Powered by Deep Web Technologies
Note: This page contains sample records for the topic "industrial sector fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Analysis of fuel shares in the industrial sector  

SciTech Connect

These studies describe how fuel shares have changed over time; determine what factors are important in promoting fuel share changes; and project fuel shares to the year 1995 in the industrial sector. A general characterization of changes in fuel shares of four fuel types - coal, natural gas, oil and electricity - for the industrial sector is as follows. Coal as a major fuel source declined rapidly from 1958 to the early 1970s, with oil and natural gas substituting for coal. Coal's share of total fuels stabilized after the oil price shock of 1972-1973, and increased after the 1979 price shock. In the period since 1973, most industries and the industrial sector as a whole appear to freely substitute natural gas for oil, and vice versa. Throughout the period 1958-1981, the share of electricity as a fuel increased. These observations are derived from analyzing the fuel share patterns of more than 20 industries over the 24-year period 1958 to 1981.

Roop, J.M.; Belzer, D.B.

1986-06-01T23:59:59.000Z

2

Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors  

DOE Green Energy (OSTI)

As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy security through more effective utilization of our country’s resources while simultaneously providing economic stability and growth (through predictable energy prices and high value jobs), in an environmentally sustainable and secure manner (through lower land and water use, and decreased byproduct emissions). The reduction in imported oil will also increase the retention of wealth within the U.S. economy while still supporting economic growth. Nuclear energy is the only non-fossil fuel that has been demonstrated to reliably supply energy for a growing industrial economy.

David Petti; J. Stephen Herring

2010-03-01T23:59:59.000Z

3

industrial sector | OpenEI  

Open Energy Info (EERE)

industrial sector industrial sector Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata

4

EIA - International Energy Outlook 2009-Industrial Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Industrial Sector Energy Consumption Industrial Sector Energy Consumption International Energy Outlook 2009 Chapter 6 - Industrial Sector Energy Consumption Worldwide industrial energy consumption increases by an average of 1.4 percent per year from 2006 to 2030 in the IEO2009 reference case. Much of the growth is expected to occur in the developing non-OECD nations. Figure 63. OECD and Non-OECD Industrial Sector Energy Consumption, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 64. World Industrial Sector Energy Consumption by Fuel, 2006 and 2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 65. World Industrial Sector Energy Consumption by Major Energy-Intensive Industry Shares, 2005 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800.

5

Energy Perspectives: Industrial and transportation sectors ...  

U.S. Energy Information Administration (EIA)

Since 2008, energy use in the transportation, residential, and commercial sectors stayed relatively constant or fell slightly. Industrial consumption grew in 2010 and ...

6

International industrial sector energy efficiency policies  

SciTech Connect

Over 40 percent of the energy consumed globally is used in the industrial sector. In China, this sector consumes an even larger proportion, reaching nearly 70 percent in 1997. A variety of energy efficiency policies and programs have been instituted in both industrialized and developing countries in an effort to improve the energy efficiency of the industrial sector. There are very few comprehensive evaluations of these industrial sector energy efficiency policies; however a number of recent workshops and conferences have included a focus on these policies. Three important meetings were the International Energy Agency's Industrial Energy Efficiency: Policies and Programs Conference in 1994, Industrial Energy Efficiency Policies: Understanding Success and Failure - A Workshop Organized by the International Network for Energy Demand Analysis in the Industrial Sector in 1998, and the American Council for an Energy-Efficient Economy's 1999 Summer Study on Energy Efficiency in Industry. Man y articles from these meetings are included as attachments to this memo. This paper provides a brief description of each of seven categories of individual industrial energy efficiency policies and programs, discuss which industrial sectors or types of equipment they apply to, and provide references for articles and reports that discuss each policy or program in more detail. We begin with mandatory-type policies and move to more voluntary-type policies. We then provide a brief description of four integrated industrial energy efficiency policies and provide references for articles and reports that describe these policies in greater detail.

Price, Lynn; Worrell, Ernst

2000-01-01T23:59:59.000Z

7

International industrial sector energy efficiency policies  

SciTech Connect

Over 40 percent of the energy consumed globally is used in the industrial sector. In China, this sector consumes an even larger proportion, reaching nearly 70 percent in 1997. A variety of energy efficiency policies and programs have been instituted in both industrialized and developing countries in an effort to improve the energy efficiency of the industrial sector. There are very few comprehensive evaluations of these industrial sector energy efficiency policies; however a number of recent workshops and conferences have included a focus on these policies. Three important meetings were the International Energy Agency's Industrial Energy Efficiency: Policies and Programs Conference in 1994, Industrial Energy Efficiency Policies: Understanding Success and Failure - A Workshop Organized by the International Network for Energy Demand Analysis in the Industrial Sector in 1998, and the American Council for an Energy-Efficient Economy's 1999 Summer Study on Energy Efficiency in Industry. Man y articles from these meetings are included as attachments to this memo. This paper provides a brief description of each of seven categories of individual industrial energy efficiency policies and programs, discuss which industrial sectors or types of equipment they apply to, and provide references for articles and reports that discuss each policy or program in more detail. We begin with mandatory-type policies and move to more voluntary-type policies. We then provide a brief description of four integrated industrial energy efficiency policies and provide references for articles and reports that describe these policies in greater detail.

Price, Lynn; Worrell, Ernst

2000-01-01T23:59:59.000Z

8

Energy use and intensity in the industrial sector, 1972 - 1991  

SciTech Connect

Energy use in the United States is substantially lower now than it would have been had energy intensities not fallen after the oil price shocks of the 1970s. The United States would have consumed over 30 quadrillion Btu (QBtu) more energy in 1991 if the energy-GDP ratio (energy divided by gross domestic product) had remained at its 1972 value. Much of this improvement has stemmed from developments within the industrial sector. This paper examines industrial energy use from two perspectives. First, the contribution of the industrial sector to the decline in the overall energy-GDP ratio is estimated. Second, the components of change in conservation trends within the industrial sector are examined. This part of the analysis identifies the change in overall industrial intensity (total energy consumption/total industrial output) that is due to improvements in energy intensity at the individual industry level in comparison to various aspects of the composition of industrial output. This paper is based upon recent work conducted by Pacific Northwest Laboratory for the Office of Energy Efficiency and Alternative Fuels Policy, U.S. Department of Energy. Discussion of other end-use sectors and some additional analysis of industrial sector energy trends is found in Energy Conservation Trends - Understanding the Factors Affecting Conservation Gains and their Implications for Policy Development.

Belzer, D.B.

1995-08-01T23:59:59.000Z

9

Market impacts: Improvements in the industrial sector | ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy performance Communicate energy efficiency Industrial energy management information center Market impacts: Improvements in the industrial sector An effective energy...

10

Assessment of Industrial-Sector Load Shapes  

Science Conference Proceedings (OSTI)

The load shapes of industrial-sector customers are becoming increasingly important for utility forecasting, marketing, and demand-side management planning and evaluation activities. This report analyzes load shapes for various industry segments and investigates the transfer of these load shapes across service territories. This report is available only to funders of Program 101A or 101.001. Funders may download this report at http://my.primen.com/Applications/DE/Community/index.asp .

1993-02-18T23:59:59.000Z

11

Cross-Sector Impact Analysis of Industrial Efficiency Measures  

SciTech Connect

The industrial or manufacturing sector is a foundational component to all economic activity. In addition to being a large direct consumer of energy, the manufacturing sector also produces materials, products, and technologies that influence the energy use of other economic sectors. For example, the manufacturing of a lighter-weight vehicle component affects the energy required to ship that component as well as the fuel efficiency of the assembled vehicle. Many energy efficiency opportunities exist to improve manufacturing energy consumption, however comparisons of manufacturing sector energy efficiency investment opportunities tend to exclude any impacts that occur once the product leaves the factory. Expanding the scope of analysis to include energy impacts across different stages of product life-cycle can highlight less obvious opportunities and inform actions that create the greatest economy-wide benefits. We present a methodology and associated analysis tool (LIGHTEnUP Lifecycle Industry GHgas, Technology and Energy through the Use Phase) that aims to capture both the manufacturing sector energy consumption and product life-cycle energy consumption implications of manufacturing innovation measures. The tool architecture incorporates U.S. national energy use data associated with manufacturing, building operations, and transportation. Inputs for technology assessment, both direct energy saving to the manufacturing sector, and indirect energy impacts to additional sectors are estimated through extensive literature review and engineering methods. The result is a transparent and uniform system of comparing manufacturing and use-phase impacts of technologies.

Morrow, William [Lawrence Berkeley National Laboratory (LBNL); CreskoEngineering, Joe [Oak Ridge Institute for Science and Education (ORISE); Carpenter, Alberta [National Renewable Energy Laboratory (NREL); Masanet, Eric [Northwestern University, Evanston; Nimbalkar, Sachin U [ORNL; Shehabi, Arman [Lawrence Berkeley National Laboratory (LBNL)

2013-01-01T23:59:59.000Z

12

Table 2.1d Industrial Sector Energy Consumption Estimates ...  

U.S. Energy Information Administration (EIA)

Table 2.1d Industrial Sector Energy Consumption Estimates, 1949-2011 (Trillion Btu) Year: Primary Consumption 1: Electricity

13

Industrial Wastes as a Fuel  

E-Print Network (OSTI)

With the advent of scarce supplies and rising costs for traditional industrial fuels such as natural gas and fuel oil, a large amount of technical data has been collected and published to encourage their efficient use. This same data is readily available for coal since it was at one time a major industrial fuel and is still used extensively for electric power generation. However, combustion data for other fuels such as wood and solid materials typically generated as industrial wastes can only be found in widely scattered and more obscure sources. Therefore, this information is not always easily accessible to operating personnel at plants where these type fuels are being utilized. The resulting lack of proper information many times leads to poor fuel utilization because of less than optimum combustion efficiencies. Operational and maintenance problems may also be caused by a misunderstanding of combustion characteristics.

Richardson, G.; Hendrix, W.

1980-01-01T23:59:59.000Z

14

Table Commercial Industrial Vehicle Fuel Electric Power  

U.S. Energy Information Administration (EIA)

State Residential Commercial Industrial Vehicle Fuel Electric Power ... Form EIA?886, “Annual Survey of Alternative Fueled Vehicles”; ...

15

Alternative Fuels Data Center: Biofuels Industry Development...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Industry Development Grants to someone by E-mail Share Alternative Fuels Data Center: Biofuels Industry Development Grants on Facebook Tweet about Alternative Fuels Data...

16

Table 2.4 Industrial Sector Energy Consumption (Trillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review October 2013 29 Table 2.4 Industrial Sector Energy Consumption (Trillion Btu) Primary Consumptiona

17

EIA - International Energy Outlook 2009-Industrial Sector Energy...  

Annual Energy Outlook 2012 (EIA)

and 2030 Figure 65. World Industrial Sector Energy Consumption by Major Energy-Intensive Industry Shares, 2005 Figure 66. OECD and Non-OECD Major Steel Producers, 2007 Figure 67....

18

1 New Technologies, Industry Developments and Emission Trends in Key Sectors: The Energy Sector  

E-Print Network (OSTI)

Australia’s total primary energy consumption grew by 3.6 per cent per annum between 1993/94 and 1997/98, while primary energy use in the electricity sector rose by more than 5 per cent per year over the same period. Since 1993/94, brown coal has strongly expanded its share in the fuel mix of the interconnected electricity markets of Victoria, New South Wales, the Australian Capital Territory, and South Australia. It has become the primary fuel source for electricity generation, substituting for hydro, natural gas and hard coal. At the national level, this has meant that the long-term trend towards greater use of natural gas has stalled in favour of coal, especially brown coal. Since Victoria’s brown coal plants have relatively low thermal efficiencies, this substitution has also had the effect of reducing the average thermal efficiency in the power market to the levels of the late 1980s (IEA, 2001b). It should be noted that the economic objective of reducing the price of power which has driven the first stage of reform in the electricity industry in Australia has perversely encouraged the aggregate use of energy in the economy. This, in turn, has added to the growth of greenhouse gas emissions, reinforcing the trend associated with the change in the fuel mix for electricity generation. This paper addresses non-transport energy-related activities including conventional and renewable forms of energy supply, cross-cutting technologies employed in the energy sector and, more briefly, energy use by the business and household sectors.

Ainsley Jolley

2004-01-01T23:59:59.000Z

19

Figure 29. Power sector electricity generation capacity by fuel in ...  

U.S. Energy Information Administration (EIA)

Power sector electricity generation capacity by fuel in five cases, 2011 ... Natural gas combined cycle Natural gas combustion turbine Nuclear Renewable/other Reference

20

New Zealand Energy Data: Oil Consumption by Fuel and Sector | OpenEI  

Open Energy Info (EERE)

Oil Consumption by Fuel and Sector Oil Consumption by Fuel and Sector Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to oil and other petroleum products. Included here are two oil consumption datasets: quarterly petrol consumption by sector (agriculture, forestry and fishing; industrial; commercial; residential; transport industry; and international transport), from 1974 to 2010; and oil consumption by fuel type (petrol, diesel, fuel oil, aviation fuels, LPG, and other), also for the years 1974 through 2010. The full 2010 Energy Data File is available: http://www.med.govt.nz/upload/73585/EDF%202010.pdf. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 02nd, 2010 (4 years ago)

Note: This page contains sample records for the topic "industrial sector fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Sustainable fuel for the transportation sector  

Science Conference Proceedings (OSTI)

A hybrid hydrogen-carbon (H{sub 2}CAR) process for the production of liquid hydrocarbon fuels is proposed wherein biomass is the carbon source and hydrogen is supplied from carbon-free energy. To implement this concept, a process has been designed to co-feed a biomass gasifier with H{sub 2} and CO{sub 2} recycled from the H{sub 2}-CO to liquid conversion reactor. Modeling of this biomass to liquids process has identified several major advantages of the H{sub 2}CAR process. The land area needed to grow the biomass is CAR process shows the potential to supply the entire United States transportation sector from that quantity of biomass. The synthesized liquid provides H{sub 2} storage in an open loop system. Reduction to practice of the H{sub 2}CAR route has the potential to provide the transportation sector for the foreseeable future, using the existing infrastructure. The rationale of using H{sub 2} in the H{sub 2}CAR process is explained by the significantly higher annualized average solar energy conversion efficiency for hydrogen generation versus that for biomass growth. For coal to liquids, the advantage of H{sub 2}CAR is that there is no additional CO{sub 2} release to the atmosphere due to the replacement of petroleum with coal, thus eliminating the need to sequester CO{sub 2}.

Agrawal, R.; Singh, N.R.; Ribeiro, F.H.; Delgass, W.N. [Purdue Univ., West Lafayette, IN (United States). School of Chemical Engineering and Energy Center at Discovery Park

2007-03-20T23:59:59.000Z

22

International industrial sector energy efficiency policies  

E-Print Network (OSTI)

Summer Study on Energy Efficiency in Industry. Washington,1997. “Electric Motor Energy Efficiency Regulations: Theet al. , (eds. ). Energy Efficiency Improvements in Electric

Price, Lynn; Worrell, Ernst

2000-01-01T23:59:59.000Z

23

International industrial sector energy efficiency policies  

E-Print Network (OSTI)

Scheme for Industry: The Energy Audit,” Proceedings of thefacilities conduct energy audits, employ an energy manager,1994), and the mandatory energy audits and energy management

Price, Lynn; Worrell, Ernst

2000-01-01T23:59:59.000Z

24

Energy Analysis in the Industrial Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

dioxide emissions in heavy manufacturing. This talk will focus on the U.S. iron and steel industry, illustrating how it compares internationally and describing the...

25

Evaluation of Efficiency Activities in the Industrial Sector...  

NLE Websites -- All DOE Office Websites (Extended Search)

industrial sector consumes 25% of theenergy used and emits 28% of the carbon dioxide (CO2) produced in the state. Manycountries around the world have national-level GHG...

26

Agricultural and Industrial Process-Heat-Market Sector workbook  

SciTech Connect

This workbook summarizes the preliminary data and assumptions of the Agricultural and Industrial Process Heat Market Sector prepared in conjunction with the development of inputs for a National Plan for the Accelerated Commercialization of Solar Energy.

Shulman, M. J.; Kannan, N. P.; deJong, D. L.

1980-01-01T23:59:59.000Z

27

Industry Spent Fuel Storage Handbook  

Science Conference Proceedings (OSTI)

The Industry Spent Fuel Storage Handbook (8220the Handbook8221) addresses the relevant aspects of at-reactor spent (or used) nuclear fuel (SNF) storage in the United States. With the prospect of SNF being stored at reactor sites for the foreseeable future, it is expected that all U.S. nuclear power plants will have to implement at-reactor dry storage by 2025 or shortly thereafter. The Handbook provides a broad overview of recent developments for storing SNF at U.S. reactor sites, focusing primarily on at...

2010-07-29T23:59:59.000Z

28

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network (OSTI)

Efficiency Scenario (non-residential sector only) – AssumesIndia: Industry and Non Residential Sectors Jayant Sathaye,and support. The Non Residential sector analysis benefited

Sathaye, Jayant

2011-01-01T23:59:59.000Z

29

Fuel consumption: Industrial, residential, and general studies. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning fuel consumption in industrial and residential sectors. General studies of fuel supply, demand, policy, forecasts, and consumption models are presented. Citations examine fuel information and forecasting systems, fuel production, international economic and energy activities, heating oils, and pollution control. Fuel consumption in the transportation sector is covered in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-08-01T23:59:59.000Z

30

Energy productivity in the industrial sector: an econometric analysis  

SciTech Connect

Energy productivity and energy intensity within the industrial sector of the economy are examined. Results suggest that relative prices and other economic factors can explain much of the variation in both energy productivity and energy intensity for manufacturing and mining and for the industrial sector as a whole. Cyclical factors, seasonal factors and trend variables are also useful in explaining variation in these data, both for annual and monthly time series. Of the variables examined, it appears that the relative price of energy is a highly significant factor in accounting for the difference between actual industrial energy intensity and that which might have been expected had pre-1973 trends continued.

Roop, J.M.

1983-01-01T23:59:59.000Z

31

Quality of Power in the Industrial Sector  

E-Print Network (OSTI)

Industries have added sensitive electrical loads such as computers and electronic equipment to improve efficiency, lower costs and to raise the overall quality of the product being manufactured. With this new technology there is a requirement for a quality of power that has not been available by the electric utility. Sensitive loads cannot tolerate electrical disturbances such as harmonic distortions, overvoltage, undervoltage, momentary interruptions and transients that are inherent in the utility distribution system. The industrial customer turns to the power supplier to provide technical support, monitoring and assistance to upgrade the quality of power into the plant. Even though studies have shown only 20% of the problems identified are actually utility generated it is the responsibility of the utility to help the customer isolate and solve the problem. The motto of the Oklahoma Gas and Electric Quality of Power program is "If a customer perceives he has a problem, we have a problem." The commitment has been made to assist the customer until he is satisfied the problem is in fact solved.

Marchbanks, G. J.

1987-09-01T23:59:59.000Z

32

Greenhouse Gas Programs, Energy Efficiency, and the Industrial Sector  

E-Print Network (OSTI)

The United States has made significant progress in reducing total energy use through energy efficiency improvements over the past decade, yet the United States still ranks as the highest absolute greenhouse gas (GHG) emitter in the world with 23.6 metric tons of carbon dioxide equivalent per capita in 2006. The industrial sector (agriculture is excluded) is responsible for 28.7 percent of the GHG emissions in the U.S. However, the U.S. industrial sector has numerous economically viable opportunities to reduce energy use and GHG emissions. Energy efficiency, including new clean technologies, plays a significant role in increasing productivity and reducing energy intensity, and thus emissions. Increasing energy efficiency in industrial processes is central to addressing climate change issues in the industrial sector. This paper describes the energy-efficiency programs, methodologies, and technologies that can economically lead to significant GHG reductions in the industrial sector. The paper also discusses the impacts of climate change policies and programs to the application of advanced low-carbon industrial technologies.

Zhou, A.; Tutterow, V.; Harris, J.

2009-05-01T23:59:59.000Z

33

New Zealand Energy Data: Oil Consumption by Fuel and Sector ...  

Open Energy Info (EERE)

Oil Consumption by Fuel and Sector The New Zealand Ministry of Economic Development publishes energy data including many datasets related to oil and other...

34

Commercial Sector Solid Oxide Fuel Cell Business Assessment  

Science Conference Proceedings (OSTI)

The estimated market potential for solid oxide fuel cells (SOFCs) in the commercial sector could be about 4 billion MWh from 2001 through 2015. This market, however, is highly sensitive to impacts deregulation will have on commercial retail rates.

1996-11-22T23:59:59.000Z

35

Fuel choice and aggregate energy demand in the commercial sector  

SciTech Connect

This report presents a fuel choice and aggregate-demand model of energy use in the commercial sector of the United States. The model structure is dynamic with short-run fuel-price responses estimated to be close to those of the residential sector. Of the three fuels analyzed, electricity consumption exhibits a greater response to its own price than either natural gas or fuel oil. In addition, electricity price increases have the largest effect on end-use energy conservation in the commercial sector. An improved commercial energy-use data base is developed which removes the residential portion of electricity and natural gas use that traditional energy-consumption data sources assign to the commercial sector. In addition, household and commercial petroleum use is differentiated on a state-by-state basis.

