National Library of Energy BETA

Sample records for industrial sector increasing

  1. Reinventing VAT collection : industry vertical assessment, revenue increase, and public sector reliability

    E-Print Network [OSTI]

    Pinhanez, Monica F. (Monica Fornitani)

    2008-01-01

    This dissertation shows how administrative reforms of the State Tax Administration Bureaus (STABs) in Brazil between 1997 and 2005 contributed to strengthening public sector bureaucracies and institutions at the sub-national ...

  2. AN ASSESSMENT OF DATA ON OUTPUT INDUSTRIAL SUB-SECTORS

    E-Print Network [OSTI]

    of that sub-sector. This typically includes the "resource" sub-sectors (chemicals, metals, pulp and paper of industry was considered a "sector" of the overall group known as Industry. Thus we spoke of the pulp and paper sector or the petroleum refining sector within industry. Because of increasing references

  3. Market Report for the Industrial Sector, 2009

    SciTech Connect (OSTI)

    Sastri, Bhima; Brueske, Sabine; de los Reyes, Pamela; Jamison, Keith; Justiniano, Mauricio; Margolis, Nancy; Monfort, Joe; Raghunathan, Anand; Sabouni, Ridah

    2009-07-01

    This report provides an overview of trends in industrial-sector energy use. It focuses on some of the largest and most energy-intensive industrial subsectors and several emerging technologies that could transform key segments of industry.

  4. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  5. China's industrial sector in an international context

    SciTech Connect (OSTI)

    Price, Lynn; Worrell, Ernst; Martin, Nathan; Lehman, Bryan; Sinton, Jonathan

    2000-05-01

    The industrial sector accounts for 40% of global energy use. In 1995, developing countries used an estimated 48 EJ for industrial production, over one-third of world total industrial primary energy use (Price et al., 1998). Industrial output and energy use in developing countries is dominated by China, India, and Brazil. China alone accounts for about 30 EJ (National Bureau of Statistics, 1999), or about 23% of world industrial energy use. China's industrial sector is extremely energy-intensive and accounted for almost 75% of the country's total energy use in 1997. Industrial energy use in China grew an average of 6.6% per year, from 14 EJ in 1985 to 30 EJ in 1997 (Sinton et al., 1996; National Bureau of Statistics, 1999). This growth is more than three times faster than the average growth that took place in the world during the past two decades. The industrial sector can be divided into light and heavy industry, reflecting the relative energy-intensity of the manufacturing processes. In China, about 80% of the energy used in the industrial sector is consumed by heavy industry. Of this, the largest energy-consuming industries are chemicals, ferrous metals, and building materials (Sinton et al., 1996). This paper presents the results of international comparisons of production levels and energy use in six energy-intensive subsectors: iron and steel, aluminum, cement, petroleum refining, ammonia, and ethylene. The sectoral analysis results indicate that energy requirements to produce a unit of raw material in China are often higher than industrialized countries for most of the products analyzed in this paper, reflecting a significant potential to continue to improve energy efficiency in heavy industry.

  6. Industry Sector Case Study Building Technologies Division

    E-Print Network [OSTI]

    Fischlin, Andreas

    energy supply is based on solar thermal collectors, a photovoltaic system, as well as building technologyIndustry Sector Case Study Building Technologies Division Zug (Switzerland), September 14, 2011,000 m, the New Monte Rosa Hut showcases the latest developments in the building technology field

  7. Energy use and CO2 emissions of China’s industrial sector from a global perspective

    SciTech Connect (OSTI)

    Zhou, Sheng; Kyle, G. Page; Yu, Sha; Clarke, Leon E.; Eom, Jiyong; Luckow, Patrick W.; Chaturvedi, Vaibhav; Zhang, Xiliang; Edmonds, James A.

    2013-07-10

    The industrial sector has accounted for more than 50% of China’s final energy consumption in the past 30 years. Understanding the future emissions and emissions mitigation opportunities depends on proper characterization of the present-day industrial energy use, as well as industrial demand drivers and technological opportunities in the future. Traditionally, however, integrated assessment research has handled the industrial sector of China in a highly aggregate form. In this study, we develop a technologically detailed, service-oriented representation of 11 industrial subsectors in China, and analyze a suite of scenarios of future industrial demand growth. We find that, due to anticipated saturation of China’s per-capita demands of basic industrial goods, industrial energy demand and CO2 emissions approach a plateau between 2030 and 2040, then decrease gradually. Still, without emissions mitigation policies, the industrial sector remains heavily reliant on coal, and therefore emissions-intensive. With carbon prices, we observe some degree of industrial sector electrification, deployment of CCS at large industrial point sources of CO2 emissions at low carbon prices, an increase in the share of CHP systems at industrial facilities. These technological responses amount to reductions of industrial emissions (including indirect emission from electricity) are of 24% in 2050 and 66% in 2095.

  8. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    SciTech Connect (OSTI)

    Sathaye, Jayant; de la Rue du Can, Stephane; Iyer, Maithili; McNeil, Michael; Kramer, Klaas Jan; Roy, Joyashree; Roy, Moumita; Chowdhury, Shreya Roy

    2011-04-15

    This report analyzed the potential for increasing energy efficiency and reducing greenhouse gas emissions (GHGs) in the non-residential building and the industrial sectors in India. The first two sections describe the research and analysis supporting the establishment of baseline energy consumption using a bottom up approach for the non residential sector and for the industry sector respectively. The third section covers the explanation of a modeling framework where GHG emissions are projected according to a baseline scenario and alternative scenarios that account for the implementation of cleaner technology.

  9. Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

  10. Quality of Power in the Industrial Sector 

    E-Print Network [OSTI]

    Marchbanks, G. J.

    1987-01-01

    tortions, overvoltage, undervoltage, momentary interruptions and transients that are inherent in the utility distribution system. The industrial customer turns to the power supplier to provide technical support, monitoring and assistance to upgrade.... * There was a lack of acceptance of responsi bility between customer, equipment supplier and the electrical contractor. The custo mer was unable to find anyone willing to accept responsibility for the problem. The utility can act as a coordinator between...

  11. Cross-Sector Impact Analysis of Industrial Efficiency Measures

    SciTech Connect (OSTI)

    Morrow, William [Lawrence Berkeley National Laboratory (LBNL)] [Lawrence Berkeley National Laboratory (LBNL); CreskoEngineering, Joe [Oak Ridge Institute for Science and Education (ORISE); Carpenter, Alberta [National Renewable Energy Laboratory (NREL)] [National Renewable Energy Laboratory (NREL); Masanet, Eric [Northwestern University, Evanston] [Northwestern University, Evanston; Nimbalkar, Sachin U [ORNL] [ORNL; Shehabi, Arman [Lawrence Berkeley National Laboratory (LBNL)] [Lawrence Berkeley National Laboratory (LBNL)

    2013-01-01

    The industrial or manufacturing sector is a foundational component to all economic activity. In addition to being a large direct consumer of energy, the manufacturing sector also produces materials, products, and technologies that influence the energy use of other economic sectors. For example, the manufacturing of a lighter-weight vehicle component affects the energy required to ship that component as well as the fuel efficiency of the assembled vehicle. Many energy efficiency opportunities exist to improve manufacturing energy consumption, however comparisons of manufacturing sector energy efficiency investment opportunities tend to exclude any impacts that occur once the product leaves the factory. Expanding the scope of analysis to include energy impacts across different stages of product life-cycle can highlight less obvious opportunities and inform actions that create the greatest economy-wide benefits. We present a methodology and associated analysis tool (LIGHTEnUP Lifecycle Industry GHgas, Technology and Energy through the Use Phase) that aims to capture both the manufacturing sector energy consumption and product life-cycle energy consumption implications of manufacturing innovation measures. The tool architecture incorporates U.S. national energy use data associated with manufacturing, building operations, and transportation. Inputs for technology assessment, both direct energy saving to the manufacturing sector, and indirect energy impacts to additional sectors are estimated through extensive literature review and engineering methods. The result is a transparent and uniform system of comparing manufacturing and use-phase impacts of technologies.

  12. Energy Use and Savings in the Canadian Industrial Sector 

    E-Print Network [OSTI]

    James, B.

    1982-01-01

    The changing role of energy as a production input in the industrial sector in Canada is examined. Energy use patterns are reviewed in terms of the energy input types, both purchased and self-produced, the actual energy form and quality requirements...

  13. Garnering the Industrial Sector: A Comparison of Cutting Edge Industrial DSM Programs 

    E-Print Network [OSTI]

    Kyricopoulos, P. F.; Wikler, G. A.; Faruqui, A.; Wood, B. G.

    1995-01-01

    The industrial sector has posed a daunting DSM challenge to utilities throughout North America, even to those with successful and creative residential and commercial DSM programs. Most utilities have had great difficulty ...

  14. United States Industrial Sector Energy End Use Analysis

    SciTech Connect (OSTI)

    Shehabi, Arman; Morrow, William R.; Masanet, Eric

    2012-05-11

    The United States Department of Energy’s (DOE) Energy Information Administration (EIA) conducts the Manufacturing Energy Consumption Survey (MECS) to provide detailed data on energy consumption in the manufacturing sector. The survey is a sample of approximately 15,000 manufacturing establishments selected from the Economic Census - Manufacturing Sector. MECS provides statistics on the consumption of energy by end uses (e.g., boilers, process, electric drives, etc.) disaggregated by North American Industry Classification System (NAICS) categories. The manufacturing sector (NAICS Sector 31-33) consists of all manufacturing establishments in the 50 States and the District of Columbia. According to the NAICS, the manufacturing sector comprises establishments engaged in the mechanical, physical, or chemical transformation of materials, substances, or components into new products. The establishments are physical facilities such as plants, factories, or mills. For many of the sectors in the MECS datasets, information is missing because the reported energy use is less than 0.5 units or BTUs, or is withheld to avoid disclosing data for individual establishments, or is withheld because the standard error is greater than 50%. We infer what the missing information likely are using several approximations techniques. First, much of the missing data can be easily calculated by adding or subtracting other values reported by MECS. If this is not possible (e.g. two data are missing), we look at historic MECS reports to help identify the breakdown of energy use in the past and assume it remained the same for the current MECS. Lastly, if historic data is also missing, we assume that 3 digit NAICS classifications predict energy use in their 4, 5, or 6 digit NAICS sub-classifications, or vice versa. Along with addressing data gaps, end use energy is disaggregated beyond the specified MECS allocations using additional industry specific energy consumption data. The result is a completed table of energy end use by sector with mechanical drives broken down by pumps, fans, compressed air, and drives.

  15. The Market and Technical Potential for Combined Heat and Power in the Industrial Sector, January 2000

    Office of Energy Efficiency and Renewable Energy (EERE)

    Report of an analysis of the market and technical potential for combined heat and power in the industrial sector

  16. Distributed Energy: Modeling Penetration in Industrial Sector Over the Long-Term 

    E-Print Network [OSTI]

    Greening, L.

    2006-01-01

    : Modeling Penetration in Industrial Sector over the Long-Term Lorna Greening, Private Consultant, Los Alamos, NM Distributed energy (DE) sources provide a number of benefits when utilized. For industrial facilities in the past, turbines have provided...

  17. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    in the Pulp and Paper Industry: An Energy Benchmarkingin the Pulp and Paper Industries. Integrated Pollutionin the Pulp and Paper Industry: An Energy Benchmarking

  18. Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector

    SciTech Connect (OSTI)

    Industrial Energy Efficiency and Combined Heat and Power Working Group

    2014-03-21

    This report provides state regulators, utilities, and other program administrators with an overview of U.S. industrial energy efficiency programs and assesses some of the key features of programs that have generated increased energy savings.

  19. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    Cost Reduction in the Pulp and Paper Industry: An EnergyTechniques in the Pulp and Paper Industries. IntegratedCost Reduction in the Pulp and Paper Industry: An Energy

  20. Energy Sector Vulnerability to Climate Change: Adaptation Options to Increase Resilience (Presentation)

    SciTech Connect (OSTI)

    Newmark, R. L.; Bilello, D.; Macknick, J.; Hallet, K. C.; Anderson, R.; Tidwell, V.; Zamuda, C.

    2013-02-01

    The U.S. Department of Energy is conducting an assessment of vulnerabilities of the U.S. energy sector to climate change and extreme weather. Emphasizing peer reviewed research, it seeks to quantify vulnerabilities and identify specific knowledge or technology gaps. It draws upon a July 2012 workshop, ?Climate Change and Extreme Weather Vulnerability Assessment of the US Energy Sector?, hosted by the Atlantic Council and sponsored by DOE to solicit industry input.

  1. Perform, Achieve and Trade (PAT): An Innovative Mechanism for Enhancing Energy Efficiency in India's Industrial Sector 

    E-Print Network [OSTI]

    Garnik, S. P.; Martin, M.

    2014-01-01

    consumption (SEC) reduction targets for 478 DCs in eight industrial sectors like Cement, Pulp & Paper, Aluminium, Textile, Chlor-Alkali, Iron &Steel, Fertilizer and Thermal Power Plant. Different targets have been assigned to different DCs and to be achieved...

  2. BC Hydro Industrial Sector: Marketing Sector Marketing Plan (Fiscal 2005/Fiscal 2006) 

    E-Print Network [OSTI]

    Willis, P.; Wallace, K.

    2005-01-01

    BC Hydro, the major electricity utility in the Province of British Columbia has been promoting industrial energy efficiency for more than 15 years. Recently it has launched a new Demand Side Management initiative with the objective of obtaining 2000...

  3. Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    SciTech Connect (OSTI)

    David Petti; J. Stephen Herring

    2010-03-01

    As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy security through more effective utilization of our country’s resources while simultaneously providing economic stability and growth (through predictable energy prices and high value jobs), in an environmentally sustainable and secure manner (through lower land and water use, and decreased byproduct emissions). The reduction in imported oil will also increase the retention of wealth within the U.S. economy while still supporting economic growth. Nuclear energy is the only non-fossil fuel that has been demonstrated to reliably supply energy for a growing industrial economy.

  4. Industrial Utility Webinar: Opportunities for Cost-Effective Energy Efficiency in the Industrial Sector

    SciTech Connect (OSTI)

    2010-01-13

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  5. Comparative analysis of energy data bases for the industrial and commercial sectors

    SciTech Connect (OSTI)

    Roop, J.M.; Belzer, D.B.; Bohn, A.A.

    1986-12-01

    Energy data bases for the industrial and commercial sectors were analyzed to determine how valuable this data might be for policy analysis. The approach is the same for both end-use sectors: first a descrption or overview of relevant data bases identifies the available data; the coverage and methods used to generate the data are then explained; the data are then characterized and examples are provided for the major data sets under consideration. A final step assesses the data bases under consideration and draws conclusions. There are a variety of data bases considered for each of the end-use sectors included in this report. Data bases for the industrial sector include the National Energy Accounts, process-derived data bases such as the Drexel data base and data obtained from industry trade associations. For the commercial sector, three types of data bases are analyzed: the Nonresidential Building Energy Consumption Surveys, Dodge Construction Data and the Building Owners and Manager's Association Experience Exchange Report.

  6. International standardization in the petroleum industry status from the subsea sector

    SciTech Connect (OSTI)

    Inderberg, O.

    1995-12-01

    The use of standards in subsea production systems and how the standards should be developed has been a debate for some time in the industry. The initial standardization work springs from the work performed in the API 17 series of recommended practices and specifications. The development within this sector of the industry is still happening rapidly since it is a relative new area. The standardization effort is happening both on national, regional and international levels. This paper will give status of the international standardization ISO work ongoing in the subsea area and give some background for the work. The importance of the work to the industry will be highlighted.

  7. INDUSTRY TRENDS AND PRACTICES The banking industry has become increasingly more complex in

    E-Print Network [OSTI]

    Kühn, Reimer

    and settlement, (6) agency services, (7) asset management, and (8) retail brokerage. The factors loadings and k273 INDUSTRY TRENDS AND PRACTICES The banking industry has become increasingly more complex views presented in this paper are those of the authors and do not necessarily represent models

  8. Model documentation report: Industrial sector demand module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1997-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects. The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2015) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

  9. Regulation Retrieval Using Industry Specific Abstract Increasingly, taxonomies are being developed and used by industry practitioners

    E-Print Network [OSTI]

    Stanford University

    information from multiple, heterogeneous sources and therefore increases the value of information. The lack information in a formal and computer interpretable form, taxonomies have the potential to enable are being developed and used by industry practitioners to facilitate information interoperability

  10. Identifying Opportunities and Impacts of Fuel Switching in the Industrial Sector

    SciTech Connect (OSTI)

    Jain, Ramesh C.; Jamison, Keith; Thomas, Daniel E.

    2006-08-01

    The underlying purpose of this white paper is to examine fuel switching opportunities in the U.S. industrial sector and make strategic recommendations—leading to application of the best available technologies and development of new technologies—that will introduce fuel use flexibility as an economically feasible option for plant operators, as a means to condition local fuel demands and a hedge against the local rises in fuel prices.

  11. Energy efficiency programs and policies in the industrial sector in industrialized countries

    E-Print Network [OSTI]

    Galitsky, Christina; Price, Lynn; Worrell, Ernst

    2004-01-01

    company and the Danish Energy Agency. The agreements, whichDanish Energy Authority [1] The Ministry of the Environment [2] and its Environmental Protection Agency [agencies 1. Voluntary Agreements with industry – Danish Energy

  12. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01

    20april%202006.pdf ETSU, 1999. Industrial Sector CarbonSee discussion of this report in ETSU, AEA Technology, 2001.a report prepared by ETSU (now AEA Energy & Environment) on

  13. Comparison Study of Energy Intensity in the Textile Industry: A Case Study in Five Textile Sub-sectors 

    E-Print Network [OSTI]

    Hasanbeigi, A.; Hasanabadi, A.; Abdorrazaghi, M.

    2011-01-01

    This paper contributes to the understanding of energy use in the textile industry by comparing the energy intensity of textile plants in five major sub-sectors, i.e. spinning, weaving, wet-processing, worsted fabric manufacturing, and carpet...

  14. ISTUM PC: industrial sector technology use model for the IBM-PC

    SciTech Connect (OSTI)

    Roop, J.M.; Kaplan, D.T.

    1984-09-01

    A project to improve and enhance the Industrial Sector Technology Use Model (ISTUM) was originated in the summer of 1983. The project had dix identifiable objectives: update the data base; improve run-time efficiency; revise the reference base case; conduct case studies; provide technical and promotional seminars; and organize a service bureau. This interim report describes which of these objectives have been met and which tasks remain to be completed. The most dramatic achievement has been in the area of run-time efficiency. From a model that required a large proportion of the total resources of a mainframe computer and a great deal of effort to operate, the current version of the model (ISTUM-PC) runs on an IBM Personal Computer. The reorganization required for the model to run on a PC has additional advantages: the modular programs are somewhat easier to understand and the data base is more accessible and easier to use. A simple description of the logic of the model is given in this report. To generate the necessary funds for completion of the model, a multiclient project is proposed. This project will extend the industry coverage to all the industrial sectors, including the construction of process flow models for chemicals and petroleum refining. The project will also calibrate this model to historical data and construct a base case and alternative scenarios. The model will be delivered to clients and training provided. 2 references, 4 figures, 3 tables.

  15. With a broad-based increase in home prices over a year, the U.S. housing sector has

    E-Print Network [OSTI]

    With a broad-based increase in home prices over a year, the U.S. housing sector has started to show product manufacturing sector and rise in delivered prices of major timber products, stumpage prices were up-to their capacity. The average statewide pine sawlog price was slightly lower than the last

  16. Industrial Assessment Centers - Small Manufacturers Reduce Energy & Increase Productivity

    SciTech Connect (OSTI)

    2015-11-06

    Since 1976, the Industrial Assessment Centers (IACs), administered by the US Department of Energy, have supported small and medium-sized American manufacturers to reduce energy use and increase their productivity and competitiveness. The 24 IACs, located at premier engineering universities around the country (see below), send faculty and engineering students to local small and medium-sized manufacturers to provide no-cost assessments of energy use, process performance and waste and water flows. Under the direction of experienced professors, IAC engineering students analyze the manufacturer’s facilities, energy bills and energy, waste and water systems, including compressed air, motors/pumps, lighting, process heat and steam. The IACs then follow up with written energy-saving and productivity improvement recommendations, with estimates of related costs and payback periods.

  17. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    SciTech Connect (OSTI)

    Price, Lynn; de la Rue du Can, Stephane; Lu, Hongyou; Horvath, Arpad

    2010-05-21

    The 2006 California Global Warming Solutions Act calls for reducing greenhouse gas (GHG) emissions to 1990 levels by 2020. Meeting this target will require action from all sectors of the California economy, including industry. The industrial sector consumes 25% of the energy used and emits 28% of the carbon dioxide (CO{sub 2}) produced in the state. Many countries around the world have national-level GHG reduction or energy-efficiency targets, and comprehensive programs focused on implementation of energy efficiency and GHG emissions mitigation measures in the industrial sector are essential for achieving their goals. A combination of targets and industry-focused supporting programs has led to significant investments in energy efficiency as well as reductions in GHG emissions within the industrial sectors in these countries. This project has identified program and policies that have effectively targeted the industrial sector in other countries to achieve real energy and CO{sub 2} savings. Programs in Ireland, France, The Netherlands, Denmark, and the UK were chosen for detailed review. Based on the international experience documented in this report, it is recommended that companies in California's industrial sector be engaged in a program to provide them with support to meet the requirements of AB32, The Global Warming Solution Act. As shown in this review, structured programs that engage industry, require members to evaluate their potential efficiency measures, plan how to meet efficiency or emissions reduction goals, and provide support in achieving the goals, can be quite effective at assisting companies to achieve energy efficiency levels beyond those that can be expected to be achieved autonomously.

  18. World Best Practice Energy Intensity Values for SelectedIndustrial Sectors

    SciTech Connect (OSTI)

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky,Christina; Zhou, Nan

    2007-06-05

    "World best practice" energy intensity values, representingthe most energy-efficient processes that are in commercial use in atleast one location worldwide, are provided for the production of iron andsteel, aluminium, cement, pulp and paper, ammonia, and ethylene. Energyintensity is expressed in energy use per physical unit of output for eachof these commodities; most commonly these are expressed in metric tonnes(t). The energy intensity values are provided by major energy-consumingprocesses for each industrial sector to allow comparisons at the processlevel. Energy values are provided for final energy, defined as the energyused at the production facility as well as for primary energy, defined asthe energy used at the production facility as well as the energy used toproduce the electricity consumed at the facility. The "best practice"figures for energy consumption provided in this report should beconsidered as indicative, as these may depend strongly on the materialinputs.

  19. Stormwater Best Management Practices (BMPs) for Selected Industrial Sectors in the Lower Fraser Basin

    E-Print Network [OSTI]

    and Preserved Fruit and Vegetable Industry Frozen Fruit and Vegetable Industry Fluid Milk Industry Cane and Beet Sugar Industry Other Food Products Industry (Egg Processing) Brewery Products Industry Sawmill

  20. Public Interest Energy Research (PIER) Program. Final Project Report. California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; Hasanbeigi, Ali; Sathaye, Jayant

    2010-12-01

    This report on the California Energy Balance version 2 (CALEB v2) database documents the latest update and improvements to CALEB version 1 (CALEB v1) and provides a complete picture of how energy is supplied and consumed in the State of California. The CALEB research team at Lawrence Berkeley National Laboratory (LBNL) performed the research and analysis described in this report. CALEB manages highly disaggregated data on energy supply, transformation, and end-use consumption for about 40 different energy commodities, from 1990 to 2008. This report describes in detail California's energy use from supply through end-use consumption as well as the data sources used. The report also analyzes trends in energy demand for the "Manufacturing" and "Building" sectors. Decomposition analysis of energy consumption combined with measures of the activity driving that consumption quantifies the effects of factors that shape energy consumption trends. The study finds that a decrease in energy intensity has had a very significant impact on reducing energy demand over the past 20 years. The largest impact can be observed in the industry sector where energy demand would have had increased by 358 trillion British thermal units (TBtu) if subsectoral energy intensities had remained at 1997 levels. Instead, energy demand actually decreased by 70 TBtu. In the "Building" sector, combined results from the "Service" and "Residential" subsectors suggest that energy demand would have increased by 264 TBtu (121 TBtu in the "Services" sector and 143 TBtu in the "Residential" sector) during the same period, 1997 to 2008. However, energy demand increased at a lesser rate, by only 162 TBtu (92 TBtu in the "Services" sector and 70 TBtu in the "Residential" sector). These energy intensity reductions can be indicative of energyefficiency improvements during the past 10 years. The research presented in this report provides a basis for developing an energy-efficiency performance index to measure progress over time in the State of California.

  1. Industry, Philanthropy, and Universities: The Roles and Influences of the Private Sector in Higher Education

    E-Print Network [OSTI]

    Vest, Charles M

    2006-01-01

    Occasional Paper Series Vest, INDUSTRY, PHILANTHROPY, ANDOccasional Paper Series Vest, INDUSTRY, PHILANTHROPY, ANDOccasional Paper Series Vest, INDUSTRY, PHILANTHROPY, AND

  2. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    Paper Industry .2005. Statistics of the Indian Paper Industry: Directoryof Indian Paper Industry. Volume II. Saharanpur, India.

  3. Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 1: Part 1, Electricity supply sector; Part 2, Residential and commercial buildings sector; Part 3, Industrial sector

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    DOE encourages you to report your achievements in reducing greenhouse gas emissions and sequestering carbon under this program. Global climate change is increasingly being recognized as a threat that individuals and organizations can take action against. If you are among those taking action, reporting your projects may lead to recognition for you, motivation for others, and synergistic learning for the global community. This report discusses the reporting process for the voluntary detailed guidance in the sectoral supporting documents for electricity supply, residential and commercial buildings, industry, transportation, forestry, and agriculture. You may have reportable projects in several sectors; you may report them separately or capture and report the total effects on an entity-wide report.

  4. Gas Turbines Increase the Energy Efficiency of Industrial Processes 

    E-Print Network [OSTI]

    Banchik, I. N.; Bohannan, W. R.; Stork, K.; McGovern, L. J.

    1981-01-01

    It is a well known fact that the gas turbine in a combined cycle has a higher inherent Carnot efficiency than the steam cycle which has been more generally accepted by industry. Unlike steam turbines, gas turbines do not require large boiler feed...

  5. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    Pulp and Paper Industry .in the U.S. Pulp and Paper Industry. Paper accepted forfor Indian Pulp and Paper Industry. Environews Archives,

  6. How managing more efficiently substances in the design process of industrial products? An example from the aeronautics sector

    E-Print Network [OSTI]

    Lemagnen, Maud; Brissaud, Daniel

    2009-01-01

    Lowering environmental impacts of products, i.e. ecodesign, is considered today as a new and promising approach environment protection. This article focuses on ecodesign in the aeronautical sector through the analysis of the practices of a company that designs and produces engine equipments. Noise, gas emissions, fuel consumptions are the main environmental aspects which are targeted by aeronautics. From now on, chemical risk linked to the use of materials and production processes has to be traced, not only because of regulation pressure (e.g. REACh) but also because of customers requirements. So far, the aeronautical sector hasn't been focusing much on managing chemical risks at the design stage. However, new substances regulations notably require that chemical risk management should be by industries used as early as possible in their product development process. The aeronautics sector has therefore to elaborate new chemical risk management. The aim of this paper is to present a new method hat should be adap...

  7. Coal supply/demand, 1980 to 2000. Task 3. Resource applications industrialization system data base. Final review draft. [USA; forecasting 1980 to 2000; sector and regional analysis

    SciTech Connect (OSTI)

    Fournier, W.M.; Hasson, V.

    1980-10-10

    This report is a compilation of data and forecasts resulting from an analysis of the coal market and the factors influencing supply and demand. The analyses performed for the forecasts were made on an end-use-sector basis. The sectors analyzed are electric utility, industry demand for steam coal, industry demand for metallurgical coal, residential/commercial, coal demand for synfuel production, and exports. The purpose is to provide coal production and consumption forecasts that can be used to perform detailed, railroad company-specific coal transportation analyses. To make the data applicable for the subsequent transportation analyses, the forecasts have been made for each end-use sector on a regional basis. The supply regions are: Appalachia, East Interior, West Interior and Gulf, Northern Great Plains, and Mountain. The demand regions are the same as the nine Census Bureau regions. Coal production and consumption in the United States are projected to increase dramatically in the next 20 years due to increasing requirements for energy and the unavailability of other sources of energy to supply a substantial portion of this increase. Coal comprises 85 percent of the US recoverable fossil energy reserves and could be mined to supply the increasing energy demands of the US. The NTPSC study found that the additional traffic demands by 1985 may be met by the railways by the way of improved signalization, shorter block sections, centralized traffic control, and other modernization methods without providing for heavy line capacity works. But by 2000 the incremental traffic on some of the major corridors was projected to increase very significantly and is likely to call for special line capacity works involving heavy investment.

  8. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    from electricity generation, direct fuel combustion tofuel consumption in the commercial sector is assumed to be used entirely for back-up electricity generation.

  9. Future Public Policy and Ethical Issues Facing the Agricultural and Microbial Genomics Sectors of the Biotechnology Industry: A Roundtable Discussion

    SciTech Connect (OSTI)

    Diane E. Hoffmann

    2003-09-12

    On September 12, 2003, the University of Maryland School of Law's Intellectual Property and Law & Health Care Programs jointly sponsored and convened a roundtable discussion on the future public policy and ethical issues that will likely face the agricultural and microbial genomics sectors of the biotechnology industry. As this industry has developed over the last two decades, societal concerns have moved from what were often local issues, e.g., the safety of laboratories where scientists conducted recombinant DNA research on transgenic microbes, animals and crops, to more global issues. These newer issues include intellectual property, international trade, risks of genetically engineered foods and microbes, bioterrorism, and marketing and labeling of new products sold worldwide. The fast paced nature of the biotechnology industry and its new developments often mean that legislators, regulators and society, in general, must play ''catch up'' in their efforts to understand the issues, the risks, and even the benefits, that may result from the industry's new ways of conducting research, new products, and novel methods of product marketing and distribution. The goal of the roundtable was to develop a short list of the most significant public policy and ethical issues that will emerge as a result of advances in these sectors of the biotechnology industry over the next five to six years. More concretely, by ''most significant'' the conveners meant the types of issues that would come to the attention of members of Congress or state legislators during this time frame and for which they would be better prepared if they had well researched and timely background information. A concomitant goal was to provide a set of focused issues for academic debate and scholarship so that policy makers, industry leaders and regulators would have the intellectual resources they need to better understand the issues and concerns at stake. The goal was not to provide answers to any of the issues or problems, simply to identify those topics that deserve our attention as a society. Some of the issues may benefit from legislation at the federal or state levels, others may be more appropriately addressed by the private sector. Participants at the roundtable included over a dozen experts in the areas of microbiology, intellectual property, agricultural biotechnology, microbial genomics, bioterrorism, economic development, biotechnology research, and bioethics. These experts came from federal and state government, industry and academia. The participants were asked to come to the roundtable with a written statement of the top three to five public policy/ ethical issues they viewed as most likely to be significant to the industry and to policy makers over the next several years.

