Powered by Deep Web Technologies
Note: This page contains sample records for the topic "industrial sector key" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

1 New Technologies, Industry Developments and Emission Trends in Key Sectors: The Energy Sector  

E-Print Network (OSTI)

Australia’s total primary energy consumption grew by 3.6 per cent per annum between 1993/94 and 1997/98, while primary energy use in the electricity sector rose by more than 5 per cent per year over the same period. Since 1993/94, brown coal has strongly expanded its share in the fuel mix of the interconnected electricity markets of Victoria, New South Wales, the Australian Capital Territory, and South Australia. It has become the primary fuel source for electricity generation, substituting for hydro, natural gas and hard coal. At the national level, this has meant that the long-term trend towards greater use of natural gas has stalled in favour of coal, especially brown coal. Since Victoria’s brown coal plants have relatively low thermal efficiencies, this substitution has also had the effect of reducing the average thermal efficiency in the power market to the levels of the late 1980s (IEA, 2001b). It should be noted that the economic objective of reducing the price of power which has driven the first stage of reform in the electricity industry in Australia has perversely encouraged the aggregate use of energy in the economy. This, in turn, has added to the growth of greenhouse gas emissions, reinforcing the trend associated with the change in the fuel mix for electricity generation. This paper addresses non-transport energy-related activities including conventional and renewable forms of energy supply, cross-cutting technologies employed in the energy sector and, more briefly, energy use by the business and household sectors.

Ainsley Jolley

2004-01-01T23:59:59.000Z

2

residential sector key indicators | OpenEI  

Open Energy Info (EERE)

residential sector key indicators residential sector key indicators Dataset Summary Description This dataset is the 2009 United States Residential Sector Key Indicators and Consumption, part of the Source EIA Date Released March 01st, 2009 (5 years ago) Date Updated Unknown Keywords AEO consumption EIA energy residential sector key indicators Data application/vnd.ms-excel icon 2009 Residential Sector Key Indicators and Consumption (xls, 55.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment http://www.eia.gov/abouteia/copyrights_reuse.cfm Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote

3

industrial sector | OpenEI  

Open Energy Info (EERE)

industrial sector industrial sector Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata

4

Energy: Critical Infrastructure and Key Resources Sector-Specific...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy: Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) Energy: Critical Infrastructure and Key...

5

Energy Critical Infrastructure and Key Resources Sector-Specific...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) Energy Critical Infrastructure and Key...

6

Energy Perspectives: Industrial and transportation sectors ...  

U.S. Energy Information Administration (EIA)

Since 2008, energy use in the transportation, residential, and commercial sectors stayed relatively constant or fell slightly. Industrial consumption grew in 2010 and ...

7

International industrial sector energy efficiency policies  

SciTech Connect

Over 40 percent of the energy consumed globally is used in the industrial sector. In China, this sector consumes an even larger proportion, reaching nearly 70 percent in 1997. A variety of energy efficiency policies and programs have been instituted in both industrialized and developing countries in an effort to improve the energy efficiency of the industrial sector. There are very few comprehensive evaluations of these industrial sector energy efficiency policies; however a number of recent workshops and conferences have included a focus on these policies. Three important meetings were the International Energy Agency's Industrial Energy Efficiency: Policies and Programs Conference in 1994, Industrial Energy Efficiency Policies: Understanding Success and Failure - A Workshop Organized by the International Network for Energy Demand Analysis in the Industrial Sector in 1998, and the American Council for an Energy-Efficient Economy's 1999 Summer Study on Energy Efficiency in Industry. Man y articles from these meetings are included as attachments to this memo. This paper provides a brief description of each of seven categories of individual industrial energy efficiency policies and programs, discuss which industrial sectors or types of equipment they apply to, and provide references for articles and reports that discuss each policy or program in more detail. We begin with mandatory-type policies and move to more voluntary-type policies. We then provide a brief description of four integrated industrial energy efficiency policies and provide references for articles and reports that describe these policies in greater detail.

Price, Lynn; Worrell, Ernst

2000-01-01T23:59:59.000Z

8

International industrial sector energy efficiency policies  

SciTech Connect

Over 40 percent of the energy consumed globally is used in the industrial sector. In China, this sector consumes an even larger proportion, reaching nearly 70 percent in 1997. A variety of energy efficiency policies and programs have been instituted in both industrialized and developing countries in an effort to improve the energy efficiency of the industrial sector. There are very few comprehensive evaluations of these industrial sector energy efficiency policies; however a number of recent workshops and conferences have included a focus on these policies. Three important meetings were the International Energy Agency's Industrial Energy Efficiency: Policies and Programs Conference in 1994, Industrial Energy Efficiency Policies: Understanding Success and Failure - A Workshop Organized by the International Network for Energy Demand Analysis in the Industrial Sector in 1998, and the American Council for an Energy-Efficient Economy's 1999 Summer Study on Energy Efficiency in Industry. Man y articles from these meetings are included as attachments to this memo. This paper provides a brief description of each of seven categories of individual industrial energy efficiency policies and programs, discuss which industrial sectors or types of equipment they apply to, and provide references for articles and reports that discuss each policy or program in more detail. We begin with mandatory-type policies and move to more voluntary-type policies. We then provide a brief description of four integrated industrial energy efficiency policies and provide references for articles and reports that describe these policies in greater detail.

Price, Lynn; Worrell, Ernst

2000-01-01T23:59:59.000Z

9

Evaluation of the supply chain of key industrial sectors and its impact on the electricity demand for a regional distribution company.  

E-Print Network (OSTI)

??Considering the international scenario, in a recent past, the electrical industry was based on the concepts of monopolistic concessions and vertical utilities structures. In Brazil,… (more)

Mariotoni, Thiago Arruda

2008-01-01T23:59:59.000Z

10

EIA Data: 2011 United States Residential Sector Key Indicators and  

Open Energy Info (EERE)

Residential Sector Key Indicators and Residential Sector Key Indicators and Consumption Dataset Summary Description This dataset is the 2011 United States Residential Sector Key Indicators and Consumption, part of the Annual Energy Outlook that highlights changes in the AEO Reference case projections for key energy topics. Source EIA Date Released December 16th, 2010 (4 years ago) Date Updated Unknown Keywords consumption EIA energy residential sector key indicators Data application/vnd.ms-excel icon Residential Sector Key Indicators and Consumption (xls, 62.5 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment http://www.eia.gov/abouteia/copyrights_reuse.cfm

11

Energy Critical Infrastructure and Key Resources Sector-Specific  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Energy Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) May 2007 Department of Energy Energy Sector Government Coordinating Council Letter of Support i ii Energy Sector-Specific Plan (Redacted) Energy Sector Coordinating Councils Letter of Concurrence The National Infrastructure Protection Plan (NIPP) provides the unifying structure for the integration of federal critical infrastructures and key resources (CI/KR) protection efforts into a single national program. The NIPP includes an overall framework integrating federal programs and activities that are currently underway in the various sectors, as well as new and developing CI/KR protection efforts. The Energy

12

EIA Data: 2011 United States Residential Sector Key Indicators...  

Open Energy Info (EERE)

Residential Sector Key Indicators and Consumption This dataset is the 2011 United...

13

Market impacts: Improvements in the industrial sector | ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy performance Communicate energy efficiency Industrial energy management information center Market impacts: Improvements in the industrial sector An effective energy...

14

Energy: Critical Infrastructure and Key Resources Sector-Specific Plan as  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy: Critical Infrastructure and Key Resources Sector-Specific Energy: Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) Energy: Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) In June 2006, the U.S. Department of Homeland Security (DHS) announced completion of the National Infrastructure Protection Plan (NIPP) Base Plan, a comprehensive risk management framework that defines critical infrastructure protection (CIP) roles and responsibilities for all levels of government, private industry, and other security partners. The U.S. Department of Energy (DOE) has been designated the Sector-Specific Agency (SSA) for the Energy Sector,and is tasked with coordinating preparation of

15

Assessment of Industrial-Sector Load Shapes  

Science Conference Proceedings (OSTI)

The load shapes of industrial-sector customers are becoming increasingly important for utility forecasting, marketing, and demand-side management planning and evaluation activities. This report analyzes load shapes for various industry segments and investigates the transfer of these load shapes across service territories. This report is available only to funders of Program 101A or 101.001. Funders may download this report at http://my.primen.com/Applications/DE/Community/index.asp .

1993-02-18T23:59:59.000Z

16

Table A4. Residential sector key indicators and consumption  

Gasoline and Diesel Fuel Update (EIA)

3 3 U.S. Energy Information Administration | Annual Energy Outlook 2013 Reference case Table A4. Residential sector key indicators and consumption (quadrillion Btu per year, unless otherwise noted) Energy Information Administration / Annual Energy Outlook 2013 Table A4. Residential sector key indicators and consumption (quadrillion Btu per year, unless otherwise noted) Key indicators and consumption Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Key indicators Households (millions) Single-family ....................................................... 82.85 83.56 91.25 95.37 99.34 103.03 106.77 0.8% Multifamily ........................................................... 25.78 26.07 29.82 32.05 34.54 37.05 39.53 1.4%

17

Table 2.1d Industrial Sector Energy Consumption Estimates ...  

U.S. Energy Information Administration (EIA)

Table 2.1d Industrial Sector Energy Consumption Estimates, 1949-2011 (Trillion Btu) Year: Primary Consumption 1: Electricity

18

EIA - International Energy Outlook 2009-Industrial Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Industrial Sector Energy Consumption Industrial Sector Energy Consumption International Energy Outlook 2009 Chapter 6 - Industrial Sector Energy Consumption Worldwide industrial energy consumption increases by an average of 1.4 percent per year from 2006 to 2030 in the IEO2009 reference case. Much of the growth is expected to occur in the developing non-OECD nations. Figure 63. OECD and Non-OECD Industrial Sector Energy Consumption, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 64. World Industrial Sector Energy Consumption by Fuel, 2006 and 2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 65. World Industrial Sector Energy Consumption by Major Energy-Intensive Industry Shares, 2005 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800.

19

Table 2.4 Industrial Sector Energy Consumption (Trillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review October 2013 29 Table 2.4 Industrial Sector Energy Consumption (Trillion Btu) Primary Consumptiona

20

EIA - International Energy Outlook 2009-Industrial Sector Energy...  

Annual Energy Outlook 2012 (EIA)

and 2030 Figure 65. World Industrial Sector Energy Consumption by Major Energy-Intensive Industry Shares, 2005 Figure 66. OECD and Non-OECD Major Steel Producers, 2007 Figure 67....

Note: This page contains sample records for the topic "industrial sector key" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Energy use and intensity in the industrial sector, 1972 - 1991  

SciTech Connect

Energy use in the United States is substantially lower now than it would have been had energy intensities not fallen after the oil price shocks of the 1970s. The United States would have consumed over 30 quadrillion Btu (QBtu) more energy in 1991 if the energy-GDP ratio (energy divided by gross domestic product) had remained at its 1972 value. Much of this improvement has stemmed from developments within the industrial sector. This paper examines industrial energy use from two perspectives. First, the contribution of the industrial sector to the decline in the overall energy-GDP ratio is estimated. Second, the components of change in conservation trends within the industrial sector are examined. This part of the analysis identifies the change in overall industrial intensity (total energy consumption/total industrial output) that is due to improvements in energy intensity at the individual industry level in comparison to various aspects of the composition of industrial output. This paper is based upon recent work conducted by Pacific Northwest Laboratory for the Office of Energy Efficiency and Alternative Fuels Policy, U.S. Department of Energy. Discussion of other end-use sectors and some additional analysis of industrial sector energy trends is found in Energy Conservation Trends - Understanding the Factors Affecting Conservation Gains and their Implications for Policy Development.

Belzer, D.B.

1995-08-01T23:59:59.000Z

22

International industrial sector energy efficiency policies  

E-Print Network (OSTI)

Summer Study on Energy Efficiency in Industry. Washington,1997. “Electric Motor Energy Efficiency Regulations: Theet al. , (eds. ). Energy Efficiency Improvements in Electric

Price, Lynn; Worrell, Ernst

2000-01-01T23:59:59.000Z

23

International industrial sector energy efficiency policies  

E-Print Network (OSTI)

Scheme for Industry: The Energy Audit,” Proceedings of thefacilities conduct energy audits, employ an energy manager,1994), and the mandatory energy audits and energy management

Price, Lynn; Worrell, Ernst

2000-01-01T23:59:59.000Z

24

Energy Analysis in the Industrial Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

dioxide emissions in heavy manufacturing. This talk will focus on the U.S. iron and steel industry, illustrating how it compares internationally and describing the...

25

Evaluation of Efficiency Activities in the Industrial Sector...  

NLE Websites -- All DOE Office Websites (Extended Search)

industrial sector consumes 25% of theenergy used and emits 28% of the carbon dioxide (CO2) produced in the state. Manycountries around the world have national-level GHG...

26

Agricultural and Industrial Process-Heat-Market Sector workbook  

SciTech Connect

This workbook summarizes the preliminary data and assumptions of the Agricultural and Industrial Process Heat Market Sector prepared in conjunction with the development of inputs for a National Plan for the Accelerated Commercialization of Solar Energy.

Shulman, M. J.; Kannan, N. P.; deJong, D. L.

1980-01-01T23:59:59.000Z

27

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network (OSTI)

Efficiency Scenario (non-residential sector only) – AssumesIndia: Industry and Non Residential Sectors Jayant Sathaye,and support. The Non Residential sector analysis benefited

Sathaye, Jayant

2011-01-01T23:59:59.000Z

28

Energy productivity in the industrial sector: an econometric analysis  

SciTech Connect

Energy productivity and energy intensity within the industrial sector of the economy are examined. Results suggest that relative prices and other economic factors can explain much of the variation in both energy productivity and energy intensity for manufacturing and mining and for the industrial sector as a whole. Cyclical factors, seasonal factors and trend variables are also useful in explaining variation in these data, both for annual and monthly time series. Of the variables examined, it appears that the relative price of energy is a highly significant factor in accounting for the difference between actual industrial energy intensity and that which might have been expected had pre-1973 trends continued.

Roop, J.M.

1983-01-01T23:59:59.000Z

29

Quality of Power in the Industrial Sector  

E-Print Network (OSTI)

Industries have added sensitive electrical loads such as computers and electronic equipment to improve efficiency, lower costs and to raise the overall quality of the product being manufactured. With this new technology there is a requirement for a quality of power that has not been available by the electric utility. Sensitive loads cannot tolerate electrical disturbances such as harmonic distortions, overvoltage, undervoltage, momentary interruptions and transients that are inherent in the utility distribution system. The industrial customer turns to the power supplier to provide technical support, monitoring and assistance to upgrade the quality of power into the plant. Even though studies have shown only 20% of the problems identified are actually utility generated it is the responsibility of the utility to help the customer isolate and solve the problem. The motto of the Oklahoma Gas and Electric Quality of Power program is "If a customer perceives he has a problem, we have a problem." The commitment has been made to assist the customer until he is satisfied the problem is in fact solved.

Marchbanks, G. J.

1987-09-01T23:59:59.000Z

30

Greenhouse Gas Programs, Energy Efficiency, and the Industrial Sector  

E-Print Network (OSTI)

The United States has made significant progress in reducing total energy use through energy efficiency improvements over the past decade, yet the United States still ranks as the highest absolute greenhouse gas (GHG) emitter in the world with 23.6 metric tons of carbon dioxide equivalent per capita in 2006. The industrial sector (agriculture is excluded) is responsible for 28.7 percent of the GHG emissions in the U.S. However, the U.S. industrial sector has numerous economically viable opportunities to reduce energy use and GHG emissions. Energy efficiency, including new clean technologies, plays a significant role in increasing productivity and reducing energy intensity, and thus emissions. Increasing energy efficiency in industrial processes is central to addressing climate change issues in the industrial sector. This paper describes the energy-efficiency programs, methodologies, and technologies that can economically lead to significant GHG reductions in the industrial sector. The paper also discusses the impacts of climate change policies and programs to the application of advanced low-carbon industrial technologies.

Zhou, A.; Tutterow, V.; Harris, J.

2009-05-01T23:59:59.000Z

31

Cross-Sector Impact Analysis of Industrial Efficiency Measures  

SciTech Connect

The industrial or manufacturing sector is a foundational component to all economic activity. In addition to being a large direct consumer of energy, the manufacturing sector also produces materials, products, and technologies that influence the energy use of other economic sectors. For example, the manufacturing of a lighter-weight vehicle component affects the energy required to ship that component as well as the fuel efficiency of the assembled vehicle. Many energy efficiency opportunities exist to improve manufacturing energy consumption, however comparisons of manufacturing sector energy efficiency investment opportunities tend to exclude any impacts that occur once the product leaves the factory. Expanding the scope of analysis to include energy impacts across different stages of product life-cycle can highlight less obvious opportunities and inform actions that create the greatest economy-wide benefits. We present a methodology and associated analysis tool (LIGHTEnUP Lifecycle Industry GHgas, Technology and Energy through the Use Phase) that aims to capture both the manufacturing sector energy consumption and product life-cycle energy consumption implications of manufacturing innovation measures. The tool architecture incorporates U.S. national energy use data associated with manufacturing, building operations, and transportation. Inputs for technology assessment, both direct energy saving to the manufacturing sector, and indirect energy impacts to additional sectors are estimated through extensive literature review and engineering methods. The result is a transparent and uniform system of comparing manufacturing and use-phase impacts of technologies.

Morrow, William [Lawrence Berkeley National Laboratory (LBNL); CreskoEngineering, Joe [Oak Ridge Institute for Science and Education (ORISE); Carpenter, Alberta [National Renewable Energy Laboratory (NREL); Masanet, Eric [Northwestern University, Evanston; Nimbalkar, Sachin U [ORNL; Shehabi, Arman [Lawrence Berkeley National Laboratory (LBNL)

2013-01-01T23:59:59.000Z

32

Small Distributed Generation Applications in the Industrial Sector: A Screening Assessment  

Science Conference Proceedings (OSTI)

This report documents a screening assessment of small distributed generation applications in the industrial sector.

2001-12-04T23:59:59.000Z

33

Analysis of fuel shares in the industrial sector  

SciTech Connect

These studies describe how fuel shares have changed over time; determine what factors are important in promoting fuel share changes; and project fuel shares to the year 1995 in the industrial sector. A general characterization of changes in fuel shares of four fuel types - coal, natural gas, oil and electricity - for the industrial sector is as follows. Coal as a major fuel source declined rapidly from 1958 to the early 1970s, with oil and natural gas substituting for coal. Coal's share of total fuels stabilized after the oil price shock of 1972-1973, and increased after the 1979 price shock. In the period since 1973, most industries and the industrial sector as a whole appear to freely substitute natural gas for oil, and vice versa. Throughout the period 1958-1981, the share of electricity as a fuel increased. These observations are derived from analyzing the fuel share patterns of more than 20 industries over the 24-year period 1958 to 1981.

Roop, J.M.; Belzer, D.B.

1986-06-01T23:59:59.000Z

34

Key Climate Variables Relevant to the Energy Sector and Electric Utilities  

Science Conference Proceedings (OSTI)

Changes in climate affect the energy sector and electric utilities through changes in demand, altered production and transmission capabilities, and effects on the operation of utility infrastructure. Unfortunately, few studies have been conducted on the impacts of climate change on the energy sector. This report outlines some key climate variables that may affect the energy sector, including long-term trends such as increases in air temperature, water temperatures, and sea-level rise; changes in precipit...

2009-03-31T23:59:59.000Z

35

BC Hydro Industrial Sector: Marketing Sector Marketing Plan (Fiscal 2005/Fiscal 2006)  

E-Print Network (OSTI)

BC Hydro, the major electricity utility in the Province of British Columbia has been promoting industrial energy efficiency for more than 15 years. Recently it has launched a new Demand Side Management initiative with the objective of obtaining 2000 GWh of energy savings from its industrial Sector by 2010. The authors have just recently completed a marketing plan for obtaining this level of energy savings. The Plan indicates how Programs and Initiatives have been and are being developed to overcome the barriers of Awareness and Understanding, Strategic Importance, Return & Affordability, Internal Constraints, and Program Eligibility. The Paper and presentation will explain how different Program Components address specific barriers, customer sectors and end-uses.

Willis, P.; Wallace, K.

2005-01-01T23:59:59.000Z

36

Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings  

Science Conference Proceedings (OSTI)

Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.

Price, Lynn; Worrell, Ernst; Khrushch, Marta

1999-09-01T23:59:59.000Z

37

Analysis of the industrial sector representation in the Fossil2 energy-economic model  

SciTech Connect

The Fossil2 energy-economic model is used by the US Department of Energy (DOE) for a variety of energy and environmental policy analyses. A number of improvements to the model are under way or are being considered. This report was prepared by the Pacific Northwest Laboratory (PNL) to provide a clearer understanding of the current industrial sector module of Fossil2 and to explore strategies for improving it. The report includes a detailed description of the structure and decision logic of the industrial sector module, along with results from several simulation exercises to demonstrate the behavior of the module in different policy scenarios and under different values of key model parameters. The cases were run with the Fossil2 model at PNL using the National Energy Strategy Actions Case of 1991 as the point of departure. The report also includes a discussion of suggested industrial sector module improvements. These improvements include changes in the way the current model is used; on- and off-line adjustments to some of the model's parameters; and significant changes to include more detail on the industrial processes, technologies, and regions of the country being modeled. The potential benefits and costs of these changes are also discussed.

Wise, M.A.; Woodruff, M.G.; Ashton, W.B.

1992-08-01T23:59:59.000Z

38

Analysis of the industrial sector representation in the Fossil2 energy-economic model  

SciTech Connect

The Fossil2 energy-economic model is used by the US Department of Energy (DOE) for a variety of energy and environmental policy analyses. A number of improvements to the model are under way or are being considered. This report was prepared by the Pacific Northwest Laboratory (PNL) to provide a clearer understanding of the current industrial sector module of Fossil2 and to explore strategies for improving it. The report includes a detailed description of the structure and decision logic of the industrial sector module, along with results from several simulation exercises to demonstrate the behavior of the module in different policy scenarios and under different values of key model parameters. The cases were run with the Fossil2 model at PNL using the National Energy Strategy Actions Case of 1991 as the point of departure. The report also includes a discussion of suggested industrial sector module improvements. These improvements include changes in the way the current model is used; on- and off-line adjustments to some of the model`s parameters; and significant changes to include more detail on the industrial processes, technologies, and regions of the country being modeled. The potential benefits and costs of these changes are also discussed.

Wise, M.A.; Woodruff, M.G.; Ashton, W.B.

1992-08-01T23:59:59.000Z

39

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network (OSTI)

industrial sectors (Vermeeren, 2008). Steel industry ? TheDutch steel industry implemented 82 energy-saving projectsfoodstuffs, steel, and mining industries are the most

Price, Lynn

2010-01-01T23:59:59.000Z

40

Biomass power industry: Assessment of key players and approaches for DOE and industry interaction  

DOE Green Energy (OSTI)

A review team established by the Department of Energy conducted an assessment of the US biomass power industry. The review team visited with more than 50 organizations representing all sectors of the biomass power industry including utilities, independent power producers, component manufacturers, engineering and construction contractors, agricultural organizations, industrial users, and regulatory organizations. DOE solicited industry input for the development of the Biomass Power Division`s Five Year Plan. DOE believed there was a critical need to obtain industry`s insight and working knowledge to develop the near- and long-term plans of the program. At the heart of this objective was the desire to identify near-term initiatives that the program could pursue to help accelerate the further development of biomass power projects.

Not Available

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector key" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Energy Use and Savings in the Canadian Industrial Sector  

E-Print Network (OSTI)

The changing role of energy as a production input in the industrial sector in Canada is examined. Energy use patterns are reviewed in terms of the energy input types, both purchased and self-produced, the actual energy form and quality requirements, and the residual energy forms, in particular the rejected gaseous and liquid waste heat streams. The trends in the intensity of energy use are examined, in terms of the energy consumed per unit of production output, and relative to the cost of other production inputs. Energy consumption and intensity have been influenced by many factors: energy prices; energy types used; structural composition and product mix; the state of the national economy and international markets, etc. In addition, energy use management with the achievement of optimum economic efficiency of energy use as the objective became an increasing priority for corporate and national energy planning during the 1970's. The potential for saving energy and money, the costs and benefits, are discussed in the light of evidence from a variety of industry and government sources. It appears that the substitution of energy-saving techniques and technologies as a replacement for the use of energy inputs will remain a high priority during the 1980's.

James, B.

1982-01-01T23:59:59.000Z

42

Industrial sector natural gas use rising - Today in Energy - U.S ...  

U.S. Energy Information Administration (EIA)

Biofuels: Ethanol & Biodiesel ... Industrial customers form an important gas-use sector, using natural gas for a variety of purposes, including the following:

43

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

Energy Use in the Steel Industry. Brussels: IISI. Worrell,1998. Energy Use in the Steel Industry. Brussels: IISI. 2.2.1998. Energy Use in the Steel Industry. Brussels: IISI. Best

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

44

Climate VISION: PrivateSector Initiatives: Minerals - Industry...  

Office of Scientific and Technical Information (OSTI)

together to achieve common goals. Industrial minerals - ball clay, bentonite, borates, feldspar, industrial sand, mica, soda ash and talc - are a miraculous gift from times past....

45

Electric Power Interruption Cost Estimates for Individual Industries, Sectors, and the U.S. Economy  

E-Print Network (OSTI)

Distributed energy resources (DER) have been promoted as the least-cost approach to meeting steadily increasing energy demand. However, it is unclear whether DER deployment can maintain or improve the electric power supply reliability and quality currently available to consumers. This report address two key factors relating to this question: 1) characteristics of existing power supply reliability, and 2) costs resulting from supply interruptions characteristic of the existing power grid. Interruption cost data collected by the University of Saskatchewan was used in conjunction with data generated by the Census Bureau’s Annual Survey of Manufacturers (Census Bureau, 1995), along with industry shares of gross domestic product (Bureau of Economic Analysis, 1995a) and gross output (Bureau of Economic Analysis, 1995b) to derive interruption cost estimates for U.S. industries at the 2-digit Standard Industrial Classification (SIC) level, as well as for broader sectors and the U.S. economy. Interruption cost estimates are presented as a function of outage duration (e.g., 20 minutes, 1-hour, 3-hour), and are normalized in terms of dollars per peak kW.

Balducci, P. J.; Roop, J. M.; Schienbein, L. A.; DeSteese, J. G.; Weimar, M. R.

2003-05-01T23:59:59.000Z

46

Understanding the Industrial Market Sector: Responding to Changing Energy Markets  

Science Conference Proceedings (OSTI)

Industrial customers, particularly larger industrial customers, have always been an important customer population for energy providers. Because of their sometimes massive size, industrials have often had dedicated account representatives, and even customized rate plans and service delivery structures. As competition in energy markets develops, this population has often been the first customer population to encounter both the benefits and the problems associated with deregulation. It is important to recog...

1999-12-06T23:59:59.000Z

47

Understanding the Industrial Market Sector: Responding to Changing Energy Markets  

Science Conference Proceedings (OSTI)

Industrial customers, particularly larger industrial customers, have always been an important customer population for energy providers. Because of their sometimes massive size, industrials have often had dedicated account representatives, and even customized rate plans and service delivery structures. As competition in energy markets develops, this population has often been the first customer population to encounter both the benefits and the problems associated with deregulation. It is important to recog...

1999-11-30T23:59:59.000Z

48

Industrial sector drives increase in North Dakota electricity ...  

U.S. Energy Information Administration (EIA)

Increased oil and natural gas production in North Dakota has driven the state's growth in industrial demand for electricity. Rising economic activity and population ...

49

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

Industry. Brussels: IISI. The best practice coke plant isa modern coke plant using standard technology, includingspeed drives on motors and fans. Coke dry quenching saves an

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

50

Industry sector analysis, Mexico: Annual petroleum report. Export Trade Information  

Science Conference Proceedings (OSTI)

The comprehensive appraisal of the Mexican Petroleum industry was completed in July 1991. Some of the topics concerning the Mexican petroleum industry covered in the Annual Petroleum Report include: exploration efforts, oil reserves, pipelines, refining, finances, transportation, alternative energy sources, and others. The report also contains lists of petrochemicals produced in Mexico and extensive statistics on oil production and export prices.

Not Available

1992-01-01T23:59:59.000Z

51

Deployment of an AEC industry sector product model  

Science Conference Proceedings (OSTI)

CIMsteel Integration Standard, Version 2 (CIS/2) is an industry-developed product model based on ISO-STEP technology that has been widely adopted within the steel construction industry. CIS/2 is an early success story of broad use of a product model ... Keywords: Building model, Product model, STEP

C. Eastman; F. Wang; S. -J. You; D. Yang

2005-10-01T23:59:59.000Z

52

Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)  

Reports and Publications (EIA)

For the industrial sector, EIAs analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8 percent of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9 percent of annual operating cost, previously have received somewhat less attention, however. In AEO2006, energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50 percent of the projected increase in industrial natural gas consumption from 2004 to 2030.

Information Center

2007-03-11T23:59:59.000Z

53

Current design practice and needs in selected industrial sectors  

Science Conference Proceedings (OSTI)

Consumer Electronics (CE) products range from miniature cameras and MP3 players to advanced media servers and large displays. In the CE industry, Philips is active at two levels. Philips Semiconductors (PS) is active in the OEM market, selling hardware ...

Bruno Bouyssounouse; Joseph Sifakis

2005-01-01T23:59:59.000Z

54

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

Science Conference Proceedings (OSTI)

This report analyzed the potential for increasing energy efficiency and reducing greenhouse gas emissions (GHGs) in the non-residential building and the industrial sectors in India. The first two sections describe the research and analysis supporting the establishment of baseline energy consumption using a bottom up approach for the non residential sector and for the industry sector respectively. The third section covers the explanation of a modeling framework where GHG emissions are projected according to a baseline scenario and alternative scenarios that account for the implementation of cleaner technology.

Sathaye, Jayant; de la Rue du Can, Stephane; Iyer, Maithili; McNeil, Michael; Kramer, Klaas Jan; Roy, Joyashree; Roy, Moumita; Chowdhury, Shreya Roy

2011-04-15T23:59:59.000Z

55

Abstract Deployment of an AEC industry sector product model  

E-Print Network (OSTI)

widely adopted within the steel construction industry. CIS/2 is an early success story of broad use of a product model for both data exchange and improving the productivity of those companies taking advantage of its capabilities. Here, we review the history of CIS/2, the methods and issues arising from its deployment, the benefits it has thus far realized and the research issues these activities have identified.

C. Eastman; F. Wang; S. -j. You; D. Yang

2004-01-01T23:59:59.000Z

56

Industry-Wide Transformer Database: Key Findings and Case Studies  

Science Conference Proceedings (OSTI)

This report summarizes the development and application of the Electric Power Research Institute’s (EPRI’s) Industry-Wide Database (IDB) for power transformers. The IDB is a repository of detailed transformer performance data. Analysis of these data can provide information about the past performance of power transformers and the factors that influence that performance. With enough data, projections can be made about future performance, such as expected service life. Both past and ...

2013-12-19T23:59:59.000Z

57

Recent hydrocarbon developments in Latin America: Key issues in the downstream oil sector  

SciTech Connect

This report discusses the following: (1) An overview of major issues in the downstream oil sector, including oil demand and product export availability, the changing product consumption pattern, and refineries being due for major investment; (2) Recent upstream developments in the oil and gas sector in Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Mexico, Peru, Trinidad and Tobago, and Venezuela; (3) Recent downstream developments in the oil and gas sector in Argentina, Chile, Colombia, Ecuador, Mexico, Peru, Cuba, and Venezuela; (4) Pipelines in Argentina, Bolivia, Brazil, Chile, and Mexico; and (5) Regional energy balance. 4 figs., 5 tabs.

Wu, K.; Pezeshki, S.

1995-03-01T23:59:59.000Z

58

International Experience with Key Program Elements of IndustrialEnergy Efficiency or Greenhouse Gas Emissions Reduction Target-SettingPrograms  

SciTech Connect

Target-setting agreements, also known as voluntary ornegotiated agreements, have been used by a number of governments as amechanism for promoting energy efficiency within the industrial sector. Arecent survey of such target-setting agreement programs identified 23energy efficiency or GHG emissions reduction voluntary agreement programsin 18 countries. International best practice related to target-settingagreement programs calls for establishment of a coordinated set ofpolicies that provide strong economic incentives as well as technical andfinancial support to participating industries. The key program elementsof a target-setting program are the target-setting process,identification of energy-saving technologies and measures usingenergy-energy efficiency guidebooks and benchmarking as well as byconducting energy-efficiency audits, development of an energy-savingsaction plan, development and implementation of energy managementprotocols, development of incentives and supporting policies, monitoringprogress toward targets, and program evaluation. This report firstprovides a description of three key target-setting agreement programs andthen describes international experience with the key program elementsthat comprise such programs using information from the three keytarget-setting programs as well as from other international programsrelated to industrial energy efficiency or GHG emissionsreductions.

Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

2008-02-02T23:59:59.000Z

59

Comparative analysis of energy data bases for the industrial and commercial sectors  

SciTech Connect

Energy data bases for the industrial and commercial sectors were analyzed to determine how valuable this data might be for policy analysis. The approach is the same for both end-use sectors: first a descrption or overview of relevant data bases identifies the available data; the coverage and methods used to generate the data are then explained; the data are then characterized and examples are provided for the major data sets under consideration. A final step assesses the data bases under consideration and draws conclusions. There are a variety of data bases considered for each of the end-use sectors included in this report. Data bases for the industrial sector include the National Energy Accounts, process-derived data bases such as the Drexel data base and data obtained from industry trade associations. For the commercial sector, three types of data bases are analyzed: the Nonresidential Building Energy Consumption Surveys, Dodge Construction Data and the Building Owners and Manager's Association Experience Exchange Report.

Roop, J.M.; Belzer, D.B.; Bohn, A.A.

1986-12-01T23:59:59.000Z

60

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

and Renewable Energy (EERE) [2] Office of Industrialthat participate in EERE’s Industries of the Future Program.

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector key" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs  

E-Print Network (OSTI)

STAR for Industry Energy Guides 52 include both process-s sector- wide energy efficiency guides provide informationfor Cement Making: An ENERGY STAR Guide for Energy and Plant

Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

2008-01-01T23:59:59.000Z

62

Industry  

Science Conference Proceedings (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

63

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

energy efficiency, energy-efficient industrial process technology, energy storage, fuel cells, renewable energy, distributed power generation, and system analysis and policy

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

64

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

and guidance service. Energy audits and analysis of specificfree comprehensive energy audits or industrial assessments.as a part of the Enterprise Energy Audit Programme (EEAP) of

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

65

Industry sector analysis - energy industry news (Hungary) 1994. Export trade information  

Science Conference Proceedings (OSTI)

The article is derived from a telegraphic report dated 1 February 1994, prepared at the American Embassy-Budapest. It discusses recent developments from the Hungarian energy industry.

Not Available

1994-02-01T23:59:59.000Z

66

Industry sector analysis - energy industry news (Hungary) 1994. Export trade information  

Science Conference Proceedings (OSTI)

The article is derived from a telegraphic report dated 18 April 1994, prepared at the American Embassy-Budapest. It discusses recent developments from the Hungarian energy industry.