Cohn, S.

1978-12-01T23:59:59.000Z

36

Small Distributed Generation Applications in the Industrial Sector: A Screening Assessment  

Science Conference Proceedings (OSTI)

This report documents a screening assessment of small distributed generation applications in the industrial sector.

2001-12-04T23:59:59.000Z

37

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

energy efficiency, energy-efficient industrial process technology, energy storage, fuel cells, renewable energy, distributed power generation, and system analysis and policy

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

38

Role of fuel cells in industrial cogeneration  

SciTech Connect

During the early years (1958 to 1963), three types of fuel cells were under development: phosphoric acid (PAFC), molten carbonate (MCFC), and solid oxide (SOFC) fuel cells. Between 1963 and 1971, the IGT research and development effort concentrated on the phosphoric acid and molten carbonate technologies; since 1971, emphasis has been on the molten carbonate fuel cell. IGT believes MCFC is best suited to meet the goals of the electric industry and the requirements of industrial cogeneration. Through the years, IGT has conducted system studies to evaluate the role that each one of the three fuel cell types can play in industrial cogeneration. This paper briefly discusses the status of the three technologies, the potential industrial cogeneration market, the application of fuel cells to this market, and the potential fuel savings for several industrial categories.

Camara, E.H.

1985-01-01T23:59:59.000Z

39

BC Hydro Industrial Sector: Marketing Sector Marketing Plan (Fiscal 2005/Fiscal 2006)  

E-Print Network (OSTI)

BC Hydro, the major electricity utility in the Province of British Columbia has been promoting industrial energy efficiency for more than 15 years. Recently it has launched a new Demand Side Management initiative with the objective of obtaining 2000 GWh of energy savings from its industrial Sector by 2010. The authors have just recently completed a marketing plan for obtaining this level of energy savings. The Plan indicates how Programs and Initiatives have been and are being developed to overcome the barriers of Awareness and Understanding, Strategic Importance, Return & Affordability, Internal Constraints, and Program Eligibility. The Paper and presentation will explain how different Program Components address specific barriers, customer sectors and end-uses.

Willis, P.; Wallace, K.

2005-01-01T23:59:59.000Z

40

Power Plant and Industrial Fuel Use Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Plant and Industrial Fuel Use Act Power Plant and Industrial Fuel Use Act Electricity Advisory Committee Technology Development Electricity Policy Coordination and...

Note: This page contains sample records for the topic "industrial sector fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Manufacturing sector carbon dioxide emissions in nine OECD countries 1973--87: A Divisia index decomposition to changes in fuel mix, emission coefficients, industry structure, energy intensities, and international structure  

DOE Green Energy (OSTI)

In this paper the reduction in energy-related manufacturing carbon dioxide emissions for nine OECD countries in the period 1973 to 1987 is analyzed. Carbon dioxide emissions are estimated from energy use data. The emphasis is on carbon dioxide intensities, defined as emissions divided by value added. The overall manufacturing carbon dioxide intensity for the nine OECD countries was reduced by 42% in the period 1973--1987. Five fuels are specified together with six subsectors of manufacturing. Carbon dioxide emissions are estimated from fossil fuel consumption, employing emissions coefficients for gas, oil and solids. In addition, electricity consumption is specified. For electricity use an emission coefficient index is calculated from the shares of fossil fuels, nuclear power and hydro power used to generate electricity, and the efficiency in electricity generation from these energy sources. A Divisia index approach is used to sort out the contribution to reduced carbon dioxide intensity from different components. The major finding is that the main contribution to reduced carbon dioxide intensity is from the general reduction in manufacturing energy intensity, most likely driven by economic growth and increased energy prices, giving incentives to invest in new technology and new industrial processes. There is also a significant contribution from reduced production in the most carbon dioxide intensive subsectors, and a contribution from higher efficiency in electricity generation together with a larger nuclear power share at the expense of oil. 19 refs., 5 figs., 11 tabs.

Torvanger, A. (Senter for Anvendt Forskning, Oslo (Norway) Lawrence Berkeley Lab., CA (USA))

1990-11-01T23:59:59.000Z

42

Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector  

DOE Green Energy (OSTI)

The DOE is conducting a comprehensive technical analysis of a flexible-fuel transportation system in the United States -- that is, a system that could easily switch between petroleum and another fuel, depending on price and availability. The DOE Alternative Fuels Assessment is aimed directly at questions of energy security and fuel availability, but covers a wide range of issues. This report examines environmental, health, and safety concerns associated with a switch to alternative- and flexible-fuel vehicles. Three potential alternatives to oil-based fuels in the transportation sector are considered: methanol, compressed natural gas (CNG), and electricity. The objective is to describe and discuss qualitatively potential environmental, health, and safety issues that would accompany widespread use of these three fuels. This report presents the results of exhaustive literature reviews; discussions with specialists in the vehicular and fuel-production industries and with Federal, State, and local officials; and recent information from in-use fleet tests. Each chapter deals with the end-use and process emissions of air pollutants, presenting an overview of the potential air pollution contribution of the fuel --relative to that of gasoline and diesel fuel -- in various applications. Carbon monoxide, particulate matter, ozone precursors, and carbon dioxide are emphasized. 67 refs., 6 figs. , 8 tabs.

Not Available

1991-10-01T23:59:59.000Z

43

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network (OSTI)

industrial sectors (Vermeeren, 2008). Steel industry ? TheDutch steel industry implemented 82 energy-saving projectsfoodstuffs, steel, and mining industries are the most

Price, Lynn

2010-01-01T23:59:59.000Z

44

Alternative Fuels Data Center: Biomass and Biofuels Industry Development  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biomass and Biofuels Biomass and Biofuels Industry Development to someone by E-mail Share Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Facebook Tweet about Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Twitter Bookmark Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Google Bookmark Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Delicious Rank Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Digg Find More places to share Alternative Fuels Data Center: Biomass and Biofuels Industry Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biomass and Biofuels Industry Development

45

Fuel Consumption for Electricity Generation, All Sectors United States  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption for Electricity Generation, All Sectors Fuel Consumption for Electricity Generation, All Sectors United States Coal (thousand st/d) .................... 2,361 2,207 2,586 2,287 2,421 2,237 2,720 2,365 2,391 2,174 2,622 2,286 2,361 2,437 2,369 Natural Gas (million cf/d) ............. 20,952 21,902 28,751 21,535 20,291 22,193 28,174 20,227 20,829 22,857 29,506 21,248 23,302 22,736 23,627 Petroleum (thousand b/d) ........... 128 127 144 127 135 128 135 119 131 124 134 117 131 129 127 Residual Fuel Oil ...................... 38 28 36 29 30 31 33 29 31 30 34 27 33 31 30 Distillate Fuel Oil ....................... 26 24 27 28 35 30 30 26 31 26 28 25 26 30 28 Petroleum Coke (a) .................. 59 72 78 66 63 63 66 59 62 63 67 60 69 63 63 Other Petroleum Liquids (b) ..... 5 3 4 4 7 5 5 5 7 5 5 5 4 6 6 Northeast Census Region Coal (thousand st/d) ....................

46

Role of fuel cells in industrial cogeneration  

Science Conference Proceedings (OSTI)

Work at the Institute of Gas Technology on fuel cell technology for commercial application has focused on phosphoric acid (PAFC), molten carbonate (MCFC), and solid oxide (SOFC) fuel cells. The author describes the status of the three technologies, and concludes that the MCFC in particular can efficiently supply energy in industrial cogeneration applications. The four largest industrial markets are primary metals, chemicals, food, and wood products, which collectively represent a potential market of 1000 to 1500 MEe annual additions. At $700 to $900/kW, fuel cells can successfully compete with other advanced systems. An increase in research and development support would be in the best interest of industry and the nation. 1 reference, 5 figures, 5 tables.

Camara, E.H.

1985-08-01T23:59:59.000Z

47

Energy Use and Savings in the Canadian Industrial Sector  

E-Print Network (OSTI)

The changing role of energy as a production input in the industrial sector in Canada is examined. Energy use patterns are reviewed in terms of the energy input types, both purchased and self-produced, the actual energy form and quality requirements, and the residual energy forms, in particular the rejected gaseous and liquid waste heat streams. The trends in the intensity of energy use are examined, in terms of the energy consumed per unit of production output, and relative to the cost of other production inputs. Energy consumption and intensity have been influenced by many factors: energy prices; energy types used; structural composition and product mix; the state of the national economy and international markets, etc. In addition, energy use management with the achievement of optimum economic efficiency of energy use as the objective became an increasing priority for corporate and national energy planning during the 1970's. The potential for saving energy and money, the costs and benefits, are discussed in the light of evidence from a variety of industry and government sources. It appears that the substitution of energy-saving techniques and technologies as a replacement for the use of energy inputs will remain a high priority during the 1980's.

James, B.

1982-01-01T23:59:59.000Z

48

Industrial sector natural gas use rising - Today in Energy - U.S ...  

U.S. Energy Information Administration (EIA)

Biofuels: Ethanol & Biodiesel ... Industrial customers form an important gas-use sector, using natural gas for a variety of purposes, including the following:

49

Table E5. Industrial Sector Energy Price Estimates, 2011 ...  

U.S. Energy Information Administration (EIA)

a Natural gas as it is consumed; includes supplemental gaseous fuels that are commingled with natural gas. f There are no direct fuel costs for ...

50

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

Energy Use in the Steel Industry. Brussels: IISI. Worrell,1998. Energy Use in the Steel Industry. Brussels: IISI. 2.2.1998. Energy Use in the Steel Industry. Brussels: IISI. Best

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

51

Climate VISION: PrivateSector Initiatives: Minerals - Industry...  

Office of Scientific and Technical Information (OSTI)

together to achieve common goals. Industrial minerals - ball clay, bentonite, borates, feldspar, industrial sand, mica, soda ash and talc - are a miraculous gift from times past....

52

The Nuclear Fuel Industry Research Program Overview  

Science Conference Proceedings (OSTI)

This overview introduces the Nuclear Fuel Industry (NFIR) program to member utilities while also serving as a research status update for program participants. It includes detailed descriptions of various projects, relating both the technical backgrounds and the overall scope of work. NFIR program activities are geared toward providing long-term benefits to utilities and vendors by ensuring the safe and reliable use of core materials and components. Specific information can be obtained from published tech...

1994-08-23T23:59:59.000Z

53

Sectoral combustor for burning low-BTU fuel gas  

SciTech Connect

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

Vogt, Robert L. (Schenectady, NY)

1980-01-01T23:59:59.000Z

54

Fuel cells at the crossroads : attitudes regarding the investment climate for the US fuel cell industry and a projection of industry job creation potential.  

DOE Green Energy (OSTI)

Fuel Cells at the Crossroads examines financial community and fuel cell industry views on the investment climate for the fuel cell industry. It also explores the investment history of the US fuel cell industry and projects potential future job creation. The scope of the study included the transportation, stationary power generation and portable sectors. Interviews were conducted with industry and financial experts. The results of the interviews provide a snapshot of industry perspective just prior to President Bush's endorsement of a hydrogen economy in his 2003 State of the Union address. In April 2003, we conducted a spot check to test whether the State of the Union address had changed opinions. We found little change among the financial and investment communities, but some guarded new optimism among industry leaders. The general outlook of our sample was cautiously hopeful. There is no question, however, that the current climate is one of great uncertainty, particularly when compared with the enthusiasm that existed just a few years ago. Among other things: (1) Respondents generally believed that the energy industry will undergo profound change over the next few decades, resulting in some form of hydrogen economy. They acknowledged, however, that huge technology and cost hurdles must be overcome to achieve a hydrogen economy. (2) Respondents were worried about the future of the industry, including timeframes for market development, foreign competition, technical problems, and the current poor investment environment. (3) Respondents generally believed that the US federal government must provide strong leadership to ensure American leadership in the fuel cell industry. They believe that governments in Europe and Japan are highly committed to fuel cells, thus providing European and Japanese companies with significant advantages. (4) Respondents frequently mentioned several areas of concern, including the situation in Iraq, the increased commitment to fuel cells in Europe, and recent actions by Toyota and Honda.

NONE

2004-05-27T23:59:59.000Z

55

Fuel cells at the crossroads : attitudes regarding the investment climate for the US fuel cell industry and a projection of industry job creation potential.  

SciTech Connect

Fuel Cells at the Crossroads examines financial community and fuel cell industry views on the investment climate for the fuel cell industry. It also explores the investment history of the US fuel cell industry and projects potential future job creation. The scope of the study included the transportation, stationary power generation and portable sectors. Interviews were conducted with industry and financial experts. The results of the interviews provide a snapshot of industry perspective just prior to President Bush's endorsement of a hydrogen economy in his 2003 State of the Union address. In April 2003, we conducted a spot check to test whether the State of the Union address had changed opinions. We found little change among the financial and investment communities, but some guarded new optimism among industry leaders. The general outlook of our sample was cautiously hopeful. There is no question, however, that the current climate is one of great uncertainty, particularly when compared with the enthusiasm that existed just a few years ago. Among other things: (1) Respondents generally believed that the energy industry will undergo profound change over the next few decades, resulting in some form of hydrogen economy. They acknowledged, however, that huge technology and cost hurdles must be overcome to achieve a hydrogen economy. (2) Respondents were worried about the future of the industry, including timeframes for market development, foreign competition, technical problems, and the current poor investment environment. (3) Respondents generally believed that the US federal government must provide strong leadership to ensure American leadership in the fuel cell industry. They believe that governments in Europe and Japan are highly committed to fuel cells, thus providing European and Japanese companies with significant advantages. (4) Respondents frequently mentioned several areas of concern, including the situation in Iraq, the increased commitment to fuel cells in Europe, and recent actions by Toyota and Honda.

2004-05-27T23:59:59.000Z

56

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

by combining the gasification of coal with the meltin black liquor gasification has not yet resulted in aof heavy fuel oil, gasification of coal, and electrolysis.

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

57

Understanding the Industrial Market Sector: Responding to Changing Energy Markets  

Science Conference Proceedings (OSTI)

Industrial customers, particularly larger industrial customers, have always been an important customer population for energy providers. Because of their sometimes massive size, industrials have often had dedicated account representatives, and even customized rate plans and service delivery structures. As competition in energy markets develops, this population has often been the first customer population to encounter both the benefits and the problems associated with deregulation. It is important to recog...

1999-12-06T23:59:59.000Z

58

Understanding the Industrial Market Sector: Responding to Changing Energy Markets  

Science Conference Proceedings (OSTI)

Industrial customers, particularly larger industrial customers, have always been an important customer population for energy providers. Because of their sometimes massive size, industrials have often had dedicated account representatives, and even customized rate plans and service delivery structures. As competition in energy markets develops, this population has often been the first customer population to encounter both the benefits and the problems associated with deregulation. It is important to recog...

1999-11-30T23:59:59.000Z

59

Industrial sector drives increase in North Dakota electricity ...  

U.S. Energy Information Administration (EIA)

Increased oil and natural gas production in North Dakota has driven the state's growth in industrial demand for electricity. Rising economic activity and population ...

60

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

Industry. Brussels: IISI. The best practice coke plant isa modern coke plant using standard technology, includingspeed drives on motors and fans. Coke dry quenching saves an

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Industry sector analysis, Mexico: Annual petroleum report. Export Trade Information  

Science Conference Proceedings (OSTI)

The comprehensive appraisal of the Mexican Petroleum industry was completed in July 1991. Some of the topics concerning the Mexican petroleum industry covered in the Annual Petroleum Report include: exploration efforts, oil reserves, pipelines, refining, finances, transportation, alternative energy sources, and others. The report also contains lists of petrochemicals produced in Mexico and extensive statistics on oil production and export prices.

Not Available

1992-01-01T23:59:59.000Z

62

Deployment of an AEC industry sector product model  

Science Conference Proceedings (OSTI)

CIMsteel Integration Standard, Version 2 (CIS/2) is an industry-developed product model based on ISO-STEP technology that has been widely adopted within the steel construction industry. CIS/2 is an early success story of broad use of a product model ... Keywords: Building model, Product model, STEP

C. Eastman; F. Wang; S. -J. You; D. Yang

2005-10-01T23:59:59.000Z

63

Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)  

Reports and Publications (EIA)

For the industrial sector, EIAs analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8 percent of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9 percent of annual operating cost, previously have received somewhat less attention, however. In AEO2006, energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50 percent of the projected increase in industrial natural gas consumption from 2004 to 2030.

Information Center

2007-03-11T23:59:59.000Z

64

Current design practice and needs in selected industrial sectors  

Science Conference Proceedings (OSTI)

Consumer Electronics (CE) products range from miniature cameras and MP3 players to advanced media servers and large displays. In the CE industry, Philips is active at two levels. Philips Semiconductors (PS) is active in the OEM market, selling hardware ...

Bruno Bouyssounouse; Joseph Sifakis

2005-01-01T23:59:59.000Z

65

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

Science Conference Proceedings (OSTI)

This report analyzed the potential for increasing energy efficiency and reducing greenhouse gas emissions (GHGs) in the non-residential building and the industrial sectors in India. The first two sections describe the research and analysis supporting the establishment of baseline energy consumption using a bottom up approach for the non residential sector and for the industry sector respectively. The third section covers the explanation of a modeling framework where GHG emissions are projected according to a baseline scenario and alternative scenarios that account for the implementation of cleaner technology.

Sathaye, Jayant; de la Rue du Can, Stephane; Iyer, Maithili; McNeil, Michael; Kramer, Klaas Jan; Roy, Joyashree; Roy, Moumita; Chowdhury, Shreya Roy

2011-04-15T23:59:59.000Z

66

Market potential for solar thermal energy supply systems in the United States industrial and commercial sectors: 1990--2030. Final report  

DOE Green Energy (OSTI)

This report revises and extends previous work sponsored by the US DOE on the potential industrial market in the United States for solar thermal energy systems and presents a new analysis of the commercial sector market potential. Current and future industrial process heat demand and commercial water heating, space heating and space cooling end-use demands are estimated. The PC Industrial Model (PCIM) and the commercial modules of the Building Energy End-Use Model (BEEM) used by the DOE`s Energy Information Administration (EIA) to support the recent National Energy Strategy (NES) analysis are used to forecast industrial and commercial end-use energy demand respectively. Energy demand is disaggregated by US Census region to account for geographic variation in solar insolation and regional variation in cost of alternative natural gas-fired energy sources. The industrial sector analysis also disaggregates demand by heat medium and temperature range to facilitate process end-use matching with appropriate solar thermal energy supply technologies. The commercial sector analysis disaggregates energy demand by three end uses: water heating, space heating, and space cooling. Generic conceptual designs are created for both industrial and commercial applications. Levelized energy costs (LEC) are calculated for industrial sector applications employing low temperature flat plate collectors for process water preheat; parabolic troughs for intermediate temperature process steam and direct heat industrial application; and parabolic dish technologies for high temperature, direct heat industrial applications. LEC are calculated for commercial sector applications employing parabolic trough technologies for low temperature water and space heating. Cost comparisons are made with natural gas-fired sources for both the industrial market and the commercial market assuming fuel price escalation consistent with NES reference case scenarios for industrial and commercial sector gas markets.

Not Available

1991-12-01T23:59:59.000Z

67

Figure 64. Industrial energy consumption by fuel, 2011, 2025, and ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 64. Industrial energy consumption by fuel, 2011, 2025, and 2040 (quadrillion Btu) Natural Gas Petroleum and other liquids

68

Status and Prospects of the Global Automotive Fuel Cell Industry...  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNLTM-2013222 Energy and Transportation Science Division Center for Transportation Analysis STATUS AND PROSPECTS OF THE GLOBAL AUTOMOTIVE FUEL CELL INDUSTRY AND PLANS FOR...

69

Air Force Achieves Fuel Efficiency through Industry Best Practices...  

NLE Websites -- All DOE Office Websites (Extended Search)

ideas and implement initiatives with the Air Force Achieves Fuel Efficiency through Industry Best Practices The Air Force Energy Plan is built upon three pillars: reduce...

70

Industry  

Science Conference Proceedings (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

71

Abstract Deployment of an AEC industry sector product model  

E-Print Network (OSTI)

widely adopted within the steel construction industry. CIS/2 is an early success story of broad use of a product model for both data exchange and improving the productivity of those companies taking advantage of its capabilities. Here, we review the history of CIS/2, the methods and issues arising from its deployment, the benefits it has thus far realized and the research issues these activities have identified.

C. Eastman; F. Wang; S. -j. You; D. Yang

2004-01-01T23:59:59.000Z

72

Modeling the Transport Sector: The Role of Existing Fuel Taxes in Climate Policy  

E-Print Network (OSTI)

Existing fuel taxes play a major role in determining the welfare effects of exempting the transportation sector from measures to control greenhouse gases. To study this phenomenon we modify the MIT Emissions Prediction and ...

Paltsev, Sergey.

73

Transportation Sector Energy Use by Fuel Type Within a Mode from...  

