National Library of Energy BETA

Sample records for industrial sector grows

  1. Market Report for the Industrial Sector, 2009

    SciTech Connect (OSTI)

    Sastri, Bhima; Brueske, Sabine; de los Reyes, Pamela; Jamison, Keith; Justiniano, Mauricio; Margolis, Nancy; Monfort, Joe; Raghunathan, Anand; Sabouni, Ridah

    2009-07-01

    This report provides an overview of trends in industrial-sector energy use. It focuses on some of the largest and most energy-intensive industrial subsectors and several emerging technologies that could transform key segments of industry.

  2. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  3. Voluntary agreements in the industrial sector in China

    SciTech Connect (OSTI)

    Price, Lynn; Worrell, Ernst; Sinton, Jonathan

    2003-03-31

    China faces a significant challenge in the years ahead to continue to provide essential materials and products for a rapidly-growing economy while addressing pressing environmental concerns. China's industrial sector is heavily dependent on the country's abundant, yet polluting, coal resources. While tremendous energy conservation and environmental protection achievements were realized in the industrial sector in the past, there remains a great gulf between the China's level of energy efficiency and that of the advanced countries of the world. Internationally, significant energy efficiency improvement in the industrial sector has been realized in a number of countries using an innovative policy mechanism called Voluntary Agreements. This paper describes international experience with Voluntary Agreements in the industrial sector as well as the development of a pilot program to test the use of such agreements with two steel mills in Shandong Province, China.

  4. Financing the Growing American Auto Industry | Department of...

    Office of Environmental Management (EM)

    the Growing American Auto Industry Financing the Growing American Auto Industry March 26, 2015 - 12:01am Addthis Peter W. Davidson Peter W. Davidson Former Executive Director of ...

  5. Soviet Union oil sector outlook grows bleaker still

    SciTech Connect (OSTI)

    Not Available

    1991-08-12

    This paper reports on the outlook for the U.S.S.R's oil sector which grows increasingly bleak and with it prospects for the Soviet economy. Plunging Soviet oil production and exports have analysts revising near term oil price outlooks, referring to the Soviet oil sector's self-destructing and Soviet oil production in a freefall. County NatWest, Washington, citing likely drops in Soviet oil production and exports (OGJ, Aug. 5, p. 16), has jumped its projected second half spot price for West Texas intermediate crude by about $2 to $22-23/bbl. Smith Barney, New York, forecasts WTI postings at $24-25/bbl this winter, largely because of seasonally strong world oil demand and the continued collapse in Soviet oil production. It estimates the call on oil from the Organization of Petroleum Exporting Countries at more than 25 million b/d in first quarter 1992. That would be the highest level of demand for OPEC oil since 1980, Smith Barney noted.

  6. International Energy Outlook 2016-Industrial sector energy consumption -

    Gasoline and Diesel Fuel Update (EIA)

    Energy Information Administration 7. Industrial sector energy consumption print version Overview The industrial sector uses more delivered energy [294] than any other end-use sector, consuming about 54% of the world's total delivered energy. The industrial sector can be categorized by three distinct industry types: energy-intensive manufacturing, nonenergy-intensive manufacturing, and nonmanufacturing (Table 7-1). The mix and intensity of fuels consumed in the industrial sector vary across

  7. Glass needs for a growing photovoltaics industry

    SciTech Connect (OSTI)

    Burrows, Keith; Fthenakis, Vasilis

    2015-01-01

    With the projected growth in photovoltaics, the demand for glass for the solar industry will far exceed the current supply, and thousands of new float-glass plants will have to be built to meet its needs over the next 20 years. Such expansion will provide an opportunity for the solar industry to obtain products better suited to their needs, such as low-iron glass and borosilicate glass at the lowest possible price. While there are no significant technological hurdles that would prevent the flat glass industry from meeting the solar industryís projected needs, to do so will require advance planning and substantial investments.

  8. Glass needs for a growing photovoltaics industry

    SciTech Connect (OSTI)

    Burrows, Keith; Fthenakis, Vasilis

    2014-10-18

    With the projected growth in photovoltaics, the demand for glass for the solar industry will far exceed the current supply, and thousands of new float-glass plants will have to be built to meet its needs over the next 20 years. Such expansion will provide an opportunity for the solar industry to obtain products better suited to their needs, such as low-iron glass and borosilicate glass at the lowest possible price. While there are no significant technological hurdles that would prevent the flat glass industry from meeting the solar industry’s projected needs, to do so will require advance planning and substantial investments.

  9. Fact #619: April 19, 2010 Transportation Sector Revenue by Industry |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 9: April 19, 2010 Transportation Sector Revenue by Industry Fact #619: April 19, 2010 Transportation Sector Revenue by Industry According the latest Economic Census (2002), the trucking industry is the largest contributor of revenue in the transportation sector, contributing more than one-quarter of the sectors revenue. The air industry contributes just under one-quarter, as does other transportation and support activities, which include sightseeing, couriers and

  10. Glass needs for a growing photovoltaics industry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burrows, Keith; Fthenakis, Vasilis

    2014-10-18

    With the projected growth in photovoltaics, the demand for glass for the solar industry will far exceed the current supply, and thousands of new float-glass plants will have to be built to meet its needs over the next 20 years. Such expansion will provide an opportunity for the solar industry to obtain products better suited to their needs, such as low-iron glass and borosilicate glass at the lowest possible price. While there are no significant technological hurdles that would prevent the flat glass industry from meeting the solar industry‚Äôs projected needs, to do so will require advance planning and substantialmore¬†¬Ľ investments.¬ę¬†less

  11. Training Veterans to Work in the Rapidly Growing Solar Industry |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Training Veterans to Work in the Rapidly Growing Solar Industry Training Veterans to Work in the Rapidly Growing Solar Industry June 26, 2015 - 12:40pm Addthis Training Veterans to Work in the Rapidly Growing Solar Industry Minh Le Minh Le Deputy Director, Solar Energy Technologies Office As the cost of solar energy continues to drop, it could become one of the cheapest electricity sources by 2030-and the solar job market will continue to flourish. In 2014, one out of

  12. Agricultural and Industrial Process-Heat-Market Sector workbook

    SciTech Connect (OSTI)

    Shulman, M. J.; Kannan, N. P.; deJong, D. L.

    1980-01-01

    This workbook summarizes the preliminary data and assumptions of the Agricultural and Industrial Process Heat Market Sector prepared in conjunction with the development of inputs for a National Plan for the Accelerated Commercialization of Solar Energy.

  13. Model Documentation Report: Industrial Sector Demand Module...

    Gasoline and Diesel Fuel Update (EIA)

    factors are multiplicative for all fuels which have values greater than zero and are additive otherwise. The equation for total industrial electricity consumption is below....

  14. Analysis of fuel shares in the industrial sector

    SciTech Connect (OSTI)

    Roop, J.M.; Belzer, D.B.

    1986-06-01

    These studies describe how fuel shares have changed over time; determine what factors are important in promoting fuel share changes; and project fuel shares to the year 1995 in the industrial sector. A general characterization of changes in fuel shares of four fuel types - coal, natural gas, oil and electricity - for the industrial sector is as follows. Coal as a major fuel source declined rapidly from 1958 to the early 1970s, with oil and natural gas substituting for coal. Coal's share of total fuels stabilized after the oil price shock of 1972-1973, and increased after the 1979 price shock. In the period since 1973, most industries and the industrial sector as a whole appear to freely substitute natural gas for oil, and vice versa. Throughout the period 1958-1981, the share of electricity as a fuel increased. These observations are derived from analyzing the fuel share patterns of more than 20 industries over the 24-year period 1958 to 1981.

  15. United States Industrial Sector Energy End Use Analysis

    SciTech Connect (OSTI)

    Shehabi, Arman; Morrow, William R.; Masanet, Eric

    2012-05-11

    The United States Department of Energyís (DOE) Energy Information Administration (EIA) conducts the Manufacturing Energy Consumption Survey (MECS) to provide detailed data on energy consumption in the manufacturing sector. The survey is a sample of approximately 15,000 manufacturing establishments selected from the Economic Census - Manufacturing Sector. MECS provides statistics on the consumption of energy by end uses (e.g., boilers, process, electric drives, etc.) disaggregated by North American Industry Classification System (NAICS) categories. The manufacturing sector (NAICS Sector 31-33) consists of all manufacturing establishments in the 50 States and the District of Columbia. According to the NAICS, the manufacturing sector comprises establishments engaged in the mechanical, physical, or chemical transformation of materials, substances, or components into new products. The establishments are physical facilities such as plants, factories, or mills. For many of the sectors in the MECS datasets, information is missing because the reported energy use is less than 0.5 units or BTUs, or is withheld to avoid disclosing data for individual establishments, or is withheld because the standard error is greater than 50%. We infer what the missing information likely are using several approximations techniques. First, much of the missing data can be easily calculated by adding or subtracting other values reported by MECS. If this is not possible (e.g. two data are missing), we look at historic MECS reports to help identify the breakdown of energy use in the past and assume it remained the same for the current MECS. Lastly, if historic data is also missing, we assume that 3 digit NAICS classifications predict energy use in their 4, 5, or 6 digit NAICS sub-classifications, or vice versa. Along with addressing data gaps, end use energy is disaggregated beyond the specified MECS allocations using additional industry specific energy consumption data. The result is a completed

  16. Regulatory risks paralyzing power industry while demand grows

    SciTech Connect (OSTI)

    Maize, K.; Peltier, R.

    2008-01-15

    2008 will be the year the US generation industry grapples with CO{sub 2} emission. Project developers are suddenly coal-shy, mostly flirting with new nuclear plants waiting impatiently in line for equipment manufacturers to catch up with the demand for wind turbines, and finding gas more attractive again. With no proven greenhouse gas sequestration technology on the horizon, utilities will be playing it safe with energy-efficiency ploys rather than rushing to contract for much-needed new generation.

  17. Renewable Energy Data Book Details Growing Industry in 2012 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Renewable Energy Data Book Details Growing Industry in 2012 Renewable Energy Data Book Details Growing Industry in 2012 December 4, 2013 - 12:00am Addthis The National Renewable Energy Laboratory (NREL) on November 21 released the 2012 Renewable Energy Data Book on behalf of the Energy Department's Office of Energy Efficiency and Renewable Energy. The annual report is an important assessment of U.S. energy statistics for 2012, including renewable electricity, worldwide renewable

  18. Energy use and CO2 emissions of China’s industrial sector from a global perspective

    SciTech Connect (OSTI)

    Zhou, Sheng; Kyle, G. Page; Yu, Sha; Clarke, Leon E.; Eom, Jiyong; Luckow, Patrick W.; Chaturvedi, Vaibhav; Zhang, Xiliang; Edmonds, James A.

    2013-07-10

    The industrial sector has accounted for more than 50% of China’s final energy consumption in the past 30 years. Understanding the future emissions and emissions mitigation opportunities depends on proper characterization of the present-day industrial energy use, as well as industrial demand drivers and technological opportunities in the future. Traditionally, however, integrated assessment research has handled the industrial sector of China in a highly aggregate form. In this study, we develop a technologically detailed, service-oriented representation of 11 industrial subsectors in China, and analyze a suite of scenarios of future industrial demand growth. We find that, due to anticipated saturation of China’s per-capita demands of basic industrial goods, industrial energy demand and CO2 emissions approach a plateau between 2030 and 2040, then decrease gradually. Still, without emissions mitigation policies, the industrial sector remains heavily reliant on coal, and therefore emissions-intensive. With carbon prices, we observe some degree of industrial sector electrification, deployment of CCS at large industrial point sources of CO2 emissions at low carbon prices, an increase in the share of CHP systems at industrial facilities. These technological responses amount to reductions of industrial emissions (including indirect emission from electricity) are of 24% in 2050 and 66% in 2095.

  19. Solar Photovoltaic Economic Development: Building and Growing a Local PV Industry, August 2011 (Book)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    The U.S. photovoltaic (PV) industry is forecast to grow, and it represents an opportunity for economic development and job creation in communities throughout the United States. This report helps U.S. cities evaluate economic opportunities in the PV industry. It serves as a guide for local economic development offices in evaluating their community?s competitiveness in the solar PV industry, assessing the viability of solar PV development goals, and developing strategies for recruiting and retaining PV companies to their areas.

  20. Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    SciTech Connect (OSTI)

    David Petti; J. Stephen Herring

    2010-03-01

    As described in the Department of Energy Office of Nuclear Energy‚Äôs Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled ‚ÄúEnable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors‚ÄĚ, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: ‚ÄĘ Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, ‚ÄĘ Produce hydrogen for industrial processes and transportation fuels, and ‚ÄĘ Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation‚Äôs energy

  1. Industry sector analysis, Mexico: Annual petroleum report. Export Trade Information

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    The comprehensive appraisal of the Mexican Petroleum industry was completed in July 1991. Some of the topics concerning the Mexican petroleum industry covered in the Annual Petroleum Report include: exploration efforts, oil reserves, pipelines, refining, finances, transportation, alternative energy sources, and others. The report also contains lists of petrochemicals produced in Mexico and extensive statistics on oil production and export prices.

  2. Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

  3. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    SciTech Connect (OSTI)

    Sathaye, Jayant; de la Rue du Can, Stephane; Iyer, Maithili; McNeil, Michael; Kramer, Klaas Jan; Roy, Joyashree; Roy, Moumita; Chowdhury, Shreya Roy

    2011-04-15

    This report analyzed the potential for increasing energy efficiency and reducing greenhouse gas emissions (GHGs) in the non-residential building and the industrial sectors in India. The first two sections describe the research and analysis supporting the establishment of baseline energy consumption using a bottom up approach for the non residential sector and for the industry sector respectively. The third section covers the explanation of a modeling framework where GHG emissions are projected according to a baseline scenario and alternative scenarios that account for the implementation of cleaner technology.