Not Available

1994-04-18T23:59:59.000Z

67

Energy use and carbon dioxide emissions in the steel sector in key developing countries  

E-Print Network (OSTI)

Savings Ideas in the Direct Reduced Iron Industry, Madison,3 Ironmaking – direct reduced iron (DRI) 4,5 Steelmaking –and Moore, 1997). Direct reduced iron (DRI), hot briquetted

Price, Lynn; Phylipsen, Dian; Worrell, Ernst

2001-01-01T23:59:59.000Z

68

Better management of energy knowledge: the key for success in the energy sector  

Science Conference Proceedings (OSTI)

Over the past several years there have been intensive discussions about the importance of knowledge management (KM) within our society. As we are moving into an era of "knowledge capitalism", the management of knowledge is promoted as ... Keywords: best practices, energy knowledge, energy sector, innovation, knowledge management

Kostas Metaxiotis

2005-04-01T23:59:59.000Z

69

Regional comparisons of on-site solar potential in the residential and industrial sectors  

SciTech Connect

Regional and sub-regional differences in the potential development of decentralized solar technologies are studied. Two sectors of the economy were selected for intensive analysis: the residential and industrial sectors. In both investigations, the sequence of analysis follows the same general steps: (1) selection of appropriate prototypes within each land-use sector disaggregated by census region; (2) characterization of the end-use energy demand of each prototype in order to match an appropriate decentralized solar technology to the energy demand; (3) assessment of the energy conservation potential within each prototype limited by land use patterns, technology efficiency, and variation in solar insolation; and (4) evaluation of the regional and sub-regional differences in the land use implications of decentralized energy supply technologies that result from the combination of energy demand, energy supply potential, and the subsequent addition of increasingly more restrictive policies to increase the percent contribution of on-site solar energy. Results are presented and discussed. It is concluded that determining regional variations in solar energy contribution for both the residential and industrial sectors appears to be more dependent upon a characterization of existing demand and conservation potential than regional variations in solar insolation. Local governmental decisions influencing developing land use patterns can significantly promote solar energy use and reduce reliance on non-renewable energy sources. These decisions include such measures as solar access protection through controls on vegetation and on building height and density in the residential sector, and district heating systems and industrial co-location in the manufacturing sector. (WHK)

Gatzke, A.E.; Skewes-Cox, A.O.

1980-10-01T23:59:59.000Z

70

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

4B9B-8A3C0EC058CE647C 17. Energy Efficiency Best Practicedatabase (linked to energy efficiency measures in motors) •in 1980, funds for energy efficiency investments in industry

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

71

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

and ENERGY STAR’ S Energy Guides for entire industries,as a part of their Energy Guides for “focus” partners.savings manual, an energy management guide, an interactive

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

72

Microsoft Word - US Industrial Sector Energy End Use Analysis_051812.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

United States Industrial Sector Energy End Use Analysis United States Industrial Sector Energy End Use Analysis Arman Shehabi, William R. Morrow, Eric Masanet This work was supported by the Advanced Manufacturing Office of the Energy Efficiency and Renewable Energy Program through the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. 2 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process

73

Assessment of On-Site Power Opportunities in the Industrial Sector  

Science Conference Proceedings (OSTI)

The purpose of this report is to identify the potential for on-site power generation in the U.S. industrial sector with emphasis on nine industrial groups called the ''Industries of the Future'' (IOFs) by the U.S. Department of Energy (DOE). Through its Office of Industrial Technologies (OIT), the DOE has teamed with the IOFs to develop collaborative strategies for improving productivity, global competitiveness, energy usage and environmental performance. Total purchases for electricity and steam for the IOFs are in excess of $27 billion annually. Energy-related costs are very significant for these industries. The nine industrial groups are (1) Agriculture (SIC 1); (2) Forest products; (3) Lumber and wood products (SIC 24); (4) Paper and allied products (SIC 26); (5) Mining (SIC 11, 12, 14); (6) Glass (SIC 32); (7) Petroleum (SIC 29); (8) Chemicals (SIC 28); and (9) Metals (SIC 33): Steel, Aluminum, and Metal casting. Although not currently part of the IOF program, the food industry is included in this report because of its close relationship to the agricultural industry and its success with on-site power generation. On-site generation provides an alternative means to reduce energy costs, comply with environmental regulations, and ensure a reliable power supply. On-site generation can ease congestion in the local utility's electric grid. Electric market restructuring is exacerbating the price premium for peak electricity use and for reliability, creating considerable market interest in on-site generation.

Bryson, T.

2001-10-08T23:59:59.000Z

74

Analysis of energy use in building services of the industrial sector in California: Two case studies  

SciTech Connect

Energy-use patterns in many of California's fastest-growing industries are not typical of the existing mix of industries in the US. Many California firms operate small- and medium-sized facilities housed in buildings used simultaneously or interchangeably over time for commercial (office, retail, warehouse) and industrial activities. In these industrial subsectors, the energy required for building services (providing occupant comfort and necessities like lighting, HVAC, office equipment, computers, etc.) may be at least as important as the more familiar process energy requirements -- especially for electricity and on-peak demand. Electricity for building services is sometimes priced as if it were base loaded like process uses; in reality this load varies significantly according to occupancy schedules and cooling and heating loads, much as in any commercial building. Using informal field surveys, simulation studies, and detailed analyses of existing data (including utility commercial/industrial audit files), we studied the energy use of this industrial subsector through a multi-step procedure: (1) characterizing non-process building energy and power use in California industries, (2) identifying conservation and load-shaping opportunities in industrial building services, and (3) investigating industrial buildings and system design methodologies. In an earlier report, we addressed these issues by performing an extensive survey of the existing publicly available data, characterizing and comparing the building energy use in this sector. In this report, we address the above objectives by examining and analyzing energy use in two industrial case-study facilities in California. Based on the information for the case studies, we discuss the design consideration for these industrial buildings, characterize their energy use, and review their conservation and load-shaping potentials. In addition, we identify and discuss some research ideas for further investigation.

Akbari, H.; Sezgen, O.

1991-09-01T23:59:59.000Z

75

Biomass power industry: Assessment of key players and approaches for DOE and industry interaction. Final report  

DOE Green Energy (OSTI)

This report reviews the status of the US biomass power industry. The topics of the report include current fuels and the problems associated with procuring, transporting, preparing and burning them, competition from natural gas projects because of the current depressed natural gas prices, need for incentives for biomass fueled projects, economics, market potential and expansion of US firms overseas.

None

1993-07-01T23:59:59.000Z

76

Tuesday Webcast for Industry: Key Energy-Saving Projects for Smaller Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Key Energy-Saving Key Energy-Saving Projects for Smaller Facilities January 10, 2012 Program Name or Ancillary Text eere.energy.gov Key Energy-Saving Activities for Small and Medium Sized Facilities Thomas Wenning Oak Ridge National Laboratory Tuesday Webcast for Industry January 10, 2012 3 | Advanced Manufacturing Office eere.energy.gov Percent of Total U.S. Manufacturing Energy Small 5% Mid-Size 37% Large 58% 0 50000 100000 150000 200000 250000 U.S. Manufacturing Plants: By Size Small Plants Mid-Size Plants Large Plants Number of U.S. Plants All Plants 84,298 112,398 4,014 200,710 System-Specific Assessments Crosscutting Assessments Industry Breakdown 4 | Advanced Manufacturing Office eere.energy.gov 4,014 large plants use 58% of the energy Energy Saving

77

The Economic Development Potential of the Green Sector  

E-Print Network (OSTI)

large potential investment in Green firms. Bank of America’sof the Green industry requires substantial investment inand private investment in financing the Green sector. Key

Ong, Paul M.; Patraporn, Rita Varisa

2006-01-01T23:59:59.000Z

78

ENERGY STAR Snapshot: Measuring Progress in the Commercial and Industrial Sectors, Spring 2008.  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Progress in the Commercial and Industrial Sectors Spring 2008 Introduction Through 2007, commercial and industrial (C&I) leaders have made unprecedented progress in their efforts to improve energy efficiency and reduce greenhouse gas emissions across their buildings and facilities. This includes: y Hundreds of organizations and individuals stepping forward to take the ENERGY STAR Challenge to improve the energy efficiency of America's buildings by 10 percent or more y Measuring the energy performance in tens of thousands of buildings y Achieving energy savings across millions of square feet y Designating more than 4,000 efficient buildings and facilities with the ENERGY STAR label ENERGY STAR partners are building tremendous momentum for energy efficiency and seeing important

79

Tuesday Webcast for Industry: Key Energy-Saving Activities for Smaller Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ADVANCED MANUFACTURING OFFICE Tuesday Webcast for Industry Key Energy-Saving Activities for Smaller Facilities Webcast Questions and Answers: January 10, 2012 Presenters: Tom Wenning, Technical Account Manager, Oak Ridge National Laboratory Richard D. Feustel, Corporate Energy Services Manager, Briggs & Stratton Corporation The U.S. Department of Energy's (DOE's) Office of Advanced Manufacturing Program (AMO) hosts a series of webcasts on the first Tuesday of every month from 2:00 p.m. to 3:00 p.m. Eastern Standard Time. The series' objective is to help industrial personnel learn about software

80

Aggregating physical intensity indicators: results of applying the composite indicator approach to the Canadian industrial sector  

E-Print Network (OSTI)

Issues surrounding the development, application and interpretation of energy intensity indicators are a continuing source of debate in the field of energy policy analysis. Although economic energy intensity indicators still dominate intensity/efficiency studies, the use of physical energy intensity indicators is on the rise. In the past, physical energy intensity indicators were not employed since it was often impossible to develop aggregate (sector-level or nation-wide) measures of physical energy intensity due to the difficulties associated with adding diverse physical products. This paper presents the results of research conducted specifically to address this ‘‘aggregation’ ’ problem. The research focused on the development of the Composite Indicator Approach, a simple, practical, alternative method for calculating aggregate physical energy intensity indicators. In this paper, the Composite Indicator Approach is used to develop physical energy intensity indicators for the Canadian industrial and manufacturing sectors, and is then compared to other existing methods of aggregation. The physical composite indicators developed using this approach are also evaluated in terms of their reliability and overall usefulness. Both comparisons suggest that the Composite Indicator Approach can be a useful, and ultimately suitable, way of addressing the aggregation problem typically associated with heterogeneous sectors of the economy. r

Mallika N; John Nyboer; Mark Jaccard

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector key" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

"The Ambassadors are key leaders in industry, government, academia, and nonpro  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ambassadors are key leaders in industry, government, academia, and nonprofits Ambassadors are key leaders in industry, government, academia, and nonprofits who are committed to lending their voices and vision to inform and inspire Americans about the critical need for greater diversity in STEM professions, energy entrepreneurship, and climate change adaptation and mitigation." The Honorable Dr. Ernest J. Moniz Secretary U.S. Department of Energy The Honorable Eddie Bernice Johnson is serving her 11th term representing the 30th Congressional District of Texas. In December 2010, Congresswoman Johnson was elected as the first African-American and the first female Ranking Member of the House Committee on Science, Space and Technology. From 2000 to 2002, she was the Ranking Member of the Subcommittee on Research and Science

82

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

Science Conference Proceedings (OSTI)

The 2006 California Global Warming Solutions Act calls for reducing greenhouse gas (GHG) emissions to 1990 levels by 2020. Meeting this target will require action from all sectors of the California economy, including industry. The industrial sector consumes 25% of the energy used and emits 28% of the carbon dioxide (CO{sub 2}) produced in the state. Many countries around the world have national-level GHG reduction or energy-efficiency targets, and comprehensive programs focused on implementation of energy efficiency and GHG emissions mitigation measures in the industrial sector are essential for achieving their goals. A combination of targets and industry-focused supporting programs has led to significant investments in energy efficiency as well as reductions in GHG emissions within the industrial sectors in these countries. This project has identified program and policies that have effectively targeted the industrial sector in other countries to achieve real energy and CO{sub 2} savings. Programs in Ireland, France, The Netherlands, Denmark, and the UK were chosen for detailed review. Based on the international experience documented in this report, it is recommended that companies in California's industrial sector be engaged in a program to provide them with support to meet the requirements of AB32, The Global Warming Solution Act. As shown in this review, structured programs that engage industry, require members to evaluate their potential efficiency measures, plan how to meet efficiency or emissions reduction goals, and provide support in achieving the goals, can be quite effective at assisting companies to achieve energy efficiency levels beyond those that can be expected to be achieved autonomously.

Price, Lynn; de la Rue du Can, Stephane; Lu, Hongyou; Horvath, Arpad

2010-05-21T23:59:59.000Z

83

World Best Practice Energy Intensity Values for SelectedIndustrial Sectors  

SciTech Connect

"World best practice" energy intensity values, representingthe most energy-efficient processes that are in commercial use in atleast one location worldwide, are provided for the production of iron andsteel, aluminium, cement, pulp and paper, ammonia, and ethylene. Energyintensity is expressed in energy use per physical unit of output for eachof these commodities; most commonly these are expressed in metric tonnes(t). The energy intensity values are provided by major energy-consumingprocesses for each industrial sector to allow comparisons at the processlevel. Energy values are provided for final energy, defined as the energyused at the production facility as well as for primary energy, defined asthe energy used at the production facility as well as the energy used toproduce the electricity consumed at the facility. The "best practice"figures for energy consumption provided in this report should beconsidered as indicative, as these may depend strongly on the materialinputs.

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky,Christina; Zhou, Nan

2007-06-05T23:59:59.000Z

84

The United States Industrial Electric Motor Systems Market Opportunities Assessment: Key Results  

E-Print Network (OSTI)

This paper summarizes the findings of the U. S. Industrial Electric Motor Systems Market Opportunities Assessment. The Market Assessment was sponsored by the U. S. Department of Energy. The project's principal objectives were to create a detailed portrait of the inventory of motor systems currently in use in US industrial facilities, estimate motor system energy use and potential for energy savings. The research and analysis to support these objectives consisted primarily of on-site motor system inventories of a probability sample of 254 manufacturing facilities nationwide. In addition to characterizing the motor systems in use, the research effort also gathered detailed information on motor system management and purchasing practices. This paper presents key findings from the Market Assessment in regard to patterns of motor energy use, saturation of energy efficiency measures such as efficient motors and adjustable speed drives, and motor system purchase and maintenance practices.

Rosenberg, M.

1999-05-01T23:59:59.000Z

85

A State Regulator's View of 'PURPA' And Its Impact on Energy Conservation in the Industrial Sector  

E-Print Network (OSTI)

The purpose of my comments this afternoon is to share with you my views concerning the status of the Public Utility Regulatory Policies Act (PURPA), and how some of the rate standards contained in the Act may affect energy conservation in the industrial sector. As most of you are aware, there currently is a great deal of uncertainty regarding the status of PURPA. In the case of the State of Mississippi vs. the Federal Energy Regulatory Commission, Judge Harold Cox issued a summary judgment on February 19, 1981. In his decision he ruled PURPA was an unconstitutional intrusion into an area traditionally left to the states and that there was no express authorization for the federal government to regulate public utilities. In the final judgment rendered February 27, 1981, he ruled that Title One, Section 210 of Title Two and Title Three were unconstitutional. The case currently is now on appeal to the U.S. Supreme Court. As of yet, no date has been set for arguments and no action is expected before the November 1981 hearing deadline.

Williams, M. L.

1981-01-01T23:59:59.000Z

86

Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors  

DOE Green Energy (OSTI)

As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy security through more effective utilization of our country’s resources while simultaneously providing economic stability and growth (through predictable energy prices and high value jobs), in an environmentally sustainable and secure manner (through lower land and water use, and decreased byproduct emissions). The reduction in imported oil will also increase the retention of wealth within the U.S. economy while still supporting economic growth. Nuclear energy is the only non-fossil fuel that has been demonstrated to reliably supply energy for a growing industrial economy.

David Petti; J. Stephen Herring

2010-03-01T23:59:59.000Z

87

Analysis of energy use in building services of the industrial sector in California: Two case studies. Final report  

SciTech Connect

Energy-use patterns in many of California`s fastest-growing industries are not typical of the existing mix of industries in the US. Many California firms operate small- and medium-sized facilities housed in buildings used simultaneously or interchangeably over time for commercial (office, retail, warehouse) and industrial activities. In these industrial subsectors, the energy required for building services (providing occupant comfort and necessities like lighting, HVAC, office equipment, computers, etc.) may be at least as important as the more familiar process energy requirements -- especially for electricity and on-peak demand. Electricity for building services is sometimes priced as if it were base loaded like process uses; in reality this load varies significantly according to occupancy schedules and cooling and heating loads, much as in any commercial building. Using informal field surveys, simulation studies, and detailed analyses of existing data (including utility commercial/industrial audit files), we studied the energy use of this industrial subsector through a multi-step procedure: (1) characterizing non-process building energy and power use in California industries, (2) identifying conservation and load-shaping opportunities in industrial building services, and (3) investigating industrial buildings and system design methodologies. In an earlier report, we addressed these issues by performing an extensive survey of the existing publicly available data, characterizing and comparing the building energy use in this sector. In this report, we address the above objectives by examining and analyzing energy use in two industrial case-study facilities in California. Based on the information for the case studies, we discuss the design consideration for these industrial buildings, characterize their energy use, and review their conservation and load-shaping potentials. In addition, we identify and discuss some research ideas for further investigation.

Akbari, H.; Sezgen, O.

1991-09-01T23:59:59.000Z

88

Reinventing VAT collection : industry vertical assessment, revenue increase, and public sector reliability  

E-Print Network (OSTI)

This dissertation shows how administrative reforms of the State Tax Administration Bureaus (STABs) in Brazil between 1997 and 2005 contributed to strengthening public sector bureaucracies and institutions at the sub-national ...

Pinhanez, Monica F. (Monica Fornitani)

2008-01-01T23:59:59.000Z

89

Future Public Policy and Ethical Issues Facing the Agricultural and Microbial Genomics Sectors of the Biotechnology Industry: A Roundtable Discussion  

SciTech Connect

On September 12, 2003, the University of Maryland School of Law's Intellectual Property and Law & Health Care Programs jointly sponsored and convened a roundtable discussion on the future public policy and ethical issues that will likely face the agricultural and microbial genomics sectors of the biotechnology industry. As this industry has developed over the last two decades, societal concerns have moved from what were often local issues, e.g., the safety of laboratories where scientists conducted recombinant DNA research on transgenic microbes, animals and crops, to more global issues. These newer issues include intellectual property, international trade, risks of genetically engineered foods and microbes, bioterrorism, and marketing and labeling of new products sold worldwide. The fast paced nature of the biotechnology industry and its new developments often mean that legislators, regulators and society, in general, must play ''catch up'' in their efforts to understand the issues, the risks, and even the benefits, that may result from the industry's new ways of conducting research, new products, and novel methods of product marketing and distribution. The goal of the roundtable was to develop a short list of the most significant public policy and ethical issues that will emerge as a result of advances in these sectors of the biotechnology industry over the next five to six years. More concretely, by ''most significant'' the conveners meant the types of issues that would come to the attention of members of Congress or state legislators during this time frame and for which they would be better prepared if they had well researched and timely background information. A concomitant goal was to provide a set of focused issues for academic debate and scholarship so that policy makers, industry leaders and regulators would have the intellectual resources they need to better understand the issues and concerns at stake. The goal was not to provide answers to any of the issues or problems, simply to identify those topics that deserve our attention as a society. Some of the issues may benefit from legislation at the federal or state levels, others may be more appropriately addressed by the private sector. Participants at the roundtable included over a dozen experts in the areas of microbiology, intellectual property, agricultural biotechnology, microbial genomics, bioterrorism, economic development, biotechnology research, and bioethics. These experts came from federal and state government, industry and academia. The participants were asked to come to the roundtable with a written statement of the top three to five public policy/ ethical issues they viewed as most likely to be significant to the industry and to policy makers over the next several years.

Diane E. Hoffmann

2003-09-12T23:59:59.000Z

90

Profile of the wood furniture and fixtures industry. EPA Office of Compliance sector notebook project  

Science Conference Proceedings (OSTI)

The furniture and fixtures industry encompasses companies that manufacture household, office, store, public building, and restaurant furniture and fixtures. The second section provides background information on the size, geographic distribution, employment, production, sales, and economic condition of the Wood Furniture and Fixtures industry. The type of facilities described within the document are also described in terms of their Standard Industrial Classification (SIC) codes. Additionally, this section contains a list of the largest companies in terms of sales.

NONE

1995-09-01T23:59:59.000Z

91

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network (OSTI)

9 Table 4. International Estimates of Energy Consumption in16 Table 10. Industrial energy consumption, India in 2003-25. India Specific energy consumption, including feedstock (

Sathaye, Jayant

2011-01-01T23:59:59.000Z

92

Accelerating technology transfer from federal laboratories to the private sector by industrial R and D collaborations - A new business model  

Science Conference Proceedings (OSTI)

Many important products and technologies were developed in federal laboratories and were driven initially by national needs and for federal applications. For example, the clean room technology that enhanced the growth of the semiconductor industry was developed at Sandia National Laboratories (SNL) decades ago. Similarly, advances in micro-electro-mechanical-systems (MEMS)--an important set of process technologies vital for product miniaturization--are occurring at SNL. Each of the more than 500 federal laboratories in the US, are sources of R and D that contributes to America's economic vitality, productivity growth and, technological innovation. However, only a fraction of the science and technology available at the federal laboratories is being utilized by industry. Also, federal laboratories have not been applying all the business development processes necessary to work effectively with industry in technology commercialization. This paper addresses important factors that federal laboratories, federal agencies, and industry must address to translate these under utilized technologies into profitable products in the industrial sector.

LOMBANA,CESAR A.; ROMIG JR.,ALTON D.; LINTON,JONATHAN D.; MARTINEZ,J. LEONARD

2000-04-13T23:59:59.000Z

93

Market potential for solar thermal energy supply systems in the United States industrial and commercial sectors: 1990--2030. Final report  

DOE Green Energy (OSTI)

This report revises and extends previous work sponsored by the US DOE on the potential industrial market in the United States for solar thermal energy systems and presents a new analysis of the commercial sector market potential. Current and future industrial process heat demand and commercial water heating, space heating and space cooling end-use demands are estimated. The PC Industrial Model (PCIM) and the commercial modules of the Building Energy End-Use Model (BEEM) used by the DOE`s Energy Information Administration (EIA) to support the recent National Energy Strategy (NES) analysis are used to forecast industrial and commercial end-use energy demand respectively. Energy demand is disaggregated by US Census region to account for geographic variation in solar insolation and regional variation in cost of alternative natural gas-fired energy sources. The industrial sector analysis also disaggregates demand by heat medium and temperature range to facilitate process end-use matching with appropriate solar thermal energy supply technologies. The commercial sector analysis disaggregates energy demand by three end uses: water heating, space heating, and space cooling. Generic conceptual designs are created for both industrial and commercial applications. Levelized energy costs (LEC) are calculated for industrial sector applications employing low temperature flat plate collectors for process water preheat; parabolic troughs for intermediate temperature process steam and direct heat industrial application; and parabolic dish technologies for high temperature, direct heat industrial applications. LEC are calculated for commercial sector applications employing parabolic trough technologies for low temperature water and space heating. Cost comparisons are made with natural gas-fired sources for both the industrial market and the commercial market assuming fuel price escalation consistent with NES reference case scenarios for industrial and commercial sector gas markets.

Not Available

1991-12-01T23:59:59.000Z

94

Model documentation report: Industrial sector demand module of the national energy modeling system  

SciTech Connect

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its model. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

NONE

1998-01-01T23:59:59.000Z

95

Countries Launch Initiative to Drive Energy Efficiency in the Commercial and Industrial Sectors  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 20, 2010 July 20, 2010 1 FACT SHEET: THE GLOBAL SUPERIOR ENERGY PERFORMANCE PARTNERSHIP At the Clean Energy Ministerial in Washington, D.C. on July 19 th and 20 th , ministers launched a new public- private partnership to accelerate energy efficiency improvements in commercial buildings and industrial facilities, which together account for almost 60 percent of global energy use. The Global Superior Energy Performance (GSEP) Partnership will cut energy use, reduce greenhouse gas emissions and pollution, save money, and create

96

Countries Launch Initiative to Drive Energy Efficiency in the Commercial and Industrial Sectors  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Updated on July 23, 2010 Updated on July 23, 2010 1 FACT SHEET: THE GLOBAL SUPERIOR ENERGY PERFORMANCE PARTNERSHIP At the Clean Energy Ministerial in Washington, D.C. on July 19 th and 20 th , ministers launched a new public- private partnership to accelerate energy efficiency improvements in commercial buildings and industrial facilities, which together account for almost 60 percent of global energy use. The Global Superior Energy Performance (GSEP) Partnership will cut energy use, reduce greenhouse gas emissions and pollution, save money, and create

97

Economic and environmental impacts of the corn grain ethanol industry on the United States agricultural sector  

Science Conference Proceedings (OSTI)

This study evaluated the impacts of increased ethanol production from corn starch on agricultural land use and the environment in the United States. The Policy Analysis System simulation model was used to simulate alternative ethanol production scenarios for 2007 through 2016. Results indicate that increased corn ethanol production had a positive effect on net farm income and economic wellbeing of the US agricultural sector. In addition, government payments to farmers were reduced because of higher commodity prices and enhanced net farm income. Results also indicate that if Conservation Reserve Program land was converted to crop production in response to higher demand for ethanol in the simulation, individual farmers planted more land in crops, including corn. With a larger total US land area in crops due to individual farmer cropping choices, total US crop output rose, which decreased crop prices and aggregate net farm income relative to the scenario where increased ethanol production happened without Conservation Reserve Program land. Substantial shifts in land use occurred with corn area expanding throughout the United States, especially in the traditional corn-growing area of the midcontinent region.

Larson, J.A.; English, B.C.; De La Torre Ugarte, D. G.; Menard, R.J.; Hellwinckel, C.M.; West, Tristram O.

2010-09-10T23:59:59.000Z

98

Comparison Study of Energy Intensity in the Textile Industry: A Case Study in Five Textile Sub-sectors  

E-Print Network (OSTI)

This paper contributes to the understanding of energy use in the textile industry by comparing the energy intensity of textile plants in five major sub-sectors, i.e. spinning, weaving, wet-processing, worsted fabric manufacturing, and carpet manufacturing in Iran. Results of the study showed that spinning plant electricity intensity varies between 3.6 MWh/tonne yarn and 6.6 MWh/tonne yarn, while fuel intensity ranges between 6.7 MBtu/tonne yarn and 11.7 MBtu/tonne yarn. In weaving plants, electricity intensity ranges from 1.2 MWh/tonne fabric to 2.2 MWh/tonne fabric, while fuel intensity was 10.1 MBtu/tonne fabric and 16.4 MBtu/tonne fabric for the two plants studied. In three wet-processing plants, the electricity intensity was found to be between 1.5 MWh/tonne finished fabric and 2.5 MWh/tonne finished fabric, while the fuel intensity was between 38.2 MBtu/tonne finished fabric and 106.3 MBtu/tonne finished fabric. In addition, some methodological issues to improve such energy intensity comparison analysis and benchmarking in the textile industry is discussed.

Hasanbeigi, A.

2011-01-01T23:59:59.000Z

99

Public/private sector cooperation to promote industrial energy efficiency: Allied partners and the US Department of Energy  

Science Conference Proceedings (OSTI)

Since 1996, the US Department of Energy's Office of Industrial Technologies (USDOE) has been involved in a unique voluntary collaboration with industry called the Allied Partner program. Initially developed under the Motor Challenge program, the partnership concept continues as a central element of USDOE's BestPractices, which in 2001 integrated all of USDOE's near-term industrial program offerings including those in motors, compressed air, pump, fan, process heating and steam systems. Partnerships are sought with end use industrial companies as well as equipment suppliers and manufacturers, utilities, consultants, and state agencies that have extensive existing relationships with industrial customers. Partners are neither paid nor charged a fee for participation. Since the inception of Allied Partners, the assumption has been that these relationships could serve as the foundation for conveying a system energy-efficiency message to many more industrial facilities than could be reached through a typical government-to-end-user program model. An independent evaluation of the Motor Challenge program, reported at the last EEMODS conference, attributed US $16.9 million or nearly 67 percent of the total annual program energy savings to the efforts of Allied Partners in the first three years of operation. A recent evaluation of the Compressed Air Challenger, which grew out of the former Motor Challenger program, attribute additional energy savings from compressed air training alone at US $12.1 million per year. Since the reorganization under BestPractices, the Allied Partner program has been reshaped to extend the impact of all BestPractices program activities. This new model is more ambitious than the former Motor Challenge program concerning the level of collaborative activities negotiated with Allied Partners. This paper describes in detail two new types of program initiatives involving Allied Partners: Qualified Specialist Training and Energy Events. The Qualified Specialist activity was conceived as a way of engaging the supply side of industry, consultants, and utilities to greatly increase use of decision making software developed by USDOE to assist industrial facilities in assessing the energy efficiency of their energy-using systems. To date, USDOE has launched Qualified Specialist training with member companies of the Hydraulic Institute (HI) and with distributors and consultants associated with the Compressed Air Challenge. These activities train and qualify industry professionals to use and to train customers to use USDOE's Pumping System Assessment Tool (PSAT) and AIRMaster + software programs, respectively. The industry experts provide a public benefit by greatly increasing customer access to the software and assessment techniques. Participating Specialists anticipate a business benefit by providing a valuable service to key customers that is associated with USDOE. The Energy Event concept was developed in 2001 in cooperation with the California Energy Commission in response to the state's energy crisis and has been extended to other geographic areas during 2002. The three California events, named ''Energy Solutions for California Industry,'' relied on Allied Partners to provide system-based solutions to industrial companies as both speakers and exhibitors. These one-day events developed a model for a serious solutions-oriented format that avoids the typical trade show atmosphere through strict exhibitor guidelines, careful screening of speaker topics, and reliance on case studies to illustrate cost- and energy-saving opportunities from applying a systems approach. Future plans to use this activity model are discussed as well as lessons learned from the California series.

McKane, Aimee; Cockrill, Chris; Tutterow, Vestal; Radspieler, Anthony

2003-05-18T23:59:59.000Z

100

Research Projects in Industrial Technology.  

Science Conference Proceedings (OSTI)

The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

United States. Bonneville Power Administration. Industrial Technology Section.

1990-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector key" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Estudio de la relación proveedor - productor en la gestión de materiales del sector farmacéutico industrial productivo (STIP) de la ciudad de Bogotá / Study supplier – producer relationship in the materials management in the pharmaceutical supply chain at Bogotá.  

E-Print Network (OSTI)

??Gallo Castro, Jhon Jairo (2009) Estudio de la relación proveedor - productor en la gestión de materiales del sector farmacéutico industrial productivo (STIP) de la… (more)

Gallo Castro, Jhon Jairo

2009-01-01T23:59:59.000Z

102

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network (OSTI)

1972. In the food industry, electricity for lights and HVACof the Electronics Industry electricity. Motors require fromand Meat Packing Industries, electricity use intensity for

Akbari, H.

2008-01-01T23:59:59.000Z

103

International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs  

E-Print Network (OSTI)

Chinese cement and iron/steel industry is underway. http://data required for the steel industry included total primaryrepresentatives of the steel industry, the government, and

Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

2008-01-01T23:59:59.000Z

104

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

Science Conference Proceedings (OSTI)

Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

Sathaye, J.; Xu, T.; Galitsky, C.

2010-08-15T23:59:59.000Z

105

Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 1: Part 1, Electricity supply sector; Part 2, Residential and commercial buildings sector; Part 3, Industrial sector  

Science Conference Proceedings (OSTI)

DOE encourages you to report your achievements in reducing greenhouse gas emissions and sequestering carbon under this program. Global climate change is increasingly being recognized as a threat that individuals and organizations can take action against. If you are among those taking action, reporting your projects may lead to recognition for you, motivation for others, and synergistic learning for the global community. This report discusses the reporting process for the voluntary detailed guidance in the sectoral supporting documents for electricity supply, residential and commercial buildings, industry, transportation, forestry, and agriculture. You may have reportable projects in several sectors; you may report them separately or capture and report the total effects on an entity-wide report.

Not Available

1994-10-01T23:59:59.000Z

106

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

E-Print Network (OSTI)

non-energy benefits, U.S. steel industry (Worrell et al.improvements in U.S. iron and steel industry (Worrell et al.for the U.S. iron and steel industry in 1994 (Figure 1).

Sathaye, J.

2011-01-01T23:59:59.000Z

107

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network (OSTI)

in that sector went for space conditioning and lighting. Ourmay dramatically affect space conditioning requirements. BAHpurchased energy use for space conditioning and lighting in

Akbari, H.

2008-01-01T23:59:59.000Z

108

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

E-Print Network (OSTI)

St. Louis, Missouri. Energy Technology Support Unit (ETSU),de Beer, 1997. "Energy Efficient Technologies in Industry -and MAIN, 1993. “Energy Technology in the Cement Industrial

Sathaye, J.

2011-01-01T23:59:59.000Z

109

Industry  

E-Print Network (OSTI)

from refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processes

Bernstein, Lenny

2008-01-01T23:59:59.000Z

110

2008 Industrial Technologies Market Report, May 2009  

SciTech Connect

The industrial sector is a critical component of the U.S. economy, providing an array of consumer, transportation, and national defense-related goods we rely on every day. Unlike many other economic sectors, however, the industrial sector must compete globally for raw materials, production, and sales. Though our homes, stores, hospitals, and vehicles are located within our borders, elements of our goods-producing industries could potentially be moved offshore. Keeping U.S. industry competitive is essential to maintaining and growing the U.S. economy. This report begins with an overview of trends in industrial sector energy use. The next section of the report focuses on some of the largest and most energy-intensive industrial subsectors. The report also highlights several emerging technologies that could transform key segments of industry. Finally, the report presents policies, incentives, and drivers that can influence the competitiveness of U.S. industrial firms.

Energetics; DOE

2009-07-01T23:59:59.000Z

111

International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs  

E-Print Network (OSTI)

Summer Study on Energy Efficiency in Industry. Washington,related to industrial energy efficiency or GHG emissionsDenmark - Energy Efficiency Agreements………. …………..……. ……4

Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

2008-01-01T23:59:59.000Z

112

Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector  

Science Conference Proceedings (OSTI)

Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. With the working of energy programs and policies on carbon regulation, how to effectively analyze and manage the costs associated with GHG reductions become extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions (e.g., carbon emission) for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct brief overview on different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by problem statements, and a description of the basic concepts of quantifying the cost of conserved energy including integrating non-regrets options. A non-regrets option is defined as a GHG reduction option that is cost effective, without considering their additional benefits related to reducing GHG emissions. Based upon these, we develop information on costs of mitigation measures and technological change. These serve as the basis for collating the data on energy savings and costs for their future use in integrated assessment models. In addition to descriptions of the iron and steel making processes, and the mitigation measures identified in this study, the report includes tabulated databases on costs of measure implementation, energy savings, carbon-emission reduction, and lifetimes. The cost curve data on mitigation measures are available over time, which allows an estimation of technological change over a decade-long historical period. In particular, the report will describe new treatment of technological change in energy-climate modeling for this industry sector, i.e., assessing the changes in costs and energy-savings potentials via comparing 1994 and 2002 conservation supply curves. In this study, we compared the same set of mitigation measures for both 1994 and 2002 -- no additional mitigation measure for year 2002 was included due to unavailability of such data. Therefore, the estimated potentials in total energy savings and carbon reduction would most likely be more conservative for year 2002 in this study. Based upon the cost curves, the rate of change in the savings potential at a given cost can be evaluated and be used to estimate future rates of change that can be the input for energy-climate models. Through characterizing energy-efficiency technology costs and improvement potentials, we have developed and presented energy cost curves for energy efficiency measures applicable to the U.S. iron and steel industry for the years 1994 and 2002. The cost curves can change significantly under various scenarios: the baseline year, discount rate, energy intensity, production, industry structure (e.g., integrated versus secondary steel making and number of plants), efficiency (or mitigation) measures, share of iron and steel production to which the individual measures can be applied, and inclusion of other non-energy benefits. Inclusion of other non-energy benefits from implementing mitigation measures can reduce the costs of conserved energy significantly. In addition, costs of conserved energy (CCE) for individual mitigation measures increase with the increases in discount rates, resulting in a general increase in total cost of mitigation measures for implementation and operation with a higher discount rate. In 1994, integrated steel mills in the U.S. produced 55.