Open Energy Info (EERE)

Transportation Sector Energy Use by Fuel Type Within a Mode from EIA AEO 2011 Early Release Supplemental Table 46 of EIA AEO 2011 Early Release
2011-02-23T15:55:10Z...

74

Power Plant and Industrial Fuel Use Act | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Plant and Industrial Fuel Use Act Power Plant and Industrial Fuel Use Act Power Plant and Industrial Fuel Use Act Self Certifications Title II of the Powerplant and Industrial Fuel Use Act of 1978 (FUA), as amended (42 U.S.C. 8301 et seq.), provides that no new baseload electric powerplant may be constructed or operated without the capability to use coal or another alternate fuel as a primary energy source. In order to meet the requirement of coal capability, the owner or operator of such facilities proposing to use natural gas or petroleum as its primary energy source shall certify, pursuant to FUA section 201(d), and Section 501.60(a)(2) of DOE's regulations to the Secretary of Energy prior to construction, or prior to operation as a base load powerplant, that such powerplant has the capability to use coal or another alternate fuel.

75

Transportation Sector Energy Use by Fuel Type Within a Mode from EIA AEO  

Open Energy Info (EERE)

Sector Energy Use by Fuel Type Within a Mode from EIA AEO Sector Energy Use by Fuel Type Within a Mode from EIA AEO 2011 Early Release Dataset Summary Description Supplemental Table 46 of EIA AEO 2011 Early Release Source EIA Date Released December 08th, 2010 (3 years ago) Date Updated Unknown Keywords AEO Annual Energy Outlook EIA Energy Information Administration Fuel mode TEF transportation Transportation Energy Futures Data text/csv icon Transportation_Sector_Energy_Use_by_Fuel_Type_Within_a_Mode.csv (csv, 144.3 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote

76

Comparative analysis of energy data bases for the industrial and commercial sectors  

SciTech Connect

Energy data bases for the industrial and commercial sectors were analyzed to determine how valuable this data might be for policy analysis. The approach is the same for both end-use sectors: first a descrption or overview of relevant data bases identifies the available data; the coverage and methods used to generate the data are then explained; the data are then characterized and examples are provided for the major data sets under consideration. A final step assesses the data bases under consideration and draws conclusions. There are a variety of data bases considered for each of the end-use sectors included in this report. Data bases for the industrial sector include the National Energy Accounts, process-derived data bases such as the Drexel data base and data obtained from industry trade associations. For the commercial sector, three types of data bases are analyzed: the Nonresidential Building Energy Consumption Surveys, Dodge Construction Data and the Building Owners and Manager's Association Experience Exchange Report.

Roop, J.M.; Belzer, D.B.; Bohn, A.A.

1986-12-01T23:59:59.000Z

77

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

and Renewable Energy (EERE) [2] Office of Industrialthat participate in EERE’s Industries of the Future Program.

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

78

The Development of Methanol Industry and Methanol Fuel in China  

Science Conference Proceedings (OSTI)

In 2007, China firmly established itself as the driver of the global methanol industry. The country became the world's largest methanol producer and consumer. The development of the methanol industry and methanol fuel in China is reviewed in this article. China is rich in coal but is short on oil and natural gas; unfortunately, transportation development will need more and more oil to provide the fuel. Methanol is becoming a dominant alternative fuel. China is showing the rest of the world how cleaner transportation fuels can be made from coal.

Li, W.Y.; Li, Z.; Xie, K.C. [Taiyuan University of Technology, Taiyuan (China)

2009-07-01T23:59:59.000Z

79

Comparison Study of Energy Intensity in the Textile Industry: A Case Study in Five Textile Sub-sectors  

E-Print Network (OSTI)

This paper contributes to the understanding of energy use in the textile industry by comparing the energy intensity of textile plants in five major sub-sectors, i.e. spinning, weaving, wet-processing, worsted fabric manufacturing, and carpet manufacturing in Iran. Results of the study showed that spinning plant electricity intensity varies between 3.6 MWh/tonne yarn and 6.6 MWh/tonne yarn, while fuel intensity ranges between 6.7 MBtu/tonne yarn and 11.7 MBtu/tonne yarn. In weaving plants, electricity intensity ranges from 1.2 MWh/tonne fabric to 2.2 MWh/tonne fabric, while fuel intensity was 10.1 MBtu/tonne fabric and 16.4 MBtu/tonne fabric for the two plants studied. In three wet-processing plants, the electricity intensity was found to be between 1.5 MWh/tonne finished fabric and 2.5 MWh/tonne finished fabric, while the fuel intensity was between 38.2 MBtu/tonne finished fabric and 106.3 MBtu/tonne finished fabric. In addition, some methodological issues to improve such energy intensity comparison analysis and benchmarking in the textile industry is discussed.

Hasanbeigi, A.

2011-01-01T23:59:59.000Z

80

Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States  

Science Conference Proceedings (OSTI)

Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil-fuel; Carbon dioxide emissions; Sectoral; Spatial cluster; Emissions mitigation policy

Zhou, Yuyu; Gurney, Kevin R.

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry...  

NLE Websites -- All DOE Office Websites (Extended Search)

of nearly 700 U.S. Department of Energy (DOE) fuel cell material handling units has led to almost 5,400 industry installation and on order units with no DOE funding. Data...

82

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

and guidance service. Energy audits and analysis of specificfree comprehensive energy audits or industrial assessments.as a part of the Enterprise Energy Audit Programme (EEAP) of

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

83

Industry sector analysis - energy industry news (Hungary) 1994. Export trade information  

Science Conference Proceedings (OSTI)

The article is derived from a telegraphic report dated 1 February 1994, prepared at the American Embassy-Budapest. It discusses recent developments from the Hungarian energy industry.

Not Available

1994-02-01T23:59:59.000Z

84

Industry sector analysis - energy industry news (Hungary) 1994. Export trade information  

Science Conference Proceedings (OSTI)

The article is derived from a telegraphic report dated 18 April 1994, prepared at the American Embassy-Budapest. It discusses recent developments from the Hungarian energy industry.

Not Available

1994-04-18T23:59:59.000Z

85

Regional comparisons of on-site solar potential in the residential and industrial sectors  

SciTech Connect

Regional and sub-regional differences in the potential development of decentralized solar technologies are studied. Two sectors of the economy were selected for intensive analysis: the residential and industrial sectors. In both investigations, the sequence of analysis follows the same general steps: (1) selection of appropriate prototypes within each land-use sector disaggregated by census region; (2) characterization of the end-use energy demand of each prototype in order to match an appropriate decentralized solar technology to the energy demand; (3) assessment of the energy conservation potential within each prototype limited by land use patterns, technology efficiency, and variation in solar insolation; and (4) evaluation of the regional and sub-regional differences in the land use implications of decentralized energy supply technologies that result from the combination of energy demand, energy supply potential, and the subsequent addition of increasingly more restrictive policies to increase the percent contribution of on-site solar energy. Results are presented and discussed. It is concluded that determining regional variations in solar energy contribution for both the residential and industrial sectors appears to be more dependent upon a characterization of existing demand and conservation potential than regional variations in solar insolation. Local governmental decisions influencing developing land use patterns can significantly promote solar energy use and reduce reliance on non-renewable energy sources. These decisions include such measures as solar access protection through controls on vegetation and on building height and density in the residential sector, and district heating systems and industrial co-location in the manufacturing sector. (WHK)

Gatzke, A.E.; Skewes-Cox, A.O.

1980-10-01T23:59:59.000Z

86

Analysis of the industrial sector representation in the Fossil2 energy-economic model  

SciTech Connect

The Fossil2 energy-economic model is used by the US Department of Energy (DOE) for a variety of energy and environmental policy analyses. A number of improvements to the model are under way or are being considered. This report was prepared by the Pacific Northwest Laboratory (PNL) to provide a clearer understanding of the current industrial sector module of Fossil2 and to explore strategies for improving it. The report includes a detailed description of the structure and decision logic of the industrial sector module, along with results from several simulation exercises to demonstrate the behavior of the module in different policy scenarios and under different values of key model parameters. The cases were run with the Fossil2 model at PNL using the National Energy Strategy Actions Case of 1991 as the point of departure. The report also includes a discussion of suggested industrial sector module improvements. These improvements include changes in the way the current model is used; on- and off-line adjustments to some of the model's parameters; and significant changes to include more detail on the industrial processes, technologies, and regions of the country being modeled. The potential benefits and costs of these changes are also discussed.

Wise, M.A.; Woodruff, M.G.; Ashton, W.B.

1992-08-01T23:59:59.000Z

87

Analysis of the industrial sector representation in the Fossil2 energy-economic model  

SciTech Connect

The Fossil2 energy-economic model is used by the US Department of Energy (DOE) for a variety of energy and environmental policy analyses. A number of improvements to the model are under way or are being considered. This report was prepared by the Pacific Northwest Laboratory (PNL) to provide a clearer understanding of the current industrial sector module of Fossil2 and to explore strategies for improving it. The report includes a detailed description of the structure and decision logic of the industrial sector module, along with results from several simulation exercises to demonstrate the behavior of the module in different policy scenarios and under different values of key model parameters. The cases were run with the Fossil2 model at PNL using the National Energy Strategy Actions Case of 1991 as the point of departure. The report also includes a discussion of suggested industrial sector module improvements. These improvements include changes in the way the current model is used; on- and off-line adjustments to some of the model`s parameters; and significant changes to include more detail on the industrial processes, technologies, and regions of the country being modeled. The potential benefits and costs of these changes are also discussed.

Wise, M.A.; Woodruff, M.G.; Ashton, W.B.

1992-08-01T23:59:59.000Z

88

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

4B9B-8A3C0EC058CE647C 17. Energy Efficiency Best Practicedatabase (linked to energy efficiency measures in motors) •in 1980, funds for energy efficiency investments in industry

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

89

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

and ENERGY STAR’ S Energy Guides for entire industries,as a part of their Energy Guides for “focus” partners.savings manual, an energy management guide, an interactive

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

90

Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency Rebate Program (Wyoming) Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency Rebate Program (Wyoming) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Appliances & Electronics Water Heating Maximum Rebate Custom: 50% of project cost Program Info Start Date 06/09/2011 State Wyoming Program Type Utility Rebate Program Rebate Amount Water Heater: $75 - $300 Furnaces: $250 - $400 Boilers: $150 - $400 Setback Thermostat: $25 - $50 Convection Oven: $100 High Efficiency Range/Oven: $500 Conveyor Oven: $500 Fryer: $500 Broiler: $100 Steam Cooker: $500 Vent Dampers for Boilers: $125 Custom: Two year buy down or 50% of project cost, whichever is less

91

Microsoft Word - US Industrial Sector Energy End Use Analysis_051812.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

United States Industrial Sector Energy End Use Analysis United States Industrial Sector Energy End Use Analysis Arman Shehabi, William R. Morrow, Eric Masanet This work was supported by the Advanced Manufacturing Office of the Energy Efficiency and Renewable Energy Program through the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. 2 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process

92

Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector  

Science Conference Proceedings (OSTI)

In 1988 the Department of Energy (DOE) undertook a comprehensive technical analysis of a flexible-fuel transportation system in the United States. During the next two decades, alternative fuels such as alcohol (methanol or ethanol), compressed natural gas (CNG), and electricity could become practical alternatives to oil-based fuels in the US transportation sector. The DOE Alternative Fuels Assessment is aimed directly at questions of energy security and fuel availability. To keep interested parties informed about the progress of the DOE Alternative Fuels Assessment, the Department periodically publishes reports dealing with particular aspects of this complex study. This report provides an analysis of the expected costs to produce methanol from biomass feedstock.

Not Available

1990-12-01T23:59:59.000Z

93

Assessment of On-Site Power Opportunities in the Industrial Sector  

Science Conference Proceedings (OSTI)

The purpose of this report is to identify the potential for on-site power generation in the U.S. industrial sector with emphasis on nine industrial groups called the ''Industries of the Future'' (IOFs) by the U.S. Department of Energy (DOE). Through its Office of Industrial Technologies (OIT), the DOE has teamed with the IOFs to develop collaborative strategies for improving productivity, global competitiveness, energy usage and environmental performance. Total purchases for electricity and steam for the IOFs are in excess of $27 billion annually. Energy-related costs are very significant for these industries. The nine industrial groups are (1) Agriculture (SIC 1); (2) Forest products; (3) Lumber and wood products (SIC 24); (4) Paper and allied products (SIC 26); (5) Mining (SIC 11, 12, 14); (6) Glass (SIC 32); (7) Petroleum (SIC 29); (8) Chemicals (SIC 28); and (9) Metals (SIC 33): Steel, Aluminum, and Metal casting. Although not currently part of the IOF program, the food industry is included in this report because of its close relationship to the agricultural industry and its success with on-site power generation. On-site generation provides an alternative means to reduce energy costs, comply with environmental regulations, and ensure a reliable power supply. On-site generation can ease congestion in the local utility's electric grid. Electric market restructuring is exacerbating the price premium for peak electricity use and for reliability, creating considerable market interest in on-site generation.

Bryson, T.

2001-10-08T23:59:59.000Z

94

Analysis of energy use in building services of the industrial sector in California: Two case studies  

SciTech Connect

Energy-use patterns in many of California's fastest-growing industries are not typical of the existing mix of industries in the US. Many California firms operate small- and medium-sized facilities housed in buildings used simultaneously or interchangeably over time for commercial (office, retail, warehouse) and industrial activities. In these industrial subsectors, the energy required for building services (providing occupant comfort and necessities like lighting, HVAC, office equipment, computers, etc.) may be at least as important as the more familiar process energy requirements -- especially for electricity and on-peak demand. Electricity for building services is sometimes priced as if it were base loaded like process uses; in reality this load varies significantly according to occupancy schedules and cooling and heating loads, much as in any commercial building. Using informal field surveys, simulation studies, and detailed analyses of existing data (including utility commercial/industrial audit files), we studied the energy use of this industrial subsector through a multi-step procedure: (1) characterizing non-process building energy and power use in California industries, (2) identifying conservation and load-shaping opportunities in industrial building services, and (3) investigating industrial buildings and system design methodologies. In an earlier report, we addressed these issues by performing an extensive survey of the existing publicly available data, characterizing and comparing the building energy use in this sector. In this report, we address the above objectives by examining and analyzing energy use in two industrial case-study facilities in California. Based on the information for the case studies, we discuss the design consideration for these industrial buildings, characterize their energy use, and review their conservation and load-shaping potentials. In addition, we identify and discuss some research ideas for further investigation.

Akbari, H.; Sezgen, O.

1991-09-01T23:59:59.000Z

95

A Feasibility Study of Fuel Cell Cogeneration in Industry  

E-Print Network (OSTI)

Up until now, most of the literature on fuel cell cogeneration describes cogeneration at commercial sites. In this study, a PC25C phosphoric acid fuel cell cogeneration system was designed for an industrial facility and an economic analysis was performed. The US DOE Industrial Assessment Center (IAC) database was examined to determine what industry considers a good investment for energy saving measures. Finally, the results of the cogeneration analysis and database investigation were used to project the conditions in which the PC25C might be accepted by industry. Analysis of IAC database revealed that energy conservation recommendations with simple paybacks as high as five years have a 40% implementation rate; however, using current prices the simple payback of the PC25C fuel cell exceeds the likely lifetime of the machine. One drawback of the PC25C for industrial cogeneration is that the temperature of heat delivered is not sufficient to produce steam, which severely limits its usefulness in many industrial settings. The cost effectiveness of the system is highly dependent on energy prices. A five year simple payback can be achieved if the cost of electricity is $0.10/kWh or greater, or if the cost of the fuel cell decreases from about $3,500/kW to $950/kW. On the other hand, increasing prices of natural gas make the PC25C less economically attractive.

Phelps, S. B.; Kissock, J. K.

1997-04-01T23:59:59.000Z

96

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network (OSTI)

Report submitted to California Energy Commission, AprilDepartment of Energy, the California Energy Commission, andFuel Source Figure 9. California Energy Use in Industrial

Akbari, H.

2008-01-01T23:59:59.000Z

97

Corrosion in Fossil and Alternative Fuel Industries  

Science Conference Proceedings (OSTI)

...coal-fired steam, industrial gas turbine, and combined-cycle power plants. The most common and widely used is the pulverized-coal-fired steam power plant. Because of the complex and corrosive environments in which power plants operate, corrosion has been a serious problem, with a significant impact on...

98

Supporting R&D of industrial fuel cell developers.  

DOE Green Energy (OSTI)

Argonne National Laboratory is supporting the industrial developers of molten carbonate fuel cells (MCFCs) and tubular solid oxide fuel cells (SOFCs). The results suggest that a lithium concentration level of 65-75 mol% in the LiNa electrolyte will improve cell performance. They have made inroads in understanding the interfacial resistance of bipolar plate materials, and they have reduced the air electrode overpotential in OSFCs by adding dopants.

Krumpelt, M.

1998-09-11T23:59:59.000Z

99

Dynamics of Evolution in the Global Fuel-Ethanol Industry  

E-Print Network (OSTI)

noticed that their pre-entry backgrounds are very diverse. They come from not only agricultural and fossil fuel chains but also technology companies and de novo firms of new entrepreneurial start-ups as illustrated in Figure 5. We investigate... Dynamics of Evolution in the Global Fuel-Ethanol Industry Jin Hooi Chan and David Reiner March 2011 CWPE 1129 & EPRG 1111 www.eprg.group.cam.ac.uk EP RG W OR KI NG P AP ER Abstract Dynamics...

Chan, Jin Hooi; Reiner, David

100

Economics and policy implications of industrial fuel usage  

Science Conference Proceedings (OSTI)

The nation's use of wood as fuel is put into perspective, recognizing constraints imposed by governmental initiatives and actions. The forest product industry, and its use of wood for energy, is surveyed. The effect of PURPA on this industry, the nation's leader in cogeneration, is discussed. Proposed energy taxes would reverse recent trends in energy conservation. Low sulphur content frees wood and its residues from environmental legislation. Federal funding is needed to determine the extent of the economically accessible fuel wood. The proposed deregulation of natural gas will affect wood use adversely.

Slinn, D.J.

1983-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

DOE Announces $14 Million Industry Partnership Projects to Increase Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 Million Industry Partnership Projects to Increase 4 Million Industry Partnership Projects to Increase Fuel Efficiency DOE Announces $14 Million Industry Partnership Projects to Increase Fuel Efficiency May 26, 2005 - 1:02pm Addthis WASHINGTON, DC - Secretary of Energy Samuel Bodman today announced a public-private partnership between the Department of Energy, industry and academia aimed at significantly improving the vehicle efficiency of cars and trucks through advances in technology. The partnership consists of six projects with a value including cost share of over $14 million. "Achieving the goal of increased vehicle efficiency will require a coordinated approach involving government agencies, private companies and researchers. Partnerships like this will propel innovation, and eventually lead to a day when our children and grandchildren will call the

102

DOE Announces $14 Million Industry Partnership Projects to Increase Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces $14 Million Industry Partnership Projects to Increase DOE Announces $14 Million Industry Partnership Projects to Increase Fuel Efficiency DOE Announces $14 Million Industry Partnership Projects to Increase Fuel Efficiency May 26, 2005 - 1:02pm Addthis WASHINGTON, DC - Secretary of Energy Samuel Bodman today announced a public-private partnership between the Department of Energy, industry and academia aimed at significantly improving the vehicle efficiency of cars and trucks through advances in technology. The partnership consists of six projects with a value including cost share of over $14 million. "Achieving the goal of increased vehicle efficiency will require a coordinated approach involving government agencies, private companies and researchers. Partnerships like this will propel innovation, and

103

Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings  

Science Conference Proceedings (OSTI)

Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.

Price, Lynn; Worrell, Ernst; Khrushch, Marta

1999-09-01T23:59:59.000Z

104

Industrial sector end use. Energy Consumption Data Base (ECDB) for 1975 and 1976. Volume I. Summary of 1976 results. Final report  

SciTech Connect

This report is the summary document of a three-volume report. It contains an introduction followed by tables of data containing the following information: 1976 national energy consumption by industry fuel type, and end use; 1976 regional energy consumption by industry fuel type, and census division; 1976 regional energy consumption by industry fuel type, and federal regions; 1976 regional energy consumption by industry fuel type, and PAD district; 1976 state energy consumption by industry fuel type, and by state. (PLG)

1980-12-15T23:59:59.000Z

105

State energy fuel prices by major economic sector from 1960 through 1977  

SciTech Connect

The state energy fuel prices are described and displayed by major economic sector for 1960 to 1977. These prices support the Regional Energy Demand Model. The 7 major fuel commodities in the Price Data System fall into two groups: petroleum products (distillate, residual, kerosene, gasoline, and liquid petroleum gas) and non-petroleum product fuels (electric power and natural gas). The methodology for calculating each commodity is shown. A detailed description of the wholesale and retail price methodology is presented. Appendices A and B display the price series in calorific and physical units, respectively. Some data-supporting tables are presented in Appendix C and Appendix D describes the fuel identifiers for decoding information in Appendices A and B.

Galliker, J.P.