  4. NREL Releases Renewable Energy Data Book Detailing Growing Industry in 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - News Releases | NREL Releases Renewable Energy Data Book Detailing Growing Industry in 2012 November 21, 2013 The National Renewable Energy Laboratory (NREL) has released the 2012 Renewable Energy Data Book on behalf of the Energy Department's Office of Energy Efficiency and Renewable Energy. The annual report is an important assessment of U.S. energy statistics for 2012, including renewable electricity, worldwide renewable energy development, clean energy investments, and data on specific

  5. Designing Effective State Programs for the Industrial Sector- New SEE Action Publication

    Office of Energy Efficiency and Renewable Energy (EERE)

    The SEE Action report "Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector" provides state regulators, utilities, and other program administrators with an overview of U.S. industrial energy efficiency programs delivered by a variety of entities. The report assesses some of the key features of programs that have helped lead to success in generating increased energy savings and identifies new emerging directions in programs that might benefit from additional research and cross-discussion to promote adoption.

  6. The Importance of Natural Gas in the Industrial Sector With a Focus on Energy-Intensive Industries

    U.S. Energy Information Administration (EIA) Indexed Site

    Importance of Natural Gas in the Industrial Sector With a Focus on Energy-Intensive Industries Elizabeth Sendich February 28, 2014 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration. WORKING PAPER SERIES February 2014 Elizabeth

  7. Mitigation options for the industrial sector in Egypt

    SciTech Connect (OSTI)

    Gelil, I.A.; El-Touny, S.; Korkor, H.

    1996-12-31

    Though its contribution to the global Greenhouse gases emission is relatively small, Egypt has signed and ratified the United Nations Framework Convention on Climate Change (UN FCCC) and has been playing an active role in the international efforts to deal with such environmental challenges. Energy efficiency has been one of the main strategies that Egypt has adopted to improve environmental quality and enhance economic competitiveness. This paper highlights three initiatives currently underway to improve energy efficiency of the Egyptian industry. The first is a project that has been recently completed by OECP to assess potential GHG mitigation options available in Egypt`s oil refineries. The second initiative is an assessment of GHG mitigation potential in the Small and Medium size Enterprises (SME) in the Mediterranean city of Alexandria. The third one focuses on identifying demand side management options in some industrial electricity consumers in the same city.

  8. Analysis of energy use in building services of the industrial sector in California: A literature review and a preliminary characterization

    SciTech Connect (OSTI)

    Akbari, H.; Borgers, T.; Gadgil, A.; Sezgen, O.

    1991-04-01

    Energy use patterns in many of California's fastest-growing industries are not typical of those in the mix of industries elsewhere in the US. Many California firms operate small and medium-sized facilities, often in buildings used simultaneously or interchangeably for commercial (office, retail, warehouse) and industrial activities. In these industrial subsectors, the energy required for building services'' to provide occupant comfort and necessities (lighting, HVAC, office equipment, computers, etc.) may be at least as important as the more familiar process energy requirements -- especially for electricity and on-peak demand. In this report, published or unpublished information on energy use for building services in the industrial sector have been compiled and analyzed. Seven different sources of information and data relevant to California have been identified. Most of these are studies and/or projects sponsored by the Department of Energy, the California Energy Commission, and local utilities. The objectives of these studies were diverse: most focused on industrial energy use in general, and, in one case, the objective was to analyze energy use in commercial buildings. Only one of these studies focused directly on non-process energy use in industrial buildings. Our analysis of Northern California data for five selected industries shows that the contribution of total electricity consumption for lighting ranges from 9.5% in frozen fruits to 29.1% in instruments; for air-conditioning, it ranges from nonexistent in frozen fruits to 35% in instrument manufacturing. None of the five industries selected had significant electrical space heating. Gas space heating ranges from 5% in motor vehicles facilities to more than 58% in the instrument manufacturing industry. 15 refs., 15 figs., 9 tabs.

  9. Industrial Utility Webinar: Opportunities for Cost-Effective Energy Efficiency in the Industrial Sector

    SciTech Connect (OSTI)

    2010-01-13

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  10. International standardization in the petroleum industry status from the subsea sector

    SciTech Connect (OSTI)

    Inderberg, O.

    1995-12-01

    The use of standards in subsea production systems and how the standards should be developed has been a debate for some time in the industry. The initial standardization work springs from the work performed in the API 17 series of recommended practices and specifications. The development within this sector of the industry is still happening rapidly since it is a relative new area. The standardization effort is happening both on national, regional and international levels. This paper will give status of the international standardization ISO work ongoing in the subsea area and give some background for the work. The importance of the work to the industry will be highlighted.

  11. Consumption trend analysis in the industrial sector: Regional historical trends. Draft report (Final)

    SciTech Connect (OSTI)

    Not Available

    1981-05-01

    Data on the use of natural gas, electricity, distillate and residual fuel oil, coal, and purchased coke were collected from the United States Bureau of the Census and aggregated nationally and by Census Region. Trend profiles for each fuel and industry were developed and economic, regulatory, and regional factors contributing to these trends were examined. The recession that followed the OPEC embargo in 1973 affected the industrial sector and the heavily industrialized regions of the country most severely. Both industrial production and fuel consumption fell significantly in 1975. As production recovered, spiraling fuel prices promoted conservation efforts, and overall fuel consumption remained at pre-recession levels. From 1975 to 1977 natural gas consumption decreased in almost all the industries examined with curtailments of gas supplies contributing to this trend.

  12. Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector

    SciTech Connect (OSTI)

    Amelie Goldberg; Taylor, Robert P.; Hedman, Bruce

    2014-03-21

    This report provides state regulators, utilities, and other program administrators with an overview of U.S. industrial energy efficiency programs and assesses some of the key features of programs that have generated increased energy savings.

  13. Identifying Opportunities and Impacts of Fuel Switching in the Industrial Sector

    SciTech Connect (OSTI)

    Jain, Ramesh C.; Jamison, Keith; Thomas, Daniel E.

    2006-08-01

    The underlying purpose of this white paper is to examine fuel switching opportunities in the U.S. industrial sector and make strategic recommendations‚ÄĒleading to application of the best available technologies and development of new technologies‚ÄĒthat will introduce fuel use flexibility as an economically feasible option for plant operators, as a means to condition local fuel demands and a hedge against the local rises in fuel prices.

  14. Assessment of On-Site Power Opportunities in the Industrial Sector

    SciTech Connect (OSTI)

    Bryson, T.

    2001-10-08

    The purpose of this report is to identify the potential for on-site power generation in the U.S. industrial sector with emphasis on nine industrial groups called the ''Industries of the Future'' (IOFs) by the U.S. Department of Energy (DOE). Through its Office of Industrial Technologies (OIT), the DOE has teamed with the IOFs to develop collaborative strategies for improving productivity, global competitiveness, energy usage and environmental performance. Total purchases for electricity and steam for the IOFs are in excess of $27 billion annually. Energy-related costs are very significant for these industries. The nine industrial groups are (1) Agriculture (SIC 1); (2) Forest products; (3) Lumber and wood products (SIC 24); (4) Paper and allied products (SIC 26); (5) Mining (SIC 11, 12, 14); (6) Glass (SIC 32); (7) Petroleum (SIC 29); (8) Chemicals (SIC 28); and (9) Metals (SIC 33): Steel, Aluminum, and Metal casting. Although not currently part of the IOF program, the food industry is included in this report because of its close relationship to the agricultural industry and its success with on-site power generation. On-site generation provides an alternative means to reduce energy costs, comply with environmental regulations, and ensure a reliable power supply. On-site generation can ease congestion in the local utility's electric grid. Electric market restructuring is exacerbating the price premium for peak electricity use and for reliability, creating considerable market interest in on-site generation.

  15. Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings

    SciTech Connect (OSTI)

    Price, Lynn; Worrell, Ernst; Khrushch, Marta

    1999-09-01

    Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.

  16. ISTUM PC: industrial sector technology use model for the IBM-PC

    SciTech Connect (OSTI)

    Roop, J.M.; Kaplan, D.T.

    1984-09-01

    A project to improve and enhance the Industrial Sector Technology Use Model (ISTUM) was originated in the summer of 1983. The project had dix identifiable objectives: update the data base; improve run-time efficiency; revise the reference base case; conduct case studies; provide technical and promotional seminars; and organize a service bureau. This interim report describes which of these objectives have been met and which tasks remain to be completed. The most dramatic achievement has been in the area of run-time efficiency. From a model that required a large proportion of the total resources of a mainframe computer and a great deal of effort to operate, the current version of the model (ISTUM-PC) runs on an IBM Personal Computer. The reorganization required for the model to run on a PC has additional advantages: the modular programs are somewhat easier to understand and the data base is more accessible and easier to use. A simple description of the logic of the model is given in this report. To generate the necessary funds for completion of the model, a multiclient project is proposed. This project will extend the industry coverage to all the industrial sectors, including the construction of process flow models for chemicals and petroleum refining. The project will also calibrate this model to historical data and construct a base case and alternative scenarios. The model will be delivered to clients and training provided. 2 references, 4 figures, 3 tables.

  17. Energy Department Reports Highlight Trends of Growing U.S. Wind Energy Industry

    Broader source: Energy.gov [DOE]

    Reports show wind energy industry continued impressive growth in 2014, solidifying America’s position as a global leader in wind energy.

  18. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    SciTech Connect (OSTI)

    Price, Lynn; de la Rue du Can, Stephane; Lu, Hongyou; Horvath, Arpad

    2010-05-21

    The 2006 California Global Warming Solutions Act calls for reducing greenhouse gas (GHG) emissions to 1990 levels by 2020. Meeting this target will require action from all sectors of the California economy, including industry. The industrial sector consumes 25% of the energy used and emits 28% of the carbon dioxide (CO{sub 2}) produced in the state. Many countries around the world have national-level GHG reduction or energy-efficiency targets, and comprehensive programs focused on implementation of energy efficiency and GHG emissions mitigation measures in the industrial sector are essential for achieving their goals. A combination of targets and industry-focused supporting programs has led to significant investments in energy efficiency as well as reductions in GHG emissions within the industrial sectors in these countries. This project has identified program and policies that have effectively targeted the industrial sector in other countries to achieve real energy and CO{sub 2} savings. Programs in Ireland, France, The Netherlands, Denmark, and the UK were chosen for detailed review. Based on the international experience documented in this report, it is recommended that companies in California's industrial sector be engaged in a program to provide them with support to meet the requirements of AB32, The Global Warming Solution Act. As shown in this review, structured programs that engage industry, require members to evaluate their potential efficiency measures, plan how to meet efficiency or emissions reduction goals, and provide support in achieving the goals, can be quite effective at assisting companies to achieve energy efficiency levels beyond those that can be expected to be achieved autonomously.

  19. Economic and environmental impacts of the corn grain ethanol industry on the United States agricultural sector

    SciTech Connect (OSTI)

    Larson, J.A.; English, B.C.; De La Torre Ugarte, D. G.; Menard, R.J.; Hellwinckel, C.M.; West, Tristram O.

    2010-09-10

    This study evaluated the impacts of increased ethanol production from corn starch on agricultural land use and the environment in the United States. The Policy Analysis System simulation model was used to simulate alternative ethanol production scenarios for 2007 through 2016. Results indicate that increased corn ethanol production had a positive effect on net farm income and economic wellbeing of the US agricultural sector. In addition, government payments to farmers were reduced because of higher commodity prices and enhanced net farm income. Results also indicate that if Conservation Reserve Program land was converted to crop production in response to higher demand for ethanol in the simulation, individual farmers planted more land in crops, including corn. With a larger total US land area in crops due to individual farmer cropping choices, total US crop output rose, which decreased crop prices and aggregate net farm income relative to the scenario where increased ethanol production happened without Conservation Reserve Program land. Substantial shifts in land use occurred with corn area expanding throughout the United States, especially in the traditional corn-growing area of the midcontinent region.

  20. Future Public Policy and Ethical Issues Facing the Agricultural and Microbial Genomics Sectors of the Biotechnology Industry: A Roundtable Discussion

    SciTech Connect (OSTI)

    Diane E. Hoffmann

    2003-09-12

    On September 12, 2003, the University of Maryland School of Law's Intellectual Property and Law & Health Care Programs jointly sponsored and convened a roundtable discussion on the future public policy and ethical issues that will likely face the agricultural and microbial genomics sectors of the biotechnology industry. As this industry has developed over the last two decades, societal concerns have moved from what were often local issues, e.g., the safety of laboratories where scientists conducted recombinant DNA research on transgenic microbes, animals and crops, to more global issues. These newer issues include intellectual property, international trade, risks of genetically engineered foods and microbes, bioterrorism, and marketing and labeling of new products sold worldwide. The fast paced nature of the biotechnology industry and its new developments often mean that legislators, regulators and society, in general, must play ''catch up'' in their efforts to understand the issues, the risks, and even the benefits, that may result from the industry's new ways of conducting research, new products, and novel methods of product marketing and distribution. The goal of the roundtable was to develop a short list of the most significant public policy and ethical issues that will emerge as a result of advances in these sectors of the biotechnology industry over the next five to six years. More concretely, by ''most significant'' the conveners meant the types of issues that would come to the attention of members of Congress or state legislators during this time frame and for which they would be better prepared if they had well researched and timely background information. A concomitant goal was to provide a set of focused issues for academic debate and scholarship so that policy makers, industry leaders and regulators would have the intellectual resources they need to better understand the issues and concerns at stake. The goal was not to provide answers to any of the

  1. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  2. Characterization study of Hungary's petroleum refinery industry: A sector in transition. Phase 1 final report

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    Part of a USAID effort to assist Hungary's oil refinery sector during a period of transition, the report reviews the sector, with emphasis on the two major refineries -- DKV and TIPO. Key findings are as follows: (1) DKV and TIPO staffs are superbly qualified and up to date and have aggressively promoted energy conservation for a decade. Environmental compliance lags considerably behind the West; (2) Refinery managers are facing serious problems as the country moves from a command to a market economy; (3) There is a need for new criteria for evaluating the best use of limited investment resources during the austere period of transition. Replacing petroleum hydrocarbon fuels with indigenous coal does not seem viable at present.

  3. Industry sector analysis: The market for renewable energy resources (the Philippines). Export trade information

    SciTech Connect (OSTI)

    Cannon, E.; Miranda, A.L.

    1990-08-01

    The market survey covers the renewable energy resources market in the Philippines. Sub-sectors covered include biomass, solar energy, photovoltaic cells, windmills, and mini-hydro systems. The analysis contains statistical and narrative information on projected market demand, end-users; receptivity of Philippine consumers to U.S. products; the competitive situation, and market access (tariffs, non-tariff barriers, standards, taxes, distribution channels). It also contains key contact information.