Xu, T.T.; Sathaye, J.; Galitsky, C.

2010-09-30T23:59:59.000Z

113

Transformational Energy Action Management (TEAM) Wireless Energy Efficiency Keys Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

by by Transformational Energy Action Management (TEAM) Wireless Energy Efficiency Keys Initiative *Ways of Using Wireless Technology to Help You Reduce Energy Usage at your Facility Together with our industry partners, we strive to: * Accelerate adoption of the many energy-efficient technologies and practices available today * Conduct vigorous technology innovation to radically improve future energy diversity, resource efficiency, and carbon mitigation * Promote a corporate culture of energy efficiency and carbon management What Is the Industrial Technologies Program ? The Industrial Technologies Program (ITP) is the lead federal agency responsible for improving energy efficiency in the largest energy-using sector of the country. Industrial Sector National Initiative

114

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

E-Print Network (OSTI)

Cement Industry, An Energy Perspective", U.S. Department ofCost of Conserved Final Energy (US$/GJ) Final CCE includingwithout including non-energy benefits, U.S. steel industry (

Sathaye, J.

2011-01-01T23:59:59.000Z

115

Industry  

E-Print Network (OSTI)

oxide emission reductions in industry in the EU. Europeanissues: Annual survey of industries. Central StatisticalDesiccated coconut industry of Sri- Lanka’s opportunities

Bernstein, Lenny

2008-01-01T23:59:59.000Z

116

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network (OSTI)

Equipment and Sustainable Energy. http://www.senternovem.nl/Industries Association. Sustainable Energy Ireland (SEI),Report_2007Fnl.pdf Sustainable Energy Ireland (SEI), 2009a.

Price, Lynn

2010-01-01T23:59:59.000Z

117

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

E-Print Network (OSTI)

Tracking Industrial Energy Efficiency and CO2 Emissions.and L. Price. 1999. Energy Efficiency and Carbon DioxideGalitsky. 2004. Energy Efficiency Improvement Opportunities

Sathaye, J.

2011-01-01T23:59:59.000Z

118

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network (OSTI)

Report submitted to California Energy Commission, AprilDepartment of Energy, the California Energy Commission, andFuel Source Figure 9. California Energy Use in Industrial

Akbari, H.

2008-01-01T23:59:59.000Z

119

A $70/tCO2 greenhouse gas mitigation backstop for China’s industrial and electric power sectors: insights from a comprehensive CCS cost curve  

Science Conference Proceedings (OSTI)

As one of the world's fastest growing economies with abundant coal reserves, China's carbon dioxide (CO2) emissions have doubled in the last decade and are expected to continue growing for the foreseeable future. While the Central Government has been promoting development and growth of cleaner and more efficient energy systems, efforts to reduce carbon emissions from the heavily coal-based economy may require continued and increased development and deployment of carbon dioxide capture and storage (CCS) technologies. This paper presents the first detailed, national-scale assessment of CCS potential across the diverse geographic, geologic, and industrial landscape of China, through the lens of an integrated CCS cost curve. It summarizes the development of a cost curve representing the full chain of components necessary for the capture and geologic storage of CO2 from China's power generation and industrial sectors. Individual component cost estimates are described, along with the optimized source-sink matching of over 1,600 large stationary CO2 sources and 2300 gigatons of CO2 storage capacity within 90 major deep geologic onshore sedimentary sub-basins, to develop a cost curve incorporating CO2 capture, compression, transport, and storage. Results suggest that CCS can provide an important greenhouse gas mitigation option for most regions and industrial sectors in China, able to store more than 80% of emissions from these large CO2 sources (2900 million tons of CO2 annually) at costs less than $70/tCO2 for perhaps a century or more.

Dahowski, Robert T.; Davidson, Casie L.; Li, Xiaochun; Wei, Ning

2012-08-27T23:59:59.000Z

120

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network (OSTI)

industrial facilities use boilers and/or furnaces that burnare: 1) space heat, 2) hot water, 3) boiler for building-heat, 4) boiler for process 5) direct process heat, 6)

Akbari, H.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector key" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings  

E-Print Network (OSTI)

Energy Intensity in the Iron and Steel Industry: A Comparison of Physical and Economic Indicators”,energy and carbon intensity are evaluated. We show that macro-economic indicators,

Price, Lynn; Worrell, Ernst; Khrushch, Marta

1999-01-01T23:59:59.000Z

122

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network (OSTI)

Reports of Energy Utilization Audit (EUA) from PG&E, madeincluded in PG&E's Energy Utilization Audits (EUA), 67% ofWORK WITH THE PG&E ENERGY UTILIZATION AUDIT (EUA) INDUSTRIAL

Akbari, H.

2008-01-01T23:59:59.000Z

123

Industry  

E-Print Network (OSTI)

the paper, glass or ceramics industry) making it difficulttechnology in the ceramic manufacturing industry. industries: iron and steel, non-ferrous metals, chemicals (including fertilisers), petroleum refining, minerals (cement, lime, glass and ceramics) and

Bernstein, Lenny

2008-01-01T23:59:59.000Z

124

Industry  

E-Print Network (OSTI)

in the iron and steel industry: a global model. Energy, 30,report of the world steel industry 2005. International Irontrends in the iron and steel industry. Energy Policy, 30,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

125

Coal supply/demand, 1980 to 2000. Task 3. Resource applications industrialization system data base. Final review draft. [USA; forecasting 1980 to 2000; sector and regional analysis  

SciTech Connect

This report is a compilation of data and forecasts resulting from an analysis of the coal market and the factors influencing supply and demand. The analyses performed for the forecasts were made on an end-use-sector basis. The sectors analyzed are electric utility, industry demand for steam coal, industry demand for metallurgical coal, residential/commercial, coal demand for synfuel production, and exports. The purpose is to provide coal production and consumption forecasts that can be used to perform detailed, railroad company-specific coal transportation analyses. To make the data applicable for the subsequent transportation analyses, the forecasts have been made for each end-use sector on a regional basis. The supply regions are: Appalachia, East Interior, West Interior and Gulf, Northern Great Plains, and Mountain. The demand regions are the same as the nine Census Bureau regions. Coal production and consumption in the United States are projected to increase dramatically in the next 20 years due to increasing requirements for energy and the unavailability of other sources of energy to supply a substantial portion of this increase. Coal comprises 85 percent of the US recoverable fossil energy reserves and could be mined to supply the increasing energy demands of the US. The NTPSC study found that the additional traffic demands by 1985 may be met by the railways by the way of improved signalization, shorter block sections, centralized traffic control, and other modernization methods without providing for heavy line capacity works. But by 2000 the incremental traffic on some of the major corridors was projected to increase very significantly and is likely to call for special line capacity works involving heavy investment.

Fournier, W.M.; Hasson, V.

1980-10-10T23:59:59.000Z

126

Energy Sector-Specific Plan: An Annex to the National Infrastructure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sector-Specific Plan: An Annex to the National Sector-Specific Plan: An Annex to the National Infrastructure Protection Plan Energy Sector-Specific Plan: An Annex to the National Infrastructure Protection Plan In its role as the lead Sector-Specific Agency for the Energy Sector, the Department of Energy has worked closely with dozens of government and industry partners to prepare this updated 2010 Energy Sector-Specific Plan (SSP). Much of that work was conducted through the two Energy Sector Coordinating Councils (SCCs) and the Energy Government Coordinating Council (GCC). Energy Sector-Specific Plan: An Annex to the National Infrastructure Protection Plan More Documents & Publications National Infrastructure Protection Plan Energy: Critical Infrastructure and Key Resources Sector-Specific Plan as

127

Published by Oak Ridge National Laboratory No. 1 2010 The industrial sector accounts for nearly one-third of the  

E-Print Network (OSTI)

in the production of batteries for elec- tric vehicles?" To help make American battery manufacturers more com-third of the U.S. economy and nearly one-quarter of the products of global manufacturing. Industry drives the U of technologies with interested manufacturers to ensure world-class technology and products. The technologies

128

Industry  

E-Print Network (OSTI)

and power in US industry. Energy Policy, 29, pp. 1243-1254.Paris. IEA, 2004: Energy Policies of IEA Countries: Finlandand steel industry. Energy Policy, 30, pp. 827-838. Kim, Y.

Bernstein, Lenny

2008-01-01T23:59:59.000Z

129

The DOE s In-Plant Training (INPLT) Model to Promote Energy Efficiency in the Industrial Sector  

SciTech Connect

In-Plant Training (INPLT) is a new model for developing energy efficiency expertise within the US manufacturing companies participating in the U.S. Department of Energy s (DOE s) Better Buildings, Better Plants Program-a nationwide initiative to drive a 25% reduction in industrial energy intensity in 10 years. INPLTs are designed to fill a market niche by providing hands on training in a real world manufacturing plant environment. Through INPLTs, participants from multiple manufacturing plants, supply chains, utilities, and other external stakeholders learn how to conduct energy assessments, use energy analysis tools to analyze energy saving opportunities, develop energy management systems, and implement energy savings projects. Typical INPLT events are led by DOE-certified Energy Experts and range from 2-4 days. Topics discussed include: identification of cross-cutting or system specific opportunities; introduction to ISO 50001 Energy Management Systems; and energy project implementation and replication. This model is flexible, and can be tailored to suit the needs of specific industries. The INPLTs are a significant departure from the traditional single plant energy assessment model previously employed by DOE. INPLTs shift the focus from the concept of a single-plant s energy profile to a broader focus on training and capacity building among multiple industrial participants. The objective is to enable trainees to identify, quantify, implement and replicate future energy saving projects without continued external assistance. This paper discusses the INPLT model and highlights some of the initial outcomes from the successfully delivered INPLTs and the overall impact in terms of numbers of plants/participants trained, impacted energy footprints, and potential replication of identified opportunities.

Alkadi, Nasr E [ORNL; Nimbalkar, Sachin U [ORNL; De Fontaine, Mr. Andre [United States Department of Energy (DOE), Industrial Technology Program; Schoeneborn, Fred C [ORNL

2013-01-01T23:59:59.000Z

130

Preliminary energy sector assessments of Jamaica. Volume III: renewable energy. Part I: solar energy - commercial and industrial  

SciTech Connect

This study concerns commercial and industrial solar applications, specifically solar water heating and solar air cooling. The study finds that solar domestic water heating and boiler make-up water preheating are technically feasible and, depending on the displaced energy source (electrical or various fuel types), economically justified; and that solar hot water installations could displace the equivalent of 189,842 barrels of fuel oil per year. However, solar cooling requires high performance collectors not currently manufactured in Jamaica, and feasibility studies indicate that solar cooling in the near term is not economically justified.

1980-01-01T23:59:59.000Z

131

Incentives to Accelerate the Penetration of Electricity in the Industrial Sector by Promoting New Technologies: A French Experiment  

E-Print Network (OSTI)

A major problem encountered when trying to speed up electrification of French industry has been 'hot to finance, at end-user's level, investments related to such a change of technology'. Government incentives, the aims of which are to help saving energy and reducing oil imports, are a partial solution; something more has been done by E.D.F. with the help of bankers, consultants, engineers, and manufacturers. But it will take a lot of months before being sure it fulfills the purpose in view.

Bouchet, J.; Froehlich, R.

1983-01-01T23:59:59.000Z

132

Industrial energy efficiency policy in China  

SciTech Connect

Chinese industrial sector energy-efficiency policy has gone through a number of distinct phases since the founding of the People s Republic in 1949. An initial period of energy supply growth in the 1950s, 1960s, and 1970s was followed by implementation of significant energy efficiency programs in the 1980s. Many of these programs were dismantled in the 1990s during the continuing move towards a market-based economy. In an effort to once again strengthen energy efficiency, the Chinese government passes the Energy Conservation Law in 1997 which provides broad guidance for the establishment of energy efficiency policies. Article 20 of the Energy Conservation Law requires substantial improvement in industrial energy efficiency in the key energy-consuming industrial facilities in China. This portion of the Law declares that ''the State will enhance energy conservation management in key energy consuming entities.'' In 1999, the industrial sector consumed nearly 30 EJ, or 76 percent of China's primary energy. Even though primary energy consumption has dropped dramatically in recent years, due mostly to a decline in coal consumption, the Chinese government is still actively developing an overall policy for energy efficiency in the industrial sector modeled after policies in a number of industrialized countries. This paper will describe recent Chinese government activities to develop industrial sector energy-efficiency targets as a ''market-based'' mechanism for improving the energy efficiency of key industrial facilities.

Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

2001-05-01T23:59:59.000Z

133

Energy Sector Jobs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sector Jobs Energy Sector Jobs New Report Highlights Growth of America's Clean Energy Job Sector: Taking a moment to break-down key findings from the latest Clean Energy Jobs...

134

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and...

135

Greenhouse Gas Emission Reduction in the ENERGY STAR Commercial, Industrial and Residential Sectors. An Example of How the Refinery Industry is Capitalizing on ENERGY STAR  

E-Print Network (OSTI)

In the past 10 years ENERGY STAR has developed a track record as a certification mark to hang buildings performance hat on. By implementing upgrade strategies and pursuing operations and maintenance issues simultaneously, ENERGY STAR has led the nation and many states to pursue greenhouse gas reduction initiatives using energy efficiency as a model program. In developing these partnerships with industry, states and local government, what has occurred is a variety of program approaches that works to accomplish strategically a reduction in emissions. Through its development, ENERGY STAR has become an integral player with many Green Buildings Program to help them carry the energy efficiency banner to higher levels of cooperation. What is occurring today is that more and more local programs are looking to green buildings as an approach to reducing problems they face in air pollution, water pollution, solid waste, needed infrastructure and better of resources needs and the growth of expensive utility infrastructures. EPA - Region 6's ENERGY STAR and Green Building Program assistance has led to some unique solutions and the beginning workups for the integrated expansion of effort to support State Implementation Plans in new innovative voluntary approaches to transform certain markets, similarly to those of energy efficient products. This presentation will be an overview of activity that is being spearheaded in Texas in the DFW and Houston metro areas in ENERGY STAR and Green Buildings. The voluntary programs impacts are reducing energy consumption, creating markets for renewables, reducing air polluting chemicals and reducing greenhouse gas emissions using verifiable approaches.

Patrick, K.

2008-01-01T23:59:59.000Z

136

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

An Exploration of Innovation and An Exploration of Innovation and Energy Efficiency in an Appliance Industry Prepared by Margaret Taylor, K. Sydny Fujita, Larry Dale, and James McMahon For the European Council for an Energy Efficient Economy March 29, 2012 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL - 5689E An Exploration of Innovation and Energy Efficiency in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and direction of technological change of product industries; the factors that underlie the outcomes of innovation in these industries; and the ways the innovation system might respond to any given intervention. The report provides an overview of the dynamics of energy efficiency policy and innovation in the appliance

137

Industry  

E-Print Network (OSTI)

milling industry: An ENERGY STAR Guide for Energy and Plantcement mak- ing - An ENERGY STAR Guide for Energy and Plantre- fineries - An ENERGY STAR Guide for Energy and Plant

Bernstein, Lenny

2008-01-01T23:59:59.000Z

138

Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)  

E-Print Network (OSTI)

Subsector The iron and steel industry accounted for roughlyn importance, as in the steel industries in other countries.furnaces China's iron and steel industry uses approximately

Zhiping, L.

2010-01-01T23:59:59.000Z

139

Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector  

E-Print Network (OSTI)

1982. Energy and the Steel Industry, Brussels, Belgium:in the Canadian Steel Industry, Ottawa, Canada: CANMET.in the Iron and Steel Industry,” in: Proceedings 1997 ACEEE

Xu, T.T.

2011-01-01T23:59:59.000Z

140

OpenEI - residential sector key indicators  

Open Energy Info (EERE)

class"field-items">

Note: This page contains sample records for the topic "industrial sector key" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)  

E-Print Network (OSTI)

Industries Industry Bricks Cement Lime Plate Glass CeramicsIndustry furnaces for household glass, enamel, and ceramicsindustry waste heat from blast furnaces is used to dry primary ceramic and

Zhiping, L.

2010-01-01T23:59:59.000Z

142

Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial 8,870,422 44.3% Commercial 3,158,244 15.8% Electric Utilities 2,732,496 13.7% Residential 5,241,414 26.2% Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." T e x a s L o u i s i a n a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Industrial Billion Cubic Meters T e x a s C a l i f o r n i a F l o r i d a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Electric Utilities Billion Cubic Meters N e w Y o r k C a l i f o r n i a I l l i n o i s A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Commercial Billion Cubic Meters I l l i n o i s C a l i f o r n i a N e w Y o r k A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Residential Billion Cubic Meters 11. Natural Gas Delivered to Consumers in the United States, 1996 Figure Volumes in Million Cubic Feet Energy Information Administration

143

Sector 7  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications A Reminder for Sector 7 PIs and Users: Please report your new publications to the Sector Manager and the CAT Director. The APS requires PIs to submit new publications to its Publication Database, a link which can be found on the Publication section of the APS web site. Publication information for work done at 7ID Proper acknowledgement sentences to include in papers. Sector 7 Call for APS User Activity Reports. APS User Activity Reports by MHATT-CATers. Recent articles Recent theses Sector 7 Reports Sector 7 Recent research highlights (New) Design documents in ICMS on Sector 7 construction and operation Sector 7 related ICMS documents Library Resources available on the WWW The ANL Library system ANL electronic journal list AIM Find it! Citation Ranking by ISI (see Journal citation report)

144

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network (OSTI)

Private Participation in the Electricity Sector World BankTelecommunications and Electricity Sectors." Governance 19,Power Struggle: Reforming the Electricity Industry." In The

Wenle, Susanne Alice

2010-01-01T23:59:59.000Z

145

Industrial sector end use. Energy Consumption Data Base (ECDB) for 1975 and 1976. Volume I. Summary of 1976 results. Final report  

SciTech Connect

This report is the summary document of a three-volume report. It contains an introduction followed by tables of data containing the following information: 1976 national energy consumption by industry fuel type, and end use; 1976 regional energy consumption by industry fuel type, and census division; 1976 regional energy consumption by industry fuel type, and federal regions; 1976 regional energy consumption by industry fuel type, and PAD district; 1976 state energy consumption by industry fuel type, and by state. (PLG)

1980-12-15T23:59:59.000Z

146

sector | OpenEI  

Open Energy Info (EERE)

sector sector Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 5, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption sector South Atlantic Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - South Atlantic- Reference Case (xls, 297.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

147

OpenEI - energy use by sector  

Open Energy Info (EERE)

http:en.openei.orgdatasetstaxonomyterm340 en New Zealand Energy Use Survey: Industrial and Trade Sectors (2009) http:en.openei.orgdatasetsnode365

Statistics New...

148

Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector  

E-Print Network (OSTI)

Leonhard (eds. ), Energy Efficiency Improvements in ElectricC. Moore, 1997. “Energy Efficiency and Advanced TechnologiesSummer Study on Energy Efficiency in Industry, Washington,

Xu, T.T.

2011-01-01T23:59:59.000Z

149

Sector 7  

NLE Websites -- All DOE Office Websites (Extended Search)

Sector 7 : Time Resolved Research Group Sector 7 is operated by the Time Resolved Research Group, which is part of the X-ray Science Division (XSD) of the Advanced Photon Source. Our research focus is the study of Ultrafast fs-laser excitation of matter, using x-ray scattering and spectroscopy techniques. The sector developped two hard x-ray beamlines (7ID and 7BM) focused on time-resolved science. The 7BM beamline has been dedicated for time-resolved radiography of fuel sprays. Sector 7 Links: What's New Beamlines Overview User information: Getting Beamtime Current Research Programs Links to our partners, and collaborators (New) Publications Contact information Operational data (w/ current 7ID schedule) ES&H information (ESAF, EOR, TMS training, User Training)

150

Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy  

Open Energy Info (EERE)

Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities Agency/Company /Organization: Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Energy Efficiency, Industry Resource Type: Guide/manual Website: china.lbl.gov/sites/china.lbl.gov/files/LBNL-3991E.Industrial%20Energy Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities Screenshot References: Industrial Energy Audit Guidebook[1] "This guidebook provides guidelines for energy auditors regarding the key elements for preparing for an energy audit, conducting an inventory and

151

California Industrial Energy Efficiency Potential  

E-Print Network (OSTI)

The Potential for Energy Efficiency. Prepared for The EnergyIndustrial Sector Energy Efficiency Potential Study - DraftIndustrial Energy Efficiency Market Characterization Study.

Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; Rafael Friedmann; Rufo, Mike

2005-01-01T23:59:59.000Z

152

Sector X  

NLE Websites -- All DOE Office Websites (Extended Search)

X X If there is an emergency at ETTP requiring evacuation, Sector X reports to the shelter at: Oak Ridge High School 127 Providence Road Oak Ridge, TN 37830 Take most direct route to northbound Bethel Valley Road toward Oak Ridge. Turn left onto Illinois Avenue (Highway 62). Turn right onto Oak Ridge Turnpike and turn left to Oak Ridge High School. If there is an emergency at ORNL requiring evacuation, Sector X reports to the shelter at: Karns High School 2710 Byington Solway Road Knoxville, TN 37931 Take most direct route to northbound Bethel Valley Road toward Knoxville. Then take a left at Highway 62 (Oak Ridge Highway) eastbound to Knoxville. Take a right onto State Route 131 (Byington Beaver Ridge) to Karns High School. If there is an emergency at Y-12 requiring evacuation, Sector X reports to the shelter at:

153

Sector 7  

NLE Websites -- All DOE Office Websites (Extended Search)

Link to Sector 7 Users and Collaborators Link to Sector 7 Users and Collaborators This is an incomplete list of Partners from Universities and National Labs who use the facilities at Sector 7. If you wish to add a link to your institutional page, do no hesitate to contact Eric Dufresne at the APS. The APS XSD Atomic, Molecular and Optical Physics group Center for Molecular Movies at Copenhagen University Roy Clarke Group at the University of Michigan Rob Crowell Group at BNL Chris Elles's group at Kansas University Argonne's Transportation Technology R&D Center Fuel Injection and Spray Research Group Paul Evans's group web page at the University of Wisconsin Alexei Grigoriev's group at Univ. of Tulsa Eric Landahl's web page at DePaul University The SLAC Pulse Institute Ultrafast Materials Science group (D. Reis and A. Lindenberg)

154

Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector  

E-Print Network (OSTI)

energy savings with discounts rates 10%, 20% and 30% in the U.S. iron and steel industryenergy savings with discounts rates 10%, 20% and 30% in the U.S. iron and steel industry.

Xu, T.T.

2011-01-01T23:59:59.000Z

155

Sector 7  

NLE Websites -- All DOE Office Websites (Extended Search)

: News : News Sector 7 calendar of events. APS News APS Monthly meeting slides What's new at the APS Sector 7? 2013 news 2012 news 2011 news 2010 news 2009 news 2008 news 2007 news 2006 news 2005 news 2004 news 2003 news 2002 news 2001 news 2013 News from APS Sector 7 May 2013: Ruben Reininger et al. recently published an article on the optical design of the SPX Imaging and Microscopy beamline (SPXIM). The details can be found on the RSI web site here. A new web page is now available to guide 7-BM users. See the official 7-BM web page for more details. 2012 News from APS Sector 7 August 2012: Jin Wang gave a talk on August 29, 2012 entitled "The APS 7-BM is Open for Business, Officially!" at the August APS Monthly Operation Meeting. On August 1, Alan Kastengren joined the X-ray Science Division to operate the 7-BM beamline. Alan has been involved in the construction

156

Capital requirements for energy sector: capital market access. The shift to successful efforts accounting: preliminary review of probable effects on oil and gas industry participants  

SciTech Connect

This report provides an initial assessment of the effects that the adoption of uniform successful efforts accounting might have on access to capital markets and investment behavior in the oil and gas industry. It also proposes a plan of interviews and analysis which would permit informed revision and expansion of that initial assessment. Section II presents a discussion of the origins and current status of the controversy between advocates of successful efforts and full cost accounting. An important underpinning of the argument in favor of uniform successful efforts accounting is the premise that all industry participants are fundamentally comparable and, thus, should be subject to uniform accounting treatment. Section III questions this premise by examining the various classes of industry participants. Section IV presents data on the roles of those classes of industry participants, paying particular attention to the importance of the independents in the exploration phase of the business. Section V discusses the effects which a shift to uniform successful efforts accounting might have on the various industry participants. A discussion of our initial conclusions are presented in Section VI. Section VII reviews a plan of interviews and analysis which would permit a more informed evaluation of policy options. Finally, Section VIII presents a series of policy alternatives.

Bennett, V.

1978-02-01T23:59:59.000Z

157

KEY PERSONNEL  

National Nuclear Security Administration (NNSA)

APPENDIX J KEY PERSONNEL 07032013 TITLE NAME President Christopher C. Gentile Vice President, Operations Robin Stubenhofer Director, Sr. Program Management Rick Lavelock...

158

Key Outcomes:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INDIAN COUNTRY ENERGY AND INFRASTRUCTURE WORKING GROUP ICEIWG Key Points & Action Items Inaugural Meeting Thursday, August 25, 2011 Renaissance Denver Hotel Denver, Colorado...

159

energy use by sector | OpenEI  

Open Energy Info (EERE)

use by sector use by sector Dataset Summary Description Statistics New Zealand conducted and published results of an energy use survey across industry and trade sectors to evaluate energy use in 2009. The data includes: energy use by fuel type and industry (2009); petrol and diesel purchasing and end use by industry (2009); energy saving initiatives by industry (2009); and areas identified as possibilities for less energy use (2009). Source Statistics New Zealand Date Released October 15th, 2010 (4 years ago) Date Updated Unknown Keywords diesel energy savings energy use by sector New Zealand petrol Data application/vnd.ms-excel icon New Zealand Energy Use Survey: Industrial and Trade Sectors (xls, 108 KiB) application/zip icon Energy Use Survey (zip, 127 KiB) Quality Metrics

160

OpenEI - Industrial  

Open Energy Info (EERE)

renewable energy consumption (in quadrillion btu) for electricity generation in the United States by energy use sector (commercial, industrial and electric power) and by...

Note: This page contains sample records for the topic "industrial sector key" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network (OSTI)

in the agriculture sector. Electricity Industry Agriculture$2008/tonne CO2e) Electricity Industry Agriculture Buildingssector’s (i.e. , electricity, industry, etc. ) reference

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

162

service sector | OpenEI  

Open Energy Info (EERE)

service sector service sector Dataset Summary Description The energy consumption data consists of five spreadsheets: "overall data tables" plus energy consumption data for each of the following sectors: transport, domestic, industrial and service. Each of the five spreadsheets contains a page of commentary and interpretation. Source UK Department of Energy and Climate Change (DECC) Date Released July 31st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption coal Coke domestic Electricity Electricity Consumption energy data Industrial Natural Gas Petroleum service sector transportation UK Data application/zip icon Five Excel spreadsheets with UK Energy Consumption data (zip, 2.6 MiB) Quality Metrics Level of Review Peer Reviewed Comment The data in ECUK are classified as National Statistics

163

Industrial Energy Efficiency Achieving Success in a Difficult Environment  

E-Print Network (OSTI)

Energy use and the resulting environmental impacts are major points of concern for the world in the 21st century. Opinions that define the challenges of sustainable energy options are as diverse as the proposed solutions. The industrial sector is a key area both from the standpoint of the amount of energy consumed and the magnitude of the energy options that exist there. However, history has shown that success in the industrial energy sector requires careful planning and consideration of the unique challenges of the manufacturing environment.

Castellow, C.

2011-01-01T23:59:59.000Z

164

Key Documents  

Science Conference Proceedings (OSTI)

AOCS by-laws, code of ethics and anti trust policy established during our 100+ legacy. Key Documents AOCS History and Governance about us aocs committees contact us division council fats governing board history oils professionals science value cen

165

America's Booming Wind Industry  

Energy.gov (U.S. Department of Energy (DOE))

Sharing key findings from two new Energy Department reports that highlight the record growth of America's wind industry.

166

Sector 7  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Programs Research Programs Sector 7's research program exploits the brilliance of the APS undulator radiation to perform material research studies with high spatial and temporal resolution. Microbeam studies are made using x-ray beam sizes on the submicron-scale, and time-resolved diffraction measurements are carried out with picosecond resolution. Sector 7's undulator line has experimental enclosures dedicated to both time-resolved and microbeam research. In one of these enclosures (7ID-D), a femtosecond laser facility is set up for ultrafast diffraction and spectroscopy studies in a pump-probe geometry. The 7ID-B hutch is a white beam capable station used for time-resolved phase-contrast imaging and beamline optics development. A third enclosure (7ID-C) is instrumented for high-resolution diffraction studies with a Huber 6-circle diffractometer. The instrument is ideal for thin-film and interface studies, including the recently developed Coherent Bragg Rod Analysis (COBRA) technique. The fs-laser has recently been delivered to 7ID-C so time-resolved laser pump-x-ray probe can be performed in 7ID-C since March 2007. An x-ray streak camera is also being commissioned in 7ID-C. 7ID-C is equipped for microdiffraction studies with a small Huber 4-cicle diffractometer used with zone-plate optics.

167

Industrial sector energy conservation programs in the People`s Republic of China during the seventh five-year plan (1986--1990)  

Science Conference Proceedings (OSTI)

The impetus at the national level to invest in energy conservation is quite strong and has long been reflected not only in official pronouncements, but also in the investments and organizational activities of the Chinese government. In the early 1980s the central government began a program of direct investments in industrial energy conservation that continues to the present. In addition, concurrently established governmental and quasi-governmental agencies have pursued conservation through administrative and educational measures. In Section 2 of this paper the authors outline the policies and institutions that supported China`s program of energy conservation investments in the Sixth and Seventh Five-Year Plans (FYPs) (1981--1985 and 1986--1990). In Section 3 they describe examples of the types of conservation projects pursued in four industrial subsectors: ferrous metals manufacturing; non-ferrous metals mining and manufacturing; chemicals manufacturing; and building materials manufacturing. Section 4 presents a simple methodology for comparing the costs of energy conservation to those of energy supply. Further discussion points out the applicability and limitations of this methodology to State Planning Commission published statistical material on the overall results of energy conservation investments. Though problematic, such analysis indicates that energy conservation investments were probably substantially cheaper than investments in equivalent energy supply would have been. They end with a discussion of some of the difficulties encountered in carrying out the conservation investment programs.

Liu Zhiping [State Planning Commission, Beijing (China). Energy Research Inst.; Sinton, J.E.; Yang Fuqiang; Levine, M.D.; Ting, M.K. [Lawrence Berkeley Lab., CA (United States)

1994-09-01T23:59:59.000Z

168

Key Outcomes:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Key Points & Action Items Key Points & Action Items Inaugural Meeting Thursday, August 25, 2011 Renaissance Denver Hotel Denver, Colorado Participants Tracey LeBeau, Director, Pilar Thomas, Deputy Director, and Brandt Petrasek, Special Assistant, Department of Energy, Office of Indian Energy Policy and Programs; Vice Chairman Ronald Suppah and Jim Manion, Confederated Tribes of the Warm Springs Reservation of Oregon; William Micklin, Ewiiaapaayp Band of Kumeyaay Indians; Councilman Barney Enos, Jr., Jason Hauter, Gila River Indian Community; Mato Standing High, Rosebud Sioux Tribe; R. Allen Urban, Yocha Dehe Wintun Nation; Glen Andersen, Scott Hendrick, Brooke Oleen, Jacquelyn Pless, Jim Reed and Julia Verdi, National Conference of State Legislatures-staff

169

Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity  

SciTech Connect

In November 2012, the Joint Institute for Strategic Energy Analysis (JISEA) released a new report, 'Natural Gas and the Transformation of the U.S. Energy Sector: Electricity.' The study provides a new methodological approach to estimate natural gas related greenhouse gas (GHG) emissions, tracks trends in regulatory and voluntary industry practices, and explores various electricity futures. The Executive Summary provides key findings, insights, data, and figures from this major study.

Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

2013-01-01T23:59:59.000Z

170

Sector 7  

NLE Websites -- All DOE Office Websites (Extended Search)

User Information & Getting Beamtime User Information & Getting Beamtime There are three ways to request beamtime to perform an experiment on APS-7ID. One can request beam time as an APS General User, as an APS Partner User, or one can contact a staff member of Sector 7 to work collaboratively with them using a small amount of staff time to gather preliminary data. 80% of the available beamtime on 7ID is given to General and Partner Users, while 20% is reserved for staff use. Beam time is allocated and announced by email shortly before the start of an experimental run. In October 2002, beamline 7ID welcomed its first APS General Users (GU). To gain access to 7ID, General or Partner Users are required to submit a proposal to the APS GU Website by the specified deadline. Sucessful proposals will be scheduled for the next cycle following the proposal deadline. There are three proposal cycles per year with deadlines about two months before the start of a run. The deadlines and General User forms are available on the web through the APS General User Web site. Specific instructions for new General Users are available on the site. These instructions can be helpful also for new APS Users in general.

171

Sector 7  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview and History Overview and History Sector 7 consists of two APS beamlines: 7-ID: an insertion device beamline based on an APS Type-A Undulator 7-BM: a bend magnet beam line for time-resolved radiography (currently being commissioned) Overview of 7-ID 7-ID comprises four large experimental enclosures designated A, B, C, and D. In 2004, a laser enclosure was also added (7ID-E). Enclosure 7-ID-A is the first optics enclosure and houses a polished Be window, an empty x-ray filter unit, a pair of white beam slits, a water-cooled double crystal diamond monochromator (Kohzu HLD4), and a P4 mode shutter. The beamline vertical offset is 35 mm. Enclosure 7-ID-B is a white-, or monochromatic-beam experimental enclosure. It is equipped with two precision motorized table for alignment and positioning of experimental equipment. This station is used for white-beam imaging or microdiffraction experiments.

172

Analysis of relative industrial performance and it's implications for gas demand  

SciTech Connect

The analysis of the U.S. manufacturing sector and the opportunities it presents to the natural gas industry uses a weighted index of 11 economic/financial/market indicators to evaluate the performance of over 300 industries. Output and investment growth appear to be key determinants of industrial energy demand. Industries with high growth and investment potential over the period 1983-1993 are plastic materials and resins, aluminum rolling and drawing, motor vehicle parts, and glass products. Organic chemicals and paper mills exhibit above average potential, while petroleum refining, sugar, and primary aluminum are deemed slow growing industries.

