comment | Department of Energy

    Energy Savers [EERE]

    Information Technology Industry Council Comment Information Technology Industry Council Comment The Information Technology Industry Council (ITI) appreciates the opportunity to submit comments in response to the Regulatory Burden RFI.1 ITI represents the leading global innovators of information and communications technology (ICT), an industry committed to developing energy-efficient solutions both for our own products and to help enable energy efficiency in other more energy intensive sectors.

  9. New Jersey Industrial Energy Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jersey Industrial Energy Program New Jersey Industrial Energy Program Map highlighting New Jersey New Jersey is home to energy-intensive industrial manufacturing sectors such as chemicals, computers and electronics, and transportation equipment manufacturing. In 2007, industrial manufacturing in the state contributed to approximately 10% of New Jersey's gross domestic product and 20% of the state's energy usage, consuming 452.1 trillion British thermal units (Btu). As part of an initiative to

  10. Barriers to Industrial Energy Efficiency - Report to Congress, June 2015

    SciTech Connect (OSTI)

    2015-06-01

    This report examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This report also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  11. Carbon Capture and Storage from Industrial Sources | Department of Energy

    Energy Savers [EERE]

    Carbon Capture and Storage from Industrial Sources Carbon Capture and Storage from Industrial Sources In 2009, the industrial sector accounted for slightly more than one-quarter of total U.S. carbon dioxide (CO2) emissions of 5,405 million metric tons from energy consumption, according to data from DOE's Energy Information Administration. In a major step forward in the fight to reduce CO2 emissions from industrial plants, DOE has allocated American Recovery and Reinvestment Act (Recovery Act)

  12. Barriers to Industrial Energy Efficiency - Study (Appendix A), June 2015

    SciTech Connect (OSTI)

    2015-06-01

    This study examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This study also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  13. Barriers to Industrial Energy Efficiency - Report to Congress, June 2015 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Barriers to Industrial Energy Efficiency - Report to Congress, June 2015 Barriers to Industrial Energy Efficiency - Report to Congress, June 2015 This report examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency,

  14. Live from Greenbuild: From the Industrial Facilities Connect & Learn |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Live from Greenbuild: From the Industrial Facilities Connect & Learn Live from Greenbuild: From the Industrial Facilities Connect & Learn November 18, 2015 - 5:32pm Addthis By Monica Kanojia The industrial industry is filled with unique and dynamic projects with substantially high process loads and resource consumption. This sector faces a different set of challenges in attaining sustainably built campuses. Owners must address compliance, regulations and safety

  15. Energy Sector Vulnerability to Climate Change: Adaptation Options to Increase Resilience (Presentation)

    SciTech Connect (OSTI)

    Newmark, R. L.; Bilello, D.; Macknick, J.; Hallet, K. C.; Anderson, R.; Tidwell, V.; Zamuda, C.

    2013-02-01

    The U.S. Department of Energy is conducting an assessment of vulnerabilities of the U.S. energy sector to climate change and extreme weather. Emphasizing peer reviewed research, it seeks to quantify vulnerabilities and identify specific knowledge or technology gaps. It draws upon a July 2012 workshop, ?Climate Change and Extreme Weather Vulnerability Assessment of the US Energy Sector?, hosted by the Atlantic Council and sponsored by DOE to solicit industry input.

  16. Petroleum Refining Sector (NAICS 324110) Energy and GHG Combustion Emissions Profile, November 2012

    Energy Savers [EERE]

    69 2.4 PETROLEUM REFINING SECTOR (NAICS 324110) 2.4.1. Overview of the Petroleum Refining Manufacturing Sector Petroleum refining is a complex industry that generates a diverse slate of fuel products and petrochemicals, from gasoline to asphalt. Refining requires a range of processing steps, including distillation, cracking, reforming, and treating. Most of these processes are highly reliant on process heating and steam energy. Petroleum refineries are an essential part of the U.S. economy.

  17. Water Impacts of the Electricity Sector (Presentation)

    SciTech Connect (OSTI)

    Macknick, J.

    2012-06-01

    This presentation discusses the water impacts of the electricity sector. Nationally, the electricity sector is a major end-user of water. Water issues affect power plants throughout the nation.

  18. Working with the Real Estate Sector

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Workforce Peer Exchange Call: Working with the Real Estate Sector, Call Slides and Discussion Summary, March 1, 2012. This call discussed effective strategies for working with the real estate sector.

  19. SEP Special Projects Report: Buildings Sector

    SciTech Connect (OSTI)

    2009-01-18

    The buildings section of this Sharing Success document describes SEP special projects in the buildings sector including funding.

  20. Advanced Vehicle Electrification & Transportation Sector Electrification |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt071_vss_cesiel_2011_o.pdf More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid

  1. Manufacturing Energy and Carbon Footprint - Sector: Computer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computers, Electronics and Electrical Equipment (NAICS 334, 335) Process Energy ... Carbon Footprint Sector: Computers, Electronics and Electrical Equipment (NAICS 334, ...

  2. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  3. Accelerating Investments in the Geothermal Sector, Indonesia...

    Open Energy Info (EERE)

    Accelerating Investments in the Geothermal Sector, Indonesia (Presentation) Author Paul Brophy Conference World Geothermal Energy Summit; Jakarta, Indonesia; 20120706...

  4. Commercial / Industrial Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Commercial & Industrial Lighting Efficiency Program The Commercial & Industrial...

  5. Energy Efficiency and the Finance Sector | Open Energy Information

    Open Energy Info (EERE)

    and the Finance Sector Jump to: navigation, search Name Energy Efficiency and the Finance Sector AgencyCompany Organization United Nations Environment Programme Sector Energy...

  6. Nepal-Sectoral Climate Impacts Economic Assessment | Open Energy...

    Open Energy Info (EERE)

    Nepal-Sectoral Climate Impacts Economic Assessment (Redirected from Nepal Sectoral Climate impacts Economic Assessment) Jump to: navigation, search Name Nepal Sectoral Climate...

  7. Electric energy sector in Argentina

    SciTech Connect (OSTI)

    Bastos, C.M.

    1994-06-01

    This article describes how the organization of the electric energy sector in Argentina has changed dramatically from a sector in which state-owned companies worked under a central planning to one in which private companies make their own decisions. The way that the electrical system used to work can be shown by these statements: demand growth estimated by central planning team; projects to be developed and the timetable determined by the same team; unit operations ruled by central dispatch, and under state-owned companies responsibility; integration with neighbor countries focused on physical projects, such as Salto Grande with Uruguay and Yacyreta with Paraguay. Today the electrical system works under these rules: the system has been vertically separated and the companies cannot be integrated; electric energy is considered as an ordinary wealth and the value that consumers give it is taken into account, (the distribution companies pay consumers a penalty for the energy that they cannot supply, the penalty is worth the economic damage consumers suffer due to its lack); producers have to compete for demand. They can sell in two ways: sell under private agreements or sell to the system. Both ways of selling compete with each other because the system buys giving priority to lower costs and, as a consequence, some of the producers do not sell at all.

  8. Transportation Sector Model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

  9. Potential and cost of carbon sequestration in the Tanzanian forest sector

    SciTech Connect (OSTI)

    Makundi, Willy R.

    2001-01-01

    The forest sector in Tanzania offers ample opportunities to reduce greenhouse gas emissions (GHG) and sequestered carbon (C) in terrestrial ecosystems. More than 90% of the country's demand for primary energy is obtained from biomass mostly procured unsustainably from natural forests. This study examines the potential to sequester C through expansion of forest plantations aimed at reducing the dependence on natural forest for wood fuel production, as well as increase the country's output of industrial wood from plantations. These were compared ton conservation options in the tropical and miombo ecosystems. Three sequestration options were analyzed, involving the establishment of short rotation and long rotation plantations on about 1.7 x 106 hectares. The short rotation community forest option has a potential to sequester an equilibrium amount of 197.4 x 106 Mg C by 2024 at a net benefit of $79.5 x 106, while yielding a NPV of $0.46 Mg-1 C. The long rotation options for softwood and hardwood plantations will reach an equilibrium sequestration of 5.6 and 11.8 x 106 Mg C at a negative NPV of $0.60 Mg-1 C and $0.32 Mg-1 C. The three options provide cost competitive opportunities for sequestering about 7.5 x 106 Mg C yr -1 while providing desired forest products and easing the pressure on the natural forests in Tanzania. The endowment costs of the sequestration options were all found to be cheaper than the emission avoidance cost for conservation options which had an average cost of $1.27 Mg-1 C, rising to $ 7.5 Mg-1 C under some assumptions on vulnerability to encroachment. The estimates shown here may represent the upper bound, because the actual potential will be influenced by market prices for inputs and forest products, land use policy constraints and the structure of global C transactions.