  10. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  11. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    increased use of biomass and energy efficiency improvements,Moreira, J. , 2006: Global biomass energy potential. Journal1971–2004 Notes 1) Biomass energy included 2) Industrial

  12. Barriers to the increased utilization of coal combustion/desulfurization by-products by government and commercial sectors - Update 1998

    SciTech Connect (OSTI)

    Pflughoeft-Hassett, D.F.; Sondreal, E.A.; Steadman, E.N.; Eylands, K.E.; Dockter, B.A.

    1999-07-01

    The following conclusions are drawn from the information presented in this report: (1) Joint efforts by industry and government focused on meeting RTC recommendations for reduction/removal of barriers have met with some success. The most notable of these are the changes in regulations related to CCB utilization by individual states. Regionally or nationally consistent state regulation of CCB utilization would further reduce regulatory barriers. (2) Technology changes will continue to be driven by the CAAA, and emission control technologies are expected to continue to impact the type and properties of CCBs generated. As a result, continued RD and D will be needed to learn how to utilize new and changing CCBs in environmentally safe, technically sound, and economically advantageous ways. Clean coal technology CCBs offer a new challenge because of the high volumes expected to be generated and the different characteristics of these CCBs compared to those of conventional CCBs. (3) Industry and government have developed the RD and D infrastructure to address the technical aspects of developing and testing new CCB utilization applications, but this work as well as constant quality control/quality assurance testing needs to be continued to address both industry wide issues and issues related to specific materials, regions, or users. (4) Concerns raised by environmental groups and the public will continue to provide environmental and technical challenges to the CCB industry. It is anticipated that the use of CCBs in mining applications, agriculture, structural fills, and other land applications will continue to be controversial and will require case-by-case technical and environmental information to be developed. The best use of this information will be in the development of generic regulations specifically addressing the use of CCBs in these different types of CCB applications. (5) The development of federal procurement guidelines under Executive Order 12873 titled ''Federal Acquisition, Recycling and Waste Prevention,'' in October 1993 was a positive step toward getting CCBs accepted in the marketplace. Industry needs to continue to work with EPA to develop additional procurement guidelines for products containing CCBs--and to take advantage of existing guidelines to encourage the use of CCBs in high-profile projects. (6) Accelerated progress toward increased utilization of CCBs can be made only if there is an increased financial commitment and technical effort by industry and government. The framework for this has been set by the successful cooperation of industry and government under DOE leadership. Cooperation should continue, with DOE fulfilling its lead role established in the RTC. It is clear that the RTC recommendations continue to have validity with respect to increasing CCB utilization and continue to provide guidance to industry and government agencies.

  13. Successful public sector enforcement of environmental standards in the Toritama Jeans industry in Pernambuco, Brazil

    E-Print Network [OSTI]

    Lazarte, Maria Ella J

    2005-01-01

    Non-observance of environmental standards among small firms in traditional industries such as garment, footwear, furniture and tanneries have caused major environmental degradation in many places throughout the world. ...

  14. Model documentation report: Industrial sector demand module of the national energy modeling system

    SciTech Connect (OSTI)

    NONE

    1998-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its model. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  15. Analysis of Fuel Flexibility Opportunities and Constraints in the U.S. Industrial Sector

    SciTech Connect (OSTI)

    none,

    2007-03-07

    The purpose of this assessment was to determine if flexible, alternative fuel use in industry, beyond switching from natural gas to petroleum derivatives, presents a sizeable opportunity for the reduction in use of natural gas. Furthermore, the assessment was to determine what programmatic activities the DOE could undertake to accelerate a fuel flexibility program for industry. To this end, a six-part framework (see Figure ES-1) was used to identify the most promising fuel flexibility options, and what level of accomplishment could be achieved, based on DOE leadership.

  16. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    Moreover, about 20% of fly ash generated by thermal powerFor example the use of fly ash can be increased. Cementto the production of fly ash (which is however, is getting

  17. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01

    and Paper: In the pulp and paper industry, companies usedthe participants, the pulp and paper industry, sawmills,have more paper, pulp, and printing industries, and New

  18. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01

    In the pulp and paper industry, companies used biomass as athe pulp and paper industry, sawmills, chemicals,and carpet), other industry (paper and paperboard, rubber

  19. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production

    SciTech Connect (OSTI)

    Nges, Ivo Achu, E-mail: Nges.Ivo_Achu@biotek.lu.se [Department of Biotechnology, Lund University, P.O. Box 124, SE 221 00 Lund (Sweden); Escobar, Federico; Fu Xinmei; Bjoernsson, Lovisa [Department of Biotechnology, Lund University, P.O. Box 124, SE 221 00 Lund (Sweden)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester.

  20. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    Planta- tion Products and Paper Industry Council, Paper Industry, Confederationof European Paper Industries, Brussels, March 2001. CESP,

  1. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    E-Print Network [OSTI]

    Sathaye, J.

    2011-01-01

    de Beer, 1997. "Energy Efficient Technologies in Industry -Tracking Industrial Energy Efficiency and CO2 Emissions.and L. Price. 1999. Energy Efficiency and Carbon Dioxide

  2. Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization

    E-Print Network [OSTI]

    Akbari, H.

    2008-01-01

    Organic Industrial Agricultural Plastics and Synthetics Drugs Soaps, detergents, toilet paper Paints,

  3. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    SciTech Connect (OSTI)

    Xu, T.T.; Sathaye, J.; Galitsky, C.

    2010-09-30

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. With the working of energy programs and policies on carbon regulation, how to effectively analyze and manage the costs associated with GHG reductions become extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions (e.g., carbon emission) for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct brief overview on different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by problem statements, and a description of the basic concepts of quantifying the cost of conserved energy including integrating non-regrets options. A non-regrets option is defined as a GHG reduction option that is cost effective, without considering their additional benefits related to reducing GHG emissions. Based upon these, we develop information on costs of mitigation measures and technological change. These serve as the basis for collating the data on energy savings and costs for their future use in integrated assessment models. In addition to descriptions of the iron and steel making processes, and the mitigation measures identified in this study, the report includes tabulated databases on costs of measure implementation, energy savings, carbon-emission reduction, and lifetimes. The cost curve data on mitigation measures are available over time, which allows an estimation of technological change over a decade-long historical period. In particular, the report will describe new treatment of technological change in energy-climate modeling for this industry sector, i.e., assessing the changes in costs and energy-savings potentials via comparing 1994 and 2002 conservation supply curves. In this study, we compared the same set of mitigation measures for both 1994 and 2002 -- no additional mitigation measure for year 2002 was included due to unavailability of such data. Therefore, the estimated potentials in total energy savings and carbon reduction would most likely be more conservative for year 2002 in this study. Based upon the cost curves, the rate of change in the savings potential at a given cost can be evaluated and be used to estimate future rates of change that can be the input for energy-climate models. Through characterizing energy-efficiency technology costs and improvement potentials, we have developed and presented energy cost curves for energy efficiency measures applicable to the U.S. iron and steel industry for the years 1994 and 2002. The cost curves can change significantly under various scenarios: the baseline year, discount rate, energy intensity, production, industry structure (e.g., integrated versus secondary steel making and number of plants), efficiency (or mitigation) measures, share of iron and steel production to which the individual measures can be applied, and inclusion of other non-energy benefits. Inclusion of other non-energy benefits from implementing mitigation measures can reduce the costs of conserved energy significantly. In addition, costs of conserved energy (CCE) for individual mitigation measures increase with the increases in discount rates, resulting in a general increase in total cost of mitigation measures for implementation and operation with a higher discount rate. In 1994, integrated steel mills in the U.S. produced 55.

  4. New Zealand Forestry sector looks to $20bn industry by 2025 08 October 2003/Lumber and Building materials Daily

    E-Print Network [OSTI]

    , it also suffered from having small processing capacity to turn raw materials into remanufactured products materials Daily New Zealand's forestry sector is still confident it can expand into a $20 billion dollar

  5. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    for the European Pulp and Paper Industry, Confederation ofin food and pulp and paper industry wastes, turbines tocement, and pulp and paper industries and in the control of

  6. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    E-Print Network [OSTI]

    Sathaye, J.

    2011-01-01

    Technology Support Unit (ETSU), 1988. “High Level Control ofCircle Industries and SIRA (ETSU, 1988). The LINKman system

  7. ITP Petroleum Refining: Profile of the Petroleum Refining Industry in California: California Industries of the Future Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy (DOE) Industrial Technologies Program (ITP) established the Industries of the Future (IOF) program to increase energy efficiency, reduce waste production and to improve competitiveness, currently focusing on nine sectors.

  8. INCREASE

    ScienceCinema (OSTI)

    None

    2013-07-22

    The Interdisciplinary Consortium for Research and Educational Access in Science and Engineering (INCREASE), assists minority-serving institutions in gaining access to world-class research facilities.

  9. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01

    energy monitoring system Paper and Paperboard industry ? Integrated energy management system ?monitoring was handled by “accredited organizations that certify the energy management systems” (

  10. Energy Intensity Indicators: Industrial Source Energy Consumption

    Office of Energy Efficiency and Renewable Energy (EERE)

    The industrial sector comprises manufacturing and other nonmanufacturing industries not included in transportation or services. Manufacturing includes 18 industry sectors, generally defined at the...

  11. Industrial Energy Efficiency: Designing Effective State Programs...

    Office of Environmental Management (EM)

    Energy Efficiency: Designing Effective State Programs for the Industrial Sector Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector This...

  12. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    pp. IEA, 2006b: Industrial motor systems energy efficiency:industrial energy efficiency. Presented at Energy Efficiency in Motorenergy-efficient electric motors and motor-systems. These include: (1) industrial

  13. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    and waste management that take place within industrialpolicies Waste management policies can reduce industrialWaste management policies.56 7.10 Co-benefits of industrial

  14. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    R.R. ,et al. , 2004: Eco-industrial park initiatives in theCHP plant) form an eco-industrial park that serves as an ex-

  15. DOE Seeks Proposals to Increase Investment in Industrial Carbon Capture and Sequestration Projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has issued a Funding Opportunity Announcement soliciting projects to capture and sequester carbon dioxide from industrial sources and to put CO2 to beneficial use.

  16. Increased

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLAN FOR THE SITE-218in a V2O5 BatteryIncreased confinement

  17. SOCIAL CHANGE AS AN ASPECT OF THE INCREASING SCALE OF ORGANIZATION OF SOCIETY ILLUSTRATED IN THE SECTOR OF EDUCATION

    E-Print Network [OSTI]

    Razak, W. Nevell

    1967-04-01

    Writing on the subject of social change has been characterized by a general and descriptive approach on one hand and a narrow focus on institutions on the other. As conceived here under the hypoches Ls of increasing scale of organization of society...

  18. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    cement and pulp and paper industries in China, and in thePulp and Paper Industry, Confederation of European Paper Industries, Brussels, March 2001. CESP, 2004: China’pulp and paper industries (GOI, 2005). There are 39.8 million SMEs in China,

  19. OTHER INDUSTRIES

    Office of Energy Efficiency and Renewable Energy (EERE)

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  20. Abstract--Market based contracting introduces increased competition in the power industry, and creates a need for

    E-Print Network [OSTI]

    Berleant, Daniel

    Abstract--Market based contracting introduces increased competition in the power industry) of a bid, generation companies (GENCOs) must strive to use models better than their competitors. Such models should account for factors such as buyers' market power, market mechanisms, other competitors

  1. Incentives to Accelerate the Penetration of Electricity in the Industrial Sector by Promoting New Technologies: A French Experiment 

    E-Print Network [OSTI]

    Bouchet, J.; Froehlich, R.

    1983-01-01

    A major problem encountered when trying to speed up electrification of French industry has been 'hot to finance, at end-user's level, investments related to such a change of technology'. Government incentives, the aims of which are to help saving...

  2. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    specified in the ‘Energy Technology List’ during the yearenergy consumers in the chemical industry, and list examples of technology

  3. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    disposal routes, several countries have set incen- tives to promote the use of various wastes in industrial processes in direct

  4. The DOE s In-Plant Training (INPLT) Model to Promote Energy Efficiency in the Industrial Sector

    SciTech Connect (OSTI)

    Alkadi, Nasr E [ORNL] [ORNL; Nimbalkar, Sachin U [ORNL] [ORNL; De Fontaine, Mr. Andre [United States Department of Energy (DOE), Industrial Technology Program] [United States Department of Energy (DOE), Industrial Technology Program; Schoeneborn, Fred C [ORNL] [ORNL

    2013-01-01

    In-Plant Training (INPLT) is a new model for developing energy efficiency expertise within the US manufacturing companies participating in the U.S. Department of Energy s (DOE s) Better Buildings, Better Plants Program-a nationwide initiative to drive a 25% reduction in industrial energy intensity in 10 years. INPLTs are designed to fill a market niche by providing hands on training in a real world manufacturing plant environment. Through INPLTs, participants from multiple manufacturing plants, supply chains, utilities, and other external stakeholders learn how to conduct energy assessments, use energy analysis tools to analyze energy saving opportunities, develop energy management systems, and implement energy savings projects. Typical INPLT events are led by DOE-certified Energy Experts and range from 2-4 days. Topics discussed include: identification of cross-cutting or system specific opportunities; introduction to ISO 50001 Energy Management Systems; and energy project implementation and replication. This model is flexible, and can be tailored to suit the needs of specific industries. The INPLTs are a significant departure from the traditional single plant energy assessment model previously employed by DOE. INPLTs shift the focus from the concept of a single-plant s energy profile to a broader focus on training and capacity building among multiple industrial participants. The objective is to enable trainees to identify, quantify, implement and replicate future energy saving projects without continued external assistance. This paper discusses the INPLT model and highlights some of the initial outcomes from the successfully delivered INPLTs and the overall impact in terms of numbers of plants/participants trained, impacted energy footprints, and potential replication of identified opportunities.

  5. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01

    fuel switching, and cogeneration. These measures can oftenthe installation of cogeneration natural gas plants. Cement:They also implemented cogeneration plants and have increased

  6. End-Use Sector Flowchart

    Broader source: Energy.gov [DOE]

    This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors—transportation, industry, commercial and residential—identified in Figure 1. By clicking on any of the boxes with the word "Sector" in the title will reveal the more detailed structure within that sector.

  7. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    of its electricity requirements in the USA (US DOE, 2002)USA, where motor-driven systems account for 63% of industrial electricity

  8. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    of Industrial Electrical Switchgear and Control Gear in the6 from use in electrical switchgear and magnesium processinggas insulated electrical switchgear, during the production

  9. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    SciTech Connect (OSTI)

    Sathaye, J.; Xu, T.; Galitsky, C.

    2010-08-15

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

  10. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    E-Print Network [OSTI]

    Sathaye, J.

    2011-01-01

    M. , 1990. “Waste Gas Heat Recovery in Cement Plants” EnergyAdvanced Concepts of Waste Heat Recovery in Cement Plants”process Optimize heat recovery of Wet Increased product

  11. China's energy-water nexus – assessment of the energy sector's compliance with the “3 Red Lines” industrial water policy

    E-Print Network [OSTI]

    Qin, Ying; Curmi, Elizabeth; Kopec, Grant M.; Allwood, Julian M.; Richards, Keith S.

    2015-04-02

    Increasing population and economic growth continue to drive China's demand for energy and water resources. The interaction of these resources is particularly important in China, where water resources are unevenly distributed, with limited...

  12. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    options for combined heat and power in Canada. Office ofpolicies to promote combined heat and power in US industry.conversions, such as combined heat and power and coke ovens,

  13. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    iron and steel production. IEA Greenhouse Gas R&D Programme,tempera- ture range. IEA/Caddet, Sittard, The Netherlands.industry. Cheltenham, UK, IEA Greenhouse Gas R&D Programme,

  14. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    developing countries, like India, adoption of efficient electricitydeveloping countries the sugar in- dustry uses bagasse and the edible oils industry uses byproduct wastes to generate steam and/or electricity (

  15. Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)

    E-Print Network [OSTI]

    Zhiping, L.

    2010-01-01

    of Energy Conservation Industrial Energy ConservationIntensity of Selected Industrial Products, 1981-1990 EnergyConservation Projects by Industrial Subsector, 7th FYP Unit

  16. Power Politics: The Political Economy of Russia's Electricity Sector Liberalization

    E-Print Network [OSTI]

    Wengle, Susanne Alice

    2010-01-01

    Private Participation in the Electricity Sector World BankTelecommunications and Electricity Sectors." Governance 19,Power Struggle: Reforming the Electricity Industry." In The

  17. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    of pulverized coal, increased heat and energy recovery andFuel Switching Coal to natural gas and oil Power Recovery

  18. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the U.S. Pulp and Paper Sector

    E-Print Network [OSTI]

    Xu, Tengfang

    2014-01-01

    Opportunities for the Pulp and Paper Industry (LBNL-2268E).in the U.S. Pulp and Paper Industry. Lawrence BerkeleyManagement in the Pulp and Paper Industry. Buehler, E. and

  19. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the U.S. Pulp and Paper Sector

    E-Print Network [OSTI]

    Xu, Tengfang

    2014-01-01

    the U.S. Pulp and Paper Industry. Lawrence Berkeley NationalProfile of the Pulp and Paper Industry, 2 nd Edition. Officefor the Pulp and Paper Industry (No. LBNL-2268E). Berkeley,

  20. The Role of the Sellafield Ltd Centres of Expertise in Engaging with the Science, Environment and Technology Supply Chain and University Sector to Support Site Operations and Decommissioning in the UK Nuclear Industry - 13018

    SciTech Connect (OSTI)

    Butcher, Ed; Connor, Donna; Keighley, Debbie

    2013-07-01

    The development and maintenance of the broad range of the highly technical skills required for safe and successful management of nuclear sites is of vital importance during routine operations, decommissioning and waste treatment activities.. In order to maintain a core team of technical experts, across all of the disciplines required for these tasks, the approach which has been taken by the Sellafield Ltd has been the formation of twenty five Centres of Expertise (CoE), each covering key aspects of the technical skills required for nuclear site operations. Links with the Specialist University Departments: The CoE leads are also responsible for establishing formal links with university departments with specialist skills and facilities relevant to their CoE areas. The objective of these links is to allow these very specialist capabilities within the university sector to be more effectively utilized by the nuclear industry, which benefits both sectors. In addition to the utilization of specialist skills, the university links are providing an important introduction to the nuclear industry for students and researchers. This is designed to develop the pipeline of potential staff, who will be required in the future by both the academic and industrial sectors. (authors)

  1. NOAA Helps the Construction Sector Build for a Changing Climate The construction industry is comprised of a wide range of business involved in engineering standards,

    E-Print Network [OSTI]

    construction, building techniques, and materials construction workers use. The potential risk of inclement planning purposes, risk management, and assessing environmental footprints. A changing climate can lead by the construction sector: Precipitation data to design and build natural gas pipeline trenc

  2. Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)

    E-Print Network [OSTI]

    Zhiping, L.

    2010-01-01

    industrial motors, fans, and pumps consume approximately 30% of all electricity produced i n China. Improving the energy

  3. Explaining the increase of competitiveness in the Colombian car industry after the end of import substitution industralization [sic] policies

    E-Print Network [OSTI]

    Carrillo-Mora, Felipe, 1972-

    2003-01-01

    At the beginning of the decade of the nineties, Import Substitution Industrialization - ISI- policies were dismantled all over Latin America, including Colombia. This meant that tariff protection for locally produced ...

  4. Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)

    E-Print Network [OSTI]

    Zhiping, L.

    2010-01-01

    of crude oil and oil products; (iii) retrofitting existingof petroleum products, limit proliferation of oil usingand product mix in energy-intensive industries; converting oil-

  5. Unrestricted. Siemens AG 2013. All rights reserved.Page 2 October 2013 Corporate Technology Siemens is organized in 4 Sectors: Industry,

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    pumps High Temp. heat pumps 270PJ/a*330PJ/a* * Source: Lambauer et al, Heat supply industry in Germany ­ the megawatt range. Achema, Frankfurt, 2012 6 Pearson, Nellissen, Application of industrial heat pumps. Achema performance evaluation of new safe and environmentally friendly working fluids for high temperature heat pumps

  6. BUILDINGS SECTOR DEMAND-SIDE EFFICIENCY TECHNOLOGY SUMMARIES

    E-Print Network [OSTI]

    ........................................................................... 59 End-Use: Water Heating Sector: Residential Author: Jim Lutz VIII. Heat Pump Water Heaters) ................................................................ 5 End-Use: Lighting, HVAC Sector: Commercial, Industrial, Residential Author: Kristin Heinemeier II End-Use: Interior Lighting Sector: Commercial, Industrial Author: Ellen Franconi III. Compact

  7. Energy efficiency in building sector in India through Heat

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;Energy efficiency in building sector in India through Heat Pump Technology By Mr Pradeep Kumar sector in India · Residential building sector in India · HVAC growth in residential sector. · Heat Pump, Sustainable habitat, Biotechnology, Renewable energy, Water technology, Industrial research, Social

  8. Fact #561: March 9, 2009 All Sectors' Petroleum Gap

    Office of Energy Efficiency and Renewable Energy (EERE)

    Before 1989 the U.S. produced enough petroleum to meet the needs of the transportation sector, but was still short of meeting the petroleum needs of all the sectors, including industrial,...

  9. Fact #610: February 15, 2010 All Sectors' Petroleum Gap

    Office of Energy Efficiency and Renewable Energy (EERE)

    Before 1989 the U.S. produced enough petroleum to meet the needs of the transportation sector, but was still short of meeting the petroleum needs of all the sectors, including industrial,...

  10. The Office of Industrial Technologies technical reports

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    The US Department of Energy's Office of Industrial Technologies (OIT) conducts R D activities which focus on the objectives of improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial energy conservation. The Office also conducts programs to reduce waste generation, increase recycling efforts, and improve the use of wastes as process feedstocks. An active program of technology transfer and education supports these activities and encourages adoption of new technologies. To accomplish these objectives OIT cooperates with the private sector to identify its technological needs and to share R D efforts. R D is conducted to the point that a new technology is shown to work and that it can be transferred to the private sector end-users. This bibliography contains information on all scientific and technical reports sponsored by the DOE Industrial Energy Conservation Program during the years 1988--1990.

  11. Industrial sector energy conservation programs in the People`s Republic of China during the seventh five-year plan (1986--1990)

    SciTech Connect (OSTI)

    Liu Zhiping; Sinton, J.E.; Yang Fuqiang; Levine, M.D.; Ting, M.K.

    1994-09-01

    The impetus at the national level to invest in energy conservation is quite strong and has long been reflected not only in official pronouncements, but also in the investments and organizational activities of the Chinese government. In the early 1980s the central government began a program of direct investments in industrial energy conservation that continues to the present. In addition, concurrently established governmental and quasi-governmental agencies have pursued conservation through administrative and educational measures. In Section 2 of this paper the authors outline the policies and institutions that supported China`s program of energy conservation investments in the Sixth and Seventh Five-Year Plans (FYPs) (1981--1985 and 1986--1990). In Section 3 they describe examples of the types of conservation projects pursued in four industrial subsectors: ferrous metals manufacturing; non-ferrous metals mining and manufacturing; chemicals manufacturing; and building materials manufacturing. Section 4 presents a simple methodology for comparing the costs of energy conservation to those of energy supply. Further discussion points out the applicability and limitations of this methodology to State Planning Commission published statistical material on the overall results of energy conservation investments. Though problematic, such analysis indicates that energy conservation investments were probably substantially cheaper than investments in equivalent energy supply would have been. They end with a discussion of some of the difficulties encountered in carrying out the conservation investment programs.

  12. Industrial policy and the Indian electronics industry

    E-Print Network [OSTI]

    Love, Robert (Robert Eric)

    2008-01-01

    Recently, production within India's Electronics sector amounted to a low $12 billion when compared to the global output of $1400 billion. The slow growth in the local industry is often judged to be the result of late ...

  13. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    of Labor Statistics. Energy Efficiency Services Sector:of Energy Engineers 2009a. “Energy Independence and MarketTrends: AEE Survey of the Energy Industry 2009. ” http://

  14. Electricity savings potentials in the residential sector of Bahrain

    SciTech Connect (OSTI)

    Akbari, H.; Morsy, M.G.; Al-Baharna, N.S.

    1996-08-01

    Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to the peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.

  15. Innovative New Industrial Technologies: An Industry/DOE Joint Endeavor 

    E-Print Network [OSTI]

    Gross, T. J.

    1986-01-01

    The Department of Energy’s Office of Industrial Programs supports research and development leading to improved energy efficiency and greater overall productivity in the industrial sector. Its basic strategy is a program of cost-shared R...

  16. Economic Impact of the Texas Forest Sector

    E-Print Network [OSTI]

    and paper products. The Texas forest sector also produces many value-added forest products such as millwork, wood kitchen cabinets, prefabricated wood buildings, wood furniture, and various paper products in terms of total industry output, value-added, employment, and labor income. Total industry output

  17. Webinar: Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department will present a webinar titled "Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies" on Tuesday, August 19, from 12:00 to 1:00 p.m. Eastern Daylight Time (EDT). The webinar will feature representatives from the National Renewable Energy Laboratory presenting a unique opportunity for the integration of multiple sectors including transportation, industrial, heating fuel, and electric sectors on hydrogen.

  18. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    SciTech Connect (OSTI)

    Selldorff, John; Atwell, Monte

    2014-09-23

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  19. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    ScienceCinema (OSTI)

    Selldorff, John; Atwell, Monte

    2014-12-03

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  20. Fundamentals of public-private partnerships in the transportation sector : international methodologies of highway public-private partnerships and a framework to increase the probability of success and allocate risk

    E-Print Network [OSTI]

    Butler, Ryan, S.M. Massachusetts Institute of Technology

    2013-01-01

    In 2009 the American Society of Civil Engineers (ASCE) gave the US infrastructure sector a grade D, based on the current and future needs of the nation's infrastructure and estimates that by year 2020, the US surface ...

  1. Energy Savings in Industrial Buildings 

    E-Print Network [OSTI]

    Zhou, A.; Tutterow, V.; Harris, J.

    2009-01-01

    The industrial sector accounts for more than one-third of total energy use in the United States and emits 28.7 percent of the country’s greenhouse gases. Energy use in the industrial sector is largely for steam and process heating systems...

  2. Asymmetry in In-Degree and Out-Degree Distributions of Large-Scale Industrial Networks

    E-Print Network [OSTI]

    Luo, Jianxi; Whitney, Daniel E.

    2015-01-01

    Network structures in industrial pricing: the effect ofrecession? ranking U.S. industrial sectors by the Power-of-distributions of large-scale industrial networks Jianxi Luo

  3. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01

    Experiences with Industrial Heat Pumps. Analyses Series #23.of Energy (DOE) (2003). Industrial Heat Pumps for Steam andin the industrial sector. However, geothermal heat pumps may

  4. Industrial Rates and Demand-Side Management Programs 

    E-Print Network [OSTI]

    Kasprowicz, L. M.; House, R.

    1993-01-01

    The industrial sector in Texas is large and energy intensive. Industrial sales constitute a major portion of total sales for several utilities in Texas. Industrial demand-side management (DSM) can be used by utilities to provide industrial customers...

  5. Industry Sector Fallstudie Building Technologies Division

    E-Print Network [OSTI]

    Fischlin, Andreas

    Vorteile, wie das Beispiel des Abwasserreinigungsprozesses illustriert: Wenn die Batterie und der zu schnelles Aufladen der Batterie Sonnenenergie ungenutzt bleibt. Bei schlechter Wetterprognose wird der Reinigungsprozess gestoppt. Sonst bestünde die Gefahr, dass die Stromreserven der Batterie

  6. International industrial sector energy efficiency policies

    E-Print Network [OSTI]

    Price, Lynn; Worrell, Ernst

    2000-01-01

    and Opportunities,” Energy Policy 26(11): 859-872. Hall,1999. “Incentives in Energy Policy – A Comparison BetweenVoluntary Agreements in Energy Policy – Implementation and

  7. International industrial sector energy efficiency policies

    E-Print Network [OSTI]

    Price, Lynn; Worrell, Ernst

    2000-01-01

    company and the Danish Energy Agency (Ezban et al. , 1994;company and the Danish Energy Agency. The agreements, whichagreements with the Danish Energy Agency, representing 45%

  8. United States Industrial Motor-Driven Systems Market Assessment...

    Broader source: Energy.gov (indexed) [DOE]

    sectors. United States Industrial Motor-Driven Systems Market Assessment: Charting a Roadmap to Energy Savings for Industry (June 1998) More Documents & Publications U.S....

  9. Industrial Scale Energy Systems Integration; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Ruth, Mark

    2015-07-28

    The industrial sector consumes 25% of the total energy in the U.S. and produces 18% of the greenhouse gas (GHG) emissions. Energy Systems Integration (ESI) opportunities can reduce those values and increase the profitability of that sector. This presentation outlines several options. Combined heat and power (CHP) is an option that is available today for many applications. In some cases, it can be extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed. extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed.

  10. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  11. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    SciTech Connect (OSTI)

    Goldman, Charles; Fuller, Merrian C.; Stuart, Elizabeth; Peters, Jane S.; McRae, Marjorie; Albers, Nathaniel; Lutzenhiser, Susan; Spahic, Mersiha

    2010-03-22

    The energy efficiency services sector (EESS) is poised to become an increasingly important part of the U.S. economy. Climate change and energy supply concerns, volatile and increasing energy prices, and a desire for greater energy independence have led many state and national leaders to support an increasingly prominent role for energy efficiency in U.S. energy policy. The national economic recession has also helped to boost the visibility of energy efficiency, as part of a strategy to support economic recovery. We expect investment in energy efficiency to increase dramatically both in the near-term and through 2020 and beyond. This increase will come both from public support, such as the American Recovery and Reinvestment Act (ARRA) and significant increases in utility ratepayer funds directed toward efficiency, and also from increased private spending due to codes and standards, increasing energy prices, and voluntary standards for industry. Given the growing attention on energy efficiency, there is a concern among policy makers, program administrators, and others that there is an insufficiently trained workforce in place to meet the energy efficiency goals being put in place by local, state, and federal policy. To understand the likelihood of a potential workforce gap and appropriate response strategies, one needs to understand the size, composition, and potential for growth of the EESS. We use a bottom-up approach based upon almost 300 interviews with program administrators, education and training providers, and a variety of EESS employers and trade associations; communications with over 50 sector experts; as well as an extensive literature review. We attempt to provide insight into key aspects of the EESS by describing the current job composition, the current workforce size, our projections for sector growth through 2020, and key issues that may limit this growth.

  12. Industrial Energy Audit Guidebook: Guidelines for Conducting...

    Open Energy Info (EERE)

    Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Energy Efficiency, Industry Resource Type: Guidemanual Website: china.lbl.govsiteschina.lbl.gov...