1979-07-01T23:59:59.000Z

106

Advanced coal-fueled industrial cogeneration gas turbine system  

SciTech Connect

Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1991-07-01T23:59:59.000Z

107

ENERGY STAR Snapshot: Measuring Progress in the Commercial and Industrial Sectors, Spring 2008.  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Progress in the Commercial and Industrial Sectors Spring 2008 Introduction Through 2007, commercial and industrial (C&I) leaders have made unprecedented progress in their efforts to improve energy efficiency and reduce greenhouse gas emissions across their buildings and facilities. This includes: y Hundreds of organizations and individuals stepping forward to take the ENERGY STAR Challenge to improve the energy efficiency of America's buildings by 10 percent or more y Measuring the energy performance in tens of thousands of buildings y Achieving energy savings across millions of square feet y Designating more than 4,000 efficient buildings and facilities with the ENERGY STAR label ENERGY STAR partners are building tremendous momentum for energy efficiency and seeing important

108

Aggregating physical intensity indicators: results of applying the composite indicator approach to the Canadian industrial sector  

E-Print Network (OSTI)

Issues surrounding the development, application and interpretation of energy intensity indicators are a continuing source of debate in the field of energy policy analysis. Although economic energy intensity indicators still dominate intensity/efficiency studies, the use of physical energy intensity indicators is on the rise. In the past, physical energy intensity indicators were not employed since it was often impossible to develop aggregate (sector-level or nation-wide) measures of physical energy intensity due to the difficulties associated with adding diverse physical products. This paper presents the results of research conducted specifically to address this ‘‘aggregation’ ’ problem. The research focused on the development of the Composite Indicator Approach, a simple, practical, alternative method for calculating aggregate physical energy intensity indicators. In this paper, the Composite Indicator Approach is used to develop physical energy intensity indicators for the Canadian industrial and manufacturing sectors, and is then compared to other existing methods of aggregation. The physical composite indicators developed using this approach are also evaluated in terms of their reliability and overall usefulness. Both comparisons suggest that the Composite Indicator Approach can be a useful, and ultimately suitable, way of addressing the aggregation problem typically associated with heterogeneous sectors of the economy. r

Mallika N; John Nyboer; Mark Jaccard

1999-01-01T23:59:59.000Z

109

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

Science Conference Proceedings (OSTI)

The 2006 California Global Warming Solutions Act calls for reducing greenhouse gas (GHG) emissions to 1990 levels by 2020. Meeting this target will require action from all sectors of the California economy, including industry. The industrial sector consumes 25% of the energy used and emits 28% of the carbon dioxide (CO{sub 2}) produced in the state. Many countries around the world have national-level GHG reduction or energy-efficiency targets, and comprehensive programs focused on implementation of energy efficiency and GHG emissions mitigation measures in the industrial sector are essential for achieving their goals. A combination of targets and industry-focused supporting programs has led to significant investments in energy efficiency as well as reductions in GHG emissions within the industrial sectors in these countries. This project has identified program and policies that have effectively targeted the industrial sector in other countries to achieve real energy and CO{sub 2} savings. Programs in Ireland, France, The Netherlands, Denmark, and the UK were chosen for detailed review. Based on the international experience documented in this report, it is recommended that companies in California's industrial sector be engaged in a program to provide them with support to meet the requirements of AB32, The Global Warming Solution Act. As shown in this review, structured programs that engage industry, require members to evaluate their potential efficiency measures, plan how to meet efficiency or emissions reduction goals, and provide support in achieving the goals, can be quite effective at assisting companies to achieve energy efficiency levels beyond those that can be expected to be achieved autonomously.

Price, Lynn; de la Rue du Can, Stephane; Lu, Hongyou; Horvath, Arpad

2010-05-21T23:59:59.000Z

110

Electric Power Interruption Cost Estimates for Individual Industries, Sectors, and the U.S. Economy  

E-Print Network (OSTI)

Distributed energy resources (DER) have been promoted as the least-cost approach to meeting steadily increasing energy demand. However, it is unclear whether DER deployment can maintain or improve the electric power supply reliability and quality currently available to consumers. This report address two key factors relating to this question: 1) characteristics of existing power supply reliability, and 2) costs resulting from supply interruptions characteristic of the existing power grid. Interruption cost data collected by the University of Saskatchewan was used in conjunction with data generated by the Census Bureau’s Annual Survey of Manufacturers (Census Bureau, 1995), along with industry shares of gross domestic product (Bureau of Economic Analysis, 1995a) and gross output (Bureau of Economic Analysis, 1995b) to derive interruption cost estimates for U.S. industries at the 2-digit Standard Industrial Classification (SIC) level, as well as for broader sectors and the U.S. economy. Interruption cost estimates are presented as a function of outage duration (e.g., 20 minutes, 1-hour, 3-hour), and are normalized in terms of dollars per peak kW.

Balducci, P. J.; Roop, J. M.; Schienbein, L. A.; DeSteese, J. G.; Weimar, M. R.

2003-05-01T23:59:59.000Z

111

World Best Practice Energy Intensity Values for SelectedIndustrial Sectors  

SciTech Connect

"World best practice" energy intensity values, representingthe most energy-efficient processes that are in commercial use in atleast one location worldwide, are provided for the production of iron andsteel, aluminium, cement, pulp and paper, ammonia, and ethylene. Energyintensity is expressed in energy use per physical unit of output for eachof these commodities; most commonly these are expressed in metric tonnes(t). The energy intensity values are provided by major energy-consumingprocesses for each industrial sector to allow comparisons at the processlevel. Energy values are provided for final energy, defined as the energyused at the production facility as well as for primary energy, defined asthe energy used at the production facility as well as the energy used toproduce the electricity consumed at the facility. The "best practice"figures for energy consumption provided in this report should beconsidered as indicative, as these may depend strongly on the materialinputs.

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky,Christina; Zhou, Nan

2007-06-05T23:59:59.000Z

112

Fuel injection staged sectoral combustor for burning low-BTU fuel gas  

SciTech Connect

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

Vogt, Robert L. (Schenectady, NY)

1981-01-01T23:59:59.000Z

113

Fuel injection staged sectoral combustor for burning low-BTU fuel gas  

SciTech Connect

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

Vogt, Robert L. (Schenectady, NY)

1985-02-12T23:59:59.000Z

114

Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview of Options to Integrate Stationary Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector Overview of Options to Integrate Stationary Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Hydrogen Demand for the Transportation Sector Sector Fred Joseck U.S. DOE Hydrogen Program Transportation and Stationary Power Integration Workshop (TSPI) Transportation and Stationary Power Transportation and Stationary Power Integration Workshop (TSPI) Integration Workshop (TSPI) Phoenix, Arizona October 27, 2008 2 Why Integration? * Move away from conventional thinking...fuel and power generation/supply separate * Make dramatic change, use economies of scale,

115

Advanced coal-fueled industrial cogeneration gas turbine system  

DOE Green Energy (OSTI)

This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

1992-06-01T23:59:59.000Z

116

A State Regulator's View of 'PURPA' And Its Impact on Energy Conservation in the Industrial Sector  

E-Print Network (OSTI)

The purpose of my comments this afternoon is to share with you my views concerning the status of the Public Utility Regulatory Policies Act (PURPA), and how some of the rate standards contained in the Act may affect energy conservation in the industrial sector. As most of you are aware, there currently is a great deal of uncertainty regarding the status of PURPA. In the case of the State of Mississippi vs. the Federal Energy Regulatory Commission, Judge Harold Cox issued a summary judgment on February 19, 1981. In his decision he ruled PURPA was an unconstitutional intrusion into an area traditionally left to the states and that there was no express authorization for the federal government to regulate public utilities. In the final judgment rendered February 27, 1981, he ruled that Title One, Section 210 of Title Two and Title Three were unconstitutional. The case currently is now on appeal to the U.S. Supreme Court. As of yet, no date has been set for arguments and no action is expected before the November 1981 hearing deadline.

Williams, M. L.

1981-01-01T23:59:59.000Z

117

energy use by sector | OpenEI  

Open Energy Info (EERE)

use by sector use by sector Dataset Summary Description Statistics New Zealand conducted and published results of an energy use survey across industry and trade sectors to evaluate energy use in 2009. The data includes: energy use by fuel type and industry (2009); petrol and diesel purchasing and end use by industry (2009); energy saving initiatives by industry (2009); and areas identified as possibilities for less energy use (2009). Source Statistics New Zealand Date Released October 15th, 2010 (4 years ago) Date Updated Unknown Keywords diesel energy savings energy use by sector New Zealand petrol Data application/vnd.ms-excel icon New Zealand Energy Use Survey: Industrial and Trade Sectors (xls, 108 KiB) application/zip icon Energy Use Survey (zip, 127 KiB) Quality Metrics

118

Analysis of energy use in building services of the industrial sector in California: Two case studies. Final report  

SciTech Connect

Energy-use patterns in many of California`s fastest-growing industries are not typical of the existing mix of industries in the US. Many California firms operate small- and medium-sized facilities housed in buildings used simultaneously or interchangeably over time for commercial (office, retail, warehouse) and industrial activities. In these industrial subsectors, the energy required for building services (providing occupant comfort and necessities like lighting, HVAC, office equipment, computers, etc.) may be at least as important as the more familiar process energy requirements -- especially for electricity and on-peak demand. Electricity for building services is sometimes priced as if it were base loaded like process uses; in reality this load varies significantly according to occupancy schedules and cooling and heating loads, much as in any commercial building. Using informal field surveys, simulation studies, and detailed analyses of existing data (including utility commercial/industrial audit files), we studied the energy use of this industrial subsector through a multi-step procedure: (1) characterizing non-process building energy and power use in California industries, (2) identifying conservation and load-shaping opportunities in industrial building services, and (3) investigating industrial buildings and system design methodologies. In an earlier report, we addressed these issues by performing an extensive survey of the existing publicly available data, characterizing and comparing the building energy use in this sector. In this report, we address the above objectives by examining and analyzing energy use in two industrial case-study facilities in California. Based on the information for the case studies, we discuss the design consideration for these industrial buildings, characterize their energy use, and review their conservation and load-shaping potentials. In addition, we identify and discuss some research ideas for further investigation.

Akbari, H.; Sezgen, O.

1991-09-01T23:59:59.000Z

119

Reinventing VAT collection : industry vertical assessment, revenue increase, and public sector reliability  

E-Print Network (OSTI)

This dissertation shows how administrative reforms of the State Tax Administration Bureaus (STABs) in Brazil between 1997 and 2005 contributed to strengthening public sector bureaucracies and institutions at the sub-national ...

Pinhanez, Monica F. (Monica Fornitani)

2008-01-01T23:59:59.000Z

120

Challenges of Electric Power Industry Restructuring for Fuel ...  

U.S. Energy Information Administration (EIA)

Restructuring for Fuel Suppliers ... Office of Coal, Nuclear, Electric and Alternate Fuels Office of Oil and Gas ... Risk management will become an ...

Note: This page contains sample records for the topic "industrial sector fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Table 2.1d Industrial Sector Energy Consumption Estimates, 1949 ...  

U.S. Energy Information Administration (EIA)

System Energy Losses 12: Total: Fossil Fuels: Renewable Energy 2: Total Primary: Coal: Coal Coke Net Imports: Natural Gas 3: ... 8 Photovoltaic (PV) electricity net ...

122

Future Public Policy and Ethical Issues Facing the Agricultural and Microbial Genomics Sectors of the Biotechnology Industry: A Roundtable Discussion  

SciTech Connect

On September 12, 2003, the University of Maryland School of Law's Intellectual Property and Law & Health Care Programs jointly sponsored and convened a roundtable discussion on the future public policy and ethical issues that will likely face the agricultural and microbial genomics sectors of the biotechnology industry. As this industry has developed over the last two decades, societal concerns have moved from what were often local issues, e.g., the safety of laboratories where scientists conducted recombinant DNA research on transgenic microbes, animals and crops, to more global issues. These newer issues include intellectual property, international trade, risks of genetically engineered foods and microbes, bioterrorism, and marketing and labeling of new products sold worldwide. The fast paced nature of the biotechnology industry and its new developments often mean that legislators, regulators and society, in general, must play ''catch up'' in their efforts to understand the issues, the risks, and even the benefits, that may result from the industry's new ways of conducting research, new products, and novel methods of product marketing and distribution. The goal of the roundtable was to develop a short list of the most significant public policy and ethical issues that will emerge as a result of advances in these sectors of the biotechnology industry over the next five to six years. More concretely, by ''most significant'' the conveners meant the types of issues that would come to the attention of members of Congress or state legislators during this time frame and for which they would be better prepared if they had well researched and timely background information. A concomitant goal was to provide a set of focused issues for academic debate and scholarship so that policy makers, industry leaders and regulators would have the intellectual resources they need to better understand the issues and concerns at stake. The goal was not to provide answers to any of the issues or problems, simply to identify those topics that deserve our attention as a society. Some of the issues may benefit from legislation at the federal or state levels, others may be more appropriately addressed by the private sector. Participants at the roundtable included over a dozen experts in the areas of microbiology, intellectual property, agricultural biotechnology, microbial genomics, bioterrorism, economic development, biotechnology research, and bioethics. These experts came from federal and state government, industry and academia. The participants were asked to come to the roundtable with a written statement of the top three to five public policy/ ethical issues they viewed as most likely to be significant to the industry and to policy makers over the next several years.

Diane E. Hoffmann

2003-09-12T23:59:59.000Z

123

Preliminary energy sector assessments of Jamaica. Volume III: renewable energy. Part I: solar energy - commercial and industrial  

SciTech Connect

This study concerns commercial and industrial solar applications, specifically solar water heating and solar air cooling. The study finds that solar domestic water heating and boiler make-up water preheating are technically feasible and, depending on the displaced energy source (electrical or various fuel types), economically justified; and that solar hot water installations could displace the equivalent of 189,842 barrels of fuel oil per year. However, solar cooling requires high performance collectors not currently manufactured in Jamaica, and feasibility studies indicate that solar cooling in the near term is not economically justified.

1980-01-01T23:59:59.000Z

124

Profile of the wood furniture and fixtures industry. EPA Office of Compliance sector notebook project  

Science Conference Proceedings (OSTI)

The furniture and fixtures industry encompasses companies that manufacture household, office, store, public building, and restaurant furniture and fixtures. The second section provides background information on the size, geographic distribution, employment, production, sales, and economic condition of the Wood Furniture and Fixtures industry. The type of facilities described within the document are also described in terms of their Standard Industrial Classification (SIC) codes. Additionally, this section contains a list of the largest companies in terms of sales.

NONE

1995-09-01T23:59:59.000Z

125

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network (OSTI)

9 Table 4. International Estimates of Energy Consumption in16 Table 10. Industrial energy consumption, India in 2003-25. India Specific energy consumption, including feedstock (

Sathaye, Jayant

2011-01-01T23:59:59.000Z

126

Decision-maker's guide to wood fuel for small industrial energy users. Final report. [Includes glossary  

DOE Green Energy (OSTI)

The technology and economics of various wood energy systems available to the small industrial and commercial energy user are considered. This book is designed to help a plant manager, engineer, or others in a decision-making role to become more familiar with wood fuel systems and make informed decisions about switching to wood as a fuel. The following subjects are discussed: wood combustion, pelletized wood, fuel storage, fuel handling and preparation, combustion equipment, retrofitting fossil-fueled boilers, cogeneration, pollution abatement, and economic considerations of wood fuel use. (MHR)

Levi, M. P.; O'Grady, M. J.

1980-02-01T23:59:59.000Z

127

Accelerating technology transfer from federal laboratories to the private sector by industrial R and D collaborations - A new business model  

Science Conference Proceedings (OSTI)

Many important products and technologies were developed in federal laboratories and were driven initially by national needs and for federal applications. For example, the clean room technology that enhanced the growth of the semiconductor industry was developed at Sandia National Laboratories (SNL) decades ago. Similarly, advances in micro-electro-mechanical-systems (MEMS)--an important set of process technologies vital for product miniaturization--are occurring at SNL. Each of the more than 500 federal laboratories in the US, are sources of R and D that contributes to America's economic vitality, productivity growth and, technological innovation. However, only a fraction of the science and technology available at the federal laboratories is being utilized by industry. Also, federal laboratories have not been applying all the business development processes necessary to work effectively with industry in technology commercialization. This paper addresses important factors that federal laboratories, federal agencies, and industry must address to translate these under utilized technologies into profitable products in the industrial sector.

LOMBANA,CESAR A.; ROMIG JR.,ALTON D.; LINTON,JONATHAN D.; MARTINEZ,J. LEONARD

2000-04-13T23:59:59.000Z

128

DOE Hydrogen and Fuel Cells Program Record #13007: Industry Deployed Fuel Cell Backup Power (BuP)  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Date: 09/05/2013 7 Date: 09/05/2013 Title: Industry Deployed Fuel Cell Backup Power (BuP) Originators: Pete Devlin, Jim Alkire, Sara Dillich, Dimitrios Papageorgopoulos Approved by: Rick Farmer and Sunita Satyapal Date: 09/09/13 Item: Table 1: Number of fuel cells deployments (current and planned) for applications in backup power. The funding of 903 Department of Energy (DOE) fuel cell backup power systems has led to over 3,500 industry installations and on-order backup power units with no DOE funding. Data/Assumptions/Calculations: The manufacturers providing the fuel cells for the deployments (current and planned) mentioned in Table 1 above are: Altergy Ballard / Ida Tech Hydrogenics ReliOn, Inc. Total DOE American Recovery and Reinvestment Act (ARRA) investment for these fuel cell

129

List of Fuel Cells using Renewable Fuels Incentives | Open Energy  

Open Energy Info (EERE)

Fuel Cells using Renewable Fuels Incentives Fuel Cells using Renewable Fuels Incentives Jump to: navigation, search The following contains the list of 192 Fuel Cells using Renewable Fuels Incentives. CSV (rows 1 - 192) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Alabama Commercial Industrial Institutional Building Insulation Doors Energy Mgmt. Systems/Building Controls

130

NEMS industrial module documentation report  

SciTech Connect

The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2010) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of output of industrial activity. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

1994-01-01T23:59:59.000Z

131

The coprocessing of fossil fuels and biomass for CO{sub 2} emission reduction in the transportation sector  

DOE Green Energy (OSTI)

Research is underway to evaluate the Hydrocarb process for conversion of carbonaceous raw material to clean carbon and methanol products. These products are valuable in the market either as fuel or as chemical commodities. As fuel, methanol and carbon can be used economically, either independently or in slurry form, in efficient heat energies (turbines and internal combustion engines) for both mobile and stationary single and combined cycle power plants. When considering CO{sub 2} emission control in the utilization of fossil fuels, the copressing of those fossil fuels with biomass (which may include, wood, municipal solid waste and sewage sludge) is a viable mitigation approach. By coprocessing both types of feedstock to produce methanol and carbon while sequestering all or part of the carbon, a significant net CO{sub 2} reduction is achieved if the methanol is substituted for petroleum fuels in the transportation sector. The Hydrocarb process has the potential, if the R&D objectives are achieved, to produce alternative transportation fuel from indigenous resources at lower cost than any other biomass conversion process. These comparisons suggest the resulting fuel can significantly displace gasoline at a competitive price while mitigating CO{sub 2} emissions and reducing ozone and other toxics in urban atmospheres.