  10. Method and apparatus for varying accelerator beam output energy

    DOE Patents [OSTI]

    Young, Lloyd M.

    1998-01-01

    A coupled cavity accelerator (CCA) accelerates a charged particle beam with rf energy from a rf source. An input accelerating cavity receives the charged particle beam and an output accelerating cavity outputs the charged particle beam at an increased energy. Intermediate accelerating cavities connect the input and the output accelerating cavities to accelerate the charged particle beam. A plurality of tunable coupling cavities are arranged so that each one of the tunable coupling cavities respectively connect an adjacent pair of the input, output, and intermediate accelerating cavities to transfer the rf energy along the accelerating cavities. An output tunable coupling cavity can be detuned to variably change the phase of the rf energy reflected from the output coupling cavity so that regions of the accelerator can be selectively turned off when one of the intermediate tunable coupling cavities is also detuned.

  11. Halbach array generator/motor having mechanically regulated output voltage and mechanical power output

    DOE Patents [OSTI]

    Post, Richard F.

    2005-06-14

    A motor/generator has its stationary portion, i.e., the stator, positioned concentrically within its rotatable element, i.e., the rotor, along the axis of rotation of the rotor. The rotor includes a Halbach array of magnets. The voltage and power outputs are regulated by varying the radial gap in between the stator windings and the rotating Halbach array. The gap is varied by extensible and retractable supports attached to the stator windings that can move the windings in a radial direction.

  12. Output-Based Error Estimation and Adaptation for Uncertainty...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Output-Based Error Estimation and Adaptation for Uncertainty Quantification Isaac M. Asher and Krzysztof J. Fidkowski University of Michigan US National Congress on Computational...

  13. Compact waveguide power divider with multiple isolated outputs

    DOE Patents [OSTI]

    Moeller, Charles P. (Del Mar, CA)

    1987-01-01

    A waveguide power divider (10) for splitting electromagnetic microwave power and directionally coupling the divided power includes an input waveguide (21) and reduced height output waveguides (23) interconnected by axial slots (22) and matched loads (25) and (26) positioned at the unused ends of input and output guides (21) and (23) respectively. The axial slots are of a length such that the wave in the input waveguide (21) is directionally coupled to the output waveguides (23). The widths of input guide (21) and output guides (23) are equal and the width of axial slots (22) is one half of the width of the input guide (21).

  14. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum Reduction ...

  15. Sector Profiles of Significant Large CHP Markets, March 2004 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Sector Profiles of Significant Large CHP Markets, March 2004 Sector Profiles of Significant Large CHP Markets, March 2004 In this 2004 report, three sectors were identified as promising combined heat and power (CHP) sectors: chemicals, food, and pharmaceuticals. Sector profiles are based on a literature search, review of recent CHP activity in those sectors, and telephone interviews with customer representatives in each sector. PDF icon sector_profiles.pdf More Documents &

  16. Vehicle Technologies Office: Transitioning the Transportation Sector -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles | Department of Energy Transitioning the Transportation Sector - Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles Vehicle Technologies Office: Transitioning the Transportation Sector - Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles This report, titled "Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles" is based

  17. Energy Analysis by Sector | Department of Energy

    Office of Environmental Management (EM)

    Information Resources » Energy Analysis by Sector Energy Analysis by Sector Manufacturers often rely on energy-intensive technologies and processes. AMO conducts a range of analyses to explore energy use and trends by sector. Manufacturing Energy and Carbon Footprints Static Manufacturing Energy Sankey Diagrams Dynamic Manufacturing Energy Sankey Tool Energy & Environmental Profiles Bandwidth Studies Large Energy User Manufacturing Facilities by State MANUFACTURING ENERGY and carbon

  18. Chapter 2: Energy Sectors and Systems

    Office of Environmental Management (EM)

    2: Energy Sectors and Systems September 2015 Quadrennial Technology Review 2 Energy Sectors and Systems Issues and RDD&D Opportunities Energy systems are becoming increasingly interconnected and complex. Integrated energy systems present both opportunities for performance improvement as well as risks to operability and security. The size and scope of these opportunities and risks are just beginning to be understood. This chapter addresses both the key issues of energy sectors and their

  19. DOE Issues Energy Sector Cyber Organization NOI

    Office of Environmental Management (EM)

    Issues National Energy Sector Cyber Organization Notice of Intent February 11, 2010 The Department of Energy's (DOE) National Energy Technology Laboratory (NETL) announced on Jan. 7 that it intends to issue a Funding Opportunity Announcement (FOA) for a National Energy Sector Cyber Organization, envisioned as a partnership between the federal government and energy sector stakeholders to protect the bulk power electric grid and aid the integration of smart grid technology to enhance the security

  20. Category:Public Sectors | Open Energy Information

    Open Energy Info (EERE)

    no pages or media. Retrieved from "http:en.openei.orgwindex.php?titleCategory:PublicSectors&oldid272249" Feedback Contact needs updating Image needs updating...

  1. Energy Sector Cybersecurity Framework Implementation Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    Department released guidance to help the energy sector establish or align existing cybersecurity risk management programs to meet the objectives of the Cybersecurity Framework...

  2. Energy Sector Cybersecurity Framework Implementation Guidance...

    Energy Savers [EERE]

    - Draft for Public Comment & Comment Submission Form (September 2014) Energy Sector Cybersecurity Framework Implementation Guidance - Draft for Public Comment & Comment Submission...

  3. Draft Energy Sector Cybersecurity Framework Implementation Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    in the Federal Register, inviting the public to comment on DOE's Energy Sector Cybersecurity Framework Implementation Guidance. Comments must be received on or before October...

  4. Energy Sector Cybersecurity Framework Implementation Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    invites public comment on a draft of the Energy Sector Cybersecurity Framework Implementation Guidance. Comments must be received on or before October 14, 2014. The draft document...

  5. Property:Sector | Open Energy Information

    Open Energy Info (EERE)

    is a property of type Page. Subproperties This property has the following 1 subproperty: G Green Economy Toolbox Pages using the property "Sector" Showing 25 pages using this...

  6. Model Documentation Report: Commercial Sector Demand Module...

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  7. DOE Issues Energy Sector Cyber Organization NOI

    Energy Savers [EERE]

    between the federal government and energy sector stakeholders to protect the bulk power electric grid and aid the integration of smart grid technology to enhance the...

  8. Industrial Applications for Micropower: A Market Assessment, November 1999

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Industrial Applications for Micropower: A Market Assessment, November 1999 Industrial Applications for Micropower: A Market Assessment, November 1999 Micropower (defined here as electricity generation equipment less than 1 MW) such as microturbines, fuel cells, and reciprocating engines offers promise to renew growth in the U.S. industrial sector. Based on the analysis conducted for this 1999 study, these technologies can cost-effectively provide thermal and electric

  9. Aerogel-Based Insulation for Industrial Steam Distribution Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Aerogel-Based Insulation for Industrial Steam Distribution Systems Aerogel-Based Insulation for Industrial Steam Distribution Systems New Efficient Insulation for Pipes Allows for the Use of Less Material with High-Temperature Durability Thermal loss through steam distribution systems is a significant source of wasted energy in the U.S. industrial sector. Traditional pipe insulation employs mineral wool, fiberglass, calcium silicate, perlite, and various foams. Annular

  10. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Productivity Video | Department of Energy Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and

  11. Electricity Use in the Pacific Northwest: Utility Historical Sales by Sector, 1990 and Preceding Years.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1991-06-01

    This report officially releases the compilation of regional 1990 retail customer sector sales data by the Bonneville Power Administration. The report is intended to enable detailed examination of annual regional electricity consumption. It also provides observations based on statistics covering the 1983--1990 time period, and gives statistics covering the time period 1970--1990. The electricity use report is the only information source that provides data obtained from each utility in the region based on the amount of electricity they sell annually to four sectors. Data is provided on each retail customer sector and also on the customers Bonneville serves directly: residential, commercial, industrial, direct-service industrial, and irrigation. 21 figs., 40 tabs.