  13. Within-Industry Technological Specialization, Collective Action, and Trade Policy 

    E-Print Network [OSTI]

    Urbanski, Piotr

    2015-01-21

    . I tie this with the logic of collective action and classical trade models to de- 6See Jones (2009). Also Wuchty et al. (2007); Jones et al. 2007. 6 rive an industry’s ability and intensity of lobbying over trade policy. The proposed theory helps us... has continued to de- velop. Arguably at an ever increasing rate. However, some industries have developed faster than others. At the same time some sectors of the American economy have lib- eralized more or less. Are the two trends related...

  14. Fact #582: August 3, 2009 Energy Shares by Sector and Source

    Office of Energy Efficiency and Renewable Energy (EERE)

    The transportation sector consumed about 28% of U.S. energy in 2008, nearly all of it (95%) in petroleum use. The industrial sector used about 40% petroleum and 40% natural gas. The electric...

  15. Fact #689: August 22, 2011 Energy Use by Sector and Source

    Broader source: Energy.gov [DOE]

    The transportation sector consumed 28% of U.S. energy in 2010, nearly all of it (93.5%) in petroleum use. The industrial sector used about 40% petroleum and 40% natural gas. The electric utility...

  16. Energy Sector Market Analysis

    SciTech Connect (OSTI)

    Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

    2006-10-01

    This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

  17. Surety of the nation`s critical infrastructures: The challenge restructuring poses to the telecommunications sector

    SciTech Connect (OSTI)

    Cox, R.; Drennen, T.E.; Gilliom, L.; Harris, D.L.; Kunsman, D.M.; Skroch, M.J.

    1998-04-01

    The telecommunications sector plays a pivotal role in the system of increasingly connected and interdependent networks that make up national infrastructure. An assessment of the probable structure and function of the bit-moving industry in the twenty-first century must include issues associated with the surety of telecommunications. The term surety, as used here, means confidence in the acceptable behavior of a system in both intended and unintended circumstances. This paper outlines various engineering approaches to surety in systems, generally, and in the telecommunications infrastructure, specifically. It uses the experience and expectations of the telecommunications system of the US as an example of the global challenges. The paper examines the principal factors underlying the change to more distributed systems in this sector, assesses surety issues associated with these changes, and suggests several possible strategies for mitigation. It also studies the ramifications of what could happen if this sector became a target for those seeking to compromise a nation`s security and economic well being. Experts in this area generally agree that the U. S. telecommunications sector will eventually respond in a way that meets market demands for surety. Questions remain open, however, about confidence in the telecommunications sector and the nation`s infrastructure during unintended circumstances--such as those posed by information warfare or by cascading software failures. Resolution of these questions is complicated by the lack of clear accountability of the private and the public sectors for the surety of telecommunications.

  18. Colombian manufacturing industry during the era of the OPEC price shocks

    SciTech Connect (OSTI)

    Mokate, K.M.

    1984-01-01

    In the first part of this research, an examination of the data on output, value-added, employment and energy use of the Colombian manufacturing industry for the OPEC price shock era shows that the behavior predicted by theory does not describe that industry's reactions to the OPEC price increases. The industry's energy utilization rate does not follow a downward trend, but rather fluctuates throughout the 1970s. The analysis of the production responses provides no evidence of a decline in the energy intensive sectors; all of the manufacturing sectors experienced cyclical fluctuation during the 1970s, regardless of their energy intensity levels. There is no evidence of change in the intrasectoral product mixes or in the technical input coefficients. However, the fluctuations in the energy utilization rate of the manufacturing industry coincide with those of the share of the industry's total output which originated in the energy intensive sectors. In short, the Colombian manufacturing industry has been virtually unresponsive to the increased international oil price. Any technological chage or production response to the oil price increases would be likely to induce change in the functional distribution of industrial income. In the second section of this thesis, then, an input-output methodology for the analysis of the components of this change is introduced; its application to the Colombian case reveals little change in the functional distribution during the 1970s.

  19. 2008 Industrial Technologies Market Report, May 2009

    SciTech Connect (OSTI)

    Energetics; DOE

    2009-07-01

    The industrial sector is a critical component of the U.S. economy, providing an array of consumer, transportation, and national defense-related goods we rely on every day. Unlike many other economic sectors, however, the industrial sector must compete globally for raw materials, production, and sales. Though our homes, stores, hospitals, and vehicles are located within our borders, elements of our goods-producing industries could potentially be moved offshore. Keeping U.S. industry competitive is essential to maintaining and growing the U.S. economy. This report begins with an overview of trends in industrial sector energy use. The next section of the report focuses on some of the largest and most energy-intensive industrial subsectors. The report also highlights several emerging technologies that could transform key segments of industry. Finally, the report presents policies, incentives, and drivers that can influence the competitiveness of U.S. industrial firms.

  20. Energy intensity in China's iron and steel sector

    E-Print Network [OSTI]

    Xu, Jingsi, M.C.P. Massachusetts Institute of Technology

    2011-01-01

    In this study, I examine the spatial and economic factors that influence energy intensity in China's iron and steel sector, namely industrial value added, renovation investment, coke consumption, and local coke supply. ...

  1. Profile of the chemicals industry in California: Californiaindustries of the future program

    SciTech Connect (OSTI)

    Galitsky, Christina; Worrell, Ernst

    2004-06-01

    The U.S. Department of Energy (DOE) Office of Industrial Technologies (OIT) established the Industries of the Future (IOF) program to increase energy efficiency, reduce waste production and to improve competitiveness, currently focusing on nine sectors. The IOF is a partnership strategy involving industry, the research community and the government, working together to identify technology needs, promote industrial partnerships and implement joint measures with all partners involved. The State Industries of the Future (SIOF) program delivers the accomplishments of the national Industries of the Future strategy to the local level, to expand the technology opportunities to a larger number of partners and reach smaller businesses and manufacturers that were not initially involved in the IOF effort. The state programs bring together industry, academia, and state agencies to address the important issues confronting industry in the state. These public-private coalitions facilitate industry solutions locally and enhance economic development. California has started a State Industries of the Future effort, in collaboration with the U.S. Department of Energy. The California Energy Commission (CEC) is leading the SIOF program in California, as part of many other programs to improve the energy efficiency and performance of industries in California. The California State IOF program aims to build a network of participants from industry, academia and government in four selected industrial sectors as a basis for the development of a strategic partnership for industrial energy efficient technology in the state. In California the IOF effort focuses petroleum refining, chemical processing, food processing and electronics. As part of this effort, the SIOF program will develop roadmaps for technology development for the selected sectors. On the basis of the roadmap, the program will develop successful projects with co-funding from state and federal government, and promote industry-specific energy-efficiency. An important element of the SIOF-program is the preparation of R&D roadmaps for each of the selected industries. The roadmap will help to identify priority needs for the participating industries to meet their energy challenges. The roadmap effort builds on the roadmaps developed by DOE, and on the conditions specific for the industry in California. Key to the successful preparation of a roadmap in the selected industries is the development of a profile of the industries. The profile provides a basis for the participants in the roadmap-effort, especially as the structure of the industries in California can be different than in the nation. The sector profiles describe the current economic and energy situation of these industries in California, the processes and energy uses, and the potential future developments in each industry. The profiles are an integral part of the roadmap, to help working group partners to evaluate the industry's R&D needs for their industry in California. In this report, we focus on the chemicals industry. The industry is an important economic factor in the state, providing over 82,300 jobs directly, and more in indirect employment. Value of shipments in 2001 was just under $25.7 Billion, or 6% of all manufacturing in California. There are over 1,500 chemical plants in California, of which 52% are pharmaceutical companies. Many companies operate chemical plants in California. The industry consumes 8% of the electricity and 5% of the natural gas in California. In this report, we start with a description of the chemical industry in the United States and California. This is followed by a discussion of the energy consumption and energy intensity of the Californian chemical industry. Chapter 3 focuses on the main sub-sectors. For each of the sub-sectors a general process description is provided in Chapter 4. Based on this analysis, in Chapter 5, we discuss potential technology developments that can contribute to further improving the energy efficiency in chemical plants, with a focus on the situation in California.

  2. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    sectors","Residential","Commercial","Industrial","Transportation" 1,"Green Mountain Power Corp","Investor-owned",4295605,1556518,1560705,1178382,0 2,"Vermont Electric...

  3. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"South Carolina Electric&Gas Company","Investor-owne...

  4. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"First Energy Solutions Corp.","Investor-owned",49437270...

  5. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Duke Energy Carolinas, LLC","Investor-owned",553018...

  6. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total sales, top five providers" "Nevada" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Nevada Power...

  7. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Kentucky Utilities Co","Investor-owned",18527337,61...

  8. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Northern States Power Co - Minnesota","Investor-owned...

  9. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Oklahoma Gas & Electric Co","Investor-owned",242030...

  10. Report: Natural Gas Infrastructure Implications of Increased...

    Energy Savers [EERE]

    Natural Gas Infrastructure Implications of Increased Demand from the Electric Power Sector Report: Natural Gas Infrastructure Implications of Increased Demand from the Electric...

  11. Industrial Use of Infrared Inspections 

    E-Print Network [OSTI]

    Duch, A. A.

    1979-01-01

    Infrared is and has been an established technology in the military and aerospace fields. However, only relatively recently has this technology found a "use" in the industrial sector. Many reasons exist why the technology has not been used...

  12. Deregulating and regulatory reform in the U.S. electric power sector

    E-Print Network [OSTI]

    Joskow, Paul L.

    2000-01-01

    This paper discusses the evolution of wholesale and retail competition in the U.S electricity sector and associated industry restructuring and regulatory reforms. It begins with a discussion of the industry structure and ...

  13. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Masanet, Eric

    2008-01-01

    of Energy (DOE) (2003). Industrial Heat Pumps for Steam andExperiences with Industrial Heat Pumps. Analyses Series #23.in the industrial sector. However, geothermal heat pumps may

  14. Delivered Energy Consumption Projections by Industry in the Annual Energy Outlook 2002

    Reports and Publications (EIA)

    2002-01-01

    This paper presents delivered energy consumption and intensity projections for the industries included in the industrial sector of the National Energy Modeling System.

  15. Economic Crisis and the Logistics Industry: Financial Insecurity for Warehouse Workers in the Inland Empire

    E-Print Network [OSTI]

    Bonacich, Edna; De Lara, Juan David

    2009-01-01

    Growing the SACOG Region’s Logistics Sector: How Much, HowEconomic Crisis and the Logistics Industry Acknowledgements13 Economic Crisis and the Logistics Industry: Financial

  16. Institutional change in the forest sector : the Russian experience

    E-Print Network [OSTI]

    Ulybina, Olga

    In 1987, the share of forestry, mechanical wood industry, and the pulp and paper industry was seventh of all sectors in Russia with 5.62% of total industrial output (Nilsson and Shvidenko, 1997: 33). By 1993, domestic production of wood products (the... of Forest Certification schemes SGS Société Générale de Surveillance, an inspection, verification, testing and certification company SPOK An environmental NGO in Karelia UPM UPM-Kymmene Oyj, a pulp, paper and timber manufacturer VLTP Validation...

  17. Energy Use in China: Sectoral Trends and Future Outlook

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.; Fridley, David; Lin, Jiang; Price,Lynn; de la Rue du Can, Stephane; Sathaye, Jayant; Levine, Mark

    2007-10-04

    This report provides a detailed, bottom-up analysis ofenergy consumption in China. It recalibrates official Chinese governmentstatistics by reallocating primary energy into categories more commonlyused in international comparisons. It also provides an analysis of trendsin sectoral energy consumption over the past decades. Finally, itassesses the future outlook for the critical period extending to 2020,based on assumptions of likely patterns of economic activity,availability of energy services, and energy intensities. The followingare some highlights of the study's findings: * A reallocation of sectorenergy consumption from the 2000 official Chinese government statisticsfinds that: * Buildings account for 25 percent of primary energy, insteadof 19 percent * Industry accounts for 61 percent of energy instead of 69percent * Industrial energy made a large and unexpected leap between2000-2005, growing by an astonishing 50 percent in the 3 years between2002 and 2005. * Energy consumption in the iron and steel industry was 40percent higher than predicted * Energy consumption in the cement industrywas 54 percent higher than predicted * Overall energy intensity in theindustrial sector grew between 2000 and 2003. This is largely due tointernal shifts towards the most energy-intensive sub-sectors, an effectwhich more than counterbalances the impact of efficiency increases. *Industry accounted for 63 percent of total primary energy consumption in2005 - it is expected to continue to dominate energy consumption through2020, dropping only to 60 percent by that year. * Even assuming thatgrowth rates in 2005-2020 will return to the levels of 2000-2003,industrial energy will grow from 42 EJ in 2005 to 72 EJ in 2020. * Thepercentage of transport energy used to carry passengers (instead offreight) will double from 37 percent to 52 percent between 2000 to 2020,.Much of this increase is due to private car ownership, which willincrease by a factor of 15 from 5.1 million in 2000 to 77 million in2020. * Residential appliance ownership will show signs of saturation inurban households. The increase in residential energy consumption will belargely driven by urbanization, since rural homes will continue to havelow consumption levels. In urban households, the size of appliances willincrease, but its effect will be moderated by efficiency improvements,partially driven by government standards. * Commercial energy increaseswill be driven both by increases in floor space and by increases inpenetration of major end uses such as heating and cooling. Theseincreases will be moderated somewhat, however, by technology changes,such as increased use of heat pumps. * China's Medium- and Long-TermDevelopment plan drafted by the central government and published in 2004calls for a quadrupling of GDP in the period from 2000-2020 with only adoubling in energy consumption during the same period. A bottom-upanalysis with likely efficiency improvements finds that energyconsumption will likely exceed the goal by 26.12 EJ, or 28 percent.Achievements of these goals will there fore require a more aggressivepolicy of encouraging energy efficiency.

  18. Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities

    SciTech Connect (OSTI)

    Hasanbeigi, Ali; Price, Lynn

    2010-10-07

    Various studies in different countries have shown that significant energy-efficiency improvement opportunities exist in the industrial sector, many of which are cost-effective. These energy-efficiency options include both cross-cutting as well as sector-specific measures. However, industrial plants are not always aware of energy-efficiency improvement potentials. Conducting an energy audit is one of the first steps in identifying these potentials. Even so, many plants do not have the capacity to conduct an effective energy audit. In some countries, government policies and programs aim to assist industry to improve competitiveness through increased energy efficiency. However, usually only limited technical and financial resources for improving energy efficiency are available, especially for small and medium-sized enterprises. Information on energy auditing and practices should, therefore, be prepared and disseminated to industrial plants. This guidebook provides guidelines for energy auditors regarding the key elements for preparing for an energy audit, conducting an inventory and measuring energy use, analyzing energy bills, benchmarking, analyzing energy use patterns, identifying energy-efficiency opportunities, conducting cost-benefit analysis, preparing energy audit reports, and undertaking post-audit activities. The purpose of this guidebook is to assist energy auditors and engineers in the plant to conduct a well-structured and effective energy audit.

  19. Government and Industry A Force for Collaboration at the Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Act Blog Leadership Budget Our Organization Strategic Plan Our History Offices Roadmap to Secure Control Systems in the Energy Sector Government and Industry A Force for...

  20. China’s Defense Electronics Industry: Innovation, Adaptation, and Espionage

    E-Print Network [OSTI]

    Mulvenon, James; Luce, Matthew

    2010-01-01

    2010 China’s Defense Electronics Industry: Innovation,of the Chinese defense electronics sector can be attributedAdvanced defense electronics components and systems play a

  1. Secretary Chu Announces More than $155 Million for Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    industrial sector and help to usher in a clean energy economy," said Secretary Chu. "Many companies already realize that improving efficiency saves money while helping the...

  2. Where is the coiled tubing wave headed. [The increased use of coiled tube drilling equipment in the oil and gas industry

    SciTech Connect (OSTI)

    Newman, K. )

    1994-09-01

    In the late 1980s, the coiled tubing (CT) service market began a wave of growth and expansion unparalleled by other oil field services. In 1989, market growth was so rapid it was referred to as a ''CT revolution.'' The trend has continued through the early 1990s with annual growth rates of 20%--30%, while other oil field service markets have been stagnant or even shrinking. With the recent advent of open-hole CT drilling (CTD) and CT completions (CTC), the wave's momentum is increasing with no end in sight. Advances in CT manufacturing, fatigue prediction, larger-diameter tubing, CT logging and other CT equipment made in the late 1980s improved the reliability and effectiveness of CT services, triggering this wave of activity. The status of this technology is discussed along with the performance and reliability of coiled tubing drills.

  3. SASKATCHEWAN FORESTRY SECTOR OVERVIEW

    E-Print Network [OSTI]

    3% Other 1% Lumber Plywood & OSB Pulp & Paper 2005 2013 US 59% Canada 39% Japan 2% Change In Forest Branch · Timber Resource · Forest Industry Overview · Current Sales, Exports and Markets · Investment; ·Facilitate export market growth; ·Enhance industry competitiveness; ·Explore new forest products; ·Monitor

  4. Demand Response Enabling Technologies and Approaches for Industrial Facilities 

    E-Print Network [OSTI]

    Epstein, G.; D'Antonio, M.; Schmidt, C.; Seryak, J.; Smith, C.

    2005-01-01

    , there are also huge opportunities for demand response in the industrial sector. This paper describes some of the demand response initiatives that are currently active in New York State, explaining applicability of industrial facilities. Next, we discuss demand...

  5. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the National Pollutant Discharge Elimination System....

  6. The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2009-11-02

    Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nation’s CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.

  7. An Assessment of carbon reduction technology opportunities in the petroleum refining industry.

    SciTech Connect (OSTI)

    Petrick, M.

    1998-09-14

    The refining industry is a major source of CO{sub 2} emissions in the industrial sector and therefore in the future can expect to face increasing pressures to reduce emission levels. The energy used in refining is impacted by market dictates, crude quality, and environmental regulations. While the industry is technologically advanced and relatively efficient opportunities nevertheless exist to reduce energy usage and CO{sub 2} emissions. The opportunities will vary from refinery to refinery and will necessarily have to be economically viable and compatible with each refiner's strategic plans. Recognizing the many factors involved, a target of 15-20% reduction in CO{sub 2} emissions from the refining sector does not appear to be unreasonable, assuming a favorable investment climate.

  8. Hepp and Speer Sectors within Modern Strategies of Sector Decomposition

    E-Print Network [OSTI]

    A. V. Smirnov; V. A. Smirnov

    2008-12-26

    Hepp and Speer sectors were successfully used in the sixties and seventies for proving mathematical theorems on analytically or/and dimensionally regularized and renormalized Feynman integrals at Euclidean external momenta. We describe them within recently developed strategies of introducing iterative sector decompositions. We show that Speer sectors are reproduced within one of the existing strategies.

  9. Industrial energy efficiency policy in China

    E-Print Network [OSTI]

    Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

    2001-01-01

    Economic Indicators," Energy Policy 25(7'-9): 727-744. X u ,Best Practice Energy Policies in the Industrial Sector, Mayand Intensity Change," Energy Policy 22(3): Sinton, J.E.

  10. Development Requirements for Advanced Industrial Heat Pumps 

    E-Print Network [OSTI]

    Chappell, R. N.; Priebe, S. J.; Bliem, C. J.; Mills, J. I.

    1985-01-01

    DOE is attempting to advance the use of heat pumps to save energy in industrial processes. The approach has emphasized developing better heat pump technology and transferring that technology to the private sector. DOE requires that heat pump...

  11. Industrial Energy Use and Energy Efficiency in Developing Countries 

    E-Print Network [OSTI]

    Price, L.; Martin, N.; Levine, M. D.; Worrell, E.

    1996-01-01

    The industrial sector accounts for over 50% of energy used in developing countries. Growth in this sector has been over 4.5% per year since 1980. Energy intensity trends for four energy-intensive sub-sectors (iron and steel, chemicals, building...

  12. Electrotechnologies in Process Industries 

    E-Print Network [OSTI]

    Amarnath, K. R.

    1989-01-01

    applications of innovative electrotechnologies in these sectors. APPLICATIONS Electricity is predominantly used in three ways in process industries: 1. Motor Drives 2. Process Heating 3. Electrochemical Processes Motor drives are mainly used in prime..., infrared, and ultraviolet heating have found a variety of applications, and more are under development. ElectrOChemical processes for separation and synthesis (such as Chlor-Alkali production) are significant users of electricity. New processes...

  13. Mixed financial trend for global forest products sector continues Written by PricewaterhouseCoopers

    E-Print Network [OSTI]

    annual Global Forest, Paper and Packaging Industry Survey the three top regions in terms of return the industry's 10 - 12% target range. "The global forest, paper and packaging products sector continues forest and paper industry, and author of the PwC survey. "Mills with the lowest production cost

  14. Pollution prevention in the electronics industry

    SciTech Connect (OSTI)

    Yazdani, A. [Pollution Prevention International, Inc., Brea, CA (United States)

    1995-09-01

    The electronics industry manufacturers components and electronics packages. The demand for industry products is expected to go above $370 billion in the US by the mid-90s. The industry is comprised of three major sectors: printed circuit board (PCB) fabrication, PCB assembly, and semiconductor manufacturing. This chapter describes the industrial processes and pollution prevention measures related to PCB assembly, and to a lesser extent the semiconductor manufacturing process.

  15. Sectoral trends in global energy use and greenhouse gasemissions

    SciTech Connect (OSTI)

    Price, Lynn; de la Rue du Can, Stephane; Sinton, Jonathan; Worrell, Ernst; Zhou, Nan; Sathaye, Jayant; Levine, Mark

    2006-07-24

    In 2000, the Intergovernmental Panel on Climate Change (IPCC) published a new set of baseline greenhouse gas (GHG) emissions scenarios in the Special Report on Emissions Scenarios (SRES) (Nakicenovic et al., 2000). The SRES team defined four narrative storylines (A1, A2, B1 and B2) describing the relationships between the forces driving GHG and aerosol emissions and their evolution during the 21st century. The SRES reports emissions for each of these storylines by type of GHG and by fuel type to 2100 globally and for four world regions (OECD countries as of 1990, countries undergoing economic reform, developing countries in Asia, rest of world). Specific assumptions about the quantification of scenario drivers, such as population and economic growth, technological change, resource availability, land-use changes, and local and regional environmental policies, are also provided. End-use sector-level results for buildings, industry, or transportation or information regarding adoption of particular technologies and policies are not provided in the SRES. The goal of this report is to provide more detailed information on the SRES scenarios at the end use level including historical time series data and a decomposition of energy consumption to understand the forecast implications in terms of end use efficiency to 2030. This report focuses on the A1 (A1B) and B2 marker scenarios since they represent distinctly contrasting futures. The A1 storyline describes a future of very rapid economic growth, low population growth, and the rapid introduction of new and more efficient technologies. Major underlying themes are convergence among regions, capacity building, and increased cultural and social interactions, with a substantial reduction in regional differences in per capita income. The B2 storyline describes a world with an emphasis on economic, social, and environmental sustainability, especially at the local and regional levels. It is a world with moderate population growth, intermediate levels of economic development, and less rapid and more diverse technological change (Nakicenovic et al., 2000). Data were obtained from the SRES modeling teams that provide more detail than that reported in the SRES. For the A1 marker scenario, the modeling team provided final energy demand and carbon dioxide (CO{sub 2}) emissions by fuel for industry, buildings, and transportation for nine world regions. Final energy use and CO{sub 2} emissions for three sectors (industry, transport, buildings) for the four SRES world regions were provided for the B2 marker scenario. This report describes the results of a disaggregation of the SRES projected energy use and energy-related CO{sub 2} emissions for the industrial, transport, and buildings sectors for 10 world regions (see Appendix 1) to 2030. An example of further disaggregation of the two SRES scenarios for the residential buildings sector in China is provided, illustrating how such aggregate scenarios can be interpreted at the end use level.

  16. The Impact of Information Technology in Nigeria's Banking Industry

    E-Print Network [OSTI]

    Oluwatolani, Oluwagbemi; Philip, Achimugu

    2011-01-01

    Today, information technology (IT) has become a key element in economic development and a backbone of knowledge-based economies in terms of operations, quality delivery of services and productivity of services. Therefore, taking advantage of information technologies (IT) is an increasing challenge for developing countries. There is now growing evidence that Knowledge-driven innovation is a decisive factor in the competitiveness of nations, industries, organizations and firms. Organizations like the banking sector have benefited substantially from e-banking, which is one among the IT applications for strengthening the competitiveness. This paper presents the current trend in the application of IT in the banking industries in Nigeria and gives an insight into how quality banking has been enhanced via IT. The paper further reveals that the deployment of IT facilities in the Nigerian Banking industry has brought about fundamental changes in the content and quality of banking business in the country. This analysis...

  17. Chemical Sector Analysis | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene NetworkNuclear SecurityChattan ooga EagNISACChemical Sector

  18. Searching for Dark Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcomingmagnetoresistance |Komlov,Search / Search Search EnterDark Sector

  19. Access to affordable and reliable energy has been a cornerstone of the world's increasing prosperity and economic growth since the beginning of the industrial revolution. Our use of energy in the twenty-first century must also be

    E-Print Network [OSTI]

    prosperity and economic growth since the beginning of the industrial revolution. Our use of energy to create the foundation for this new industrial revolution. The talk will also discuss policies public. F E A T U R I N G A New Industrial Revolution for a Sustainable Energy Future SCOB 228 · Friday

  20. DRAFT DRAFT Electricity and Natural Gas Sector Description

    E-Print Network [OSTI]

    DRAFT DRAFT Electricity and Natural Gas Sector Description For Public Distribution AB 32 Scoping of electricity and natural gas; including electricity generation, combined heat and power, and electricity and natural gas end uses for residential and commercial purposes. Use of electricity and/or gas for industrial

  1. Energy Sector Cybersecurity Framework Implementation Guidance

    Broader source: Energy.gov (indexed) [DOE]

    FOR PUBLIC COMMENT SEPTEMBER, 2014 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE Energy Sector Cybersecurity Framework Implementation Guidance Table of Contents...

  2. Industrial Relations

    E-Print Network [OSTI]

    Ulman, Lloyd

    1987-01-01

    S. Tannenbaum. Madison: Industrial 1955. The Rise of the N ai a Working Paper 8733 INDUSTRIAL RELATIONS L l o y d UlmanEconomic Theory and Doctrine INDUSTRIAL RELATIONS Two great

  3. Industrial Engineering Industrial Advisory Board

    E-Print Network [OSTI]

    Gelfond, Michael

    Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

  4. Hybrid modeling of industrial energy consumption and greenhouse gas emissions with an application to Canada

    E-Print Network [OSTI]

    Hybrid modeling of industrial energy consumption and greenhouse gas emissions with an application explore the implications for Canada's industrial sector of an economy-wide, compulsory greenhouse gas of the Canadian industrial sector to GHG charges implemented throughout the economy, starting in the year 2006

  5. FEATURED SECTOR The New Zealand Sectors Report 2013

    E-Print Network [OSTI]

    Report consists of the Main Report covering all sectors in the economy and six additional, separate) 3 High technology manufacturing 4 Construction 5 Petroleum and minerals 6 Tourism (this report) 7 emerging high-value sectors such as information technology services and high- technology manufacturing

  6. Turkey energy and environmental review - Task 7 energy sector modeling : executive summary.

    SciTech Connect (OSTI)

    Conzelmann, G.; Koritarov, V.; Decision and Information Sciences

    2008-02-28

    Turkey's demand for energy and electricity is increasing rapidly. Since 1990, energy consumption has increased at an annual average rate of 4.3%. As would be expected, the rapid expansion of energy production and consumption has brought with it a wide range of environmental issues at the local, regional and global levels. With respect to global environmental issues, Turkey's carbon dioxide (CO2) emissions have grown along with its energy consumption. Emissions in 2000 reached 211 million metric tons. With GDP projected to grow at over 6% per year over the next 25 years, both the energy sector and the pollution associated with it are expected to increase substantially. This is expected to occur even if assuming stricter controls on lignite and hard coal-fired power generation. All energy consuming sectors, that is, power, industrial, residential, and transportation, will contribute to this increased emissions burden. Turkish Government authorities charged with managing the fundamental problem of carrying on economic development while protecting the environment include the Ministry of Environment (MOE), the Ministry of Energy and Natural Resources (MENR), and the Ministry of Health, as well as the Turkish Electricity Generation & Transmission Company (TEAS). The World Bank, working with these agencies, is planning to assess the costs and benefits of various energy policy alternatives under an Energy and Environment Review (EER). Eight individual studies have been conducted under this activity to analyze certain key energy technology issues and use this analysis to fill in the gaps in data and technical information. This will allow the World Bank and Turkish authorities to better understand the trade-offs in costs and impacts associated with specific policy decisions. The purpose of Task 7-Energy Sector Modeling, is to integrate information obtained in other EER tasks and provide Turkey's policy makers with an integrated systems analysis of the various options for addressing the various energy and environmental concerns. The work presented in this report builds on earlier analyses presented at the COP 6 conference in Bonn.

  7. Industry`s turnaround looks real

    SciTech Connect (OSTI)

    NONE

    1997-08-01

    The paper discusses the industry outlook for North American gas and oil industries. In a robust Canada, land sales are setting records, drilling is up, and output is rising beyond last year`s 21% growth. A perception among US operators that wellhead prices will remain stable is translating to increased spending. The USA, Canada, Mexico, Cuba are evaluated separately, with brief evaluations of Greenland, Guatemala, Belize, and Costa Rico. Data are presented on drilling activities.

  8. Private Sector Initiative Between the U.S. and Japan

    SciTech Connect (OSTI)

    1998-09-30

    OAK-A258 Private Sector Initiative Between the U.S. and Japan. This report for calendar years 1993 through September 1998 describes efforts performed under the Private Sector Initiatives contract. The report also describes those efforts that have continued with private funding after being initiated under this contract. The development of a pyrochemical process, called TRUMP-S, for partitioning actinides from PUREX waste, is described in this report. This effort is funded by the Central Research Institute of Electric Power Industry (CRIEPI), KHI, the United States Department of Energy, and Boeing.

  9. HTGR Industrial Application Functional and Operational Requirements

    SciTech Connect (OSTI)

    L. E. Demick

    2010-08-01

    This document specifies the functional and performance requirements to be used in the development of the conceptual design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to a typical industrial facility. These requirements were developed from collaboration with industry and HTGR suppliers over the preceding three years to identify the energy needs of industrial processes for which the HTGR technology is technically and economically viable. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a conceptual design of the plant that will serve the broadest range of industrial applications.