Steinberg, M. [Brookhaven National Lab., Upton, NY (United States); Dong, Yuanji [Hydrocarb Corp., New York, NY (United States); Borgwardt, R.H. [Environmental Protection Agency, Research Triangle Park, NC (United States)

1993-10-01T23:59:59.000Z

132

Roadmap for Development of Natural Gas Vehicle Fueling Infrastructructure and Analysis of Vehicular Natural Gas Consumption by Niche Sector  

SciTech Connect

Vehicular natural gas consumption is on the rise, totaling nearly 200 million GGEs in 2005, despite declines in total NGV inventory in recent years. This may be attributed to greater deployment of higher fuel use medium- and heavy-duty NGVs as compared to the low fuel use of the natural gas-powered LDVs that exited the market through attrition, many of which were bi-fuel. Natural gas station counts are down to about 1100 from their peak of about 1300. Many of the stations that closed were under-utilized or not used at all while most new stations were developed with greater attention to critical business fundamentals such as site selection, projected customer counts, peak and off-peak fueling capacity needs and total station throughput. Essentially, the nation's NGV fueling infrastructure has been--and will continue--going through a 'market correction'. While current economic fundamentals have shortened payback and improved life-cycle savings for investment in NGVs and fueling infrastructure, a combination of grants and other financial incentives will still be needed to overcome general fleet market inertia to maintain status quo. Also imperative to the market's adoption of NGVs and other alternative fueled vehicle and fueling technologies is a clear statement of long-term federal government commitment to diversifying our nation's transportation fuel use portfolio and, more specifically, the role of natural gas in that policy. Based on the current NGV market there, and the continued promulgation of clean air and transportation policies, the Western Region is--and will continue to be--the dominant region for vehicular natural gas use and growth. In other regions, especially the Northeast, Mid-Atlantic states and Texas, increased awareness and attention to air quality and energy security concerns by the public and - more important, elected officials--are spurring policies and programs that facilitate deployment of NGVs and fueling infrastructure. Because of their high per-vehicle fuel use, central fueling and sensitivity to fuel costs, fleets will continue to be the primary target for NGV deployment and station development efforts. The transit sector is projected to continue to account for the greatest vehicular natural gas use and for new volume growth. New tax incentives and improved life-cycle economics also create opportunities to deploy additional vehicles and install related vehicular natural gas fueling infrastructure in the refuse, airport and short-haul sectors. Focusing on fleets generates the highest vehicular natural gas throughout but it doesn't necessarily facilitate public fueling infrastructure because, generally, fleet operators prefer not to allow public access due to liability concerns and revenue and tax administrative burdens. While there are ways to overcome this reluctance, including ''outside the fence'' retail dispensers and/or co-location of public and ''anchor'' fleet dispensing capability at a mutually convenient existing or new retail location, each has challenges that complicate an already complex business transaction. Partnering with independent retail fuel station companies, especially operators of large ''truck stops'' on the major interstates, to include natural gas at their facilities may build public fueling infrastructure and demand enough to entice the major oil companies to once again engage. Garnering national mass media coverage of success in California and Utah where vehicular natural gas fueling infrastructure is more established will help pave the way for similar consumer market growth and inclusion of public accessibility at stations in other regions. There isn't one ''right'' business model for growing the nation's NGV inventory and fueling infrastructure. Different types of station development and ownership-operation strategies will continue to be warranted for different customers in different markets. Factors affecting NGV deployment and station development include: regional air quality compliance status and the state and/or local political climate regarding mandates and/or in

Stephen C. Yborra

2007-04-30T23:59:59.000Z

133

Challenges of electric power industry restructuring for fuel suppliers  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide an assessment of the changes in other energy industries that could occur as the result of restructuring in the electric power industry. This report is prepared for a wide audience, including Congress, Federal and State agencies, the electric power industry, and the general public. 28 figs., 25 tabs.

NONE

1998-09-01T23:59:59.000Z

134

Model documentation report: Industrial sector demand module of the national energy modeling system  

SciTech Connect

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its model. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

NONE

1998-01-01T23:59:59.000Z

135

Countries Launch Initiative to Drive Energy Efficiency in the Commercial and Industrial Sectors  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 20, 2010 July 20, 2010 1 FACT SHEET: THE GLOBAL SUPERIOR ENERGY PERFORMANCE PARTNERSHIP At the Clean Energy Ministerial in Washington, D.C. on July 19 th and 20 th , ministers launched a new public- private partnership to accelerate energy efficiency improvements in commercial buildings and industrial facilities, which together account for almost 60 percent of global energy use. The Global Superior Energy Performance (GSEP) Partnership will cut energy use, reduce greenhouse gas emissions and pollution, save money, and create

136

Advanced coal-fueled industrial cogeneration gas turbine system  

DOE Green Energy (OSTI)

The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. This quarter, work was centered on design, fabrication, and testing of the combustor, cleanup, fuel specifications, and hot end simulation rig. 2 refs., 59 figs., 29 tabs.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1990-07-01T23:59:59.000Z

137

Industrial Fuel Gas Demonstration Plant Program. Annual progress report, January-December 1979  

SciTech Connect

The objective of the Industrial Fuel Gas Demonstration Plant Program is to demonstrate the feasibility of converting agglomerating and high sulfur coal to clean fuel gas and utilizing this gas in a commercial application. Specific objectives are to conduct process analysis, design, construction, testing, operation and evaluation of a plant based on the U-Gas process for converting coal to industrial fuel gas. Phase I of the MLGW Industrial Fuel Gas Demonstration Plant Program started in September, 1977. In the first quarter of 1978, a conceptual design of a commercial plant was started, together with environmental monitoring activities and technical support work at the U-Gas pilot plant. After a series of successful pilot plant runs during the October 1978-March 1979 period, design work on the Demonstration Plant commenced. With the exception of Task I - Design and Evaluation of Commercial Plant, the majority of all other efforts were completed in 1979. These tasks are listed.

None

1980-01-01T23:59:59.000Z

138

Table 8.7c Consumption of Combustible Fuels for Electricity ...  

U.S. Energy Information Administration (EIA)

Table 8.7c Consumption of Combustible Fuels for Electricity Generation and Useful Thermal Output: Commercial and Industrial Sectors, 1989-2011 (Subset of ...

139

Table 8.7c Consumption of Combustible Fuels for Electricity ...  

U.S. Energy Information Administration (EIA)

Table 8.7c Consumption of Combustible Fuels for Electricity Generation and Useful Thermal Output: Commercial and Industrial Sectors, 1989-2011 ...

140

Countries Launch Initiative to Drive Energy Efficiency in the Commercial and Industrial Sectors  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Updated on July 23, 2010 Updated on July 23, 2010 1 FACT SHEET: THE GLOBAL SUPERIOR ENERGY PERFORMANCE PARTNERSHIP At the Clean Energy Ministerial in Washington, D.C. on July 19 th and 20 th , ministers launched a new public- private partnership to accelerate energy efficiency improvements in commercial buildings and industrial facilities, which together account for almost 60 percent of global energy use. The Global Superior Energy Performance (GSEP) Partnership will cut energy use, reduce greenhouse gas emissions and pollution, save money, and create

Note: This page contains sample records for the topic "industrial sector fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Economic and environmental impacts of the corn grain ethanol industry on the United States agricultural sector  

Science Conference Proceedings (OSTI)

This study evaluated the impacts of increased ethanol production from corn starch on agricultural land use and the environment in the United States. The Policy Analysis System simulation model was used to simulate alternative ethanol production scenarios for 2007 through 2016. Results indicate that increased corn ethanol production had a positive effect on net farm income and economic wellbeing of the US agricultural sector. In addition, government payments to farmers were reduced because of higher commodity prices and enhanced net farm income. Results also indicate that if Conservation Reserve Program land was converted to crop production in response to higher demand for ethanol in the simulation, individual farmers planted more land in crops, including corn. With a larger total US land area in crops due to individual farmer cropping choices, total US crop output rose, which decreased crop prices and aggregate net farm income relative to the scenario where increased ethanol production happened without Conservation Reserve Program land. Substantial shifts in land use occurred with corn area expanding throughout the United States, especially in the traditional corn-growing area of the midcontinent region.

Larson, J.A.; English, B.C.; De La Torre Ugarte, D. G.; Menard, R.J.; Hellwinckel, C.M.; West, Tristram O.

2010-09-10T23:59:59.000Z

142

Preliminary assessment of the gaseous fuels aftermarket conversion industry. Final report  

Science Conference Proceedings (OSTI)

The purpose of the report is to provide information to be used in assessing the potential impacts of EPA's proposed Gaseous Fuels and Clean Fuel Fleet rulemakings on the aftermarket conversion industry. Therefore, the report will focus on issues germane to determining these impacts (such as financial profiles of companies involved, future trends in industry development and sales, and costs of complying with conversion requirements) rather than assessing the viability of current technologies or the emissions benefits of alternative fuels. Moreover, the report focuses on conversions to CNG and LPG as conversions to these fuels are most viable at this time, even though EPA's proposed conversion regulations could potentially apply to any fuel (e.g., liquid natural gas).

Not Available

1992-09-28T23:59:59.000Z

143

DOE Hydrogen and Fuel Cells Program Record, Record # 11017: Industry...  

NLE Websites -- All DOE Office Websites (Extended Search)

analysis, and reporting. DOE Funded 1 (ARRA) as of 122011 DOE Funded 2,3 (Appropriations) as of 102011 DOE Total Industry Funded or on Order (U.S.) 3-6 From 2009 - Record...

144

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Industrial sector energy demand Industrial sector energy demand On This Page Heat and power energy... Industrial fuel mix changes... Iron and steel... Delivered energy use... Chemical industry use of fuels... Output growth for... Industrial and commercial... Heat and power energy consumption increases in manufacturing industries Despite a 54-percent increase in industrial shipments, industrial energy consumption increases by only 19 percent from 2009 to 2035 in the AEO2011 Reference case. Energy consumption growth is moderated by a shift in the mix of output, as growth in energy-intensive manufacturing output (aluminum, steel, bulk chemicals, paper, and refining) slows and growth in high-value (but less energy-intensive) industries, such as computers and transportation equipment, accelerates. figure data

145

Barriers to a biofuels transition in the U.S. liquid fuels sector.  

E-Print Network (OSTI)

??Demand for liquid fuels (i.e., petroleum products) has burdened the U.S. with major challenges, including national security and economic concerns stemming from rising petroleum imports;… (more)

O'Donnell, Michael Joseph

2010-01-01T23:59:59.000Z

146

Documentation of the Industrial Minor Fuels and Raw Materials model (MFUEL)  

Science Conference Proceedings (OSTI)

Most of the industrial demand for energy is projected by components of the Intermediate Future Forecasting System (IFFS), mainly the PURchased Heat and Power System (PURHAPS) and the oil refineries model (REFPRIDE). Other components of IFFS project a few fuel uses that are sometimes considered industrial. MFUEL projects those portions of industrial demand not covered by other components of IFFS: industrial use of motor gasoline, industrial consumption of lubricants and waxes, petrochemical feedstocks, metallurgical coal, special naphthas, natural gas used as a chemical feedstock, asphalt and road oil, petroleum coke, industrial kerosene, industrial hydropower, net imports of coal coke, other petroleum, and LPG used as a feedstock or by gas utilities. Each fuel is projected by a single equation at the national level, based on historical relationships, and then shared out to Federal Regions. MFUEL accounts for 5.01 quadrillion Btu out of the industrial energy total of 19.66 quadrillion in 1983, including 3.52 quadrillion Btu out of the 7.83 quadrillion of industrial petroleum use.

Werbos, P.J.

1984-07-01T23:59:59.000Z

147

Microsoft Word - 201312_Fuels_Industry_Newsletter_December_2013.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

scraps proposed Louisiana GTL complex" scraps proposed Louisiana GTL complex" By Bradley Olson, Hydrocarbon Processing, December 6, 2013 THE HAGUE (Bloomberg) -- Royal Dutch Shell halted plans to build a $20 billion gas-to- liquids plant in Louisiana, citing the potential cost and uncertainty about future crude and natural gas prices. The project would have used natural gas to produce 140,000 bpd of liquid fuels and other products normally made from oil, the company said in a statement. Despite ample United States gas supplies from a boom in shale production, gas-to-liquids isn't "a viable option for Shell in North America," the company said. Shell started the first commercial gas-to-liquids plant in 1993, using a process developed in Germany and used to make fuels during World War II. The company completed the $19 billion

148

Microsoft Word - 201308_Fuels_Industry_Newsletter_August_2013.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Offer Gasoline From Natural Gas or Waste as Low as $75 per Technologies Offer Gasoline From Natural Gas or Waste as Low as $75 per Barrel" Lux Research (Press Release), The Wall Street Journal, Market Watch, July 25, 2013 Technologies Offer Gasoline From Natural Gas or Waste as Low as $75 per Barrel Many Alternative Fuels Technologies Remain Uneconomical Today, With Return on Investment of Over 17 Years, but Emerging Technologies Will Drive Down Costs, Says Lux Research BOSTON, MA, Jul 25, 2013 (Marketwired via COMTEX) -- An unprecedented price disparity between crude oil and other resources -- coupled with the emergence of cheap and abundant shale gas, especially in the United States -- is transforming the alternative fuels landscape, opening up opportunities to produce cheaper gasoline, says Lux Research.

149

Estudio de la relación proveedor - productor en la gestión de materiales del sector farmacéutico industrial productivo (STIP) de la ciudad de Bogotá / Study supplier – producer relationship in the materials management in the pharmaceutical supply chain at Bogotá.  

E-Print Network (OSTI)

??Gallo Castro, Jhon Jairo (2009) Estudio de la relación proveedor - productor en la gestión de materiales del sector farmacéutico industrial productivo (STIP) de la… (more)

Gallo Castro, Jhon Jairo

2009-01-01T23:59:59.000Z

150

Industrial fuel choice analysis model. Volume II. Appendices to model documentation  

SciTech Connect

Descriptions, documentation, and other information are included in these appendices dealing with industrial fuel choices: Energy Consumption Data Base; Major Fuel Burning Installation Survey; American Boiler Manufacturers Association Data File; Midrange Energy Forecasting System; Projection Method; Capacity Utilization Rates; Nonboiler Characteristics; Boiler Capital and O and M Cost Data; Nonboiler Capital and O and M Cost Data; Approach to Estimating Energy Impacts of the Coal Conversion Regulatory Program; Index or Acronyms.

1979-01-08T23:59:59.000Z

151

2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond  

SciTech Connect

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from May 1, 2010 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2010 partial reporting year, an estimated 3.646 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

David B. Frederick

2011-02-01T23:59:59.000Z

152

2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond  

SciTech Connect

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA-000160-01), for the wastewater reuse site at the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: (1) Facility and system description; (2) Permit required effluent monitoring data and loading rates; (3) Groundwater monitoring data; (4) Status of special compliance conditions; and (5) Discussion of the facility's environmental impacts. During the 2011 reporting year, an estimated 6.99 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. Using the dissolved iron data, the concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

David Frederick

2012-02-01T23:59:59.000Z

153

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network (OSTI)

1972. In the food industry, electricity for lights and HVACof the Electronics Industry electricity. Motors require fromand Meat Packing Industries, electricity use intensity for

Akbari, H.

2008-01-01T23:59:59.000Z

154

Fuel Reliability Program: Fuel Rod Guided-Wave Inspection System for an Industrial Environment  

Science Conference Proceedings (OSTI)

To minimize the leakage of radioactive materials into the primary coolant system during plant operation, all failed fuel rods that contain through-wall defects need to be identified and removed during refueling so they are not reinserted into service, as well as to support causal analyses. There is a need for improved and efficient inspection methods that can detect failed fuel rods in fuel assemblies identified as leaking by sipping techniques. This project is a part of an ongoing effort by the ...

2012-10-15T23:59:59.000Z

155

Fuel cell systems program plan, Fiscal year 1994  

DOE Green Energy (OSTI)

Goal of the fuel cell program is to increase energy efficiency and economic effectiveness through development and commercialization of fuel cell systems which operate on fossil fuels in multiple end use sectors. DOE is participating with the private sector in sponsoring development of molten carbonate fuel cells and solid oxide fuel cells for application in the utility, commercial, and industrial sectors. Commercialization of phosphoric acid fuel cells is well underway. Besides the introduction, this document is divided into: goal/objectives, program strategy, technology description, technical status, program description/implementation, coordinated fuel cell activities, and international activities.

Not Available

1994-07-01T23:59:59.000Z

156

Microsoft Word - 201311_Fuels_Industry_Newsletter_November_2013.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Midwestern Ethanol Producers Challenge California Global-Warming Midwestern Ethanol Producers Challenge California Global-Warming Regulations" By Daniel Fisher, Forbes, October 25, 2013 A federal appeals court in California is mulling whether to reconsider a September ruling that upheld state global-warming regulations on ethanol producers. Critics say the decision gives the Golden State carte blanche to regulate virtually anything it doesn't like, regardless of the impact on interstate commerce. The Ninth Circuit Court of Appeals, in Rocky Mountain Farmers Union v. Corey, upheld California's Low Carbon Fuel Standard Program, which grades ethanol based on the "lifecycle" greenhouse gas emissions associated with its production. Midwestern ethanol producers complain the regs discriminate against them by taking into

157

Sector 7  

NLE Websites -- All DOE Office Websites (Extended Search)

Sector 7 : Time Resolved Research Group Sector 7 is operated by the Time Resolved Research Group, which is part of the X-ray Science Division (XSD) of the Advanced Photon Source. Our research focus is the study of Ultrafast fs-laser excitation of matter, using x-ray scattering and spectroscopy techniques. The sector developped two hard x-ray beamlines (7ID and 7BM) focused on time-resolved science. The 7BM beamline has been dedicated for time-resolved radiography of fuel sprays. Sector 7 Links: What's New Beamlines Overview User information: Getting Beamtime Current Research Programs Links to our partners, and collaborators (New) Publications Contact information Operational data (w/ current 7ID schedule) ES&H information (ESAF, EOR, TMS training, User Training)

158

Advanced coal fueled industrial cogeneration gas turbine system. Final report, June 1986--April 1994  

SciTech Connect

Demonstration of a direct coal-fueled gas turbine system that is environmentally, technically, and economically viable depends on the satisfactory resolution of several key issues. Solar Turbines, Incorporates technical approach to these issues was to advance a complete direct coal-fueled gas turbine system that incorporated near-term technology solutions to both historically demonstrated problem areas such as deposition, erosion, and hot end corrosion, and to the emergent environmental constraints based on NO{sub x}, SO{sub x}, and particulates. Solar`s program approach was keyed to the full commercialization of the coal-fueled cogeneration gas turbine which would occur after extended field verification demonstrations conducted by the private sector. The program was structured in three phases plus an optional fourth phase: Phase 1 -- system description; Phase 2 -- component development; Phase 3 -- prototype system verification; and Phase 4 -- field evaluation.

LeCren, R.T.

1994-05-01T23:59:59.000Z

159

Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1990--June 1991  

SciTech Connect

Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1991-07-01T23:59:59.000Z

160

Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities  

Fuel Cell Technologies Publication and Product Library (EERE)

Non-Automotive Fuel Cell Industry, Government Policy and Future Opportunities. Fuel cells (FCs)are considered essential future energy technologies by developed and developing economies alike. Several

Note: This page contains sample records for the topic "industrial sector fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 1: Part 1, Electricity supply sector; Part 2, Residential and commercial buildings sector; Part 3, Industrial sector  

Science Conference Proceedings (OSTI)

DOE encourages you to report your achievements in reducing greenhouse gas emissions and sequestering carbon under this program. Global climate change is increasingly being recognized as a threat that individuals and organizations can take action against. If you are among those taking action, reporting your projects may lead to recognition for you, motivation for others, and synergistic learning for the global community. This report discusses the reporting process for the voluntary detailed guidance in the sectoral supporting documents for electricity supply, residential and commercial buildings, industry, transportation, forestry, and agriculture. You may have reportable projects in several sectors; you may report them separately or capture and report the total effects on an entity-wide report.

Not Available

1994-10-01T23:59:59.000Z

162

Ways Electricity Can Be Used To Replace Fossil Fuels in The French Chemical Industry  

E-Print Network (OSTI)

France energy policy for the year 1990 foresees the following breakdown between various energy sources : renewable sources (including hydraulic) : 11%, coal + natural gas : 30.5%, nuclear : 26.5%, oil : 32%. The electricity will be produced mainly by nuclear: 66 % and by hydraulic : 14%, coal : 15%, fuel oil : 5%. Electricity and coal will then be the two major energy sources at the disposal of the French Industry. The new tariff structure of electricity proposed by Electricite de France will be given briefly explaining why and how electricity used to replace fossil fuels are seriously considered by the French Chemical Industry and by Rhone-Poulenc. Examples of various new utilisations of electrical equipment in chemical processes (thermal, heat pumps, filtration, electrolysis . . .) will be given. Emphasis will be put on research and development for new equipment and on the importance of good information and relationship between utilities suppliers, manufacturers and industrial consumers.

Mongon, A.

1982-01-01T23:59:59.000Z

163

Evaluation of alternative uses of coal and coal-derived fuels: industry, government, and public viewpoints  

DOE Green Energy (OSTI)

This report covers a study by Battelle's Columbus Laboratories to identify viewpoints representative of various interest groups on alternative uses of coal and coal-derived fuels. The study was conducted for the ERDA Fossil Energy Department to provide background inputs to the R and D planning process. A series of nine structured workshops was conducted with selected representatives of the various interest groups. The individual workshops included representation of industrial and utility companies, state and federal governments, and public interest groups. Viewpoints were recorded on (1) the relative importance of five specific evaluation criteria, (2) the evaluation of seven fuel categories against the criteria, (3) a forecast of future fuel utilization by categories, and (4) suggested R and D emphasis for the fuel categories. This report, Volume I, is a summary and appraisal of workshop results. Volume II contains appendices with more detailed records from the workshops.

Locklin, D.W.; Malone, D.W.; Molnar, D.E.; Sander, L.K.; Morrison, D.L.

1975-11-17T23:59:59.000Z

164

Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector  

DOE Green Energy (OSTI)

The Alternative Motor Fuels Act of 1988 (Public Law 100-494), Section 400EE, states that the Secretary of Energy ...shall study methanol plants, including the costs and practicability of such plants that are (A) capable of utilizing current domestic supplies of unutilized natural gas; (B) relocatable; or (C) suitable for natural gas to methanol conversion by natural gas distribution companies...'' The purpose of this report is to characterize unutilized gas within the lower 48 states and to perform an economic analysis of methanol plants required by the act. The approach with regard to unutilized lower 48 gas is to (1) compare the costs of converting such gas to methanol against the expected price of gasoline over the next 20 years, and (2) compare the economics of converting such gas to methanol against the economics of using the gas as a pipeline-transported fuel. This study concludes that remote gas and low-Btu gas generally cannot be converted to methanol at costs near the expected competitive value of gasoline because of the poor economies of scale of small methanol plants.