  4. Analysis of Fuel Flexibility Opportunities and Constraints in the U.S. Industrial Sector

    SciTech Connect (OSTI)

    none,

    2007-03-07

    The purpose of this assessment was to determine if flexible, alternative fuel use in industry, beyond switching from natural gas to petroleum derivatives, presents a sizeable opportunity for the reduction in use of natural gas. Furthermore, the assessment was to determine what programmatic activities the DOE could undertake to accelerate a fuel flexibility program for industry. To this end, a six-part framework (see Figure ES-1) was used to identify the most promising fuel flexibility options, and what level of accomplishment could be achieved, based on DOE leadership.

  5. Model documentation report: Industrial sector demand module of the national energy modeling system

    SciTech Connect (OSTI)

    1998-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its model. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  6. 2008 Industrial Technologies Market Report, May 2009

    SciTech Connect (OSTI)

    Energetics; DOE

    2009-07-01

    The industrial sector is a critical component of the U.S. economy, providing an array of consumer, transportation, and national defense-related goods we rely on every day. Unlike many other economic sectors, however, the industrial sector must compete globally for raw materials, production, and sales. Though our homes, stores, hospitals, and vehicles are located within our borders, elements of our goods-producing industries could potentially be moved offshore. Keeping U.S. industry competitive is essential to maintaining and growing the U.S. economy. This report begins with an overview of trends in industrial sector energy use. The next section of the report focuses on some of the largest and most energy-intensive industrial subsectors. The report also highlights several emerging technologies that could transform key segments of industry. Finally, the report presents policies, incentives, and drivers that can influence the competitiveness of U.S. industrial firms.

  7. Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 1: Part 1, Electricity supply sector; Part 2, Residential and commercial buildings sector; Part 3, Industrial sector

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    DOE encourages you to report your achievements in reducing greenhouse gas emissions and sequestering carbon under this program. Global climate change is increasingly being recognized as a threat that individuals and organizations can take action against. If you are among those taking action, reporting your projects may lead to recognition for you, motivation for others, and synergistic learning for the global community. This report discusses the reporting process for the voluntary detailed guidance in the sectoral supporting documents for electricity supply, residential and commercial buildings, industry, transportation, forestry, and agriculture. You may have reportable projects in several sectors; you may report them separately or capture and report the total effects on an entity-wide report.

  8. Table 8.11d Electric Net Summer Capacity: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.11a; Kilowatts)

    U.S. Energy Information Administration (EIA) Indexed Site

    d Electric Net Summer Capacity: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.11a; Kilowatts) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage Renewable Energy Other 8 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power Biomass Geo- thermal Solar/PV 7 Wind Total Wood 5 Waste 6 Commercial Sector 9<//td> 1989 258,193 191,487 578,797 ¬Ė 1,028,477 [¬Ė] ¬Ė 17,942 13,144 166,392 [¬Ė] ¬Ė ¬Ė 197,478 ¬Ė 1,225,955 1990

  9. Industrial sector energy consumption

    Gasoline and Diesel Fuel Update (EIA)

    Improving Well Productivity Based Modeling with the Incorporation of Geologic Dependencies Troy Cook and Dana Van Wagener October 14, 2014 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration. WORKING PAPER SERIES October 2014 Tony

  10. Public Interest Energy Research (PIER) Program. Final Project Report. California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; Hasanbeigi, Ali; Sathaye, Jayant

    2010-12-01

    This report on the California Energy Balance version 2 (CALEB v2) database documents the latest update and improvements to CALEB version 1 (CALEB v1) and provides a complete picture of how energy is supplied and consumed in the State of California. The CALEB research team at Lawrence Berkeley National Laboratory (LBNL) performed the research and analysis described in this report. CALEB manages highly disaggregated data on energy supply, transformation, and end-use consumption for about 40 different energy commodities, from 1990 to 2008. This report describes in detail California's energy use from supply through end-use consumption as well as the data sources used. The report also analyzes trends in energy demand for the "Manufacturing" and "Building" sectors. Decomposition analysis of energy consumption combined with measures of the activity driving that consumption quantifies the effects of factors that shape energy consumption trends. The study finds that a decrease in energy intensity has had a very significant impact on reducing energy demand over the past 20 years. The largest impact can be observed in the industry sector where energy demand would have had increased by 358 trillion British thermal units (TBtu) if subsectoral energy intensities had remained at 1997 levels. Instead, energy demand actually decreased by 70 TBtu. In the "Building" sector, combined results from the "Service" and "Residential" subsectors suggest that energy demand would have increased by 264 TBtu (121 TBtu in the "Services" sector and 143 TBtu in the "Residential" sector) during the same period, 1997 to 2008. However, energy demand increased at a lesser rate, by only 162 TBtu (92 TBtu in the "Services" sector and 70 TBtu in the "Residential" sector). These energy intensity reductions can be indicative of energyefficiency improvements during the past 10 years. The research presented in this report provides a basis for developing an energy-efficiency performance index to measure

  11. Table 11.2c Carbon Dioxide Emissions From Energy Consumption: Industrial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    c Carbon Dioxide Emissions From Energy Consumption: Industrial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Coal Coke Net Imports Natural Gas 3 Petroleum Retail Elec- tricity 8 Total 2 Biomass 2 Distillate Fuel Oil 4 Kero- sene LPG 5 Lubri- cants Motor Gasoline 6 Petroleum Coke Residual Fuel Oil Other 7 Total Wood 9 Waste 10 Fuel Ethanol 11 Total 1949 500 -1 166 41 18 3 3 16 8 95 25 209 120 995 44 NA NA 44 1950 531 (s) 184 51 20 4 3 18 8 110 26 239 140 1,095 50 NA NA 50

  12. Growing America's Energy Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    emerging U.S. bioenergy industry provides a secure and growing supply of transportation fuels, biopower, and bioproducts produced from a range of abundant, renewable biomass resources. Bioenergy can help ensure a secure, sustainable, and economically sound future by reducing U.S. dependence on foreign oil, developing domestic clean energy sources, and generating domestic green jobs. Bioenergy can also help address growing concerns about climate change by reducing greenhouse gas emissions to

  13. ďIndustry Partnerships for Cybersecurity of Energy Delivery Systems (CEDS) Research, Development and Demonstration for the Energy SectorĒ Funding Opportunity Announcement

    Broader source: Energy.gov [DOE]

    Modernizing our electric power grid has long been a key priority for the Department of Energy, and this month the Department is moving forward on that front with a series of announcements related to our ongoing Grid Modernization Initiative. As part of that effort, the Office of Electricity Delivery and Energy Reliability announced approximately $23 million in funding for the research and development of advanced cybersecurity technologies to meet the unique requirements of the energy sector.

  14. Coal supply/demand, 1980 to 2000. Task 3. Resource applications industrialization system data base. Final review draft. [USA; forecasting 1980 to 2000; sector and regional analysis

    SciTech Connect (OSTI)

    Fournier, W.M.; Hasson, V.

    1980-10-10

    This report is a compilation of data and forecasts resulting from an analysis of the coal market and the factors influencing supply and demand. The analyses performed for the forecasts were made on an end-use-sector basis. The sectors analyzed are electric utility, industry demand for steam coal, industry demand for metallurgical coal, residential/commercial, coal demand for synfuel production, and exports. The purpose is to provide coal production and consumption forecasts that can be used to perform detailed, railroad company-specific coal transportation analyses. To make the data applicable for the subsequent transportation analyses, the forecasts have been made for each end-use sector on a regional basis. The supply regions are: Appalachia, East Interior, West Interior and Gulf, Northern Great Plains, and Mountain. The demand regions are the same as the nine Census Bureau regions. Coal production and consumption in the United States are projected to increase dramatically in the next 20 years due to increasing requirements for energy and the unavailability of other sources of energy to supply a substantial portion of this increase. Coal comprises 85 percent of the US recoverable fossil energy reserves and could be mined to supply the increasing energy demands of the US. The NTPSC study found that the additional traffic demands by 1985 may be met by the railways by the way of improved signalization, shorter block sections, centralized traffic control, and other modernization methods without providing for heavy line capacity works. But by 2000 the incremental traffic on some of the major corridors was projected to increase very significantly and is likely to call for special line capacity works involving heavy investment.

  15. Energy Intensity Indicators: Industrial Source Energy Consumption

    Broader source: Energy.gov [DOE]

    The industrial sector comprises manufacturing and other nonmanufacturing industries not included in transportation or services. Manufacturing includes 18 industry sectors, generally defined at the...

  16. Analysis of residential, industrial and commercial sector responses to potential electricity supply constraints in the 1990s

    SciTech Connect (OSTI)

    Fisher, Z.J.; Fang, J.M.; Lyke, A.J.; Krudener, J.R.

    1986-09-01

    There is considerable debate over the ability of electric generation capacity to meet the growing needs of the US economy in the 1990s. This study provides new perspective on that debate and examines the possibility of power outages resulting from electricity supply constraints. Previous studies have focused on electricity supply growth, demand growth, and on the linkages between electricity and economic growth. This study assumes the occurrence of electricity supply shortfalls in the 1990s and examines the steps that homeowners, businesses, manufacturers, and other electricity users might take in response to electricity outages.

  17. OTHER INDUSTRIES

    Broader source: Energy.gov [DOE]

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  18. Cross-sector Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  19. Process Intensification - Chemical Sector Focus

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Intensification - Chemical Sector Focus 1 Technology Assessment 2 Contents 3 1. Introduction ..................................................................................................................................................................... 1 4 2. Technology Assessment and Potential ................................................................................................................. 5 5 2.1 Chemical Industry Focus

  20. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    SciTech Connect (OSTI)

    Sathaye, J.; Xu, T.; Galitsky, C.

    2010-08-15

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

  1. Ashkelon Technological Industries ATI | Open Energy Information

    Open Energy Info (EERE)

    Ashkelon Technological Industries (ATI) Place: Israel Sector: Services Product: General Financial & Legal Services ( Government Public sector ) References: Ashkelon...

  2. Multi-Sector General Permit (MSGP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MSGP Multi-Sector General Permit (MSGP) The Multi-Sector General Permit authorizes the discharge of stormwater associated with industrial activity. What's New Documents submitted to EPRR in last 30 Days TBD What is the Multi-Sector General Permit? Storm water discharges from EPA specified industrial activities are regulated under the National Pollutant Discharge Elimination System (NPDES) Multi-Sector General Permit (MSGP). LANL regulated industrial activities include: Metal fabrication Power

  3. Chemical Sector Analysis | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACChemical Sector Analysis content top Chemical Supply Chain Analysis Posted by Admin on Mar 1, 2012 in | Comments 0 comments Chemical Supply Chain Analysis NISAC has developed a range of capabilities for analyzing the consequences of disruptions to the chemical manufacturing industry. Each capability provides a different but complementary perspective on the questions of interest-questions like Given an event, will the entire chemical sector be impacted or just parts? Which chemicals, plants,

  4. Table 8.6c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu Commercial Sector 11<//td> 1989 711,212 202,091 600,653 ¬Ė ¬Ė

  5. Number of Large Energy User Manufacturing Facilities by Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Number of Large Energy User Manufacturing Facilities by Sector and State (with Industrial Energy Consumption by State and Manufacturing Energy Consumption by Sector) State...

  6. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    SciTech Connect (OSTI)

    Xu, T.T.; Sathaye, J.; Galitsky, C.

    2010-09-30

    measures are available over time, which allows an estimation of technological change over a decade-long historical period. In particular, the report will describe new treatment of technological change in energy-climate modeling for this industry sector, i.e., assessing the changes in costs and energy-savings potentials via comparing 1994 and 2002 conservation supply curves. In this study, we compared the same set of mitigation measures for both 1994 and 2002 -- no additional mitigation measure for year 2002 was included due to unavailability of such data. Therefore, the estimated potentials in total energy savings and carbon reduction would most likely be more conservative for year 2002 in this study. Based upon the cost curves, the rate of change in the savings potential at a given cost can be evaluated and be used to estimate future rates of change that can be the input for energy-climate models. Through characterizing energy-efficiency technology costs and improvement potentials, we have developed and presented energy cost curves for energy efficiency measures applicable to the U.S. iron and steel industry for the years 1994 and 2002. The cost curves can change significantly under various scenarios: the baseline year, discount rate, energy intensity, production, industry structure (e.g., integrated versus secondary steel making and number of plants), efficiency (or mitigation) measures, share of iron and steel production to which the individual measures can be applied, and inclusion of other non-energy benefits. Inclusion of other non-energy benefits from implementing mitigation measures can reduce the costs of conserved energy significantly. In addition, costs of conserved energy (CCE) for individual mitigation measures increase with the increases in discount rates, resulting in a general increase in total cost of mitigation measures for implementation and operation with a higher discount rate. In 1994, integrated steel mills in the U.S. produced 55.

  7. The Role of the Sellafield Ltd Centres of Expertise in Engaging with the Science, Environment and Technology Supply Chain and University Sector to Support Site Operations and Decommissioning in the UK Nuclear Industry - 13018

    SciTech Connect (OSTI)

    Butcher, Ed; Connor, Donna; Keighley, Debbie

    2013-07-01

    The development and maintenance of the broad range of the highly technical skills required for safe and successful management of nuclear sites is of vital importance during routine operations, decommissioning and waste treatment activities.. In order to maintain a core team of technical experts, across all of the disciplines required for these tasks, the approach which has been taken by the Sellafield Ltd has been the formation of twenty five Centres of Expertise (CoE), each covering key aspects of the technical skills required for nuclear site operations. Links with the Specialist University Departments: The CoE leads are also responsible for establishing formal links with university departments with specialist skills and facilities relevant to their CoE areas. The objective of these links is to allow these very specialist capabilities within the university sector to be more effectively utilized by the nuclear industry, which benefits both sectors. In addition to the utilization of specialist skills, the university links are providing an important introduction to the nuclear industry for students and researchers. This is designed to develop the pipeline of potential staff, who will be required in the future by both the academic and industrial sectors. (authors)

  8. The Italian energy sector

    SciTech Connect (OSTI)

    1997-01-01

    The energy sector in Italy, as in Europe and in many other areas of the world, is undergoing rapid and profound changes. The 1986 ratification of the European Single Act was intended to create a European internal market, where circulation of people, capital, goods, and services would reach the highest possible liberalization. In 1988, in the document The Energy Internal Market, the European Union (EU) commission stressed the need for creation of an internal energy market--free of obstacles--to increase security of supply, to reduce costs, and to strengthen the competitiveness of the European economic system. In 1990, the Community Council adopted directives to implement the EU energy sector. This article describes Italy`s role as part of the EU energy sector. It covers the following topics: the Italian energy sector; electricity vs gas transportation; project finance; recent developments advance Italian power industry; specifying powerplant components -- Italian stype; buyers` guide to Italian equipment, services.