  10. A Survey of the U.S. ESCO Industry: Market Growth and Development from 2008 to 2011

    SciTech Connect (OSTI)

    Satchwell, Andrew; Goldman, Charles; Larsen, Peter; Gilligan, Donald; Singer, Terry

    2010-06-08

    In this study, LBNL analyzes the current size of the Energy Service Company (ESCO) industry, industry growth projections to 2011, and market trends in order to provide policymakers with a more indepth understanding of energy efficiency activity among private sector firms. We draw heavily on information from interviews with ESCOs conducted from October 2009 to February 2010 and from our review of publicly available financial information regarding individual ESCOs. A significant ramp-up in energy efficiency activities is occurring at the local, state, and federal level. These activities include the establishment in {approx}18 states of statewide energy savings goals to be obtained from adoption of an Energy Efficiency Resource Standard (EERS), legislative or state regulatory directives to obtain all cost-effective demand-side resources (Barbose et al 2009), and a significant increase in federal funding for energy efficiency programs as part of the American Recovery and Reinvestment Act (ARRA). As part of this increased focus on energy efficiency, policymakers are evaluating the role of private sector companies, including ESCOs, in delivering cost-effective energy savings to end-users. The U.S. ESCO industry has long been recognized for its role in successfully delivering comprehensive energy projects in the public sector. This study analyzes the current size of the ESCO industry, industry growth projections, and market trends in order to provide policymakers with a more in-depth understanding of energy efficiency activity among private sector firms. This study may also be of interest to policymakers abroad who are exploring options to encourage development of a private-sector energy services industry in their own countries. This study draws heavily on information from interviews with ESCOs conducted from October 2009 to February 2010 and is part of a series of ESCO industry reports prepared by Lawrence Berkeley National Laboratory (LBNL) in collaboration with the National Association of Energy Services Companies (NAESCO). The analysis builds on previous ESCO industry reports (see Goldman et al. 2005 and Hopper et al. 2007) and provides updated estimates of ESCO industry revenues and ESCO views on perceived trends in costs and savings.

  11. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    1996. COREX, Revolution in Ironmaking, Linz, Austria:VAI. ;GJ/t Material Preparation Ironmaking Sintering PelletizingGJ/t Material Preparation Ironmaking Sintering Pelletizing

  12. Industrial Sector Energy Efficiency Modeling (ISEEM) Framework Documentation

    E-Print Network [OSTI]

    Karali, Nihan

    2014-01-01

    of the Edmonds-Reilly Model to Energy Related Greenhouse GasCapros, P. , 1993, The PRIMES Energy System Model SummaryModel for Studying Economy-Energy-Environment Interactions,

  13. Efficient Energy Utilization in the Industrial Sector - Case Studies 

    E-Print Network [OSTI]

    Davis, S. R.

    1984-01-01

    The need for more efficient use of the world's energy resources has become one of the major concerns of technology today. Over the past 50 years, during which our population has doubled, our requirements for energy has quadrupled. Recent figures...

  14. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    1 2. World Best Practice Energy IntensityBrussels: IISI. Best practice energy use is also determinedalong with the best practice energy intensity value for

  15. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    Best Practice Final and Primary Energy Intensity Values forWorld Best Practice Primary Energy Intensity Values forRecovered Pulp Note: Primary energy includes electricity

  16. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    5 2.1.1 Blast Furnace – BasicOxygen Furnace Route……………………….Basic Oxygen Furnace………………………… 10 2.1.3 Direct Reduced

  17. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    in a back-pressure steam turbine to generate electricity (compressor uses a steam turbine, using internally generatedwith a gas turbine, producing steam and electricity. The hot

  18. Designing Effective State Programs for the Industrial Sector...

    Energy Savers [EERE]

    6,420 trillion British thermal units of primary energy (including combined heat and power), according to a comprehensive 2009 analysis by McKinsey & Company. The guide...

  19. Industry Trends in the U.S. Wind Energy Sector

    Broader source: Energy.gov [DOE]

    Electricity supplied by wind energy exceeded 4.5 percent in the U.S. in 2013 and has the potential to reach as much as 35 percent by 2050. Join The Pew Charitable Trusts for a webinar with the...

  20. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    ammonia is made from heavy oil and coal, which is much lessfeedstock, followed by heavy oil, which requires an averagepartial oxidization of heavy fuel oil, gasification of coal,

  1. Greenhouse Gas Programs, Energy Efficiency, and the Industrial Sector 

    E-Print Network [OSTI]

    Zhou, A.; Tutterow, V.; Harris, J.

    2009-01-01

    The United States has made significant progress in reducing total energy use through energy efficiency improvements over the past decade, yet the United States still ranks as the highest absolute greenhouse gas (GHG) emitter in the world with 23...

  2. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    Cement Portland Cement Fly Ash Cement Blast Furnace SlagCement Portland Cement Fly Ash Cement Blast Furnace SlagCEM II), up to 35% can be fly ash and 65% clinker; for blast

  3. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    15 2.1.5 Casting……………………………………………………………….. 16 2.1.6 Rolling20 2.2.4 Ingot Casting…………………………………………………………. 20 2.2.5smelting, and ingot casting. This assessment excludes

  4. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    iron and steel, petroleum and petrochemical, chemical, non-ferrous metal, building materials, pulp and paper, electricity production, coal mining,

  5. United States Industrial Sector Energy End Use Analysis

    E-Print Network [OSTI]

    Shehabi, Arman

    2014-01-01

    by end uses (e.g. , boilers, process, electric drives,MECS 2002, and MECS 1998 data. Indirect Uses-Boiler FuelConventional Boiler Use CHP and/or Cogeneration Process

  6. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    feedstock, followed by heavy oil, which requires an averageammonia is made from heavy oil and coal, which is much lesspartial oxidization of heavy fuel oil, gasification of coal,

  7. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    steam cracking and alternative processes,” Energy 31 (2006),steam cracking and alternative processes,” Energy 31 (2006),steam cracking and alternative processes,” Energy 31 (2006),

  8. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    feedstock would use a coal gasifier to convert the coal tosynthesis gas. Most coal gasifier-based ammonia plants areof a modern entrained bed gasifier, selexol gas cleanup and

  9. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    energy includes electricity generation, transmission, andenergy includes electricity generation, transmission, andenergy includes electricity generation, transmission, and

  10. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    products such as propylene, butadiene and aromatics are co-ethylene, propylene, and butadiene) are separated usingHVC Propylene – HVC Butadiene – HVC Aromatics and C4+ –HVC

  11. Types of Nuclear Industry Jobs Commercial and Government Sectors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two Electron Holes in HematiteType Ia SupernovaeTypes of

  12. Industrial Sector Demand Module of the National Energy Modeling System

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYear JanDecade Year-0per6,167,371 6,826,1925)

  13. Designing Effective State Programs for the Industrial Sector - New SEE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us|of EnergySmall BusinessDesign and

  14. WHAT TO EXPECT FROM SECTORAL TRADING: A US-CHINA EXAMPLE

    E-Print Network [OSTI]

    and increases electricity generation. Keywords: Climate; sectoral agreements; emissions trading; carbon leakage an Emissions Trading Scheme, international negotiations aim to foster wider agreements, particularly

  15. Coal Industry Annual 1995

    SciTech Connect (OSTI)

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  16. Coal industry annual 1996

    SciTech Connect (OSTI)

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  17. Solar-Assisted Technology Provides Heat for California Industries

    E-Print Network [OSTI]

    Solar-Assisted Technology Provides Heat for California Industries Industrial/Agriculture/Water End 2011 The Issue Solar thermal technology focuses the Sun's rays to heat water, and is a promising renewable resource for California's industrial sector. Commercially available solar water heating

  18. Understanding Sectoral Labor Market Dynamics: An Equilibrium Analysis of the Oil and Gas Field Services

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    Understanding Sectoral Labor Market Dynamics: An Equilibrium Analysis of the Oil and Gas Field examines the response of employment and wages in the US oil and gas ...eld services industry to changes the dynamic response of wages and employment in the U.S. Oil and Gas Field Services (OGFS) industry to changes

  19. Program Program Organization Country Region Topic Sector Sector

    Open Energy Info (EERE)

    Technology characterizations Climate Energy Renewable Energy Economic Development Energy Efficiency Greenhouse Gas Grid Assessment and Integration Industry People and Policy...

  20. Coal industry annual 1997

    SciTech Connect (OSTI)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  1. Energy Sector Cybersecurity Framework Implementation Guidance

    Broader source: Energy.gov (indexed) [DOE]

    JANUARY 2015 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY Energy Sector...

  2. Federal Sector Renewable Energy Project Implementation: ""What...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by...

  3. Federal Sector Renewable Energy Project Implementation: ""What...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sector Renewable Energy Project Implementation: ""What's Working and Why Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by Robert...

  4. Assessment of Industrial Load for Demand Response across Western Interconnect

    SciTech Connect (OSTI)

    Alkadi, Nasr E; Starke, Michael R; Ma, Ookie

    2013-11-01

    Demand response (DR) has the ability to both increase power grid reliability and potentially reduce operating system costs. Understanding the role of demand response in grid modeling has been difficult due to complex nature of the load characteristics compared to the modeled generation and the variation in load types. This is particularly true of industrial loads, where hundreds of different industries exist with varying availability for demand response. We present a framework considering industrial loads for the development of availability profiles that can provide more regional understanding and can be inserted into analysis software for further study. The developed framework utilizes a number of different informational resources, algorithms, and real-world measurements to perform a bottom-up approach in the development of a new database with representation of the potential demand response resource in the industrial sector across the U.S. This tool houses statistical values of energy and demand response (DR) potential by industrial plant and geospatially locates the information for aggregation for different territories without proprietary information. This report will discuss this framework and the analyzed quantities of demand response for Western Interconnect (WI) in support of evaluation of the cost production modeling with power grid modeling efforts of demand response.

  5. Market study for direct utilization of geothermal resources by selected sectors of economy

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    A comprehensive analysis is presented of industrial markets potential for direct use of geothermal energy by a total of six industry sectors: food and kindred products; tobacco manufactures; textile mill products; lumber and wood products (except furniture); chemicals and allied products; and leather and leather products. A brief statement is presented regarding sectors of the economy and major manufacturing processes which can readily utilize direct geothermal energy. Previous studies on plant location determinants are summarized and appropriate empirical data provided on plant locations. Location determinants and potential for direct use of geothermal resources are presented. The data was gathered through interviews with 30 senior executives in the six sectors of economy selected for study. Probable locations of plants in geothermal resource areas and recommendations for geothermal resource marketing are presented. Appendix A presents factors which impact on industry location decisions. Appendix B presents industry executives interviewed during the course of this study. (MHR)

  6. Expanding the Industrial Assessment Center Program: Building an Industrial Efficiency Workforce 

    E-Print Network [OSTI]

    Trombley, D.; Elliott, R. N.; Chittum, A.

    2009-01-01

    the Industrial Assessment Center Program: Building an Industrial Efficiency Workforce Daniel Trombley Engineering Associate R. Neal Elliott, Ph.D., P.E. Associate Director of Research American Council for an Energy-Efficient Economy Washington... to technical information and trained workforce. One of the most successful programs for achieving energy efficiency savings in the manufacturing sector is the US Department of Energy (DOE)'s Industrial Assessment Center (IAC) program. In addition...

  7. Why did the solar power sector develop quickly in Japan?

    E-Print Network [OSTI]

    Rogol, Michael G

    2007-01-01

    The solar power sector grew quickly in Japan during the decade 1994 to 2003. During this period, annual installations increased 32-fold from 7MW in 1994 to 223MW in 2003, and annual production increased 22-fold, from 16MW ...

  8. High-Tech Industries in California: Panacea or Problem?

    E-Print Network [OSTI]

    Raphael, Stephen; Brown, Claire; Campbell, Ben

    2001-01-01

    of its employees are high-tech. We should also note that toemployment growth in high-tech industries, such as computerand speculate that as the high-tech sector expands, wages

  9. DOE and Industry Showcase New Control Systems Security Technologies...

    Office of Environmental Management (EM)

    efforts. Industry leaders worked closely with national laboratories in the National SCADA Test Bed and other private-sector partners to develop, test, and gather end-user input...

  10. Coal sector profile

    SciTech Connect (OSTI)

    Not Available

    1990-06-05

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  11. Monitoring Electricity Consumption in the Tertiary Sector- A Project within the Intelligent Energy Europe Program 

    E-Print Network [OSTI]

    Plesser, S.; Fisch, M. N.; Gruber, E.; Schlomann, B.

    2008-01-01

    The electricity consumption in the tertiary sector in the EU is still increasing and a further increase is expected of more than 2 % per year during the next 15 years. This sector includes companies and institutions of public and private services...

  12. Barriers to Industrial Energy Efficiency - Report to Congress, June 2015

    SciTech Connect (OSTI)

    2015-06-01

    This report examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This report also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  13. Barriers to Industrial Energy Efficiency - Study (Appendix A), June 2015

    SciTech Connect (OSTI)

    2015-06-01

    This study examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This study also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  14. Process Intensification - Chemical Sector Focus

    Office of Environmental Management (EM)

    with opportunity space in 76 chemicals, petroleum refining, plastics, forest products, oil and gas production, and food industries 77 among others. PI innovation could deliver...

  15. Energy, Water and Fish: Biodiversity Impacts of Energy-Sector Water Demand in the United States Depend on

    E-Print Network [OSTI]

    Olden, Julian D.

    Energy, Water and Fish: Biodiversity Impacts of Energy- Sector Water Demand in the United States to increase the impact of energy sector water use on freshwater biodiversity. We forecast changes in future: Biodiversity Impacts of Energy-Sector Water Demand in the United States Depend on Efficiency and Policy

  16. Solar energy research and development: federal and private sector roles

    SciTech Connect (OSTI)

    Not Available

    1982-09-01

    The Energy Research Advisory Board convened a Solar R and D Panel to determine the status of the solar industry and solar R and D in the United States and to recommend to DOE appropriate roles for the Federal and private sectors. The Panel's report acknowledges the new Administration policy reorienting the Federal role in energy development to long-term, high-risk, high-payoff R and D, and leaving commercialization to the private sector. The Panel's recommendations are further predicated on an assumption of continued, substantially reduced funding in the near-term. The Panel found that solar energy technologies have progressed significantly in the past 10 years and represent a group of highly promising energy options for the United States. However, it also found the solar industry to be in a precarious condition, fluctuating energy demand and prices, and uncertain Federal tax and regulatory policies. The Business Energy and Residential Tax Credits are essential to the near-term health of the solar industry. Commercialization has already begun for some solar technologies; for others, decreases in Federal funding will result in a slowdown or termination. The primary Federal roles in solar R and D should be in support of basic and applied research, high-risk, high-payoff technology development and other necessary research for which there are insufficient market incentives. The Federal Government should also move strongly to transfer technology to the private sector for near-commerical technologies. Large demonstration and commercialization projects cannot be justified for Federal funding under current economic conditions. These should be pursued by the private sector. The Panel examined seven technology areas and made specific findings and recommendations for each.

  17. Gasification world database 2007. Current industry status

    SciTech Connect (OSTI)

    NONE

    2007-10-15

    Information on trends and drivers affecting the growth of the gasification industry is provided based on information in the USDOE NETL world gasification database (available on the www.netl.doe.gov website). Sectors cover syngas production in 2007, growth planned through 2010, recent industry changes, and beyond 2010 - strong growth anticipated in the United States. A list of gasification-based power plant projects, coal-to-liquid projects and coal-to-SNG projects under consideration in the USA is given.

  18. Canonical Sectors and Evolution of Firms in the US Stock Markets

    E-Print Network [OSTI]

    Chachra, Ricky; Hayden, Lorien X; Ginsparg, Paul H; Sethna, James P

    2015-01-01

    A classification of companies into sectors of the economy is important for macroeconomic analysis and for investments into the sector-specific financial indices and exchange traded funds (ETFs). Major industrial classification systems and financial indices have historically been based on expert opinion and developed manually. Here we show how unsupervised machine learning can provide a more objective and comprehensive broad-level sector decomposition of stocks. An emergent low-dimensional structure in the space of historical stock price returns automatically identifies "canonical sectors" in the market, and assigns every stock a participation weight into these sectors. Furthermore, by analyzing data from different periods, we show how these weights for listed firms have evolved over time.

  19. Sipping fuel and saving lives: increasing fuel economy withoutsacrificing safety

    SciTech Connect (OSTI)

    Gordon, Deborah; Greene, David L.; Ross, Marc H.; Wenzel, Tom P.

    2007-06-11

    The public, automakers, and policymakers have long worried about trade-offs between increased fuel economy in motor vehicles and reduced safety. The conclusion of a broad group of experts on safety and fuel economy in the auto sector is that no trade-off is required. There are a wide variety of technologies and approaches available to advance vehicle fuel economy that have no effect on vehicle safety. Conversely, there are many technologies and approaches available to advance vehicle safety that are not detrimental to vehicle fuel economy. Congress is considering new policies to increase the fuel economy of new automobiles in order to reduce oil dependence and reduce greenhouse gas emissions. The findings reported here offer reassurance on an important dimension of that work: It is possible to significantly increase the fuel economy of motor vehicles without compromising their safety. Automobiles on the road today demonstrate that higher fuel economy and greater safety can co-exist. Some of the safest vehicles have higher fuel economy, while some of the least safe vehicles driven today--heavy, large trucks and SUVs--have the lowest fuel economy. At an October 3, 2006 workshop, leading researchers from national laboratories, academia, auto manufacturers, insurance research industry, consumer and environmental groups, material supply industries, and the federal government agreed that vehicles could be designed to simultaneously improve safety and fuel economy. The real question is not whether we can realize this goal, but the best path to get there. The experts' studies reveal important new conclusions about fuel economy and safety, including: (1) Vehicle fuel economy can be increased without affecting safety, and vice versa; (2) Reducing the weight and height of the heaviest SUVs and pickup trucks will simultaneously increase both their fuel economy and overall safety; and (3) Advanced materials can decouple size from mass, creating important new possibilities for increasing both fuel economy and safety without compromising functionality.

  20. State Demand-Side Management Programs Funds are Exploding! How Industries Can Best Use These Programs to Maximize Their Benefits 

    E-Print Network [OSTI]

    Nicol, J.

    2008-01-01

    Find out from an Industrial Program Manager that runs a successful state DSM/Energy Efficiency program for the industrial sector how to best find, use and benefit from these types of programs. The amount of money that ...

  1. Fuel cells at the crossroads : attitudes regarding the investment climate for the US fuel cell industry and a projection of industry job creation potential.

    SciTech Connect (OSTI)

    NONE

    2004-05-27

    Fuel Cells at the Crossroads examines financial community and fuel cell industry views on the investment climate for the fuel cell industry. It also explores the investment history of the US fuel cell industry and projects potential future job creation. The scope of the study included the transportation, stationary power generation and portable sectors. Interviews were conducted with industry and financial experts. The results of the interviews provide a snapshot of industry perspective just prior to President Bush's endorsement of a hydrogen economy in his 2003 State of the Union address. In April 2003, we conducted a spot check to test whether the State of the Union address had changed opinions. We found little change among the financial and investment communities, but some guarded new optimism among industry leaders. The general outlook of our sample was cautiously hopeful. There is no question, however, that the current climate is one of great uncertainty, particularly when compared with the enthusiasm that existed just a few years ago. Among other things: (1) Respondents generally believed that the energy industry will undergo profound change over the next few decades, resulting in some form of hydrogen economy. They acknowledged, however, that huge technology and cost hurdles must be overcome to achieve a hydrogen economy. (2) Respondents were worried about the future of the industry, including timeframes for market development, foreign competition, technical problems, and the current poor investment environment. (3) Respondents generally believed that the US federal government must provide strong leadership to ensure American leadership in the fuel cell industry. They believe that governments in Europe and Japan are highly committed to fuel cells, thus providing European and Japanese companies with significant advantages. (4) Respondents frequently mentioned several areas of concern, including the situation in Iraq, the increased commitment to fuel cells in Europe, and recent actions by Toyota and Honda.

  2. Current and future industrial energy service characterizations

    SciTech Connect (OSTI)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-10-01

    Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

  3. Industry Economist

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will report to the Manager of Load Forecasting and Analysis of the Customer Services Organization. He/she serves as an industry economist engaged in load...

  4. Allowance Allocation and Effects on the Electricity Sector

    E-Print Network [OSTI]

    on electricity markets depends on CO2 emissions rates · Different regional effect of GF on electricity marketsAppalachia Indiana CO2EmissionsRate(tons/MWh) ElectricityPrice Baseline (BL) EmissionsRate Policy % Increase from BLAllowance Allocation and Effects on the Electricity Sector Karen Palmer Resources for the Future

  5. Water Impacts of the Electricity Sector (Presentation)

    SciTech Connect (OSTI)

    Macknick, J.

    2012-06-01

    This presentation discusses the water impacts of the electricity sector. Nationally, the electricity sector is a major end-user of water. Water issues affect power plants throughout the nation.

  6. Energy efficiency programs and policies in the industrial sector in industrialized countries

    E-Print Network [OSTI]

    Galitsky, Christina; Price, Lynn; Worrell, Ernst

    2004-01-01

    Agency (IEA), 2002. Energy Policies of IEA Countries, 20021998. White Paper on Energy Policy, March 1999. White Paper,References: 1. Sustainable Energy Policy Network website:

  7. Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartment of Energy In Austin,IndianDepartment of

  8. Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector: Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartment of Energy In Austin,IndianDepartment ofExecutive Summary

  9. NONPROLIFERATION PROMOTED BY INDUSTRY SELF-REGULATION

    E-Print Network [OSTI]

    , Mohamed Elbaradei's calls for an increased role of the nuclear industry in combating nuclear proliferation Mohamed Elbaradei's call for an increased role by the nuclear industry to combat nuclear proliferation). The need for an industry self-regulation approach results from the nexus between terrorism and nuclear

  10. SEP Special Projects Report: Buildings Sector

    SciTech Connect (OSTI)

    2009-01-18

    The buildings section of this Sharing Success document describes SEP special projects in the buildings sector including funding.

  11. WHAT TO EXPECT FROM SECTORAL TRADING: A US-CHINA EXAMPLE

    E-Print Network [OSTI]

    02139-4307, USA *Hjacoby@mit.edu In the recent United Nations Framework Convention on Climate Change the Chinese electricity sector and a US economy-wide cap-and-trade program using the MIT Emissions Prediction represents 46% of its capped emissions. In China, sectoral trading increases the price of electricity

  12. Annual Logging Symposium, June 21-24, 2009 INVERSION OF SECTOR-BASED LWD DENSITY MEASUREMENTS

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    SPWLA 50th Annual Logging Symposium, June 21-24, 2009 1 INVERSION OF SECTOR-BASED LWD DENSITY-while-drilling (LWD) density measurements acquired in high-angle and horizontal (HA/HZ) wells. Our interpretation to increasing tool standoff in the upper sectors of the measurement. INTRODUCTION Conventional processing of LWD

  13. Sector Profiles of Significant Large CHP Markets, March 2004...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sector Profiles of Significant Large CHP Markets, March 2004 Sector Profiles of Significant Large CHP Markets, March 2004 In this 2004 report, three sectors were identified as...

  14. Making Africa's Power Sector Sustainable: An Analysis of Power...

    Open Energy Info (EERE)

    Making Africa's Power Sector Sustainable: An Analysis of Power Sector Reforms in Africa Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Making Africa's Power Sector...

  15. Workforce Training for the Electric Power Sector: Awards | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workforce Training for the Electric Power Sector: Awards Workforce Training for the Electric Power Sector: Awards List of Workforce Training Awards for the Electric Power Sector...

  16. Application of bi-directional ICT channels to increase livelihoods for artisans in rural India

    E-Print Network [OSTI]

    Emani, Sriram

    2014-01-01

    The handicraft industry is the second largest employer in rural India after agriculture, and has been the fastest-growing export growth sector since India's liberalization in 1991. Today, however, millions of artisans face ...

  17. U.S. Energy Service Company Industry: Market Size and Project Performance from 1990-2008

    SciTech Connect (OSTI)

    Larsen, Peter; Goldman, Charles; Satchwell, Andrew

    2012-08-21

    The U.S. energy service company (ESCO) industry is an example of a private sector business model where energy savings are delivered to customers primarily through the use of performance-based contracts. This study was conceived as a snapshot of the ESCO industry prior to the economic slowdown and the introduction of federal stimulus funding mandated by enactment of the American Recovery and Reinvestment Act of 2009 (ARRA). This study utilizes two parallel analytic approaches to characterize ESCO industry and market trends in the U.S.: (1) a ?top-down? approach involving a survey of individual ESCOs to estimate aggregate industry activity and (2) a ?bottom-up? analysis of a database of ~;;3,250 projects (representing over $8B in project investment) that reports market trends including installed EE retrofit strategies, project installation costs and savings, project payback times, and benefit-cost ratios over time. Despite the onset of a severe economic recession, the U.S. ESCO industry managed to grow at about 7percent per year between 2006 and 2008. ESCO industry revenues were about $4.1 billion in 2008 and ESCOs anticipate accelerated growth through 2011 (25percent per year). We found that 2,484 ESCO projects in our database generated ~;;$4.0 billion ($2009) in net, direct economic benefits to their customers. We estimate that the ESCO project database includes about 20percent of all U.S. ESCO market activity from 1990-2008. Assuming the net benefits per project are comparable for ESCO projects that are not included in the LBNL database, this would suggest that the ESCO industry has generated ~;;$23 billion in net direct economic benefits for customers at projects installed between 1990 and 2008. There is empirical evidence confirming that the industry is evolving by installing more comprehensive and complex measures?including onsite generation and measures to address deferred maintenance?but this evolution has significant implications for customer project economics, especially at K-12 schools. We found that the median simple payback time has increased from 1.9 to 3.2 years in private sector projects since the early-to-mid 1990s and from 5.2 to 10.5 years in public sector projects for the same time period.

  18. Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave INFORME para la Sostenibilidad Energética y Ambiental, FUNSEAM. #12;Smart Grids: Sectores y actividades clave eléctrica y los diferentes sectores que forman la smart grid. 6 Figura 2. Evolución y previsión de

  19. Changing Trends in the Bulk Chemicals and Pulp and Paper Industries (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    Compared with the experience of the 1990s, rising energy prices in recent years have led to questions about expectations of growth in industrial output, particularly in energy-intensive industries. Given the higher price trends, a review of expected growth trends in selected industries was undertaken as part of the production of Annual Energy Outlook 2005 (AEO). In addition, projections for the industrial value of shipments, which were based on the Standard Industrial Classification (SIC) system in AEO2004, are based on the North American Industry Classification System (NAICS) in AEO2005. The change in industrial classification leads to lower historical growth rates for many industrial sectors. The impacts of these two changes are highlighted in this section for two of the largest energy-consuming industries in the U.S. industrial sector-bulk chemicals and pulp and paper.

  20. Singlet Portal to the Hidden Sector

    E-Print Network [OSTI]

    Clifford Cheung; Yasunori Nomura

    2010-08-30

    Ultraviolet physics typically induces a kinetic mixing between gauge singlets which is marginal and hence non-decoupling in the infrared. In singlet extensions of the minimal supersymmetric standard model, e.g. the next-to-minimal supersymmetric standard model, this furnishes a well motivated and distinctive portal connecting the visible sector to any hidden sector which contains a singlet chiral superfield. In the presence of singlet kinetic mixing, the hidden sector automatically acquires a light mass scale in the range 0.1 - 100 GeV induced by electroweak symmetry breaking. In theories with R-parity conservation, superparticles produced at the LHC invariably cascade decay into hidden sector particles. Since the hidden sector singlet couples to the visible sector via the Higgs sector, these cascades necessarily produce a Higgs boson in an order 0.01 - 1 fraction of events. Furthermore, supersymmetric cascades typically produce highly boosted, low-mass hidden sector singlets decaying visibly, albeit with displacement, into the heaviest standard model particles which are kinematically accessible. We study experimental constraints on this broad class of theories, as well as the role of singlet kinetic mixing in direct detection of hidden sector dark matter. We also present related theories in which a hidden sector singlet interacts with the visible sector through kinetic mixing with right-handed neutrinos.

  1. Energy Efficiency Opportunities in the Stone and Asphalt Industry 

    E-Print Network [OSTI]

    Moray, S.; Throop, N.; Seryak, J.; Schmidt, C.; Fisher, C.; D'Antonio, M.

    2006-01-01

    of locations use underground mines. Mining methods involve removing the overburden to extract the underlying rock deposits. Tricone rotary drills, long-hole percussion drills, and churn drills are used to create the blast holes in the rocks. Blasting... Energy & Resource Solutions, Inc. Haverhill, MA Abstract The highly energy-intensive stone mining and crushing industry, grouped with other mining industries, has been one of the focal sectors of the US Department of Energy’s Industries...

  2. Dissipative hidden sector dark matter

    E-Print Network [OSTI]

    R. Foot; S. Vagnozzi

    2014-12-15

    A simple way of explaining dark matter without modifying known Standard Model physics is to require the existence of a hidden (dark) sector, which interacts with the visible one predominantly via gravity. We consider a hidden sector containing two stable particles charged under an unbroken $U(1)^{'}$ gauge symmetry, hence featuring dissipative interactions. The massless gauge field associated with this symmetry, the dark photon, can interact via kinetic mixing with the ordinary photon. In fact, such an interaction of strength $\\epsilon \\sim 10 ^{-9}$ appears to be necessary in order to explain galactic structure. We calculate the effect of this new physics on Big Bang Nucleosynthesis and its contribution to the relativistic energy density at Hydrogen recombination. We then examine the process of dark recombination, during which neutral dark states are formed, which is important for large-scale structure formation. Galactic structure is considered next, focussing on spiral and irregular galaxies. For these galaxies we modelled the dark matter halo (at the current epoch) as a dissipative plasma of dark matter particles, where the energy lost due to dissipation is compensated by the energy produced from ordinary supernovae (the core-collapse energy is transferred to the hidden sector via kinetic mixing induced processes in the supernova core). We find that such a dynamical halo model can reproduce several observed features of disk galaxies, including the cored density profile and the Tully-Fisher relation. We also discuss how elliptical and dwarf spheroidal galaxies could fit into this picture. Finally, these analyses are combined to set bounds on the parameter space of our model, which can serve as a guideline for future experimental searches.

  3. Cross-sector Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding in Actinide SandwichCray eraSkillsCross-Sector Sign In

  4. Private Sector | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)Energy Technology JumpWilliam County,| OpenEIPrism SolarSector

  5. WINDExchange: Wind Energy Market Sectors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopmentat LENA|UpcomingVisit UsNews This pageMarket Sectors

  6. Industrial ecology Prosperity Game{trademark}

    SciTech Connect (OSTI)

    Beck, D.; Boyack, K.; Berman, M.

    1998-03-01

    Industrial ecology (IE) is an emerging scientific field that views industrial activities and the environment as an interactive whole. The IE approach simultaneously optimizes activities with respect to cost, performance, and environmental impact. Industrial Ecology provides a dynamic systems-based framework that enables management of human activity on a sustainable basis by: minimizing energy and materials usage; insuring acceptable quality of life for people; minimizing the ecological impact of human activity to levels that natural systems can sustain; and maintaining the economic viability of systems for industry, trade and commerce. Industrial ecology applies systems science to industrial systems, defining the system boundary to incorporate the natural world. Its overall goal is to optimize industrial activities within the constraints imposed by ecological viability, globally and locally. In this context, Industrial systems applies not just to private sector manufacturing and services but also to government operations, including provision of infrastructure. Sandia conducted its seventeenth Prosperity Game{trademark} on May 23--25, 1997, at the Hyatt Dulles Hotel in Herndon, Virginia. The primary sponsors of the event were Sandia National Laboratories and Los Alamos National Laboratory, who were interested in using the format of a Prosperity Game to address some of the issues surrounding Industrial Ecology. Honorary game sponsors were: The National Science Foundation; the Committee on Environmental Improvement, American Chemical Society; the Industrial and Engineering Chemistry Division, American Chemical Society; the US EPA--The Smart Growth Network, Office of Policy Development; and the US DOE-Center of Excellence for Sustainable Development.