Feldman, S.J.; Rogers, G.

1984-07-01T23:59:59.000Z

173

Green Energy Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Energy Industries Inc Jump to: navigation, search Name Green Energy Industries Inc Sector Marine and Hydrokinetic Website http:http:www.gecorpusa.co Region United States...

174

Kishimura Industry Co | Open Energy Information  

Open Energy Info (EERE)

Kishimura Industry Co Jump to: navigation, search Name Kishimura Industry Co Place Kanagawa-Ken, Japan Sector Solar, Vehicles Product Developer of solar power systems and...

175

Millennium Energy Industries | Open Energy Information  

Open Energy Info (EERE)

Industries Jump to: navigation, search Name Millennium Energy Industries Place Jordan Zip 1182 Sector Solar Product Jordan-based solar energy firm focused in MENA region....

176

California Solar Energy Industries Association | Open Energy...  

Open Energy Info (EERE)

Name California Solar Energy Industries Association Place Rio Vista, California Zip 94571 Sector Solar Product California Solar Energy Industries Association is a trade group...

177

Danish Wind Industry Association | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Danish Wind Industry Association Place Copenhagen V, Denmark Zip DK-1552 Sector Wind energy Product The Danish Wind Industry Association (DWIA) is...

178

CRV industrial Ltda | Open Energy Information  

Open Energy Info (EERE)

CRV industrial Ltda Place Carmo do Rio Verde, Goias, Brazil Sector Biomass Product Ethanol and biomass energy producer References CRV industrial Ltda1 LinkedIn Connections...

179

The National Energy Modeling System: An Overview 1998 - Industrial...  

Gasoline and Diesel Fuel Update (EIA)

representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to electric...

180

Local Option - Industrial Facilities and Development Bonds |...  

Open Energy Info (EERE)

Sector Commercial, Industrial, Institutional, Local Government Eligible Technologies Boilers, Building Insulation, CaulkingWeather-stripping, Central Air conditioners, Chillers,...

Note: This page contains sample records for the topic "industrial sector key" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Energy Efficiency Services Sector: Workforce Size and Expectations for Growth  

E-Print Network (OSTI)

of Labor Statistics. Energy Efficiency Services Sector:of Energy Engineers 2009a. “Energy Independence and MarketTrends: AEE Survey of the Energy Industry 2009. ” http://

Goldman, Charles

2010-01-01T23:59:59.000Z

182

Introduction to the Industrial Technologies Program (ITP) Webinar, January 15, 2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jim Quinn Jim Quinn Industrial Technologies Program U.S. Department of Energy Introduction to the Industrial Technologies Program (ITP) Webinar January 15, 2009 2 U.S. Industry and Energy Use R&D Program Technology Delivery Partnerships Energy Management Approach Opportunities Outline 3 Industrial Technologies Program (ITP) Mission Improve national energy security, climate, environment, and economic competitiveness by transforming the way U.S. industry uses energy. 4 Industry: Key to U.S. Economic & Energy Security U.S. manufacturing sector * Consumes more energy than any other economic sector (~32 quads) * Produces about 1,670 MMT CO 2 per year from energy use * Makes highest contribution to GDP (12%) * Produces nearly a quarter of world manufacturing output * Supplies >60% of US exports, worth $50

183

ESCO market and industry trends: Updated results from the NAESCO database project  

SciTech Connect

Today's U.S. energy efficiency services industry is one of the most successful examples of private sector energy efficiency services in the world, yet little empirical information is available on the actual market activity of this industry. LBNL, together with the National Association of Energy Services Companies (NAESCO), has compiled the most comprehensive dataset of the energy efficiency services industry: nearly 1,500 case studies of energy efficiency projects. Our analysis of these projects helps shed light on some of the conventional wisdom regarding industry performance and evolution. We report key statistics about typical projects and industry trends that will aid state, federal, and international policymakers, and other investors interested in the development of a private sector energy efficiency services industry.

Osborn, Julie G.; Goldman, Charles A.; Hopper, Nicole C.

2001-10-15T23:59:59.000Z

184

Sector 30 - useful links  

NLE Websites -- All DOE Office Websites (Extended Search)

Useful Links Sector 30 Sector Orientation Form HERIX experiment header for lab book MERIX experiment header for lab book Printing from your laptop at the beamline Other IXS sectors...

185

Shrenik Industries | Open Energy Information  

Open Energy Info (EERE)

India Zip 416 109 Sector Wind energy Product Maharashtra-based wind turbine tower manufacturer and subsidiary of the Sanjay Ghodawat Group of Industries. References...

186

Ventower Industries | Open Energy Information  

Open Energy Info (EERE)

Place Monroe, Michigan Zip 48161 Sector Wind energy Product Michigan-based wind turbine tower manufacturer. References Ventower Industries1 LinkedIn Connections CrunchBase...

187

Eolica Industrial | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Eolica Industrial Place Sao Paulo, Sao Paulo, Brazil Zip 01020-901 Sector Wind energy Product Brazil based wind turbine steel towers and...

188

Industrial Relations | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

and introduce technologies to the private sector. How Industry Can Work with Argonne Argonne has many types of contractual agreements to meet the needs and interests of...

189

Electricity Supply Sector  

U.S. Energy Information Administration (EIA)

Electricity Supply Sector Part 1 of 6 Supporting Documents Sector-Specific Issues and Reporting Methodologies Supporting the General Guidelines for the Voluntary

190

International industrial sector energy efficiency policies  

E-Print Network (OSTI)

and Opportunities,” Energy Policy 26(11): 859-872. Hall,1999. “Incentives in Energy Policy – A Comparison BetweenVoluntary Agreements in Energy Policy – Implementation and

Price, Lynn; Worrell, Ernst

2000-01-01T23:59:59.000Z

191

China's industrial sector in an international context  

E-Print Network (OSTI)

improvement and increasing refinery complexity. Data forenergy consumption in refineries accounted for roughly 8% (and expand capacity. Refinery capacity and production of

Price, Lynn; Worrell, Ernst; Martin, Nathan; Lehman, Bryan; Sinton, Jonathan

2000-01-01T23:59:59.000Z

192

industrial | U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Perspectives: Industrial and transportation sectors lead energy use by sector. ... New EIA data show total grid-connected photovoltaic solar capacity. October ...

193

ITL Bulletin Protecting Industrial Control Systems - Key ...  

Science Conference Proceedings (OSTI)

... and operated, including the telecommunications, energy, financial services ... generation, oil refineries, water and wastewater treatment, and chemical ...

2012-03-26T23:59:59.000Z

194

Analysis of ultimate energy consumption by sector in Islamic republic of Iran  

Science Conference Proceedings (OSTI)

Total ultimate energy consumption in Iran was 1033.32 MBOE in 2006, and increased at an average annual rate of 6% in 1996-2006. Household and commercial sector has been the main consumer sector (418.47 MBOE) and the fastest-growing sector (7.2%) that ... Keywords: Iran, agricultural sector, energy audits, energy consumption, industrial sector, residential and commercial sector, transportation sector

B. Farahmandpour; I. Nasseri; H. Houri Jafari

2008-02-01T23:59:59.000Z

195

Sector-Specific information infrastructure issues in the oil, gas, and petrochemical sector  

Science Conference Proceedings (OSTI)

In this chapter we have discussed vulnerabilities and mitigating actions to improve safety, security and continuity of the information and process infrastructure used in the oil, gas and petrochemical sector. An accident in the oil and gas industry can ...

Stig O. Johnsen; Andreas Aas; Ying Qian

2012-01-01T23:59:59.000Z

196

Assessment of IP Addressable Microprocessor-Based Adjustable Speed Drives for Small Motors in the Residential Sector Applications  

Science Conference Proceedings (OSTI)

This technical update explores use of microprocessor-based adjustable speed drives (ASDs) used in the residential sector for small motor applications. It provides a detailed summary of the key players in the industry who are involved with the motor control design. It also provides insights about advantages of going from traditional motor control to embedded microprocessor-based electric motor drive systems. Finally, this technical updates describes the possibility of connecting these devices to the Inter...

2008-12-16T23:59:59.000Z

197

Energy End-Use Flow Maps for the Buildings Sector  

SciTech Connect

Graphical presentations of energy flows are widely used within the industrial sector to depict energy production and use. PNNL developed two energy flow maps, one each for the residential and commercial buildings sectors, in response to a need for a clear, concise, graphical depiction of the flows of energy from source to end-use in the building sector.

Belzer, David B.

2006-12-04T23:59:59.000Z

198

Demand Response Enabling Technologies and Approaches for Industrial Facilities  

E-Print Network (OSTI)

There are numerous programs sponsored by Independent System Operators (ISOs) and utility or state efficiency programs that have an objective of reducing peak demand. Most of these programs have targeted the residential and commercial sector, however, there are also huge opportunities for demand response in the industrial sector. This paper describes some of the demand response initiatives that are currently active in New York State, explaining applicability of industrial facilities. Next, we discuss demand response-enabling technologies, which can help an industrial plant effectively address demand response needs. Finally, the paper is concluded with a discussion of case study projects that illustrate application of some of these demand response enabling technologies for process operations. These case studies, illustrating some key projects from the NYSERDA Peak Load Reduction program, will describe the technologies and approaches deployed to achieve the demand reduction at the site, the quantitative impact of the project, and a discussion of the overall successes at each site.

Epstein, G.; D'Antonio, M.; Schmidt, C.; Seryak, J.; Smith, C.

2005-01-01T23:59:59.000Z

199

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Market Trends - Industrial sector energy demand Market Trends - Industrial sector energy demand Growth in industrial energy consumption is slower than growth in shipments figure data Despite a 76-percent increase in industrial shipments, industrial delivered energy consumption increases by only 19 percent from 2011 to 2040 in the AEO2013 Reference case. The continued decline in energy intensity of the industrial sector is explained in part by a shift in the share of shipments from energy-intensive manufacturing industries (bulk chemicals, petroleum refineries, paper products, iron and steel, food products, aluminum, cement and lime, and glass) to other, less energy-intensive industries, such as plastics, computers, and transportation equipment. Also, the decline in energy intensity for the less energy-intensive industries is almost twice

200

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Industrial sector energy demand Industrial sector energy demand Growth in industrial energy consumption is slower than growth in shipments figure data Despite a 76-percent increase in industrial shipments, industrial delivered energy consumption increases by only 19 percent from 2011 to 2040 in the AEO2013 Reference case. The continued decline in energy intensity of the industrial sector is explained in part by a shift in the share of shipments from energy-intensive manufacturing industries (bulk chemicals, petroleum refineries, paper products, iron and steel, food products, aluminum, cement and lime, and glass) to other, less energy-intensive industries, such as plastics, computers, and transportation equipment. Also, the decline in energy intensity for the less energy-intensive industries is almost twice

Note: This page contains sample records for the topic "industrial sector key" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Crypto Key Management Framework  

Science Conference Proceedings (OSTI)

... A Framework for Designing Cryptographic Key Management Systems ... A Framework for Designing Cryptographic Key Management Systems ...

2013-08-13T23:59:59.000Z

202

EIA - 2010 International Energy Outlook - Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial International Energy Outlook 2010 Industrial Sector Energy Consumption Worldwide industrial energy consumption increases by 42 percent, or an average of 1.3 percent per year, from 2007 to 2035 in the IEO2010 Reference case. Ninety-five percent of the growth occurs in non-OECD nations. Overview The world's industries make up a diverse sector that includes manufacturing, agriculture, mining, and construction. Industrial energy demand varies across regions and countries, depending on the level and mix of economic activity and technological development, among other factors. Energy is consumed in the industrial sector for a wide range of activities, such as processing and assembly, space conditioning, and lighting. Industrial energy use also includes natural gas and petroleum products used as feedstocks to produce non-energy products, such as plastics. In aggregate, the industrial sector uses more energy than any other end-use sector, consuming about one-half of the world's total delivered energy.

203

Energy Conservation Progress and Opportunities in the Pulp and Paper Industry  

E-Print Network (OSTI)

In 1980 the pulp and paper industry was the third ranking consumer of total purchased fuels and energy in the U.S. industrial sector and the highest single industry in terms of residual oil consumption. Over the past decade in response to rapidly rising energy prices, the pulp and paper industry has made significant progress in reducing fossil fuel consumption through conservation and increased use of internally generated fuels. Purchased energy usage has declined from 19.2 Btu/ton of product in 1972 to 13.9 Btu/ton in 1982; and further significant reductions over the next decade appear likely. This paper examines the progress which has occurred in reducing the industry's reliance on purchased fossil fuel over the past decade, focusing on the key steps which led to energy conservation and increased fuel substitution. Present work toward continuing energy conservation will be reviewed and key opportunities for continued reduction into the 1990s will be examined.

Watkins, J. J.; Hunter, W. D.

1984-01-01T23:59:59.000Z

204

Public-Private Sector Media Partnerships  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public-Private Sector Public-Private Sector Media Partnerships Stacy Hunt, Confluence Communications March 1, 2012 Who is the Building America Retrofit Alliance (BARA)? * One of 10 industry teams funded in part by the U.S. Department of Energy's Building America program * Multidisciplinary and focused on building performance, multimedia content and program development, and EE/RE outreach Why are media partnerships important to Building America? * Access to large, loyal, qualified existing audiences * Tried and true communications channels, strategies, and materials * Often strong editorial voices and/or industry leadership positions Media Case Study The Cool Energy House Media Case Study What's Useful to Remodelers?

205

The Paradox of Regulatory Development in China: The Case of the Electricity Industry  

E-Print Network (OSTI)

chanye (China‘s Electricity Industry at the Crossroad). ? InCapture in the Electricity Industry 2. Cross-Sectorals Telecoms and Electricity Industries. ? European Journal of

Tsai, Chung-min

2010-01-01T23:59:59.000Z

206

Industrial operations and maintenance energy measures: A review  

SciTech Connect

Industry consumes a significant percentage of the total electric energy consumption both nationally and in the Pacific Northwest. However, industrial demand-side management (DSM) activities in this sector are underdeveloped and typically concentrate on new technologies and new equipment. An overlooked opportunity for electric resource development is through operations and maintenance (O and M) activities. The purpose of this project is to determine the industrial DSM potential that may be achieved through O and M practices both in the US and the Pacific Northwest. The overall goal of the project is to identify, quantify, confirm, and develop conservation resources that can be achieved from the industrial sector through O and M practices and energy measures. The results of the study identify a significant electric resource potential available through improved O and M activities in industry. Several O and M type energy-saving measures that increase efficiencies and reduce loads are identified and estimates of potential energy savings associated with each measure are presented. Systems identified with the most potential include compressed-air systems; motors and motor drives; lighting; heating, ventilating and air conditioning (HVAC); and control systems. The results of the research show that industrial electric energy consumption can be notably reduced by implementing key O and M type energy measures. Specifically, the results of industrial energy audits, case studies, and other published sources indicate that reductions in energy consumption from improved O and M activities can average between 8% and 12.5%.

Parker, S.A.; Gaustad, K.L.; Winiarski, D.W.

1994-12-01T23:59:59.000Z

207

Industry Energy Efficiency Workshop - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Notes on the Energy Information Administration's summary session on Industry Sector Energy-Efficiency Workshop on March 5, 1996

208

Pages that link to "Industry" | Open Energy Information  

Open Energy Info (EERE)

Transport Sectors: Policy Drivers and International Trade Aspects ( links) Asia-Energy Efficiency Guide to Industry ( links) Supporting Entrepreneurs for...

209

BUDGET KEY DATES  

Science Conference Proceedings (OSTI)

BUDGET KEY DATES. For Immediate Release: December 15, 2009. Contact: Diane Belford 301-975-8400. Budget Key Dates.

2013-06-16T23:59:59.000Z

210

Energy Efficiency Services Sector: Workforce Size and Expectations for Growth  

SciTech Connect

The energy efficiency services sector (EESS) is poised to become an increasingly important part of the U.S. economy. Climate change and energy supply concerns, volatile and increasing energy prices, and a desire for greater energy independence have led many state and national leaders to support an increasingly prominent role for energy efficiency in U.S. energy policy. The national economic recession has also helped to boost the visibility of energy efficiency, as part of a strategy to support economic recovery. We expect investment in energy efficiency to increase dramatically both in the near-term and through 2020 and beyond. This increase will come both from public support, such as the American Recovery and Reinvestment Act (ARRA) and significant increases in utility ratepayer funds directed toward efficiency, and also from increased private spending due to codes and standards, increasing energy prices, and voluntary standards for industry. Given the growing attention on energy efficiency, there is a concern among policy makers, program administrators, and others that there is an insufficiently trained workforce in place to meet the energy efficiency goals being put in place by local, state, and federal policy. To understand the likelihood of a potential workforce gap and appropriate response strategies, one needs to understand the size, composition, and potential for growth of the EESS. We use a bottom-up approach based upon almost 300 interviews with program administrators, education and training providers, and a variety of EESS employers and trade associations; communications with over 50 sector experts; as well as an extensive literature review. We attempt to provide insight into key aspects of the EESS by describing the current job composition, the current workforce size, our projections for sector growth through 2020, and key issues that may limit this growth.

Goldman, Charles; Fuller, Merrian C.; Stuart, Elizabeth; Peters, Jane S.; McRae, Marjorie; Albers, Nathaniel; Lutzenhiser, Susan; Spahic, Mersiha

2010-03-22T23:59:59.000Z

211

Profile of the chemicals industry in California: Californiaindustries of the future program  

SciTech Connect

The U.S. Department of Energy (DOE) Office of Industrial Technologies (OIT) established the Industries of the Future (IOF) program to increase energy efficiency, reduce waste production and to improve competitiveness, currently focusing on nine sectors. The IOF is a partnership strategy involving industry, the research community and the government, working together to identify technology needs, promote industrial partnerships and implement joint measures with all partners involved. The State Industries of the Future (SIOF) program delivers the accomplishments of the national Industries of the Future strategy to the local level, to expand the technology opportunities to a larger number of partners and reach smaller businesses and manufacturers that were not initially involved in the IOF effort. The state programs bring together industry, academia, and state agencies to address the important issues confronting industry in the state. These public-private coalitions facilitate industry solutions locally and enhance economic development. California has started a State Industries of the Future effort, in collaboration with the U.S. Department of Energy. The California Energy Commission (CEC) is leading the SIOF program in California, as part of many other programs to improve the energy efficiency and performance of industries in California. The California State IOF program aims to build a network of participants from industry, academia and government in four selected industrial sectors as a basis for the development of a strategic partnership for industrial energy efficient technology in the state. In California the IOF effort focuses petroleum refining, chemical processing, food processing and electronics. As part of this effort, the SIOF program will develop roadmaps for technology development for the selected sectors. On the basis of the roadmap, the program will develop successful projects with co-funding from state and federal government, and promote industry-specific energy-efficiency. An important element of the SIOF-program is the preparation of R&D roadmaps for each of the selected industries. The roadmap will help to identify priority needs for the participating industries to meet their energy challenges. The roadmap effort builds on the roadmaps developed by DOE, and on the conditions specific for the industry in California. Key to the successful preparation of a roadmap in the selected industries is the development of a profile of the industries. The profile provides a basis for the participants in the roadmap-effort, especially as the structure of the industries in California can be different than in the nation. The sector profiles describe the current economic and energy situation of these industries in California, the processes and energy uses, and the potential future developments in each industry. The profiles are an integral part of the roadmap, to help working group partners to evaluate the industry's R&D needs for their industry in California. In this report, we focus on the chemicals industry. The industry is an important economic factor in the state, providing over 82,300 jobs directly, and more in indirect employment. Value of shipments in 2001 was just under $25.7 Billion, or 6% of all manufacturing in California. There are over 1,500 chemical plants in California, of which 52% are pharmaceutical companies. Many companies operate chemical plants in California. The industry consumes 8% of the electricity and 5% of the natural gas in California. In this report, we start with a description of the chemical industry in the United States and California. This is followed by a discussion of the energy consumption and energy intensity of the Californian chemical industry. Chapter 3 focuses on the main sub-sectors. For each of the sub-sectors a general process description is provided in Chapter 4. Based on this analysis, in Chapter 5, we discuss potential technology developments that can contribute to further improving the energy efficiency in chemical plants, with a focus on the situation in Califor

Galitsky, Christina; Worrell, Ernst

2004-06-01T23:59:59.000Z

212

High Penetration of Renewable Energy in the Transportation Sector: Scenarios, Barriers, and Enablers; Preprint  

SciTech Connect

Transportation accounts for 71% of U.S. petroleum use and 33% of its greenhouse gases emissions. Pathways toward reduced greenhouse gas emissions and petroleum dependence in the transportation sector have been analyzed in considerable detail, but with some limitations. To add to this knowledge, the U.S. Department of Energy has launched a study focused on underexplored greenhouse-gas-abatement and oil-savings opportunities related to transportation. This Transportation Energy Futures study analyzes specific issues and associated key questions to strengthen the existing knowledge base and help cultivate partnerships among federal agencies, state and local governments, and industry.

Vimmerstedt, L.; Brown, A.; Heath, G.; Mai, T.; Ruth, M.; Melaina, M.; Simpkins, T.; Steward, D.; Warner, E.; Bertram, K.; Plotkin, S.; Patel, D.; Stephens, T.; Vyas, A.

2012-06-01T23:59:59.000Z

213

Number of Retail Customers by State by Sector, 1990-2012  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Retail Customers by State by Sector, 1990-2012" Number of Retail Customers by State by Sector, 1990-2012" "Year","State","Industry Sector Category","Residential","Commercial","Industrial","Transportation","Other","Total" 2012,"AK","Total Electric Industry",275405,48790,1263,0,"NA",325458 2012,"AL","Total Electric Industry",2150977,357395,7168,0,"NA",2515540 2012,"AR","Total Electric Industry",1332154,181823,33926,2,"NA",1547905 2012,"AZ","Total Electric Industry",2585638,305250,7740,0,"NA",2898628 2012,"CA","Total Electric Industry",13101887,1834779,73805,12,"NA",15010483

214

Retail Sales of Electricity (Megawatthours) by State by Sector by Provider, 1990  

U.S. Energy Information Administration (EIA) Indexed Site

Retail Sales of Electricity (Megawatthours) by State by Sector by Provider, 1990-2012" Retail Sales of Electricity (Megawatthours) by State by Sector by Provider, 1990-2012" "Year","State","Industry Sector Category","Residential","Commercial","Industrial","Transportation","Other","Total" 2012,"AK","Total Electric Industry",2160196,2875038,1381177,0,"NA",6416411 2012,"AL","Total Electric Industry",30632261,21799181,33751106,0,"NA",86182548 2012,"AR","Total Electric Industry",17909301,12102048,16847755,463,"NA",46859567 2012,"AZ","Total Electric Industry",32922970,29692256,12448117,0,"NA",75063343 2012,"CA","Total Electric Industry",90109995,121791536,46951714,684793,"NA",259538038

215

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Industrial sector energy demand Industrial sector energy demand On This Page Heat and power energy... Industrial fuel mix changes... Iron and steel... Delivered energy use... Chemical industry use of fuels... Output growth for... Industrial and commercial... Heat and power energy consumption increases in manufacturing industries Despite a 54-percent increase in industrial shipments, industrial energy consumption increases by only 19 percent from 2009 to 2035 in the AEO2011 Reference case. Energy consumption growth is moderated by a shift in the mix of output, as growth in energy-intensive manufacturing output (aluminum, steel, bulk chemicals, paper, and refining) slows and growth in high-value (but less energy-intensive) industries, such as computers and transportation equipment, accelerates. figure data

216

Sector 1 welcome  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome to Sector 1 of the Advanced Photon Source (APS) located at Argonne Welcome to Sector 1 of the Advanced Photon Source (APS) located at Argonne National Laboratory (ANL). The Sector 1 beamlines are operated by the Materials Physics & Engineering Group (MPE) of the APS X-ray Science Division (XSD). Sector 1 consists of the 1-ID and 1-BM beamlines, and 80% of the available beamtime is accessible to outside users through the General User program. The main programs pursued at Sector 1 are described below. 1-ID is dedicated to providing and using brilliant, high-energy x-ray beams (50-150 keV) for the following activities: Coupled high-energy small- and wide-angle scattering (HE-SAXS/WAXS) High-energy diffraction microscopy (HEDM) Sector 1 General Layout Stress/strain/texture studies Pair-distribution function (PDF) measurements

217

NEMS industrial module documentation report  

SciTech Connect

The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2010) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of output of industrial activity. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

1994-01-01T23:59:59.000Z

218

Propane Demand by Sector  

U.S. Energy Information Administration (EIA)

We will be watching the agricultural sector, since the Agriculture Economic Research Service has predicted a record corn crop this year. ...

219

Advanced Energy Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Fort Collins, Colorado Zip 80525 Sector Solar Product US-based manufacturer of power conversion and control systems for the semiconductor and solar industries. The company also...

220

XH Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Jump to: navigation, search Name XH Industries Inc Place Ilwaco, Washington, DC Zip 98624-9046 Sector Wind energy Product Washington-based repairer of wind power...

Note: This page contains sample records for the topic "industrial sector key" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Longjitaihe Industry Group | Open Energy Information  

Open Energy Info (EERE)

Zip 7400 Sector Solar Product Chinese real estate developer foraying into solar PV projects. References Longjitaihe Industry Group1 LinkedIn Connections CrunchBase Profile No...

222

Climate VISION: Private Sector Initiatives: Electric Power  

Office of Scientific and Technical Information (OSTI)

Letters of Intent/Agreements Letters of Intent/Agreements The electric power sector participates in the Climate VISION program through the Electric Power Industry Climate Initiative (EPICI) and its Power Partners program, which is being developed in cooperation with the Department of Energy. The memberships of the seven organizations that comprise EPICI represent 100% of the power generators in the United States. Through individual commitments and collective actions, the power sector will strive to make meaningful contributions to the President's greenhouse gas intensity goal. EPICI members also support efforts to increase technology research, development and deployment that will help the power sector, and other sectors, achieve the President's goal. The seven organizations comprising EPICI are the American Public Power

223

Climate VISION: Private Sector Initiatives: Electric Power: Resources and  

Office of Scientific and Technical Information (OSTI)

Industry Associations Industry Associations Power Sector Programs/Initiatives Facilitating Organizations Other Resources Power Sector Programs/Initiatives To help achieve its Climate VISION commitment, the power sector has developed a series of programs and sector-wide initiatives. Power sector members are encouraged to participate in programs organized by their EPICI representative organization and join one of the sector-wide initiatives described below. PowerTree Carbon Company Through PowerTree Carbon Company, electric companies are partnering with government agencies and environmental groups to plant trees and restore natural ecosystems in Arkansas, Louisiana, and Mississippi. In addition to sequestering CO2 emissions, the PowerTree Carbon Company project will: create significant habitats for waterfowl, birds, and other native wildlife

224

Estimates of emergency operating capacity in US manufacturing and nonmanufacturing industries - Volume 1: Concepts and Methodology  

SciTech Connect

Development of integrated mobilization preparedness policies requires planning estimates of available productive capacity during national emergency conditions. Such estimates must be developed in a manner to allow evaluation of current trends in capacity and the consideration of uncertainties in various data inputs and in engineering assumptions. This study developed estimates of emergency operating capacity (EOC) for 446 manufacturing industries at the 4-digit Standard Industrial Classification (SIC) level of aggregation and for 24 key nonmanufacturing sectors. This volume lays out the general concepts and methods used to develop the emergency operating estimates. The historical analysis of capacity extends from 1974 through 1986. Some nonmanufacturing industries are included. In addition to mining and utilities, key industries in transportation, communication, and services were analyzed. Physical capacity and efficiency of production were measured. 3 refs., 2 figs., 12 tabs. (JF)

Belzer, D.B. (Pacific Northwest Lab., Richland, WA (USA)); Serot, D.E. (D/E/S Research, Richland, WA (USA)); Kellogg, M.A. (ERCE, Inc., Portland, OR (USA))

1991-03-01T23:59:59.000Z

225

Energy Savings in Industrial Buildings  

E-Print Network (OSTI)

The industrial sector accounts for more than one-third of total energy use in the United States and emits 28.7 percent of the country’s greenhouse gases. Energy use in the industrial sector is largely for steam and process heating systems, and electricity for equipment such as pumps, air compressors, and fans. Lesser, yet significant, amounts of energy are used for industrial buildings – heating, ventilation, and air conditioning (HVAC), lighting and facility use (such as office equipment). Due to economic growth, energy consumption in the industrial sector will continue to increase gradually, as will energy use in industrial buildings. There is a large potential for energy saving and carbon intensity reduction by improving HVAC, lighting, and other aspects of building operation and technologies. Analyses show that most of the technologies and measures to save energy in buildings would be cost-effective with attractive rates of return. First, this paper will investigate energy performance in buildings within the manufacturing sector, as classified in the North American Industry Classification System (NAICS). Energy use patterns for HVAC and lighting in industrial buildings vary dramatically across different manufacturing sectors. For example, food manufacturing uses more electricity for HVAC than does apparel manufacturing because of the different energy demand patterns. Energy saving opportunities and potential from industrial buildings will also be identified and evaluated. Lastly, barriers for deployment of energy savings technologies will be explored along with recommendations for policies to promote energy efficiency in industrial buildings.

Zhou, A.; Tutterow, V.; Harris, J.

2009-05-01T23:59:59.000Z

226

Strategies for reducing energy demand in the materials sector  

E-Print Network (OSTI)

This research answers a key question - can the materials sector reduce its energy demand by 50% by 2050? Five primary materials of steel, cement, aluminum, paper, and plastic, contribute to 50% or more of the final energy ...

Sahni, Sahil

2013-01-01T23:59:59.000Z

227

Climate VISION: Private Sector Initiatives: Iron and Steel  

Office of Scientific and Technical Information (OSTI)

to a Climate VISION goal of achieving a 10 percent increase in sector-wide average energy efficiency by 2012 using a 2002 baseline. Read the U.S. Steel Industry Energy...

228

Energy-Sector Stakeholders Attend the Department of Energy's...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program on July 20-22, during which 28 R&D projects were presented for review by industry stakeholders. More than 65 energy sector stakeholders came to network, present, and...

229

Energy intensity in China's iron and steel sector  

E-Print Network (OSTI)

In this study, I examine the spatial and economic factors that influence energy intensity in China's iron and steel sector, namely industrial value added, renovation investment, coke consumption, and local coke supply. ...

Xu, Jingsi, M.C.P. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

230

China's Industrial Energy Consumption Trends and Impacts of the Top-1000  

NLE Websites -- All DOE Office Websites (Extended Search)

China's Industrial Energy Consumption Trends and Impacts of the Top-1000 China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects Title China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects Publication Type Journal Year of Publication 2012 Authors Ke, Jing, Lynn K. Price, Stephanie Ohshita, David Fridley, Nina Zheng Khanna, Nan Zhou, and Mark D. Levine Keywords energy saving, energy trends, industrial energy efficiency, top-1000 Abstract This study analyzes China's industrial energy consumption trends from 1996 to 2010 with a focus on the impact of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects. From 1996 to 2010, China's industrial energy consumption increased by 134%, even as the industrial economic energy intensity decreased by 46%. Decomposition analysis shows that the production effect was the dominant cause of the rapid growth in industrial energy consumption, while the efficiency effect was the major factor slowing the growth of industrial energy consumption. The structural effect had a relatively small and fluctuating influence. Analysis shows the strong association of industrial energy consumption with the growth of China's economy and changing energy policies. An assessment of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects indicates that the economic energy intensity of major energy-intensive industrial sub-sectors, as well as the physical energy intensity of major energy-intensive industrial products, decreased significantly during China's 11th Five Year Plan (FYP) period (2006-2010). This study also shows the importance and challenge of realizing structural change toward less energy-intensive activities in China during the 12th FYP period (2011-2015).

231

EPIC Industry Manual for Printed Circuit Boards  

Science Conference Proceedings (OSTI)

The EPRI Partnership for Industrial Competitiveness (EPIC) focuses on identifying opportunities for improving the industrial efficiency of selected industries that are customers of participating utilities. The goal is to examine opportunities to improve the efficiency and productivity and reduce environmental impacts of any particular industrial customer. EPIC's industry manuals are intended to provide broad coverage within a candidate industry, with different sectors of the industry linked by focusing o...

2000-11-17T23:59:59.000Z

232

Climate VISION: Private Sector Initiatives: Progress Report  

Office of Scientific and Technical Information (OSTI)

PROGRESS REPORT PROGRESS REPORT Progress Report NEWS MEDIA CONTACT: Megan Barnett, (202) 586-4940 FOR IMMEDIATE RELEASE Friday, February 8, 2008 DOE Releases Climate VISION Progress Report 2007 Outlines Industry Progress in Reducing Greenhouse Gas Emissions Intensity through Climate VISION Partnership WASHINGTON, DC - The U.S. Department of Energy (DOE) today released the Climate VISION Progress Report 2007, which reports on the actions taken by energy-intensive industries to improve greenhouse gas emissions intensity of their operations from 2002 to 2006. The report indicates that the power and energy-intensive industrial sectors improved their combined emissions intensity by 9.4 percent over this four year period, and in 2006, actual greenhouse gas emissions for these sectors fell a combined 1.4 percent.

233

Public Sector Energy Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Capitol dome Capitol dome Public Sector Energy Efficiency Research on sustainable federal operations supports the implementation of sustainable policies and practices in the public sector. This work serves as a bridge between the technology development of Department of Energy's National Laboratories and the operational needs of public sector. Research activities involve many aspects of integrating sustainability into buildings and government practices, including technical assistance for sustainable building design, operations, and maintenance; project financing for sustainable facilities; institutional change in support of sustainability policy goals; and procurement of sustainable products. All of those activities are supported by our work on program and project evaluation, which analyzes overall program effectiveness while ensuring

234

America's Wind Industry Reaches Record Highs  

Energy.gov (U.S. Department of Energy (DOE))

Sharing key findings from two new Energy Department reports that highlight the record growth of America's wind industry.

235

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial Mkt trends Market Trends Despite a 54-percent increase in industrial shipments, industrial energy consumption increases by only 19 percent from 2009 to 2035 in the AEO2011 Reference case. Energy consumption growth is moderated by a shift in the mix of output, as growth in energy-intensive manufacturing output (aluminum, steel, bulk chemicals, paper, and refining) slows and growth in high-value (but less energy-intensive) industries, such as computers and transportation equipment, accelerates. See more figure data Reference Case Tables Table 2. Energy Consumption by Sector and Source - United States XLS Table 2.1. Energy Consumption by Sector and Source - New England XLS Table 2.2. Energy Consumption by Sector and Source - Middle Atlantic XLS

236

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network (OSTI)

Competitiveness in the Renewable Energy Sector: The Case ofand Regulation Concerning Renewable Energy ElectricityIndustrial Policy and Renewable Energy Technology.

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

237

Sector 6 Research Highlights  

NLE Websites -- All DOE Office Websites (Extended Search)

MM-Group Home MM-Group Home MMG Advisory Committees Beamlines 4-ID-C Soft Spectroscopy 4-ID-D Hard Spectroscopy 6-ID-B,C Mag. Scattering 6-ID-D HighE Scattering 29-ID IEX - ARPES,RSXS Getting Beamtime Sector Orientation Sector 4 Orientation Sector 6 Orientation Publications (4-ID) Publications (6-ID) Contact Us APS Ring Status Current APS Schedule Highlights of research on Sector 6 Teasing Out the Nature of Structural Instabilities in Ceramic Compounds Teasing Out the Nature of Structural Instabilities in Ceramic Compounds March 12, 2013 Researchers have used beamlines 6-ID-B at the APS and XmAS at the ESRF to probe the structure of the rare-earth magnetic material europium titanate. In a magnetic field, the optical properties of this system change quite dramatically, presenting hope of a strong magneto-electric material for potential use in new memory, processing, and sensor devices.