Not Available

1991-07-01T23:59:59.000Z

165

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

E-Print Network (OSTI)

non-energy benefits, U.S. steel industry (Worrell et al.improvements in U.S. iron and steel industry (Worrell et al.for the U.S. iron and steel industry in 1994 (Figure 1).

Sathaye, J.

2011-01-01T23:59:59.000Z

166

Evaluation of Industrial Energy Options for Cogeneration, Waste Heat Recovery and Alternative Fuel Utilization  

E-Print Network (OSTI)

This paper describes the energy options available to Missouri industrial firms in the areas of cogeneration, waste heat recovery, and coal and alternative fuel utilization. The project, being performed by Synergic Resources Corporation for the Missouri Division of Energy, identifies and evaluates technological options and describes the current status of various energy resource conservation technologies applicable industry and the economic, institutional and regulatory factors which could affect the implementation and use of these energy technologies. An industrial energy manual has been prepared, identifying technologies with significant potential for application in a specific company or plant. Six site-specific industrial case studies have been performed for industries considered suitable for cogeneration, waste heat recovery or alternative fuel use. These case studies, selected after a formal screening process, evaluate actual plant conditions and economics for Missouri industrial establishments. It is hoped that these case studies will show, by example, some of the elements that make energy resource conservation technologies economically a technically feasible in the real world.

Hencey, S.; Hinkle, B.; Limaye, D. R.

1980-01-01T23:59:59.000Z

167

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network (OSTI)

in that sector went for space conditioning and lighting. Ourmay dramatically affect space conditioning requirements. BAHpurchased energy use for space conditioning and lighting in

Akbari, H.

2008-01-01T23:59:59.000Z

168

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

E-Print Network (OSTI)

St. Louis, Missouri. Energy Technology Support Unit (ETSU),de Beer, 1997. "Energy Efficient Technologies in Industry -and MAIN, 1993. “Energy Technology in the Cement Industrial

Sathaye, J.

2011-01-01T23:59:59.000Z

169

Industry  

E-Print Network (OSTI)

from refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processes

Bernstein, Lenny

2008-01-01T23:59:59.000Z

170

Sector 7  

NLE Websites -- All DOE Office Websites (Extended Search)

Link to Sector 7 Users and Collaborators Link to Sector 7 Users and Collaborators This is an incomplete list of Partners from Universities and National Labs who use the facilities at Sector 7. If you wish to add a link to your institutional page, do no hesitate to contact Eric Dufresne at the APS. The APS XSD Atomic, Molecular and Optical Physics group Center for Molecular Movies at Copenhagen University Roy Clarke Group at the University of Michigan Rob Crowell Group at BNL Chris Elles's group at Kansas University Argonne's Transportation Technology R&D Center Fuel Injection and Spray Research Group Paul Evans's group web page at the University of Wisconsin Alexei Grigoriev's group at Univ. of Tulsa Eric Landahl's web page at DePaul University The SLAC Pulse Institute Ultrafast Materials Science group (D. Reis and A. Lindenberg)

171

Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report  

DOE Green Energy (OSTI)

This report encompasses the second year of a proposed three year project with emphasis focused on fundamental research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (1) direct diesel replacement with LNG fuel, and (2) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. The results of this work are expected to enhance utilization of LNG as a transportation fuel. The paper discusses the following topics: (A) Fueling Delivery to the Engine, Engine Considerations, and Emissions: (1) Atomization and/or vaporization of LNG for direct injection diesel-type natural gas engines; (2) Fundamentals of direct replacement of diesel fuel by LNG in simulated combustion; (3) Distribution of nitric oxide and emissions formation from natural gas injection; and (B) Short and long term storage: (1) Modification by partial direct conversion of natural gas composition for improved storage characteristics; (2) LNG vent gas adsorption and recovery using activate carbon and modified adsorbents; (3) LNG storage at moderate conditions.

Sutton, W.H.

1997-06-30T23:59:59.000Z

172

The mine safety and health administration and how it affects the synthetic fuels industry  

SciTech Connect

The synthetic fuels industry is coming of age, with several demonstration plants operating and several commercial size plants in various stages of development. Although some of these facilities will be totally under the Occupational Safety and Health Act's (OSHA's) jurisdiction, others will be or have certain areas under the Mine Safety and Health Administration's (MSHA) regulatory authority. MSHA's jurisdiction and its regulations and guidelines are introduced.

Peason, T.P.

1983-11-01T23:59:59.000Z

173

NREL: News - NREL Teams with Navy, Private Industry to Make Jet Fuel from  

NLE Websites -- All DOE Office Websites (Extended Search)

313 313 NREL Teams with Navy, Private Industry to Make Jet Fuel from Switchgrass Project could spur jobs in rural America, lead to less reliance of foreign oil June 6, 2013 The Energy Department's National Renewable Energy Laboratory (NREL) is partnering with Cobalt Technologies, U.S. Navy, and Show Me Energy Cooperative to demonstrate that jet fuel can be made economically and in large quantities from a renewable biomass feedstock such as switch grass. "This can be an important step in the efforts to continue to displace petroleum by using biomass resources," NREL Manager for Bioprocess Integration R&D Dan Schell said. "We're converting biomass into sugars for subsequent conversion to butanol and then to JP5 jet fuel." It's one of four biorefinery projects funded recently by the Energy

174

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

E-Print Network (OSTI)

Cement Industry, An Energy Perspective", U.S. Department ofCost of Conserved Final Energy (US$/GJ) Final CCE includingwithout including non-energy benefits, U.S. steel industry (

Sathaye, J.

2011-01-01T23:59:59.000Z

175

List of Other Alternative Fuel Vehicles Incentives | Open Energy  

Open Energy Info (EERE)

Fuel Vehicles Incentives Fuel Vehicles Incentives Jump to: navigation, search The following contains the list of 8 Other Alternative Fuel Vehicles Incentives. CSV (rows 1 - 8) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Fuel Vehicle Loan Program (Missouri) State Loan Program Missouri Schools Local Government Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations No Alternative Fuels Incentive Grant Fund (AFIG) (Pennsylvania) State Grant Program Pennsylvania Commercial Industrial Residential General Public/Consumer Nonprofit Schools Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations Ethanol Methanol Biodiesel No Alternative Vehicle Conversion Credits - Corporate (Louisiana) Corporate Tax Credit Louisiana Commercial Renewable Fuel Vehicles

176

Industry  

E-Print Network (OSTI)

oxide emission reductions in industry in the EU. Europeanissues: Annual survey of industries. Central StatisticalDesiccated coconut industry of Sri- Lanka’s opportunities

Bernstein, Lenny

2008-01-01T23:59:59.000Z

177

Industrial Uses of Vegetable OilsChapter 4 Biodiesel: An Alternative Diesel Fuel from Vegetable Oils or Animal Fats  

Science Conference Proceedings (OSTI)

Industrial Uses of Vegetable Oils Chapter 4 Biodiesel: An Alternative Diesel Fuel from Vegetable Oils or Animal Fats Processing eChapters Processing Press Downloadable pdf of Chapter 4 Biodiesel: An Alternative Di

178

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network (OSTI)

Equipment and Sustainable Energy. http://www.senternovem.nl/Industries Association. Sustainable Energy Ireland (SEI),Report_2007Fnl.pdf Sustainable Energy Ireland (SEI), 2009a.

Price, Lynn

2010-01-01T23:59:59.000Z

179

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

E-Print Network (OSTI)

Tracking Industrial Energy Efficiency and CO2 Emissions.and L. Price. 1999. Energy Efficiency and Carbon DioxideGalitsky. 2004. Energy Efficiency Improvement Opportunities

Sathaye, J.

2011-01-01T23:59:59.000Z

180

Industry  

E-Print Network (OSTI)

of coal and other fossil fuels in boilers and furnaces.side energy efficiency and fossil fuel switch. Presented atfrom non-energy uses of fossil fuels and from non-fossil

Bernstein, Lenny

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A $70/tCO2 greenhouse gas mitigation backstop for China’s industrial and electric power sectors: insights from a comprehensive CCS cost curve  

Science Conference Proceedings (OSTI)

As one of the world's fastest growing economies with abundant coal reserves, China's carbon dioxide (CO2) emissions have doubled in the last decade and are expected to continue growing for the foreseeable future. While the Central Government has been promoting development and growth of cleaner and more efficient energy systems, efforts to reduce carbon emissions from the heavily coal-based economy may require continued and increased development and deployment of carbon dioxide capture and storage (CCS) technologies. This paper presents the first detailed, national-scale assessment of CCS potential across the diverse geographic, geologic, and industrial landscape of China, through the lens of an integrated CCS cost curve. It summarizes the development of a cost curve representing the full chain of components necessary for the capture and geologic storage of CO2 from China's power generation and industrial sectors. Individual component cost estimates are described, along with the optimized source-sink matching of over 1,600 large stationary CO2 sources and 2300 gigatons of CO2 storage capacity within 90 major deep geologic onshore sedimentary sub-basins, to develop a cost curve incorporating CO2 capture, compression, transport, and storage. Results suggest that CCS can provide an important greenhouse gas mitigation option for most regions and industrial sectors in China, able to store more than 80% of emissions from these large CO2 sources (2900 million tons of CO2 annually) at costs less than $70/tCO2 for perhaps a century or more.

Dahowski, Robert T.; Davidson, Casie L.; Li, Xiaochun; Wei, Ning

2012-08-27T23:59:59.000Z

182

Fuel cell systems program for stationary power, 1996  

SciTech Connect

The mission of the fuel cell systems program of the Department of Energy, Office of Fossil Energy, in partnership with its customers and stakeholders, is to foster the creation of a new domestic fuel cell industry. This industry should be capable of commercialization of new, improved fuel cell power generation systems and thereby provide significant economic and environmental benefits. This program is aligned with the Department of Energy`s core mission (business line) of energy resources. The Department of Energy (DOE), Office of Fossil Energy, is participating with the private sector in sponsoring the development of molten carbonate fuel cell (MCFC) and solid oxide fuel cell (SOFC) technologies for application in the utility, commercial and industrial sectors. Phosphoric acid fuel cell (PAFC) development was sponsored by the Office of Fossil Energy in previous years and is now being commercialized by the private sector. This document describes the fuel cell activities of the DOE Office of Fossil Energy.

1996-07-01T23:59:59.000Z

183

List of Renewable Transportation Fuels Incentives | Open Energy Information  

Open Energy Info (EERE)

Transportation Fuels Incentives Transportation Fuels Incentives Jump to: navigation, search The following contains the list of 30 Renewable Transportation Fuels Incentives. CSV (rows 1 - 30) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy Bond Fund Program (Illinois) State Grant Program Illinois Commercial Industrial Solar Water Heat Solar Space Heat Solar Thermal Electric Photovoltaics Landfill Gas Wind energy Biomass Hydroelectric energy Renewable Transportation Fuels Geothermal Electric No Alternative Fuel Transportation Grant Program (Indiana) State Grant Program Indiana Commercial Nonprofit Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Fuel Cells No Alternative Fuel Vehicle Conversion Rebate Program (Arkansas) State Rebate Program Arkansas Transportation Renewable Transportation Fuels No

184

Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1991--June 1992  

DOE Green Energy (OSTI)

This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump & Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

1992-06-01T23:59:59.000Z

185

Microsoft Word - Booz Allen Hamilton Fuel Flexibility Final Report.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Fuel Flexibility Analysis of Fuel Flexibility Opportunities and Constraints in the U.S. Industrial Sector November 15, 2007 Prepared for the: Industrial Technologies Program Office of Energy Efficiency and Renewable Energy United States Department of Energy i TABLE OF CONTENTS ES. Executive Summary ................................................................................................. 1 1.0 Fuel Flexibility Study Process .......................................................................... 7 2.0 Is fuel flexibility a reasonable alternative to natural gas?........................ 10 2.1 Natural gas can be displaced by reconfiguring the industrial energy value chain ..............................................................................................................

186

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network (OSTI)

industrial facilities use boilers and/or furnaces that burnare: 1) space heat, 2) hot water, 3) boiler for building-heat, 4) boiler for process 5) direct process heat, 6)

Akbari, H.

2008-01-01T23:59:59.000Z

187

Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings  

E-Print Network (OSTI)

Energy Intensity in the Iron and Steel Industry: A Comparison of Physical and Economic Indicators”,energy and carbon intensity are evaluated. We show that macro-economic indicators,

Price, Lynn; Worrell, Ernst; Khrushch, Marta

1999-01-01T23:59:59.000Z

188

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network (OSTI)

Reports of Energy Utilization Audit (EUA) from PG&E, madeincluded in PG&E's Energy Utilization Audits (EUA), 67% ofWORK WITH THE PG&E ENERGY UTILIZATION AUDIT (EUA) INDUSTRIAL

Akbari, H.

2008-01-01T23:59:59.000Z

189

Industry  

E-Print Network (OSTI)

the paper, glass or ceramics industry) making it difficulttechnology in the ceramic manufacturing industry. industries: iron and steel, non-ferrous metals, chemicals (including fertilisers), petroleum refining, minerals (cement, lime, glass and ceramics) and

Bernstein, Lenny

2008-01-01T23:59:59.000Z

190

Industry  

E-Print Network (OSTI)

in the iron and steel industry: a global model. Energy, 30,report of the world steel industry 2005. International Irontrends in the iron and steel industry. Energy Policy, 30,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

191

Coal supply/demand, 1980 to 2000. Task 3. Resource applications industrialization system data base. Final review draft. [USA; forecasting 1980 to 2000; sector and regional analysis  

SciTech Connect

This report is a compilation of data and forecasts resulting from an analysis of the coal market and the factors influencing supply and demand. The analyses performed for the forecasts were made on an end-use-sector basis. The sectors analyzed are electric utility, industry demand for steam coal, industry demand for metallurgical coal, residential/commercial, coal demand for synfuel production, and exports. The purpose is to provide coal production and consumption forecasts that can be used to perform detailed, railroad company-specific coal transportation analyses. To make the data applicable for the subsequent transportation analyses, the forecasts have been made for each end-use sector on a regional basis. The supply regions are: Appalachia, East Interior, West Interior and Gulf, Northern Great Plains, and Mountain. The demand regions are the same as the nine Census Bureau regions. Coal production and consumption in the United States are projected to increase dramatically in the next 20 years due to increasing requirements for energy and the unavailability of other sources of energy to supply a substantial portion of this increase. Coal comprises 85 percent of the US recoverable fossil energy reserves and could be mined to supply the increasing energy demands of the US. The NTPSC study found that the additional traffic demands by 1985 may be met by the railways by the way of improved signalization, shorter block sections, centralized traffic control, and other modernization methods without providing for heavy line capacity works. But by 2000 the incremental traffic on some of the major corridors was projected to increase very significantly and is likely to call for special line capacity works involving heavy investment.

Fournier, W.M.; Hasson, V.

1980-10-10T23:59:59.000Z

192

Public/private sector cooperation to promote industrial energy efficiency: Allied partners and the US Department of Energy  

Science Conference Proceedings (OSTI)

Since 1996, the US Department of Energy's Office of Industrial Technologies (USDOE) has been involved in a unique voluntary collaboration with industry called the Allied Partner program. Initially developed under the Motor Challenge program, the partnership concept continues as a central element of USDOE's BestPractices, which in 2001 integrated all of USDOE's near-term industrial program offerings including those in motors, compressed air, pump, fan, process heating and steam systems. Partnerships are sought with end use industrial companies as well as equipment suppliers and manufacturers, utilities, consultants, and state agencies that have extensive existing relationships with industrial customers. Partners are neither paid nor charged a fee for participation. Since the inception of Allied Partners, the assumption has been that these relationships could serve as the foundation for conveying a system energy-efficiency message to many more industrial facilities than could be reached through a typical government-to-end-user program model. An independent evaluation of the Motor Challenge program, reported at the last EEMODS conference, attributed US $16.9 million or nearly 67 percent of the total annual program energy savings to the efforts of Allied Partners in the first three years of operation. A recent evaluation of the Compressed Air Challenger, which grew out of the former Motor Challenger program, attribute additional energy savings from compressed air training alone at US $12.1 million per year. Since the reorganization under BestPractices, the Allied Partner program has been reshaped to extend the impact of all BestPractices program activities. This new model is more ambitious than the former Motor Challenge program concerning the level of collaborative activities negotiated with Allied Partners. This paper describes in detail two new types of program initiatives involving Allied Partners: Qualified Specialist Training and Energy Events. The Qualified Specialist activity was conceived as a way of engaging the supply side of industry, consultants, and utilities to greatly increase use of decision making software developed by USDOE to assist industrial facilities in assessing the energy efficiency of their energy-using systems. To date, USDOE has launched Qualified Specialist training with member companies of the Hydraulic Institute (HI) and with distributors and consultants associated with the Compressed Air Challenge. These activities train and qualify industry professionals to use and to train customers to use USDOE's Pumping System Assessment Tool (PSAT) and AIRMaster + software programs, respectively. The industry experts provide a public benefit by greatly increasing customer access to the software and assessment techniques. Participating Specialists anticipate a business benefit by providing a valuable service to key customers that is associated with USDOE. The Energy Event concept was developed in 2001 in cooperation with the California Energy Commission in response to the state's energy crisis and has been extended to other geographic areas during 2002. The three California events, named ''Energy Solutions for California Industry,'' relied on Allied Partners to provide system-based solutions to industrial companies as both speakers and exhibitors. These one-day events developed a model for a serious solutions-oriented format that avoids the typical trade show atmosphere through strict exhibitor guidelines, careful screening of speaker topics, and reliance on case studies to illustrate cost- and energy-saving opportunities from applying a systems approach. Future plans to use this activity model are discussed as well as lessons learned from the California series.

McKane, Aimee; Cockrill, Chris; Tutterow, Vestal; Radspieler, Anthony

2003-05-18T23:59:59.000Z

193

Published by Oak Ridge National Laboratory No. 1 2010 The industrial sector accounts for nearly one-third of the  

E-Print Network (OSTI)

in the production of batteries for elec- tric vehicles?" To help make American battery manufacturers more com-third of the U.S. economy and nearly one-quarter of the products of global manufacturing. Industry drives the U of technologies with interested manufacturers to ensure world-class technology and products. The technologies

194

Industry Profile | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Profile Industry Profile Industry Profile November 1, 2013 - 11:40am Addthis The largest energy consuming industrial sectors account for the largest share of CHP capacity; namely: Chemicals (30%), Petroleum Refining (17%), and Paper Products (14%). Other industrial sectors include: Commercial/Institutional (12%), Food (8%), Primary Metals (5%), Other Manufacturing (8%), and Other Industrial (6%). Combined heat and power (CHP)-sometimes referred to as cogeneration-involves the sequential process of producing and utilizing electricity and thermal energy from a single fuel. CHP is widely recognized to save energy and costs, while reducing carbon dioxide (CO2) and other pollutants. CHP is a realistic, near-term option for large energy efficiency improvements and significant CO2 reductions.

195

EPRI Ergonomics Handbook for the Electric Power Industry: Ergonomic Interventions for Electrical Workers in Fossil-Fueled Power Plan ts  

Science Conference Proceedings (OSTI)

The EPRI Occupational Health and Safety (OHS) Research Program has provided ergonomic information to the electric energy industry workforce since 1999. This is the fourth EPRI ergonomics handbook; it specifically focuses on tasks performed by electricians who work in fossil-fueled electric power plants. Fossil-fueled power plant electrical work is physically strenuous and can expose workers to musculoskeletal disorders (MSDs), such as carpal tunnel syndrome, low-back pain, or shoulder tendonitis. In an e...

2008-01-11T23:59:59.000Z

196

Industry  

E-Print Network (OSTI)

and power in US industry. Energy Policy, 29, pp. 1243-1254.Paris. IEA, 2004: Energy Policies of IEA Countries: Finlandand steel industry. Energy Policy, 30, pp. 827-838. Kim, Y.