  7. Electricity Use in the Pacific Northwest: Utility Historical Sales by Sector, 1990 and Preceding Years.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1991-06-01

    This report officially releases the compilation of regional 1990 retail customer sector sales data by the Bonneville Power Administration. The report is intended to enable detailed examination of annual regional electricity consumption. It also provides observations based on statistics covering the 1983--1990 time period, and gives statistics covering the time period 1970--1990. The electricity use report is the only information source that provides data obtained from each utility in the region based on the amount of electricity they sell annually to four sectors. Data is provided on each retail customer sector and also on the customers Bonneville serves directly: residential, commercial, industrial, direct-service industrial, and irrigation. 21 figs., 40 tabs.

  8. Promoting policy development and an EU Action Plan for the Woody Energy Crops Sector

    E-Print Network [OSTI]

    Promoting policy development and an EU Action Plan for the Woody Energy Crops Sector Kevin Lindegaard, Crops for Energy Ltd #12;What are short rotation plantations (SRPs)? · Woody crops grown at close, Germany, Poland, Belgium Industry Public bodies Research Institutions Joint Action Plan Common Strategies

  9. Cyber Security Testing and Training Programs for Industrial Control Systems

    SciTech Connect (OSTI)

    Daniel Noyes

    2012-03-01

    Service providers rely on industrial control systems (ICS) to manage the flow of water at dams, open breakers on power grids, control ventilation and cooling in nuclear power plants, and more. In today's interconnected environment, this can present a serious cyber security challenge. To combat this growing challenge, government, private industry, and academia are working together to reduce cyber risks. The Idaho National Laboratory (INL) is a key contributor to the Department of Energy National SCADA Test Bed (NSTB) and the Department of Homeland Security (DHS) Control Systems Security Program (CSSP), both of which focus on improving the overall security posture of ICS in the national critical infrastructure. In support of the NSTB, INL hosts a dedicated SCADA testing facility which consists of multiple control systems supplied by leading national and international manufacturers. Within the test bed, INL researchers systematically examine control system components and work to identify vulnerabilities. In support of the CSSP, INL develops and conducts training courses which are designed to increase awareness and defensive capabilities for IT/Control System professionals. These trainings vary from web-based cyber security trainings for control systems engineers to more advanced hands-on training that culminates with a Red Team/ Blue Team exercise that is conducted within an actual control systems environment. INL also provides staffing and operational support to the DHS Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) Security Operations Center which responds to and analyzes control systems cyber incidents across the 18 US critical infrastructure sectors.

  10. Tax and Fiscal Policies for Promotion of Industrial EnergyEfficiency: A Survey of International Experience

    SciTech Connect (OSTI)

    Price, Lynn; Galitsky, Christina; Sinton, Jonathan; Worrell,Ernst; Graus, Wina

    2005-09-15

    The Energy Foundation's China Sustainable Energy Program (CSEP) has undertaken a major project investigating fiscal and tax policy options for stimulating energy efficiency and renewable energy development in China. This report, which is part of the sectoral sub-project studies on energy efficiency in industry, surveys international experience with tax and fiscal policies directed toward increasing investments in energy efficiency in the industrial sector. The report begins with an overview of tax and fiscal policies, including descriptions and evaluations of programs that use energy or energy-related carbon dioxide (CO2) taxes, pollution levies, public benefit charges, grants or subsidies, subsidized audits, loans, tax relief for specific technologies, and tax relief as part of an energy or greenhouse gas (GHG) emission tax or agreement scheme. Following the discussion of these individual policies, the report reviews experience with integrated programs found in two countries as well as with GHG emissions trading programs. The report concludes with a discussion of the best practices related to international experience with tax and fiscal policies to encourage investment in energy efficiency in industry.

  11. Power Politics: The Political Economy of Russia's Electricity Sector Liberalization

    E-Print Network [OSTI]

    Wengle, Susanne Alice

    2010-01-01

    Electricity Sector in Russia: Regional Aspects " In Economics EducationElectricity Sector in Russia: Regional Aspects " in Economics Education

  12. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum...

  13. Industrial CASE and CASE-Plus Studentship Competition Guidance for Applicants

    E-Print Network [OSTI]

    1 Industrial CASE and CASE-Plus Studentship Competition Guidance for Applicants Introduction RCUK Introduction The Industrial CASE Studentship collaborative training competition gives PhD students experience of a non-academic organisation such as a UK industrial firm, public sector organisation or charity

  14. Energy Conservation Progress and Opportunities in the Pulp and Paper Industry 

    E-Print Network [OSTI]

    Watkins, J. J.; Hunter, W. D.

    1984-01-01

    In 1980 the pulp and paper industry was the third ranking consumer of total purchased fuels and energy in the U.S. industrial sector and the highest single industry in terms of residual oil consumption. Over the past decade in response to rapidly...

  15. A 2002 Update on Internet Use in the U.S. Lumber Industry Richard Vlosky

    E-Print Network [OSTI]

    Wu, Qinglin

    A 2002 Update on Internet Use in the U.S. Lumber Industry Richard Vlosky Professor, Forest Products, Kumasi, Ghana Louisiana Forest Products Development Center Working Paper #63 May 25, 2004 #12;2 Abstract-business applications and functions. Relative to other U.S. industrial sectors, the forest products industry has been

  16. Deployment of Formal Methods in Industry: the Legacy of the FP7 ICT DEPLOY Integrated Project

    E-Print Network [OSTI]

    Southampton, University of

    , initially in the four sectors which are key to European industry and society. Paper [2] written whenDeployment of Formal Methods in Industry: the Legacy of the FP7 ICT DEPLOY Integrated Project) on Industrial Deployment of Advanced System Engineering Methods for High Productivity and Dependability [1

  17. The impact on photovoltaic worth of utulity rate and reform and of specific market, financial, and policy variables : a commercialindustrialinstitution sector analysis

    E-Print Network [OSTI]

    Dinwoodie, Thomas L.

    1980-01-01

    This work provides an assessment of the economic outlook for photovoltaic systems in the commercial, industrial and institutional sectors in the year 1986. We first summarize the expected cost and performance goals for ...

  18. Voluntary Agreements for Energy Efficiency or GHG EmissionsReduction in Industry: An Assessment of Programs Around the World

    SciTech Connect (OSTI)

    Price, Lynn

    2005-06-01

    Voluntary agreements for energy efficiency improvement and reduction of energy-related greenhouse gas (GHG) emissions have been a popular policy instrument for the industrial sector in industrialized countries since the 1990s. A number of these national-level voluntary agreement programs are now being modified and strengthened, while additional countries--including some recently industrialized and developing countries--are adopting these type of agreements in an effort to increase the energy efficiency of their industrial sectors.Voluntary agreement programs can be roughly divided into three broad categories: (1) programs that are completely voluntary, (2) programs that use the threat of future regulations or energy/GHG emissions taxes as a motivation for participation, and (3) programs that are implemented in conjunction with an existing energy/GHG emissions tax policy or with strict regulations. A variety of government-provided incentives as well as penalties are associated with these programs. This paper reviews 23 energy efficiency or GHG emissions reduction voluntary agreement programs in 18 countries, including countries in Europe, the U.S., Canada, Australia, New Zealand, Japan, South Korea, and Chinese Taipei (Taiwan) and discusses preliminary lessons learned regarding program design and effectiveness. The paper notes that such agreement programs, in which companies inventory and manage their energy use and GHG emissions to meet specific reduction targets, are an essential first step towards GHG emissions trading programs.

  19. Implications of changing natural gas prices in the United States electricity sector for SO and life cycle GHG emissions

    E-Print Network [OSTI]

    Jaramillo, Paulina

    Implications of changing natural gas prices in the United States electricity sector for SO 2 , NO X of changing natural gas prices in the United States electricity sector for SO2, NOX and life cycle GHG to projections of low natural gas prices and increased supply. The trend of increasing natural gas use

  20. MIT and Automotive Industries MIT Industry Brief

    E-Print Network [OSTI]

    Herr, Hugh

    MIT and Automotive Industries MIT Industry Brief MIT's Industrial Liaison Program (ILP) can bring@ilp.mit.edu, or visit http://ilp.mit.edu. MIT and Automotive Industries The Massachusetts Institute of Technology (MIT) is a leading center of research and education on topics important to the automotive industry and its suppliers

  1. Table 24. Productivity and related data, business and nonfarm business sectors, 1947-2000 (Index, 1992=100)

    E-Print Network [OSTI]

    Rauch, Erik

    - Non- Busi- Non- Busi- Non- Busi- Non- Busi- Non- ness farm ness farm ness farm ness farm ness farm ness farm ness farm sector busi- sector busi- sector busi- sector busi- sector busi- sector busi- sector busi- ness ness ness ness ness ness ness sector sector sector sector sector sector sector 1947

  2. Examination of the factors and issues for an environmental technology utilization partnership between the private sector and the Department of Energy. Final report

    SciTech Connect (OSTI)

    Brouse, P.

    1997-05-01

    The Department of Energy (DOE) held a meeting on November 12, 1992 to evaluate the DOE relations with industry and university partners concerning environmental technology utilization. The goal of this meeting was to receive feedback from DOE industry and university partners for the identification of opportunities to improve the DOE cooperative work processes with the private sector. The meeting was designed to collect information and to turn that information into action to improve private sector partnerships with DOE.

  3. Accelerating Investments in the Geothermal Sector, Indonesia...

    Open Energy Info (EERE)

    Accelerating Investments in the Geothermal Sector, Indonesia (Presentation) Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Accelerating...

  4. Energy Sector Cybersecurity Framework Implementation Guidance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    released guidance to help the energy sector establish or align existing cybersecurity risk management programs to meet the objectives of the Cybersecurity Framework released by...

  5. DOE Issues Energy Sector Cyber Organization NOI

    Energy Savers [EERE]

    between the federal government and energy sector stakeholders to protect the bulk power electric grid and aid the integration of smart grid technology to enhance the...

  6. Transitioning the Transportation Sector: Exploring the Intersection...

    Broader source: Energy.gov (indexed) [DOE]

    held the Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles workshop in Washington, D.C., on September 9, 2014....

  7. Tennessee's Manufacturing Sector Before and After the

    E-Print Network [OSTI]

    Grissino-Mayer, Henri D.

    Tennessee's Manufacturing Sector Before and After the Great Recession Prepared by Matthew N. Murray....................................................................................................................................... 1 Manufacturing in the Post Great Recession Era............................................................................... 2 Manufacturing Employment Trends

  8. Decoupling limits in multi-sector supergravities

    SciTech Connect (OSTI)

    Achúcarro, Ana; Hardeman, Sjoerd; Schalm, Koenraad; Aalst, Ted van der [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, Leiden (Netherlands); Oberreuter, Johannes M., E-mail: achucar@lorentz.leidenuniv.nl, E-mail: j.m.oberreuter@uva.nl, E-mail: kschalm@lorentz.leidenuniv.nl, E-mail: vdaalst@lorentz.leidenuniv.nl [Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Science Park 904, Amsterdam (Netherlands)

    2013-03-01

    Conventional approaches to cosmology in supergravity assume the existence of multiple sectors that only communicate gravitationally. In principle these sectors decouple in the limit M{sub pl}??. In practice such a limit is delicate: for generic supergravities, where sectors are combined by adding their Kähler functions, the separate superpotentials must contain non-vanishing vacuum expectation values supplementing the naïve global superpotential. We show that this requires non-canonical scaling in the naïve supergravity superpotential couplings to recover independent sectors of globally supersymmetric field theory in the decoupling limit M{sub pl} ? ?.

  9. MFR PAPER 1100 Increased utilization of

    E-Print Network [OSTI]

    MFR PAPER 1100 Increased utilization of latent and underutilized fish stocks the existing resource crises and aid industry in reversi ng th e decline evidenced in most New England fisheri input of industry in concert with the resources of NOAA' National Marine Fisheries Service (NMFS

  10. NIST Standards in Trade Workshops Increase

    E-Print Network [OSTI]

    NIST Standards in Trade Workshops Increase Trade Opportunities and Exports for U.S. Industry Since 1995, U.S. industry has looked to the NIST Standards in Trade (SIT) Workshop Program to provide opportunities for cooperation on topics related to standards, conformity assessment and trade that are important

  11. Source sector and region contributions to BC and PM2.5 in Central Asia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kulkarni, S.; Sobhani, N.; Miller-Schulze, J. P.; Shafer, M. M.; Schauer, J. J.; Solomon, P. A.; Saide, P. E.; Spak, S. N.; Cheng, Y. F.; Denier van der Gon, H. A. C.; et al

    2015-02-18

    Particulate matter (PM) mass concentrations, seasonal cycles, source sector, and source region contributions in Central Asia (CA) are analyzed for the period April 2008–July 2009 using the Sulfur Transport and dEposition Model (STEM) chemical transport model and modeled meteorology from the Weather Research and Forecasting (WRF) model. Predicted aerosol optical depth (AOD) values (annual mean value ~0.2) in CA vary seasonally, with lowest values in the winter. Surface PM2.5 concentrations (annual mean value ~10 ?g m-3) also exhibit a seasonal cycle, with peak values and largest variability in the spring/summer, and lowest values and variability in the winter (hourly valuesmore »from 2 to 90 ?g m-3). Surface concentrations of black carbon (BC) (mean value ~0.1 ?g m-3) show peak values in the winter. The simulated values are compared to surface measurements of AOD as well as PM2.5, PM10, BC, and organic carbon (OC) mass concentrations at two regional sites in Kyrgyzstan (Lidar Station Teplokluchenka (LST) and Bishkek). The predicted values of AOD and PM mass concentrations and their seasonal cycles are fairly well captured. The carbonaceous aerosols are underpredicted in winter, and analysis suggests that the winter heating emissions are underestimated in the current inventory. Dust, from sources within and outside CA, is a significant component of the PM mass and drives the seasonal cycles of PM and AOD. On an annual basis, the power and industrial sectors are found to be the most important contributors to the anthropogenic portion of PM2.5. Residential combustion and transportation are shown to be the most important sectors for BC. Biomass burning within and outside the region also contributes to elevated PM and BC concentrations. The analysis of the transport pathways and the variations in particulate matter mass and composition in CA demonstrates that this region is strategically located to characterize regional and intercontinental transport of pollutants. Aerosols at these sites are shown to reflect dust, biomass burning, and anthropogenic sources from Europe; South, East, and Central Asia; and Russia depending on the time period. Simulations for a reference 2030 emission scenario based on pollution abatement measures already committed to in current legislation show that PM2.5 and BC concentrations in the region increase, with BC growing more than PM2.5 on a relative basis. This suggests that both the health impacts and the climate warming associated with these particles may increase over the next decades unless additional control measures are taken. The importance of observations in CA to help characterize the changes that are rapidly taking place in the region are discussed.« less

  12. Source sector and region contributions to BC and PM??? in Central Asia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kulkarni, S.; Sobhani, N.; Miller-Schulze, J. P.; Shafer, M. M.; Schauer, J. J.; Solomon, P. A.; Saide, P. E.; Spak, S. N.; Cheng, Y. F.; Denier van der Gon, H. A. C.; et al

    2015-01-01

    Particulate matter (PM) mass concentrations, seasonal cycles, source sector, and source region contributions in Central Asia (CA) are analyzed for the period April 2008–July 2009 using the Sulfur Transport and dEposition Model (STEM) chemical transport model and modeled meteorology from the Weather Research and Forecasting (WRF) model. Predicted aerosol optical depth (AOD) values (annual mean value ~0.2) in CA vary seasonally, with lowest values in the winter. Surface PM??? concentrations (annual mean value ~10 ?g m?³) also exhibit a seasonal cycle, with peak values and largest variability in the spring/summer, and lowest values and variability in the winter (hourly valuesmore »from 2 to 90 ?g m?³). Surface concentrations of black carbon (BC) (mean value ~0.1 ?g m?³) show peak values in the winter. The simulated values are compared to surface measurements of AOD as well as PM???, PM??, BC, and organic carbon (OC) mass concentrations at two regional sites in Kyrgyzstan (Lidar Station Teplokluchenka (LST) and Bishkek). The predicted values of AOD and PM mass concentrations and their seasonal cycles are fairly well captured. The carbonaceous aerosols are underpredicted in winter, and analysis suggests that the winter heating emissions are underestimated in the current inventory. Dust, from sources within and outside CA, is a significant component of the PM mass and drives the seasonal cycles of PM and AOD. On an annual basis, the power and industrial sectors are found to be the most important contributors to the anthropogenic portion of PM???. Residential combustion and transportation are shown to be the most important sectors for BC. Biomass burning within and outside the region also contributes to elevated PM and BC concentrations. The analysis of the transport pathways and the variations in particulate matter mass and composition in CA demonstrates that this region is strategically located to characterize regional and intercontinental transport of pollutants. Aerosols at these sites are shown to reflect dust, biomass burning, and anthropogenic sources from Europe; South, East, and Central Asia; and Russia depending on the time period. Simulations for a reference 2030 emission scenario based on pollution abatement measures already committed to in current legislation show that PM??? and BC concentrations in the region increase, with BC growing more than PM??? on a relative basis. This suggests that both the health impacts and the climate warming associated with these particles may increase over the next decades unless additional control measures are taken. The importance of observations in CA to help characterize the changes that are rapidly taking place in the region are discussed.« less

  13. Supporting industries energy and environmental profile

    SciTech Connect (OSTI)

    None, None

    2005-09-21

    As part of its Industries of the Future strategy, the Industrial Technologies Program within the U.S. Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy works with energy-intensive industries to improve efficiency, reduce waste, and increase productivity. These seven Industries of the Future (IOFs) – aluminum, chemicals, forest products, glass, metal casting, mining, and steel – rely on several other so-called “supporting industries” to supply materials and processes necessary to the products that the IOFs create. The supporting industries, in many cases, also provide great opportunities for realizing energy efficiency gains in IOF processes.

  14. Industry @ ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat Pumps Heat Pumpsfacility doe logoInIndustry @ ALS

  15. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy,ImpactScientific andIndividualEvent Sign InIndustrial

  16. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy,ImpactScientific andIndividualEvent SignIndustrial Users -

  17. Industry Economists

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural GasEIA lowerslong4,Guide toHighHowIndustry

  18. Market leadership by example: Government sector energy efficiency in developing countries

    SciTech Connect (OSTI)

    Van Wie McGrory, Laura; Harris, Jeffrey; Breceda, Miguel; Campbell, Stephanie; Sachu, Constantine; della Cava, Mirka; Gonzalez Martinez, Jose; Meyer, Sarah; Romo, Ana Margarita

    2002-05-20

    Government facilities and services are often the largest energy users and major purchasers of energy-using equipment within a country. In developing as well as industrial countries, government ''leadership by example'' can be a powerful force to shift the market toward energy efficiency, complementing other elements of a national energy efficiency strategy. Benefits from more efficient energy management in government facilities and operations include lower government energy bills, reduced greenhouse gas emissions, less demand on electric utility systems, and in many cases reduced dependence on imported oil. Even more significantly, the government sector's buying power and example to others can generate broader demand for energy-efficient products and services, creating entry markets for domestic suppliers and stimulating competition in providing high-efficiency products and services. Despite these benefits, with the exception of a few countries government sector actions have often lagged behind other energy efficiency policies. This is especially true in developing countries and transition economies - even though energy used by public agencies in these countries may represent at least as large a share of total energy use as the public sector in industrial economies. This paper summarizes work in progress to inventory current programs and policies for government sector energy efficiency in developing countries, and describes successful case studies from Mexico's implementation of energy management in the public sector. We show how these policies in Mexico, begun at the federal level, have more recently been extended to state and local agencies, and consider the applicability of this model to other developing countries.

  19. Emerging Energy-Efficient Technologies for Industry 

    E-Print Network [OSTI]

    Worrell, E.; Martin, N.; Price, L.; Ruth, M.; Elliott, N.; Shipley, A.; Thorn, J.

    2001-01-01

    consists of all industrial activity outside of agriculture, mining, and construction, accounts for 70% of industrial value added (4). In 1998, the United States consumed 94 Quadrillion Btu (99 EJ) of primary energy or 25% of world primary energy use..., mining, construction, energy intensive industries, and non-energy intensive manufacturing. Energy is necessary to help our industries create useful products; however, we are increasingly confronted with the challenge of moving society toward a...

  20. Institute of Public Sector Accounting Research

    E-Print Network [OSTI]

    Edinburgh, University of

    Institute of Public Sector Accounting Research I·P·S·A·R In Government, Public Services and Charities http://www.business-school.ed.ac.uk/research/centres/public-sector-accounting-research CALL FOR PAPERS for a RESEARCH WORKSHOP and a special issue of QUALITATIVE RESEARCH IN ACCOUNTING & MANAGEMENT

  1. Introduction Actual Industrial Problems

    E-Print Network [OSTI]

    Nigam, Nilima

    Introduction Actual Industrial Problems What's needed? Is there really interesting mathematics in Industry? Can mathematicians contribute to society, and do we want to...? Nilima Nigam Department Mathematics in Industry #12;Introduction Actual Industrial Problems What's needed? Some controversial

  2. Mechanical & Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board October 15, 2010 #12;Mechanical & Industrial Engineering 2 MIE Dorothy Adams Undergraduate/Graduate Secretary David Schmidt Associate Professor & Graduate Program Director #12;Mechanical & Industrial Engineering 3 MIE James Rinderle

  3. Technology partnerships: Enhancing the competitiveness, efficiency, and environmental quality of American industry

    SciTech Connect (OSTI)

    NONE

    1995-04-01

    An overview of the Department of Energy`s Office of Industrial Technologies and its private sector partnerships is presented. Commercial success stories and real-world benefits of the technology partnerships are discussed.

  4. New 3E Plus Computer Program- A Tool for Improving Industrial Energy Efficiency 

    E-Print Network [OSTI]

    Brayman, N. J.

    1997-01-01

    The task of determining how much insulation is necessary in the US industrial and manufacturing sector to save money, use less energy, reduce plant emissions and improve process efficiency has been greatly simplified thanks to a software program...

  5. Characterization of the U.S. Industrial/Commercial Boiler Population- Final Report, May 2005

    Broader source: Energy.gov [DOE]

    The U.S. industrial and commercial sectors consume large quantities of energy. Much of this energy is used in boilers to generate steam and hot water. This 2005 report characterizes the boilers in...

  6. Cultural production and politics of the digital games industry: the case of independent game production 

    E-Print Network [OSTI]

    Guevara Villalobos, Orlando; Villalobos, Orlando Guevara

    2013-11-27

    This thesis sheds light on the social relationships, work practices and identities that shape the small scale sector of independent game production. Harnessing elements of the Production of Culture and Cultural Industries/Work ...

  7. Pacific Rim Summit on Industrial Biotechnology & Bioenergy

    Broader source: Energy.gov [DOE]

    The ninth annual Pacific Rim Summit on Industrial Biotechnology and Bioenergy will be held from December 7–9, 2014, in San Diego, California, at the Westin Gaslamp Quarter. Bringing together representatives from various countries all around the Pacific Rim, this event will focus on the growth of the industrial biotechnology and bioenergy sectors in North America and the Asia-Pacific region. Glenn Doyle, BETO's Deployment & Demonstration Technology Manager, will be moderating and speaking at a session on entitled "Utilizing Strategic Partnerships to Grow Your Business" on December 9.

  8. Evolution of the U.S. Energy Service Company Industry: Market Size and Project Performance from 1990-2008

    SciTech Connect (OSTI)

    Larsen, Peter; Goldman, Charles A.; Satchwell, Andrew

    2012-05-08

    The U.S. energy service company (ESCO) industry is an example of a private sector business model where energy savings are delivered to customers primarily through the use of performance-based contracts. This study was conceived as a snapshot of the ESCO industry prior to the economic slowdown and the introduction of federal stimulus funding mandated by enactment of the American Recovery and Reinvestment Act of 2009 (ARRA). This study utilizes two parallel analytic approaches to characterize ESCO industry and market trends in the U.S.: (1) a “top-down” approach involving a survey of individual ESCOs to estimate aggregate industry activity and (2) a “bottom-up” analysis of a database of -3,265 projects (representing over $8B in project investment) that reports market trends including installed EE retrofit strategies, project installation costs and savings, project payback times, and benefit-cost ratios over time. Despite the onset of an economic recession, the U.S. ESCO industry managed to grow at about 7% per year between 2006 and 2008. ESCO industry revenues are relatively small compared to total U.S. energy expenditures (about $4.1 billion in 2008), but ESCOs anticipated accelerated growth through 2011 (25% per year). We found that 2,484 ESCO projects in our database generated -$4.0 billion ($2009) in net, direct economic benefits to their customers. We estimate that the ESCO project database includes about 20% of all U.S. ESCO market activity from 1990-2008. Assuming the net benefits per project are comparable for ESCO projects that are not included in the LBNL database, this would suggest that the ESCO industry has generated -$23 billion in net direct economic benefits for customers at projects installed between 1990 and 2008. We found that nearly 85% of all public and institutional projects met or exceeded the guaranteed level of savings. We estimated that a typical ESCO project generated $1.5 dollars of direct benefits for every dollar of customer investment. There is empirical evidence confirming that the industry is responding to customer demand by installing more comprehensive and complex measures—including onsite generation and measures to address deferred maintenance—but this evolution has significant implications for customer project economics, especially at K-12 schools. We found that the median simple payback time has increased from 1.9 to 3.2 years in private sector projects since the early-to-mid 1990s and from 5.2 to 10.5 years in public sector projects for the same time period.

  9. Interaction in the dark sector

    E-Print Network [OSTI]

    Sergio del Campo; Ramon Herrera; Diego Pavon

    2015-07-01

    It may well happen that the two main components of the dark sector of the Universe, dark matter and dark energy, do not evolve separately but interact nongravitationally with one another. However, given our current lack of knowledge on the microscopic nature of these two components there is no clear theoretical path to determine their interaction. Yet, over the years, phenomenological interaction terms have been proposed on mathematical simplicity and heuristic arguments. In this paper, based on the likely evolution of the ratio between the energy densities of these dark components, we lay down reasonable criteria to obtain phenomenological, useful, expressions of the said term independent of any gravity theory. We illustrate this with different proposals which seem compatible with the known evolution of the Universe at the background level. Likewise, we show that two possible degeneracies with noninteracting models are only apparent as they can be readily broken at the background level. Further, we analyze some interaction terms that appear in the literature.

  10. Engineering Industrial & Systems

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Industrial Engineering Department of Industrial & Systems Engineering Leslie Monplaisir, Ph powerful tool sets used in industry today. -Brent Gillett, BSIE 2007 Advanced Planning Engineer at BMW I is available at: http://ise.wayne.edu/bs-industrial/index What is Industrial Engineering? The industrial

  11. INDUSTRIAL ENGINEERING Industrial engineering is concerned

    E-Print Network [OSTI]

    INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. Industrial engineers design and run the factories and systems

  12. INDUSTRIAL ENGINEERING Industrial engineering is concerned

    E-Print Network [OSTI]

    INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. The focus of industrial engineering is on process improvement

  13. A Hidden Dark Matter Sector, Dark Radiation, and the CMB

    E-Print Network [OSTI]

    Zackaria Chacko; Yanou Cui; Sungwoo Hong; Takemichi Okui

    2015-05-15

    We consider theories where dark matter is composed of a thermal relic of weak scale mass, whose couplings to the Standard Model (SM) are however too small to give rise to the observed abundance. Instead, the abundance is set by annihilation to light hidden sector states that carry no charges under the SM gauge interactions. In such a scenario the constraints from direct and indirect detection, and from collider searches for dark matter, can easily be satisfied. The masses of such light hidden states can be protected by symmetry if they are Nambu-Goldstone bosons, fermions, or gauge bosons. These states can then contribute to the cosmic energy density as dark radiation, leading to observable signals in the cosmic microwave background (CMB). Furthermore, depending on whether or not the light hidden sector states self-interact, the fraction of the total energy density that free-streams is either decreased or increased, leading to characteristic effects on both the scalar and tensor components of the CMB anisotropy that allows these two cases to be distinguished. The magnitude of these signals depends on the number of light degrees of freedom in the hidden sector, and on the temperature at which it kinetically decouples from the SM. We consider a simple model that realizes this scenario, based on a framework in which the SM and hidden sector are initially in thermal equilibrium through the Higgs portal, and show that the resulting signals are compatible with recent Planck results, while large enough to be detected in upcoming experiments such as CMBPol and CMB Stage-IV. Invisible decays of the Higgs into hidden sector states at colliders can offer a complementary probe of this model.

  14. Industry-identified combustion research needs: Special study

    SciTech Connect (OSTI)

    Keller, J.G.; Soelberg, N.R.; Kessinger, G.F.

    1995-11-01

    This report discusses the development and demonstration of innovative combustion technologies that improve energy conservation and environmental practices in the US industrial sector. The report includes recommendations by industry on R&D needed to resolve current combustion-related problems. Both fundamental and applied R&D needs are presented. The report assesses combustion needs and suggests research ideas for seven major industries, which consume about 78% of all energy used by industry. Included are the glass, pulp and paper, refinery, steel, metal casting, chemicals, and aluminum industries. Information has been collected from manufacturers, industrial operators, trade organizations, and various funding organizations and has been supplemented with expertise at the Idaho National Engineering Laboratory to develop a list of suggested research and development needed for each of the seven industries.

  15. Industrial Energy Efficiency Programs: Development and Trends 

    E-Print Network [OSTI]

    Chittum, A.; Kaufman, N.; Elliot, N.

    2010-01-01

    As more states establish Energy Efficiency Resource Standards (EERS), goals for energy efficiency savings are increasing across the country. Increasingly, states are relying on their industrial energy efficiency programs to find and help implement...

  16. China's Pathways to Achieving 40% ~ 45% Reduction in CO{sub 2} Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential

    SciTech Connect (OSTI)

    Zheng, Nina; Fridley, David; Zhou, Nan; Levine, Mark; Price, Lynn; Ke, Jing

    2011-09-30

    Achieving China’s goal of reducing its carbon intensity (CO{sub 2} per unit of GDP) by 40% to 45% percent below 2005 levels by 2020 will require the strengthening and expansion of energy efficiency policies across the buildings, industries and transport sectors. This study uses a bottom-up, end-use model and two scenarios -- an enhanced energy efficiency (E3) scenario and an alternative maximum technically feasible energy efficiency improvement (Max Tech) scenario – to evaluate what policies and technical improvements are needed to achieve the 2020 carbon intensity reduction target. The findings from this study show that a determined approach by China can lead to the achievement of its 2020 goal. In particular, with full success in deepening its energy efficiency policies and programs but following the same general approach used during the 11th Five Year Plan, it is possible to achieve 49% reduction in CO{sub 2} emissions per unit of GDP (CO{sub 2} emissions intensity) in 2020 from 2005 levels (E3 case). Under the more optimistic but feasible assumptions of development and penetration of advanced energy efficiency technology (Max Tech case), China could achieve a 56% reduction in CO{sub 2} emissions intensity in 2020 relative to 2005 with cumulative reduction of energy use by 2700 Mtce and of CO{sub 2} emissions of 8107 Mt CO{sub 2} between 2010 and 2020. Energy savings and CO{sub 2} mitigation potential varies by sector but most of the energy savings potential is found in energy-intensive industry. At the same time, electricity savings and the associated emissions reduction are magnified by increasing renewable generation and improving coal generation efficiency, underscoring the dual importance of end-use efficiency improvements and power sector decarbonization.