238

Buildings Sector Analysis  

DOE Green Energy (OSTI)

A joint NREL, ORNL, and PNNL team conducted market analysis to help inform DOE/EERE's Weatherization and Intergovernmental Program planning and management decisions. This chapter presents the results of the market analysis for the Buildings sector.

Hostick, Donna J.; Nicholls, Andrew K.; McDonald, Sean C.; Hollomon, Jonathan B.

2005-08-01T23:59:59.000Z

239

Buildings Sector Analysis  

SciTech Connect

A joint NREL, ORNL, and PNNL team conducted market analysis to help inform DOE/EERE's Weatherization and Intergovernmental Program planning and management decisions. This chapter presents the results of the market analysis for the Buildings sector.

Hostick, Donna J.; Nicholls, Andrew K.; McDonald, Sean C.; Hollomon, Jonathan B.

2005-08-01T23:59:59.000Z

240

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2012-12-19T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector key" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2013-11-05T23:59:59.000Z

242

Group key management  

SciTech Connect

This report describes an architecture and implementation for doing group key management over a data communications network. The architecture describes a protocol for establishing a shared encryption key among an authenticated and authorized collection of network entities. Group access requires one or more authorization certificates. The implementation includes a simple public key and certificate infrastructure. Multicast is used for some of the key management messages. An application programming interface multiplexes key management and user application messages. An implementation using the new IP security protocols is postulated. The architecture is compared with other group key management proposals, and the performance and the limitations of the implementation are described.

Dunigan, T.; Cao, C.

1997-08-01T23:59:59.000Z

243

Propane Market Outlook Assessment of Key Market Trends, Threats, and Opportunities Facing  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

0 0 Propane Market Outlook Assessment of Key Market Trends, Threats, and Opportunities Facing the Propane Industry Through 2020 P r e s e n T e d B y : Declining Sales in the Recent Past and Near-Term Future After peaking in 2003, nationwide propane consumption fell by more than 10 percent through 2006. Although propane demand rebounded somewhat in 2007 and 2008 due to colder weather, propane demand appears to have declined again in 2009. The collapse of the new housing market, combined with decreases in fuel use per customer resulting from efficiency upgrades in homes and equipment, resulted in a decline in residential propane sales. The recession also reduced demand in the industrial and commercial sectors. Colder weather in the last half of 2009 and in January

244

LEDSGP/Transportation Toolkit/Key Actions | Open Energy Information  

Open Energy Info (EERE)

Actions Actions < LEDSGP‎ | Transportation Toolkit Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Key Actions for Low-Emission Development in Transportation Although no single approach or fixed process exists for low-emission development strategies (LEDS), the following key actions are necessary steps for implementing LEDS in the transportation sector. Undertaking these actions requires flexibility to adapt to dynamic societal conditions in a way that complements existing climate and development goals in other sectors. Planners, researchers, and decision-makers should customize this LEDS implementation framework for the specific conditions of their transport sector, choosing from relevant resources to achieve a comprehensive action

245

The Sector Notebooks were developed by the EPA's Ofice of Compliance. Questions relating to the Sector  

E-Print Network (OSTI)

This report is one in a series of volumes published by the U.S. Environmental Protection Agency (EPA) to provide information of general. interest regarding environmental issues associated with specific industrial sectors. The documents were developed under contract by Abt Associates

Epn -r

1997-01-01T23:59:59.000Z

246

Deregulating and regulatory reform in the U.S. electric power sector  

E-Print Network (OSTI)

This paper discusses the evolution of wholesale and retail competition in the U.S electricity sector and associated industry restructuring and regulatory reforms. It begins with a discussion of the industry structure and ...

Joskow, Paul L.

2000-01-01T23:59:59.000Z

247

Poultry Industry: Industry Brief  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) Industry Brief provides an overview of the U.S. poultry industry and ways in which electric-powered processes and technologies can be used in poultry and egg production and processing. The poultry industry, which consists of poultry production for meat as well as egg production and processing, is one of the fastest growing segments of the U.S. food manufacturing industry. It is also an energy-intensive industry. In fact, a 2010 report by the USDA illustrates ...

2011-03-30T23:59:59.000Z

248

Summary of the GRI regional sectoral electricity model and the issues relating to those results. Occasional pub  

SciTech Connect

Results are summarized for an analysis of the U.S. electric utility industry conducted as an outgrowth of the '1984 GRI Baseline Projection of U.S. Energy Supply and Demand, 1983-2010.' The GRI Regional Sectoral Electricity Model shows a potential increase in gas demand by electric utilities of over one quad by the year 2000 if gas-fired combined-cycle is used to help offset any potential shortfall in generating capacity. Key issues emerging from the study include load growth, new generating capacity, capacity utilization, fuel choice, financial performance, and electricity prices.

Hilt, R.H.; Coyne, J.M.; Makovich, L.J.

1987-03-01T23:59:59.000Z

249

Climate VISION: Private Sector Initiatives: Chemical Manufacturing  

Office of Scientific and Technical Information (OSTI)

Letters of Intent/Agreements Letters of Intent/Agreements American Chemistry Council (ACC), representing 85% of the chemical industry production in the U.S., has agreed American Chemistry Council Logo to an overall greenhouse gas intensity reduction target of 18% by 2012 from 1990 levels. ACC will measure progress based on data collected directly from its members. ACC also pledges to support the search for new products and pursue innovations that help other industries and sectors achieve the President's goal. Activities include increased production efficiencies, promoting coal gasification technology, increasing bio-based processes, and, most importantly, developing efficiency-enabling products for use in other sectors, such as appliance transportation and construction. The following documents are available for download as Adobe PDF documents.

250

What is the Industrial Technologies Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Together with our industry partners, we strive to: Together with our industry partners, we strive to: * Accelerate adoption of the many energy-efficient technologies and practices available today * Conduct vigorous technology innovation to radically improve future energy diversity, resource efficiency, and carbon mitigation * Promote a corporate culture of energy efficiency and carbon management What Is the Industrial Technologies Program ? The Industrial Technologies Program (ITP) is the lead federal agency responsible for improving energy efficiency in the largest energy-using sector of the country. Industrial Sector National Initiative Goal: Drive a 25% reduction in industrial energy intensity by 2017. Standards Training Information Assessments * Website * Information Center * Tip Sheets * Case studies * Webcasts * Emerging

251

Roadmap to Secure Control Systems in the Energy Sector  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roadmap Roadmap to Secure Control Systems in the Energy Sector -  - Foreword T his document, the Roadmap to Secure Control Systems in the Energy Sector, outlines a coherent plan for improing cyber security in the energy sector. It is the result of an unprecedented collaboration between the energy sector and goernment to identify concrete steps to secure control systems used in the electricity, oil, and natural gas sectors oer the next ten years. The Roadmap proides a strategic framework for guiding industry and goernment efforts based on a clear ision supported by goals and time-based milestones. It addresses the energy sector's most urgent challenges as well as longer-term needs and practices. A distinctie feature of this collaboratie effort is the actie inolement and leadership of energy asset

252

Louisville Private Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Private Sector Attendees Private Sector Attendees ENERGY STAR Kick-off Meeting December 2007 5/3rd Bank Al J Schneider Company (The Galt House East) Baptist Hospital East Brown - Forman Building Owner and Managers Association (BOMA) Louisville CB Richard Ellis Commercial Real Estate Women (CREW) Louisville Cushman Wakefield General Electric Company Golden Foods Greater Louisville Chapter of International Facility Management Association (IFMA) Hines Humana, Inc Institute of Real Estate Management (IREM) Kentucky Chapter Jewish Hospital & St Mary's Healthcare Kentucky Chapter, Certified Commercial Investment Managers (CCIM) Kentucky Governor's Office of Energy Policy Kentucky Society of Health Care Engineers Kindred Health Care Louisville Air Pollution Control Board

253

Commercial Sector Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

Kevin Jarzomski

2012-11-15T23:59:59.000Z

254

Commercial Sector Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

Kevin Jarzomski

2013-10-10T23:59:59.000Z

255

Making Africa's Power Sector Sustainable: An Analysis of Power Sector  

Open Energy Info (EERE)

Making Africa's Power Sector Sustainable: An Analysis of Power Sector Making Africa's Power Sector Sustainable: An Analysis of Power Sector Reforms in Africa Jump to: navigation, search Tool Summary Name: Making Africa's Power Sector Sustainable: An Analysis of Power Sector Reforms in Africa Agency/Company /Organization: United Nations Environment Programme, United Nations Economic Commission for Africa Sector: Energy Topics: Market analysis, Policies/deployment programs, Co-benefits assessment, - Energy Access, - Environmental and Biodiversity Resource Type: Guide/manual, Lessons learned/best practices Website: www.uneca.org/eca_programmes/nrid/pubs/powersectorreport.pdf UN Region: Eastern Africa References: Making Africa's Power Sector Sustainable: An Analysis of Power Sector Reforms in Africa[1] Overview "This study assesses the socio-economic and environmental impacts of power

256

The Key Agreement Schemes  

Science Conference Proceedings (OSTI)

... The three key derivation functions include KDF in Counter Mode, KDF in Feedback Mode, and KDF in Double-Pipeline Iteration Mode. ...

2013-04-23T23:59:59.000Z

257

Crypto Key Management Framework  

Science Conference Proceedings (OSTI)

... responsible to executive-level management (eg, the Chief Information Officer) for the ... entity information, keys, and metadata into a database used by ...

2013-08-15T23:59:59.000Z

258

Structural Change and Futures for the Electric Utility Industry  

Science Conference Proceedings (OSTI)

Technological change and evolving customer needs have already combined to precipitate fundamental structural change in several capital-intensive industries, notably the telecommunications, natural gas, and transportation sectors. These forces are now being unleashed in the electric utility sector. This report outlines some common patterns of change across several industries and presents scenarios of structural change for the electric power industry.

1995-08-09T23:59:59.000Z

259

Cryptographic Key Management Workshop 2010  

Science Conference Proceedings (OSTI)

Cryptographic Key Management Workshop 2010. Purpose: ... Related Project(s): Cryptographic Key Management Project. Details: ...

2013-08-01T23:59:59.000Z

260

Industry Profile | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Profile Industry Profile Industry Profile November 1, 2013 - 11:40am Addthis The largest energy consuming industrial sectors account for the largest share of CHP capacity; namely: Chemicals (30%), Petroleum Refining (17%), and Paper Products (14%). Other industrial sectors include: Commercial/Institutional (12%), Food (8%), Primary Metals (5%), Other Manufacturing (8%), and Other Industrial (6%). Combined heat and power (CHP)-sometimes referred to as cogeneration-involves the sequential process of producing and utilizing electricity and thermal energy from a single fuel. CHP is widely recognized to save energy and costs, while reducing carbon dioxide (CO2) and other pollutants. CHP is a realistic, near-term option for large energy efficiency improvements and significant CO2 reductions.

Note: This page contains sample records for the topic "industrial sector key" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Industrial Energy Efficiency Assessments  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Energy Efficiency Assessments Lynn Price Staff Scientist China Energy Group Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Industrial Energy Efficiency Assessments - Definition and overview of key components - International experience - Chinese situation and recommendations - US-China collaboration Industrial Energy Efficiency Assessments - Analysis of the use of energy and potential for energy efficiency in an industrial facility * Current situation * Recommendations for improving energy efficiency * Cost-benefit analysis of recommended options * An action plan for realizing potential savings Types of Industrial Energy Efficiency Assessments - Preliminary or walk-through - Detailed or diagnostic Audit criteria

262

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Oil/Liquids Oil/Liquids Petroleum and other liquids consumption outside industrial sector is stagnant or declines figure data Consumption of petroleum and other liquids peaks at 19.8 million barrels per day in 2019 in the AEO2013 Reference case and then falls to 18.9 million barrels per day in 2040 (Figure 93). The transportation sector accounts for the largest share of total consumption throughout the projection, although its share falls to 68 percent in 2040 from 72 percent in 2012 as a result of improvements in vehicle efficiency following the incorporation of CAFE standards for both LDVs and HDVs. Consumption of petroleum and other liquids increases in the industrial sector, by 0.6 million barrels per day from 2011 to 2040, but decreases in all the other end-use sectors.

263

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Oil/Liquids Oil/Liquids Petroleum and other liquids consumption outside industrial sector is stagnant or declines figure data Consumption of petroleum and other liquids peaks at 19.8 million barrels per day in 2019 in the AEO2013 Reference case and then falls to 18.9 million barrels per day in 2040 (Figure 93). The transportation sector accounts for the largest share of total consumption throughout the projection, although its share falls to 68 percent in 2040 from 72 percent in 2012 as a result of improvements in vehicle efficiency following the incorporation of CAFE standards for both LDVs and HDVs. Consumption of petroleum and other liquids increases in the industrial sector, by 0.6 million barrels per day from 2011 to 2040, but decreases in all the other end-use sectors.

264

Energy-Sector Stakeholders Attend the Department of Energy's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Sector Stakeholders Attend the Department of Energy's Energy-Sector Stakeholders Attend the Department of Energy's Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's Cybersecurity for Energy Delivery Systems Peer Review August 15, 2011 - 1:12pm Addthis The Department of Energy conducted a Peer Review of its Cybersecurity for Energy Delivery Systems (CEDS) Research and Development Program on July 20-22, during which 28 R&D projects were presented for review by industry stakeholders. More than 65 energy sector stakeholders came to network, present, and learn about DOE projects, while more than 20 joined in by webinar. The CEDS program's national lab, academic, and industry partners-including the National SCADA Test Bed (NSTB) partners and Trustworthy Cyber Infrastructure for the Power Grid (TCIPG)

265

Window Industry Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

Industry Technology Roadmap Industry Technology Roadmap Jump to: navigation, search Logo: Window Industry Technology Roadmap Name Window Industry Technology Roadmap Agency/Company /Organization United States Department of Energy Sector Energy Focus Area Energy Efficiency, Buildings Topics Technology characterizations Resource Type Guide/manual Website http://www.nrel.gov/docs/fy01o References Window Industry Technology Roadmap[1] Abstract The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. Overview "The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. It serves as a resource for government to

266

Optical key system  

Science Conference Proceedings (OSTI)

An optical key system comprises a battery-operated optical key and an isolated lock that derives both its operating power and unlock signals from the correct optical key. A light emitting diode or laser diode is included within the optical key and is connected to transmit a bit-serial password. The key user physically enters either the code-to-transmit directly, or an index to a pseudorandom number code, in the key. Such person identification numbers can be retained permanently, or ephemeral. When a send button is pressed, the key transmits a beam of light modulated with the password information. The modulated beam of light is received by a corresponding optical lock with a photovoltaic cell that produces enough power from the beam of light to operate a password-screen digital logic. In one application, an acceptable password allows a two watt power laser diode to pump ignition and timing information over a fiberoptic cable into a sealed engine compartment. The receipt of a good password allows the fuel pump, spark, and starter systems to each operate. Therefore, bypassing the lock mechanism as is now routine with automobile thieves is pointless because the engine is so thoroughly disabled.

Hagans, K.G.; Clough, R.E.

2000-04-25T23:59:59.000Z

267

Optical key system  

DOE Patents (OSTI)

An optical key system comprises a battery-operated optical key and an isolated lock that derives both its operating power and unlock signals from the correct optical key. A light emitting diode or laser diode is included within the optical key and is connected to transmit a bit-serial password. The key user physically enters either the code-to-transmit directly, or an index to a pseudorandom number code, in the key. Such person identification numbers can be retained permanently, or ephemeral. When a send button is pressed, the key transmits a beam of light modulated with the password information. The modulated beam of light is received by a corresponding optical lock with a photovoltaic cell that produces enough power from the beam of light to operate a password-screen digital logic. In one application, an acceptable password allows a two watt power laser diode to pump ignition and timing information over a fiberoptic cable into a sealed engine compartment. The receipt of a good password allows the fuel pump, spark, and starter systems to each operate. Therefore, bypassing the lock mechanism as is now routine with automobile thieves is pointless because the engine is so thoroughly disabled.

Hagans, Karla G. (Livermore, CA); Clough, Robert E. (Danville, CA)

2000-01-01T23:59:59.000Z

268

Key Management Challenges in Smart Grid  

Science Conference Proceedings (OSTI)

Agenda Awarded in February 2011 Team of industry and research organizations Project Objectives Address difficult issues Complexity Diversity of systems Scale Longevity of solution Participate in standards efforts and working groups Develop innovative key management solutions Modeling and simulation ORNL Cyber Security Econometric Enterprise System Demonstrate effectiveness of solution Demonstrate scalability

Sheldon, Frederick T [ORNL; Duren, Mike [Sypris Electronics, LLC

2012-01-01T23:59:59.000Z

269

Manufacturing sector carbon dioxide emissions in nine OECD countries 1973--87: A Divisia index decomposition to changes in fuel mix, emission coefficients, industry structure, energy intensities, and international structure  

DOE Green Energy (OSTI)

In this paper the reduction in energy-related manufacturing carbon dioxide emissions for nine OECD countries in the period 1973 to 1987 is analyzed. Carbon dioxide emissions are estimated from energy use data. The emphasis is on carbon dioxide intensities, defined as emissions divided by value added. The overall manufacturing carbon dioxide intensity for the nine OECD countries was reduced by 42% in the period 1973--1987. Five fuels are specified together with six subsectors of manufacturing. Carbon dioxide emissions are estimated from fossil fuel consumption, employing emissions coefficients for gas, oil and solids. In addition, electricity consumption is specified. For electricity use an emission coefficient index is calculated from the shares of fossil fuels, nuclear power and hydro power used to generate electricity, and the efficiency in electricity generation from these energy sources. A Divisia index approach is used to sort out the contribution to reduced carbon dioxide intensity from different components. The major finding is that the main contribution to reduced carbon dioxide intensity is from the general reduction in manufacturing energy intensity, most likely driven by economic growth and increased energy prices, giving incentives to invest in new technology and new industrial processes. There is also a significant contribution from reduced production in the most carbon dioxide intensive subsectors, and a contribution from higher efficiency in electricity generation together with a larger nuclear power share at the expense of oil. 19 refs., 5 figs., 11 tabs.

Torvanger, A. (Senter for Anvendt Forskning, Oslo (Norway) Lawrence Berkeley Lab., CA (USA))

1990-11-01T23:59:59.000Z

270

Midstate Electric Cooperative- Commercial and Industrial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Midstate Electric Cooperative (MEC) encourages energy efficiency in the commercial and industrial sectors by giving customers a choice of several different financial incentive programs. First, ...

271

Companhia Industrial do Nordeste Brasileiro | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name Companhia Industrial do Nordeste Brasileiro Place Pernambuco, Brazil Sector Biomass Product Brazil based biomass producer located in the state of...

272

Companhia Agro Industrial de Goiana | Open Energy Information  

Open Energy Info (EERE)

Agro Industrial de Goiana Place Recife, Pernambuco, Brazil Sector Biomass Product Ethanol and biomass electricity generator in Pernambuco, Brazil. References Companhia Agro...

273

Private Sector Outreach and Partnerships  

Energy.gov (U.S. Department of Energy (DOE))

ISER’s partnerships with the private sector are a strength which has enabled the division to respond to the needs of the sector and the nation. The division’s domestic capabilities have been...

274

Dairy Industry: Industry Brief  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) Industry Brief provides an overview of the U.S. dairy industry and ways in which electric-powered processes and technologies can be used in milk production and processing. Because of the different processes involved, the characteristics of energy consumption at milk production and processing facilities vary by facility. Most energy used in milk production is in the form of diesel fuel, followed by electricity and then by petroleum products such as gasoline an...

2011-03-30T23:59:59.000Z

275

Nepal Sectoral Climate impacts Economic Assessment | Open Energy  

Open Energy Info (EERE)

Sectoral Climate impacts Economic Assessment Sectoral Climate impacts Economic Assessment Jump to: navigation, search Name Nepal Sectoral Climate impacts Economic Assessment Agency/Company /Organization Climate and Development Knowledge Network (CDKN), United Kingdom Department for International Development Partner Ministry of Environment for Government of Nepal Sector Climate Focus Area Agriculture, Forestry, Greenhouse Gas, Industry, Land Use, People and Policy, Water Conservation Topics Low emission development planning Website http://cdkn.org/2011/11/call-f Country Nepal Southern Asia References Nepal Sectoral Climate impacts Economic Assessment[1] CDKN is providing support to the GoN through a number of projects to design and deliver climate compatible development (CCD) plans and policies. To

276

Energy-Sector Stakeholders Attend the Department of Energy's 2010  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Sector Stakeholders Attend the Department of Energy's 2010 Energy-Sector Stakeholders Attend the Department of Energy's 2010 Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's 2010 Cybersecurity for Energy Delivery Systems Peer Review The Department of Energy conducted a Peer Review of its Cybersecurity for Energy Delivery Systems (CEDS) Research and Development Program on July 20-22, 2010 during which 28 R&D projects were presented for review by industry stakeholders. More than 65 energy sector stakeholders came to network, present, and learn about DOE projects, while more than 20 joined in by webinar. Energy Sector Stakeholders Attend the Department of Energy's 2010 Cybersecurity for Energy Delivery Systems Peer Review More Documents & Publications

277

Nepal-Sectoral Climate Impacts Economic Assessment | Open Energy  

Open Energy Info (EERE)

Nepal-Sectoral Climate Impacts Economic Assessment Nepal-Sectoral Climate Impacts Economic Assessment Jump to: navigation, search Name Nepal Sectoral Climate impacts Economic Assessment Agency/Company /Organization Climate and Development Knowledge Network (CDKN), United Kingdom Department for International Development Partner Ministry of Environment for Government of Nepal Sector Climate Focus Area Agriculture, Forestry, Greenhouse Gas, Industry, Land Use, People and Policy, Water Conservation Topics Low emission development planning Website http://cdkn.org/2011/11/call-f Country Nepal Southern Asia References Nepal Sectoral Climate impacts Economic Assessment[1] CDKN is providing support to the GoN through a number of projects to design and deliver climate compatible development (CCD) plans and policies. To

278

SR Key Facts  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Facts Savannah River Site Budget FY 2011 Budget Summary FY 2011 SRS EM Program Budget Summary FY 2012 Presidential Budget Request for SRS FY 2014 SRS EM Budget Presentation...

279

Key masking using biometry  

Science Conference Proceedings (OSTI)

We construct an abstract model based on a fundamental similarity property, which takes into account parametric dependencies and reflects a specific collection of requirements. We consider a method for masking a cryptographic key using biometry, which ...

A. L. Chmora

2011-06-01T23:59:59.000Z

280

Key Emergency Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Emergency Information What to Do if an Emergency Arises DOE is committed to public safety in the event an emergency arises. You will likely be made aware that an emergency is...

Note: This page contains sample records for the topic "industrial sector key" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Working to Achieve Cybersecurity in the Energy Sector  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rita Wells Rita Wells Idaho National Laboratory Working to Achieve Cybersecurity in the Energy Sector "Cybersecurity for Energy Delivery Systems (CEDS)" Roadmap Vision In 10 years, control systems for critical applications will be designed, installed, operated, and maintained to survive an intentional cyber assault with no loss of critical function. * Published in January 2006 * Energy Sector's synthesis of critical control system security challenges, R&D needs, and implementation milestones * Provides strategic framework to - align activities to sector needs - coordinate public and private programs - stimulate investments in control systems security Roadmap - Framework for Public-Private Collaboration Roadmap - Key Strategies & 2015 Goals

282

Climate VISION: Private Sector Initiatives: Aluminum: GHG Inventory  

Office of Scientific and Technical Information (OSTI)

GHG Inventory Protocols GHG Inventory Protocols EPA/IAI PFC Measurement Protocol (PDF 243 KB) Download Acrobat Reader EPA and the International Aluminium Institute have collaborated with the global primary aluminium industry to develop a standard facility-specific PFC emissions measurement protocol. Use of the protocol will help ensure the consistency and accuracy of measurements. International Aluminum Institute's Aluminum Sector Greenhouse Gas Protocol (PDF 161 KB) Download Acrobat Reader The International Aluminum Institute (IAI) Aluminum Sector Addendum to the WBCSD/WRI Greenhouse Gas Protocol enhances and expands for the aluminum sector the World Business Council for Sustainable Development/World Resources Institute greenhouse gas corporate accounting and reporting protocol.

283

Texas Industries of the Future  

E-Print Network (OSTI)

The purpose of the Texas Industries of the Future program is to facilitate the development, demonstration and adoption of advanced technologies and adoption of best practices that reduce industrial energy usage, emissions, and associated costs, resulting in improved competitive performance. The bottom line for Texas industry is savings in energy and materials, cost-effective environmental compliance, increased productivity, reduced waste, and enhanced product quality. The state program leverages the programs and tools of the federal Department of Energy's Industries of the Future. At the federal level, there are nine Industries of the Future: refining, chemicals, aluminum, steel, metal casting, glass, mining, agriculture, and forest products. These industries were selected nationally because they supply over 90% of the U.S. economy's material needs and account for 75% of all energy use by U.S. industry. In Texas, three IOF sectors, chemicals, refining and forest products, account for 86% of the energy used by industry in this state.

Ferland, K.

2002-04-01T23:59:59.000Z

284

High Technology and Industrial Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Semiconductor clean room Semiconductor clean room High Technology and Industrial Systems EETD's research on high technology buildings and industrial systems is aimed at reducing energy consumed by the industrial sector in manufacturing facilities, including high technology industries such as data centers, cleanrooms in the such industries as electronics and pharmaceutical manufacturing, and laboratories, improving the competitiveness of U.S. industry. Contacts William Tschudi WFTschudi@lbl.gov (510) 495-2417 Aimee McKane ATMcKane@lbl.gov (518) 782-7002 Links High-Performance Buildings for High-Tech Industries Industrial Energy Analysis Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

285

Electronics Industry: Markets & Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronics Industry: Markets & Issues Electronics Industry: Markets & Issues Speaker(s): William M. Smith Date: March 17, 1998 - 12:00pm Location: 90-3148 Seminar Host/Point of Contact: Richard Sextro Electronics represents a unique opportunity to get in on the beginning of an incredible growth spurt, for an already huge industry; $400 billion/year in the U.S. now, moving up by 10%-20% per year in several sectors. This is quite unlike many other U.S. industrial sectors, which often involve mature businesses requiring assistance to stay afloat. The potential for forming business partnerships with electronics firms to deal with issues in energy efficiency, water availability/quality, air quality, productivity/yield, HVAC, power quality, wastewater, air emissions, etc., is staggering. The industrys oligopic nature provides serious opportunities

286

Long-Term US Industrial Energy Use and CO2 Emissions  

DOE Green Energy (OSTI)

We present a description and scenario results from our recently-developed long-term model of United States industrial sector energy consumption, which we have incorporated as a module within the ObjECTS-MiniCAM integrated assessment model. This new industrial model focuses on energy technology and fuel choices over a 100 year period and allows examination of the industrial sector response to climate policies within a global modeling framework. A key challenge was to define a level of aggregation that would be able to represent the dynamics of industrial energy demand responses to prices and policies, but at a level that remains tractable over a long time frame. In our initial results, we find that electrification is an important response to a climate policy, although there are services where there are practical and economic limits to electrification, and the ability to switch to a low-carbon fuel becomes key. Cogeneration of heat and power using biomass may also play a role in reducing carbon emissions under a policy constraint.

Wise, Marshall A.; Sinha, Paramita; Smith, Steven J.; Lurz, Joshua P.

2007-12-03T23:59:59.000Z

287

Heavy Flavor & Dark Sector  

E-Print Network (OSTI)

We consider some contributions to rare processes in $B$ meson decays from a Dark Sector containing 2 light unstable scalars, with large couplings to each other and small mixings with Standard Model Higgs scalars. We show that existing constraints allow for an exotic contribution to high multiplicity final states with a branching fraction as large as $\\mathcal{O}(10^{-4})$, and that exotic particles could appear as narrow resonances or long lived particles which are mainly found in high multiplicity final states from $B$ decays.

Nelson, Ann E

2013-01-01T23:59:59.000Z

288

THE OCEAN TECHNOLOGY SECTOR IN ATLANTIC CANADA Volume 2: Potential Public Sector Demand Submitted to the  

E-Print Network (OSTI)

Volume 1: Profile and Impact, the companion to this volume, details the economic importance of the industry in the region and its principal markets. ACKNOWLEDGEMENT The authors wish to thank the numerous government and private sector personnel who contributed their time, knowledge and support for the preparation of this 2-volume study. We would particularly like to thank the interviewees. The authors have also benefited from the generous advice and guidance received from the project Steering Committee,

Aczisc Secretariat

2006-01-01T23:59:59.000Z

289

Mexico-NAMA on Reducing GHG Emissions in the Cement Sector | Open Energy  

Open Energy Info (EERE)

Mexico-NAMA on Reducing GHG Emissions in the Cement Sector Mexico-NAMA on Reducing GHG Emissions in the Cement Sector Jump to: navigation, search Name CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector Agency/Company /Organization Center for Clean Air Policy (CCAP) Sector Energy Focus Area Industry, - Industrial Processes Topics Implementation, Low emission development planning, -NAMA, Market analysis, Policies/deployment programs Website http://www.ccap.org/docs/resou Program Start 2011 Program End 2011 Country Mexico UN Region Central America References CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector[1] CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector Screenshot "This interim report presents the preliminary results of the first phase of the study - an evaluation of sectoral approach issues and opportunities

290

CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector | Open  

Open Energy Info (EERE)

CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector Jump to: navigation, search Name CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector Agency/Company /Organization Center for Clean Air Policy (CCAP) Sector Energy Focus Area Industry, - Industrial Processes Topics Implementation, Low emission development planning, -NAMA, Market analysis, Policies/deployment programs Website http://www.ccap.org/docs/resou Program Start 2011 Program End 2011 Country Mexico UN Region Central America References CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector[1] CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector Screenshot "This interim report presents the preliminary results of the first phase of the study - an evaluation of sectoral approach issues and opportunities

291

Evolution of industrial automation  

Science Conference Proceedings (OSTI)

Automation has been of high priority for the manufacturing sector, from Ford's first set of Model-T Assembly lines in the early 1920s to the modern factory floor. With appropriate automation, the aim was to rationalise the production and keep ... Keywords: Ethernet, architecture, automated manufacturing, bus topology, control servers, distributed control, economies of scale, embedded intelligence, functionality, fuzzy logic, global village, graphic panel, industrial automation, networking, networks

R. Murugesan

2006-03-01T23:59:59.000Z

292

Hon Hai Precision Industry Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Hon Hai Precision Industry Co Ltd Jump to: navigation, search Name Hon Hai Precision Industry Co Ltd Place Tu-Cheng City, Taiwan Zip 236 Sector Solar Product Taiwan-based...

293

ARM - Key Science Questions  

NLE Websites -- All DOE Office Websites (Extended Search)

govScienceKey Science Questions govScienceKey Science Questions Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) ARM Science Team Meetings User Meetings Annual Meetings of the Atmospheric System Research (ASR) Science Team and Fall Working Groups Accomplishments Read about the 20 years of accomplishments (PDF, 696KB) from the ARM Program and user facility. Performance Metrics ASR Metrics 2009 2008 2007 2006 Key Science Questions The role of clouds and water vapor in climate change is not well understood; yet water vapor is the largest greenhouse gas and directly affects cloud cover and the propagation of radiant energy. In fact, there may be positive feedback between water vapor and other greenhouse gases. Carbon dioxide and other gases from human activities slightly warm the

294

Natural Gas and the Transformation of the U.S. Energy Sector: Electricity  

Science Conference Proceedings (OSTI)

The Joint Institute for Strategic Energy Analysis (JISEA) designed this study to address four related key questions, which are a subset of the wider dialogue on natural gas: 1. What are the life cycle greenhouse gas (GHG) emissions associated with shale gas compared to conventional natural gas and other fuels used to generate electricity?; 2. What are the existing legal and regulatory frameworks governing unconventional gas development at federal, state, and local levels, and how are they changing in response to the rapid industry growth and public concerns?; 3. How are natural gas production companies changing their water-related practices?; and 4. How might demand for natural gas in the electric sector respond to a variety of policy and technology developments over the next 20 to 40 years?

Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

2012-11-01T23:59:59.000Z

295

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China  

E-Print Network (OSTI)

Steel Industry. An ENERGY STAR Guide for Energy and Plantguide policy makers in designing better sector-specific energy

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

296

Private sector cautious on Pemex reorganization  

Science Conference Proceedings (OSTI)

Private sector interest in the privatization of the petrochemical subsidiaries of Mexico`s state oil company Petroleos Mexicanos (Pemex) will hinge on the government`s decisions on minority ownership, says Raul Millares, president of Aniq, the Mexican chemical industry association. The murkiest issues are how the subsidiaries will be operated and what rights minority owners will have. {open_quotes}The question is who is going to manage the subsidiaries on a day-to-day basis,{close_quotes} says Millares. {open_quotes}There is a lot of doubt as to whether private companies will be able to get the flexibility they need.{close_quotes}

Sissell, K.

1997-03-19T23:59:59.000Z

297

Industrial energy efficiency policy in China  

E-Print Network (OSTI)

Economic Indicators," Energy Policy 25(7'-9): 727-744. X u ,Best Practice Energy Policies in the Industrial Sector, Mayand Intensity Change," Energy Policy 22(3): Sinton, J.E.

Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

2001-01-01T23:59:59.000Z

298

VAWT Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Zip 89118 Sector Wind energy Product Focused on design, production, and marketing of wind turbines in the 0.1-0.5MW range. References VAWT Industries Inc1 LinkedIn...

299

Key Research Results Achievement  

E-Print Network (OSTI)

daylighting options for specific spaces with sample design layouts · Various HVAC system types that achieve%energysavingsovercode.NREL developedthesimulationtoolsandledthe committeethatproducedtheguides. Key Result TheAdvanced school in Greensburg, Kansas, used many of the energy efficiency measures outlined in the Advanced Energy

300

Sector 6 Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 2009 2008 2007 2006 2005 2004 2003 2002 2001 APS Pubs. Database Sector 6 Publications Publications 2013:(45) "Classical and quantum phase transitions revealed using transport and x-ray measurements," Arnab Banerjee, Ph.D.-Thesis, University of Chicago, 2013. "Charge transfer and multiple density waves in the rare earth tellurides," A. Banerjee, Yejun Feng, D.M. Silevitch, Jiyang Wang, J.C. Lang, H.-H. Kuo, I.R. Fisher, T.F. Rosenbaum, Phys. Rev. B 87, 155131 (2013). "Controlling Size-Induced Phase Transformations Using Chemically Designed Nanolaminates," Matt Beekman, Sabrina Disch, Sergei Rouvimov, Deepa Kasinathan, Klaus Koepernik, Helge Rosner, Paul Zschack, Wolfgang S. Neumann, David C. Johnson, Angew. Chem. Int. Ed. 52, 13211 (2013).