  12. Industrial ecology Prosperity Game{trademark}

    SciTech Connect (OSTI)

    Beck, D.; Boyack, K.; Berman, M.

    1998-03-01

    Industrial ecology (IE) is an emerging scientific field that views industrial activities and the environment as an interactive whole. The IE approach simultaneously optimizes activities with respect to cost, performance, and environmental impact. Industrial Ecology provides a dynamic systems-based framework that enables management of human activity on a sustainable basis by: minimizing energy and materials usage; insuring acceptable quality of life for people; minimizing the ecological impact of human activity to levels that natural systems can sustain; and maintaining the economic viability of systems for industry, trade and commerce. Industrial ecology applies systems science to industrial systems, defining the system boundary to incorporate the natural world. Its overall goal is to optimize industrial activities within the constraints imposed by ecological viability, globally and locally. In this context, Industrial systems applies not just to private sector manufacturing and services but also to government operations, including provision of infrastructure. Sandia conducted its seventeenth Prosperity Game{trademark} on May 23--25, 1997, at the Hyatt Dulles Hotel in Herndon, Virginia. The primary sponsors of the event were Sandia National Laboratories and Los Alamos National Laboratory, who were interested in using the format of a Prosperity Game to address some of the issues surrounding Industrial Ecology. Honorary game sponsors were: The National Science Foundation; the Committee on Environmental Improvement, American Chemical Society; the Industrial and Engineering Chemistry Division, American Chemical Society; the US EPA--The Smart Growth Network, Office of Policy Development; and the US DOE-Center of Excellence for Sustainable Development.

  13. Process modeling and industrial energy use

    SciTech Connect (OSTI)

    Howe, S O; Pilati, D A; Sparrow, F T

    1980-11-01

    How the process models developed at BNL are used to analyze industrial energy use is described and illustrated. Following a brief overview of the industry modeling program, the general methodology of process modeling is discussed. The discussion highlights the important concepts, contents, inputs, and outputs of a typical process model. A model of the US pulp and paper industry is then discussed as a specific application of process modeling methodology. Case study results from the pulp and paper model illustrate how process models can be used to analyze a variety of issues. Applications addressed with the case study results include projections of energy demand, conservation technology assessment, energy-related tax policies, and sensitivity analysis. A subsequent discussion of these results supports the conclusion that industry process models are versatile and powerful tools for energy end-use modeling and conservation analysis. Information on the current status of industry models at BNL is tabulated.

  14. National Electric Sector Cybersecurity Organization Resource (NESCOR)

    SciTech Connect (OSTI)

    None, None

    2014-06-30

    The goal of the National Electric Sector Cybersecurity Organization Resource (NESCOR) project was to address cyber security issues for the electric sector, particularly in the near and mid-term. The following table identifies the strategies from the DOE Roadmap to Achieve Energy Delivery Systems Cybersecurity published in September 2011 that are applicable to the NESCOR project.

  15. Energy Sector Cybersecurity Framework Implementation Guidance

    Office of Environmental Management (EM)

    JANUARY 2015 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY Energy Sector Cybersecurity Framework Implementation Guidance │ Table of Contents TABLE OF CONTENTS 1. Introduction .............................................................................................................................................. 1 2. Preparing for Framework Implementation

  16. Employment-generating projects for the energy and minerals sectors of Honduras. Proyectos generadores de empleos para los sectores energetico y minero de Honduras

    SciTech Connect (OSTI)

    Frank, J.A.

    1988-12-01

    A mission to Honduras invited by the Government of Honduras and sponsored by the Organization of American States addressed the generation of employment in various areas of interest to the country. The mission was made up of experts from numerous countries and international agencies. In the energy sector, the mission recommended consolidating the sector under a coordinating body; carrying out projects to promote reforestation, tree farms, and rational forest utilization; encouraging industrial energy conservation; developing alternative energy sources; and promoting rural electrification and expansion of the electrical grid. In the mining sector, the mission supported promotion and technical assistance for small gold-leaching and placer operations, the national mineral inventory, detailed exploration of promising sites, and the development of a mining school. 13 refs., 7 tabs.

  17. Device for frequency modulation of a laser output spectrum

    DOE Patents [OSTI]

    Beene, J.R.; Bemis, C.E. Jr.

    1984-07-17

    A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the tranducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.

  18. Device for frequency modulation of a laser output spectrum

    DOE Patents [OSTI]

    Beene, James R.; Bemis, Jr., Curtis E.

    1986-01-01

    A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the transducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When such a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.

  19. Dual output acoustic wave sensor for molecular identification

    DOE Patents [OSTI]

    Frye, Gregory C. (Cedar Crest, NM); Martin, Stephen J. (Albuquerque, NM)

    1991-01-01

    A method of identification and quantification of absorbed chemical species by measuring changes in both the velocity and the attenuation of an acoustic wave traveling through a thin film into which the chemical species is sorbed. The dual output response provides two independent sensor responses from a single sensing device thereby providing twice as much information as a single output sensor. This dual output technique and analysis allows a single sensor to provide both the concentration and the identity of a chemical species or permits the number of sensors required for mixtures to be reduced by a factor of two.

  20. Examination of the factors and issues for an environmental technology utilization partnership between the private sector and the Department of Energy. Final report

    SciTech Connect (OSTI)

    Brouse, P.

    1997-05-01

    The Department of Energy (DOE) held a meeting on November 12, 1992 to evaluate the DOE relations with industry and university partners concerning environmental technology utilization. The goal of this meeting was to receive feedback from DOE industry and university partners for the identification of opportunities to improve the DOE cooperative work processes with the private sector. The meeting was designed to collect information and to turn that information into action to improve private sector partnerships with DOE.

  1. Energy Sector Stakeholders Attend the Department of Energy¬タルs 2010 Cybersecurity for Energy Delivery Systems Peer Review

    Office of Environmental Management (EM)

    Sector Stakeholders Attend the Department of Energy's Cybersecurity for Energy Delivery Systems Peer Review July 29, 2010 The Department of Energy conducted a Peer Review of its Cybersecurity for Energy Delivery Systems (CEDS) Research and Development Program on July 20-22, during which 28 R&D projects were presented for review by industry stakeholders. More than 65 energy sector stakeholders came to network, present, and learn about DOE projects, while more than 20 joined in by webinar. The

  2. Market leadership by example: Government sector energy efficiency in developing countries

    SciTech Connect (OSTI)

    Van Wie McGrory, Laura; Harris, Jeffrey; Breceda, Miguel; Campbell, Stephanie; Sachu, Constantine; della Cava, Mirka; Gonzalez Martinez, Jose; Meyer, Sarah; Romo, Ana Margarita

    2002-05-20

    Government facilities and services are often the largest energy users and major purchasers of energy-using equipment within a country. In developing as well as industrial countries, government ''leadership by example'' can be a powerful force to shift the market toward energy efficiency, complementing other elements of a national energy efficiency strategy. Benefits from more efficient energy management in government facilities and operations include lower government energy bills, reduced greenhouse gas emissions, less demand on electric utility systems, and in many cases reduced dependence on imported oil. Even more significantly, the government sector's buying power and example to others can generate broader demand for energy-efficient products and services, creating entry markets for domestic suppliers and stimulating competition in providing high-efficiency products and services. Despite these benefits, with the exception of a few countries government sector actions have often lagged behind other energy efficiency policies. This is especially true in developing countries and transition economies - even though energy used by public agencies in these countries may represent at least as large a share of total energy use as the public sector in industrial economies. This paper summarizes work in progress to inventory current programs and policies for government sector energy efficiency in developing countries, and describes successful case studies from Mexico's implementation of energy management in the public sector. We show how these policies in Mexico, begun at the federal level, have more recently been extended to state and local agencies, and consider the applicability of this model to other developing countries.

  3. Community Climate System Model (CCSM) Experiments and Output Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The CCSM web makes the source code of various versions of the model freely available and provides access to experiments that have been run and the resulting output data.