  9. Sector 9

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sector 9 About Science and Research Beamlines Operations and Schedule Safety Search APS ... Search Argonne Home > Advanced Photon Source > Contacts Advisory Committee Beamlines...

  10. End-Use Sector Flowchart

    Broader source: Energy.gov [DOE]

    This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors‚ÄĒtransportation, industry, commercial and residential‚ÄĒidentified in Figure 1. By clicking on any of the boxes with the word "Sector" in the title will reveal the more detailed structure within that sector.

  11. Voluntary agreements for increasing energy-efficiency in industry: Case study of a pilot project with the steel industry in Shandong Province, China

    SciTech Connect (OSTI)

    Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

    2003-03-01

    China faces a significant challenge in the years ahead to continue to provide essential materials and products for a rapidly-growing economy while addressing pressing environmental concerns. China's industrial sector is heavily dependent on the country's abundant, yet polluting, coal resources. While tremendous energy conservation and environmental protection achievements were realized in the industrial sector in the past, there remains a great gulf between the China's level of energy efficiency and that of the advanced countries of the world. Internationally, significant energy efficiency improvement in the industrial sector has been realized in a number of countries using an innovative policy mechanism called Voluntary Agreements. This paper describes international experience with Voluntary Agreements in the industrial sector as well as the development of a pilot program to test the use of such agreements with two steel mills in Shandong Province, China.

  12. Growing America's Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Growing America's Energy Future Growing America's Energy Future The emerging U.S. bioenergy industry provides a secure and growing supply of transportation fuels, biopower, and bioproducts from a range of biomass resources. Abundant, renewable bioenergy can help secure America's energy future, reducing our dependence on foreign oil and ensuring American prosperity while protecting the environment. Bioenergy can also help mitigate growing concerns about climate change by having an impact in

  13. U.S. Energy Information Administration (EIA) - Sector

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    RenewableAlternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand Other Emissions Prices Macroeconomic International Efficiency Publication...

  14. Table 8.3c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Billion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 Commercial Sector 8<//td> 1989 13,517 3,896 9,920 102 27,435 145 10,305 10,450 ¬Ė 37,885 1990 14,670 5,406 15,515 118 35,709 387 10,193 10,580 ¬Ė 46,289 1991 15,967 3,684 20,809 118 40,578 169 8,980 9,149 1 49,728 1992

  15. Eolica Industrial | Open Energy Information

    Open Energy Info (EERE)

    Industrial Jump to: navigation, search Name: Eolica Industrial Place: Sao Paulo, Sao Paulo, Brazil Zip: 01020-901 Sector: Wind energy Product: Brazil based wind turbine steel...

  16. Agriculture Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Industrial Federal Agriculture SIS Variable Frequency Drives Irrigation Pump Testing Irrigation Hardware Upgrades LESA Agricultural Marketing Toolkit BPA's...

  17. MRL Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    MRL Industries Inc Jump to: navigation, search Name: MRL Industries Inc Place: Sonora, California Zip: 95370 Sector: Solar Product: MRL Industries is a US company committed to...

  18. Equity Industrial Partners | Open Energy Information

    Open Energy Info (EERE)

    Equity Industrial Partners Jump to: navigation, search Name Equity Industrial Partners Facility Equity Industrial Partners Sector Wind energy Facility Type Community Wind Facility...

  19. Federal Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News & Events Skip navigation links Residential Commercial Industrial Federal Agriculture About five percent of BPA's total electric supply goes to power facilities around...

  20. Commercial & Industrial Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  1. Growing the Future Bioeconomy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Future Bioeconomy Growing the Future Bioeconomy Breakout Session IA-Conversion Technologies I: Industrial Perspectives on Pathways to Advanced Biofuels Growing the Future Bioeconomy Joel Velasco, Senior Vice President, Amyris, Inc velasco_biomass_2014 (3.29 MB) More Documents & Publications Biomass IBR Fact Sheet: Amyris, Inc. Biomass IBR Fact Sheet: Amyris, Inc. Sustainable Alternative Jet Fuels

  2. Taiwan: An energy sector study

    SciTech Connect (OSTI)

    Johnson, T.; Fridley, D.; Kang, Wu

    1988-03-01

    A study on the economy of Taiwan, with special reference to the energy sector, revealed the following: Taiwan's rapid export-driven economic growth in the 1970s and 1980s has earned them the rank of ''Newly Industrialized Countries.'' Coal reserves measure less than 1 billion tons, and annual output has declined to below 2 million tons per year. Marginal amounts of crude are produced. Natural gas resources have been exploited both on- and offshore, through production amounts to little more than 1 billion cubic meters per year. Domestic hydrocarbon production is forecast to decline. Taiwan prssesses an estimated 5300 mW of exploitable hydropower capacity, of which 2564 mW had been installed by 1986. Taiwan has undertaken a massive program of nuclear power construction in response to the rapid rise in oil prices during the 1970s. Energy demand has risen an average of 9.0 percent per year since 1954, while real GNP has grown 8.6 percent per year. Sine 1980, oil has provided a lower share of total energy demand. Oil demand for transport has continued to grow rapidly. Declining production of domestic natural gas has led Taiwan to initiate LNG imports from Indonesia beginning in 1990. Coal has regained some of its earlier importance in Taiwan's energy structure. With declining domestic production, imports now provide nearly 90 percent of total coal demand. Taiwan is basically self-sufficient in refining capacity. Energy demand is expected to grow 5.4 percent per year through the yeat 2000. With declining output of domestic resources, energy dependency on imports will rise from its current 90 percent level. Government policy recognizes this external dependency and has directed it efforts at diversification of suppliers. 18 refs., 11 figs., 40 tabs.

  3. Potentials for reductions of carbon dioxide emissions of industrial sector in transitional economies -- A case study of implementation of absorption heat devices and co-generation

    SciTech Connect (OSTI)

    Remec, J.; Dolsak, N.

    1996-12-31

    World carbon dioxide emissions, caused by commercial energy-generation, contribute to about 57% of global warming potential. Central and East European (CEE) countries together with former USSR emitted about 25% of the world carbon dioxide emissions, predominantly because of high energy intensity of their industries and dependence on coal. Energy efficiency improvements can reduce the high level of carbon dioxide emissions per unit of output, which significantly exceeds the levels of the industry in the European Union. CEE countries` most pressing environmental goal is a reduction of local air and water pollution. Therefore, when analyzing potentials for the reduction of greenhouse gases emissions in these countries, they need to concentrate on the activities which would also decrease local pollution. The paper focuses on technologies which would reduce the need for fossil fuel burning by improving energy efficiency in industry. Process industries are very energy intensive. Structure changes of the products are carried out with operations which require input and output of heat. Heat demand is usually met by combustion of fossil fuels, cold is produced with electricity. Technical potentials of absorption heat devices (AHD) and co-generation in process industry as well as their market penetration potentials are analyzed for Slovenia, one of the fastest transforming CEE economies.

  4. Pacific Rim Summit on Industrial Biotechnology & Bioenergy

    Broader source: Energy.gov [DOE]

    The ninth annual Pacific Rim Summit on Industrial Biotechnology and Bioenergy will be held from December 7‚Äď9, 2014, in San Diego, California, at the Westin Gaslamp Quarter. Bringing together representatives from various countries all around the Pacific Rim, this event will focus on the growth of the industrial biotechnology and bioenergy sectors in North America and the Asia-Pacific region. Glenn Doyle, BETO's Deployment & Demonstration Technology Manager, will be moderating and speaking at a session on entitled "Utilizing Strategic Partnerships to Grow Your Business" on December 9.

  5. Energy Intensity Indicators: Indicators for Major Sectors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy for Major Sectors Energy Intensity Indicators: Indicators for Major Sectors This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors - transportation, industry, commercial, and residential, as well as the electric power sector. These sectors are shown in Figure 1. Please go to the menu below the figure to see a more detailed discussion of historical trends in the energy intensity indicator for a particular sector.

  6. 2015 Energy Sector-Specific Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Sector-Specific Plan 2015 Energy Sector-Specific Plan The U.S. Department of Energy (DOE), as the Sector-Specific Agency for the Energy Sector, has worked closely with government and industry partners to develop the 2015 Energy Sector-Specific Plan (SSP). DOE conducted much of this work in collaboration with the Energy Sector Coordinating Councils (SCCs) and the Energy Government Coordinating Council (GCC). The Energy SCCs represent the interests of the Electricity and Oil and Natural Gas

  7. Growing America's Energy Future Factsheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Growing America's Energy Future Factsheet Growing America's Energy Future Factsheet The emerging U.S. bioenergy industry provides a secure and growing supply of transportation fuels, biopower, and bioproducts produced from a range of abundant, renewable biomass resources. overview_factsheet.pdf (133.31 KB) More Documents & Publications Growing America's Energy Future Webinar: Bioproducts in the Federal Bioeconomy Portfolio Webinar Conversion Factsheet

  8. Industrial sector energy conservation programs in the People`s Republic of China during the seventh five-year plan (1986--1990)

    SciTech Connect (OSTI)

    Liu Zhiping; Sinton, J.E.; Yang Fuqiang; Levine, M.D.; Ting, M.K.

    1994-09-01

    The impetus at the national level to invest in energy conservation is quite strong and has long been reflected not only in official pronouncements, but also in the investments and organizational activities of the Chinese government. In the early 1980s the central government began a program of direct investments in industrial energy conservation that continues to the present. In addition, concurrently established governmental and quasi-governmental agencies have pursued conservation through administrative and educational measures. In Section 2 of this paper the authors outline the policies and institutions that supported China`s program of energy conservation investments in the Sixth and Seventh Five-Year Plans (FYPs) (1981--1985 and 1986--1990). In Section 3 they describe examples of the types of conservation projects pursued in four industrial subsectors: ferrous metals manufacturing; non-ferrous metals mining and manufacturing; chemicals manufacturing; and building materials manufacturing. Section 4 presents a simple methodology for comparing the costs of energy conservation to those of energy supply. Further discussion points out the applicability and limitations of this methodology to State Planning Commission published statistical material on the overall results of energy conservation investments. Though problematic, such analysis indicates that energy conservation investments were probably substantially cheaper than investments in equivalent energy supply would have been. They end with a discussion of some of the difficulties encountered in carrying out the conservation investment programs.

  9. IT Industry's Renewable Energy Procurement is Significant, Set to Climb -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL IT Industry's Renewable Energy Procurement is Significant, Set to Climb August 20, 2015 The percentage of renewable electricity purchased by U.S. companies in the information and communication technology (ICT) sector is growing and will likely increase significantly by the start of the next decade, according to a first-ever analysis by the Energy Department's National Renewable Energy Laboratory (NREL). The report, "Renewable Electricity Use by the U.S. Information

  10. Industrial-Strength UPF | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chapter 7 Industrial sector energy consumption Overview The industrial sector uses more delivered energy 294 than any other end-use sector, consuming about 54% of the world's total delivered energy. The industrial sector can be categorized by three distinct industry types: energy-intensive manufacturing, nonenergy-intensive manufacturing, and nonmanufacturing (Table 7-1). The mix and intensity of fuels consumed in the industrial sector vary across regions and countries, depending on the level

  11. Growing America¬źs Energy Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America's Energy Future The emerging U.S. bioenergy industry provides a secure and growing supply of transportation fuels, biopower, and bioproducts from a range of biomass resources. Abundant, renewable bioenergy can help secure America's energy future, reducing our dependence on foreign oil and ensur- ing American prosperity while protecting the environment. Bioenergy can also help mitigate growing concerns about climate change by having an impact in decreasing green- house gas emissions,

  12. Industrial Scale Energy Systems Integration (Presentation), NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (ESI) opportunities in industry o Combined heat and power o Trigeneration o Demand response o Integrated, hybrid energy systems 3 Energy Use in the Industrial Sector * 25% of ...

  13. Aditya Solar Power Industries | Open Energy Information

    Open Energy Info (EERE)

    Aditya Solar Power Industries Jump to: navigation, search Name: Aditya Solar Power Industries Place: India Sector: Solar Product: Bangalore-based solar project developer....

  14. Green Energy Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Industries Inc Jump to: navigation, search Name: Green Energy Industries Inc Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the...

  15. Canyon Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Industries Inc Jump to: navigation, search Name: Canyon Industries Inc Place: Deming, Washington State Zip: 98244 Sector: Hydro Product: Canyon Hydro produces a range of small...

  16. California Solar Energy Industries Association | Open Energy...

    Open Energy Info (EERE)

    Solar Energy Industries Association Jump to: navigation, search Name: California Solar Energy Industries Association Place: Rio Vista, California Zip: 94571 Sector: Solar Product:...

  17. Toray Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Industries Inc Jump to: navigation, search Name: Toray Industries Inc Place: Tokyo, Japan Zip: 103 8666 Sector: Carbon, Vehicles, Wind energy Product: String representation "A...

  18. South Jersey Industries | Open Energy Information

    Open Energy Info (EERE)

    Jersey Industries Jump to: navigation, search Name: South Jersey Industries Place: Folsom, New Jersey Zip: 8037 Sector: Services Product: An energy services holding company....

  19. Millennium Energy Industries | Open Energy Information

    Open Energy Info (EERE)

    Industries Place: Jordan Zip: 1182 Sector: Solar Product: Jordan-based solar energy firm focused in MENA region. References: Millennium Energy Industries1 This article is a...