  17. IMF sector behavior deduced from geomagnetic data

    SciTech Connect (OSTI)

    Matsushita, S.; Trotter, D.E.

    1980-05-01

    Interplanetary magnetic field (IMF) sector structures, such as 'toward' the sun and 'away' from the sun on each day, have been objectivly estimated from daily and monthly mean values of the horizontal component of the geomagnetic variation field at Godhavn during the period 1926--1970. The agreement between this estimation and actual satellite observations of the sector structures of the interval 1964--1970 is 88, 79, and 58% in summer, equinox, and winter, respectively. A remarkable agreement (more than 95%) is obtained for the summers of 1964, 1969, and 1970. Various types of IMF sector behavior are examined by taking this seasonal factor into consideration. Approximately 27-day recurrences of the same structure are often found, and 5- to 14-day consecutive occurrences of the same sector are frequently noted. Furthermore, the total number of occurrences for each estimated sector in each year shows an apparently good correlation with smoothed sunspot numbers and geomagnetic aa index. After a brief introduction of the production mechanism of sector effects on polar geomagnetic fields the limitations and merits of IMF sector inference from geomagnetic data are emphasized.

  18. DOE Announces $14 Million Industry Partnership Projects to Increase...

    Broader source: Energy.gov (indexed) [DOE]

    employs a high-compression-ratio, modified Atkinson combustion cycle that uses a novel low-pressure direct injection fuel system and electronically-controlled pneumatic valve...

  19. DOE Announces $14 Million Industry Partnership Projects to Increase Fuel

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10 DOE ASSESSMENT SEAB RecommendationsDepartmentEfficiency

  20. Photovoltaic industry progress through 1984

    SciTech Connect (OSTI)

    Watts, R.L.; Smith, S.A.; Dirks, J.A.

    1985-04-01

    The growth of the US photovoltaics (PV) industry over the past decade has been impressive. First designed to provide power for satellites using high-cost production techniques, PV is now the economical choice in many remote terrestrial applications. The remarkable growth of PV in terms of quality of cells and modules, production techniques, and system design, was initiated by a cooperative effort of the US Government and the domestic PV manufacturers. European and Japanese firms entered the PV industry later, but are also growing rapidy. The Europeans continue to supply PV systems for village electrification and water pumping to many Third World countries. The Japanese have been developing the amorphous silicon (A-Si) technology by expanding its use in consumer goods. The world PV industry saw dramatic changes in industry ownership and in the emphasis on developing new and improved technology during 1984. The objective of this report is to present information on the developments of the world PV industry and focuses on developments occurring in 1984. Information is presented on a regional basis (US, Europe, Japan, other) to avoid disclosing company-confidential data. All information was gleaned from several sources, including a review of the technical literature and direct contacts with PV manufacturers. Prior to publishing the regional totals, all numbers were compared with those of other sources. The information contained in this report is prepared for use by the Department of Energy for their use in long-term R and D planning. However, this information should also be of interest by PV manufacturers and to those who may be contemplating entering the PV market. PV shipments for 1984, government supports for PV, and various PV market sectors are discussed.

  1. Broadening Industry Governance to Include Nonproliferation

    SciTech Connect (OSTI)

    Hund, Gretchen; Seward, Amy M.

    2008-11-11

    As industry is the first line of defense in detecting and thwarting illicit trade networks, the engagement of the private sector is critical to any government effort to strengthen existing mechanisms to protect goods and services throughout the supply chain. This study builds on previous PNNL work to continue to evaluate means for greater industry engagement to complement and strengthen existing governmental efforts to detect and stem the trade of illicit goods and to protect and secure goods that could be used in making a weapon of mass destruction. Specifically, the study evaluates the concept of Industry Self Regulation, defined as a systematic voluntary program undertaken by an industry or by individual companies to anticipate, implement, supplement, or substitute for regulatory requirements in a given field, generally through the adoption of best practices. Through a series of interviews with companies with a past history of non-compliance, trade associations and NGOs, the authors identify gaps in the existing regulatory infrastructure, drivers for a self regulation approach and the form such an approach might take, as well as obstacles to be overcome. The authors conclude that it is at the intersection of industry, government, and security that—through collaborative means—the effectiveness of the international nonproliferation system—can be most effectively strengthened to the mutual benefit of both government and the private sector. Industry has a critical stake in the success of this regime, and has the potential to act as an integrating force that brings together the existing mechanisms of the global nonproliferation regime: export controls, physical protection, and safeguards. The authors conclude that industry compliance is not enough; rather, nonproliferation must become a central tenant of a company’s corporate culture and be viewed as an integral component of corporate social responsibility (CSR).

  2. Electric power industry restructuring in Australia: Lessons from down-under. Occasional paper No. 20

    SciTech Connect (OSTI)

    Ray, D.

    1997-01-01

    Australia`s electric power industry (EPI) is undergoing major restructuring. This restructuring includes commercialization of state-owned electric organization through privatization and through corporatization into separate governmental business units; structural unbundling of generation, transmission, retailing, and distribution; and creation of a National Electricity Market (NEM) organized as a centralized, market-based trading pool for buying and selling electricity. The principal rationales for change in the EPI were the related needs of enhancing international competitiveness, improving productivity, and lowering electric rates. Reducing public debt through privatization also played an important role. Reforms in the EPI are part of the overall economic reform package that is being implemented in Australia. Enhancing efficiency in the economy through competition is a key objective of the reforms. As the need for reform was being discussed in the early 1990s, Australia`s previous prime minister, Paul Keating, observed that {open_quotes}the engine which drives efficiency is free and open competition.{close_quotes} The optimism about the economic benefits of the full package of reforms across the different sectors of the economy, including the electricity industry, is reflected in estimated benefits of a 5.5 percent annual increase in real gross domestic product and the creation of 30,000 more jobs. The largest source of the benefits (estimated at 25 percent of total benefits) was projected to come from reform of the electricity and gas sectors.

  3. Analysis of International Policies In The Solar Electricity Sector: Lessons for India

    SciTech Connect (OSTI)

    Deshmukh, Ranjit; Bharvirkar, Ranjit; Gambhir, Ashwin; Phadke, Amol

    2011-08-10

    Although solar costs are dropping rapidly, solar power is still more expensive than conventional and other renewable energy options. The solar sector still needs continuing government policy support. These policies are driven by objectives that go beyond the goal of achieving grid parity. The need to achieve multiple objectives and ensure sufficient political support for solar power makes it diffi cult for policy makers to design the optimal solar power policy. The dynamic and uncertain nature of the solar industry, combined with the constraints offered by broader economic, political and social conditions further complicates the task of policy making. This report presents an analysis of solar promotion policies in seven countries - Germany, Spain, the United States, Japan, China, Taiwan, and India - in terms of their outlook, objectives, policy mechanisms and outcomes. The report presents key insights, primarily in qualitative terms, and recommendations for two distinct audiences. The first audience consists of global policy makers who are exploring various mechanisms to increase the penetration of solar power in markets to mitigate climate change. The second audience consists of key Indian policy makers who are developing a long-term implementation plan under the Jawaharlal Nehru National Solar Mission and various state initiatives.

  4. Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    Office of Energy Efficiency and Renewable Energy (EERE)

    Domestic natural gas production was largely stagnant from the mid-1970s until about 2005. However, beginning in the late 1990s, advances linking horizontal drilling techniques with hydraulic fracturing allowed drilling to proceed in shale and other formations at much lower cost. The result was a slow, steady increase in unconventional gas production. The Joint Institute for Strategic Energy Analysis (JISEA) designed this study to address four related key questions, which are a subset from the wider dialogue on natural gas; regarding the life cycle greenhouse gas (GHG) emissions associated with shale gas compared to conventional natural gas and other fuels used to generate electricity; existing legal and regulatory frameworks governing unconventional gas development at federal, state, and local levels, and changes in response to the rapid industry growth and public concerns; natural gas production companies changing their water-related practices; and demand for natural gas in the electric sector respond to a variety of policy and technology developments over the next 20 to 40 years.

  5. Research-Technology Management November--December 2013 | 1 Before the Industrial Revolution, goods were produced by

    E-Print Network [OSTI]

    Research-Technology Management · November--December 2013 | 1 Before the Industrial Revolution linked to the producer; there was no middleman and no supply chain. The Industrial Revolution ushered to the manufacturing sector as the Industrial Revolution was--the age of 3D printing and the digital tools that support

  6. Cosmology of hidden sector with Higgs portal

    E-Print Network [OSTI]

    Cabi, Serkan

    2009-01-01

    In this thesis, we are investigating cosmological implications of hidden sector models which involve scalar fields that do not interact with the Standard Model gauge interactions, but couple directly to the Higgs field. ...

  7. Top partner probes of extended Higgs sectors

    E-Print Network [OSTI]

    Kearney, John

    Natural theories of the weak scale often include fermionic partners of the top quark. If the electroweak symmetry breaking sector contains scalars beyond a single Higgs doublet, then top partners can have sizable branching ...

  8. Electricity sector restructuring and competition : lessons learned

    E-Print Network [OSTI]

    Joskow, Paul L.

    2003-01-01

    We now have over a decade of experience with the privatization, restructuring, regulatory reform, and wholesale and retail competition in electricity sectors around the world. The objectives and design attributes of these ...

  9. Using Transportation Technology to Increase Efficiencies in Shipping...

    Office of Environmental Management (EM)

    industry best practices to develop and maintain a cost effective and sustainable logistics and inventory management system. Using Transportation Technology to Increase...

  10. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Neelis, Maarten; Worrell, Ernst; Masanet, Eric

    2008-09-01

    Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  11. Energy Department Announces New Private Sector Partnership to...

    Energy Savers [EERE]

    Energy Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate...

  12. Energy Department Announces New Private Sector Partnership to...

    Energy Savers [EERE]

    New Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects October 9,...

  13. Power Politics: The Political Economy of Russia's Electricity Sector Liberalization

    E-Print Network [OSTI]

    Wengle, Susanne Alice

    2010-01-01

    across regions. Up-stream energy conglomerates and down-the electricity sector: “up-stream” energy conglomerates areother energy sectors – for example the Nord-Stream pipeline

  14. Climate Change and the Transporation Sector - Challenges and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Change and the Transporation Sector - Challenges and Mitigation Options Climate Change and the Transporation Sector - Challenges and Mitigation Options 2003 DEER Conference...

  15. EIA Energy Efficiency-Residential Sector Energy Intensities,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Sector Energy Intensities RESIDENTIAL SECTOR ENERGY INTENSITIES: 1978-2005 Released Date: August 2004 Page Last Modified:June 2009 These tables provide estimates of...

  16. Combined Heat & Power Technology Overview and Federal Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat & Power Technology Overview and Federal Sector Deployment Combined Heat & Power Technology Overview and Federal Sector Deployment Presentation covers the Combined...

  17. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    11 Calibration of the Energy Consumption Data forSectoral energy consumption data are available in publishedof the sectoral energy consumption data in the statistics

  18. Climate Change and China's Agricultural Sector: An Overview of...

    Open Energy Info (EERE)

    Climate Change and China's Agricultural Sector: An Overview of Impacts, Adaptation and Mitigation Jump to: navigation, search Name Climate Change and China's Agricultural Sector:...

  19. Land Transport Sector in Bangladesh: An Analysis Toward Motivating...

    Open Energy Info (EERE)

    Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG Emission Reduction Strategies Jump to: navigation, search Name Land Transport Sector in Bangladesh: An...

  20. Workforce Training for the Electric Power Sector: Map of Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workforce Training for the Electric Power Sector: Map of Projects Workforce Training for the Electric Power Sector: Map of Projects Map showing the number of projects awarded in...

  1. Roadmap to Secure Control Systems in the Energy Sector - January...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap to Secure Control Systems in the Energy Sector - January 2006 Roadmap to Secure Control Systems in the Energy Sector - January 2006 This document, the Roadmap to Secure...

  2. Overcoming Multifamily Sector Barriers in Austin, Texas | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overcoming Multifamily Sector Barriers in Austin, Texas Overcoming Multifamily Sector Barriers in Austin, Texas Presents techniques on overcoming the barriers of multifamily energy...

  3. Supply Chain and Blade Manufacturing Considerations in the Global Wind Industry

    Broader source: Energy.gov [DOE]

    Over the past decade, significant wind manufacturing capacity has been built in the United States in response to an increasingly large domestic market. Recent U.S. manufacturing production levels exceed anticipated near-term domestic demand for select parts of the supply chain, in part due to policy uncertainty, and this is resulting in some restructuring in the industry. Factor location decisions are influenced by a combination of quantitative and qualitative factors; proximity to end-markets is often a key consideration, especially for manufacturers of large wind turbine components. Technology advancements in the wind sector are continuing , and larger blade designs are being pursued in the market, which may increase U.S.-based manufacturing opportunities.

  4. ImSET: Impact of Sector Energy Technologies

    SciTech Connect (OSTI)

    Roop, Joseph M.; Scott, Michael J.; Schultz, Robert W.

    2005-07-19

    This version of the Impact of Sector Energy Technologies (ImSET) model represents the ''next generation'' of the previously developed Visual Basic model (ImBUILD 2.0) that was developed in 2003 to estimate the macroeconomic impacts of energy-efficient technology in buildings. More specifically, a special-purpose version of the 1997 benchmark national Input-Output (I-O) model was designed specifically to estimate the national employment and income effects of the deployment of Office of Energy Efficiency and Renewable Energy (EERE) -developed energy-saving technologies. In comparison with the previous versions of the model, this version allows for more complete and automated analysis of the essential features of energy efficiency investments in buildings, industry, transportation, and the electric power sectors. This version also incorporates improvements in the treatment of operations and maintenance costs, and improves the treatment of financing of investment options. ImSET is also easier to use than extant macroeconomic simulation models and incorporates information developed by each of the EERE offices as part of the requirements of the Government Performance and Results Act.

  5. Policy Options for Encouraging Energy Efficiency Best Practices in Shandong Province's Cement Industry

    SciTech Connect (OSTI)

    Price, Lynn; Zhou, Nan; Lu, Hongyou; Sambeek, Emiel van; Yowargana, Ping; Shuang, Liu; Kejun, Jiang

    2012-07-12

    This research intends to explore possible design options for a sectoral approach in the cement sector in Shandong Province and to consider its respective advantages and disadvantages for future application. An effort has been made in this research to gather and analyze data that will provide a transparent and robust basis for development of a Business-As-Usual (BAU) scenario, maximum technology potential scenario, and ultimately a sector crediting baseline. Surveys among cement companies and discussions with stakeholders were also conducted in order to better understand the industry and local needs related to the sectoral approach.

  6. Electricity Use in the Pacific Northwest: Utility Historical Sales by Sector, 1989 and Preceding Years.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1990-06-01

    This report officially releases the compilation of regional 1989 retail customer sector sales data by the Bonneville Power Administration. This report is intended to enable detailed examination of annual regional electricity consumption. It gives statistics covering the time period 1970--1989, and also provides observations based on statistics covering the 1983--1989 time period. The electricity use report is the only information source that provides data obtained from each utility in the region based on the amount of electricity they sell to consumers annually. Data is provided on each retail customer sector: residential, commercial, industrial, direct-service industrial, and irrigation. The data specifically supports forecasting activities, rate development, conservation and market assessments, and conservation and market program development and delivery. All of these activities require a detailed look at electricity use. 25 figs., 34 tabs.

  7. Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    SciTech Connect (OSTI)

    Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

    2013-01-01

    In November 2012, the Joint Institute for Strategic Energy Analysis (JISEA) released a new report, 'Natural Gas and the Transformation of the U.S. Energy Sector: Electricity.' The study provides a new methodological approach to estimate natural gas related greenhouse gas (GHG) emissions, tracks trends in regulatory and voluntary industry practices, and explores various electricity futures. The Executive Summary provides key findings, insights, data, and figures from this major study.

  8. Energy Demand: Limits on the Response to Higher Energy Prices in the End-Use Sectors (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Energy consumption in the end-use demand sectorsresidential, commercial, industrial, and transportationgenerally shows only limited change when energy prices increase. Several factors that limit the sensitivity of end-use energy demand to price signals are common across the end-use sectors. For example, because energy generally is consumed in long-lived capital equipment, short-run consumer responses to changes in energy prices are limited to reductions in the use of energy services or, in a few cases, fuel switching; and because energy services affect such critical lifestyle areas as personal comfort, medical services, and travel, end-use consumers often are willing to absorb price increases rather than cut back on energy use, especially when they are uncertain whether price increases will be long-lasting. Manufacturers, on the other hand, often are able to pass along higher energy costs, especially in cases where energy inputs are a relatively minor component of production costs. In economic terms, short-run energy demand typically is inelastic, and long-run energy demand is less inelastic or moderately elastic at best.

  9. Mechanical, Industrial & Manufacturing

    E-Print Network [OSTI]

    Balasubramanian, Ravi

    Mechanical, Industrial & Manufacturing Engineering (MIME) COLLEGE OF ENGINEERING FY2013 Oregon graduate degrees (MS, MEng, PhD) in mechanical engineering, industrial engineering, and materials science. We offer bachelor's degrees in mechanical, industrial, manufacturing, and energy systems engineering

  10. Chemicals Industry Vision

    SciTech Connect (OSTI)

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  11. Industrial and Systems engineering

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Industrial and Systems engineering COLLEGE of ENGINEERING DepartmentofIndustrialandSystemsEngineering EDGE Engineering Entrepreneur Certificate Program is a great addition to an industrial and systems to expert clinical recommendations. engineering.wayne.edu/isefaculty Industrial and systems engineering

  12. The London Accord 1 Dynamics of technological development in the energy sector

    E-Print Network [OSTI]

    drivers other than cost (such as a push to increase safety in the case of nuclear fission). Data from, but with no clear increasing or decreasing trend. In contrast the cost of several renewable technologies has droppedThe London Accord 1 Dynamics of technological development in the energy sector J. Doyne Farmer

  13. 25 November 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER -FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP

    E-Print Network [OSTI]

    25 November 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER - FOREST SECTOR://www.scientificamerican.com/article/should-american-wood-fuel-european-power/Energy & Sustainability a seafaring protest during a forest industry conference. Participants at this week's Mid-Atlantic Forest

  14. 24 September 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER -FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP

    E-Print Network [OSTI]

    with biochar companies to help make the product marketable to the oil and gas industry24 September 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER - FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP 1 (in) Biochar used successfully to treat fracking water Post Date: 19

  15. Essays on sectoral shifts of labor demand: measurements and effects on the incidence and the duration of unemployment 

    E-Print Network [OSTI]

    Byun, Yanggyu

    2009-05-15

    industries. Abraham and Katz (1984) point out that this as- 1 The idea of sectoral shifts hypothesis has also been used in recent studies to introduce persistent unemployment in a real business cycle model (Mikhail et al. (2003)), to study the macroeconomic e...

  16. US uranium mining industry: background information on economics and emissions

    SciTech Connect (OSTI)

    Bruno, G.A.; Dirks, J.A.; Jackson, P.O.; Young, J.K.

    1984-03-01

    A review of the US uranium mining industry has revealed a generally depressed industry situation. The 1982 U/sub 3/O/sub 8/ production from both open-pit and underground mines declined to 3800 and 6300 tons respectively with the underground portion representing 46% of total production. US exploration and development has continued downward in 1982. Employment in the mining and milling sectors has dropped 31% and 17% respectively in 1982. Representative forecasts were developed for reactor fuel demand and U/sub 3/O/sub 8/ production for the years 1983 and 1990. Reactor fuel demand is estimated to increase from 15,900 tons to 21,300 tons U/sub 3/O/sub 8/ respectively. U/sub 3/O/sub 8/ production, however, is estimated to decrease from 10,600 tons to 9600 tons respectively. A field examination was conducted of 29 selected underground uranium mines that represent 84% of the 1982 underground production. Data was gathered regarding population, land ownership and private property valuation. An analysis of the increased cost to production resulting from the installation of 20-meter high exhaust borehole vent stacks was conducted. An assessment was made of the current and future /sup 222/Rn emission levels for a group of 27 uranium mines. It is shown that /sup 222/Rn emission rates are increasing from 10 individual operating mines through 1990 by 1.2 to 3.8 times. But for the group of 27 mines as a whole, a reduction of total /sup 222/Rn emissions is predicted due to 17 of the mines being shutdown and sealed. The estimated total /sup 222/Rn emission rate for this group of mines will be 105 Ci/yr by year end 1983 or 70% of the 1978-79 measured rate and 124 Ci/yr by year end 1990 or 83% of the 1978-79 measured rate.

  17. Formulating a VET roadmap for the waste and recycling sector: A case study from Queensland, Australia

    SciTech Connect (OSTI)

    Davis, G.

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Existing qualifications do not meet the needs of the sector in Queensland. Black-Right-Pointing-Pointer Businesses may not be best positioned to identify training needs. Black-Right-Pointing-Pointer Companies are developing training internally to meet their own specific needs. Black-Right-Pointing-Pointer Smaller companies lack the resources to develop internal training are disadvantaged. Black-Right-Pointing-Pointer There is industry support for an entry-level, minimum industry qualification. - Abstract: Vocational Education and Training (VET) is an essential tool for providing waste management and recycling workers with the necessary skills and knowledge needed to beneficially influence their own employment and career development; and to also ensure productivity and safe working conditions within the organisations in which they are employed. Current training opportunities within Queensland for the sector are limited and not widely communicated or marketed; with other States, particularly Victoria and New South Wales, realising higher numbers of VET enrollments for waste management courses. This paper presents current VET opportunities and trends for the Queensland waste management sector. Results from a facilitated workshop to identify workforce requirements and future training needs organised by the Waste Contractors and Recyclers Association of Queensland (WCRAQ) are also presented and discussion follows on the future training needs of the industry within Queensland.

  18. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  19. Uranium industry annual 1997

    SciTech Connect (OSTI)

    NONE

    1998-04-01

    This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

  20. Industry Analysis February 2013

    E-Print Network [OSTI]

    Fletcher, Robin

    -Industries · Biodiesel ­ Biofuel ­ Alternate fuels ­ Green fuels ­ Renewable fuels/energy ­ Green energy ­ Green) · Business Source Complete - Company, market, industry news and articles · CBCA and Canadian Newsstand

  1. Chemical Industry Corrosion Management

    SciTech Connect (OSTI)

    2003-02-01

    Improved Corrosion Management Could Provide Significant Cost and Energy Savings for the Chemical Industry. In the chemical industry, corrosion is often responsible for significant shutdown and maintenance costs.

  2. Office of Industrial Technologies research in progress

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffs of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.

  3. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    number of themes about the structure of the energy efficiency services sector (EESS). For some companies

  4. Characterization of industrial process waste heat and input heat streams

    SciTech Connect (OSTI)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  5. China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01

    03/06/content_7729607.htm ETSU, 1999. Industrial SectorSee discussion of this report in ETSU, AEA Technology, 2001.environment/ccl/pdf/etsu-analysis.pdf Feng, F. , 2007. “

  6. Varieties of innovation : the creation of wind and solar industries in China, Germany, and the United States

    E-Print Network [OSTI]

    Nahm, Jonas M

    2014-01-01

    Where and how does innovation take place in contemporary high-technology sectors? Theories of innovation presume a division of labor between firms in industrialized economies that invent and commercialize new technologies ...

  7. Rationale for State Support of Industries of the Future 

    E-Print Network [OSTI]

    Trabachino, C.; Muller, M.

    2002-01-01

    Through its Industries of the Future (IOF) strategy, the US DOE's Office of Industrial Technologies (OIT) seeks to develop and deploy advanced technologies and practices that will increase energy efficiency, environmental performance...

  8. The natural and industrial cycling of indium in the environment

    E-Print Network [OSTI]

    White, Sarah Jane O'Connell

    2012-01-01

    Indium is an important metal whose production is increasing dramatically due to new uses in the rapidly growing electronics, photovoltaic, and LED industries. Little is known, however, about the natural or industrial cycling ...

  9. Mechanical & Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board May 5th, 2011 #12;Mechanical & Industrial Engineering 2 IAB 2010-2011 · David K. Anderson ­ Alden Research Laboratory, Inc went on for three weeks Mechanical & Industrial Engineering 6 #12;Reza Shahbazian Yassar Mechanical

  10. INDUSTRIAL ENGINEERING GRADUATE PROGRAMS

    E-Print Network [OSTI]

    Gelfond, Michael

    INDUSTRIAL ENGINEERING GRADUATE PROGRAMS The Master of Science in Industrial Engineering (M Systems and Engineering (M.S.M.S.E.), the Doctor of Philosophy in Industrial Engineering, and the Doctor of Philosophy in Systems and Engineering Management programs prepare competent industrial engineers

  11. Industry Analysis October 2010

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    Industry and Company research ­ they build on each other #12;Industry Studies Standard & Poor's Net of competitors Standard & Poor's NetAdvantage - See 'Industry Surveys' under the "Quick Links" #12;Where Common technologies are there industry standards, platforms manufacturing processes, outsourcing? #12

  12. Philippines' downstream sector poised for growth

    SciTech Connect (OSTI)

    Not Available

    1992-05-11

    This paper reports that the Philippines' downstream sector is poised for sharp growth. Despite a slip in refined products demand in recent years, Philippines products demand will rebound sharply by 2000, East-West Center (EWC), Honolulu, predicts. Philippines planned refinery expansions are expected to meet that added demand, EWC Director Fereidun Fesharaki says. Like the rest of the Asia-Pacific region, product specifications are changing, but major refiners in the area expect to meet the changes without major case outlays. At the same time, Fesharaki says, push toward deregulation will further bolster the outlook for the Philippines downstream sector.

  13. More visible effects of the hidden sector

    SciTech Connect (OSTI)

    Murayama, Hitoshi; Murayama, Hitoshi; Nomura, Yasunori; Poland, David

    2007-09-06

    There is a growing appreciation that hidden sector dynamics may affect the supersymmetry breaking parameters in the visible sector (supersymmetric standard model), especially when the dynamics is strong and superconformal. We point out that there are effects that have not been previously discussed in the literature. For example, the gaugino masses are suppressed relative to the gravitino mass. We discuss their implications in the context of various mediation mechanisms. The issues discussed include anomaly mediation with singlets, the mu (B mu) problem in gauge and gaugino mediation, and distinct mass spectra for the superparticles that have not been previously considered.

  14. Utility Roles in Preserving the Industrial Base 

    E-Print Network [OSTI]

    Gilbert, J. S.

    1985-01-01

    While the price of energy may have stabilized for the moment, the impact of several years of rate increases in the cost of energy, materials, and labor has made American industry re-evaluate its operations. Utilities serving clusters of industrial...

  15. Meeting State Carbon Emission Requirements through Industrial Energy Efficiency: The Southern California Gas Company’s Industrial End User Program

    SciTech Connect (OSTI)

    2010-06-25

    This case study describes the Southern California Gas Company’s Industrial End User program that helps large industrial customers increase energy efficiency and reduce energy use and GHG emissions.

  16. Meeting State Carbon Emission Requirements through Industrial Energy Efficiency: The Southern California Gas Company’s Industrial End User Program

    Broader source: Energy.gov [DOE]

    This case study describes the Southern California Gas Company’s Industrial End User program, which helps large industrial customers increase energy efficiency and reduce energy use and greenhouse gas emissions.

  17. Increase in Cash Holdings: Pervasive or Sector-Specific? University of Toronto

    E-Print Network [OSTI]

    Saskatchewan, University of

    : This paper examines the difference in cash holdings between high-tech and non-high-tech firms over the period from 1974 to 2007. In contrast to the average cash-to-assets ratio of non-high- tech firms, which remained stable at a level close to that of the 1970s, the average cash ratio of high-tech firms more than

  18. Developing strategies for resource-constrained transit growth through increased private sector involvement

    E-Print Network [OSTI]

    Gordon, Michael A. (Michael Andrew)

    2015-01-01

    Many transit agencies are facing budgetary, institutional, physical infrastructure, and vehicle constraints, which all tend to restrict agency service growth. This research proposes strategies that allow transit agencies ...

  19. 1996-2004 Trends in the Single-Family Housing Market: Spatial Analysis of the Residential Sector

    SciTech Connect (OSTI)

    Anderson, Dave M.; Elliott, Douglas B.

    2006-09-05

    This report provides a detailed geographic analysis of two specific topics affecting the residential sector. First, we performed an analysis of new construction market trends using annual building permit data. We report summarized tables and national maps to help illustrate market conditions. Second, we performed a detailed geographic analysis of the housing finance market. We analyzed mortgage application data to provide citable statistics and detailed geographic summarization of the residential housing picture in the US for each year in the 1996-2004 period. The databases were linked to geographic information system tools to provide various map series detailing the results geographically. Looking at these results geographically may suggest potential new markets for TD programs addressing the residential sector that have not been considered previously. For example, we show which lenders affect which regions and which income or mortgage product classes. These results also highlight the issue of housing affordability. Energy efficiency R&D programs focused on developing new technology for the residential sector must be conscious of the costs of products resulting from research that will eventually impact the home owner or new home buyer. Results indicate that home values as a proportion of median family income in Building America communities are closely aligned with the national average of home value as a proportion of median income. Other key findings: • The share of home building and home buying activity continues to rise steadily in the Hot-Dry and Hot-Humid climate zones, while the Mixed-Humid and Cold climate zone shares continue to decline. Other zones remain relatively stable in terms of share of housing activity. • The proportion of home buyers having three times the median family income for their geography has been steadily increasing during the study period. • Growth in the Hispanic/Latino population and to a lesser degree in the Asian population has translated into proportional increases in share of home purchasing by both groups. White home buyers continue to decline as a proportion all home buyers. • Low interest rate climate resulted in lenders moving back to conventional financing, as opposed to government-backed financing, for cases that would be harder to financing in higher rate environments. Government loan products are one mechanism for affecting energy efficiency gains in the residential sector. • The rate environment and concurrent deregulation of the finance industry resulted unprecedented merger and acquisition activity among financial institutions during the study period. This study conducted a thorough accounting of this merger activity to inform the market share analysis provided. • The home finance industry quartiles feature 5 lenders making up the first quartile of home purchase loans, 18 lenders making up the second quartile, 111 lenders making up the third quartile, and the remaining nearly 8,000 lenders make up the fourth quartile.