  4. Multiple scattering effects in fission neutron outputs (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Conference: Multiple scattering effects in fission neutron outputs Citation Details In-Document Search Title: Multiple scattering effects in fission neutron outputs Authors: Taddeucci, Terry N [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2011-02-24 OSTI Identifier: 1053153 Report Number(s): LA-UR-11-01326; LA-UR-11-1326 DOE Contract Number: AC52-06NA25396 Resource Type: Conference Resource Relation: Conference: Fission fprogram Review, ;

  5. Predicted Radiation Output from Several Kilograms of Plutonium Oxide

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Predicted Radiation Output from Several Kilograms of Plutonium Oxide Citation Details In-Document Search Title: Predicted Radiation Output from Several Kilograms of Plutonium Oxide Authors: Shores, Erik Frederick [1] ; Solomon, Clell Jeffrey Jr. [1] ; Myers, Steven Charles [1] ; Temple, Brian Allen [1] ; Felsher, Paul D. [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2015-01-20 OSTI Identifier: 1168712 Report Number(s):

  6. PROJECT PROFILE: Advanced Thermal Management for Higher Module Power Output

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Advanced Thermal Management for Higher Module Power Output PROJECT PROFILE: Advanced Thermal Management for Higher Module Power Output Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: Sandia National Laboratories, Albuquerque, NM Amount Awarded: $2,816,911 Higher temperatures of photovoltaic (PV) modules are causing lower than projected module performance. For example, a free-standing Si PV module has 0.4% decrease in efficiency per degree

  7. Bayesian approaches for combining computational model output and physical

    Office of Scientific and Technical Information (OSTI)

    observations (Conference) | SciTech Connect Bayesian approaches for combining computational model output and physical observations Citation Details In-Document Search Title: Bayesian approaches for combining computational model output and physical observations Authors: Higdon, David M [1] ; Lawrence, Earl [1] ; Heitmann, Katrin [2] ; Habib, Salman [2] + Show Author Affiliations Los Alamos National Laboratory ANL Publication Date: 2011-07-25 OSTI Identifier: 1084581 Report Number(s):

  8. Low Capital Photovoltaic Panel Electrical Output-Booster System |

    Office of Environmental Management (EM)

    Department of Energy Low Capital Photovoltaic Panel Electrical Output-Booster System Low Capital Photovoltaic Panel Electrical Output-Booster System This presentation summarizes the information given during the DOE SunShot Grand Challenge: Summit and Technology Forum, June 13-14, 2012. PDF icon ssgrandchallenge_finance_schrag.pdf More Documents & Publications The SunShot Vision Study SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency & Renewable Energy (EERE) 2014

  9. Pacific Rim Summit on Industrial Biotechnology & Bioenergy

    Broader source: Energy.gov [DOE]

    The ninth annual Pacific Rim Summit on Industrial Biotechnology and Bioenergy will be held from December 79, 2014, in San Diego, California, at the Westin Gaslamp Quarter. Bringing together representatives from various countries all around the Pacific Rim, this event will focus on the growth of the industrial biotechnology and bioenergy sectors in North America and the Asia-Pacific region. Glenn Doyle, BETO's Deployment & Demonstration Technology Manager, will be moderating and speaking at a session on entitled "Utilizing Strategic Partnerships to Grow Your Business" on December 9.

  10. Energy Savings from Industrial Water Reductions

    SciTech Connect (OSTI)

    Rao, Prakash; McKane, Aimee; de Fontaine, Andre

    2015-08-03

    Although it is widely recognized that reducing freshwater consumption is of critical importance, generating interest in industrial water reduction programs can be hindered for a variety of reasons. These include the low cost of water, greater focus on water use in other sectors such as the agriculture and residential sectors, high levels of unbilled and/or unregulated self-supplied water use in industry, and lack of water metering and tracking capabilities at industrial facilities. However, there are many additional components to the resource savings associated with reducing site water use beyond the water savings alone, such as reductions in energy consumption, greenhouse gas emissions, treatment chemicals, and impact on the local watershed. Understanding and quantifying these additional resource savings can expand the community of businesses, NGOs, government agencies, and researchers with a vested interest in water reduction. This paper will develop a methodology for evaluating the embedded energy consumption associated with water use at an industrial facility. The methodology developed will use available data and references to evaluate the energy consumption associated with water supply and wastewater treatment outside of a facility’s fence line for various water sources. It will also include a framework for evaluating the energy consumption associated with water use within a facility’s fence line. The methodology will develop a more complete picture of the total resource savings associated with water reduction efforts and allow industrial water reduction programs to assess the energy and CO2 savings associated with their efforts.

  11. Government and Industry a Force for Collaboration at the Energy Roadmap Update Workshop

    Office of Environmental Management (EM)

    and Industry A Force for Collaboration at the Energy Roadmap Update Workshop Sept. 16, 2009 Energy sector leaders in the public and private sectors have once again come together to identify high- priority collaborative actions that will further secure control systems in the electric, oil, and natural gas sectors. More than 80 asset owners and operators, researchers, technology developers, security specialists, equipment vendors, and government stakeholders joined forces at a workshop to help

  12. Global Climate Change and the Transportation Sector: An Update on Issues and Mitigation Options

    SciTech Connect (OSTI)

    Geffen, CA; Dooley, JJ; Kim, SH

    2003-08-24

    It is clear from numerous energy/economic modeling exercises that addressing the challenges posed by global climate change will eventually require the active participation of all industrial sectors and all consumers on the planet. Yet, these and similar modeling exercises indicate that large stationary CO2 point sources (e.g., refineries and fossil-fired electric power plants) are often the first targets considered for serious CO2 emissions mitigation. Without participation of all sectors of the global economy, however, the challenges of climate change mitigation will not be met. Because of its operating characteristics, price structure, dependence on virtually one energy source (oil), enormous installed infrastructure, and limited technology alternatives, at least in the near-term, the transportation sector will likely represent a particularly difficult challenge for CO2 emissions mitigation. Our research shows that climate change induced price signals (i.e., putting a price on carbon that is emitted to the atmosphere) are in the near term insufficient to drive fundamental shifts in demand for energy services or to transform the way these services are provided in the transportation sector. We believe that a technological revolution will be necessary to accomplish the significant reduction of greenhouse gas emissions from the transportation sector. This paper presents an update of ongoing research into a variety of technological options that exist for decarbonizing the transportation sector and the various tradeoffs among them.

  13. Manufacturing Energy and Carbon Footprint - Sector: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2.4 2.6 < 0.1 Manufacturing Energy and Carbon Footprint Sector: Transportation ... Steam Distribution Losses 1 3 23 1 3 7 6 23 16 0 3 0 275 44 132 0 1 2 Conventional Boilers ...

  14. US Energy Sector Vulnerabilities to Climate Change

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    .......................... 1 Figure 2. Climate change implications for the energy sector ..................................................................................................................... 4 Figure 3. Rate of warming in the United States by region, 1901-2011 .................................................................................................... 8 Figure 4. Wildfire disrupting electricity transmission

  15. US Energy Sector Vulnerabilities to Climate Change

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    .......................... 1 Figure 2. Climate change implications for the energy sector ..................................................................................................................... 4 Figure 3. Rate of warming in the United States by region, 1901-2011 .................................................................................................... 8 Figure 4. Wildfire disrupting electricity transmission

  16. Technology partnerships: Enhancing the competitiveness, efficiency, and environmental quality of American industry

    SciTech Connect (OSTI)

    1995-04-01

    An overview of the Department of Energy`s Office of Industrial Technologies and its private sector partnerships is presented. Commercial success stories and real-world benefits of the technology partnerships are discussed.