Bernstein, Lenny

2008-01-01T23:59:59.000Z

197

Industry and Education Experts Work Together to Establish Alternative Fuel Vehicle (AFV) Technician Training Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

s more and more AFVs find s more and more AFVs find their places in the transporta- tion industry, the need for qualified technicians to service these vehicles continues to grow. To help meet this need, transportation indus- try and education experts are working together to develop standards for AFV technician training, standards that will serve as a valuable tool for AFV technician training programs now and in the future. Background Section 411 of the Energy Policy Act of 1992 (EPAct) requires that the U.S. Department of Energy (DOE) ensure the availability of training programs for voluntary certification of alternative fuels technicians. To meet this requirement, DOE entered into a 5-year cooperative agreement with the National Automotive Technicians Education Foundation (NATEF) to develop and implement

198

The DOE s In-Plant Training (INPLT) Model to Promote Energy Efficiency in the Industrial Sector  

SciTech Connect

In-Plant Training (INPLT) is a new model for developing energy efficiency expertise within the US manufacturing companies participating in the U.S. Department of Energy s (DOE s) Better Buildings, Better Plants Program-a nationwide initiative to drive a 25% reduction in industrial energy intensity in 10 years. INPLTs are designed to fill a market niche by providing hands on training in a real world manufacturing plant environment. Through INPLTs, participants from multiple manufacturing plants, supply chains, utilities, and other external stakeholders learn how to conduct energy assessments, use energy analysis tools to analyze energy saving opportunities, develop energy management systems, and implement energy savings projects. Typical INPLT events are led by DOE-certified Energy Experts and range from 2-4 days. Topics discussed include: identification of cross-cutting or system specific opportunities; introduction to ISO 50001 Energy Management Systems; and energy project implementation and replication. This model is flexible, and can be tailored to suit the needs of specific industries. The INPLTs are a significant departure from the traditional single plant energy assessment model previously employed by DOE. INPLTs shift the focus from the concept of a single-plant s energy profile to a broader focus on training and capacity building among multiple industrial participants. The objective is to enable trainees to identify, quantify, implement and replicate future energy saving projects without continued external assistance. This paper discusses the INPLT model and highlights some of the initial outcomes from the successfully delivered INPLTs and the overall impact in terms of numbers of plants/participants trained, impacted energy footprints, and potential replication of identified opportunities.

Alkadi, Nasr E [ORNL; Nimbalkar, Sachin U [ORNL; De Fontaine, Mr. Andre [United States Department of Energy (DOE), Industrial Technology Program; Schoeneborn, Fred C [ORNL

2013-01-01T23:59:59.000Z

199

Incentives to Accelerate the Penetration of Electricity in the Industrial Sector by Promoting New Technologies: A French Experiment  

E-Print Network (OSTI)

A major problem encountered when trying to speed up electrification of French industry has been 'hot to finance, at end-user's level, investments related to such a change of technology'. Government incentives, the aims of which are to help saving energy and reducing oil imports, are a partial solution; something more has been done by E.D.F. with the help of bankers, consultants, engineers, and manufacturers. But it will take a lot of months before being sure it fulfills the purpose in view.

Bouchet, J.; Froehlich, R.

1983-01-01T23:59:59.000Z

200

Industry  

E-Print Network (OSTI)

2003: The history of waste energy recovery in Germany sinceincreasing recovery of waste energy and process gases, andgeneration or non-energy uses, waste-derived fuels,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Industries Affected  

Science Conference Proceedings (OSTI)

Table 2   Industries affected by microbiologically influenced corrosion...generation: nuclear, hydro, fossil fuel,

202

EIA Energy Efficiency-Table 1b. Fuel Consumption for Selected Industries,  

Gasoline and Diesel Fuel Update (EIA)

b b Page Last Modified: May 2010 Table 1b. End Uses of Fuel Consumption (Site Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food 1,044 1,116 1,186 312 Beverage and Tobacco Products 108 104 109 313 Textile Mills 254 205 178 314 Textile Product Mills 49 60 72 315 Apparel 48 30 14 316 Leather and Allied Products 8 7 3 321 Wood Products 504 375 445 322 Paper 2,744 2,361 2,354 323 Printing and Related Support 98 98 85 324 Petroleum and Coal Products 3,622 3,202 3,396 325 Chemicals 3,704 3,769 3,195 326 Plastics and Rubber Products 327 348 336 327 Nonmetallic Mineral Products 969 1,052 1,105 331 Primary Metals 2,576 2,123 1,744 332 Fabricated Metal Products 441 387 397

203

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

Science Conference Proceedings (OSTI)

Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

Sathaye, J.; Xu, T.; Galitsky, C.

2010-08-15T23:59:59.000Z

204

Improve Overall Plant Efficiency and Fuel Use, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program combined heat and power (CHP) tool can help identify energy savings in gas turbine-driven systems.

2008-12-01T23:59:59.000Z

205

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and...

206

Greenhouse Gas Emission Reduction in the ENERGY STAR Commercial, Industrial and Residential Sectors. An Example of How the Refinery Industry is Capitalizing on ENERGY STAR  

E-Print Network (OSTI)

In the past 10 years ENERGY STAR has developed a track record as a certification mark to hang buildings performance hat on. By implementing upgrade strategies and pursuing operations and maintenance issues simultaneously, ENERGY STAR has led the nation and many states to pursue greenhouse gas reduction initiatives using energy efficiency as a model program. In developing these partnerships with industry, states and local government, what has occurred is a variety of program approaches that works to accomplish strategically a reduction in emissions. Through its development, ENERGY STAR has become an integral player with many Green Buildings Program to help them carry the energy efficiency banner to higher levels of cooperation. What is occurring today is that more and more local programs are looking to green buildings as an approach to reducing problems they face in air pollution, water pollution, solid waste, needed infrastructure and better of resources needs and the growth of expensive utility infrastructures. EPA - Region 6's ENERGY STAR and Green Building Program assistance has led to some unique solutions and the beginning workups for the integrated expansion of effort to support State Implementation Plans in new innovative voluntary approaches to transform certain markets, similarly to those of energy efficient products. This presentation will be an overview of activity that is being spearheaded in Texas in the DFW and Houston metro areas in ENERGY STAR and Green Buildings. The voluntary programs impacts are reducing energy consumption, creating markets for renewables, reducing air polluting chemicals and reducing greenhouse gas emissions using verifiable approaches.

Patrick, K.

2008-01-01T23:59:59.000Z

207

Automobile Fuel; Economy and CO2 Emissions in Industrialized Countries: Troubling Trends through 2005/6  

E-Print Network (OSTI)

K. , 1993b, Fuel Prices and Economy: Factors Effecting LandCar Test and Actual Fuel Economy: Yet Another Gap? Transportof automobile fuel economy in Europe. Energy Policy 34 14.

Schipper, Lee

2008-01-01T23:59:59.000Z

208

Working towards a future on alternative fuels : the role of the automotive industry  

E-Print Network (OSTI)

Complementarity of vehicles and fuels has posed significant barrier for increasing the use of alternative fuels in place of traditional ones. An initial positive number of either alternative fuel vehicle (AFV) users or ...

Chen, Cuicui

2012-01-01T23:59:59.000Z

209

High Technology and Industrial Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Semiconductor clean room Semiconductor clean room High Technology and Industrial Systems EETD's research on high technology buildings and industrial systems is aimed at reducing energy consumed by the industrial sector in manufacturing facilities, including high technology industries such as data centers, cleanrooms in the such industries as electronics and pharmaceutical manufacturing, and laboratories, improving the competitiveness of U.S. industry. Contacts William Tschudi WFTschudi@lbl.gov (510) 495-2417 Aimee McKane ATMcKane@lbl.gov (518) 782-7002 Links High-Performance Buildings for High-Tech Industries Industrial Energy Analysis Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

210

Bootstrapping a Sustainable North American PEM Fuel Cell Industry: Could a Federal Acquisition Program Make a Difference?  

DOE Green Energy (OSTI)

The North American Proton Exchange Membrane (PEM) fuel cell industry may be at a critical juncture. A large-scale market for automotive fuel cells appears to be several years away and in any case will require a long-term, coordinated commitment by government and industry to insure the co-evolution of hydrogen infrastructure and fuel cell vehicles (Greene et al., 2008). The market for non-automotive PEM fuel cells, on the other hand, may be much closer to commercial viability (Stone, 2006). Cost targets are less demanding and manufacturers appear to be close, perhaps within a factor of two, of meeting them. Hydrogen supply is a significant obstacle to market acceptance but may not be as great a barrier as it is for hydrogen-powered vehicles due to the smaller quantities of hydrogen required. PEM fuel cells appear to be potentially competitive in two markets: (1) Backup power (BuP) supply, and (2) electrically-powered MHE (Mahadevan et al., 2007a, 2007b). There are several Original Equipment Manufacturers (OEMs) of PEM fuel cell systems for these applications but production levels have been quite low (on the order of 100-200 per year) and cumulative production experience is also limited (on the order of 1,000 units to date). As a consequence, costs remain above target levels and PEM fuel cell OEMs are not yet competitive in these markets. If cost targets can be reached and acceptable solutions to hydrogen supply found, a sustainable North American PEM fuel cell industry could be established. If not, the industry and its North American supply chain could disappear within a year or two. The Hydrogen Fuel Cell and Infrastructure Technologies (HFCIT) program of the U.S. Department of Energy (DOE) requested a rapid assessment of the potential for a government acquisition program to bootstrap the market for non-automotive PEM fuel cells by driving down costs via economies of scale and learning-by-doing. The six week study included in-depth interviews of three manufacturers, visits to two production facilities, review of the literature on potential markets in North America and potential federal government procurements, development of a cost model reflecting economies of scale and learning-by-doing, and estimation of the impact of federal PEM fuel cell procurements on fuel cell system costs and the evolution of private market demand. This report presents the findings of that study. Section 2 outlines the status of the industry and describes potential markets based on interviews of manufacturers and the existing literature. Section 3 describes the modeling methodology including key premises and assumptions, and presents estimates of market evolution under four scenarios: (1) Base Case with no federal government procurement program, (2) Scenario 1, an aggressive program beginning with less than 200 units procured in 2008 ramping up to more than 2,000 units in 2012, (3) Scenario 2 which is identical to Scenario 1 except that the private market is assumed to be twice as sensitive to price, and (4) Scenario 3, a delayed, smaller federal procurement program beginning in 2011 increasing to a maximum of just over 1,000 units per year in 2012. The analysis suggests that the aggressive program of Scenario 1 would likely stimulate a sustainable, competitive North American non-automotive PEM fuel cell industry. Given plausible assumptions about learning rates and scale economies, the procurements assumed in Scenario 1 appear to be sufficient to drive down costs to target levels. These findings are conditional on the evolution of acceptable hydrogen supply strategies, which were not explicitly analyzed in this study. Success is less certain under Scenarios 2 and 3, and there appears to be a strong probability that existing OEMs would not survive until 2011. In the Base Case, no program, a viable North American industry does not emerge before 2020.

Greene, David L [ORNL; Duleep, Dr. K. G. [Energy and Environmental Analysis, Inc., an ICF Company

2008-10-01T23:59:59.000Z

211

Radiological Monitoring Results for Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2011-October 31, 2012  

SciTech Connect

This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

Mike lewis

2013-02-01T23:59:59.000Z

212

Radiological Monitoring Results For Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: May 1, 2010-October 31, 2010  

SciTech Connect

This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond (#LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

David B. Frederick

2011-02-01T23:59:59.000Z

213

Radiological Monitoring Results For Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2010-October 31, 2011  

SciTech Connect

This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond (No.LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

David Frederick

2012-02-01T23:59:59.000Z

214

Fuel consumption: industrial, residential, and general studies. Volume 2. 1977-October, 1979 (a bibliography with abstracts). Report for 1977-October 1979  

SciTech Connect

Citations of research on fuel supply, demand, shortages, and conservation through effective utilization are presented. A few abstracts pertain to energy consumption in the agricultural sector, fuel substitution, economic studies, and environmental concerns relating to energy consumption. Bibliographies on electric power consumption and fuel consumption by transportation also are available. (This updated bibliography contains 159 abstracts, 29 of which are new entries to the previous edition.)

Hundemann, A.S.

1979-11-01T23:59:59.000Z

215

Climate VISION: Private Sector Initiatives: Aluminum: GHG Information -  

Office of Scientific and Technical Information (OSTI)

Industry Analysis Briefs Industry Analysis Briefs The Energy Information Agency (EIA) is currently updating industry analysis briefs for the most energy-intensive industries in the United States, including aluminum, chemicals, forest products (such as paper and wood products), glass, metal casting, petroleum and coal products, and steel. As soon as the current briefs are available, we will provide the link. Industry Analysis Briefs will have the following content: Economic Profile and Trends Value of Shipments Annual Production Labor Productivity Energy Use Energy Use by Fuel Fuel Consumption by End Use Energy Consumption by Sector Energy Expenditures Onsite Generation (if applicable) Energy Intensity State-Level Information Technologies and Equipment Cogeneration Technologies (if applicable)

216

Climate VISION: Private Sector Initiatives: Chemical Manufacturing: GHG  

Office of Scientific and Technical Information (OSTI)

Industry Analysis Briefs Industry Analysis Briefs The Energy Information Agency (EIA) is currently updating industry analysis briefs for the most energy-intensive industries in the United States, including aluminum, chemicals, forest products (such as paper and wood products), glass, metal casting, petroleum and coal products, and steel. As soon as the current briefs are available, we will provide the link. Industry Analysis Briefs will have the following content: Economic Profile and Trends Value of Shipments Annual Production Labor Productivity Energy Use Energy Use by Fuel Fuel Consumption by End Use Energy Consumption by Sector Energy Expenditures Onsite Generation (if applicable) Energy Intensity State-Level Information Technologies and Equipment Cogeneration Technologies (if applicable)

217

Climate VISION: Private Sector Initiatives: Mining: GHG Information -  

Office of Scientific and Technical Information (OSTI)

Industry Analysis Briefs Industry Analysis Briefs The Energy Information Agency (EIA) is currently updating industry analysis briefs for the most energy-intensive industries in the United States, including aluminum, chemicals, forest products (such as paper and wood products), glass, metal casting, petroleum and coal products, and steel. As soon as the current briefs are available, we will provide the link. Industry Analysis Briefs will have the following content: Economic Profile and Trends Value of Shipments Annual Production Labor Productivity Energy Use Energy Use by Fuel Fuel Consumption by End Use Energy Consumption by Sector Energy Expenditures Onsite Generation (if applicable) Energy Intensity State-Level Information Technologies and Equipment Cogeneration Technologies (if applicable)

218

Private-sector power generation in Thailand: potential, impediments, and policy issues. Final report  

SciTech Connect

The Royal Thai Government (RTG) is exploring ways of involving the private sector in electricity generation. The study: (1) assesses the sector's potential for non-utility power generation, including such options as industrial cogeneration, agricultural-waste-based energy systems, and large-scale systems using domestic fossil fuels; (2) reviews existing power-sector institutions in Thailand and analyzes the major issues and impediments associated with private-sector power generation; and (3) based on U.S. experience, describes possible approaches to establishing the price of non-utility electricity.

1986-11-01T23:59:59.000Z

219

Fuel cell systems program plan, Fiscal year 1993  

DOE Green Energy (OSTI)

DOE Office of Fossil Energy (OoFE) is participating with private sector in developing molten carbon fuel cell (MCFC) and advanced concepts including solid oxide fuel cell for application in utility/commercial/industrial sectors. Phosphoric acid fuel cell (PAFC) development was sponsored by OoFE and is now being commercialized. In 1993 DOD is undertaking use and demonstration of PAFC and other fuel cells. DOE Office of Conservation and Renewable Energy is sponsoring fuel cell development for propulsion. The Conservation program is focused on polymer electrolyte or proton exchange membrane fuel cells, although they also are implementing a demonstration program for PAFC buses. DOE fuel cell research, development and demonstration efforts are also supported by private sector funding. This Plan describes the fuel cell activities of the Office of Fossil Energy.

Not Available

1993-07-01T23:59:59.000Z

220

Solid State Research CenterDOE Fuel Cell Portable Power Workshop End User Perspective Industrial  

E-Print Network (OSTI)

Portable Power Workshop Fuel Cell Cost · Desktop/Travel/Vehicle Charger ­ Current battery chargers: $25) · Fuel Cell System ­ Total cost "comparable" to charger/battery ­ Includes both fuel cell and battery Power Workshop Outline · Energy & Power of Portable Devices · Fuel Cell Applications & Cost · Key

Note: This page contains sample records for the topic "industrial sector fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

2007 Fuel Cell Technologies Market Report  

SciTech Connect

The fuel cell industry, which has experienced continued increases in sales, is an emerging clean energy industry with the potential for significant growth in the stationary, portable, and transportation sectors. Fuel cells produce electricity in a highly efficient electrochemical process from a variety of fuels with low to zero emissions. This report describes data compiled in 2008 on trends in the fuel cell industry for 2007 with some comparison to two previous years. The report begins with a discussion of worldwide trends in units shipped and financing for the fuel cell industry for 2007. It continues by focusing on the North American and U.S. markets. After providing this industry-wide overview, the report identifies trends for each of the major fuel cell applications -- stationary power, portable power, and transportation -- including data on the range of fuel cell technologies -- polymer electrolyte membrane fuel cell (PEMFC), solid oxide fuel cell (SOFC), alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), phosphoric acid fuel cell (PAFC), and direct-methanol fuel cell (DMFC) -- used for these applications.

McMurphy, K.

2009-07-01T23:59:59.000Z

222

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

An Exploration of Innovation and An Exploration of Innovation and Energy Efficiency in an Appliance Industry Prepared by Margaret Taylor, K. Sydny Fujita, Larry Dale, and James McMahon For the European Council for an Energy Efficient Economy March 29, 2012 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL - 5689E An Exploration of Innovation and Energy Efficiency in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and direction of technological change of product industries; the factors that underlie the outcomes of innovation in these industries; and the ways the innovation system might respond to any given intervention. The report provides an overview of the dynamics of energy efficiency policy and innovation in the appliance

223

Industry  

E-Print Network (OSTI)

milling industry: An ENERGY STAR Guide for Energy and Plantcement mak- ing - An ENERGY STAR Guide for Energy and Plantre- fineries - An ENERGY STAR Guide for Energy and Plant

Bernstein, Lenny

2008-01-01T23:59:59.000Z

224

Hydrogen & Fuel Cells - Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

- Program Overview - - Program Overview - Sunita Satyapal Program Manager 2012 Annual Merit Review and Peer Evaluation Meeting May 14, 2012 Petroleum 37% Natural Gas 25% Coal 21% Nuclear Energy 9% Renewable Energy 8% Transportation Residential & Commercial Industrial Electric Power 2 U.S. Energy Consumption Total U.S. Energy = 98 Quadrillion Btu/yr Source: Energy Information Administration, Annual Energy Review 2010, Table 1.3 U.S. Primary Energy Consumption by Source and Sector Residential 16% Commercial 13% Industrial 22% Transportation 20% Electric Power 29% Share of Energy Consumed by Major Sectors of the Economy, 2010 Fuel Cells can apply to diverse sectors 3 Fuel Cells - An Emerging Global Industry Clean Energy Patent Growth Index [1] shows that fuel cell patents lead in the clean

225

Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)  

E-Print Network (OSTI)

Subsector The iron and steel industry accounted for roughlyn importance, as in the steel industries in other countries.furnaces China's iron and steel industry uses approximately

Zhiping, L.

2010-01-01T23:59:59.000Z

226

Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector  

E-Print Network (OSTI)

1982. Energy and the Steel Industry, Brussels, Belgium:in the Canadian Steel Industry, Ottawa, Canada: CANMET.in the Iron and Steel Industry,” in: Proceedings 1997 ACEEE

Xu, T.T.

2011-01-01T23:59:59.000Z

227

Air Force Achieves Fuel Efficiency through Industry Best Practices (Brochure), Federal Energy Management Program (FEMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

highest potential to save aviation fuel. highest potential to save aviation fuel. All MAF personnel are encouraged to propose fuel savings ideas. These ideas are then processed as initiatives, assigned a primary point of contact, and routed through an analysis process to prepare the initiative for presenta- tion to the Air Force's corporate structure. The corporate structure then evaluates and determines the initiatives with the highest potential fuel savings. Fuel-saving efforts focus on six major areas: policy, planning, execution, maintenance, science and technology, and fuel-efficient aircraft systems. The MAF also established a predetermined set of fuel-savings metrics and required reporting. In fiscal year 2011, implemented fuel initiatives saved the MAF more than 42 million gallons of aviation fuel in both

228

EPRI Ergonomics Handbook for the Electric Power Industry: Ergonomic Design Handbook for Fossil-Fueled Electric Generating Stations  

Science Conference Proceedings (OSTI)

The EPRI Occupational Health and Safety (OHS) Research Program has provided ergonomic information to the electric energy industry workforce since 1999. This is the fifth EPRI ergonomics handbook; it provides a framework and specific guidelines for decisionmaking that will apply ergonomic principles to the design of electric generating stations. Fossil-fueled power plant operation and maintenance is physically strenuous, and it may contribute to development of musculoskeletal disorders (MSDs) such as carp...

2008-03-11T23:59:59.000Z

229

Commerce study looks at cost of pollution control for fossil-fuel power industry  

SciTech Connect

Environmental controls for fossil-fuel power plants consumed 1.3 percent of the national fuel used in 1974, with the largest demand going for sulfur dioxide emission control. Projections for power plant consumption to meet environmental standards range as high as eight percent in the 1980s. Less-energy-consuming systems include coal blending, tall stacks, and supplementary control systems; while high consumers are using coal washing operations in place of scrubbers, fuel transportation, conversion to acceptable fuels, waste heat disposal, and particulate controls. A summary table presents sulfur dioxide regulations in terms of their goals and their anticipated minimum and maximum fuel consumption. (DCK)

1977-06-01T23:59:59.000Z

230

Industrial Fuel Gas Demonstration Plant Program. Task III, Demonstration plant safety, industrial hygiene, and major disaster plan (Deliverable No. 35)  

SciTech Connect

This Health and Safety Plan has been adopted by the IFG Demonstration Plant managed by Memphis Light, Gas and Water at Memphis, Tennessee. The plan encompasses the following areas of concern: Safety Plan Administration, Industrial Health, Industrial Safety, First Aid, Fire Protection (including fire prevention and control), and Control of Safety Related Losses. The primary objective of this plan is to achieve adequate control of all potentially hazardous activities to assure the health and safety of all employees and eliminate lost work time to both the employees and the company. The second objective is to achieve compliance with all Federal, state and local laws, regulations and codes. Some thirty specific safe practice instruction items are included.