  20. PAIS Industries Group | Open Energy Information

    Open Energy Info (EERE)

    PAIS Industries Group Jump to: navigation, search Name: PAIS Industries Group Sector: Solar Product: Plans to supply solar-grade silicon, conditional on an agreement with the Inner...

  1. CRV industrial Ltda | Open Energy Information

    Open Energy Info (EERE)

    CRV industrial Ltda Jump to: navigation, search Name: CRV industrial Ltda Place: Carmo do Rio Verde, Goias, Brazil Sector: Biomass Product: Ethanol and biomass energy producer...

  2. Yusheng Industrial Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Yusheng Industrial Co Ltd Jump to: navigation, search Name: Yusheng Industrial Co., Ltd Place: Hunan Province, China Zip: 415000 Sector: Hydro Product: Hunan-based small hydro...

  3. Angelantoni Industrie Spa | Open Energy Information

    Open Energy Info (EERE)

    Angelantoni Industrie Spa Jump to: navigation, search Name: Angelantoni Industrie Spa Place: Massa Martana, Italy Zip: 6056 Sector: Renewable Energy Product: String representation...

  4. Guardian Industries Corp | Open Energy Information

    Open Energy Info (EERE)

    Industries Corp Jump to: navigation, search Name: Guardian Industries Corp Place: Auburn Hills, Michigan Zip: 48326-1714 Sector: Solar Product: Michigan-based firm that...

  5. Everbrite Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Everbrite Industries Inc. Place: Toronto, Ontario, Canada Zip: M1R 2T6 Sector: Solar Product: Everbrite Industries is an electrical contractor...

  6. Danish Wind Industry Association | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Danish Wind Industry Association Place: Copenhagen V, Denmark Zip: DK-1552 Sector: Wind energy Product: The Danish Wind Industry Association...

  7. LARGE INDUSTRIAL FACILITIES BY STATE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LARGE INDUSTRIAL FACILITIES BY STATE LARGE INDUSTRIAL FACILITIES BY STATE PDF icon Number of Large Energy User Manufacturing Facilities by Sector and State (with Industrial Energy...

  8. Humboldt Industrial Park Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Industrial Park Wind Farm Jump to: navigation, search Name Humboldt Industrial Park Wind Farm Facility Humboldt Industrial Park Sector Wind energy Facility Type Community Wind...

  9. The Greenhouse Gas Protocol Initiative: Sector Specific Tools...

    Open Energy Info (EERE)

    World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Industry, Greenhouse Gas Phase: Determine Baseline, Evaluate...

  10. Indonesia-NAMA Programme for the Construction Sector in Asia...

    Open Energy Info (EERE)

    United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market...

  11. Thailand-NAMA Programme for the Construction Sector in Asia ...

    Open Energy Info (EERE)

    United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market...

  12. Philippines-NAMA Programme for the Construction Sector in Asia...

    Open Energy Info (EERE)

    United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market...

  13. Vietnam-NAMA Programme for the Construction Sector in Asia |...

    Open Energy Info (EERE)

    United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market...

  14. Malaysia-NAMA Programme for the Construction Sector in Asia ...

    Open Energy Info (EERE)

    United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market...

  15. Public Finance Mechanisms to Catalyze Sustainable Energy Sector...

    Open Energy Info (EERE)

    all aspects of the sector including technology innovation, project development, (SME) business and industry support, consumer awareness and end-user finance. Regardless of...

  16. Growing Giant Crystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crystals Growing Giant Crystals A new process similar to making rock candy was developed at NIF to rapidly grow very large crystals that are about 2 cubic feet in size and weigh up to 800 pounds-about the weight of a large grizzly bear! The crystals are made of potassium dihydrogen phosphate (or KDP), a naturally occurring chemical. In crystal form, KDP has good optical properties. Crystal plates have special optical properties, like prisms, that transmit, bend, and break light up into the

  17. LARGE INDUSTRIAL FACILITIES BY STATE | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Number of Large Energy User Manufacturing Facilities by Sector and State (with Industrial Energy Consumption by State and Manufacturing Energy Consumption by Sector) More Documents ...

  18. Research Projects in Industrial Technology.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration. Industrial Technology Section.

    1990-06-01

    The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

  19. Energy Sector-Specific Plan: An Annex to the National Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protection Plan | Department of Energy Sector-Specific Plan: An Annex to the National Infrastructure Protection Plan Energy Sector-Specific Plan: An Annex to the National Infrastructure Protection Plan In its role as the lead Sector-Specific Agency for the Energy Sector, the Department of Energy has worked closely with dozens of government and industry partners to prepare this updated 2010 Energy Sector-Specific Plan (SSP). Much of that work was conducted through the two Energy Sector

  20. Join Secretary Chu Tomorrow for a Google+ Hangout on America's Growing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Industry | Department of Energy Secretary Chu Tomorrow for a Google+ Hangout on America's Growing Solar Industry Join Secretary Chu Tomorrow for a Google+ Hangout on America's Growing Solar Industry February 21, 2013 - 3:06pm Addthis Join Secretary Chu Tomorrow for a Google+ Hangout on America's Growing Solar Industry Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs How can I participate? Sign up at the Google+ Event page. Email questions to

  1. Laying the Groundwork: Lessons Learned from the Telecommunications Industry for Distributed Generation; Preprint

    SciTech Connect (OSTI)

    Wise, A. L.

    2008-05-01

    The telecommunications industry went through growing pains in the past that hold some interesting lessons for the growing distributed generation (DG) industry. The technology shifts and stakeholders involved with the historic market transformation of the telecommunications sector mirror similar factors involved in distributed generation today. An examination of these factors may inform best practices when approaching the conduits necessary to accelerate the shifting of our nation's energy system to cleaner forms of generation and use. From a technical perspective, the telecom industry in the 1990s saw a shift from highly centralized systems that had no capacity for adaptation to highly adaptive, distributed network systems. From a management perspective, the industry shifted from small, private-company structures to big, capital-intensive corporations. This presentation will explore potential correlation and outline the lessons that we can take away from this comparison.

  2. Cooling, heating, and power for industry: A market assessment

    SciTech Connect (OSTI)

    None, None

    2003-08-01

    The focus of this study was to assess the market for cooling, heating, and power applications in the industrial sector.

  3. Solar Energy LLC Industrial Investors Group | Open Energy Information

    Open Energy Info (EERE)

    LLC Industrial Investors Group Jump to: navigation, search Name: Solar Energy LLC - Industrial Investors Group Place: Moscow, Russian Federation Zip: 119017 Sector: Solar Product:...

  4. ET Solar Group Formerly CNS Solar Industry | Open Energy Information

    Open Energy Info (EERE)

    Solar Group Formerly CNS Solar Industry Jump to: navigation, search Name: ET Solar Group (Formerly CNS Solar Industry) Place: Nanjing, Jiangsu Province, China Zip: 210009 Sector:...

  5. Amrit Bio Energy Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    Amrit Bio Energy Industries Ltd Jump to: navigation, search Name: Amrit Bio Energy & Industries Ltd. Place: Kolkata, West Bengal, India Zip: 700017 Sector: Biomass Product:...

  6. Nahar Industrial Enterprises Limited NIEL | Open Energy Information

    Open Energy Info (EERE)

    Industrial Enterprises Limited NIEL Jump to: navigation, search Name: Nahar Industrial Enterprises Limited (NIEL) Place: Punjab, India Zip: 140506 Sector: Biomass Product:...

  7. Brazilian Association of Biomass Industries ABIB | Open Energy...

    Open Energy Info (EERE)

    Brazilian Association of Biomass Industries ABIB Jump to: navigation, search Name: Brazilian Association of Biomass Industries (ABIB) Place: Curitiba, Parana, Brazil Sector:...

  8. Guangdong Global Power and Water Industries Ltd | Open Energy...

    Open Energy Info (EERE)

    Global Power and Water Industries Ltd Jump to: navigation, search Name: Guangdong Global Power and Water Industries Ltd Place: Meizhou, Guangdong Province, China Sector: Solar...

  9. US Solar Energy Industries Association SEIA | Open Energy Information

    Open Energy Info (EERE)

    Energy Industries Association SEIA Jump to: navigation, search Name: US Solar Energy Industries Association (SEIA) Place: Washington, Washington, DC Zip: 20005 Sector: Solar...

  10. Shanghai New Energy industry Association SNEIA | Open Energy...

    Open Energy Info (EERE)

    (SNEIA) Place: Shanghai Municipality, China Zip: 200235 Product: Shanghai-based industrial association for new energy sector References: Shanghai New Energy industry...

  11. UK Department of Trade and Industry Renewables Group | Open Energy...

    Open Energy Info (EERE)

    Trade and Industry Renewables Group Jump to: navigation, search Name: UK Department of Trade and Industry Renewables Group Place: London, United Kingdom Sector: Renewable Energy...

  12. Companhia Industrial do Nordeste Brasileiro | Open Energy Information

    Open Energy Info (EERE)

    Industrial do Nordeste Brasileiro Jump to: navigation, search Name: Companhia Industrial do Nordeste Brasileiro Place: Pernambuco, Brazil Sector: Biomass Product: Brazil based...

  13. Dapu Huatai Industrial Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Dapu Huatai Industrial Co Ltd Jump to: navigation, search Name: Dapu Huatai Industrial Co., Ltd. Place: Meizhou, Guangdong Province, China Zip: 715403 Sector: Hydro Product:...

  14. Jiangxi Huahui Industrial Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Huahui Industrial Co Ltd Jump to: navigation, search Name: Jiangxi Huahui Industrial Co., Ltd. Place: Fuzhou, Jiangxi Province, China Zip: 335300 Sector: Hydro Product: China-based...

  15. Companhia Agro Industrial de Goiana | Open Energy Information

    Open Energy Info (EERE)

    Companhia Agro Industrial de Goiana Jump to: navigation, search Name: Companhia Agro Industrial de Goiana Place: Recife, Pernambuco, Brazil Sector: Biomass Product: Ethanol and...

  16. Shenzhen Youth Industrial Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Youth Industrial Development Co Ltd Jump to: navigation, search Name: Shenzhen Youth Industrial Development Co., Ltd. Place: Shenzhen, Guangdong Province, China Zip: 518109 Sector:...

  17. Xi an Kaixin Industrial Development | Open Energy Information

    Open Energy Info (EERE)

    Kaixin Industrial Development Jump to: navigation, search Name: Xi(tm)an Kaixin Industrial Development Place: Xian, Shaanxi Province, China Sector: Hydro Product: China-based...

  18. BOC Lienhwa Industrial Gases BOCLH | Open Energy Information

    Open Energy Info (EERE)

    Lienhwa Industrial Gases (BOCLH) Place: Taipei, Taiwan Sector: Solar Product: BOCLH is a joint venture between the Lien Hwa Industrial Corporation and the BOC Group in the United...

  19. Nanjing Dalu Industry Investment Group | Open Energy Information

    Open Energy Info (EERE)

    Dalu Industry Investment Group Jump to: navigation, search Name: Nanjing Dalu Industry Investment Group Place: Beijing Municipality, China Zip: 100055 Sector: Solar Product:...

  20. Henan Yinge Industrial Investment Corporation | Open Energy Informatio...

    Open Energy Info (EERE)

    Yinge Industrial Investment Corporation Jump to: navigation, search Name: Henan Yinge Industrial Investment Corporation Place: Henan Province, China Sector: Biomass Product:...

  1. Advanced, Energy-Efficient Hybrid Membrane System for Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    StateChallenges Heavy industrial water utilization footprint Freshwater ... 5.2 quadrillion BTU* (2010) consumed for water services in U.S. industrial sector ...

  2. 2014 Energy Sector Specific Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sector-Specific Plan Energy Sector-Specific Plan 2015 ii Page intentionally left blank Energy Sector-Specific Plan 2015 iii TABLE OF CONTENTS PREFACE ......

  3. Minxing Industry Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co. Ltd. Place: Sichuan Province, China Zip: 625700 Sector: Hydro Product: Sichuan-based small hydro project developer. References: Minxing Industry Co. Ltd.1 This article is a...

  4. Thompson Technology Industries TTI | Open Energy Information

    Open Energy Info (EERE)

    TTI Jump to: navigation, search Name: Thompson Technology Industries (TTI) Place: Novato, California Zip: 94949 Sector: Solar Product: Designer and manufacturer of solar tracking...

  5. Beckons Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: Beckons Industries Ltd Place: Mohali, Chandigarh, India Zip: 160055 Sector: Biofuels Product: India-based algae technology developer for...

  6. SLS Power Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd. Place: Bangalore, Karnataka, India Sector: Hydro Product: Bangalore-based small hydro project developer. References: SLS Power Industries Ltd.1 This article is a stub....

  7. Industrial Research Ltd IRL | Open Energy Information

    Open Energy Info (EERE)

    Research Ltd IRL Jump to: navigation, search Name: Industrial Research Ltd (IRL) Place: New Zealand Sector: Services Product: General Financial & Legal Services ( State-owned...

  8. Kishimura Industry Co | Open Energy Information

    Open Energy Info (EERE)

    Co Jump to: navigation, search Name: Kishimura Industry Co Place: Kanagawa-Ken, Japan Sector: Solar, Vehicles Product: Developer of solar power systems and 'Eco-Mobile',...

  9. Microcab Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    Microcab Industries Ltd Place: Coventry, United Kingdom Zip: CV1 2TT Sector: Hydro, Hydrogen Product: Urban taxi and light freight vehicle powered by a hydrogen fuel cell....

  10. Power Sector Modeling 101

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Erin Boyd Department of Energy - Office of Energy Policy and Systems Analysis erin.boyd@hq.doe.gov DOE's Technical Assistance Website www.energy.gov/ta Power Sector Modeling 101 2 Presentation Description - DOE Power Sector Modeling 101 With increased energy planning needs and new regulations, environmental agencies, state energy offices and others have expressed more of an interest in electric power sector models, both for (a) interpreting the results and potential applications of modeling from

  11. Industrial Energy Efficiency: Designing Effective State Programs for the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Sector | Department of Energy Energy Efficiency: Designing Effective State Programs for the Industrial Sector Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector This report provides state regulators, utilities, and other program administrators an overview of the spectrum of U.S. industrial energy efficiency (IEE) programs delivered by a variety of entities including utilities and program administrators. The report also assesses some of the

  12. Commercial Sector Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  13. Commercial national accounts program is a gas industry revenue builder

    SciTech Connect (OSTI)

    Moskitis, T.L.