  17. Energy Sector Cybersecurity Framework Implementation Guidance | Department

    Energy Savers [EERE]

    of Energy Cybersecurity Framework Implementation Guidance Energy Sector Cybersecurity Framework Implementation Guidance On January 8, 2015, the Energy Department released guidance to help the energy sector establish or align existing cybersecurity risk management programs to meet the objectives of the Cybersecurity Framework released by the National Institutes of Standards and Technology (NIST) in February 2014. The voluntary Cybersecurity Framework consists of standards, guidelines, and

  18. Restructuring our Transportation Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Restructuring our Transportation Sector Restructuring our Transportation Sector 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon pln001_rogers_2010_o.pdf More Documents & Publications Navistar-Driving efficiency with integrated technology Vehicle Technologies Office FY 2016 Budget At-A-Glance Overview of the DOE High Efficiency Engine Technologies R&D

  19. NREL: Energy Analysis: Electric Sector Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Sector Integration Integrating higher levels of renewable resources into the U.S. electricity system could pose challenges to the operability of the nation's grid. NREL's electric sector integration analysis work investigates the potential impacts of expanding renewable technology deployment on grid operations and infrastructure expansion including: Feasibility of higher levels of renewable electricity generation. Options for increasing electric system flexibility to accommodate higher

  20. Modeling distributed generation in the buildings sectors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling distributed generation in the buildings sectors August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Modeling distributed generation in the buildings sectors i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any

  1. Dams and Energy Sectors Interdependency Study

    Office of Environmental Management (EM)

    Type text] Dams and Energy Sectors Interdependency Study September 2011 September 2011 Page 2 Abstract The U.S. Department of Energy (DOE) and the U.S. Department of Homeland Security (DHS) collaborated to examine the interdependencies between two critical infrastructure sectors - Dams and Energy. 1 The study highlights the importance of hydroelectric power generation, with a particular emphasis on the variability of weather patterns and competing demands for water which determine the water

  2. Partnerships For Industry - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    115.jpg Partnerships For Industry Connect With JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP Connect with JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP partnerships for industry JCAP has established an Industrial Partnership Program. For more information on Industrial Partnership Program or to learn more about other modes of industrial interactions with JCAP, please contact: California Institute of Technology Office of

  3. EERE Success Story-Colorado Dairy Industry Boosts Energy Efficiency |

    Energy Savers [EERE]

    Department of Energy Colorado Dairy Industry Boosts Energy Efficiency EERE Success Story-Colorado Dairy Industry Boosts Energy Efficiency December 21, 2015 - 2:12pm Addthis EERE Success Story—Colorado Dairy Industry Boosts Energy Efficiency Historically, the U.S. dairy industry has been one of the most energy-intensive forms of agriculture. Colorado is at the forefront of the fight to increase energy efficiency in this sector. In 2014, the Colorado Energy Office invested $240,000 of

  4. New Report Highlights Growth of America's Clean Energy Job Sector |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector August 23, 2012 - 12:20pm Addthis New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean

  5. Industrial Scale Energy Systems Integration; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Ruth, Mark

    2015-07-28

    The industrial sector consumes 25% of the total energy in the U.S. and produces 18% of the greenhouse gas (GHG) emissions. Energy Systems Integration (ESI) opportunities can reduce those values and increase the profitability of that sector. This presentation outlines several options. Combined heat and power (CHP) is an option that is available today for many applications. In some cases, it can be extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed. extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed.

  6. EIA Energy Efficiency-Residential Sector Energy Intensities,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Sector Energy Intensities RESIDENTIAL SECTOR ENERGY INTENSITIES: 1978-2005 Released Date: August 2004 Page Last Modified:June 2009 These tables provide estimates of...

  7. Template:Energy Generation Facilities by Sector | Open Energy...

    Open Energy Info (EERE)

    Energy Generation Facilities by Sector Jump to: navigation, search This is the Energy Generation Facilities by Sector template. It will display energy generation facilities for the...

  8. Morocco-Low Carbon Development Planning in the Power Sector ...

    Open Energy Info (EERE)

    Low Carbon Development Planning in the Power Sector Jump to: navigation, search Logo: Morocco-Low Carbon Development Planning in the Power Sector Name Morocco-Low Carbon...

  9. Nigeria-Low Carbon Development Planning in the Power Sector ...

    Open Energy Info (EERE)

    Low Carbon Development Planning in the Power Sector Jump to: navigation, search Logo: Nigeria-Low Carbon Development Planning in the Power Sector Name Nigeria-Low Carbon...

  10. Energy Critical Infrastructure and Key Resources Sector-Specific...

    Broader source: Energy.gov (indexed) [DOE]

    The Energy Sector has developed a vision statement and six sector security goals that will be used as the framework for developing and implementing effective protective measures....

  11. List of Companies in Geothermal Sector | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Sector Jump to: navigation, search Companies in the Geothermal energy sector: Add a Company Download CSV (rows 1-212) Map of Geothermal energy companies Loading map......

  12. Manufacturing Energy and Carbon Footprint - Sector: Iron and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006) Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS ...

  13. South Africa-Danish Government Sector Programmes | Open Energy...

    Open Energy Info (EERE)

    Sector Programmes Jump to: navigation, search Name South Africa-Danish Government Sector Programmes AgencyCompany Organization Danish Government Partner Danish Ministry for...

  14. Session 6 - Environmentally Concerned Public Sector Panel Discussion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Session 6 - Environmentally Concerned Public Sector Panel Discussion "The Light-Duty Diesel In America?" Session 6 - Environmentally Concerned Public Sector Panel Discussion "The ...

  15. Climate Change and the Transporation Sector - Challenges and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Change and the Transporation Sector - Challenges and Mitigation Options Climate Change and the Transporation Sector - Challenges and Mitigation Options 2003 DEER Conference ...

  16. LED Site Lighting in the Commercial Building Sector: Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification LED Site Lighting in the Commercial Building Sector: ...

  17. National and Sectoral GHG Mitigation Potential: A Comparison...

    Open Energy Info (EERE)

    and Sectoral GHG Mitigation Potential: A Comparison Across Models Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National and Sectoral GHG Mitigation Potential: A...

  18. List of Companies in Hydrogen Sector | Open Energy Information

    Open Energy Info (EERE)

    Companies in Hydrogen Sector Jump to: navigation, search Companies in the Hydrogen sector: Add a Company Download CSV (rows 1-196) Map of Hydrogen companies Loading map......

  19. Climate Change: Risks and Opportunities for the Finance Sector...

    Open Energy Info (EERE)

    Finance Sector Online Course Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change: Risks and Opportunities for the Finance Sector Online Course Agency...

  20. OECD-Private Sector Engagement in Adaptation to Climate Change...

    Open Energy Info (EERE)

    Private Sector Engagement in Adaptation to Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: OECD-Private Sector Engagement in Adaptation to Climate Change...

  1. Roadmap to Secure Control Systems in the Energy Sector - January...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap to Secure Control Systems in the Energy Sector - January 2006 Roadmap to Secure Control Systems in the Energy Sector - January 2006 This document, the Roadmap to Secure...

  2. Overcoming Multifamily Sector Barriers in Austin, Texas | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overcoming Multifamily Sector Barriers in Austin, Texas Overcoming Multifamily Sector Barriers in Austin, Texas Presents techniques on overcoming the barriers of multifamily energy...

  3. Renewable Energy Cross Sectoral Assessments Terms of Reference...

    Open Energy Info (EERE)

    Renewable Energy Cross Sectoral Assessments Terms of Reference Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Cross Sectoral Assessments Terms of...

  4. Energy Department Announces New Private Sector Partnership to...

    Energy Savers [EERE]

    New Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects October 9,...

  5. Nepal-Sectoral Climate Impacts Economic Assessment | Open Energy...

    Open Energy Info (EERE)

    Nepal-Sectoral Climate Impacts Economic Assessment Jump to: navigation, search Name Nepal Sectoral Climate impacts Economic Assessment AgencyCompany Organization Climate and...

  6. Energy-Sector Stakeholders Attend the Department of Energy's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Sector Stakeholders Attend the Department of Energy's 2010 Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's...

  7. Energy-Sector Stakeholders Attend the Department of Energy's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Sector Stakeholders Attend the Department of Energy's Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's...

  8. Industry-identified combustion research needs: Special study

    SciTech Connect (OSTI)

    Keller, J.G.; Soelberg, N.R.; Kessinger, G.F.

    1995-11-01

    This report discusses the development and demonstration of innovative combustion technologies that improve energy conservation and environmental practices in the US industrial sector. The report includes recommendations by industry on R&D needed to resolve current combustion-related problems. Both fundamental and applied R&D needs are presented. The report assesses combustion needs and suggests research ideas for seven major industries, which consume about 78% of all energy used by industry. Included are the glass, pulp and paper, refinery, steel, metal casting, chemicals, and aluminum industries. Information has been collected from manufacturers, industrial operators, trade organizations, and various funding organizations and has been supplemented with expertise at the Idaho National Engineering Laboratory to develop a list of suggested research and development needed for each of the seven industries.