Note: This page contains sample records for the topic "industrial sector key" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Sector 1 - Software  

NLE Websites -- All DOE Office Websites (Extended Search)

APS Software APS Software Scientists and researchers at the APS develop custom scientific software to help with acquisition and analysis of beamline data. Several packages are available for a variety of platforms and uses. Data Acquisition Motion control and data collection at the 1-BM and 1-ID beamlines are primarily executed using EPICS software. We also utilize SPEC, running through EPICS, for many experiments. Data Analysis Some of the programs used at Sector 1 to analyse 1-d and/or 2-d data sets are described: Fit2d, for viewing and analysing 2-dimensional data Igor, for analysis of small-angle scattering data Matlab, for strain/texture analysis and image analysis. GSAS/EXPGUI, for structural refinement of diffraction data. A comprehensive list of Powder Diffraction Software and Resources can be

302

Louisville Private Sector Agenda  

NLE Websites -- All DOE Office Websites (Extended Search)

Thursday, December 13, 2007 Thursday, December 13, 2007 9:00 AM - 12:00 PM Agenda * Welcome and introductions from the Mayor (9:00-9:15) o The Mayor's energy and climate protection goals for Louisville o Request for private sector input for the upcoming public-private partnership to promote increased energy efficiency in buildings throughout the Louisville community o Highlights from the December 12 meeting of the ENERGY STAR Challenge implementation group o Introduction to Metro's Green Initiative and goals for today's session * Getting started with ENERGY STAR (9:15-10:00) o Introduction to the program and overview of ENERGY STAR resources o Kentucky and regional ENERGY STAR Partners and labeled buildings o Simple steps for energy savings o The benefits of energy savings

303

Energy Sector Market Analysis  

SciTech Connect

This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

2006-10-01T23:59:59.000Z

304

Electric Power Sector  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Electric Power Sector Hydroelectric Power (a) ............... 0.670 0.785 0.653 0.561 0.633 0.775 0.631 0.566 0.659 0.776 0.625 0.572 2.668 2.605 2.633 Wood Biomass (b) ........................ 0.048 0.043 0.052 0.046 0.045 0.039 0.051 0.052 0.055 0.049 0.060 0.054 0.190 0.187 0.218 Waste Biomass (c) ....................... 0.063 0.064 0.066 0.069 0.061 0.063 0.063 0.064 0.062 0.065 0.068 0.065 0.262 0.250 0.261 Wind ............................................. 0.376 0.361 0.253 0.377 0.428 0.461 0.315 0.400 0.417 0.461 0.340 0.424 1.368 1.604 1.641 Geothermal ................................. 0.036 0.037 0.038 0.039 0.041 0.041 0.041 0.042 0.041 0.040 0.041 0.042 0.149 0.164 0.165 Solar ............................................. 0.007 0.022 0.021 0.014 0.013 0.022 0.026 0.016 0.021 0.048 0.048 0.025 0.064

305

Windows Industry Technology Roadmap: Executive Summary  

SciTech Connect

An industry-led initiative to identify key goals and strategies for the windows industry with an emphasis on energy conservation, enhanced quality, fast delivery, and low installed cost.

DOE Office of Building Technology, State and Community Programs

2001-01-08T23:59:59.000Z

306

Program Program Organization Country Region Topic Sector Sector  

Open Energy Info (EERE)

Program Organization Country Region Topic Sector Sector Program Organization Country Region Topic Sector Sector Albania Enhancing Capacity for Low Emission Development Strategies EC LEDS Albania Enhancing Capacity for Low Emission Development Strategies EC LEDS United States Agency for International Development USAID United States Environmental Protection Agency United States Department of Energy United States Department of Agriculture United States Department of State Albania Southern Asia Low emission development planning LEDS Energy Land Climate Algeria Clean Technology Fund CTF Algeria Clean Technology Fund CTF African Development Bank Asian Development Bank European Bank for Reconstruction and Development EBRD Inter American Development Bank IDB World Bank Algeria South Eastern Asia Background analysis Finance Implementation

307

Jinlong Industrial Group | Open Energy Information  

Open Energy Info (EERE)

Solar Product Solar energy company based in Hebei province, engaged in manufacturing photovoltaic cell, crystal silicon and other key products. References Jinlong Industrial...

308

Advanced Manufacturing Office: Tuesday Webcasts for Industry  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Most Value from ISO 50001 January 10, 2012 - Tuesday Webcast for Industry: Key Energy-Saving Projects for Smaller Facilities Webcast Questions and Answers December 13, 2011...

309

Climate VISION: Private Sector Initiatives: Cement  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information This section provides various sources describing the energy consumption of the industrial sector and the carbon emissions in particular. Below is an estimate of the emissions expressed in million metric tons of carbon equivalents (MMTCE) based upon the Annual Energy Outlook 2003. According to EIA "Annual Energy Outlook 2003" data, energy-related CO2 emissions for the cement industry were 8.3 MMTCE in 2002, and process-related CO2 emissions were approximately 11.4 MMTCE for a total of 19.7 MMTCE. (The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2003 using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2000-2025. The AEO2003 reflects data and information available as of

310

How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios  

E-Print Network (OSTI)

of China‘s iron and steel industry. ? Int. J. Productionof China‘s iron and steel industry. ? Int. J. ProductionAfter the iron and steel sub-sector, the industries with the

Aden, Nathaniel T.

2010-01-01T23:59:59.000Z

311

Review of U.S. ESCO industry market trends: An empirical analysis of project data  

E-Print Network (OSTI)

sector energy efficiency services industry and market trendsof US ESCO Industry Market Trends site energy basis (1 kWh =suspect that energy Review of US ESCO Industry Market Trends

Goldman, Charles A.; Hopper, Nicole C.; Osborn, Julie G.; Singer, Terry E.

2003-01-01T23:59:59.000Z

312

California Industrial Energy Efficiency Potential  

E-Print Network (OSTI)

from 1% to 5% of base usage for natural gas. The achievableUsage A key initial step in the analysis was to develop a baseline understanding of industrial electricity and natural gas

Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; Rafael Friedmann; Rufo, Mike

2005-01-01T23:59:59.000Z

313

AP Key Accomplishments  

NLE Websites -- All DOE Office Websites (Extended Search)

Recent Key Accomplishments Recent Key Accomplishments Reduction of Carbon Dioxide Mechanistic insight into CO2 hydrogenation Rapid Transfer of Hydride Ion from a Ruthenium Complex to C1 Species in Water Reversible Hydrogen Storage using CO2 and a Proton-Switchable Iridium Catalyst in Aqueous Media Nickel(II) Macrocycles: Highly Efficient Electrocatalysts for the Selective Reduction of CO2 to CO Calculation of Thermodynamic Hydricities and the Design of Hydride Donors for CO2 Reduction Mechanisms for CO Production from CO2 Using Re(bpy)(CO)3X Catalysts Hydrogen Production Biomass-derived electrocatalytic composites for hydrogen evolution Hydrogen-Evolution Catalysts Based on NiMo Nitride Nanosheets Water Oxidation Enabling light-driven water oxidation via a low-energy RuIV=O intermediate

314

Sector 9 | Operations and Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

Sector 9 Operations and Schedule Contents: 9-ID User Manual 9-BM User Manual Common Tasks Computers and Software Troubleshooting Web Cameras...

315

Institutional change in the forest sector : the Russian experience  

E-Print Network (OSTI)

was seventh of all sectors in Russia with 5.62% of total industrial output (Nilsson and Shvidenko, 1997: 33). By 1993, domestic production of wood products (the output of logs, lumber, plywood, reconstituted wood boards, and pulp and paper products...

Ulybina, Olga

316

Industrial Energy Use and Energy Efficiency in Developing Countries  

E-Print Network (OSTI)

The industrial sector accounts for over 50% of energy used in developing countries. Growth in this sector has been over 4.5% per year since 1980. Energy intensity trends for four energy-intensive sub-sectors (iron and steel, chemicals, building materials, and pulp and paper) are reviewed. Scenarios of future industrial sector energy use in developing countries show that this region will dominate world industrial energy use in 2020. Growth is expected to be about 3.0% per year in a business-as-usual case, but can be reduced using state-of-the art or advanced technologies. Polices to encourage adoption of these technologies are briefly discussed.

Price, L.; Martin, N.; Levine, M. D.; Worrell, E.

1996-04-01T23:59:59.000Z

317

Taiwan: An energy sector study  

DOE Green Energy (OSTI)

A study on the economy of Taiwan, with special reference to the energy sector, revealed the following: Taiwan's rapid export-driven economic growth in the 1970s and 1980s has earned them the rank of ''Newly Industrialized Countries.'' Coal reserves measure less than 1 billion tons, and annual output has declined to below 2 million tons per year. Marginal amounts of crude are produced. Natural gas resources have been exploited both on- and offshore, through production amounts to little more than 1 billion cubic meters per year. Domestic hydrocarbon production is forecast to decline. Taiwan prssesses an estimated 5300 mW of exploitable hydropower capacity, of which 2564 mW had been installed by 1986. Taiwan has undertaken a massive program of nuclear power construction in response to the rapid rise in oil prices during the 1970s. Energy demand has risen an average of 9.0 percent per year since 1954, while real GNP has grown 8.6 percent per year. Sine 1980, oil has provided a lower share of total energy demand. Oil demand for transport has continued to grow rapidly. Declining production of domestic natural gas has led Taiwan to initiate LNG imports from Indonesia beginning in 1990. Coal has regained some of its earlier importance in Taiwan's energy structure. With declining domestic production, imports now provide nearly 90 percent of total coal demand. Taiwan is basically self-sufficient in refining capacity. Energy demand is expected to grow 5.4 percent per year through the yeat 2000. With declining output of domestic resources, energy dependency on imports will rise from its current 90 percent level. Government policy recognizes this external dependency and has directed it efforts at diversification of suppliers. 18 refs., 11 figs., 40 tabs.

Johnson, T.; Fridley, D.; Kang, Wu

1988-03-01T23:59:59.000Z

318

Industry insight Energy and utilities In a nutshell  

E-Print Network (OSTI)

in highly specific areas within the oil and gas, waste management, recycling and renewable energies sectors1 Industry insight ­ Energy and utilities In a nutshell The UK's energy and utilities industry management; renewable energy industries; energy conservation organisations. The industry employs around 530

Martin, Ralph R.

319

National and Sectoral GHG Mitigation Potential: A Comparison Across Models  

Open Energy Info (EERE)

National and Sectoral GHG Mitigation Potential: A Comparison Across Models National and Sectoral GHG Mitigation Potential: A Comparison Across Models Jump to: navigation, search Tool Summary Name: National and Sectoral GHG Mitigation Potential: A Comparison Across Models Agency/Company /Organization: Organisation for Economic Co-Operation and Development Topics: GHG inventory, Policies/deployment programs, Pathways analysis Resource Type: Software/modeling tools, Publications, Lessons learned/best practices Website: www.iea.org/papers/2009/Mitigation_potentials.pdf References: National and Sectoral GHG Mitigation Potential: A Comparison Across Models[1] Summary "This paper focuses on mitigation potential to provide a comparative assessment across key economies. GHG mitigation potential is defined here to be the level of GHG emission reductions that could be realised, relative

320

The Greenhouse Gas Protocol Initiative: Sector Specific Tools | Open Energy  

Open Energy Info (EERE)

Gas Protocol Initiative: Sector Specific Tools Gas Protocol Initiative: Sector Specific Tools Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: Sector Specific Tools Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Industry, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free References: The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased Electricity[1] The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary Combustion[2] The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport or Mobil Sources[3]

Note: This page contains sample records for the topic "industrial sector key" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Climate Policy Design for Energy-Intensive Industries - And The Rest of Us  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Policy Design for Energy-Intensive Industries - And The Rest of Us Climate Policy Design for Energy-Intensive Industries - And The Rest of Us Speaker(s): Holmes Hummel Date: January 8, 2009 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Richard Diamond Driving the U.S. energy system toward climate stabilization requires integration of multiple policy instruments in a staged series of legislative and regulatory policy vehicles. Qualifying the limitations of a cap-and-trade approach, Dr. Hummel will present a framework for orienting and organizing a multi-faceted policy development process. After surveying key design recommendations for specific sectors, the presentation will drill deeper into the specific challenge of engaging energy-intensive industries subject to global competition. After briefly discussing some of

322

Energy Sector Control Systems Working Group to Meet March 25, 2008 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sector Control Systems Working Group to Meet March 25, 2008 Sector Control Systems Working Group to Meet March 25, 2008 Energy Sector Control Systems Working Group to Meet March 25, 2008 The Energy Sector Control Systems Working Group is a unique public-private partnership recently formed to help guide implementation of the priorities identified in the industry-led Roadmap to Secure Control Systems in the Energy Sector. The group seeks to provide a platform for pursuing innovative and practical activities that will improve the security of the control systems that manage our nation's energy infrastructure. The Group will meet March 25, 2008 in St. Louis Missouri to focus on four objectives: Help identify and implement practical, near-term activities that are high priority for the industry Promote the value to the industry of achieving the goals of the

323

Energy Sector Control Systems Working Group to Meet March 25, 2008 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Sector Control Systems Working Group to Meet March 25, 2008 Energy Sector Control Systems Working Group to Meet March 25, 2008 Energy Sector Control Systems Working Group to Meet March 25, 2008 The Energy Sector Control Systems Working Group is a unique public-private partnership recently formed to help guide implementation of the priorities identified in the industry-led Roadmap to Secure Control Systems in the Energy Sector. The group seeks to provide a platform for pursuing innovative and practical activities that will improve the security of the control systems that manage our nation's energy infrastructure. The Group will meet March 25, 2008 in St. Louis Missouri to focus on four objectives: Help identify and implement practical, near-term activities that are high priority for the industry Promote the value to the industry of achieving the goals of the

324

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

10 2.1.3 Direct Reduced Iron – Electric ArcThin Slab Casting Direct Reduced Iron – Electric ArcThin Slab Casting Direct Reduced Iron – Electric Arc

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

325

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

condensate recovery, a closed hood for heat recovery, as well as integration of the various steam and

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

326

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

by combining the gasification of coal with the meltin black liquor gasification has not yet resulted in aof heavy fuel oil, gasification of coal, and electrolysis.

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

327

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

cracking and alternative processes,” Energy 31 (2006), pp.cracking and alternative processes,” Energy 31 (2006), pp.cracking and alternative processes,” Energy 31 (2006), pp.

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

328

Table E5. Industrial Sector Energy Price Estimates, 2011 ...  

U.S. Energy Information Administration (EIA)

a Natural gas as it is consumed; includes supplemental gaseous fuels that are commingled with natural gas. f There are no direct fuel costs for ...

329

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

feedstock would use a coal gasifier to convert the coal tosynthesis gas. Most coal gasifier-based ammonia plants areof a modern entrained bed gasifier, selexol gas cleanup and

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

330

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

in a back-pressure steam turbine to generate electricity (compressor uses a steam turbine, using internally generatedwith a gas turbine, producing steam and electricity. The hot

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

331

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

electricity generation, transmission, and distributionelectricity generation, transmission, and distributionelectricity generation, transmission, and distribution

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

332

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

An ENERGY STAR ® Guide for Energy and Plant Managers.An ENERGY STAR ® Guide for Energy and Plant Managers.

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

333

Energy Efficiency Report:--Chapter 6: Industrial Sector  

U.S. Energy Information Administration (EIA)

... the diversity of processes and ways in which energy is consumed makes it difficult to single out characteristics that drive energy consumption activities for ...

334

Cryptographic Key Management Workshop 2012  

Science Conference Proceedings (OSTI)

Cryptographic Key Management Workshop 2012. Purpose: NIST is conducting a two-day Key Management Workshop on September 10-11. ...

2013-08-01T23:59:59.000Z

335

Waste Heat Recovery in Industrial Facilities  

Science Conference Proceedings (OSTI)

Low-temperature waste heat streams account for the majority of the industrial waste heat inventory. With a reference temperature of 60°F (16°C), 65% of the waste heat is below 450°F (232°C) and 99% is below 1,200°F (649°C). With a reference temperature of 300°F (149°C), 14% of the waste heat is below 450°F, and 96% is below 1,200°F. Waste heat is concentrated in a few industrial manufacturing sectors. Based on a review of 21 manufacturing sectors, the top two sectors that produce waste heat are petroleu...

2010-12-20T23:59:59.000Z

336

Outlook for Industrial Energy Benchmarking  

E-Print Network (OSTI)

The U.S. Environmental Protection Agency is exploring options to sponsor an industrial energy efficiency benchmarking study to identify facility specific, cost-effective best practices and technologies. Such a study could help develop a common understanding of opportunities for energy efficiency improvements and provide additional information to improve the competitiveness of U.S. industry. The EPA's initial benchmarking efforts will focus on industrial power facilities. The key industries of interest include the most energy intensive industries, such as chemical, pulp and paper, and iron and steel manufacturing.

Hartley, Z.

2000-04-01T23:59:59.000Z

337

Key Federal Decisions/Regulation of the Gas Industry  

U.S. Energy Information Administration (EIA)

Led to market dislocations, gas “bubble” Orders 436, 500, 636 (1985 - 1993) restructured interstate market Natural Gas Decontrol Act ...

338

Metallurgical industries are key parts of energy-intensive ...  

U.S. Energy Information Administration (EIA)

Tools; Glossary › All Reports ... weather; gasoline; capacity; nuclear; exports; forecast; View All Tags ...

339

Industrial Retrofits are Possible  

E-Print Network (OSTI)

Ontario is the industrial heartland of Canada and more than 80% of its energy comes from Canadian sources with the remainder from the neighbouring U.S. states. Because of the ever increasing demand for energy relating to increased economic activity, the provincial government's major energy priority is efficiency. In April of 1987, the provincial government initiated a program to assist industrial energy users to reduce their energy usage. This program was designed to concentrate on an in-depth analysis of the complete operations of industrial plants with the analyses being performed by specialist, private sector, engineering consultants. The program is in 3 phases providing an Ontario industrial plant with an Energy Analysis, a Feasibility Analysis Grant and a Project Engineering Design Grant. In this presentation, the author will outline the results of the program to date and will attempt to share with the audience the individual case experiences. Since the program's start, the Ontario Ministry of Energy has completed over 320 energy analyses of industrial plants which had combined energy bills of over $420 million. The potential annual energy savings identified were over $40 million or 9.51%. Electricity and natural gas are the major fuels used by Ontario industries and our surveys to date have shown savings of 6% in electricity and 11% in natural gas. Over the first two years of the program, individual plants have or are intending to implement more than half of the energy analysis recommendations.

Stobart, E. W.

1990-06-01T23:59:59.000Z

340

Technology detail in a multi-sector CGE model : transport under climate policy  

E-Print Network (OSTI)

A set of three analytical models is used to study the imbedding of specific transport technologies within a multi-sector, multi-region evaluation of constraints on greenhouse emissions. Key parameters of a computable general ...

Schafer, Andreas.

Note: This page contains sample records for the topic "industrial sector key" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Presentation 2.2: Biofuels -A Strategic Option for the Global Forest Sector? Michael Obersteiner  

E-Print Network (OSTI)

Presentation 2.2: Biofuels - A Strategic Option for the Global Forest Sector? Michael Obersteiner Generation Biofuels. We will close with a SWOT analysis of the forest sector vis-à-vis the oil industry the emerging big player on the biofuels market. 117 #12;#12;Michael Obersteiner & Sten Nilsson International

342

Innovative New Industrial Technologies: An Industry/DOE Joint Endeavor  

E-Print Network (OSTI)

The Department of Energy’s Office of Industrial Programs supports research and development leading to improved energy efficiency and greater overall productivity in the industrial sector. Its basic strategy is a program of cost-shared R&D, incorporating projects with such risk that the private sector will not pursue them independently. This paper describes the Office’s major activities, operating premises and research areas. Policy considerations affecting the program’s content are identified and criteria applied in project selection are discussed. Achievement of constructive industry involvement in program development and review is viewed as vital to success. This goal, and the means by which it is being pursued, are emphasized.

Gross, T. J.

1986-06-01T23:59:59.000Z

343

Industrial Carbon Management Initiative (ICMI)  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Carbon Management Initiative Industrial Carbon Management Initiative (ICMI) Background The ICMI project is part of a larger program called Carbon Capture Simulation and Storage Initiative (C2S2I). The C2S2I has a goal of expanding the DOE's focus on Carbon Capture Utilization and Storage (CCUS) for advanced coal power systems and other applications, including the use of petroleum coke as a feedstock for the industrial sector. The American Recovery and Re-Investment Act (ARRA)-funded

344

Roadmap to Secure Control Systems in the Energy Sector - 2006 | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- 2006 - 2006 Roadmap to Secure Control Systems in the Energy Sector - 2006 This document, the Roadmap to Secure Control Systems in the Energy Sector, outlines a coherent plan for improving cyber security in the energy sector. It is the result of an unprecedented collaboration between the energy sector and government to identify concrete steps to secure control systems used in the electricity, oil, and natural gas sectors over the next ten years. The Roadmap provides a strategic framework for guiding industry and government efforts based on a clear vision supported by goals and time-based milestones. It addresses the energy sector's most urgent challenges as well as longer-term needs and practices. Roadmap to Secure Control Systems in the Energy Sector More Documents & Publications

345

Industrial Energy Efficient Technology Guide 2007  

Science Conference Proceedings (OSTI)

This report updates the Industrial Energy Efficient Technology Reference Guide, previously known as the Electrotechnology Reference Guide. The last version of the Electrotechnology Reference Guide was published in 1992. This 2007 edition specifically updates information on industrial-sector energy consumption and the status of energy efficient technologies.

2007-07-31T23:59:59.000Z

346

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

0. Comparisons of energy consumption by sector projections, 2025, 2035, and 2040 0. Comparisons of energy consumption by sector projections, 2025, 2035, and 2040 (quadrillion Btu) Sector AEO2013 Reference INFORUM IHSGI ExxonMobil IEA 2011 Residential 11.3 11.5 10.8 -- -- Residential excluding electricity 6.4 6.6 6.0 5.0 -- Commercial 8.6 8.6 8.5 -- -- Commercial excluding electricity 4.1 4.1 4.0 4.0 -- Buildings sector 19.9 20.1 19.3 -- 19.3a Industrial 24.0 23.6 -- -- 23.7a Industrial excluding electricity 20.7 20.2 -- 20.0 -- Lossesb 0.7 -- -- -- -- Natural gas feedstocks 0.5 -- -- -- -- Industrial removing losses and feedstocks 22.9 -- 21.7 -- -- Transportation 27.1 27.2 26.2 27.0 23.1a Electric power 39.4 39.2 40.5 37.0 37.2a Less: electricity demandc 12.7 12.8 12.7 -- 15.0a

347

Climate VISION: Private Sector Initiatives: Aluminum: GHG Information -  

Office of Scientific and Technical Information (OSTI)

Industry Analysis Briefs Industry Analysis Briefs The Energy Information Agency (EIA) is currently updating industry analysis briefs for the most energy-intensive industries in the United States, including aluminum, chemicals, forest products (such as paper and wood products), glass, metal casting, petroleum and coal products, and steel. As soon as the current briefs are available, we will provide the link. Industry Analysis Briefs will have the following content: Economic Profile and Trends Value of Shipments Annual Production Labor Productivity Energy Use Energy Use by Fuel Fuel Consumption by End Use Energy Consumption by Sector Energy Expenditures Onsite Generation (if applicable) Energy Intensity State-Level Information Technologies and Equipment Cogeneration Technologies (if applicable)

348

Climate VISION: Private Sector Initiatives: Chemical Manufacturing: GHG  

Office of Scientific and Technical Information (OSTI)

Industry Analysis Briefs Industry Analysis Briefs The Energy Information Agency (EIA) is currently updating industry analysis briefs for the most energy-intensive industries in the United States, including aluminum, chemicals, forest products (such as paper and wood products), glass, metal casting, petroleum and coal products, and steel. As soon as the current briefs are available, we will provide the link. Industry Analysis Briefs will have the following content: Economic Profile and Trends Value of Shipments Annual Production Labor Productivity Energy Use Energy Use by Fuel Fuel Consumption by End Use Energy Consumption by Sector Energy Expenditures Onsite Generation (if applicable) Energy Intensity State-Level Information Technologies and Equipment Cogeneration Technologies (if applicable)

349

Climate VISION: Private Sector Initiatives: Mining: GHG Information -  

Office of Scientific and Technical Information (OSTI)

Industry Analysis Briefs Industry Analysis Briefs The Energy Information Agency (EIA) is currently updating industry analysis briefs for the most energy-intensive industries in the United States, including aluminum, chemicals, forest products (such as paper and wood products), glass, metal casting, petroleum and coal products, and steel. As soon as the current briefs are available, we will provide the link. Industry Analysis Briefs will have the following content: Economic Profile and Trends Value of Shipments Annual Production Labor Productivity Energy Use Energy Use by Fuel Fuel Consumption by End Use Energy Consumption by Sector Energy Expenditures Onsite Generation (if applicable) Energy Intensity State-Level Information Technologies and Equipment Cogeneration Technologies (if applicable)

350

DOE Encourages Utility Sector Nominations to the Federal Communications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Federal the Federal Communications Commission's Communications, Security, Reliability, and Interoperability Council DOE Encourages Utility Sector Nominations to the Federal Communications Commission's Communications, Security, Reliability, and Interoperability Council March 29, 2011 - 5:22pm Addthis Because of the role communications technologies will play in the evolution toward a smarter national grid, DOE recommended in its October 2010 report, The Communications Requirements of Smart Grid Technologies, that members of the utility sector become more engaged in the federal advisory committees that consider key policy issues related to the Smart Grid, including the reliability of communications networks. Last week, the Federal Communications Commission announced that it is seeking nominations

351

Private Sector Initiative Between the U.S. and Japan  

Science Conference Proceedings (OSTI)

OAK-A258 Private Sector Initiative Between the U.S. and Japan. This report for calendar years 1993 through September 1998 describes efforts performed under the Private Sector Initiatives contract. The report also describes those efforts that have continued with private funding after being initiated under this contract. The development of a pyrochemical process, called TRUMP-S, for partitioning actinides from PUREX waste, is described in this report. This effort is funded by the Central Research Institute of Electric Power Industry (CRIEPI), KHI, the United States Department of Energy, and Boeing.

None

1998-09-30T23:59:59.000Z

352

Coal sector profile  

SciTech Connect

Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

1990-06-05T23:59:59.000Z

353

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

354

Industrial Applications  

Science Conference Proceedings (OSTI)

Table 2   Frequently used rubber linings in other industries...Application Lining Power industry Scrubber towers Blended chlorobutyl Limestone slurry tanks Blended chlorobutyl Slurry piping Blended chlorobutyl 60 Shore A hardness natural rubber Seawater cooling water

355

Turkey energy and environmental review - Task 7 energy sector modeling : executive summary.  

Science Conference Proceedings (OSTI)

Turkey's demand for energy and electricity is increasing rapidly. Since 1990, energy consumption has increased at an annual average rate of 4.3%. As would be expected, the rapid expansion of energy production and consumption has brought with it a wide range of environmental issues at the local, regional and global levels. With respect to global environmental issues, Turkey's carbon dioxide (CO2) emissions have grown along with its energy consumption. Emissions in 2000 reached 211 million metric tons. With GDP projected to grow at over 6% per year over the next 25 years, both the energy sector and the pollution associated with it are expected to increase substantially. This is expected to occur even if assuming stricter controls on lignite and hard coal-fired power generation. All energy consuming sectors, that is, power, industrial, residential, and transportation, will contribute to this increased emissions burden. Turkish Government authorities charged with managing the fundamental problem of carrying on economic development while protecting the environment include the Ministry of Environment (MOE), the Ministry of Energy and Natural Resources (MENR), and the Ministry of Health, as well as the Turkish Electricity Generation & Transmission Company (TEAS). The World Bank, working with these agencies, is planning to assess the costs and benefits of various energy policy alternatives under an Energy and Environment Review (EER). Eight individual studies have been conducted under this activity to analyze certain key energy technology issues and use this analysis to fill in the gaps in data and technical information. This will allow the World Bank and Turkish authorities to better understand the trade-offs in costs and impacts associated with specific policy decisions. The purpose of Task 7-Energy Sector Modeling, is to integrate information obtained in other EER tasks and provide Turkey's policy makers with an integrated systems analysis of the various options for addressing the various energy and environmental concerns. The work presented in this report builds on earlier analyses presented at the COP 6 conference in Bonn.

Conzelmann, G.; Koritarov, V.; Decision and Information Sciences

2008-02-28T23:59:59.000Z

356

Industries Affected  

Science Conference Proceedings (OSTI)

Table 2   Industries affected by microbiologically influenced corrosion...generation: nuclear, hydro, fossil fuel,

357

Coal industry annual 1996  

Science Conference Proceedings (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

NONE

1997-11-01T23:59:59.000Z

358

Coal Industry Annual 1995  

SciTech Connect

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

1996-10-01T23:59:59.000Z

359

China's Industrial Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

China's Industrial Energy China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy- Saving Program and the Ten Key Energy-Saving Projects Jing Ke, Lynn Price, Stephanie Ohshita, David Fridley, Nina Khanna, Nan Zhou, Mark Levine China Energy Group Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Reprint version of journal article published in "Energy Policy", Volume 50, Pages 562-569, November 2012 October 2012 This work was supported by the China Sustainable Energy Program of the Energy Foundation through the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

360

Electrotechnology Applications in Industrial Process Heating  

Science Conference Proceedings (OSTI)

Electrotechnology applications in industrial process heating are discussed in this technical update. This report builds on the research activities from the previous years and adds new and emerging process heating technologies. The primary focus is given to energy intensive industrial sectors such as primary metals and metal treatment. Successful implementation of the electrotechnologies in various industry applications are also presented in the form of case studies. The technical update also ...

2012-11-26T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector key" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Near-term viability of solar heat applications for the federal sector  

DOE Green Energy (OSTI)

Solar thermal technologies are capable of providing heat across a wide range of temperatures, making them potentially attractive for meeting energy requirements for industrial process heat applications and institutional heating. The energy savings that could be realized by solar thermal heat are quite large, potentially several quads annually. Although technologies for delivering heat at temperatures above 100{degrees}C currently exit within industry, only a fairly small number of commercial systems have been installed to date. The objective of this paper is to investigate and discuss the prospects for near-term solar heat sales to federal facilities as a mechanism for providing an early market niche to the aid the widespread development and implementation of the technology. The specific technical focus is on mid-temperature (100{degrees}--350{degrees}C) heat demands that could be met with parabolic trough systems. Federal facilities have several relative to private industry that may make them attractive for solar heat applications relative to other sectors. Key features are specific policy mandates for conserving energy, a long-term planning horizon with well-defined decision criteria, and prescribed economic return criteria for conservation and solar investments that are generally less stringent than the investment criteria used by private industry. Federal facilities also have specific difficulties in the sale of solar heat technologies and strategies to mitigate these difficulties will be important. For the baseline scenario developed in this paper, the solar heat application was economically competitive with heat provided by natural gas. The system levelized energy cost was $5.9/MBtu for the solar heat case, compared to $6.8/MBtu for the life-cycle fuel cost of a natural gas case. A third-party ownership would also be attractive to federal users, since it would guarantee energy savings and would not need initial federal funds. 11 refs., 2 figs., 3 tabs.

Williams, T.A.

1991-12-01T23:59:59.000Z

362

Constraining Energy Consumption of China's Largest Industrial Enterprises Through the Top-1000 Energy-Consuming Enterprise Program  

E-Print Network (OSTI)

Pilot Project with the Steel Industry in Shandong Province,reported that the steel industry – which is the sector withof China’s Steel Industry Down 8.8%. www.chinaview.cn

Price, Lynn; Wang, Xuejun

2007-01-01T23:59:59.000Z

363

Private-sector power generation in Thailand: potential, impediments, and policy issues. Final report  

SciTech Connect

The Royal Thai Government (RTG) is exploring ways of involving the private sector in electricity generation. The study: (1) assesses the sector's potential for non-utility power generation, including such options as industrial cogeneration, agricultural-waste-based energy systems, and large-scale systems using domestic fossil fuels; (2) reviews existing power-sector institutions in Thailand and analyzes the major issues and impediments associated with private-sector power generation; and (3) based on U.S. experience, describes possible approaches to establishing the price of non-utility electricity.

1986-11-01T23:59:59.000Z

364

Analysis of International Policies In The Solar Electricity Sector: Lessons for India  

DOE Green Energy (OSTI)

Although solar costs are dropping rapidly, solar power is still more expensive than conventional and other renewable energy options. The solar sector still needs continuing government policy support. These policies are driven by objectives that go beyond the goal of achieving grid parity. The need to achieve multiple objectives and ensure sufficient political support for solar power makes it diffi cult for policy makers to design the optimal solar power policy. The dynamic and uncertain nature of the solar industry, combined with the constraints offered by broader economic, political and social conditions further complicates the task of policy making. This report presents an analysis of solar promotion policies in seven countries - Germany, Spain, the United States, Japan, China, Taiwan, and India - in terms of their outlook, objectives, policy mechanisms and outcomes. The report presents key insights, primarily in qualitative terms, and recommendations for two distinct audiences. The first audience consists of global policy makers who are exploring various mechanisms to increase the penetration of solar power in markets to mitigate climate change. The second audience consists of key Indian policy makers who are developing a long-term implementation plan under the Jawaharlal Nehru National Solar Mission and various state initiatives.

Deshmukh, Ranjit; Bharvirkar, Ranjit; Gambhir, Ashwin; Phadke, Amol

2011-08-10T23:59:59.000Z

365

Annual Real Natural Gas Prices by Sector  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Major regulatory reforms at the Federal level began at the end of the 1970s with the passage of the Natural Gas Policy Act, and have affected most phases of the industry and markets Over time the movement to a more competitive model led to lower prices starting around 1983, which was accentuated by the drop in world oil prices in 1986 Gas consumers in all sectors seem to have benefited, on average, from a more competitive marketplace However, several factors have come together recently that have pushed spot gas prices up sharply and which are expected to reverse the downward trend in in real gas prices for the next year or so: U.S. gas production has been relatively flat. Expected demand is high under normal weather assumptions. Gas storage levels are below normal.

366

Attribution of climate forcing to economic sectors  

NLE Websites -- All DOE Office Websites (Extended Search)

Attribution of climate forcing to economic sectors Title Attribution of climate forcing to economic sectors Publication Type Journal Article Year of Publication 2010 Authors Unger,...

367

Energy Efficiency Report: Chapter 3: Residential Sector  

U.S. Energy Information Administration (EIA)

3. The Residential Sector Introduction. More than 90 million single-family, multifamily, and mobile home households encompass the residential sector.

368

U.S. Propane Demand Sectors (1996)  

U.S. Energy Information Administration (EIA)

The residential and commercial sector and the chemical sector are the largest end users of propane in the U.S., accounting for 34% and 41% ...

369

Building Energy Retrofit Research: Multifamily Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Retrofit Research: Multifamily Sector Title Building Energy Retrofit Research: Multifamily Sector Publication Type Report Year of Publication 1985 Authors Diamond,...