  20. Industrial water conservation references of electroplating

    SciTech Connect (OSTI)

    NONE

    1989-12-31

    Water conservation can increase the profits of industrial facilities and conserve California`s water resources. Managers for industries and water agencies need to be aware of water conservation potential so they can help their organization realize the benefits. The literature search yielded six (6) articles on water conservation in the electroplating industry. There are three U.S. Environmental Protection Agency publications cited in the bibliography which describe many aspects of water conservation in the electrplating industry. The electroplating manufacturers examined in the study include plating shops engaged in all types of electroplating and metal finishing.

  1. The North American Forest Sector Outlook Study

    E-Print Network [OSTI]

    to consumption patterns for wood products and bioenergy. Markets for wood products, which mainly are destined in the forest sector of North America 21 3.1 Forest inventory 21 3.2 Aggregate production, consumption, Canada, carbon sequestration, climate change, consumption, demand, econometric, EFSOS, export, fellings

  2. WATER AND ENERGY SECTOR VULNERABILITY TO CLIMATE

    E-Print Network [OSTI]

    WATER AND ENERGY SECTOR VULNERABILITY TO CLIMATE WARMING IN THE SIERRA NEVADA: Water Year explores the sensitivity of water indexing methods to climate change scenarios to better understand how water management decisions and allocations will be affected by climate change. Many water management

  3. NATURAL GAS ADVISORY COMMITTEE Name Affiliation Sector

    E-Print Network [OSTI]

    NATURAL GAS ADVISORY COMMITTEE 2011-2013 Name Affiliation Sector Dernovsek, David Bonneville Power Defenbach, Byron Intermountain Gas Distribution Dragoon, Ken NWPCC Council Friedman, Randy NW Natural Gas Distribution Gopal, Jairam Southern CA Edison Electric Utility Hamilton, Linda Shell Trading Gas & Power

  4. Retail competition in the UK electricity sector

    E-Print Network [OSTI]

    Rudnick, Hugh

    retail market #12;Schedule for UK market opening · 1990 large users (above 1 MW max demand) · about 30Retail competition in the UK electricity sector Stephen Littlechild Workshops on Retail Competition that in electricity · but agreed need to have further separation · Now require separate legal entities & licenses

  5. ECONOMIC IMPACT OF THE CLEANTECH SECTOR

    E-Print Network [OSTI]

    Ghosh, Joydeep

    ! ECONOMIC IMPACT OF THE CLEANTECH SECTOR In the Austin-Round Rock-San Marcos MSA Prepared by: #12 Manufacturing $2.5 Billion Cleantech contributes $2.5 Billion to Austin's regional GDP. 20,000 Jobs Cleantech directly employs 20,000 people in the Austin MSA. Rapid Growth Employment in cleantech is projected to grow

  6. Testing Higgs sector of 2HDM

    E-Print Network [OSTI]

    Maria Krawczyk

    2005-12-30

    Properties of the Higgs sector of Two Higgs Doublet Model (2HDM) and existing constraints on its parameters are discussed. Potential of the Photon Linear Collider in testing various Higgs scenarios of 2HDM, including the MSSM, based on the realistic simulations is also presented.

  7. Energy Efficiency Services Sector: Workforce Education and Training Needs

    SciTech Connect (OSTI)

    Goldman, Charles A.; Peters, Jane S.; Albers, Nathaniel; Stuart, Elizabeth; Fuller, Merrian C.

    2010-03-19

    This report provides a baseline assessment of the current state of energy efficiency-related education and training programs and analyzes training and education needs to support expected growth in the energy efficiency services workforce. In the last year, there has been a significant increase in funding for 'green job' training and workforce development (including energy efficiency), through the American Recovery and Reinvestment Act (ARRA). Key segments of the energy efficiency services sector (EESS) have experienced significant growth during the past several years, and this growth is projected to continue and accelerate over the next decade. In a companion study (Goldman et al. 2009), our research team estimated that the EESS will increase two- to four-fold by 2020, to 220,000 person-years of employment (PYE) (low-growth scenario) or up to 380,000 PYE (high-growth scenario), which may represent as many as 1.3 million individuals. In assessing energy efficiency workforce education and training needs, we focus on energy-efficiency services-related jobs that are required to improve the efficiency of residential and nonresidential buildings. Figure ES-1 shows the market value chain for the EESS, sub-sectors included in this study, as well as the types of market players and specific occupations. Our assessment does not include the manufacturing, wholesale, and retail distribution subsectors, or energy efficiency-focused operations and maintenance performed by facility managers.

  8. End User Functional and Performance Requirements for HTGR Energy Supply to Industrial Processes

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01

    This document specifies end user functional and performance requirements to be used in the development of the design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to industrial processes. These requirements were developed from collaboration with industry and HTGR suppliers and from detailed evaluation of integration of the HTGR technology in industrial processes. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a plant design that will serve the broadest range of industrial applications.

  9. Energy Conservation Through Industrial Cogeneration Systems 

    E-Print Network [OSTI]

    Solt, J. C.

    1979-01-01

    This paper traces the development of cogeneration systems in industry, and discusses some early applications. The effect of changing markets and economic conditions is evaluated and specific examples are presented to illustrate the increasingly...

  10. Industrial Utilization of Coal-Oil Mixtures 

    E-Print Network [OSTI]

    Dunn, J. E.; Hawkins, G. T.

    1982-01-01

    Coal-oil mixtures (COM) are receiving increasing interest as economical alternatives to residual fuel oil and natural gas used in heavy industrial and utility applications. Four basic approaches are currently employed in the manufacture of COM...

  11. Polymers with increased order

    DOE Patents [OSTI]

    Sawan, Samuel P. (Tyngsborough, MA); Talhi, Abdelhafid (Rochester, MI); Taylor, Craig M. (Jemez Springs, NM)

    1998-08-25

    The invention features polymers with increased order, and methods of making them featuring a dense gas.

  12. Evolving Role of the Power Sector Regulator: A Clean Energy Regulators Initiative Report

    SciTech Connect (OSTI)

    Zinaman, O.; Miller, M.; Bazilian, M.

    2014-04-01

    This paper seeks to briefly characterize the evolving role of power sector regulation. Given current global dynamics, regulation of the power sector is undergoing dramatic changes. This transformation is being driven by various factors including technological advances and cost reductions in renewable energy, energy efficiency, and demand management; increasing air pollution and climate change concerns; and persistent pressure for ensuring sustainable economic development and increased access to energy services by the poor. These issues add to the already complex task of power sector regulation, of which the fundamental remit remains to objectively and transparently ensure least-cost service delivery at high quality. While no single regulatory task is trivial to undertake, it is the prioritization and harmonization of a multitude of objectives that exemplifies the essential challenge of power sector regulation. Evolving regulatory roles can be understood through the concept of existing objectives and an additional layer of emerging objectives. Following this categorization, we describe seven existing objectives of power sector regulators and nine emerging objectives, highlighting key challenges and outlining interdependencies. This essay serves as a preliminary installment in the Clean Energy Regulatory Initiative (CERI) series, and aims to lay the groundwork for subsequent reports and case studies that will explore these topics in more depth.

  13. The Industrial Electrification Program 

    E-Print Network [OSTI]

    Harry, I. L.

    1982-01-01

    EPRI's role as the research organization of the electric power industry, in coordination with potential user industries, is to 1) define the viability of candidate electrification technologies by monitoring the state-of-the-art and continuously...

  14. INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY

    E-Print Network [OSTI]

    Pohl, Karsten

    INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY SUMMER 2013 Industrial Engineering COOP Student needed-Fri, for summer 2013. Student must be enrolled in BS Engineering program. (Preferably completed 2-3 yrs

  15. The US textile industry: An energy perspective

    SciTech Connect (OSTI)

    Badin, J. S.; Lowitt, H. E.

    1988-01-01

    This report investigates the state of the US textile industry in terms of energy consumption and conservation. Specific objectives were: To update and verify energy and materials consumption data at the various process levels in 1984; to determine the potential energy savings attainable with current (1984), state-of-the-art, and future production practices and technologies (2010); and to identify new areas of research and development opportunity that will enable these potential future savings to be achieved. Results of this study concluded that in the year 2010, there is a potential to save between 34% and 53% of the energy used in current production practices, dependent on the projected technology mix. RandD needs and opportunities were identified for the industry in three categories: process modification, basic research, and improved housekeeping practices that reduce energy consumption. Potential RandD candidates for DOE involvement with the private sector were assessed and selected from the identified list.

  16. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  17. The Lepton Sector of a Fourth Generation

    E-Print Network [OSTI]

    Gustavo Burdman; Leandro Da Rold; Ricardo D. Matheus

    2010-05-10

    In extensions of the standard model with a heavy fourth generation one important question is what makes the fourth-generation lepton sector, particularly the neutrinos, so different from the lighter three generations. We study this question in the context of models of electroweak symmetry breaking in warped extra dimensions, where the flavor hierarchy is generated by the localization of the zero-mode fermions in the extra dimension. In this setup the Higgs sector is localized near the infrared brane, whereas the Majorana mass term is localized at the ultraviolet brane. As a result, light neutrinos are almost entirely Majorana particles, whereas the fourth generation neutrino is mostly a Dirac fermion. We show that it is possible to obtain heavy fourth-generation leptons in regions of parameter space where the light neutrino masses and mixings are compatible with observation. We study the impact of these bounds, as well as the ones from lepton flavor violation, on the phenomenology of these models.

  18. Roadmap to Secure Control Systems in the Energy Sector 2006 ...

    Energy Savers [EERE]

    Roadmap to Secure Control Systems in the Energy Sector 2006 - Presentation to the 2008 ieRoadmap Workshop Roadmap to Secure Control Systems in the Energy Sector 2006 - Presentation...

  19. Potential and cost of carbon sequestration in the Tanzanian forest sector

    SciTech Connect (OSTI)

    Makundi, Willy R.

    2001-01-01

    The forest sector in Tanzania offers ample opportunities to reduce greenhouse gas emissions (GHG) and sequestered carbon (C) in terrestrial ecosystems. More than 90% of the country's demand for primary energy is obtained from biomass mostly procured unsustainably from natural forests. This study examines the potential to sequester C through expansion of forest plantations aimed at reducing the dependence on natural forest for wood fuel production, as well as increase the country's output of industrial wood from plantations. These were compared ton conservation options in the tropical and miombo ecosystems. Three sequestration options were analyzed, involving the establishment of short rotation and long rotation plantations on about 1.7 x 106 hectares. The short rotation community forest option has a potential to sequester an equilibrium amount of 197.4 x 106 Mg C by 2024 at a net benefit of $79.5 x 106, while yielding a NPV of $0.46 Mg-1 C. The long rotation options for softwood and hardwood plantations will reach an equilibrium sequestration of 5.6 and 11.8 x 106 Mg C at a negative NPV of $0.60 Mg-1 C and $0.32 Mg-1 C. The three options provide cost competitive opportunities for sequestering about 7.5 x 106 Mg C yr -1 while providing desired forest products and easing the pressure on the natural forests in Tanzania. The endowment costs of the sequestration options were all found to be cheaper than the emission avoidance cost for conservation options which had an average cost of $1.27 Mg-1 C, rising to $ 7.5 Mg-1 C under some assumptions on vulnerability to encroachment. The estimates shown here may represent the upper bound, because the actual potential will be influenced by market prices for inputs and forest products, land use policy constraints and the structure of global C transactions.

  20. The Importance of Natural Gas in the Industrial Sector With a Focus on Energy-Intensive Industries

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight Paths for Biojet Fuel

  1. Industry Analysis January 2012

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    ;8 Conference Board E-Library ­ Canadian industries, economic trends & forecasts ­ national, provincial1 CHEE 906 Industry Analysis January 2012 Constance Adamson, Stauffer Library adamsonc for both Industry and Company research ­ they build on each other #12;3 Where are they? · Library website

  2. Industrial Optimization Compact Course

    E-Print Network [OSTI]

    Kirches, Christian

    Industrial Optimization Compact Course and Challenge Workshop Optimization plays a crucial role in designing and conducting industrial processes. The potential gains range from saving valuable resources over makers from industry and academia to initiate new projects and to foster new structured collaborations

  3. Mechanical & Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical & Industrial Engineering Mario A. Rotea Professor and Department Head #12;2Mechanical & Industrial Engineering Outline · Undergraduate Degree Programs · Graduate Degree Programs · The Faculty · The Research · Summary #12;3Mechanical & Industrial Engineering Undergraduate Programs ­ BSME & BSIE 0 20 40 60

  4. Photovoltaics industry profile

    SciTech Connect (OSTI)

    1980-10-01

    A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

  5. Advanced Industrial Materials (AIM) Program: Annual progress report FY 1995

    SciTech Connect (OSTI)

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This Annual Report for FY 1995 contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Areas covered here are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  6. Solar Trackers Market - Global Industry Analysis, Size, Share...

    Open Energy Info (EERE)

    Solar Trackers Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2010 - 2020 Home > Groups > Increase Natural Gas Energy Efficiency John55364's picture...

  7. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems Surface Coatings Enhance Wear Resistance of Metals, Saving Energy and Increasing Component Life...

  8. Industrial Energy Conservation by New Process Design and Efficiency Improvements 

    E-Print Network [OSTI]

    Kusik, C. L.; Stickles, R. P.; Machacek, R. F.

    1983-01-01

    Industrial energy productivity has increased substantially over the last decade. Such measures as implementing efficient housekeeping practices and using retrofit equipment on currently operating production units have ...

  9. The Changing US Electric Sector Business Model 

    E-Print Network [OSTI]

    Aliff, G.

    2013-01-01

    uneconomical for electricity generation • Renewable portfolio standards (29 states and DC) put priority on solar, wind and energy efficiency regardless of associated economics • Forecasts of future electricity demand are debatable, and in some cases expected... on the Future and Conclusions Presentation overview 2 ESL-KT-13-12-57 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Copyright © 2013 Deloitte Development LLC. All rights reserved. Fundamentals of the US electric sector...

  10. Financing Energy Efficiency Retrofits in the Commercial Sector Webinar

    Broader source: Energy.gov [DOE]

    Financing Energy Efficiency Retrofits in the Commercial Sector Webinar, from the U.S. Department of Energy's Better Buildings program.

  11. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01

    Consumption iii iv Sectoral Trends in Global Energy Use andenergy consumption scenarios. In applying this approach to global

  12. Regional Power Sector Integration: Lessons from Global Case Studies...

    Open Energy Info (EERE)

    the World Bank Sector: Energy Focus Area: Conventional Energy Topics: Implementation, Market analysis, Policiesdeployment programs, Background analysis Resource Type: Lessons...

  13. Why is energy use rising in the freight sector

    SciTech Connect (OSTI)

    Mintz, M.; Vyas, A.D.

    1991-01-01

    Trends in transportation sector energy use and carbon dioxide emissions are analyzed with an emphasis on three freight modes -- rail, truck, and marine. A recent set of energy use projections is presented and freight mode energy characteristics are discussed. Transportation sector energy use, which nearly doubled between 1960 and 1985, is projected to grow more slowly during the period 1985{endash}2010. Most of the growth is projected to come from non-personal modes (freight and commercial air). Trends in freight mode energy intensities are discussed and a variety of factors behind these trends are analyzed. Rail and marine modes improved their energy intensities during sudden fuel price rises of the 1970s. Though there is room for further technological improvement, long power plant life cycles preclude rapid penetration of new technologies. Thus, energy intensities in these modes are more likely to improve through operational changes. Because of relatively stable fuel prices, the energy share of truck operating expenses is likely to remain low. Coupled with increasing labor costs, this portends only modest improvements in truck energy efficiency over the next two decades.

  14. Why is energy use rising in the freight sector?

    SciTech Connect (OSTI)

    Mintz, M.; Vyas, A.D.

    1991-12-31

    Trends in transportation sector energy use and carbon dioxide emissions are analyzed with an emphasis on three freight modes -- rail, truck, and marine. A recent set of energy use projections is presented and freight mode energy characteristics are discussed. Transportation sector energy use, which nearly doubled between 1960 and 1985, is projected to grow more slowly during the period 1985{endash}2010. Most of the growth is projected to come from non-personal modes (freight and commercial air). Trends in freight mode energy intensities are discussed and a variety of factors behind these trends are analyzed. Rail and marine modes improved their energy intensities during sudden fuel price rises of the 1970s. Though there is room for further technological improvement, long power plant life cycles preclude rapid penetration of new technologies. Thus, energy intensities in these modes are more likely to improve through operational changes. Because of relatively stable fuel prices, the energy share of truck operating expenses is likely to remain low. Coupled with increasing labor costs, this portends only modest improvements in truck energy efficiency over the next two decades.

  15. A Hidden Dark Matter Sector, Dark Radiation, and the CMB

    E-Print Network [OSTI]

    Chacko, Zackaria; Hong, Sungwoo; Okui, Takemichi

    2015-01-01

    We consider theories where dark matter is composed of a thermal relic of weak scale mass, whose couplings to the Standard Model (SM) are however too small to give rise to the observed abundance. Instead, the abundance is set by annihilation to light hidden sector states that carry no charges under the SM gauge interactions. In such a scenario the constraints from direct and indirect detection, and from collider searches for dark matter, can easily be satisfied. The masses of such light hidden states can be protected by symmetry if they are Nambu-Goldstone bosons, fermions, or gauge bosons. These states can then contribute to the cosmic energy density as dark radiation, leading to observable signals in the cosmic microwave background (CMB). Furthermore, depending on whether or not the light hidden sector states self-interact, the fraction of the total energy density that free-streams is either decreased or increased, leading to characteristic effects on both the scalar and tensor components of the CMB anisotro...

  16. INDUSTRIAL RELATIONS 1. Agreements with Industry

    E-Print Network [OSTI]

    of the New Hampshire Industrial Research Center (NHIRC), a cooperative project of the New Hampshire Department of Resources and Economic Development (DRED), the University of New Hampshire (UNH), and Dartmouth

  17. Industrial Dojo Program Fosters Industrial Internet Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dojo,' Contributes to Open Source to Foster Continued Development of the Industrial Internet Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new...

  18. Lost Opportunities in the Buildings Sector: Energy-Efficiency Analysis and Results

    SciTech Connect (OSTI)

    Dirks, James A.; Anderson, David M.; Hostick, Donna J.; Belzer, David B.; Cort, Katherine A.

    2008-09-12

    This report summarizes the results and the assumptions used in an analysis of the potential “lost efficiency opportunities” in the buildings sector. These targets of opportunity are those end-uses, applications, practices, and portions of the buildings market which are not currently being addressed, or addressed fully, by the Building Technologies Program (BTP) due to lack of resources. The lost opportunities, while a significant increase in effort and impact in the buildings sector, still represent only a small portion of the full technical potential for energy efficiency in buildings.

  19. ANALYSIS OF MEASURES FOR REDUCING TRANSPORTATION SECTOR GREENHOUSE GAS

    E-Print Network [OSTI]

    ANALYSIS OF MEASURES FOR REDUCING TRANSPORTATION SECTOR GREENHOUSE GAS EMISSIONS IN CANADA by Rose: Analysis of Measures for Reducing Transportation Sector Greenhouse Gas Emissions in Canada Project Number the problem of reducing greenhouse gas (GHG) emissions from the Canadian transportation sector. Reductions

  20. Sales Tax Distribution by NAICS Commodity Sectors and

    E-Print Network [OSTI]

    Arnold, Jonathan

    Sales Tax Distribution by NAICS Commodity Sectors and TAVT Distributions by County Analysis FIGURES #12;Sales Tax Distributions by NAICS Sectors* 2011-2012 Period 2013-2014 Period *Broken down Sales Tax Distributions by NAICS Major Commodity Sector - 50,000,000 100,000,000 150,000,000 200

  1. The Rise and Decline of U.S. Private Sector Investments in Energy R&D since the Arab Oil Embargo of 1973

    SciTech Connect (OSTI)

    Dooley, James J.

    2010-11-01

    This paper presents two distinct datasets that describe investments in energy research and development (R&D) by the US private sector since the mid1970s, which is when the US government began to systematically collect these data. The first dataset is based upon a broad survey of more than 20,000 firms’ industrial R&D activities. This broad survey of US industry is coordinated by the US National Science Foundation. The second dataset discussed here is a much narrower accounting of the energy R&D activities of the approximately two dozen largest US oil and gas companies conducted by the US Department of Energy’s Energy Information Agency. Even given the large disparity in the breadth and scope of these two surveys of the private sector’s support for energy R&D, both datasets tell the same story in terms of the broad outlines of the private sector’s investments in energy R&D since the mid 1970s. The broad outlines of the US private sector’s support for energy R&D since the mid 1970s is: (1) In the immediate aftermath of the Arab Oil Embargo of 1973, there is a large surge in US private sector investments in energy R&D that peaked in the period between 1980 and 1982 at approximately $3.7 billion to $6.7 billion per year (in inflation adjusted 2010 US dollars) depending upon which survey is used (2) Private sector investments in energy R&D declined from this peak until bottoming out at approximately $1.8 billion to $1 billion per year in 1999; (3) US private sector support for energy R&D has recovered somewhat over the past decade and stands at $2.2 billion to $3.4 billion. Both data sets indicate that the US private sector’s support for energy R&D has been and remains dominated by fossil energy R&D and in particular R&D related to the needs of the oil and gas industry.

  2. INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering

    E-Print Network [OSTI]

    Rohs, Remo

    78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take of industries including consulting, technology development, software, supply chain manufacturing, engineering

  3. Measuring the Social Rate of Return to R&D in the Energy Industry: A Study of the OECD Countries

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    and development in the energy industry using a similar approach to Jones and Williams (1998). Our model tries1 Measuring the Social Rate of Return to R&D in the Energy Industry: A Study of the OECD Countries in the manufacturing of coal, petroleum products and nuclear fuel sector for a number of OECD countries. Using a panel

  4. Essays on institutions and innovation in natural resource industries

    E-Print Network [OSTI]

    Gilbert, Benjamin Travis

    2011-01-01

    Composition . . . . . . . . . . . Fixed Gear Sector HarvestHours per Vessel: Fixed Gear Sector vs. Fleet Hook SectorCommon Support . . . Fixed Gear Sector Propensity Score

  5. Opportunities for environmental protection through privatization of the electric power sector in developing countries

    SciTech Connect (OSTI)

    Russo, T.N. (Federal Energy Regulatory Commission, Washington, DC (United States)); Narins, M.J. (Energy Environmental Strategies, Inc., Falls Church, VA (United States))

    1994-07-01

    Traditionally, national electric utilities in developing countries have constructed and operated electrical energy power projects. Opportunities for environmental protection have been wanting in many of these projects, except in recent years when the World Bank and other international lenders required the preparation of environmental assessments (EAs) before financing a project. Global privatization of the electric power sector may provide increased opportunities for environmental protection and the implementation of the environmental impact assessment process. Environmental professionals in developing countries should not rely solely on traditional command and control'' (CAC) regulatory models to achieve environmental protection at private sector electrical energy projects. Environmental professionals should also pursue non-command and control approaches to supplement their existing regulatory approaches. These approaches include the preparation of sectorial and regional EAs, the use of economic incentives such as offsets'', environmental collaboratives, facilitated settlements, the creation of country environmental quality awards to recognize improved performance by the private and public sector, and staging environmental mitigation.

  6. A systems approach to enterprise risk management in high-tech industry

    E-Print Network [OSTI]

    Sharma, Atul, 1973-

    2005-01-01

    The high-tech industry is showing increased interest in developing an enterprise wide approach to risk management. There are three reasons for this increased interest; first as the industry has matured, as evidenced by ...

  7. Wind Energy Workforce Development: A Roadmap to a Sustainable Wind Industry (Poster)

    SciTech Connect (OSTI)

    Baring-Gould, I.; Kelly, M.

    2010-05-01

    As the United States moves toward a vision of greatly expanded wind energy use as outlined in the U.S. Department of Energy's 20% Wind Energy by 2030 report, the need for skilled workers at all levels in the industry is repeatedly identified as a critical issue. This presentation is an overview of the educational infrastructure and expected industry needs to support the continued development of a vibrant U.S. wind industry through a discussion of the activities identified that must be put in place to train workers. The paper will also provide a framework to address issues raised from each of the education and industry sectors, identifying a roadmap for developing an educational infrastructure to support wind technology. The presentation will also provide an understanding of the available resources, materials, and programs available across the industry. This presentation provides an overview of the educational infrastructure and expected industry needs to support the continued development of a vibrant U.S. wind industry as part of a collaborative effort to develop a wind workforce roadmap. This presentation will provide 1) A review of needed programs to train workers for the wind industry; 2) An overview of the importance education will play if the nation is to expand wind energy (both in development and deployment terms) and a review of ongoing activities with a focus on federal efforts; 3) A review of the materials and resources available across the industry and a framework to address issues raised from each of the education and industry sectors.

  8. Managing Increased Charging Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Increased Charging Demand Carrie Giles ICF International, Supporting the Workplace Charging Challenge Workplace Charging Challenge Do you already own an EV? Are you...

  9. Does Deinstitutionalization Increase Suicide?

    E-Print Network [OSTI]

    Yoon, Jangho; Bruckner, Tim A

    2009-01-01

    RESEARCH ARTICLE Does Deinstitutionalization IncreaseHowever, the literature does not support this notion ofsupply. If privatization does not influence the availability

  10. Renewable Electricity Use by the U.S. Information and Communication Technology (ICT) Industry

    SciTech Connect (OSTI)

    Miller, John; Bird, Lori; Heeter, Jenny; Gorham, Bethany

    2015-07-20

    The information and communication technology (ICT) sector continues to witness rapid growth and uptake of ICT equipment and services at both the national and global levels. The electricity consumption associated with this expansion is substantial, although recent adoptions of cloudcomputing services, co-location data centers, and other less energy-intensive equipment and operations have likely reduced the rate of growth in this sector. This paper is intended to aggregate existing ICT industry data and research to provide an initial look at electricity use, current and future renewable electricity acquisition, as well as serve as a benchmark for future growth and trends in ICT industry renewable electricity consumption.

  11. Midwest Industrial Energy Efficiency Handbook

    SciTech Connect (OSTI)

    2010-06-25

    This Industrial Technologies Program handbook connects industry with the various energy efficiency resources available in the midwest.

  12. Industry Research and Recommendations for New Commercial Buildings

    SciTech Connect (OSTI)

    Hendron, B.; Leach, M.; Gregory, N.; Pless, S.; Selkowitz, S.; Matthew, P.

    2014-05-01

    Researchers evaluated industry needs and developed logic models to support possible future commercial new construction research and deployment efforts that could be led or supported by DOE's Commercial Building Integration program or other national initiatives. The authors believe that these recommendations support a proposed course of action from the current state of commercial building energy efficiency to a possible long-term goal of achieving significant market penetration of cost-effective NZE buildings in all building sectors and climates by 2030.

  13. Industrial Energy Efficiency: Designing Effective State Programs for the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014 | Department of Energy TargetedAboutIndustrial Sector

  14. Prospects for the power sector in nine developing countries

    SciTech Connect (OSTI)

    Meyers, S.; Goldman, N.; Martin, N.; Friedmann, R.

    1993-04-01

    Based on information drawn primarily from official planning documents issued by national governments and/or utilities, the authors examined the outlook for the power sector in the year 2000 in nine countries: China, India, Indonesia, Thailand, the Philippines, South Korea, Taiwan, Argentina and Mexico. They found that the implicit rates of average annual growth of installed electric power capacity between 1991 and 2001 range from a low of 3.3% per year in Argentina to a high of 13.2% per year in Indonesia. In absolute terms, China and India account for the vast majority of the growth. The plans call for a shift in the generating mix towards coal in six of the countries, and continued strong reliance on coal in China and India. The use of natural gas is expected to increase substantially in a number of the countries. The historic movement away from oil continues, although some countries are maintaining dual-fuel capabilities. Plans call for considerable growth of nuclear power in South Korea and China and modest increases in India and Taiwan. The feasibility of the official plans varies among the countries. Lack of public capital is leading towards greater reliance on private sector participation in power projects in many of the countries. Environmental issues are becoming a more significant constraint than in the past, particularly in the case of large-scale hydropower projects. The financial and environmental constraints are leading to a rising interest in methods of improving the efficiency of electricity supply and end use. The scale of such activities is growing in most of the study countries.

  15. High Penetration of Renewable Energy in the Transportation Sector: Scenarios, Barriers, and Enablers; Preprint

    SciTech Connect (OSTI)

    Vimmerstedt, L.; Brown, A.; Heath, G.; Mai, T.; Ruth, M.; Melaina, M.; Simpkins, T.; Steward, D.; Warner, E.; Bertram, K.; Plotkin, S.; Patel, D.; Stephens, T.; Vyas, A.

    2012-06-01

    Transportation accounts for 71% of U.S. petroleum use and 33% of its greenhouse gases emissions. Pathways toward reduced greenhouse gas emissions and petroleum dependence in the transportation sector have been analyzed in considerable detail, but with some limitations. To add to this knowledge, the U.S. Department of Energy has launched a study focused on underexplored greenhouse-gas-abatement and oil-savings opportunities related to transportation. This Transportation Energy Futures study analyzes specific issues and associated key questions to strengthen the existing knowledge base and help cultivate partnerships among federal agencies, state and local governments, and industry.

  16. Biofuels in the U.S. Transportation Sector (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Sustained high world oil prices and the passage of the Energy Policy Act 2005 (EPACT) have encouraged the use of agriculture-based ethanol and biodiesel in the transportation sector; however, both the continued growth of the biofuels industry and the long-term market potential for biofuels depend on the resolution of critical issues that influence the supply of and demand for biofuels. For each of the major biofuelscorn-based ethanol, cellulosic ethanol, and biodieselresolution of technical, economic, and regulatory issues remains critical to further development of biofuels in the United States.

  17. Assessment of industrial attitudes toward generic research needs in tribology

    SciTech Connect (OSTI)

    Sibley, L.B.; Zlotnick, M.; Levinson, T.M.

    1985-09-01

    Based on extended discussions during visits with 27 companies representing 13 different parts of the tribology industry (such as bearings, lubricants, coatings, powerplants), it is apparent that only a tiny fraction of the large sums publicly reported as R and D expenditures by industry are used to fund generic tribology research. For example, of the greater than $2 B expenditures reported for R and D in the lubricants sector for 1982, the estimated total for generic tribology research was $12 M. This was the largest expenditure in any sector of the tribology industry and one-third of the total of $36 M. In the automotive industry out of a reported expenditure of $4 B, the estimated generic tribology research was $3 M. In some segments of the tribology industry, for example coatings and filters, there were no expenditures on generic research. There was little tendency to improve the state of the art of the tribology industry through long-term investment in generic R and D in ways that would foster innovation and productivity of energy conservation technology. Expenditures were oriented to development of specific commercial and military products, or to basic research focused on unspecified far term results, although useful spin-off of military developments into commercial fields sometimes occurs. There was a broad consensus in the companies visited that existing research results were not always made easily accessible to potential users in industry. The implication was that industry might benefit more if a larger fraction of the funds were devoted to putting the research results into a form design and development engineers could more readily apply. The need for a more effective presentation of research results was expressed with greater urgency at the smaller companies, but there seemed to be a broad consensus on the need for improvement. Recommendations are given.