  9. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    SciTech Connect (OSTI)

    Goldman, Charles; Fuller, Merrian C.; Stuart, Elizabeth; Peters, Jane S.; McRae, Marjorie; Albers, Nathaniel; Lutzenhiser, Susan; Spahic, Mersiha

    2010-03-22

    The energy efficiency services sector (EESS) is poised to become an increasingly important part of the U.S. economy. Climate change and energy supply concerns, volatile and increasing energy prices, and a desire for greater energy independence have led many state and national leaders to support an increasingly prominent role for energy efficiency in U.S. energy policy. The national economic recession has also helped to boost the visibility of energy efficiency, as part of a strategy to support economic recovery. We expect investment in energy efficiency to increase dramatically both in the near-term and through 2020 and beyond. This increase will come both from public support, such as the American Recovery and Reinvestment Act (ARRA) and significant increases in utility ratepayer funds directed toward efficiency, and also from increased private spending due to codes and standards, increasing energy prices, and voluntary standards for industry. Given the growing attention on energy efficiency, there is a concern among policy makers, program administrators, and others that there is an insufficiently trained workforce in place to meet the energy efficiency goals being put in place by local, state, and federal policy. To understand the likelihood of a potential workforce gap and appropriate response strategies, one needs to understand the size, composition, and potential for growth of the EESS. We use a bottom-up approach based upon almost 300 interviews with program administrators, education and training providers, and a variety of EESS employers and trade associations; communications with over 50 sector experts; as well as an extensive literature review. We attempt to provide insight into key aspects of the EESS by describing the current job composition, the current workforce size, our projections for sector growth through 2020, and key issues that may limit this growth.

  10. System for monitoring an industrial or biological process

    DOE Patents [OSTI]

    Gross, K.C.; Wegerich, S.W.; Vilim, R.B.; White, A.M.

    1998-06-30

    A method and apparatus are disclosed for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT. 49 figs.

  11. System for monitoring an industrial or biological process

    DOE Patents [OSTI]

    Gross, Kenneth C. (Argonne, IL); Wegerich, Stephan W. (Argonne, IL); Vilim, Rick B. (Argonne, IL); White, Andrew M. (Skokie, IL)

    1998-01-01

    A method and apparatus for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT.

  12. Input-output model for MACCS nuclear accident impacts estimation

    SciTech Connect (OSTI)

    Outkin, Alexander V.; Bixler, Nathan E.; Vargas, Vanessa N

    2015-01-27

    Since the original economic model for MACCS was developed, better quality economic data (as well as the tools to gather and process it) and better computational capabilities have become available. The update of the economic impacts component of the MACCS legacy model will provide improved estimates of business disruptions through the use of Input-Output based economic impact estimation. This paper presents an updated MACCS model, bases on Input-Output methodology, in which economic impacts are calculated using the Regional Economic Accounting analysis tool (REAcct) created at Sandia National Laboratories. This new GDP-based model allows quick and consistent estimation of gross domestic product (GDP) losses due to nuclear power plant accidents. This paper outlines the steps taken to combine the REAcct Input-Output-based model with the MACCS code, describes the GDP loss calculation, and discusses the parameters and modeling assumptions necessary for the estimation of long-term effects of nuclear power plant accidents.

  13. Broadening Industry Governance to Include Nonproliferation

    SciTech Connect (OSTI)

    Hund, Gretchen; Seward, Amy M.

    2008-11-11

    As industry is the first line of defense in detecting and thwarting illicit trade networks, the engagement of the private sector is critical to any government effort to strengthen existing mechanisms to protect goods and services throughout the supply chain. This study builds on previous PNNL work to continue to evaluate means for greater industry engagement to complement and strengthen existing governmental efforts to detect and stem the trade of illicit goods and to protect and secure goods that could be used in making a weapon of mass destruction. Specifically, the study evaluates the concept of Industry Self Regulation, defined as a systematic voluntary program undertaken by an industry or by individual companies to anticipate, implement, supplement, or substitute for regulatory requirements in a given field, generally through the adoption of best practices. Through a series of interviews with companies with a past history of non-compliance, trade associations and NGOs, the authors identify gaps in the existing regulatory infrastructure, drivers for a self regulation approach and the form such an approach might take, as well as obstacles to be overcome. The authors conclude that it is at the intersection of industry, government, and security thatthrough collaborative meansthe effectiveness of the international nonproliferation systemcan be most effectively strengthened to the mutual benefit of both government and the private sector. Industry has a critical stake in the success of this regime, and has the potential to act as an integrating force that brings together the existing mechanisms of the global nonproliferation regime: export controls, physical protection, and safeguards. The authors conclude that industry compliance is not enough; rather, nonproliferation must become a central tenant of a companys corporate culture and be viewed as an integral component of corporate social responsibility (CSR).

  14. Sectoral trends in global energy use and greenhouse gasemissions

    SciTech Connect (OSTI)

    Price, Lynn; de la Rue du Can, Stephane; Sinton, Jonathan; Worrell, Ernst; Zhou, Nan; Sathaye, Jayant; Levine, Mark

    2006-07-24

    In 2000, the Intergovernmental Panel on Climate Change (IPCC) published a new set of baseline greenhouse gas (GHG) emissions scenarios in the Special Report on Emissions Scenarios (SRES) (Nakicenovic et al., 2000). The SRES team defined four narrative storylines (A1, A2, B1 and B2) describing the relationships between the forces driving GHG and aerosol emissions and their evolution during the 21st century. The SRES reports emissions for each of these storylines by type of GHG and by fuel type to 2100 globally and for four world regions (OECD countries as of 1990, countries undergoing economic reform, developing countries in Asia, rest of world). Specific assumptions about the quantification of scenario drivers, such as population and economic growth, technological change, resource availability, land-use changes, and local and regional environmental policies, are also provided. End-use sector-level results for buildings, industry, or transportation or information regarding adoption of particular technologies and policies are not provided in the SRES. The goal of this report is to provide more detailed information on the SRES scenarios at the end use level including historical time series data and a decomposition of energy consumption to understand the forecast implications in terms of end use efficiency to 2030. This report focuses on the A1 (A1B) and B2 marker scenarios since they represent distinctly contrasting futures. The A1 storyline describes a future of very rapid economic growth, low population growth, and the rapid introduction of new and more efficient technologies. Major underlying themes are convergence among regions, capacity building, and increased cultural and social interactions, with a substantial reduction in regional differences in per capita income. The B2 storyline describes a world with an emphasis on economic, social, and environmental sustainability, especially at the local and regional levels. It is a world with moderate population growth, intermediate levels of economic development, and less rapid and more diverse technological change (Nakicenovic et al., 2000). Data were obtained from the SRES modeling teams that provide more detail than that reported in the SRES. For the A1 marker scenario, the modeling team provided final energy demand and carbon dioxide (CO{sub 2}) emissions by fuel for industry, buildings, and transportation for nine world regions. Final energy use and CO{sub 2} emissions for three sectors (industry, transport, buildings) for the four SRES world regions were provided for the B2 marker scenario. This report describes the results of a disaggregation of the SRES projected energy use and energy-related CO{sub 2} emissions for the industrial, transport, and buildings sectors for 10 world regions (see Appendix 1) to 2030. An example of further disaggregation of the two SRES scenarios for the residential buildings sector in China is provided, illustrating how such aggregate scenarios can be interpreted at the end use level.

  15. Cooling, Heating, and Power for Industry: A Market Assessment, August 2003

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Industry: A Market Assessment, August 2003 Cooling, Heating, and Power for Industry: A Market Assessment, August 2003 Industrial applications of CHP have been around for decades, producing electricity and byproduct thermal energy onsite, and converting 80 percent or more of the input fuel into useable energy. The focus of this study was to assess the market for cooling, heating, and power applications in the industrial sector. PDF icon

  16. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  17. Pilot Program Builds Sustainable Lab-Industry Partnerships for Breakthrough

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing R&D | Department of Energy Pilot Program Builds Sustainable Lab-Industry Partnerships for Breakthrough Manufacturing R&D Pilot Program Builds Sustainable Lab-Industry Partnerships for Breakthrough Manufacturing R&D December 30, 2015 - 1:45pm Addthis Argonne National Laboratory and Capstone Turbine Corporation are exploring using microturbines in combined heat and power (CHP) systems. In the power sector, distributed energy technologies can more than double electric

  18. Carbon Emissions: Food Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct....

  19. Chemicals Industry Vision

    SciTech Connect (OSTI)

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  20. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

  1. Introduction to the Buildings Sector Module of SEDS

    SciTech Connect (OSTI)