370

Coal industry annual 1997  

Science Conference Proceedings (OSTI)

Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

NONE

1998-12-01T23:59:59.000Z

371

Coal industry annual 1993  

Science Conference Proceedings (OSTI)

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

372

Formulating an effective higher education curriculum for the Australian waste management sector  

Science Conference Proceedings (OSTI)

This paper reviews and discusses the current literature relating to the drivers and barriers for a successful waste management curriculum at higher education level. The intention is to use this review to advise educational standards within the tertiary education sector so as to meet industry requirements. The paper presents a review of the UK's system for education and training within the waste management sector over the past decade, and discusses in what ways this approach could be successfully applied to the Australian sector. The paper concludes with a rationale for current research being undertaken within Australia, which seeks to identify which curriculum and pedagogic approaches are best suited for developing the skills of effective waste management practitioners both within the industry and for those graduating from higher education. The case made is that there is an absence of clear standards, educational provisions and certification for this growing industry within Australia, which inhibits the development of an effective waste management sector.

Davis, G. [Centre for Environmental Systems Research, Griffith University, Nathan Campus, Kessels Road, Brisbane, QLD 4111 (Australia)], E-mail: g.davis@griffith.edu.au

2008-07-01T23:59:59.000Z

373

China and India Industrial Efficiency NREL Partnership | Open Energy  

Open Energy Info (EERE)

China and India Industrial Efficiency NREL Partnership China and India Industrial Efficiency NREL Partnership Jump to: navigation, search Logo: China-NREL Industrial Efficiency Partnership Name China-NREL Industrial Efficiency Partnership Agency/Company /Organization National Renewable Energy Laboratory Sector Energy Focus Area Energy Efficiency, Industry Topics Background analysis Country China Eastern Asia References NREL International Program Overview Abstract In support of the DOE Office of Energy Efficiency and Renewable Energy (EERE) Industrial Technologies Program's (ITP) activities to promote industrial energy efficiency internationally, the NREL industrial communications team is developing a specialized portfolio of technical and outreach materials. "In support of the DOE Office of Energy Efficiency and Renewable Energy

374

Aluminum: Industry of the future  

SciTech Connect

For over a century, the US aluminum industry has led the global market with advances in technology, product development, and marketing. Industry leaders recognize both the opportunities and challenges they face as they head into the 21st century, and that cooperative R and D is key to their success. In a unique partnership, aluminum industry leaders have teamed with the US Department of Energy`s Office of Industrial Technologies (OIT) to focus on innovative technologies that will help to strengthen the competitive position of the US aluminum industry and, at the same time, further important national goals. This industry-led partnership, the Aluminum Industry of the Future, promotes technologies that optimize the use of energy and materials in operations and reduce wastes and energy-related emissions. Led by The Aluminum Association, industry leaders began by developing a unified vision of future market, business, energy, and environmental goals. Their vision document, Partnerships for the Future, articulates a compelling vision for the next 20 years: to maintain and grow the aluminum industry through the manufacture and sale of competitively priced, socially desirable, and ecologically sustainable products. Continued global leadership in materials markets will require the combined resources of industry, universities, and government laboratories. By developing a unified vision, the aluminum industry has provided a framework for the next step in the Industries of the Future process, the development of a technology roadmap designed to facilitate cooperative R and D.

1998-11-01T23:59:59.000Z

375

Climate VISION: Private Sector Initiatives: Electric Power - Technology  

Office of Scientific and Technical Information (OSTI)

Technology Pathways Technology Pathways Industry Vision & Roadmaps The following documents are available for download as Adobe PDF documents. Download Acrobat Reader A Climate Contingency Roadmap for the U.S. Electricity Sector: Phase II (PDF 192 KB) This roadmap examines the role of the electric sector in climate change and the sectoral impacts of alternative climate policy designs. The document explores the capabilities and costs of emissions reduction options and the influence of company-specific circumstances on the design of cost-effective response strategies. It also investigates mechanisms to create incentives for support of advanced climate-related technology research, development, and demonstration. Electric Power Research Institute Roadmap The Electric Power Research Institute is initiating an effort to develop an

376

Construction Briefing Process in Malaysia: Procedures and Problems in the Public Sector  

Science Conference Proceedings (OSTI)

Malaysia is progressing smoothly toward the achievement of Vision 2020. In achieving this vision, the country has to undergo tremendous development. Aside from providing houses for the people, the construction industry has to support the development ... Keywords: Construction Briefing Process, Construction Industry, Public Sector, RIBA Plan, Vision 2020

Mastura Jaafar; Arkin Kong Chung King

2011-04-01T23:59:59.000Z

377

Sector 1 Frequently Asked Questions  

NLE Websites -- All DOE Office Websites (Extended Search)

Sector 1 - General Information Sector 1 - General Information Sector 1 Safety Plan (pdf) Useful X-Ray Related Numbers Si a0 = 5.4308 Angstrom CeO2 a0=5.411 Angstrom Cd-109 gamma = 88.036 keV X-ray energy/wavelength conversion constant = 12.39842 Angstrom/keV Useful 1-ID Operations Information Always set the undulator by closing from large to small gap. Always scan the Kohzu monochromator from high to low energy. A Cd-109 source that can be used to calibrate detectors can be obtained by contacting Ali. It has Ag flourescent lines and a 88.036 keV gamma line. Tim Mooney's telephone number is 2-5417. Frequently Asked Questions The following questions come up often when using the Sector 1 beamlines. If you have a question (and maybe answer) that would be of general interest to Sector 1 users, please give it to Jon or Greg for inclusion in this list.

378

Bulk chemicals industry uses 5% of U.S. energy - Today in ...  

U.S. Energy Information Administration (EIA)

The industrial sector is responsible for nearly a third of total energy use in the United States, consuming an estimated 31 quadrillion Btu in 2012.

379

Electricity savings potentials in the residential sector of Bahrain  

SciTech Connect

Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to the peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.

Akbari, H. [Lawrence Berkeley National Lab., CA (United States); Morsy, M.G.; Al-Baharna, N.S. [Univ. of Bahrain, Manama (Bahrain)

1996-08-01T23:59:59.000Z

380

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

7. Key assumptions for the commercial sector in the AEO2012 integrated demand technology cases 7. Key assumptions for the commercial sector in the AEO2012 integrated demand technology cases Assumptions Integrated 2011 Deand Technology Integraged High Demand Technologya Integrated Buildings Best Available Demand Technologya End-use equipment Limited to technology menu available in 2011. Promulgated standards still take effect. Earlier availability, lower cost, and/ or higher efficiencies for advanced equipment. Purchases limited to highest available efficiency for each technology class, regardless of cost. Hurdle rates Same as Reference case distribution. All energy efficiency investments evaluated at 7-percent real interest rate. All energy efficiency investments evaluated at 7-percent real interest rate. Building shells Fixed at 2011 levels. 25 percent more improvement than in the Reference case by 2035. 50 percent more improvement than in the Reference case by 2035.

Note: This page contains sample records for the topic "industrial sector key" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Climate VISION: Private Sector Initiatives: Electric Power: GHG Information  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information The electric power industry reports the vast majority of their emissions (greater than 99 percent) through the use of continuous emissions monitors and fuel-use estimated data that are transmitted to the U.S. Environmental Protection Agency (EPA) and the Energy Information Administration (EIA). EIA annually publishes data on GHG emissions and electric power generation. The "Electric Power Sector" in these publications is defined by EIA as the "energy-consuming sector that consists of electricity only and combined heat and power (CHP) plants whose primary business is to sell electricity, or electricity and heat, to the public - i.e., North American Industry Classification System 22 plants". It does not include CO2 emissions or

382

Zero emissions systems in the food processing industry  

Science Conference Proceedings (OSTI)

The food processing industry is part of an interlinked group of sectors. It plays an important role in the economic development of every country. However, a strongly growing food processing industry greatly magnifies the problems of waste management, ... Keywords: anaerobic digestion, food processing industry, pineapple waste, zero emissions system

Uyen Nguyen Ngoc; Hans Schnitzer

2008-02-01T23:59:59.000Z

383

Solar-Assisted Technology Provides Heat for California Industries  

E-Print Network (OSTI)

Solar-Assisted Technology Provides Heat for California Industries Industrial/Agriculture/Water End 2011 The Issue Solar thermal technology focuses the Sun's rays to heat water, and is a promising renewable resource for California's industrial sector. Commercially available solar water heating

384

Climate VISION: Private Sector Initiatives: Iron and Steel: Results  

Office of Scientific and Technical Information (OSTI)

Results Results No measured results exist at this time in terms of greenhouse gas intensity reductions, given the recent start-up of the Climate VISION program and evolving industry commitments. As the program develops and the industry sectors finalize their work plans, participating associations and the federal government will begin tracking progress. The results will be measured by metrics developed by the industry, in partnership with the government, and reported. It is likely that the 1605(b) program will be the instrument used to report progress. Progress will also be reported on this website. Please check back on this website and the Energy Information Agency website for updates. Read the U.S. Steel Industry Energy Efficiency Fact Sheet (PDF 83 KB) Download Acrobat Reader

385

Climate VISION: Private Sector Initiatives: Iron and Steel: GHG Information  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information Industry Analysis Briefs The Energy Information Agency (EIA) is currently updating industry analysis briefs for the most energy-intensive industries in the United States, including aluminum, chemicals, forest products (such as paper and wood products), glass, metal casting, petroleum and coal products, and steel. As soon as the current briefs are available, we will provide the link. Industry Analysis Briefs will have the following content: Economic Profile and Trends Value of Shipments Annual Production Labor Productivity Energy Use Energy Use by Fuel Fuel Consumption by End Use Energy Consumption by Sector Energy Expenditures Onsite Generation (if applicable) Energy Intensity State-Level Information Technologies and Equipment Cogeneration Technologies (if applicable)

386

Industry @ ALS  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry @ ALS Industry @ ALS Industry @ ALS Concrete Industry Benefits from Ancient Romans and the ALS Print Thursday, 17 October 2013 14:24 New insights into the Romans' ingenious concrete harbor structures emerging from ALS beamline research could move the modern concrete industry toward its goal of a reduced carbon footprint. Summary Slide Read more... Moving Industry Forward: Finding the Environmental Opportunity in Biochar Print Thursday, 12 September 2013 08:41 Using ALS Beamlines 10.3.2 and 8.3.2, the Environmental Protection Agency (EPA) is currently investigating how biochar sorbs environmental toxins and which kinds of biochar are the most effective. The possibilities for widespread use have already launched entrepreneurial commercial ventures. Summary Slide

387

Energy-economy interactions revisited within a comprehensive sectoral model  

Science Conference Proceedings (OSTI)

This paper describes a computable general equilibrium (CGE) model with considerable sector and technology detail, the ``All Modular Industry Growth Assessment'' Model (AMIGA). It is argued that a detailed model is important to capture and understand the several rolls that energy plays within the economy. Fundamental consumer and industrial demands are for the services from energy; hence, energy demand is a derived demand based on the need for heating, cooling mechanical, electrical, and transportation services. Technologies that provide energy-services more efficiently (on a life cycle basis), when adopted, result in increased future output of the economy and higher paths of household consumption. The AMIGA model can examine the effects on energy use and economic output of increases in energy prices (e.g., a carbon charge) and other incentive-based policies or energy-efficiency programs. Energy sectors and sub-sector activities included in the model involve energy extraction conversion and transportation. There are business opportunities to produce energy-efficient goods (i.e., appliances, control systems, buildings, automobiles, clean electricity). These activities are represented in the model by characterizing their likely production processes (e.g., lighter weight motor vehicles). Also, multiple industrial processes can produce the same output but with different technologies and inputs. Secondary recovery, i.e., recycling processes, are examples of these multiple processes. Combined heat and power (CHP) is also represented for energy-intensive industries. Other modules represent residential and commercial building technologies to supply energy services. All sectors of the economy command real resources (capital services and labor).

Hanson, D. A.; Laitner, J. A.

2000-07-24T23:59:59.000Z

388

Program on Technology Innovation: Electricity Use in the Electric Sector  

Science Conference Proceedings (OSTI)

While many utilities are encouraged by regulators to engage in end-use energy efficiency programs, few consider options to reduce energy losses along the electricity value chain, even though the electricity sector is the second largest electricity-consuming industry in the United States. Electricity used to facilitate power production, transmission, and distribution alone consumes approximately 11% of generated electricity. A number of technologies can be applied to reduce this electricity use. This repo...

2011-11-04T23:59:59.000Z

389

Industrial Energy Efficiency Programs: Development and Trends  

E-Print Network (OSTI)

As more states establish Energy Efficiency Resource Standards (EERS), goals for energy efficiency savings are increasing across the country. Increasingly, states are relying on their industrial energy efficiency programs to find and help implement those savings. Historically, industrial energy efficiency programs have not been completely effective at finding those savings, in large part because the programs have not been flexible enough to accommodate the heterogeneous needs and unique characteristics of the industrial sector. This paper will discuss the state of industrial energy efficiency programs today. Relying on an ACEEE-administered survey of 35 industrial energy efficiency programs, we will determine current trends and challenges, address emerging needs, and identify best practices in the administration of today's industrial efficiency programs. The paper will serve as an update on industrial energy efficiency program activities and discuss the ways in which today's programs are trying to serve their industrial clients better.

Chittum, A.; Kaufman, N.; Elliot, N.

2010-01-01T23:59:59.000Z

390

Market study for direct utilization of geothermal resources by selected sectors of economy  

DOE Green Energy (OSTI)

A comprehensive analysis is presented of industrial markets potential for direct use of geothermal energy by a total of six industry sectors: food and kindred products; tobacco manufactures; textile mill products; lumber and wood products (except furniture); chemicals and allied products; and leather and leather products. A brief statement is presented regarding sectors of the economy and major manufacturing processes which can readily utilize direct geothermal energy. Previous studies on plant location determinants are summarized and appropriate empirical data provided on plant locations. Location determinants and potential for direct use of geothermal resources are presented. The data was gathered through interviews with 30 senior executives in the six sectors of economy selected for study. Probable locations of plants in geothermal resource areas and recommendations for geothermal resource marketing are presented. Appendix A presents factors which impact on industry location decisions. Appendix B presents industry executives interviewed during the course of this study. (MHR)

Not Available

1980-08-01T23:59:59.000Z

391

LEDSGP/Transportation Toolkit/Key Actions | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Key Actions < LEDSGP‎ | Transportation Toolkit(Redirected from Transportation Toolkit/Key Actions) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Key Actions for Low-Emission Development in Transportation Although no single approach or fixed process exists for low emission development strategies (LEDS), the following key actions are necessary steps for implementing LEDS in the transportation sector. Undertaking these actions requires flexibility to adapt to dynamic societal conditions in a

392

Photovoltaics for Buildings: Key Issues in Pursuit of Market Readiness  

SciTech Connect

The photovoltaic (PV) industry is rapidly beginning to recognize the market potential of the buildings sector. New PV-for-buildings products have recently become commercially available, and numerous products that are under development will be introduced within the next 5 years. To ensure that these new products will be adopted and used in common building practices, the PV industry should recognize and address important buildings industry issues. These issues include building codes and standards, after-market servicing, education, and warranties and insurance policies. Photovoltaic systems are also still very expensive. The simplest method for increasing their value for a building is to decrease the building's electrical loads through energy efficiency and conservation. Meeting these goals can only be accomplished through partnerships with the U.S. Department of Energy (DOE), private industry, and public institutions.

Hayter, S. J.

1998-10-31T23:59:59.000Z

393

Photovoltaics for Buildings: Key Issues in Pursuit of Market Readiness  

DOE Green Energy (OSTI)

The photovoltaic (PV) industry is rapidly beginning to recognize the market potential of the buildings sector. New PV-for-buildings products have recently become commercially available, and numerous products that are under development will be introduced within the next 5 years. To ensure that these new products will be adopted and used in common building practices, the PV industry should recognize and address important buildings industry issues. These issues include building codes and standards, after-market servicing, education, and warranties and insurance policies. Photovoltaic systems are also still very expensive. The simplest method for increasing their value for a building is to decrease the building's electrical loads through energy efficiency and conservation. Meeting these goals can only be accomplished through partnerships with the U.S. Department of Energy (DOE), private industry, and public institutions.

Hayter, S. J.

1998-10-31T23:59:59.000Z

394

Cyber Security Testing and Training Programs for Industrial Control Systems  

DOE Green Energy (OSTI)

Service providers rely on industrial control systems (ICS) to manage the flow of water at dams, open breakers on power grids, control ventilation and cooling in nuclear power plants, and more. In today's interconnected environment, this can present a serious cyber security challenge. To combat this growing challenge, government, private industry, and academia are working together to reduce cyber risks. The Idaho National Laboratory (INL) is a key contributor to the Department of Energy National SCADA Test Bed (NSTB) and the Department of Homeland Security (DHS) Control Systems Security Program (CSSP), both of which focus on improving the overall security posture of ICS in the national critical infrastructure. In support of the NSTB, INL hosts a dedicated SCADA testing facility which consists of multiple control systems supplied by leading national and international manufacturers. Within the test bed, INL researchers systematically examine control system components and work to identify vulnerabilities. In support of the CSSP, INL develops and conducts training courses which are designed to increase awareness and defensive capabilities for IT/Control System professionals. These trainings vary from web-based cyber security trainings for control systems engineers to more advanced hands-on training that culminates with a Red Team/ Blue Team exercise that is conducted within an actual control systems environment. INL also provides staffing and operational support to the DHS Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) Security Operations Center which responds to and analyzes control systems cyber incidents across the 18 US critical infrastructure sectors.

Daniel Noyes

2012-03-01T23:59:59.000Z

395

Integrated framework for analysis: electric sector expansion in developing countries  

Science Conference Proceedings (OSTI)

The objective of this dissertation is the development of an analytical framework for the assessment of electric sector expansion strategies in developing countries, in the context of overall development planning, and with particular emphasis on macroeconomic and social implications. The framework will ensure that each electric capacity expansion alternative is linked quantitatively and consistently with a given economic development plan. The analytical model employs an integrated set of technological and economic models to explore the national energy and economy response to electric sector expansion planning for the Korean case. In this study, two integrated models were developed. The integrated model 1 is composed of a macroeconomic model, an energy input-output model, and an energy network flow model. This model accounts for the relationships of energy demand with overall economic development, and interfuel substitution, for the relationships between the investment capital required to meet astated levels of electric demand and overall investment planning and foreign exchange requirements, and economic impacts of the energy sector on gross national product (GNP) and balance of payments (BOP). The integrated model 2 is composed of an energy input-output model, and energy network flow model, and a GNP identify constraint,and calculates the macroeconomic-balanced level of comsumption, electric sector investments, industrial sector investments, and energy imports given policy-determined GNP and other GNP components. The two models were applied ot the Korean case by using a trial scenario and assumed input data. Computational results demonstrate and prove the workability of the models.

Lee, M.K.

1982-01-01T23:59:59.000Z

396

Background on Quantum Key Distribution  

Science Conference Proceedings (OSTI)

... Background on Quantum Key Distribution. ... If someone, referred to by cryptographers as Eve, tries to eavesdrop on the transmission, she will not ...

2011-08-02T23:59:59.000Z

397

The CO2 Abatement Cost Curve for the Thailand's Cement Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Abstract The cement industry is one of the largest carbon dioxide (CO2) emitters in the Thai industry. The cement sector accounted for about 20633 kilotonnes (ktonnes) CO2...

398

Abstract This research investigates the requirements for proactive service delivery for heavy industrial equipment  

E-Print Network (OSTI)

Abstract ­ This research investigates the requirements for proactive service delivery for heavy. Keywords: Service contract, heavy industrial equipment, proactive service delivery, reference model. 1 Introduction Manufacturers of heavy industry are increasingly expanding into the service sector, not just

Hsu, Cheng

399

Key Workplace Documents Federal Publications  

E-Print Network (OSTI)

importers and manufacturers with additional flexibility in choosing suppliers, as well as modes of entry (i lead to additional support for an FTA within the domestic/regional manufacturing sector. The following nations, often with the manufacture and assembly conducted in several different countries. In addition

400

Partnership in key exchange protocols  

Science Conference Proceedings (OSTI)

In this paper, we investigate the notion of partnership as found in security models for key exchange protocols. Several different approaches have been pursued to define partnership, with varying degrees of success. We aim to provide an overview and criticism ... Keywords: key exchange, partnership, session identifier

Kazukuni Kobara; Seonghan Shin; Mario Strefler

2009-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector key" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Climate VISION: Private Sector Initiatives: Forest Products: Resources and  

Office of Scientific and Technical Information (OSTI)

Industry Associations Industry Associations American Forest & Paper Association (AF&PA) AF&PA's message is to provide significant value to member companies through outstanding performance in those areas that are key to members' success and where an association can be more effective than individual companies. AF&PA is the national trade association of the forest, pulp, paper, paperboard, and wood products industry. Industry Vision and Technology Partnerships: Agenda 2020 Coordinating with AF&PA to develop a technology strategy. Institute of Paper Science and Technology (IPST) The Institute of Paper Science and Technology (IPST) is a privately funded 501 (c)(3) graduate research university with engineering and scientific programs related to the pulp and paper industry. IPST has established

402

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

released its Energy White Paper “Our Energy Future –Carbon Economy (Energy White Paper), available at: http://launched its Energy White Paper “Our energy future –

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

403

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

Directories. Directories are a collection of organizations,Allies Directory” which includes over 270 organizations thatAllies Directory” which includes over 270 organizations who

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

404

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

Agency (IEA), 2002. Energy Policies of IEA Countries, 20021998. White Paper on Energy Policy, March 1999. White Paper,References: 1. Sustainable Energy Policy Network website:

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

405

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

www.eia.doe.gov/ 7. Office of Fossil Energy website: http://regarding energy. Office of Fossil Energy [7] Office of

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

406

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

4C79-A10D935C6FE25ED1 18. Sustainable Energy DevelopmentWESBus.shtml 20. The Sustainable Energy Authority website:References: 1. Sustainable Energy Policy Network website:

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

407

Energy Efficiency Programs and Policies in the Industrial Sector in Industrialized Countries  

E-Print Network (OSTI)

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any

Christina Galitsky; Lynn Price; Ernst Worrell; Christina Galitsky; Lynn Price; Ernst Worrell; Christina Galitsky; Lynn Price; Ernst Worrell

2004-01-01T23:59:59.000Z

408

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

Conservation Bill, Natural Gas Supply Bill and Heat SupplyEnergy demand/supply outlook, • Natural gas storage in thefor the domestic supply of natural gas. Carrying out the

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

409

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

at the federal government for energy policy is BMWA. BMWAof the central government, domestic energy policy is thethe federal government level for energy policy. Generally,

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

410

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

23. Wisconsin – Focus on Energy website: http://pageId =4 24. International Energy Agency (IEA) documents:index.html 16. Renewable Energy Equity Fund (REEF) website:

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

411

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

2. Office of Energy Efficiency and Renewable Energy website:s Office of Energy Efficiency and Renewable Energy. Productsto promote energy efficiency and renewable energy. In 2001,

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

412

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

as information on energy management systems. A variety ofand introduce an energy management system in line with ISOsystem, an energy management system and an overview of

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

413

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

development of renewable energy production facilities in theforms of renewable energy to total electricity production by

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

414

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

R&D, energy management programs, workshops and training,R&D, energy management programs, workshops and training,

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

415

The Challenge of Reducing Energy Consumption in China's Industrial...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Challenge of Reducing Energy Consumption in China's Industrial Sector Speaker(s): Lynn Price Date: September 16, 2008 - 12:00pm Location: 90-3122 Seminar HostPoint of Contact:...

416

Energy use and carbon dioxide emissions in the steel sector in key developing countries  

E-Print Network (OSTI)

China, India and Mexico, primary energy use and associatedBrazil South Africa Mexico Primary energy consumption isBrazil and Mexico have the lowest energy intensities of the

Price, Lynn; Phylipsen, Dian; Worrell, Ernst

2001-01-01T23:59:59.000Z

417

State Level Analysis of Industrial Energy Use  

E-Print Network (OSTI)

Most analyses of industrial energy use have been conducted at the national level, in part because of the difficulties in dealing with state level data. Unfortunately, this provides a distorted view of the industrial sector for state and regional policymakers. ACEEE has completed analyses on eight states drawing upon data from a diverse set of sources to characterize the industries at a relatively high level of disaggregation. These analyses demonstrate how different state and regional mixes are from the national mix and the importance of a regionally specific approach to industrial energy policy. In addition, the data suggest that significant shifts are occurring in industry mix in some of these states that will have important ramifications on future industrial policies for these states. This paper will provide an overview of our analytical approach, the data sources that are available, and provide examples of the analysis results to demonstrate the regional diversity of industrial electricity use.

Elliott, R. N.; Shipley, A. M.; Brown, E.

2003-05-01T23:59:59.000Z

418

Canada's Voluntary Industrial Energy Conservation Program  

E-Print Network (OSTI)

Industrial Energy Conservation in Canada is organized and promoted through a voluntary program that is administered by industry. Industry is divided into fifteen sectors, each of which is represented by a Voluntary Task Force. Information exchange, goal setting and progress reporting are carried on through these Task Forces which are staffed with industrial volunteers and representatives from the major trade associations. Inter-industry liaison is accomplished via a Coordinating Committee comprised of the individual Task Force Chairmen and representatives of the federal government. While the program has been in existence only since 1976, impressive gains have already been made and targets have been set for 1980 and 1985. The strength of the program lies in its candid cooperation between industry and government. There has, to date, been no need or advantage to implementing a government mandated program for industrial energy conservation in Canada.

Wolf, C. A., Jr.

1980-01-01T23:59:59.000Z

419

Estimating energy-augmenting technological change in developing country industries  

E-Print Network (OSTI)

over time is calculated. Second, prices and the energy costTime averages of sectoral productivity and autonomous energy efficiency trend Industry Prices and energy costTime averages (in percent) of sectoral productivity and autonomous energy efficiency trend Prices and energy cost

Sanstad, Alan H.; Roy, Joyashree; Sathaye, Jayant A.

2006-01-01T23:59:59.000Z

420

Review: Future internet and the agri-food sector: State-of-the-art in literature and research  

Science Conference Proceedings (OSTI)

The food sector is one of the most important sectors of the economy, encompassing agriculture, the food industry, retail, and eventually, all members of society as consumers. With its responsibility of serving consumers with food that is safe, readily ... Keywords: Awareness, Data ownership, Farming, Logistics, Networked devices, Tracking and tracing

Richard J. Lehmann; Robert Reiche; Gerhard Schiefer

2012-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector key" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Integration of the informal sector into municipal solid waste management in the Philippines - What does it need?  

SciTech Connect

The integration of the informal sector into municipal solid waste management is a challenge many developing countries face. In Iloilo City, Philippines around 220 tons of municipal solid waste are collected every day and disposed at a 10 ha large dumpsite. In order to improve the local waste management system the Local Government decided to develop a new Waste Management Center with integrated landfill. However, the proposed area is adjacent to the presently used dumpsite where more than 300 waste pickers dwell and depend on waste picking as their source of livelihood. The Local Government recognized the hidden threat imposed by the waste picker's presence for this development project and proposed various measures to integrate the informal sector into the municipal solid waste management (MSWM) program. As a key intervention a Waste Workers Association, called USWAG Calahunan Livelihood Association Inc. (UCLA) was initiated and registered as a formal business enterprise in May 2009. Up to date, UCLA counts 240 members who commit to follow certain rules and to work within a team that jointly recovers wasted materials. As a cooperative they are empowered to explore new livelihood options such as the recovery of Alternative Fuels for commercial (cement industry) and household use, production of compost and making of handicrafts out of used packages. These activities do not only provide alternative livelihood for them but also lessen the generation of leachate and Greenhouse Gases (GHG) emissions from waste disposal, whereby the life time of the proposed new sanitary landfill can be extended likewise.

Paul, Johannes G., E-mail: jp.aht.p3@gmail.com [GIZ-AHT Project Office SWM4LGUs, c/o DENR, Iloilo City (Philippines); Arce-Jaque, Joan [GIZ-AHT Project Office SWM4LGUs, c/o DENR, Iloilo City (Philippines); Ravena, Neil; Villamor, Salome P. [General Service Office, City Government, Iloilo City (Philippines)

2012-11-15T23:59:59.000Z

422

FLARING SOLAR HALE SECTOR BOUNDARIES  

SciTech Connect

The sector structure that organizes the magnetic field of the solar wind into large-scale domains has a clear pattern in the photospheric magnetic field as well. The rotation rate, 27-28.5 days, implies an effectively rigid rotation originating deeper in the solar interior than the sunspots. The photospheric magnetic field is known to be concentrated near that portion (the Hale boundary) in each solar hemisphere, where the change in magnetic sector polarity matches that between the leading and following sunspot polarities in active regions in the respective hemispheres. We report here that flares and microflares also concentrate at the Hale boundaries, implying that flux emergence and the creation of free magnetic energy in the corona also have a direct cause in the deep interior.

Svalgaard, L. [HEPL, Stanford University, Stanford, CA 94304 (United States); Hannah, I. G.; Hudson, H. S., E-mail: leif@leif.org [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom)

2011-05-20T23:59:59.000Z

423

AEO2011: Renewable Energy Consumption by Sector and Source | OpenEI  

Open Energy Info (EERE)

Consumption by Sector and Source Consumption by Sector and Source Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 17, and contains only the reference case. The dataset uses quadrillion Btu. The data is broken down into marketed renewable energy, residential, commercial, industrial, transportation and electric power. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords Commercial Electric Power Industrial Renewable Energy Consumption Residential sector source transportation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Consumption by Sector and Source- Reference Case (xls, 105 KiB) Quality Metrics Level of Review Peer Reviewed

424

City of San Jose - Private Sector Green Building Policy | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jose - Private Sector Green Building Policy Jose - Private Sector Green Building Policy City of San Jose - Private Sector Green Building Policy < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State California Program Type Building Energy Code Provider City of San Jose In October 2008, the City of San Jose enacted the Private Sector Green Building Policy (Policy No. 6-32). The policy was adopted in Ordinance No. 28622 in June, 2009. All new buildings must meet certain green building requirements in order to receive a building permit. Requirements are dependent on the size and type of the project. * Tier 1 Commercial Projects include commercial industrial projects

425

Industry | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Industry: biomedicine and drug development Biomedical scientists use particle physics technologies to decipher the structure of proteins, information that is key to...

426

Guidance for Preparing ENERGY STAR Challenge for Industry Plant...  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge for Industry has been a key factor in Boeing's 'four walls' strategy to reduce energy usage and waste along with reducing the environmental footprint of its operations....

427

The Office of Industrial Technologies technical reports  

SciTech Connect

The US Department of Energy's Office of Industrial Technologies (OIT) conducts R D activities which focus on the objectives of improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial energy conservation. The Office also conducts programs to reduce waste generation, increase recycling efforts, and improve the use of wastes as process feedstocks. An active program of technology transfer and education supports these activities and encourages adoption of new technologies. To accomplish these objectives OIT cooperates with the private sector to identify its technological needs and to share R D efforts. R D is conducted to the point that a new technology is shown to work and that it can be transferred to the private sector end-users. This bibliography contains information on all scientific and technical reports sponsored by the DOE Industrial Energy Conservation Program during the years 1988--1990.

Not Available

1992-01-01T23:59:59.000Z

428

Table H1. Estimated Hydrogen Production by Business Sector Business Sector Annual Hydrogen Production  

E-Print Network (OSTI)

In 2007, roughly 9 million metric tons per year of hydrogen was produced in the U.S. 1 in a variety of ways. This production results in about 60 million metric tons of CO2 emissions each year. Table H1 provides estimates of U.S. hydrogen production for the various business sectors. Merchant hydrogen is consumed at sites other than where it is produced. Captive hydrogen (e.g., hydrogen produced at oil refineries, ammonia, and methanol plants) is consumed at the site where it is produced. This technical support document assumes that CO2 emissions associated with captive hydrogen production facilities are included as part of the GHG emissions from the industry producing those other chemical products (e.g., ammonia, petroleum products, and methanol), and therefore this document is focused on merchant hydrogen production.

unknown authors

2008-01-01T23:59:59.000Z

429

Energy Sector Vulnerability to Climate Change: Adaptation Options to Increase Resilience (Presentation)  

SciTech Connect

The U.S. Department of Energy is conducting an assessment of vulnerabilities of the U.S. energy sector to climate change and extreme weather. Emphasizing peer reviewed research, it seeks to quantify vulnerabilities and identify specific knowledge or technology gaps. It draws upon a July 2012 workshop, ?Climate Change and Extreme Weather Vulnerability Assessment of the US Energy Sector?, hosted by the Atlantic Council and sponsored by DOE to solicit industry input.

Newmark, R. L.; Bilello, D.; Macknick, J.; Hallet, K. C.; Anderson, R.; Tidwell, V.; Zamuda, C.

2013-02-01T23:59:59.000Z

430

LEDSGP/Transportation Toolkit/Key Actions/Create a Baseline | Open Energy  

Open Energy Info (EERE)

LEDSGP/Transportation Toolkit/Key Actions/Create a Baseline LEDSGP/Transportation Toolkit/Key Actions/Create a Baseline < LEDSGP‎ | Transportation Toolkit‎ | Key Actions Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Key Actions for Low-Emission Development in Transportation Although no single approach or fixed process exists for low-emission development strategies (LEDS), the following key actions are necessary steps for implementing LEDS in the transportation sector. Undertaking these actions requires flexibility to adapt to dynamic societal conditions in a way that complements existing climate and development goals in other sectors. Planners, researchers, and decision-makers should customize this LEDS implementation framework for the specific conditions of their transport

431

Energy use in the marine transportation industry: Task I, Industry Summary. Final report  

SciTech Connect

Task I, Industry Summary, defines the current marine transportation industry in terms of population, activities, and energy use. It identifies the various operating or service sectors of the marine transportation industry and determines the numbers and types of vessels, their operating characteristics, and energy consumption. The analysis includes all powered water-borne craft, with the exception of those owned or operated by a government organization and fixed offshore production platforms. The energy consumption analysis of the marine transportation industry concludes with 4 major findings: the marine transportation industry consumes 2.934 quads annually; energy consumption in the marine transportation sector represents 15% of the energy consumed for transportation services; the foreign trade sector consumes 80% of the estimated marine transportation energy requirements; and a minimum of 28% of the energy required by the marine transportation industry is purchased in the US. In each additional chapter (foreign trade, Great Lakes, coastal shipping, offshore, inland waterways, fishing sectors, and recreational boats) the subjects are described in terms of population, operating profiles, energy consumption, typical or generic vessels, costs, and cargo movements.

1977-09-01T23:59:59.000Z

432

Gasification world database 2007. Current industry status  

Science Conference Proceedings (OSTI)

Information on trends and drivers affecting the growth of the gasification industry is provided based on information in the USDOE NETL world gasification database (available on the www.netl.doe.gov website). Sectors cover syngas production in 2007, growth planned through 2010, recent industry changes, and beyond 2010 - strong growth anticipated in the United States. A list of gasification-based power plant projects, coal-to-liquid projects and coal-to-SNG projects under consideration in the USA is given.