    1984-04-01

    The need for gas distributors to implement revenue-generating strategies is clearly evident in the commercial sector - their fastest growing market. One strategy is A.G.A.'s commercial national accounts marketing program, designed to establish working relationships with national and regional food, hotel, and retail chains and with the firms that design energy systems for them. The program supplies these chains with information on gas industry services and research aimed at increasing energy utilization efficiency. Regular communications and coordinated sales calls by gas utility executives on chain headquarters often produce increased gas sales, even of traditionally all-electric chains, as illustrated by several case histories.

  14. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    SciTech Connect (OSTI)

    Goldman, Charles; Fuller, Merrian C.; Stuart, Elizabeth; Peters, Jane S.; McRae, Marjorie; Albers, Nathaniel; Lutzenhiser, Susan; Spahic, Mersiha

    2010-03-22

    The energy efficiency services sector (EESS) is poised to become an increasingly important part of the U.S. economy. Climate change and energy supply concerns, volatile and increasing energy prices, and a desire for greater energy independence have led many state and national leaders to support an increasingly prominent role for energy efficiency in U.S. energy policy. The national economic recession has also helped to boost the visibility of energy efficiency, as part of a strategy to support economic recovery. We expect investment in energy efficiency to increase dramatically both in the near-term and through 2020 and beyond. This increase will come both from public support, such as the American Recovery and Reinvestment Act (ARRA) and significant increases in utility ratepayer funds directed toward efficiency, and also from increased private spending due to codes and standards, increasing energy prices, and voluntary standards for industry. Given the growing attention on energy efficiency, there is a concern among policy makers, program administrators, and others that there is an insufficiently trained workforce in place to meet the energy efficiency goals being put in place by local, state, and federal policy. To understand the likelihood of a potential workforce gap and appropriate response strategies, one needs to understand the size, composition, and potential for growth of the EESS. We use a bottom-up approach based upon almost 300 interviews with program administrators, education and training providers, and a variety of EESS employers and trade associations; communications with over 50 sector experts; as well as an extensive literature review. We attempt to provide insight into key aspects of the EESS by describing the current job composition, the current workforce size, our projections for sector growth through 2020, and key issues that may limit this growth.

  15. Issues affecting the refining sector of the petroleum industry. Hearings before the Committee on Energy and Natural Resources, United States Senate, One Hundred Second Congress, Second Session, May 19, 1992 and May 28, 1992

    SciTech Connect (OSTI)

    1992-12-31

    The purpose of this hearing is to look at the challenges facing the petroleum refining industry that are a direct result of recent Federal Government policy changes. A major challenge is the form of compliance with the new Federal environmental laws. The biggest challenge will be the Clean Air Act Amendments of 1990. Compliance will require the refining industry to change both the way it operates and the motor fuels that it produces. The witnesses first address how these new laws affect refinery operations, refinery output, and the distribution of refined products. Secondly, what will it cost the refining industry to implement these laws and how will this affect the cost of refined products. Thirdly, how will these laws affect the structure and competitiveness of the refining industry. Statements of various senators and industry representatives are included in the hearing. Statistical data for 1989 is presented showing the scope of industry activities. 8 figs., 16 refs., 32 tabs.

  16. SEADS 3.0. Sectoral Energy/Employment Analysis and Data System Methodology, Description, and Usersí Guide. Two Policy Scenarios Examined: An Increase in Government R&D Implementation of Voluntary Intensity. Reductions in Industry

    SciTech Connect (OSTI)

    Roop, J. M.; Anderson, D. M.; Elliott, D. B.; Schultz, R. W.

    2007-12-01

    This report describes the tool and the underlying methodology for SEADS 3.0, the Sectoral Energy/Employment Analysis and Data System, which is a software package designed for the analysis of policy that could be described by modifying final demands of consumer, businesses, or governments. The report also provides a usersí manual, examples for two analyses and the results for them.

  17. Energy Use in China: Sectoral Trends and Future Outlook

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.; Fridley, David; Lin, Jiang; Price,Lynn; de la Rue du Can, Stephane; Sathaye, Jayant; Levine, Mark

    2007-10-04

    This report provides a detailed, bottom-up analysis ofenergy consumption in China. It recalibrates official Chinese governmentstatistics by reallocating primary energy into categories more commonlyused in international comparisons. It also provides an analysis of trendsin sectoral energy consumption over the past decades. Finally, itassesses the future outlook for the critical period extending to 2020,based on assumptions of likely patterns of economic activity,availability of energy services, and energy intensities. The followingare some highlights of the study's findings: * A reallocation of sectorenergy consumption from the 2000 official Chinese government statisticsfinds that: * Buildings account for 25 percent of primary energy, insteadof 19 percent * Industry accounts for 61 percent of energy instead of 69percent * Industrial energy made a large and unexpected leap between2000-2005, growing by an astonishing 50 percent in the 3 years between2002 and 2005. * Energy consumption in the iron and steel industry was 40percent higher than predicted * Energy consumption in the cement industrywas 54 percent higher than predicted * Overall energy intensity in theindustrial sector grew between 2000 and 2003. This is largely due tointernal shifts towards the most energy-intensive sub-sectors, an effectwhich more than counterbalances the impact of efficiency increases. *Industry accounted for 63 percent of total primary energy consumption in2005 - it is expected to continue to dominate energy consumption through2020, dropping only to 60 percent by that year. * Even assuming thatgrowth rates in 2005-2020 will return to the levels of 2000-2003,industrial energy will grow from 42 EJ in 2005 to 72 EJ in 2020. * Thepercentage of transport energy used to carry passengers (instead offreight) will double from 37 percent to 52 percent between 2000 to 2020,.Much of this increase is due to private car ownership, which willincrease by a factor of 15 from 5.1 million in 2000 to 77

  18. Number of Customers by State by Sector, 1990-2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Number of Customers by State by Sector, 1990-2014" "Year","State","Industry Sector Category","Residential","Commercial","Industrial","Transportation","Other","Total" 2014,"AK","Total Electric Industry",281438,51017,1287,0,"NA",333742 2014,"AL","Total Electric Industry",2169790,360901,7236,0,"NA",2537927 2014,"AR","Total Electric

  19. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Puget Sound Energy Inc","Investor-owned",20568948...

  20. India-NAMA Programme for the Construction Sector in Asia | Open...

    Open Energy Info (EERE)

    United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market...

  1. NAMA-Programme for the construction sector in Asia | Open Energy...

    Open Energy Info (EERE)

    United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Market analysis Website http:www.unep.orgsbcipdfs...

  2. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Northern States Power Co - Minnesota","Investor-ow...

  3. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Northern States Power Co - Minnesota","Investor-owned...

  4. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"MidAmerican Energy Co","Investor-owned",20585461,570529...

  5. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"NorthWestern Energy LLC - (MT)","Investor-owned",597...

  6. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Westar Energy Inc","Investor-owned",9973395,3434301,4...

  7. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Duke Energy Carolinas, LLC","Investor-owned",567506...

  8. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"First Energy Solutions Corp.","Investor-owned",41994756...

  9. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"First Energy Solutions Corp.","Investor-owned",...

  10. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Duke Energy Indiana Inc","Investor-owned",28224148,9...

  11. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Reliant Energy Retail Services","Investor-owned",38670...

  12. Bioproducts and Biofuels - Growing Together! | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Biofuels - Growing Together Bioproducts and Biofuels - Growing Together Breakout Session 2B-Integration of Supply Chains II: Bioproducts-Enabling Biofuels and Growing the ...

  13. Growing a Solar Industry in the Sacramento Clean Tech Zone

    Broader source: Energy.gov [DOE]

    This summary report documents the assessment and evaluation process and results, with conclusions that can be used as guidelines for solar and solar supply chain focused investments.

  14. From the Start: NREL Nurtures a Growing Wind Industry - Continuum...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo of a wind turbine nacelle bolted to a coupling device that, in turn, is connected to ... and dynamometer test facilities draw wind turbine manufacturers from around the world. ...

  15. Private Sector Outreach and Partnerships

    Office of Energy Efficiency and Renewable Energy (EERE)

    ISER’s partnerships with the private sector are a strength which has enabled the division to respond to the needs of the sector and the nation.

  16. Industrial Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers to Industrial Energy Efficiency Report to Congress June 2015 United States Department of Energy Washington, DC 20585 Department of Energy | June 2015 Message from the Assistant Secretary The industrial sector has shown steady progress in improving energy efficiency over the past few decades and energy efficiency improvements are expected to continue. Studies suggest, however, that there is potential to accelerate the rate of adopting energy efficient technologies and practices that

  17. Electric Power Industry Needs for Grid-Scale Storage Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Needs for Grid-Scale Storage Applications Electric Power Industry Needs for Grid-Scale Storage Applications Stationary energy storage technologies will address the growing ...

  18. Cooling, Heating, and Power for Industry: A Market Assessment, August 2003

    Office of Energy Efficiency and Renewable Energy (EERE)

    The focus of this study was to assess the market for cooling, heating, and power applications in the industrial sector.

  19. Delivered Energy Consumption Projections by Industry in the Annual Energy Outlook 2002

    Reports and Publications (EIA)

    2002-01-01

    This paper presents delivered energy consumption and intensity projections for the industries included in the industrial sector of the National Energy Modeling System.

  20. Organization of growing random networks

    SciTech Connect (OSTI)

    Krapivsky, P. L.; Redner, S.

    2001-06-01

    The organizational development of growing random networks is investigated. These growing networks are built by adding nodes successively, and linking each to an earlier node of degree k with an attachment probability A{sub k}. When A{sub k} grows more slowly than linearly with k, the number of nodes with k links, N{sub k}(t), decays faster than a power law in k, while for A{sub k} growing faster than linearly in k, a single node emerges which connects to nearly all other nodes. When A{sub k} is asymptotically linear, N{sub k}(t){similar_to}tk{sup {minus}{nu}}, with {nu} dependent on details of the attachment probability, but in the range 2{lt}{nu}{lt}{infinity}. The combined age and degree distribution of nodes shows that old nodes typically have a large degree. There is also a significant correlation in the degrees of neighboring nodes, so that nodes of similar degree are more likely to be connected. The size distributions of the in and out components of the network with respect to a given node{emdash}namely, its {open_quotes}descendants{close_quotes} and {open_quotes}ancestors{close_quotes}{emdash}are also determined. The in component exhibits a robust s{sup {minus}2} power-law tail, where s is the component size. The out component has a typical size of order lnt, and it provides basic insights into the genealogy of the network.

  1. Growing and Sustaining Communities with Bioenergy- Text-Alt Version

    Broader source: Energy.gov [DOE]

    From Vero Beach, Florida, to Hugoton, Kansas, to Emmetsburg, Iowa, cellulosic ethanol biorefineries have had major impacts on communities and their residents. In other areas, bioenergy has significant potential to transform current and establish new industry. This short video illustrates how biorefineries and other bioenergy developments can benefit citizens, businesses, and whole communities, helping America’s rural economies grow and thrive.

  2. Fact #689: August 22, 2011 Energy Use by Sector and Source | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 9: August 22, 2011 Energy Use by Sector and Source Fact #689: August 22, 2011 Energy Use by Sector and Source The transportation sector consumed 28% of U.S. energy in 2010, nearly all of it (93.5%) in petroleum use. The industrial sector used about 40% petroleum and 40% natural gas. The electric utility sector used little petroleum, but was dependent on coal for nearly half of the energy it consumed. Renewables, such as biofuels for transportation, were being used in every sector in

  3. Turkey opens electricity markets as demand grows

    SciTech Connect (OSTI)

    McKeigue, J.; Da Cunha, A.; Severino, D. [Global Business Reports (United States)

    2009-06-15

    Turkey's growing power market has attracted investors and project developers for over a decade, yet their plans have been dashed by unexpected political or financial crises or, worse, obstructed by a lengthy bureaucratic approval process. Now, with a more transparent retail electricity market, government regulators and investors are bullish on Turkey. Is Turkey ready to turn the power on? This report closely examine Turkey's plans to create a power infrastructure capable of providing the reliable electricity supplies necessary for sustained economic growth. It was compiled with on-the-ground research and extensive interview with key industrial and political figures. Today, hard coal and lignite account for 21% of Turkey's electricity generation and gas-fired plants account for 50%. The Alfin Elbistan-B lignite-fired plant has attracted criticism for its lack of desulfurization units and ash dam facilities that have tarnished the industry's image. A 1,100 MW hard-coal fired plant using supercritical technology is under construction. 9 figs., 1 tab.

  4. Sumitomo Metal Industries Ltd Sumitomo Metals | Open Energy Informatio...

    Open Energy Info (EERE)

    Industries Ltd (Sumitomo Metals) Place: Osaka-shi, Osaka, Japan Zip: 540-0041 Sector: Solar Product: Engaged in the steel, engineering, and electronics businesses; works on...

  5. DOE Announces Awardees for the Industrial Energy Efficiency Grand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    interests, the industrial sector remains a major part of the Nation's clean energy equation. This funding announced today will promote breakthrough achievements in the...

  6. Bayer ABS Ltd formerly ABS Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    (formerly ABS Industries Ltd) Place: Vadodara, Gujarat, India Zip: 335871 Sector: Wind energy Product: Bayer ABS is a plastic, chemical, and pharmaceutical company. Has...

  7. Chongqing Lanxi Power Industry Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    City, Chongqing Municipality, China Sector: Hydro Product: Chongqing-based small hydro project developer. References: Chongqing Lanxi Power Industry Co Ltd1 This article...

  8. Nanjing Auheng Industrial Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd Place: Nanjing, Jiangsu Province, China Zip: 210005 Sector: Hydro, Solar, Wind energy Product: Manufactures industrial components, including electric vehicle...

  9. India-International Industrial Energy Efficiency Deployment Project...

    Open Energy Info (EERE)

    Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory (ORNL), Alliance for Energy Efficient Economy (India), Confederation of Indian Industry Sector Energy Focus...