    DeForest, Nicholas; Bonnet, Florence; Stadler, Michael; Marnay, Chris

    2010-12-31

    SEDS is a stochastic engineering-economics model that forecasts economy-wide energy consumption in the U.S. to 2050. It is the product of multi-laboratory collaboration among the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), Argonne National Laboratory (ANL), Lawrence Berkeley National Laboratory (LBNL), and Lumina Decision Systems. Among national energy models, SEDS is unique, as it is the only model written to explicitly incorporate uncertainty in its inputs and outputs. The primary purpose of SEDS is to estimate the impact of various US Department of Energy (DOE)R&D and policy programs on the performance and subsequent adoption rates of technologies relating to every energy consuming sector of the economy (shown below). It has previously been used to assist DOE in complying with the Government Performance and Results Act of 1993 (GPRA). The focus of LBNL research has been exclusively on develop the buildings model (SBEAM), which is capable of running as a stand-alone forecasting model, or as a part of SEDS as a whole. The full version of SEDS, containing all sectors and interaction is also called the 'integrated' version and is managed by NREL. Forecasts from SEDS are often compared to those coming from National Energy Modeling System (NEMS). The intention of this document is to present new users and developers with a general description of the purpose, functionality and structure of the buildings module within the Stochastic Energy Deployment System (SEDS). The Buildings module, which is capable of running as a standalone model, is also called the Stochastic Buildings Energy and Adoption Model (SBEAM). This document will focus exclusively on SBEAM and its interaction with other major sector modules present within SEDS. The methodologies and major assumptions employed in SBEAM will also be discussed. The organization of this report will parallel the organization of the model itself, being divided into major submodules. As the description progresses, the nature of modules will change from broad, easily understood concepts to lower-level data manipulation. Because SBEAM contains dozens of submodules and hundreds of variables, it would not be relevant or useful to describe each and every one. Rather, the investigation will focus more generally on the operations performed throughout the model. This manual is by no means a complete description of SBEAM; however it should provide the foundation for an introductory understanding of the model. The manual assumes a basic level of understating of Analytica{reg_sign}, the platform on which SEDS and SBEAM have been developed.

  2. Chemical Industry Corrosion Management

    SciTech Connect (OSTI)

    2003-02-01

    Improved Corrosion Management Could Provide Significant Cost and Energy Savings for the Chemical Industry. In the chemical industry, corrosion is often responsible for significant shutdown and maintenance costs.

  3. Industrial | Open Energy Information

    Open Energy Info (EERE)

    Trends Despite a 54-percent increase in industrial shipments, industrial energy consumption increases by only 19 percent from 2009 to 2035 in the AEO2011 Reference case....

  4. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentationgiven at the April 2012 Federal Utility Partnership Working Group (FUPWG) meetingcovers significant electric industry trends and industry priorities with federal customers.

  5. Electricity Use in the Pacific Northwest: Utility Historical Sales by Sector, 1989 and Preceding Years.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1990-06-01

    This report officially releases the compilation of regional 1989 retail customer sector sales data by the Bonneville Power Administration. This report is intended to enable detailed examination of annual regional electricity consumption. It gives statistics covering the time period 1970--1989, and also provides observations based on statistics covering the 1983--1989 time period. The electricity use report is the only information source that provides data obtained from each utility in the region based on the amount of electricity they sell to consumers annually. Data is provided on each retail customer sector: residential, commercial, industrial, direct-service industrial, and irrigation. The data specifically supports forecasting activities, rate development, conservation and market assessments, and conservation and market program development and delivery. All of these activities require a detailed look at electricity use. 25 figs., 34 tabs.

  6. Energy Use in China: Sectoral Trends and Future Outlook

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.; Fridley, David; Lin, Jiang; Price,Lynn; de la Rue du Can, Stephane; Sathaye, Jayant; Levine, Mark

    2007-10-04

    This report provides a detailed, bottom-up analysis ofenergy consumption in China. It recalibrates official Chinese governmentstatistics by reallocating primary energy into categories more commonlyused in international comparisons. It also provides an analysis of trendsin sectoral energy consumption over the past decades. Finally, itassesses the future outlook for the critical period extending to 2020,based on assumptions of likely patterns of economic activity,availability of energy services, and energy intensities. The followingare some highlights of the study's findings: * A reallocation of sectorenergy consumption from the 2000 official Chinese government statisticsfinds that: * Buildings account for 25 percent of primary energy, insteadof 19 percent * Industry accounts for 61 percent of energy instead of 69percent * Industrial energy made a large and unexpected leap between2000-2005, growing by an astonishing 50 percent in the 3 years between2002 and 2005. * Energy consumption in the iron and steel industry was 40percent higher than predicted * Energy consumption in the cement industrywas 54 percent higher than predicted * Overall energy intensity in theindustrial sector grew between 2000 and 2003. This is largely due tointernal shifts towards the most energy-intensive sub-sectors, an effectwhich more than counterbalances the impact of efficiency increases. *Industry accounted for 63 percent of total primary energy consumption in2005 - it is expected to continue to dominate energy consumption through2020, dropping only to 60 percent by that year. * Even assuming thatgrowth rates in 2005-2020 will return to the levels of 2000-2003,industrial energy will grow from 42 EJ in 2005 to 72 EJ in 2020. * Thepercentage of transport energy used to carry passengers (instead offreight) will double from 37 percent to 52 percent between 2000 to 2020,.Much of this increase is due to private car ownership, which willincrease by a factor of 15 from 5.1 million in 2000 to 77 million in2020. * Residential appliance ownership will show signs of saturation inurban households. The increase in residential energy consumption will belargely driven by urbanization, since rural homes will continue to havelow consumption levels. In urban households, the size of appliances willincrease, but its effect will be moderated by efficiency improvements,partially driven by government standards. * Commercial energy increaseswill be driven both by increases in floor space and by increases inpenetration of major end uses such as heating and cooling. Theseincreases will be moderated somewhat, however, by technology changes,such as increased use of heat pumps. * China's Medium- and Long-TermDevelopment plan drafted by the central government and published in 2004calls for a quadrupling of GDP in the period from 2000-2020 with only adoubling in energy consumption during the same period. A bottom-upanalysis with likely efficiency improvements finds that energyconsumption will likely exceed the goal by 26.12 EJ, or 28 percent.Achievements of these goals will there fore require a more aggressivepolicy of encouraging energy efficiency.

  7. Policy Options for Encouraging Energy Efficiency Best Practices in Shandong Province's Cement Industry

    SciTech Connect (OSTI)

    Price, Lynn; Zhou, Nan; Lu, Hongyou; Sambeek, Emiel van; Yowargana, Ping; Shuang, Liu; Kejun, Jiang

    2012-07-12

    This research intends to explore possible design options for a sectoral approach in the cement sector in Shandong Province and to consider its respective advantages and disadvantages for future application. An effort has been made in this research to gather and analyze data that will provide a transparent and robust basis for development of a Business-As-Usual (BAU) scenario, maximum technology potential scenario, and ultimately a sector crediting baseline. Surveys among cement companies and discussions with stakeholders were also conducted in order to better understand the industry and local needs related to the sectoral approach.

  8. Live Webinar on Better Buildings Challenge: Public-Sector Update

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Better Buildings Challenge: Public-Sector Update."

  9. Retrocommissioning and the Public Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrocommissioning and the Public Sector Retrocommissioning and the Public Sector This presentation contains information on Retrocommissioning and the Public Sector. PDF icon Presentation Microsoft Office document icon Transcript More Documents & Publications retrocommissioning_public_sector.doc Transforming Commercial Building Operations - 2013 BTO Peer Review Energy Audit and Retro-Commissioning Policies for Public and Commercial Buildings

  10. LS Industrial Systems Co Ltd formerly LG Industrial Systems ...

    Open Energy Info (EERE)

    LS Industrial Systems Co Ltd formerly LG Industrial Systems Jump to: navigation, search Name: LS Industrial Systems Co Ltd (formerly LG Industrial Systems) Place: Anyang,...

  11. Industrial recovered-materials-utilization targets for the metals and metal-products industry

    SciTech Connect (OSTI)

    1980-03-01

    The National Energy Conservation Policy Act of 1978 directs DOE to set targets for increased utilization of energy-saving recovered materials for certain industries. These targets are to be established at levels representing the maximum feasible increase in utilization of recovered materials that can be achieved progressively by January 1, 1987 and is consistent with technical and economic factors. A benefit to be derived from the increased use of recoverable materials is in energy savings, as state in the Act. Therefore, emhasis on different industries in the metals sector has been related to their energy consumption. The ferrous industry (iron and steel, ferrour foundries and ferralloys), as defined here, accounts for approximately 3%, and all others for the remaining 3%. Energy consumed in the lead and zinc segments is less than 1% each. Emphasis is placed on the ferrous scrap users, followed by the aluminum and copper industries. A bibliography with 209 citations is included.