NONE

2007-10-15T23:59:59.000Z

433

Transportation Energy Futures Study: The Key Results and Conclusions  

Open Energy Info (EERE)

Transportation Energy Futures Study: The Key Results and Conclusions Transportation Energy Futures Study: The Key Results and Conclusions Webinar Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(1992) Super contributor 1 May, 2013 - 11:38 This webinar will outline the key results and conclusions from EERE's Transportation Energy Futures study, which highlights underexplored opportunities to reduce petroleum use and greenhouse gas emissions from the U.S. transportation sector. There will be time for questions from attendees at the end of the webinar. Principal Deputy Assistant Secretary Mike Carr will introduce the study and provide context on EERE's transportation energy strategy. In his role with EERE, Mike provides leadership direction on cross-cutting activities in EERE's portfolio. In particular, he is using his experience in policy

434

Building MRV Standards and Capacity in Key Countries | Open Energy  

Open Energy Info (EERE)

MRV Standards and Capacity in Key Countries MRV Standards and Capacity in Key Countries Jump to: navigation, search Name Building MRV Standards and Capacity in Key Countries Agency/Company /Organization World Resources Institute (WRI) Sector Climate Focus Area Renewable Energy Topics Implementation Website http://www.wri.org/topics/mrv Program Start 2011 Program End 2014 Country Brazil, Colombia, Ethiopia, India, South Africa, Thailand South America, South America, Eastern Africa, Southern Asia, Southern Africa, South-Eastern Asia References World Resources Institute (WRI)[1] Program Overview Developing countries will be required to measure, report, and verify (MRV) mitigation actions according to international guidelines, but few have the capacity to do so. The goal of this project is to build the capacity of a

435

Key Activities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Key Activities Key Activities Key Activities The Water Power Program conducts work in four key areas at the forefront of water power research. The Program is structured to help the United States meet its growing energy demands sustainably and cost-effectively by developing innovative renewable water power technologies, breaking down market barriers to deployment, building the infrastructure to test new technologies, and assessing water power resources for integration into our nation's grid. Research and Development Introduce and advance new marine and hydrokinetic technologies to provide sustainable and cost-effective renewable energy from the nation's waves, tides, currents, and ocean thermal gradients. Research and develop innovative hydropower technologies to sustainably tap our country's diverse water resources including rivers,

436

Key China Energy Statistics 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Title Key China Energy Statistics 2011 Publication Type Chart Year of Publication 2012 Authors Levine, Mark D., David Fridley, Hongyou Lu, and Cecilia Fino-Chen Date Published...

437

Key China Energy Statistics 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Title Key China Energy Statistics 2012 Publication Type Chart Year of Publication 2012 Authors Levine, Mark D., David Fridley, Hongyou Lu, and Cecilia Fino-Chen Date Published...

438

Public Sector Procurement: Issues in Program Development & Delivery  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Sector Procurement: Issues in Program Development & Delivery Public Sector Procurement: Issues in Program Development & Delivery Title Public Sector Procurement: Issues in Program Development & Delivery Publication Type Report LBNL Report Number LBNL-6015E Year of Publication 2012 Authors Payne, Christopher T., and Andrew Weber Publisher LBNL Abstract The primary intention of this document is to illustrate the key issues and considerations made during the course of implementing a sustainable procurement program. Our primary sources of information have been our partners in the Super Efficient Equipment and Appliance Deployment (SEAD) Initiative Procurement Working Group. Where applicable, we have highlighted specific ways in which working group participants have successfully overcome these barriers. It is our hope that the issues discussed in this book will benefit developed and developing programs alike. In countries with less developed sustainable procurement programs, we hope that the discussions contained in the document will aid in the planning process. In addition, we hope that consideration of some of these key issues in the beginning stages of program implementation will help avoid some of the pitfalls experienced by more mature programs. In the case of more developed programs, we hope this book will spur conversation among those responsible for administering and evaluating sustainable procurement programs. In many cases, developed programs are seeking to improve existing processes and develop more effective purchaser resources.

439

EIA - International Energy Outlook 2009-Transportation Sector...  

Gasoline and Diesel Fuel Update (EIA)

2009 Figure 69. OECD and Non-OECD Transportation Sector Liquids Consumption, 2006-2030 Figure 70. World Liquids Consumption by End-Use Sector, 2006-2030 Figure 71. OECD and...

440

Water Impacts of the Electricity Sector (Presentation)  

Science Conference Proceedings (OSTI)

This presentation discusses the water impacts of the electricity sector. Nationally, the electricity sector is a major end-user of water. Water issues affect power plants throughout the nation.

Macknick, J.

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector key" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Biomass Resources for the Federal Sector  

DOE Green Energy (OSTI)

Biomass Resources for the Federal Sector is a fact sheet that explains how biomass resources can be incorporated into the federal sector, and also how they can provide opportunities to meet federal renewable energy goals.

Not Available

2005-08-01T23:59:59.000Z

442

Working with the Private Sector to Achieve a Clean Energy Economy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

with the Private Sector to Achieve a Clean Energy Economy with the Private Sector to Achieve a Clean Energy Economy Working with the Private Sector to Achieve a Clean Energy Economy October 29, 2010 - 10:39am Addthis Doug Schultz Program Director, Loan Programs Office of the Department of Energy. What does this project do? Brings more certainty to the market by incentivizing the capital markets. Increases non-government lending capacity to the renewable sector. Provides a bridge between innovative but high tech risk projects and commercial technology projects whose risk profiles banks readily assume. It's an example of how the Administration is working with the private sector to achieve its goal of a clean energy economy. Today, I had the pleasure to speak to some of the leading power industry players about the DOE Loan Program Office's (LPO) Financial Institution

443

Renewable Energy Consumption by Energy Use Sector and Energy Source, 2004 -  

Open Energy Info (EERE)

by Energy Use Sector and Energy Source, 2004 - by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

444

Philippines-NAMA Programme for the Construction Sector in Asia | Open  

Open Energy Info (EERE)

Philippines-NAMA Programme for the Construction Sector in Asia Philippines-NAMA Programme for the Construction Sector in Asia Jump to: navigation, search Name Philippines-NAMA Programme for the Construction Sector in Asia Agency/Company /Organization United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market analysis Website http://www.unep.org/sbci/pdfs/ Program End 2017 Country Philippines South-Eastern Asia References Buildings and Climate Change[1] Program Overview This project will support countries to develop Nationally Appropriate Mitigation Actions (NAMA) for the building sector. The NAMAs will be developed and apply common MRV methodologies for buildings in line with work by CDM and UNEP/ISO. NAMA will deliver significant GHG emission

445

India-NAMA Programme for the Construction Sector in Asia | Open Energy  

Open Energy Info (EERE)

India-NAMA Programme for the Construction Sector in Asia India-NAMA Programme for the Construction Sector in Asia Jump to: navigation, search Name India-NAMA Programme for the Construction Sector in Asia Agency/Company /Organization United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market analysis Website http://www.unep.org/sbci/pdfs/ Program End 2017 Country India Southern Asia References Buildings and Climate Change[1] Program Overview This project will support countries to develop Nationally Appropriate Mitigation Actions (NAMA) for the building sector. The NAMAs will be developed and apply common MRV methodologies for buildings in line with work by CDM and UNEP/ISO. NAMA will deliver significant GHG emission

446

Working with the Private Sector to Achieve a Clean Energy Economy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Working with the Private Sector to Achieve a Clean Energy Economy Working with the Private Sector to Achieve a Clean Energy Economy Working with the Private Sector to Achieve a Clean Energy Economy October 29, 2010 - 10:39am Addthis Doug Schultz Program Director, Loan Programs Office of the Department of Energy. What does this project do? Brings more certainty to the market by incentivizing the capital markets. Increases non-government lending capacity to the renewable sector. Provides a bridge between innovative but high tech risk projects and commercial technology projects whose risk profiles banks readily assume. It's an example of how the Administration is working with the private sector to achieve its goal of a clean energy economy. Today, I had the pleasure to speak to some of the leading power industry players about the DOE Loan Program Office's (LPO) Financial Institution

447

Indonesia-NAMA Programme for the Construction Sector in Asia | Open Energy  

Open Energy Info (EERE)

Indonesia-NAMA Programme for the Construction Sector in Asia Indonesia-NAMA Programme for the Construction Sector in Asia Jump to: navigation, search Name Indonesia-NAMA Programme for the Construction Sector in Asia Agency/Company /Organization United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market analysis Website http://www.unep.org/sbci/pdfs/ Program End 2017 Country Indonesia South-Eastern Asia References Buildings and Climate Change[1] Program Overview This project will support countries to develop Nationally Appropriate Mitigation Actions (NAMA) for the building sector. The NAMAs will be developed and apply common MRV methodologies for buildings in line with work by CDM and UNEP/ISO. NAMA will deliver significant GHG emission

448

NAMA-Programme for the construction sector in Asia | Open Energy  

Open Energy Info (EERE)

NAMA-Programme for the construction sector in Asia NAMA-Programme for the construction sector in Asia Jump to: navigation, search Name NAMA-Programme for the construction sector in Asia Agency/Company /Organization United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Market analysis Website http://www.unep.org/sbci/pdfs/ Program End 2017 Country China, India, Indonesia, Malaysia, Philippines, Thailand, Vietnam Eastern Asia, Southern Asia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia References Buildings and Climate Change[1] Program Overview This project will support countries to develop Nationally Appropriate Mitigation Actions (NAMA) for the building sector. The NAMAs will be developed and apply common MRV methodologies for buildings in line with

449

Thailand-NAMA Programme for the Construction Sector in Asia | Open Energy  

Open Energy Info (EERE)

Thailand-NAMA Programme for the Construction Sector in Asia Thailand-NAMA Programme for the Construction Sector in Asia Jump to: navigation, search Name Thailand-NAMA Programme for the Construction Sector in Asia Agency/Company /Organization United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market analysis Website http://www.unep.org/sbci/pdfs/ Program End 2017 Country Thailand South-Eastern Asia References Buildings and Climate Change[1] Program Overview This project will support countries to develop Nationally Appropriate Mitigation Actions (NAMA) for the building sector. The NAMAs will be developed and apply common MRV methodologies for buildings in line with work by CDM and UNEP/ISO. NAMA will deliver significant GHG emission

450

LEDSGP/Transportation Toolkit/Key Actions/Implement and Monitor | Open  

Open Energy Info (EERE)

Actions/Implement and Monitor Actions/Implement and Monitor < LEDSGP‎ | Transportation Toolkit‎ | Key Actions Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Key Actions for Low-Emission Development in Transportation Although no single approach or fixed process exists for low-emission development strategies (LEDS), the following key actions are necessary steps for implementing LEDS in the transportation sector. Undertaking these actions requires flexibility to adapt to dynamic societal conditions in a way that complements existing climate and development goals in other sectors. Planners, researchers, and decision-makers should customize this LEDS implementation framework for the specific conditions of their transport sector, choosing from relevant resources to achieve a comprehensive action

451

Despatch Industries | Open Energy Information  

Open Energy Info (EERE)

Despatch Industries Despatch Industries Jump to: navigation, search Name Despatch Industries Place Minneapolis, Minnesota Zip 55044 Sector Solar Product Manufacturer of infrared drying and firing furnaces used in solar cell manufacture, and other thermal processing equipment. Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

452

Industrial Buildings Tools and Resources  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rolf Butters Rolf Butters Industrial Technologies Program Industrial Buildings Tools and Resources Webinar - June 11, 2009 Michael MacDonald Agenda  Introduction to Industrial Buildings Opportunity and Tools  EERE Funding, Opportunities, and Resources  Next Steps 6/11/2009 2 Facilities Energy  ITP has been working for a couple years now to develop tools to address facilities energy use, present in most plants, and about 8% of total sector energy use  First tool is a Score Card, implemented both as a stand- alone Excel file and for QuickPEP - Score Card has to be simple, so is approximate - But it can be a very important tool for scoping facilities energy use at a plant  Second tool is an adaptation of the BCHP Screening Tool, originally developed by the Distributed Energy program but

453

China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China  

E-Print Network (OSTI)

ENERGY STAR for Industry Energy Guides include both process-s sector-wide energy efficiency guides provide informationto develop energy efficiency guides, which are being

Price, Lynn

2008-01-01T23:59:59.000Z

454

Sumitomo Metal Industries Ltd Sumitomo Metals | Open Energy Information  

Open Energy Info (EERE)

Sumitomo Metal Industries Ltd Sumitomo Metals Sumitomo Metal Industries Ltd Sumitomo Metals Jump to: navigation, search Name Sumitomo Metal Industries Ltd (Sumitomo Metals) Place Osaka-shi, Osaka, Japan Zip 540-0041 Sector Solar Product Engaged in the steel, engineering, and electronics businesses; works on fuel cell component technology and manufactures silicon wafers for the solar sector. References Sumitomo Metal Industries Ltd (Sumitomo Metals)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sumitomo Metal Industries Ltd (Sumitomo Metals) is a company located in Osaka-shi, Osaka, Japan . References ↑ "Sumitomo Metal Industries Ltd (Sumitomo Metals)" Retrieved from "http://en.openei.org/w/index.php?title=Sumitomo_Metal_Industries_Ltd_Sumitomo_Metals&oldid=351744"

455

China-International Industrial Energy Efficiency Deployment Project | Open  

Open Energy Info (EERE)

China-International Industrial Energy Efficiency Deployment Project China-International Industrial Energy Efficiency Deployment Project Jump to: navigation, search Name China-International Industrial Energy Efficiency Deployment Project Agency/Company /Organization United States Department of Energy (USDOE), Institute for Sustainable Communities (ISC), Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory (ORNL), Alliance for Energy Efficient Economy (India), Confederation of Indian Industry Sector Energy Focus Area Industry Topics Implementation, Low emission development planning, Technology characterizations Program Start 2011 Program End 2013 Country China Eastern Asia References International Industrial Energy Efficiency Deployment Project[1] Overview China "China is prioritizing a low carbon, energy efficient economy and has

456

International Industrial Energy Efficiency Deployment Project | Open Energy  

Open Energy Info (EERE)

Industrial Energy Efficiency Deployment Project Industrial Energy Efficiency Deployment Project Jump to: navigation, search Name International Industrial Energy Efficiency Deployment Project Agency/Company /Organization United States Department of Energy (USDOE), Institute for Sustainable Communities (ISC), Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory (ORNL), Alliance for Energy Efficient Economy (India), Confederation of Indian Industry Sector Energy Focus Area Industry Topics Implementation, Low emission development planning, Technology characterizations Program Start 2011 Program End 2013 Country China, India Eastern Asia, Southern Asia References International Industrial Energy Efficiency Deployment Project[1] Overview China "China is prioritizing a low carbon, energy efficient economy and has

457

Policy modeling for industrial energy use  

E-Print Network (OSTI)

simple energy intensity is not a good indicator for energyEnergy Intensity in the Iron & Steel industry: A Comparison of Physical and Economic Indicators",energy efficiency in the Korean manufacturing sector, studies using economic energy efficiency indicators (energy intensity

2003-01-01T23:59:59.000Z

458

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas Industrial and electric power sectors lead U.S. growth in natural gas consumption figure data U.S. total natural gas consumption grows from 24.4 trillion cubic feet in 2011 to 29.5 trillion cubic feet in 2040 in the AEO2013 Reference case. Natural gas use increases in all the end-use sectors except residential (Figure 85), where consumption declines as a result of improvements in appliance efficiency and falling demand for space heating, attributable in part to population shifts to warmer regions of the country. Despite falling early in the projection period from a spike in 2012, which resulted from very low natural gas prices relative to coal, consumption of natural gas for power generation increases by an average of 0.8 percent per year, with more natural gas used for electricity production as relatively

459

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas Industrial and electric power sectors lead U.S. growth in natural gas consumption figure data U.S. total natural gas consumption grows from 24.4 trillion cubic feet in 2011 to 29.5 trillion cubic feet in 2040 in the AEO2013 Reference case. Natural gas use increases in all the end-use sectors except residential (Figure 85), where consumption declines as a result of improvements in appliance efficiency and falling demand for space heating, attributable in part to population shifts to warmer regions of the country. Despite falling early in the projection period from a spike in 2012, which resulted from very low natural gas prices relative to coal, consumption of natural gas for power generation increases by an average of 0.8 percent per year, with more natural gas used for electricity production as relatively

460

UK Energy Consumption by Sector | OpenEI  

Open Energy Info (EERE)

68 68 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278068 Varnish cache server UK Energy Consumption by Sector Dataset Summary Description The energy consumption data consists of five spreadsheets: "overall data tables" plus energy consumption data for each of the following sectors: transport, domestic, industrial and service. Each of the five spreadsheets contains a page of commentary and interpretation. In addition, a user guide is available as a supplement to the full set of spreadsheets to explain the technical concepts and vocabulary found within Energy Consumption in the UK (http://www.decc.gov.uk/assets/decc/Statistics/publications/ecuk/272-ecuk-user-guide.pdf). Energy Consumption in the United Kingdom is an annual publication currently published by the UK Department of Energy and Climate Change (DECC) for varying time periods, generally 1970 to 2009 (though some time periods are shorter).

Note: This page contains sample records for the topic "industrial sector key" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Current and future industrial energy service characterizations  

DOE Green Energy (OSTI)

Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

1980-10-01T23:59:59.000Z

462

Equity Industrial Partners | Open Energy Information  

Open Energy Info (EERE)

Equity Industrial Partners Equity Industrial Partners Jump to: navigation, search Name Equity Industrial Partners Facility Equity Industrial Partners Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Equity Industrial Turbines LLC Developer Equity Industrial Turbines LLC Energy Purchaser City of Gloucester Location Gloucester MA Coordinates 42.625864°, -70.65621° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.625864,"lon":-70.65621,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

463

Industrial Use of Infrared Inspections  

E-Print Network (OSTI)

Infrared is and has been an established technology in the military and aerospace fields. However, only relatively recently has this technology found a "use" in the industrial sector. Many reasons exist why the technology has not been used, but in the final analysis it comes down to the fact that the industrial management responsible for the operations and production budgets did not, and in many cases, still does not understand the economic benefits to the company that infrared industrial inspections can bring about. Over the last 2-3 years a number of articles have appeared in various industrial publications concerning infrared surveys. However, all of the articles have dealt with the technical aspects of infrared inspections, with the economics either completely neglected or mentioned only in passing. I believe that in the real industrial world it is the economic benefits of a technology that allow the product of that technology to reach the market and become a success, and not the fact that a technology is useful per se. In this presentation, I shall be focusing primarily on the major economic aspects of the surveys and what the end results really represent in terms of economic benefits. Once the economic benefits of these inspections are clearly understood, it will be readily apparent why the industrial use of these inspections is developing rapidly.

Duch, A. A.

1979-01-01T23:59:59.000Z

464

Sustainability Priorities in the Electric Power Industry  

Science Conference Proceedings (OSTI)

Improving sustainability performance has become an important indicator of corporate success, stewardship, and responsibility. Many companies publish annual sustainability and corporate responsibility reports to communicate their policies, goals, and ongoing performance on key sustainability issues. Notably, the sustainability priorities communicated through these reports vary considerably across the electric power industry. This study summarizes how the industry portrays its sustainability priorities thr...

2011-10-31T23:59:59.000Z

465

Danish Government - Sector Programmes | Open Energy Information  

Open Energy Info (EERE)

Government - Sector Programmes Government - Sector Programmes Jump to: navigation, search Name Danish Government - Sector Programmes Agency/Company /Organization Danish Government Partner Danish Ministry for Climate, Energy, and Building; The Danish Energy Agency Sector Energy Focus Area Renewable Energy, Wind Topics Implementation, Low emission development planning, -LEDS, Policies/deployment programs Program End 2012 Country South Africa, Vietnam Southern Africa, South-Eastern Asia References Denmark[1] Promoting wind energy in South Africa and energy efficiency in Vietnam (subject to parliamentary approval) References ↑ "Denmark" Retrieved from "http://en.openei.org/w/index.php?title=Danish_Government_-_Sector_Programmes&oldid=580876" Category: Programs

466

Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave  

E-Print Network (OSTI)

Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave INFORME para la Sostenibilidad Energética y Ambiental, FUNSEAM. #12;Smart Grids: Sectores y actividades clave eléctrica y los diferentes sectores que forman la smart grid. 6 Figura 2. Evolución y previsión de

Politècnica de Catalunya, Universitat

467

Equilibrium Analysis of the Oil and Gas Field Services Industry  

E-Print Network (OSTI)

This paper examines the response of employment and wages in the US oil and gas …eld services industry to changes in the price of crude petroleum using a time series of quarterly data spanning the period 1972-2002. I …nd that labor quickly reallocates across sectors in response to price shocks but that substantial wage premia are necessary to induce such reallocation. The timing of these premia is at odds with the predictions of standard models — wage premia emerge quite slowly, peaking only as labor adjustment ends and then slowly dissipating. After considering alternative explanations, I argue that a dynamic market clearing model with sluggish movements in industry wide labor demand is capable of rationalizing these …ndings. I proceed to structurally estimate the parameters of the model by minimum distance and …nd that simulated impulse responses match key features of the estimated dynamics. I also provide auxiliary evidence corroborating the implied dynamics of some important unobserved variables. I conclude with a discussion of the strengths and weaknesses of the model and implications for future research. I am deeply indebted to Chris House for sharing with me the art of formulating and solving dynamic

Patrick Kline; Patrick Kline

2008-01-01T23:59:59.000Z

468

VICE PRESIDENT PRIMARY METALS SECTOR  

E-Print Network (OSTI)

Steel Times International is published eight times a year and is available on subscription. Copies are also provided free, on a rotational basis, to executives in the steel industry, from a selected list. SUBSCRIPTIONS Annual subscription: UK £138,00 other countries £194.00 (€353.00) Single copy (incl postage): £30.00

Tim Smith Phd; Sue Tyler; Annie Baker; Senior Sales Manager; Neil Roberts; Anne Considine; Paul Binns; Ken Clark; Martin Lawrence; Mike Tarrant; Ruth Collens

2005-01-01T23:59:59.000Z

469

Key Science and Engineering Indicators: Digest 2012 | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Science and Engineering Indicators: Digest 2012 Key Science and Engineering Indicators: Digest 2012 BusinessUSA Data/Tools Apps Challenges Let's Talk BusinessUSA You are here Data.gov » Communities » BusinessUSA » Data Key Science and Engineering Indicators: Digest 2012 Dataset Summary Description This 2012 digest of key S&E indicators is an interactive tool that draws from the National Science Board's (NSB's) Science and Engineering Indicators report. The digest serves to draw attention to important trends and data points from across Indicators and to introduce readers to the data resources available in the report. Tags {science,engineering,indicators,statistics,nsf,nsb,srs,federal,government,education,labor,employment,workforce,research,development,industry,international,global,r&d,technology,patents,"research citations"}

470

Key Activities in Energy Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

About » Key Activities in Energy Efficiency About » Key Activities in Energy Efficiency Key Activities in Energy Efficiency The Building Technologies Office conducts work in three key areas in order to continually develop innovative, cost-effective energy saving solutions: research and development (R&D), market stimulation, and building codes and equipment standards. Working with our partners on these activities results in better products, better new homes, better ways to improve older homes, and better buildings in which to work, shop, and lead our everyday lives. Research and Development Spearhead the development of new, energy efficient technologies. Lead R&D activities that reduce home energy use through Building America. Collaborate with industry to improve the energy efficiency of new

471

Electric power industry restructuring in Australia: Lessons from down-under. Occasional paper No. 20  

SciTech Connect

Australia`s electric power industry (EPI) is undergoing major restructuring. This restructuring includes commercialization of state-owned electric organization through privatization and through corporatization into separate governmental business units; structural unbundling of generation, transmission, retailing, and distribution; and creation of a National Electricity Market (NEM) organized as a centralized, market-based trading pool for buying and selling electricity. The principal rationales for change in the EPI were the related needs of enhancing international competitiveness, improving productivity, and lowering electric rates. Reducing public debt through privatization also played an important role. Reforms in the EPI are part of the overall economic reform package that is being implemented in Australia. Enhancing efficiency in the economy through competition is a key objective of the reforms. As the need for reform was being discussed in the early 1990s, Australia`s previous prime minister, Paul Keating, observed that {open_quotes}the engine which drives efficiency is free and open competition.{close_quotes} The optimism about the economic benefits of the full package of reforms across the different sectors of the economy, including the electricity industry, is reflected in estimated benefits of a 5.5 percent annual increase in real gross domestic product and the creation of 30,000 more jobs. The largest source of the benefits (estimated at 25 percent of total benefits) was projected to come from reform of the electricity and gas sectors.

Ray, D. [Univ. of Wisconsin, Madison, WI (United States)

1997-01-01T23:59:59.000Z

472

Associations and Industry - TMS  

Science Conference Proceedings (OSTI)

... Associations and Industry, Research Programs, ==== Basic Metallurgy ==== ... FORUMS > ASSOCIATIONS AND INDUSTRY, Replies, Views, Originator, Last ...

473

International Cooperation on Advancing Industrial Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Efficiency Industrial Efficiency The Global Superior Energy Performance (GSEP) Initiative 1 What is GSEP? * GSEP is a partnership that: - Encourages operators of commercial buildings and industrial facilities to pursue continuous improvement in energy efficiency - Promotes public-private partnerships for cooperation on specific technologies or in specific energy-intensive sectors * GSEP has 13 participants 2 Canada Denmark European Commission Finland France India Japan Korea Mexico Russia South Africa Sweden United States * GSEP has five working groups. Members don't have to participate in all groups. GSEP Organization 3 GSEP Partnership CERTIFICATION WORKING GROUP (Lead: U.S.) CHP WORKING GROUP (Lead: Finland) STEEL WORKING GROUP

474

EPAct Transportation Regulatory Activities: Key Terms  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Terms Key Terms to someone by E-mail Share EPAct Transportation Regulatory Activities: Key Terms on Facebook Tweet about EPAct Transportation Regulatory Activities: Key Terms on Twitter Bookmark EPAct Transportation Regulatory Activities: Key Terms on Google Bookmark EPAct Transportation Regulatory Activities: Key Terms on Delicious Rank EPAct Transportation Regulatory Activities: Key Terms on Digg Find More places to share EPAct Transportation Regulatory Activities: Key Terms on AddThis.com... Home About Covered Fleets Compliance Methods Alternative Fuel Petitions Resources Guidance Documents Statutes & Regulations Program Annual Reports Fact Sheets Newsletter Case Studies Workshops Tools Key Terms FAQs Key Terms The Energy Policy Act (EPAct) includes specific terminology related to

475

EPAct Transportation Regulatory Activities: Key Federal Statutes  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Key Federal Statutes to someone by E-mail Share EPAct Transportation Regulatory Activities: Key Federal Statutes on Facebook Tweet about EPAct Transportation Regulatory Activities: Key Federal Statutes on Twitter Bookmark EPAct Transportation Regulatory Activities: Key Federal Statutes on Google Bookmark EPAct Transportation Regulatory Activities: Key Federal Statutes on Delicious Rank EPAct Transportation Regulatory Activities: Key Federal Statutes on Digg Find More places to share EPAct Transportation Regulatory Activities: Key Federal Statutes on AddThis.com... Home About Contacts Covered Fleets Compliance Methods Alternative Fuel Petitions Resources Key Federal Statutes These are excerpts from federal statutes that established key Energy Policy Act (EPAct) transportation regulatory activities.

476

KIDS: keyed intrusion detection system  

Science Conference Proceedings (OSTI)

Since most current network attacks happen at the application layer, analysis of packet payload is necessary for their detection. Unfortunately malicious packets may be crafted to mimic normal payload, and so avoid detection if the anomaly detection method ... Keywords: Kerckhoffs' principle, anomaly detection, keyed IDS, network intrusion detection, word model

Sasa Mrdovic; Branislava Drazenovic

2010-07-01T23:59:59.000Z

477

Key Workplace Documents Federal Publications  

E-Print Network (OSTI)

, the Administration in 2007 concluded agreements with China on toys, food and feed, drugs and medical devicesKey Workplace Documents Federal Publications Cornell University ILR School Year 2008 China/498 #12;Order Code RL33536 China-U.S. Trade Issues Updated March 7, 2008 Wayne M. Morrison Specialist

478

Key technology trends - Satellite systems  

Science Conference Proceedings (OSTI)

This paper is based on material extracted from the WTEC Panel Report Global Satellite Communications Technology and Systems, December 1998. It presents an overview of key technology trends in communications satellites in the last few years. After the ... Keywords: Communications satellites, Satellite communications, Satellite technology overview

Charles W. Bostian; William T. Brandon; Alfred U. Mac Rae; Christoph E. Mahle; Stephen A. Townes

2000-08-01T23:59:59.000Z

479

Ontario's Industrial Energy Services Program  

E-Print Network (OSTI)

The Ontario Ministry of Energy began offering its new Industrial Energy Services Program (IESP) in early 1987. This 3-year, $5-million program, while not new in concept, is thought to be unique for its depth of service and method of delivery. It provides Ontario's manufacturers with advice and funding assistance for the identification and definition of industrial energy efficiency opportunities. The first phase provides for a free comprehensive site energy audit/analysis, conducted over one to five days, by teams of private sector consultants, selected to match expertise with manufacturer's needs. The emphasis is on process and equipment improvements, but site services and buildings are also examined. The final report includes detailed descriptions of major opportunities, along with estimated costs, savings, and paybacks. The next phases provide for sharing the detailed feasibility study costs and project engineering costs for those energy projects that move to implementation. In this paper, the author briefly describes the novel administrative structure of the program, presents the results of the activities to date, and describes, in some detail, several case studies from different industrial sectors.

Ploeger, L. K.

1987-09-01T23:59:59.000Z

480

Industrial alliances  

Science Conference Proceedings (OSTI)

The United States is emerging from the Cold War era into an exciting, but challenging future. Improving the economic competitiveness of our Nation is essential both for improving the quality of life in the United States and maintaining a strong national security. The research and technical skills used to maintain a leading edge in defense and energy now should be used to help meet the challenge of maintaining, regaining, and establishing US leadership in industrial technologies. Companies recognize that success in the world marketplace depends on products that are at the leading edge of technology, with competitive cost, quality, and performance. Los Alamos National Laboratory and its Industrial Partnership Center (IPC) has the strategic goal to make a strong contribution to the nation`s economic competitiveness by leveraging the government`s investment at the Laboratory: personnel, infrastructure, and technological expertise.

Adams, K.V.

1993-09-13T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector key" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

LEDSGP/Transportation Toolkit/Key Actions/Develop Alternative Scenarios |  

Open Energy Info (EERE)

Develop Alternative Scenarios Develop Alternative Scenarios < LEDSGP‎ | Transportation Toolkit‎ | Key Actions(Redirected from Transportation Toolkit/Key Actions/Develop Alternative Scenarios) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Key Actions for Low-Emission Development in Transportation Although no single approach or fixed process exists for low-emission development strategies (LEDS), the following key actions are necessary steps for implementing LEDS in the transportation sector. Undertaking these actions requires flexibility to adapt to dynamic societal conditions in a way that complements existing climate and development goals in other sectors. Planners, researchers, and decision-makers should customize this LEDS implementation framework for the specific conditions of their transport

482

LEDSGP/Transportation Toolkit/Key Actions/Assess Opportunities | Open  

Open Energy Info (EERE)

Assess Opportunities Assess Opportunities < LEDSGP‎ | Transportation Toolkit‎ | Key Actions(Redirected from Transportation Toolkit/Key Actions/Assess Opportunities) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Key Actions for Low-Emission Development in Transportation Although no single approach or fixed process exists for low-emission development strategies (LEDS), the following key actions are necessary steps for implementing LEDS in the transportation sector. Undertaking these actions requires flexibility to adapt to dynamic societal conditions in a way that complements existing climate and development goals in other sectors. Planners, researchers, and decision-makers should customize this LEDS implementation framework for the specific conditions of their transport

483

California`s forest products industry: 1992. Forest Service resource bulletin  

SciTech Connect

The report presents the findings of a survey of primary forest products industries in California for 1992. The survey included the following sectors: Lumber, pulp and board; shake and shingle; export; and post, pole, and piling. Veneer and plywood mills are not included because they could not be presented without disclosng critical details. Tables, presented by sector and for the industry as a whole, include characteristics of the industry, nature and flow of logs consumed, and disposition of mill residence.

Ward, F.R.

1995-03-01T23:59:59.000Z

484

Oregon`s forest products industry: 1992. Forest Service resource bulletin  

SciTech Connect

The report presents the findings of a survey of primary forest products industries in Oregon for 1992. The survey included the following sectors; lumber; veneer and plywood; pulp and board; shake and shingle; export; and post, pole, and piling. Tables presented by sector and for the industry as a whole, include characteristics of the industry, nature and flow of logs consumed, and disposition of mill residues.

Ward, F.R.

1995-03-01T23:59:59.000Z

485

Trends in Industrial Energy Efficiency: The Role of Standards,  

NLE Websites -- All DOE Office Websites (Extended Search)

Trends in Industrial Energy Efficiency: The Role of Standards, Trends in Industrial Energy Efficiency: The Role of Standards, Certification, and Energy Management in Climate Change Mitigation Speaker(s): Aimee McKane Date: March 18, 2008 - 12:30pm Location: 90-3122 The industrial sector represents more than one third of both global primary energy use and energy-related carbon dioxide emissions. In developing countries, the portion of the energy supply consumed by the industrial sector is frequently in excess of 50% and can create tension between economic development goals and a constrained energy supply. Further, countries with an emerging and rapidly expanding industrial infrastructure have a particular opportunity to increase their competitiveness by applying energy-efficient best practices from the outset in new industrial

486

Industrial Biomass Energy Consumption and Electricity Net Generation by  

Open Energy Info (EERE)

47 47 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281847 Varnish cache server Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB)

487

Climate VISION: Private Sector Initiatives: Chemical Manufacturing: GHG  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information This section provides various sources describing the energy consumption of the industrial sector and the carbon emissions in particular. Below is an estimate of the million metric tons of carbon dioxide emissions (MMTCO2) based upon the Annual Energy Outlook 2007. According to EIA "Annual Energy Outlook 2007" data, energy-related CO2 emissions projected for the Bulk Chemical industry was 349.0 MMTCO2 in 2004. (The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2007 using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2005-2030. The AEO2007 reflects data and information available as of September 15, 2006. Source: Annual Energy Outlook 2007 with projections to 2030, U.S.

488

Climate VISION: Private Sector Initiatives: Automobile Manufacturers: GHG  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information This section provides various sources describing the energy consumption of the industrial sector and the carbon emissions in particular. Below is an estimate of the million metric tons of carbon equivalents (MMTCE) based upon the Annual Energy Outlook 2003. According to EIA "Annual Energy Outlook 2003" data, energy-related CO2 emissions for the automobile industry were 3.5 MMTCE in 1995. (The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2003 using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2000-2025. The AEO2003 reflects data and information available as of August 30, 2002. These include mostly data from 2000 and partial data from

489

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

U.S. energy demand U.S. energy demand In the United States, average energy use per person declines from 2010 to 2035 figure data Growth in energy use is linked to population growth through increases in housing, commercial floorspace, transportation, and goods and services. These changes affect not only the level of energy use but also the mix of fuels consumed. Changes in the structure of the economy and in the efficiency of the equipment deployed throughout the economy also have an impact on energy use per capita. The shift in the industrial sector away from energy-intensive manufacturing toward services is one reason for the projected decline in industrial energy intensity (energy use per dollar of GDP), but its impact on energy consumption per capita is less direct (Figure 71). From 1990 to

490

Climate VISION: Private Sector Initiatives: Iron and Steel: GHG Information  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information This section provides various sources describing the energy consumption of the industrial sector and the carbon emissions in particular. Below is an estimate of the million metric tons of carbon dioxide emissions (MMTCO2) based upon the Annual Energy Outlook 2007. According to EIA "Annual Energy Outlook