  10. Austin Utilities (Gas and Electric) - Commercial and Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    commercial location per year, 5,000 per industrial location per year Program Info Sector Name Utility Administrator Austin Utilities Website http:www.austinutilities.compages...

  11. Alerion Clean Power Spa previously known as Alerion Industries...

    Open Energy Info (EERE)

    20122 Sector: Renewable Energy Product: Alerion Industries Spa is a quoted independent power producer that specialises in renewable energies. Coordinates: 45.468945, 9.18103...

  12. Daiwa House Industry Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd Jump to: navigation, search Name: Daiwa House Industry Co Ltd Place: Osaka, Japan Zip: 530-8241 Sector: Wind energy Product: Japanese construction company; builds wind...

  13. Tamil Nadu Small and Tiny Industries Association TANSTIA | Open...

    Open Energy Info (EERE)

    Association TANSTIA Jump to: navigation, search Name: Tamil Nadu Small and Tiny Industries Association (TANSTIA) Place: India Sector: Services Product: Services & Support...

  14. Longchuan County Yuming Industrial Development Co Ltd | Open...

    Open Energy Info (EERE)

    Development Co Ltd Jump to: navigation, search Name: Longchuan County Yuming Industrial Development Co., Ltd. Place: Guangdong Province, China Sector: Hydro Product: China based...

  15. Midstate Electric Cooperative- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Midstate Electric Cooperative (MEC) encourages energy efficiency in the commercial and industrial sectors by giving customers a choice of several different financial incentive programs. First, ...

  16. Sales to Ultimate Customers (Megawatthours) by State by Sector by Provider, 1990

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales to Ultimate Customers (Megawatthours) by State by Sector by Provider, 1990-2014" "Year","State","Industry Sector Category","Residential","Commercial","Industrial","Transportation","Other","Total" 2014,"AK","Total Electric Industry",2043614,2761518,1359680,0,"NA",6164812 2014,"AL","Total Electric

  17. National Skills Assessment of the U.S. Wind Industry in 2012

    SciTech Connect (OSTI)

    Levanthal, M.; Tegen, S.

    2013-06-01

    A robust workforce is essential to developing domestic wind power projects, including manufacturing, siting, operations, maintenance, and research capabilities. The purpose of our research is to better understand today's domestic wind workforce, projected workforce needs as the industry grows, and how existing and new programs can meet the wind industry's future education and training needs. Results presented in this report provide the first published investigation into the detailed makeup of the wind energy workforce, educational infrastructure and training needs of the wind industry. Insights from this research into the domestic wind workforce will allow the private sector, educational institutions, and federal and state governmental organizations to make workforce-related decisions based on the current employment and training data and future projections in this report.

  18. National Skills Assessment of the U.S. Wind Industry in 2012

    Broader source: Energy.gov [DOE]

    A robust workforce is essential to developing domestic wind power projects, including manufacturing, siting, operations, maintenance, and research capabilities. The purpose of our research is to better understand today’s domestic wind workforce, projected workforce needs as the industry grows, and how existing and new programs can meet the wind industry's future education and training needs. Results presented in this report provide the first published investigation into the detailed makeup of the wind energy workforce, educational infrastructure and training needs of the wind industry. Insights from this research into the domestic wind workforce will allow the private sector, educational institutions, and federal and state governmental organizations to make workforce-related decisions based on the current employment and training data and future projections in this report.

  19. Searching for Dark Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Searching for Dark Sector Physics with MiniBooNE Georgia Karagiorgi, Columbia University On behalf of the MiniBooNE Collaboration 3 rd International Conference on New Frontiers in Physics August 6, 2014 MiniBooNE: Past & current highlights MiniBooNE, an accelerator-based neutrino experiment at Fermilab, has run for 10 years with neutrino and antineutrino beams, collecting data for ~2x10 21 POT, amounting to 100k's of neutrino interactions. It has been able to address the two-neutrino

  20. Implementing an Industrial Energy Efficiency Program in Minnesota

    Broader source: Energy.gov [DOE]

    Minnesota implemented an Industrial Energy Efficiency Program utilizing the state award from AMO to develop and implement an industrial energy efficiency program that identified key manufacturing sectors and accelerated technology adoption to reduce energy intensity.

  1. Industrial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Industrial Manufacturing Buildings Industrialmanufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey...

  2. ITP Petroleum Refining: Profile of the Petroleum Refining Industry in California: California Industries of the Future Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy (DOE) Industrial Technologies Program (ITP) established the Industries of the Future (IOF) program to increase energy efficiency, reduce waste production and to improve competitiveness, currently focusing on nine sectors.

  3. Fact #582: August 3, 2009 Energy Shares by Sector and Source | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 2: August 3, 2009 Energy Shares by Sector and Source Fact #582: August 3, 2009 Energy Shares by Sector and Source The transportation sector consumed about 28% of U.S. energy in 2008, nearly all of it (95%) in petroleum use. The industrial sector used about 40% petroleum and 40% natural gas. The electric utility sector used little petroleum, but was dependent on coal for more than half of the energy it consumed. Renewables, such as biofuels for transportation, were being used in

  4. Iron and Steel Sector (NAICS 3311 and 3312) Energy and GHG Combustion Emissions Profile, November 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    99 2.6 IRON AND STEEL SECTOR (NAICS 3311, 3312) 2.6.1. Overview of the Iron and Steel Manufacturing Sector The iron and steel sector is an essential part of the U.S. manufacturing sector, providing the necessary raw material for the extensive industrial supply chain. U.S. infrastructure is heavily reliant on the U.S. iron and steel sector, as it provides the foundation for construction (bridges, buildings), transportation systems (railroads, cars, trucks), utility systems (municipal water

  5. VAWT Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Nevada Zip: 89118 Sector: Wind energy Product: Focused on design, production, and marketing of wind turbines in the 0.1-0.5MW range. References: VAWT Industries Inc1 This...

  6. An LDC grows in Brooklyn

    SciTech Connect (OSTI)

    Kauffmann, B.

    1994-11-01

    Bob Catell is turning Brooklyn Union into the premier energy company of the Northeast. He also plans to make A.G.A. the premier trade association of the energy business, and natural gas the premier energy source of the world. And as far back as 1984, Catell and others at Brooklyn Union anticipated the need to change the way gas companies ran their core business, in order to meet the coming deregulation that they all thought was a certainty. Believing that industry restructuring would make gas companies more responsible for acquiring and transporting gas, Catell began looking around for alternative suppliers and new ways to transport gas. This resulted in two of his proudest accomplishments. The first is the construction of the Iroquois Gas Transmission System, which extends from Canada to New York and transports gas to all of the Northeast. The second is the close working relationship he and Brooklyn Union have established with Canadian suppliers, whose exports make up nearly 24 percent of the gas used in the Northeast. Catell plans to use his year as A.G.A. chairman to cultivate even closer relationships with the Canadian gas industry.

  7. QTR Webinar: Chapter 8 - Industry and Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar: Chapter 8 - Industry and Manufacturing QTR Webinar: Chapter 8 - Industry and Manufacturing Background The U.S. industrial sector accounts for approximately one-third of the overall energy consumption and associated carbon emissions in the U.S. About four-fifths of end-use industrial energy is consumed by the manufacturing sub-sector, which produces goods ranging from fundamental commodities to sophisticated final-use products. Many of these products have a significant energy and carbon

  8. Electric power industry in Korea: Past, present, and future

    SciTech Connect (OSTI)

    Lee, Hoesung

    1994-12-31

    Electrical power is an indispensable tool in the industrialization of a developing country. An efficient, reliable source of electricity is a key factor in the establishment of a wide range of industries, and the supply of energy must keep pace with the increasing demand which economic growth creates in order for that growth to be sustained. As one of the most successful of all developing countries, Korea has registered impressive economic growth over the last decade, and it could be said that the rapid growth of the Korean economy would not have been possible without corresponding growth in the supply of electric power. Power producers in Korea, and elsewhere in Asia, are to be commended for successfully meeting the challenge of providing the necessary power to spur what some call an economic miracle. The future continues to hold great potential for participants in the electrical power industry, but a number of important challenges must be met in order for that potential to be fully realized. Demand for electricity continues to grow at a staggering rate, while concerns over the environmental impact of power generating facilities must not be ignored. As it becomes increasingly difficult to finance the rapid, and increasingly larger-scale expansion of the power industry through internal sources, the government must find resources to meet the growing demand at least cost. This will lead to important opportunities for the private sector. It is important, therefore, for those interested in participating in the power production industry and taking advantage of the newly emerging opportunities that lie in the Korean market, and elsewhere in Asia, to discuss the relevant issues and become informed of the specific conditions of each market.

  9. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies ...

  10. Energy Sector Cybersecurity Framework Implementation Guidance

    Broader source: Energy.gov (indexed) [DOE]

    FOR PUBLIC COMMENT SEPTEMBER, 2014 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE Energy Sector Cybersecurity Framework Implementation Guidance Table of Contents...

  11. Energy Sector Market Analysis

    SciTech Connect (OSTI)

    Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

    2006-10-01

    This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

  12. The new structure of the gas industry in the State of Sao Paulo

    SciTech Connect (OSTI)

    Neto, J.A.J.

    1998-07-01

    The rapidly increasing availability of natural gas is leading to a significant increase in the importance of the gas industry in Brazil. This new era is already causing major changes in the existing gas distribution companies. Gas distribution concessions are a natural monopoly and the growth in demand for this energy source will require that these growing concessions are regulated. The south/south-east of Brazil is the center of the country's industrial base and the State of Sao Paulo is where most of the manufacturing activity is located. In addition, natural gas from Bolivia is scheduled to arrive in the State of Sao Paulo at the end of 1998. These two facts combined will mean major changes in the operations of manufacturing industry and in the gas supply business. Comparing the experience faced by other countries where a competitive environment in the gas industry has been introduced with privatization programs and the dismantlement of monopolies, this paper attempts to look into the future of the natural gas industry in the State of Sao Paulo in respect to the possible regulation that might be applicable, focusing on the new regulatory framework proposed to the gas industry sector and the perspectives for the introduction of the competition in gas industry in the State of Sao Paulo.

  13. Industrial Energy Efficiency Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics The industrial sector is vital to the U.S. economy, but at the same time consumes the most energy in the country to manufacture products we use every day. Among the most energy-intensive industries are aluminum, chemicals, forest product, glass, metal casting, mining, petroleum refining, and steel. The energy supply chain begins with electricity, steam, natural gas, coal, and other fuels supplied to a manufacturing plant

  14. What Makes Clouds Form, Grow and Die?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Makes Clouds Form, Grow and Die? What Makes Clouds Form, Grow and Die? Simulations Show Raindrops Physics May Affect Climate Model Accuracy February 19, 2015 thunderstorm Brazil shuttle NASA 1984 540 PNNL scientists used real-world observations to simulate how small clouds are likely to stay shallow, while larger clouds grow deeper because they mix with less dry air. Pictured are small and large thunderstorms growing over southern Brazil, taken from the space shuttle. Image: NASA Johnson Space

  15. Ames Lab 101: Growing Crystals in Space

    ScienceCinema (OSTI)

    Trivedi, Rohit

    2012-08-29

    Rohit Trivedi, distinguished professor of materials science and engineering, discusses his research with NASA to grow crystals in space.

  16. Ames Lab 101: Growing Crystals in Space

    SciTech Connect (OSTI)

    Trivedi, Rohit

    2011-01-01

    Rohit Trivedi, distinguished professor of materials science and engineering, discusses his research with NASA to grow crystals in space.

  17. Silicon crystal growing by oscillating crucible technique

    DOE Patents [OSTI]

    Schwuttke, G.H.; Kim, K.M.; Smetana, P.

    1983-08-03

    A process for growing silicon crystals from a molten melt comprising oscillating the container during crystal growth is disclosed.

  18. Sector Collaborative on Energy Efficiency

    SciTech Connect (OSTI)

    none,

    2008-06-01

    Helps stakeholders identify and act on cost-effective opportunities for expanding energy efficiency resources in the hospitality, retail, commercial real estate, grocery, and municipal sectors.

  19. Turkey energy and environmental review - Task 7 energy sector modeling : executive summary.

    SciTech Connect (OSTI)

    Conzelmann, G.; Koritarov, V.; Decision and Information Sciences

    2008-02-28

    Turkey's demand for energy and electricity is increasing rapidly. Since 1990, energy consumption has increased at an annual average rate of 4.3%. As would be expected, the rapid expansion of energy production and consumption has brought with it a wide range of environmental issues at the local, regional and global levels. With respect to global environmental issues, Turkey's carbon dioxide (CO2) emissions have grown along with its energy consumption. Emissions in 2000 reached 211 million metric tons. With GDP projected to grow at over 6% per year over the next 25 years, both the energy sector and the pollution associated with it are expected to increase substantially. This is expected to occur even if assuming stricter controls on lignite and hard coal-fired power generation. All energy consuming sectors, that is, power, industrial, residential, and transportation, will contribute to this increased emissions burden. Turkish Government authorities charged with managing the fundamental problem of carrying on economic development while protecting the environment include the Ministry of Environment (MOE), the Ministry of Energy and Natural Resources (MENR), and the Ministry of Health, as well as the Turkish Electricity Generation & Transmission Company (TEAS). The World Bank, working with these agencies, is planning to assess the costs and benefits of various energy policy alternatives under an Energy and Environment Review (EER). Eight individual studies have been conducted under this activity to analyze certain key energy technology issues and use this analysis to fill in the gaps in data and technical information. This will allow the World Bank and Turkish authorities to better understand the trade-offs in costs and impacts associated with specific policy decisions. The purpose of Task 7-Energy Sector Modeling, is to integrate information obtained in other EER tasks and provide Turkey's policy makers with an integrated systems analysis of the various options for

  20. Energy Sector Control Systems Working Group to Meet March 25, 2008 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Control Systems Working Group to Meet March 25, 2008 Energy Sector Control Systems Working Group to Meet March 25, 2008 The Energy Sector Control Systems Working Group is a unique public-private partnership recently formed to help guide implementation of the priorities identified in the industry-led Roadmap to Secure Control Systems in the Energy Sector. The group seeks to provide a platform for pursuing innovative and practical activities that will improve the security

  1. Types of Nuclear Industry Jobs Commercial and Government Sectors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Homes Types of Homes Manufactured homes are one type of home that may require special considerations for energy efficiency and renewable energy technologies. | Photo courtesy of Florida Solar Energy Center. Manufactured homes are one type of home that may require special considerations for energy efficiency and renewable energy technologies. | Photo courtesy of Florida Solar Energy Center. Some types of homes may require different considerations when it comes to energy efficiency. You may be

  2. Designing Effective State Programs for the Industrial Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to approximately 6,420 trillion British thermal units of primary energy (including combined heat and power), according to a comprehensive 2009 analysis by McKinsey & Company. ...