  12. Aluminum industry applications for OTEC

    SciTech Connect (OSTI)

    Jones, M.S.; Leshaw, D.; Sathyanarayana, K.; Sprouse, A.M.; Thiagarajan, V.

    1980-12-01

    The objective of the program is to study the integration issues which must be resolved to realize the market potential of ocean thermal energy conversion (OTEC) power for the aluminum industry. The study established, as a baseline, an OTEC plant with an electrical output of 100 MWe which would power an aluminum reduction plant. The reduction plant would have a nominal annual output of about 60,000 metric tons of aluminum metal. Three modes of operation were studied, viz: 1. A reduction plant on shore and a floating OTEC power plant moored offshore supplying energy by cable. 2. A reduction plant on shore and a floating OTEC power plant at sea supplying energy by means of an ''energy bridge.'' 3. A floating reduction plant on the same platform as the OTEC power plant. For the floating OTEC/aluminum plantship, three reduction processes were examined. 1. The conventional Hall process with prebaked anodes. 2. The drained cathode Hall cell process. 3. The aluminum chloride reduction process.

  13. Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    SciTech Connect (OSTI)

    Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

    2013-01-01

    In November 2012, the Joint Institute for Strategic Energy Analysis (JISEA) released a new report, 'Natural Gas and the Transformation of the U.S. Energy Sector: Electricity.' The study provides a new methodological approach to estimate natural gas related greenhouse gas (GHG) emissions, tracks trends in regulatory and voluntary industry practices, and explores various electricity futures. The Executive Summary provides key findings, insights, data, and figures from this major study.

  14. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Arizona Public Service Co","Investor-owned",28087605,13290096,12594486,2203023,0 2,"Salt River Project","Public",27127199,12581984,10940149,3605066,0 3,"Tucson Electric Power

  15. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Pacific Gas & Electric Co","Investor-owned",76390000,30552342,36055810,9781848,0 2,"Southern California Edison Co","Investor-owned",74480098,29742778,36850508,7826556,60256 3,"Los Angeles Department of Water &

  16. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Public Service Co of Colorado","Investor-owned",28861229,9266046,12881189,6652330,61664 2,"City of Colorado Springs - (CO)","Public",4553294,1461825,1106926,1984543,0 3,"Intermountain Rural Elec

  17. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Georgia Power Co","Investor-owned",81178648,25478655,32457010,23086501,156482 2,"Jackson Electric Member Corp - (GA)","Cooperative",4924212,2809034,1445094,670084,0 3,"Cobb Electric Membership

  18. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Hawaiian Electric Co Inc","Investor-owned",6858536,1667309,2341257,2849970,0 2,"Maui Electric Co Ltd","Investor-owned",1134873,387909,379461,367503,0 3,"Hawaii Electric Light Co

  19. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Constellation NewEnergy, Inc","Investor-owned",19729300,869767,12641305,5509689,708539 2,"Commonwealth Edison Co","Investor-owned",18295340,9548453,7883890,862997,0 3,"Homefield

  20. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Duke Energy Indiana Inc","Investor-owned",28003070,9183527,8450462,10369081,0 2,"Northern Indiana Pub Serv Co","Investor-owned",16798335,3444738,3992698,9339677,21222 3,"Indiana Michigan Power

  1. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"MidAmerican Energy Co","Investor-owned",20217549,5829442,5195709,9192398,0 2,"Interstate Power and Light Co","Investor-owned",14586595,3939183,3951419,6695993,0 3,"Board of Water Electric &

  2. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "megawatthours" ,"Entity","Type of Provider","All Sectors","Residential","Commercial","Industrial","Transportation" 1,"Westar Energy Inc","Investor-owned",9826375,3409863,4433462,1983050,0 2,"Kansas Gas & Electric Co","Investor-owned",9669223,3113287,3132064,3423872,0 3,"Kansas City Power & Light

  3. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Entergy Louisiana LLC","Investor-owned",32220423,8819573,6688333,16712517,0 2,"Entergy Gulf States - LA LLC","Investor-owned",19663315,5206322,5435688,9021305,0 3,"Cleco Power

  4. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Baltimore Gas & Electric Co","Investor-owned",11968295,8967015,2846423,154857,0 2,"WGL Energy Services, Inc.","Investor-owned",7553788,1092845,6460943,0,0 3,"Potomac Electric Power

  5. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"DTE Electric Company","Investor-owned",42272312,15273084,16715877,10283351,0 2,"Consumers Energy Co","Investor-owned",32556015,12792609,11117015,8646391,0 3,"First Energy Solutions

  6. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Northern States Power Co - Minnesota","Investor-owned",30950305,8933573,13704440,8293190,19102 2,"ALLETE, Inc.","Investor-owned",9284816,1086481,1324342,6873993,0 3,"Otter Tail Power

  7. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Union Electric Co - (MO)","Investor-owned",37030285,13561749,14737190,8709141,22205 2,"Kansas City Power & Light Co","Investor-owned",8562163,2598738,4458883,1504542,0 3,"KCP&L Greater Missouri Operations

  8. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Public Service Elec & Gas Co","Investor-owned",19192403,11493325,6936055,763023,0 2,"Jersey Central Power & Lt Co","Investor-owned",9947655,7417321,2298350,231984,0 3,"Direct Energy Business Marketing,

  9. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Duke Energy Carolinas, LLC","Investor-owned",55301813,20601105,22341733,12351570,7405 2,"Duke Energy Progress - (NC)","Investor-owned",36886571,15249396,13425824,8211351,0 3,"Virginia Electric & Power

  10. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Northern States Power Co - Minnesota","Investor-owned",2301544,827062,1138952,335530,0 2,"Montana-Dakota Utilities Co","Investor-owned",1949522,786334,994607,168581,0 3,"Otter Tail Power

  11. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"First Energy Solutions Corp.","Investor-owned",49437270,14024133,21080138,14272628,60371 2,"Ohio Power Co","Investor-owned",19142615,10834999,3492174,4815442,0 3,"DPL Energy

  12. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Oklahoma Gas & Electric Co","Investor-owned",24203012,8668433,9357636,6176943,0 2,"Public Service Co of Oklahoma","Investor-owned",17681663,6289643,6309019,5083001,0 3,"Oklahoma Electric Coop

  13. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"South Carolina Electric&Gas Company","Investor-owned",21371090,7571438,7799857,5999795,0 2,"Duke Energy Carolinas, LLC","Investor-owned",20566058,6313640,5619965,8632453,0 3,"South Carolina Public Service

  14. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Northern States Power Co - Minnesota","Investor-owned",2040726,725505,980503,334718,0 2,"NorthWestern Energy - (SD)","Investor-owned",1564096,579570,690191,294335,0 3,"Black Hills Power

  15. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Reliant Energy Retail Services","Investor-owned",39511303,17784060,3813963,17913280,0 2,"TXU Energy Retail Co LP","Investor-owned",37916867,22545174,5383121,9988572,0 3,"City of San Antonio -

  16. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Green Mountain Power Corp","Investor-owned",4295605,1556518,1560705,1178382,0 2,"Vermont Electric Cooperative, Inc","Cooperative",442890,222441,119722,100727,0 3,"City of Burlington Electric -

  17. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Virginia Electric & Power Co","Investor-owned",74469354,28802062,39078780,6393908,194604 2,"Appalachian Power Co","Investor-owned",15783445,6297314,4011928,5474203,0 3,"Rappahannock Electric

  18. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Appalachian Power Co","Investor-owned",14186224,5616869,3650678,4918677,0 2,"Monongahela Power Co","Investor-owned",10812645,3604310,2752010,4452343,3982 3,"The Potomac Edison

  19. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Wisconsin Electric Power Co","Investor-owned",24144805,7974652,8872580,7297573,0 2,"Wisconsin Public Service Corp","Investor-owned",10541535,2795812,3922944,3822779,0 3,"Wisconsin Power & Light

  20. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Florida Power & Light Co","Investor-owned",103058588,54074164,45932938,2963404,88082 2,"Georgia Power Co","Investor-owned",81178648,25478655,32457010,23086501,156482 3,"Pacific Gas & Electric