  18. DOE Issues Energy Sector Cyber Organization NOI

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pStateDOE Federal Aviation Professional|CertifyNational Energy Sector

  19. Spain`s uranium industry

    SciTech Connect (OSTI)

    Ferguson, M.P.

    1992-05-01

    Spain currently operates nine nuclear reactors totalling over 7,100 MWe of capacity, contributing about one-third of all electricity generated in Spain. Four reactors at advanced stages of construction remain mothballed as the result of a government-imposed moratorium, and a fire at Vandellos 1 in 1989 led to its premature closure and to a revival of anti-nuclear sentiment in the country. In the new national energy plan, which was sent to the Spanish Parliament on July 25, 1991, Spain opted to continue the nuclear moratorium that began in 1984 and rely upon conservation measures, additional natural gas imports, and electricity imports to meet expected demand. Under the new plan, nuclear power`s share of Spain`s total installed electrical generating capacity will fall from about 17 percent in 1990, to approximately 14 percent by the end of the century, as only the current nuclear facilities will continue to operate and no new nuclear plants will be built. Spain`s integration into the European Community also is affecting the country`s energy plans, prompting consolidation within the Spanish electricity sector in order to be more competitive in Europe. To supply the existing reactors, the government is supporting a major expansion of the country`s domestic uranium industry.

  20. New York Marcellus Shale: Industry boom put on hold

    SciTech Connect (OSTI)

    Mercurio, Angelique

    2012-01-16

    Key catalysts for Marcellus Shale drilling in New York were identified. New York remains the only state in the nation with a legislative moratorium on high-volume hydraulic fracturing, as regulators and state lawmakers work to balance the advantages of potential economic benefits while protecting public drinking water resources and the environment. New York is being particularly careful to work on implementing sufficiently strict regulations to mitigate the environmental impacts Pennsylvania has already seen, such as methane gas releases, fracturing fluid releases, flowback water and brine controls, and total dissolved solids discharges. In addition to economic and environmental lessons learned, the New York Department of Environmental Conservation (DEC) also acknowledges impacts to housing markets, security, and other local issues, and may impose stringent measures to mitigate potential risks to local communities. Despite the moratorium, New York has the opportunity to take advantage of increased capital investment, tax revenue generation, and job creation opportunities by increasing shale gas activity. The combination of economic benefits, industry pressure, and recent technological advances will drive the pursuit of natural gas drilling in New York. We identify four principal catalysts as follows: Catalyst 1: Pressure from Within the State. Although high-volume hydraulic fracturing has become a nationally controversial technology, shale fracturing activity is common in every U.S. state except New York. The regulatory process has delayed potential economic opportunities for state and local economies, as well as many industry stakeholders. In 2010, shale gas production accounted for $18.6 billion in federal royalty and local, state, and federal tax revenues. (1) This is expected to continue to grow substantially. The DEC is under increased pressure to open the state to the same opportunities that Alabama, Arkansas, California, Colorado, Kansas, Louisiana, Montana, New Mexico, North Dakota, Ohio, Oklahoma, Pennsylvania, South Dakota, Texas, Utah, West Virginia, and Wyoming are pursuing. Positive labor market impacts are another major economic draw. According to the Revised Draft SGEIS on the Oil, Gas and Solution Mining Regulatory Program (September 2011), hydraulic fracturing would create between 4,408 and 17,634 full-time equivalent (FTE) direct construction jobs in New York State. Indirect employment in other sectors would add an additional 29,174 FTE jobs. Furthermore, the SGEIS analysis suggests that drilling activities could add an estimated $621.9 million to $2.5 billion in employee earnings (direct and indirect) per year, depending upon how much of the shale is developed. The state would also receive direct tax receipts from leasing land, and has the potential to see an increase in generated indirect revenue. Estimates range from $31 million to $125 million per year in personal income tax receipts, and local governments would benefit from revenue sharing. Some landowner groups say the continued delay in drilling is costing tens of thousands of jobs and millions of dollars in growth for New York, especially in the economically stunted upstate. A number of New York counties near Pennsylvania, such as Chemung, NY, have experienced economic uptick from Pennsylvania drilling activity just across the border. Chemung officials reported that approximately 1,300 county residents are currently employed by the drilling industry in Pennsylvania. The Marcellus shale boom is expected to continue over the next decade and beyond. By 2015, gas drilling activity could bring 20,000 jobs to New York State alone. Other states, such as Pennsylvania and West Virginia, are also expected to see a significant increase in the number of jobs. Catalyst 2: Political Reality of the Moratorium. Oil and gas drilling has taken place in New York since the 19th century, and it remains an important industry with more than 13,000 currently active wells. The use of hydraulic fracturing in particular has been employed for decades. Yet, as technological

  1. Using Plate Heat Exchangers to Increase Energy Efficiency 

    E-Print Network [OSTI]

    Bailey, K.

    1999-01-01

    "In recent years, there has been an increasing awareness of Plate Heat Exchangers (PHE's) in industrial processes around the world. While PHE's have historically been classified as compact heat exchangers, compactness is often a secondary advantage...

  2. The Private Dimension in the Regulation of Nanotechnologies: Developments in the Industrial Chemicals Sector

    E-Print Network [OSTI]

    Bowman, Diana M.; Gilligan, George

    2010-01-01

    as the "As Low As Reasonably Achievable" (ALARA) principle.The ALARA approach has been designed as a way to minimise

  3. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    97 Figure 33. Trend in Steel Production and Consumption in99 Figure 36. Ammonia Production and Consumption33. Trend in Steel Production and Consumption in India Steel

  4. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    CEA 2006. All India Electricity Statistics - General ReviewCEA 2006. All India Electricity Statistics - General ReviewMOSPI), India, 2007, “Energy Statistics, 2005-06”, New

  5. Electric Power Interruption Cost Estimates for Individual Industries, Sectors, and U.S. Economy

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Roop, Joseph M.; Schienbein, Lawrence A.; DeSteese, John G.; Weimar, Mark R.

    2002-02-27

    During the last 20 years, utilities and researchers have begun to understand the value in the collection and analysis of interruption cost data. The continued investigation of the monetary impact of power outages will facilitate the advancement of the analytical methods used to measure the costs and benefits from the perspective of the energy consumer. More in-depth analysis may be warranted because of the privatization and deregulation of power utilities, price instability in certain regions of the U.S. and the continued evolution of alternative auxiliary power systems.

  6. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    100 Table 33. LPG allocation and intensity by buildingIRR ISP ISP Kg Kt kWh kWh/t LPG MBN MDEA MOS MOSPI MRPL Mtto run equipment and lights, LPG used for water heating and

  7. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    producing cement. The best energy consumption achieved by anZhou Nan. “World Best Practice Energy Intensity Values forZhou Nan. “World Best Practice Energy Intensity Values for

  8. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    Finished Steel A. Blast Furnace - Oxygen Blown Converters 1.Reduction (natural gas) - Electric Furnace (ISP only) C.Reduction (coal) - Electric Furnace 1. Integrated Steel

  9. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    31 Figure 14. CO2 Abatement Cost curve for Small Indian57 Figure 21. CO2 Abatement Cost Curve for Cement66 Figure 24. CO2 Abatement Cost Curve for Fertilizer

  10. A State Regulator's View of 'PURPA' And Its Impact on Energy Conservation in the Industrial Sector 

    E-Print Network [OSTI]

    Williams, M. L.

    1981-01-01

    The purpose of my comments this afternoon is to share with you my views concerning the status of the Public Utility Regulatory Policies Act (PURPA), and how some of the rate standards contained in the Act may affect energy conservation...

  11. Electric Power Interruption Cost Estimates for Individual Industries, Sectors, and the U.S. Economy 

    E-Print Network [OSTI]

    Balducci, P. J.; Roop, J. M.; Schienbein, L. A.; DeSteese, J. G.; Weimar, M. R.

    2003-01-01

    . Interruption cost estimates are presented as a function of outage duration (e.g., 20 minutes, 1-hour, 3-hour), and are normalized in terms of dollars per peak kW....

  12. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    TERI, 2007. “TERI Energy Data Directory and Yearbook”, TataTERI, 2007. “TERI Energy Data Directory and Yearbook”, TataEnergy data ..

  13. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    of medium / poor coking coals (i.e. Partial Briquetting andNevertheless, the Indian non-coking coals, suitable for SSI,blast furnaces require coking coal that is mostly imported.

  14. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    and Sathaye, 2008. “India Energy Outlook: End Use Demand inand Sathaye, 2008. “India Energy Outlook: End Use Demand inand Sathaye, 2008. “India Energy Outlook: End Use Demand in

  15. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    Years C. Hot Stove Waste Heat Recovery F. Coke Dry Quenchingheat integration and heat recovery in old Indian plants hasinnovative low grade heat recovery systems to be implemented

  16. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    Years C. Hot Stove Waste Heat Recovery F. Coke Dry Quenchingcontroller unit, and heat recovery. Annex 11 shows a list ofHeat Integration Heat Recovery Insulation Maintenance

  17. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    and Stamp Charging). Maximum Recovery of Coke Oven GasUsing Coke Oven Gas for achieving higher blast temperatureA. Automatic Ignition of Coke Oven Gas Flare Units Equipped

  18. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    plants are rarely cogeneration plants and generally use coalelectricity in cogeneration power plants fueled by refinerythese plants. Electricity and heat generated by cogeneration

  19. Model Documentation Report: Industrial Sector Demand Module of the National Energy Modeling System

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19FuelYear JanFeet) Working4) Model

  20. Policy modeling for industrial energy use

    SciTech Connect (OSTI)

    Worrell, Ernst; Park, Hi-Chun; Lee, Sang-Gon; Jung, Yonghun; Kato, Hiroyuki; Ramesohl, Stephan; Boyd, Gale; Eichhammer, Wolfgang; Nyboer, John; Jaccard, Mark; Nordqvist, Joakim; Boyd, Christopher; Klee, Howard; Anglani, Norma; Biermans, Gijs

    2003-03-01

    The international workshop on Policy Modeling for Industrial Energy Use was jointly organized by EETA (Professional Network for Engineering Economic Technology Analysis) and INEDIS (International Network for Energy Demand Analysis in the Industrial Sector). The workshop has helped to layout the needs and challenges to include policy more explicitly in energy-efficiency modeling. The current state-of-the-art models have a proven track record in forecasting future trends under conditions similar to those faced in the recent past. However, the future of energy policy in a climate-restrained world is likely to demand different and additional services to be provided by energy modelers. In this workshop some of the international models used to make energy consumption forecasts have been discussed as well as innovations to enable the modeling of policy scenarios. This was followed by the discussion of future challenges, new insights in the data needed to determine the inputs into energy model s, and methods to incorporate decision making and policy in the models. Based on the discussion the workshop participants came to the following conclusions and recommendations: Current energy models are already complex, and it is already difficult to collect the model inputs. Hence, new approaches should be transparent and not lead to extremely complex models that try to ''do everything''. The model structure will be determined by the questions that need to be answered. A good understanding of the decision making framework of policy makers and clear communication on the needs are essential to make any future energy modeling effort successful. There is a need to better understand the effects of policy on future energy use, emissions and the economy. To allow the inclusion of policy instruments in models, evaluation of programs and instruments is essential, and need to be included in the policy instrument design. Increased efforts are needed to better understand the effects of innovative (no n-monetary) policy instruments through evaluation and to develop approaches to model both conventional and innovative policies. The explicit modeling of barriers and decision making in the models seems a promising way to enable modeling of conventional and innovative policies. A modular modeling approach is essential to not only provide transparency, but also to use the available resources most effectively and efficiently. Many large models have been developed in the past, but have been abandoned after only brief periods of use. A development path based on modular building blocks needs the establishment of a flexible but uniform modeling framework. The leadership of international agencies and organizations is essential in the establishment of such a framework. A preference is given for ''softlinks'' between different modules and models, to increase transparency and reduce complexity. There is a strong need to improve the efficiency of data collection and interpretation efforts to produce reliable model inputs. The workshop participants support the need for the establishment of an (in-)formal exchanges of information, as well as modeling approaches. The development of an informal network of research institutes and universities to help build a common dataset and exchange ideas on specific areas is proposed. Starting with an exchange of students would be a relative low-cost way to start such collaboration. It would be essential to focus on specific topics. It is also essential to maintain means of regular exchange of ideas between researchers in the different focus points.

  1. Steam Path Audits on Industrial Steam Turbines 

    E-Print Network [OSTI]

    Mitchell, D. R.

    1992-01-01

    on Industrial steam Turbines DOUGLAS R. MITCHELL. ENGINEER. ENCOTECH, INC., SCHENECTADY, NEW YORK ABSTRACT The electric utility industry has benefitted from steam path audits on steam turbines for several years. Benefits include the ability to identify... areas of performance degradation during a turbine outage. Repair priorities can then be set in accordance with quantitative results from the steam path audit. As a result of optimized repair decisions, turbine efficiency increases, emissions...

  2. CASL - Industry Council

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Member round Robin Discussion and New Action items Organization Senior Leadership Technical Leadership Outreach Board of Directors Industry Council Science Council One-Roof Culture...

  3. CASL - Industry Council Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 March 17, 2015 Upcoming Meeting Information Organization Senior Leadership Technical Leadership Outreach Board of Directors Industry Council Science Council One-Roof Culture...

  4. Presentations for Industry

    Broader source: Energy.gov [DOE]

    Learn energy-saving strategies from leading manufacturing companies and energy experts. The presentations are organized below by topic area. In addition, industrial energy managers, utilities, and...

  5. About Industrial Distributed Energy

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office's (AMO's) Industrial Distributed Energy activities build on the success of predecessor DOE programs on distributed energy and combined heat and power (CHP) while...

  6. Lepton sector of a fourth generation

    SciTech Connect (OSTI)

    Burdman, G. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States); Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil); Da Rold, L. [Centro Atomico Bariloche, Bariloche (Argentina); Matheus, R. D. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil)

    2010-09-01

    In extensions of the standard model with a heavy fourth generation, one important question is what makes the fourth-generation lepton sector, particularly the neutrinos, so different from the lighter three generations. We study this question in the context of models of electroweak symmetry breaking in warped extra dimensions, where the flavor hierarchy is generated by choosing the localization of the zero-mode fermions in the extra dimension. In this setup the Higgs sector is localized near the infrared brane, whereas the Majorana mass term is localized at the ultraviolet brane. As a result, light neutrinos are almost entirely Majorana particles, whereas the fourth-generation neutrino is mostly a Dirac fermion. We show that it is possible to obtain heavy fourth-generation leptons in regions of parameter space where the light neutrino masses and mixings are compatible with observation. We study the impact of these bounds, as well as the ones from lepton flavor violation, on the phenomenology of these models.

  7. Hidden sector DM models and Higgs physics

    SciTech Connect (OSTI)

    Ko, P.

    2014-06-24

    We present an extension of the standard model to dark sector with an unbroken local dark U(1){sub X} symmetry. Including various singlet portal interactions provided by the standard model Higgs, right-handed neutrinos and kinetic mixing, we show that the model can address most of phenomenological issues (inflation, neutrino mass and mixing, baryon number asymmetry, dark matter, direct/indirect dark matter searches, some scale scale puzzles of the standard collisionless cold dark matter, vacuum stability of the standard model Higgs potential, dark radiation) and be regarded as an alternative to the standard model. The Higgs signal strength is equal to one as in the standard model for unbroken U(1){sub X} case with a scalar dark matter, but it could be less than one independent of decay channels if the dark matter is a dark sector fermion or if U(1){sub X} is spontaneously broken, because of a mixing with a new neutral scalar boson in the models.

  8. Sensitivity analysis of conservation opportunities in the irrigated agriculture sector of the Pacific Northwest

    SciTech Connect (OSTI)

    Harrer, B.J.

    1985-07-01

    This report summarizes the results of a sensitivity analysis of the cost effectiveness and energy-savings potential of conservation measures in the irrigation sector of the Pacific Northwest. This study examines the sensitivity of estimates of the cost effectiveness and energy-savings potential of conservation measures in the irrigation sector generated in a previous study (Harrer et al. 1985c) to changes in various types of input data parameters: reductions in purchase, installation and operating/maintenance costs for irrigation-sector conservation measures. Increases in the amounts of irrigation pumping head savings that would result from the use of the measures were also implemented in the sensitivity analysis. The assumptions used in the sensitivity analysis cause the analysis to represent a ''best-case'' scenario for the amount of energy that can potentially be saved through the implementation of irrigation-sector conservation measures in the Pacific Northwest and the costs per kWh saved for obtaining these savings. Under these ''best-case'' assumptions, it is estimated that approximately 207 average megawatts of electricity can potentially be saved by the year 2003 through the implementation of low-pressure irrigation, pump fittings redesign, increases in mainline size, and improved irrigation scheduling on new and existing irrigated acres. The majority of these savings (70%) can be obtained for a cost of 20 mills per kWh saved or less.

  9. Detection and Analysis of Threats to the Energy Sector: DATES

    SciTech Connect (OSTI)

    Alfonso Valdes

    2010-03-31

    This report summarizes Detection and Analysis of Threats to the Energy Sector (DATES), a project sponsored by the United States Department of Energy and performed by a team led by SRI International, with collaboration from Sandia National Laboratories, ArcSight, Inc., and Invensys Process Systems. DATES sought to advance the state of the practice in intrusion detection and situational awareness with respect to cyber attacks in energy systems. This was achieved through adaptation of detection algorithms for process systems as well as development of novel anomaly detection techniques suited for such systems into a detection suite. These detection components, together with third-party commercial security systems, were interfaced with the commercial Security Information Event Management (SIEM) solution from ArcSight. The efficacy of the integrated solution was demonstrated on two testbeds, one based on a Distributed Control System (DCS) from Invensys, and the other based on the Virtual Control System Environment (VCSE) from Sandia. These achievements advance the DOE Cybersecurity Roadmap [DOE2006] goals in the area of security monitoring. The project ran from October 2007 until March 2010, with the final six months focused on experimentation. In the validation phase, team members from SRI and Sandia coupled the two test environments and carried out a number of distributed and cross-site attacks against various points in one or both testbeds. Alert messages from the distributed, heterogeneous detection components were correlated using the ArcSight SIEM platform, providing within-site and cross-site views of the attacks. In particular, the team demonstrated detection and visualization of network zone traversal and denial-of-service attacks. These capabilities were presented to the DistribuTech Conference and Exhibition in March 2010. The project was hampered by interruption of funding due to continuing resolution issues and agreement on cost share for four months in 2008. This resulted in delays in finalizing agreements with commercial partners, and in particular the Invensys testbed was not installed until December 2008 (as opposed to the March 2008 plan). The project resulted in a number of conference presentations and publications, and was well received when presented at industry forums. In spite of some interest on the part of the utility sector, we were unfortunately not able to engage a utility for a full-scale pilot deployment.

  10. 25 August 2015 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER -FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP

    E-Print Network [OSTI]

    / FORESTY PRODUCTS INTEREST GROUP 1 Growing consumption of pulp and paper in India has increased the demand for wood fiber for the domestic pulp industry in the country, reports the Wood Resource Quarterly of domestic forest resources has forced the pulp industry in India to increasingly rely on hardwood chips from

  11. The Effectiveness and The Goals of Foreign Aid: An Empirical Examination of Sectoral Aid’s Influence on Mitigating Conflicts and Violence 

    E-Print Network [OSTI]

    Zhang, Yu

    2012-10-19

    developing countries from 2002 to 2010. It shows that agricultural aid can significantly reduce conflict, and aid for food security can significantly mitigate violence. Aid for some sectors will increase conflict/violence. Finally I use directed acyclic...

  12. NGV industry infrastructure

    SciTech Connect (OSTI)

    Not Available

    1984-12-01

    Current natural gas vehicle (NGV) technology faces a number of problems that must be overcome before vehicles powered by compressed natural gas become accepted in the US. Among these impediments are regulatory uncertainties, codes, standards and the NGV industry infrastructure itself. The marketing/supply infrastructure necessary to support the NGV industry is described.

  13. and Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    45 Mechanical and Industrial Engineering 220 Engineering Lab Degrees: Bachelor of Science in Mechanical Engineering Bachelor of Science in Industrial Engineering Contact: James R. Rinderle, Undergraduate Program Director Office: 207C Engineering Lab Building Phone: (413) 545-2505 Head of Department

  14. Uranium industry annual 1996

    SciTech Connect (OSTI)

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  15. Posted 3/2/13 Medline Industries Industrial Engineer

    E-Print Network [OSTI]

    Heller, Barbara

    Posted 3/2/13 Medline Industries ­ Industrial Engineer Medline Industries, Inc. has an immediate opening for an Industrial Engineer for our SPT Division located in Waukegan, IL. We are seeking a hard-working, detail-oriented professional with experience in industrial engineering and lean manufacturing within

  16. INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering

    E-Print Network [OSTI]

    Rohs, Remo

    78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take · Industrial and Systems Engineering Bachelor of Science 128 units · Industrial and Systems Engineering

  17. INDUSTRIAL & SYSTEMS Industrial and Systems engineers use engineering

    E-Print Network [OSTI]

    Rohs, Remo

    78 INDUSTRIAL & SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in todays global marketplace. The Industrial and Systems engineers task is to take limited Industrial and Systems Engineering Bachelor of Science 128 units Industrial and Systems Engineering

  18. INDUSTRIAL&SYSTEMS Industrial and Systems engineers use

    E-Print Network [OSTI]

    Rohs, Remo

    78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take · Industrial and Systems Engineering Bachelor of Science 128 units · Industrial and Systems Engineering

  19. Energy-Efficiency Improvement Opportunities for the Textile Industry

    SciTech Connect (OSTI)

    China Energy Group; Hasanbeigi, Ali

    2010-09-29

    The textile industry is one of the most complicated manufacturing industries because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. Especially in times of high energy price volatility, improving energy efficiency should be a primary concern for textile plants. There are various energy-efficiency opportunities that exist in every textile plant, many of which are cost-effective. However, even cost-effective options often are not implemented in textile plants mostly because of limited information on how to implement energy-efficiency measures, especially given the fact that a majority of textile plants are categorized as SMEs and hence they have limited resources to acquire this information. Know-how on energy-efficiency technologies and practices should, therefore, be prepared and disseminated to textile plants. This guidebook provides information on energy-efficiency technologies and measures applicable to the textile industry. The guidebook includes case studies from textile plants around the world and includes energy savings and cost information when available. First, the guidebook gives a brief overview of the textile industry around the world, with an explanation of major textile processes. An analysis of the type and the share of energy used in different textile processes is also included in the guidebook. Subsequently, energy-efficiency improvement opportunities available within some of the major textile sub-sectors are given with a brief explanation of each measure. The conclusion includes a short section dedicated to highlighting a few emerging technologies in the textile industry as well as the potential for the use of renewable energy in the textile industry.

  20. The state of the United States cogeneration industry from a developer perspective

    SciTech Connect (OSTI)

    Nielsen, W.E.

    1996-12-31

    The paper presents opinions regarding the future of the cogeneration industry in the U.S. Background information on the non-utility U.S. power industry is summarized. The future of the wholesale electric markets and deregulation of the generation sector is discussed. The future of the retail market is related to issues of open access, stranded investment, and power marketing. A new growth period, spurred by deregulation, is predicted for U.S. cogeneration developers.

  1. The Public Utility and Industry: A Customer- Supplier Relationship for Long-Term Survival 

    E-Print Network [OSTI]

    Janson, J. R.

    1990-01-01

    AND INDUSTRY: A CUSTOMER-SUPPLIER RELATIONSHIP FOR LONG-TERM SURVIVAL JAMES R. JANSON Superintendent of Utilities Vulcan Chemicals Geismar, Louisiana ABSTRACT other was due to better quality products than we as a nation could produce. The entire... people feel they are involved in the total process. How does all of this relate to the utility and industrial sector of the business community? As mentioned previously, the five points to improve an organization can bring about a customer-supplier...

  2. INDUSTRY REVIEW B Y P E T E R J . I N C E , U S D A F O R E S T S E R V I C E

    E-Print Network [OSTI]

    products. The pulp and paper industry is also about twice as large as the lumber and other wood products industries, the for- tunes of the U.S. pulp and pa- per industry are now closely tied to the global economy. The U.S. pulp and paper sector exhibits fairly steady production and growth trends, but its economic

  3. Spain's marketing sector seeing more changes

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    This paper reports that Spain's petroleum marketing sector continues to restructure. Partly state owned Repsol SA and Royal Dutch/Shell Group are discussing supplying each other's retail outlets in the UK and Spain. And Portugal's state owned Petroleos de Portugal (Petrogal), seeking to sharply expand retail operations in Spain, complains of government interference with foreign investment in Spanish marketing. Meantime, Conoco Inc. Has agreed with Saras SpA Raffinerie Sarde, Milan, to set up a network of service stations in northern Spain and Portugal at a cost of 100 billion pesetas (%972 million). The two are considering building an oil terminal at the port city of Gijon in Asturias, Spain, and the Exxon Corp., Total, and Shell are interested in participating in the project.

  4. Utility Sector Impacts of Reduced Electricity Demand

    SciTech Connect (OSTI)

    Coughlin, Katie

    2014-12-01

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  5. Interacting vacuum energy in the dark sector

    SciTech Connect (OSTI)

    Chimento, L. P.; Carneiro, S.

    2015-03-26

    We analyse three cosmological scenarios with interaction in the dark sector, which are particular cases of a general expression for the energy flux from vacuum to matter. In the first case the interaction leads to a transition from an unstable de Sitter phase to a radiation dominated universe, avoiding in this way the initial singularity. In the second case the interaction gives rise to a slow-roll power-law inflation. Finally, the third scenario is a concordance model for the late-time universe, with the vacuum term decaying into cold dark matter. We identify the physics behind these forms of interaction and show that they can be described as particular types of the modified Chaplygin gas.

  6. Solar Photovoltaic Financing: Residential Sector Deployment

    SciTech Connect (OSTI)

    Coughlin, J.; Cory, K.

    2009-03-01

    This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the commercial sector. Together, these mechanisms are critical for making the economic case for a residential PV installation, given its high upfront costs. Unfortunately, these programs are presently limited to select locations around the country. By calling attention to these innovative initiatives, this report aims to help policy makers consider greater adoption of these models to benefit homeowners interested installing a residential PV system.

  7. CP nonconservation in the leptonic sector

    E-Print Network [OSTI]

    Petre Dita

    2006-09-22

    In this paper we use an exact method to impose unitarity on moduli of the neutrino PMNS matrix recently determined, and show how one could obtain information on CP non-conservation from a limited experimental information. One suggests a novel type of global fit by expressing all the theoretical quantities in terms of convention independent parameters: the Jarlskog invariant $J$ and the moduli $|U_{\\alpha i}|$, able to resolve the positivity problem of $|U_{e 3}|$. In this way the fit will directly provide a value for $J$, and if it is different from zero it will prove the existence of CP violation in the available experimental data. If the best fit result, $|U_{e3}|^2<0$, from M. Maltoni {\\em et al}, New J.Phys. {\\bf 6} (2004) 122 is confirmed, it will imply a new physics in the leptonic sector.

  8. CP nonconservation in the leptonic sector

    E-Print Network [OSTI]

    Petre Dita

    2011-01-21

    In this paper we use an exact method to impose unitarity on moduli of neutrino PMNS matrix recently determined, and show how one could obtain information on CP nonconservation from a limited experimental information. One suggests a novel type of global fit by expressing all theoretical quantities in terms of convention independent parameters: the Jarlskog invariant $J$ and the moduli $|U_{\\alpha i}|$, able to resolve the positivity problem of $|U_{e 3}|$. In this way the fit will directly provide a value for $J$, and if it is different from zero it will prove the existence of CP violation in the available experimental data. If the best fit result, $|U_{e3}|^2<0$, from M. Maltoni {\\em et al}, [New J.Phys. {\\bf 6} (2004) 122] is confirmed, it will imply a new physics in the leptonic sector.

  9. Notice of Public Comment on Electricity Sector Cybersecurity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Public Comment on Electricity Sector Cybersecurity Risk Management Process Guideline: Federal Register Notice Volume 76, No. 180 - Sep. 16, 2011 Notice of Public Comment on...

  10. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    Sectoral Trends in Global Energy Use and Greenhouse Gasto Development of Long-Term Energy Demand Scenarios forto Development of Long-Term Energy Demand Scenarios for

  11. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    Sectoral Trends and Future Outlook Nan Zhou, Michael A.2001, International Energy Outlook 2001 , Report No. DOE/The International Energy Outlook 2006 (IEO2006) , Washington

  12. Private Sector Outreach and Partnerships | Department of Energy

    Office of Environmental Management (EM)

    the sector, including electricity, oil, and natural gas. Specific mission areas, such as risk and system analysis, modeling and visualization across subsectors, and incident...

  13. Mexico Sectoral Study on Climate and Refrigeration Technology...

    Open Energy Info (EERE)

    Mexico Sectoral Study on Climate and Refrigeration Technology in Developing Countries and the Development of Methods and Instruments for Identifying Reduction Potential and...

  14. Photonic portal to the hidden sector and the electroweak symmetry

    E-Print Network [OSTI]

    Wojciech Krolikowski

    2009-05-25

    A weak photon interaction with the hidden sector of the Universe, introduced recently to realize a "photonic portal", (to such a hypothetic sector responsible for cold dark matter), is conjectured to be embedded in a more extended weak interaction displaying electroweak symmetry spontaneously broken by the Standard-Model Higgs mechanism. This is a hypothetic new weak interaction between hidden and Standard-Model sectors of the Universe, appearing in our model in addition to the conventional electroweak interaction acting in the Standard-Model sector.

  15. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    of Labor Statistics. Energy Efficiency Services Sector:DC. American Council for an Energy Efficient Economy. EnergyAmerican Council for an Energy-Efficient Economy. Eto, J. ,

  16. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    of Labor Statistics. Energy Efficiency Services Sector:Renewable Energy and Energy Efficiency: Economic Drivers forStatewide Long Term Energy Efficiency Strategic Plan. ” San

  17. Energy Data Sourcebook for the U.S. Residential Sector

    E-Print Network [OSTI]

    Wenzel, T.P.

    2010-01-01

    1987b). 2.1. Unit Energy Consumptions Data on end-use unitresidential sector energy consumption data, and typicallyNational Interim Energy Consumption Survey Data, prepared

  18. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    for nuclear energy (Prelaw 2008). Energy Efficiency ServicesEnergy Efficiency Services Sector: Workforce Size Two implementation contractor respondents mentioned defense, semiconductor, nuclear, and

  19. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    Statistics. Energy Efficiency Services Sector: WorkforceRenewable Energy and Energy Efficiency: Economic Drivers forStatewide Long Term Energy Efficiency Strategic Plan. ” San

  20. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    of Elco Technologies that provides AMI meter device managment services in the energy efficiency sector Acorn Technology Corporation Acorn Technology Corporation Miles Road...