  3. Industrial Sector Demand Module of the National Energy Modeling...

    Gasoline and Diesel Fuel Update (EIA)

    factors are multiplicative for all fuels which have values greater than zero and are additive otherwise. ( ) ( ) ( ) ( ) ( ) ( ) - - - fg...

  4. Industry Trends in the U.S. Wind Energy Sector

    Broader source: Energy.gov [DOE]

    Electricity supplied by wind energy exceeded 4.5 percent in the U.S. in 2013 and has the potential to reach as much as 35 percent by 2050. Join The Pew Charitable Trusts for a webinar with the...

  5. Sustainable fuel for the transportation sector

    SciTech Connect (OSTI)

    Agrawal, R.; Singh, N.R.; Ribeiro, F.H.; Delgass, W.N.

    2007-03-20

    A hybrid hydrogen-carbon (H{sub 2}CAR) process for the production of liquid hydrocarbon fuels is proposed wherein biomass is the carbon source and hydrogen is supplied from carbon-free energy. To implement this concept, a process has been designed to co-feed a biomass gasifier with H{sub 2} and CO{sub 2} recycled from the H{sub 2}-CO to liquid conversion reactor. Modeling of this biomass to liquids process has identified several major advantages of the H{sub 2}CAR process. The land area needed to grow the biomass is <40% of that needed by other routes that solely use biomass to support the entire transportation sector. Whereras the literature estimates known processes to be able to produce {approx}30% of the United States transportation fuel from the annual biomass of 1.366 billion tons, the H{sub 2}CAR process shows the potential to supply the entire United States transportation sector from that quantity of biomass. The synthesized liquid provides H{sub 2} storage in an open loop system. Reduction to practice of the H{sub 2}CAR route has the potential to provide the transportation sector for the foreseeable future, using the existing infrastructure. The rationale of using H{sub 2} in the H{sub 2}CAR process is explained by the significantly higher annualized average solar energy conversion efficiency for hydrogen generation versus that for biomass growth. For coal to liquids, the advantage of H{sub 2}CAR is that there is no additional CO{sub 2} release to the atmosphere due to the replacement of petroleum with coal, thus eliminating the need to sequester CO{sub 2}.

  6. Growing America's Energy Future: Bioenergy Technologies Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America's Energy Future: Bioenergy Technologies Office Successes of 2014 Growing America's Energy Future: Bioenergy Technologies Office Successes of 2014 The Bioenergy Technologies ...

  7. Maine Company Growing with Weatherization Work

    Broader source: Energy.gov [DOE]

    Maine's BIOSAFE Environmental Services expands into weatherization, assisting low-income families with their services and creating jobs as business grows.

  8. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users The facility has been used for more than a decade by a virtual Who's Who of the semiconductor industry to simulate the potential failures posed by cosmic-ray-induced neutrons upon miniature electronic devices, such as chips that help control aircraft or complex integrated circuits in automobiles. Industrial User Information The Neutron and Nuclear Science (WNR) Facility welcomes proposals for beam time experiments from industry users. Proprietary and non-proprietary industrial

  9. Private Sector Initiative Between the U.S. and Japan

    SciTech Connect (OSTI)

    1998-09-30

    OAK-A258 Private Sector Initiative Between the U.S. and Japan. This report for calendar years 1993 through September 1998 describes efforts performed under the Private Sector Initiatives contract. The report also describes those efforts that have continued with private funding after being initiated under this contract. The development of a pyrochemical process, called TRUMP-S, for partitioning actinides from PUREX waste, is described in this report. This effort is funded by the Central Research Institute of Electric Power Industry (CRIEPI), KHI, the United States Department of Energy, and Boeing.

  10. Infrastructure opportunities in South America: Energy sector. Export trade information

    SciTech Connect (OSTI)

    1995-06-01

    The report, conducted by CG/LA, Inc., was funded by the U.S. Trade and Development Agency. The report was assembled for the South American Infrastructure Conference held in New Orleans. It contains a regional overview of infrastructure activities in ten countries represented at the conference. Also covered are project listings in five sectors, including Energy, Transportation, Environment, Telecommunications, and Industry. The study covers TDA case studies as well as project financeability. The ten countries covered in the report include the following: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Paraguay, Peru, Uruguay, and Venezuela. This volume focuses on the Energy Sector in South America.

  11. Cyber Security Testing and Training Programs for Industrial Control Systems

    SciTech Connect (OSTI)

    Daniel Noyes

    2012-03-01

    Service providers rely on industrial control systems (ICS) to manage the flow of water at dams, open breakers on power grids, control ventilation and cooling in nuclear power plants, and more. In today's interconnected environment, this can present a serious cyber security challenge. To combat this growing challenge, government, private industry, and academia are working together to reduce cyber risks. The Idaho National Laboratory (INL) is a key contributor to the Department of Energy National SCADA Test Bed (NSTB) and the Department of Homeland Security (DHS) Control Systems Security Program (CSSP), both of which focus on improving the overall security posture of ICS in the national critical infrastructure. In support of the NSTB, INL hosts a dedicated SCADA testing facility which consists of multiple control systems supplied by leading national and international manufacturers. Within the test bed, INL researchers systematically examine control system components and work to identify vulnerabilities. In support of the CSSP, INL develops and conducts training courses which are designed to increase awareness and defensive capabilities for IT/Control System professionals. These trainings vary from web-based cyber security trainings for control systems engineers to more advanced hands-on training that culminates with a Red Team/ Blue Team exercise that is conducted within an actual control systems environment. INL also provides staffing and operational support to the DHS Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) Security Operations Center which responds to and analyzes control systems cyber incidents across the 18 US critical infrastructure sectors.

  12. Fact #688: August 15, 2011 All Sectors' Petroleum Gap | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 8: August 15, 2011 All Sectors' Petroleum Gap Fact #688: August 15, 2011 All Sectors' Petroleum Gap Before 1989 the U.S. produced enough petroleum to meet the needs of the transportation sector, but was still short of meeting the petroleum needs of all the sectors, including industrial, residential and commercial, and electric utilities. In 1973 the gap between what the U.S. produced and what was consumed was 5.6 million barrels per day. By 2035, the gap is expected to be at least 9.6

  13. Fact #561: March 9, 2009 All Sectors' Petroleum Gap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: March 9, 2009 All Sectors' Petroleum Gap Fact #561: March 9, 2009 All Sectors' Petroleum Gap Before 1989 the U.S. produced enough petroleum to meet the needs of the transportation sector, but was still short of meeting the petroleum needs of all the sectors, including industrial, residential and commercial, and electric utilities. In 1973 the gap between what the U.S. produced and what was consumed was 5.6 million barrels per day. By 2030, the gap is expected to be at least 9.2 million

  14. Fact #610: February 15, 2010 All Sectors' Petroleum Gap | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 10: February 15, 2010 All Sectors' Petroleum Gap Fact #610: February 15, 2010 All Sectors' Petroleum Gap Before 1989 the U.S. produced enough petroleum to meet the needs of the transportation sector, but was still short of meeting the petroleum needs of all the sectors, including industrial, residential and commercial, and electric utilities. In 1973 the gap between what the U.S. produced and what was consumed was 5.6 million barrels per day. By 2035, the gap is expected to be at

  15. WINDExchange: Wind Energy Market Sectors

    Wind Powering America (EERE)

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Wind Energy Market Sectors U.S. power plants generate electricity for homes, factories, and businesses from a variety of resources, including coal, hydro, natural gas, nuclear, petroleum, and (non-hydro) renewable resources such as wind and solar energy. This power generation mix varies significantly across the country depending on

  16. Coal Industry Annual 1995

    SciTech Connect (OSTI)

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  17. Coal industry annual 1996

    SciTech Connect (OSTI)

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  18. Federal Sector Renewable Energy Project Implementation: ""What...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sector Renewable Energy Project Implementation: ""What's Working and Why Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by Robert ...

  19. Property:DeploymentSector | Open Energy Information

    Open Energy Info (EERE)

    search Property Name DeploymentSector Property Type String Description Depolyment Sector as used in cleanenergysolutions.org Allows the following values: Commercial...

  20. Technologies for Climate Change Mitigation: Transport Sector...

    Open Energy Info (EERE)

    Technologies for Climate Change Mitigation: Transport Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technologies for Climate Change Mitigation: Transport Sector...

  1. Energy Sector Cybersecurity Framework Implementation Guidance

    Broader source: Energy.gov (indexed) [DOE]

    JANUARY 2015 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY Energy Sector ...

  2. New trends in industrial energy efficiency in the Mexico iron and steel industry

    SciTech Connect (OSTI)

    Ozawa, Leticia; Martin, Nathan; Worrell, Ernst; Price, Lynn; Sheinbaum, Claudia

    1999-07-31

    Energy use in the Mexican industrial sector experienced important changes in the last decade related to changes in the Mexican economy. In previous studies, we have shown that a real change in energy-intensity was the most important factor in the overall decline of energy use and CO2 emissions in the Mexican industrial sector. Real changes in energy intensity were explained by different factors, depending on the industrial sub-sector. In this paper, we analyze the factors that influenced energy use in the Mexican iron and steel industry, the largest energy consuming and energy-intensive industry in the country. To understand the trends in this industry we used a decomposition analysis based on physical indicators to decompose the changes in intra-sectoral structural changes and efficiency improvements. Also, we use a structure-efficiency analysis for international comparisons, considering industrial structure and the best available technology. In 1995, Mexican iron and steel industry consumed 17.7 percent of the industrial energy consumption. Between 1970 and 1995, the steel production has increased with an annual growth rate of 4.7 percent, while the specific energy consumption (SEC) has decreased from 28.4 to 23.8 GJ/tonne of crude steel. This reduction was due to energy efficiency improvements (disappearance of the open hearth production, increase of the share of the continuous casting) and to structural changes as well (increase of the share of scrap input in the steelmaking).

  3. NERSC Seeks Industry Partners for Collaborative Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seeks Industry Partners for Collaborative Research NERSC Seeks Industry Partners for Collaborative Research January 28, 2015 Contact: David Skinner, NERSC Strategic Partnerships Lead, deskinner@lbl.gov, 510-486-4748 Edison7 The National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory has launched a private sector partnership program (PSP) to make its computing capabilities available to industry partners working in key technology areas. Led by David

  4. HTGR Industrial Application Functional and Operational Requirements

    SciTech Connect (OSTI)

    L. E. Demick

    2010-08-01

    This document specifies the functional and performance requirements to be used in the development of the conceptual design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to a typical industrial facility. These requirements were developed from collaboration with industry and HTGR suppliers over the preceding three years to identify the energy needs of industrial processes for which the HTGR technology is technically and economically viable. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a conceptual design of the plant that will serve the broadest range of industrial applications.

  5. Coal industry annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  6. Coal industry annual 1997

    SciTech Connect (OSTI)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  7. U.S. Energy Service Company Industry: Market Size and Project Performance from 1990-2008

    SciTech Connect (OSTI)

    Larsen, Peter; Goldman, Charles; Satchwell, Andrew

    2012-08-21

    The U.S. energy service company (ESCO) industry is an example of a private sector business model where energy savings are delivered to customers primarily through the use of performance-based contracts. This study was conceived as a snapshot of the ESCO industry prior to the economic slowdown and the introduction of federal stimulus funding mandated by enactment of the American Recovery and Reinvestment Act of 2009 (ARRA). This study utilizes two parallel analytic approaches to characterize ESCO industry and market trends in the U.S.: (1) a ?top-down? approach involving a survey of individual ESCOs to estimate aggregate industry activity and (2) a ?bottom-up? analysis of a database of ~;;3,250 projects (representing over $8B in project investment) that reports market trends including installed EE retrofit strategies, project installation costs and savings, project payback times, and benefit-cost ratios over time. Despite the onset of a severe economic recession, the U.S. ESCO industry managed to grow at about 7percent per year between 2006 and 2008. ESCO industry revenues were about $4.1 billion in 2008 and ESCOs anticipate accelerated growth through 2011 (25percent per year). We found that 2,484 ESCO projects in our database generated ~;;$4.0 billion ($2009) in net, direct economic benefits to their customers. We estimate that the ESCO project database includes about 20percent of all U.S. ESCO market activity from 1990-2008. Assuming the net benefits per project are comparable for ESCO projects that are not included in the LBNL database, this would suggest that the ESCO industry has generated ~;;$23 billion in net direct economic benefits for customers at projects installed between 1990 and 2008. There is empirical evidence confirming that the industry is evolving by installing more comprehensive and complex measures?including onsite generation and measures to address deferred maintenance?but this evolution has significant implications for customer project

  8. Industry Outreach and Coalition Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Outreach and Coalition Resources Industry Outreach and Coalition Resources Involving the industrial sector in energy efficiency programs can assist jurisdictions in reaching energy reduction goals. Industry outreach programs may involve encouraging and supporting implementation of energy efficiency programs at commercial enterprises as well as the adoption of energy efficiency technologies in the production process and final goods. Find industry outreach and coalition resources below.

  9. Electricity savings potentials in the residential sector of Bahrain

    SciTech Connect (OSTI)

    Akbari, H.; Morsy, M.G.; Al-Baharna, N.S.

    1996-08-01

    Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to the peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.

  10. Industrial Technologies Program - A Clean, Secure Energy Future via Industrial Energy Efficiency

    SciTech Connect (OSTI)

    2010-05-01

    The Industrial Technologies Program (ITP) leads the national effort to save energy and reduce greenhouse gas emissions in the largest energy-using sector of the U.S. economy. ITP drives energy efficiency improvements and carbon dioxide reductions throughout the manufacturing supply chain, helping develop and deploy innovative technologies that transform the way industry uses energy.