None

1980-03-01T23:59:59.000Z

231

Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, 2 June 1992--1 June 1993  

SciTech Connect

This program was initiated in June of 1986 because advances in coal-fueled gas turbine technology over the previous few years, together with DOE-METC sponsored studies, served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine could ultimately be the preferred system in appropriate market application sectors. In early 1991 it became evident that a combination of low natural gas prices, stringent emission limits of the Clean Air Act and concerns for CO{sub 2} emissions made the direct coal-fueled gas turbine less attractive. In late 1991 it was decided not to complete this program as planned. The objective of the Solar/METC program was to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. Component development of the coal-fueled combustor island and cleanup system while not complete indicated that the planned engine test was feasible. Preliminary designs of the engine hardware and installation were partially completed. A successful conclusion to the program would have initiated a continuation of the commercialization plan through extended field demonstration runs. After notification of the intent not to complete the program a replan was carried out to finish the program in an orderly fashion within the framework of the contract. A contract modification added the first phase of the Advanced Turbine Study whose objective is to develop high efficiency, natural gas fueled gas turbine technology.

LeCren, L.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1993-06-01T23:59:59.000Z

232

Climate VISION: Private Sector Initiatives: Iron and Steel: GHG Information  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information Industry Analysis Briefs The Energy Information Agency (EIA) is currently updating industry analysis briefs for the most energy-intensive industries in the United States, including aluminum, chemicals, forest products (such as paper and wood products), glass, metal casting, petroleum and coal products, and steel. As soon as the current briefs are available, we will provide the link. Industry Analysis Briefs will have the following content: Economic Profile and Trends Value of Shipments Annual Production Labor Productivity Energy Use Energy Use by Fuel Fuel Consumption by End Use Energy Consumption by Sector Energy Expenditures Onsite Generation (if applicable) Energy Intensity State-Level Information Technologies and Equipment Cogeneration Technologies (if applicable)

233

Industrial Heat Pumps for Steam and Fuel Savings: A BestPractices Steam Technical Brief  

SciTech Connect

The purpose of this Steam Techcial Brief is to introduce heat-pump technology and its applicaiton in industrial processes.

2003-06-01T23:59:59.000Z

234

Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)  

E-Print Network (OSTI)

Industries Industry Bricks Cement Lime Plate Glass CeramicsIndustry furnaces for household glass, enamel, and ceramicsindustry waste heat from blast furnaces is used to dry primary ceramic and

Zhiping, L.

2010-01-01T23:59:59.000Z

235

Meeting Summary Advanced Light Water Reactor Fuels Industry Meeting Washington DC October 27 - 28, 2011  

SciTech Connect

The Advanced LWR Fuel Working Group first met in November of 2010 with the objective of looking 20 years ahead to the role that advanced fuels could play in improving light water reactor technology, such as waste reduction and economics. When the group met again in March 2011, the Fukushima incident was still unfolding. After the March meeting, the focus of the program changed to determining what we could do in the near term to improve fuel accident tolerance. Any discussion of fuels with enhanced accident tolerance will likely need to consider an advanced light water reactor with enhanced accident tolerance, along with the fuel. The Advanced LWR Fuel Working Group met in Washington D.C. on October 72-18, 2011 to continue discussions on this important topic.

Not Listed

2011-11-01T23:59:59.000Z

236

Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial 8,870,422 44.3% Commercial 3,158,244 15.8% Electric Utilities 2,732,496 13.7% Residential 5,241,414 26.2% Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." T e x a s L o u i s i a n a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Industrial Billion Cubic Meters T e x a s C a l i f o r n i a F l o r i d a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Electric Utilities Billion Cubic Meters N e w Y o r k C a l i f o r n i a I l l i n o i s A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Commercial Billion Cubic Meters I l l i n o i s C a l i f o r n i a N e w Y o r k A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Residential Billion Cubic Meters 11. Natural Gas Delivered to Consumers in the United States, 1996 Figure Volumes in Million Cubic Feet Energy Information Administration

237

Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector  

Science Conference Proceedings (OSTI)

Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. With the working of energy programs and policies on carbon regulation, how to effectively analyze and manage the costs associated with GHG reductions become extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions (e.g., carbon emission) for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct brief overview on different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by problem statements, and a description of the basic concepts of quantifying the cost of conserved energy including integrating non-regrets options. A non-regrets option is defined as a GHG reduction option that is cost effective, without considering their additional benefits related to reducing GHG emissions. Based upon these, we develop information on costs of mitigation measures and technological change. These serve as the basis for collating the data on energy savings and costs for their future use in integrated assessment models. In addition to descriptions of the iron and steel making processes, and the mitigation measures identified in this study, the report includes tabulated databases on costs of measure implementation, energy savings, carbon-emission reduction, and lifetimes. The cost curve data on mitigation measures are available over time, which allows an estimation of technological change over a decade-long historical period. In particular, the report will describe new treatment of technological change in energy-climate modeling for this industry sector, i.e., assessing the changes in costs and energy-savings potentials via comparing 1994 and 2002 conservation supply curves. In this study, we compared the same set of mitigation measures for both 1994 and 2002 -- no additional mitigation measure for year 2002 was included due to unavailability of such data. Therefore, the estimated potentials in total energy savings and carbon reduction would most likely be more conservative for year 2002 in this study. Based upon the cost curves, the rate of change in the savings potential at a given cost can be evaluated and be used to estimate future rates of change that can be the input for energy-climate models. Through characterizing energy-efficiency technology costs and improvement potentials, we have developed and presented energy cost curves for energy efficiency measures applicable to the U.S. iron and steel industry for the years 1994 and 2002. The cost curves can change significantly under various scenarios: the baseline year, discount rate, energy intensity, production, industry structure (e.g., integrated versus secondary steel making and number of plants), efficiency (or mitigation) measures, share of iron and steel production to which the individual measures can be applied, and inclusion of other non-energy benefits. Inclusion of other non-energy benefits from implementing mitigation measures can reduce the costs of conserved energy significantly. In addition, costs of conserved energy (CCE) for individual mitigation measures increase with the increases in discount rates, resulting in a general increase in total cost of mitigation measures for implementation and operation with a higher discount rate. In 1994, integrated steel mills in the U.S. produced 55.

Xu, T.T.; Sathaye, J.; Galitsky, C.

2010-09-30T23:59:59.000Z

238

Sector 7  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications A Reminder for Sector 7 PIs and Users: Please report your new publications to the Sector Manager and the CAT Director. The APS requires PIs to submit new publications to its Publication Database, a link which can be found on the Publication section of the APS web site. Publication information for work done at 7ID Proper acknowledgement sentences to include in papers. Sector 7 Call for APS User Activity Reports. APS User Activity Reports by MHATT-CATers. Recent articles Recent theses Sector 7 Reports Sector 7 Recent research highlights (New) Design documents in ICMS on Sector 7 construction and operation Sector 7 related ICMS documents Library Resources available on the WWW The ANL Library system ANL electronic journal list AIM Find it! Citation Ranking by ISI (see Journal citation report)

239

Arbor Fuel | Open Energy Information  

Open Energy Info (EERE)

Name Arbor Fuel Place Connecticut Zip CT 06030 Sector Biomass Product Arbor Fuel is developing micro-organisms to convert biomass into alternative fuels like biobutanol....

240

Fuel Industry Response to Power Industry Environmental Pressures: An Analysis of Risk and Investment in the Coal Supply Chain and Na tural Gas Industry  

Science Conference Proceedings (OSTI)

This report examines the question of how mounting environmental pressures on coal-fired generation will impact investment in fuel supply and transportation. If destined for demise, are coal companies cutting back investments or exiting the business? Alternatively, are natural gas companies gearing up for a financial boom? The study specifically investigates a "clean coal" case of greatly tightened NOx and SO2 limits as well as a "low coal" case of much reduced coal use to meet CO2 control objectives.

1999-07-02T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A FEASIBILITY STUDY OF FUEL CELL COGENERATION IN INDUSTRY Scott B. Phelps and J. Kelly Kissock  

E-Print Network (OSTI)

200 kW of 3-phase electric power at 480 Volts, provides 700,000 Btu/hr of thermal energy, and is able steam and less than the condensate return temperature. Hence, in this plant, the fuel cell's thermal Fuel Cell 4 Heat Exchanger Figure 3. Thermal interface between the PC25C and the plant. Using PC25C

Kissock, Kelly

242

Climate policy and the airline industry : emissions trading and renewable jet fuel  

E-Print Network (OSTI)

In this thesis, I assess the impact of the current EU Emissions Trading Scheme and a hypothetical renewable jet fuel mandate on US airlines. I find that both the EU Scheme up until 2020 and a renewable jet fuel mandate of ...

McConnachie, D. (Dominic Alistair)

2012-01-01T23:59:59.000Z

243

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network (OSTI)

Private Participation in the Electricity Sector World BankTelecommunications and Electricity Sectors." Governance 19,Power Struggle: Reforming the Electricity Industry." In The

Wenle, Susanne Alice

2010-01-01T23:59:59.000Z

244

Does the CO2 emission trading directive threaten the competitiveness of European industry?  

E-Print Network (OSTI)

, gas and water; non-metallic minerals; iron and steel; petroleum refining, coke and nuclear fuel industry refining, coke and nuclear fuels chemicals machinery and equipement, N.E.C. textile, textile sector, the loss in turnover is then the higher, the higher the four items below: 1. the cost of CO2

Paris-Sud XI, Université de

245

Fuel Cell Combined Heat and Power Industrial Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Kriston P. Brooks (Primary Contact), Siva P. Pilli, Dale A. King Pacific Northwest National Laboratory P.O. Box 999 Richland, WA 99352 Phone: (509) 372-4343 Email: kriston.brooks@pnnl.gov DOE Manager HQ: Peter Devlin Phone: (202) 586-4905 Email: Peter.Devlin@ee.doe.gov Contract Number: DE-AC05-76RL01830 Subcontractor: ClearEdge Power, Portland, OR Project Start Date: May 2010 Project End Date: September 2012

246

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network (OSTI)

mix .. 14 Sectoral Energy Use in China ..energy consumption, Mtce Percentage of total, % Adjustment in fuel mix As discussed above, End-use fuel consumption in China

2008-01-01T23:59:59.000Z

247

The Northeast heating fuel market: Assessment and options  

SciTech Connect

In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over the next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.

None

2000-07-01T23:59:59.000Z

248

sector | OpenEI  

Open Energy Info (EERE)

sector sector Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 5, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption sector South Atlantic Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - South Atlantic- Reference Case (xls, 297.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

249

Advanced technology options for industrial heating equipment research  

Science Conference Proceedings (OSTI)

This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

Jain, R.C.

1992-10-01T23:59:59.000Z

250

Fuel cell market applications  

DOE Green Energy (OSTI)

This is a review of the US (and international) fuel cell development for the stationary power generation market. Besides DOE, GRI, and EPRI sponsorship, the US fuel cell program has over 40% cost-sharing from the private sector. Support is provided by user groups with over 75 utility and other end-user members. Objectives are to develop and demonstrate cost-effective fuel cell power generation which can initially be commercialized into various market applications using natural gas fuel by the year 2000. Types of fuel cells being developed include PAFC (phosphoric acid), MCFC (molten carbonate), and SOFC (solid oxide); status of each is reported. Potential international applications are reviewed also. Fuel cells are viewed as a force in dispersed power generation, distributed power, cogeneration, and deregulated industry. Specific fuel cell attributes are discussed: Fuel cells promise to be one of the most reliable power sources; they are now being used in critical uninterruptible power systems. They need hydrogen which can be generated internally from natural gas, coal gas, methanol landfill gas, or other fuels containing hydrocarbons. Finally, fuel cell development and market applications in Japan are reviewed briefly.

Williams, M.C.

1995-12-31T23:59:59.000Z

251

Sumitomo Metal Industries Ltd Sumitomo Metals | Open Energy Information  

Open Energy Info (EERE)

Sumitomo Metal Industries Ltd Sumitomo Metals Sumitomo Metal Industries Ltd Sumitomo Metals Jump to: navigation, search Name Sumitomo Metal Industries Ltd (Sumitomo Metals) Place Osaka-shi, Osaka, Japan Zip 540-0041 Sector Solar Product Engaged in the steel, engineering, and electronics businesses; works on fuel cell component technology and manufactures silicon wafers for the solar sector. References Sumitomo Metal Industries Ltd (Sumitomo Metals)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sumitomo Metal Industries Ltd (Sumitomo Metals) is a company located in Osaka-shi, Osaka, Japan . References ↑ "Sumitomo Metal Industries Ltd (Sumitomo Metals)" Retrieved from "http://en.openei.org/w/index.php?title=Sumitomo_Metal_Industries_Ltd_Sumitomo_Metals&oldid=351744"

252

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

Renewable Fuels Assocation Renewable Fuels Assocation Washington Washington DC Renewable Energy US national trade association for the ethanol industry the Renewable Fuels...

253

Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Natural Gas and Hydrogen Fuels Workshop Compressed Natural Gas and Hydrogen Fuels Workshop Fuel experts from China, India, and the United States shared lessons learned about deploying CNG- and hydrogen-fueled vehicles in public transit fleets and the consumer sector at the Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles workshop. The U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT) hosted the workshop on December 10-11, 2009. Here you'll find information about the workshop's focus, agenda and notes, and presentations. Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Focus of the Workshop The workshop aimed to: Compare fuel properties-including blends-industries, and applications (e.g., product specifications, tanks, reliability, safety procedures, risk mitigation, and dispensing)

254

Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)  

E-Print Network (OSTI)

demand. The energy consumption mix i n China's chemicalenergy units are converted to tee, reflecting the dominance of coal in China's fuel mix.

Zhiping, L.

2010-01-01T23:59:59.000Z

255

Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)  

E-Print Network (OSTI)

Cement Plant Renovation Fuel-Gas Recovery District.Heating Honeycomb Briquettes Coal Processing Raw Material Conservation (b) Technology Updating Waste Heat &

Zhiping, L.

2010-01-01T23:59:59.000Z

256

Industrial Energy Efficiency Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics The industrial sector is vital to the U.S. economy, but at the same time consumes the most energy in the country to manufacture products we use every day. Among the most energy-intensive industries are aluminum, chemicals, forest product, glass, metal casting, mining, petroleum refining, and steel. The energy supply chain begins with electricity, steam, natural gas, coal, and other fuels supplied to a manufacturing plant from off-site power plants, gas companies, and fuel distributors. Energy then flows to either a central energy generation utility system or is distributed immediately for direct use. Energy is then processed using a variety of highly energy-intensive systems, including steam, process heating, and

257

Fuel.vp  

Annual Energy Outlook 2012 (EIA)

Table F7: Distillate Fuel Oil Consumption Estimates, 2011 State Residential Commercial Industrial Transportation Electric Power Total Residential Commercial Industrial...

258

Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure  

SciTech Connect

Automobile manufacturers leading the development of mass-market fuel cell vehicles (FCVs) were interviewed in Japan, Korea, Germany and the United States. There is general agreement that the performance of FCVs with respect to durability, cold start, packaging, acceleration, refueling time and range has progressed to the point where vehicles that could be brought to market in 2015 will satisfy customer expectations. However, cost and the lack of refueling infrastructure remain significant barriers. Costs have been dramatically reduced over the past decade, yet are still about twice what appears to be needed for sustainable market success. While all four countries have plans for the early deployment of hydrogen refueling infrastructure, the roles of government, industry and the public in creating a viable hydrogen refueling infrastructure remain unresolved. The existence of an adequate refueling infrastructure and supporting government policies are likely to be the critical factors that determine when and where hydrogen FCVs are brought to market.

Greene, David L [ORNL; Duleep, Gopal [HD Systems

2013-06-01T23:59:59.000Z

259

Impacts of Electric Industry Restructuring on Electric Generation and Fuel Markets: Analytical and Business Challenges  

Science Conference Proceedings (OSTI)

Restructuring and increasing competition are likely to have a major impact on electric generating companies and the individuals and organizations that buy, transport, market, or supply fuels. Restructuring may also affect the patterns of coal and gas use. This report, the first in a series by EPRI and the Gas Research Institute (GRI), describes the scope of these potential impacts.

1997-03-27T23:59:59.000Z

260

OpenEI - energy use by sector  

Open Energy Info (EERE)

http:en.openei.orgdatasetstaxonomyterm340 en New Zealand Energy Use Survey: Industrial and Trade Sectors (2009) http:en.openei.orgdatasetsnode365

Statistics New...

Note: This page contains sample records for the topic "industrial sector fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector  

E-Print Network (OSTI)

Leonhard (eds. ), Energy Efficiency Improvements in ElectricC. Moore, 1997. “Energy Efficiency and Advanced TechnologiesSummer Study on Energy Efficiency in Industry, Washington,

Xu, T.T.

2011-01-01T23:59:59.000Z

262

Evaluation of the supply chain of key industrial sectors and its impact on the electricity demand for a regional distribution company.  

E-Print Network (OSTI)

??Considering the international scenario, in a recent past, the electrical industry was based on the concepts of monopolistic concessions and vertical utilities structures. In Brazil,… (more)

Mariotoni, Thiago Arruda

2008-01-01T23:59:59.000Z

263

Renewable Energy Consumption by Energy Use Sector and Energy Source, 2004 -  

Open Energy Info (EERE)

by Energy Use Sector and Energy Source, 2004 - by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

264

Current and future industrial energy service characterizations  

DOE Green Energy (OSTI)

Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

1980-10-01T23:59:59.000Z

265

Energy Conservation Progress and Opportunities in the Pulp and Paper Industry  

E-Print Network (OSTI)

In 1980 the pulp and paper industry was the third ranking consumer of total purchased fuels and energy in the U.S. industrial sector and the highest single industry in terms of residual oil consumption. Over the past decade in response to rapidly rising energy prices, the pulp and paper industry has made significant progress in reducing fossil fuel consumption through conservation and increased use of internally generated fuels. Purchased energy usage has declined from 19.2 Btu/ton of product in 1972 to 13.9 Btu/ton in 1982; and further significant reductions over the next decade appear likely. This paper examines the progress which has occurred in reducing the industry's reliance on purchased fossil fuel over the past decade, focusing on the key steps which led to energy conservation and increased fuel substitution. Present work toward continuing energy conservation will be reviewed and key opportunities for continued reduction into the 1990s will be examined.

Watkins, J. J.; Hunter, W. D.

1984-01-01T23:59:59.000Z

266

The Office of Industrial Technologies technical reports  

SciTech Connect

The US Department of Energy's Office of Industrial Technologies (OIT) conducts R D activities which focus on the objectives of improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial energy conservation. The Office also conducts programs to reduce waste generation, increase recycling efforts, and improve the use of wastes as process feedstocks. An active program of technology transfer and education supports these activities and encourages adoption of new technologies. To accomplish these objectives OIT cooperates with the private sector to identify its technological needs and to share R D efforts. R D is conducted to the point that a new technology is shown to work and that it can be transferred to the private sector end-users. This bibliography contains information on all scientific and technical reports sponsored by the DOE Industrial Energy Conservation Program during the years 1988--1990.

Not Available

1992-01-01T23:59:59.000Z

267

Bus industry market study. Report -- Task 3.2: Fuel cell/battery powered bus system  

DOE Green Energy (OSTI)

In support of the commercialization of fuel cells for transportation, Georgetown University, as a part of the DOE/DOT Fuel Cell Transit Bus Program, conducted a market study to determine the inventory of passenger buses in service as of December, 1991, the number of buses delivered in 1991 and an estimate of the number of buses to be delivered in 1992. Short term and long term market projections of deliveries were also made. Data was collected according to type of bus and the field was divided into the following categories which are defined in the report: transit buses, school buses, commercial non-transit buses, and intercity buses. The findings of this study presented with various tables of data collected from identified sources as well as narrative analysis based upon interviews conducted during the survey.

Zalbowitz, M.

1992-06-02T23:59:59.000Z

268

Climate VISION: Private Sector Initiatives: Electric Power: GHG Information  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information The electric power industry reports the vast majority of their emissions (greater than 99 percent) through the use of continuous emissions monitors and fuel-use estimated data that are transmitted to the U.S. Environmental Protection Agency (EPA) and the Energy Information Administration (EIA). EIA annually publishes data on GHG emissions and electric power generation. The "Electric Power Sector" in these publications is defined by EIA as the "energy-consuming sector that consists of electricity only and combined heat and power (CHP) plants whose primary business is to sell electricity, or electricity and heat, to the public - i.e., North American Industry Classification System 22 plants". It does not include CO2 emissions or

269

Advanced coal-fueled industrial cogeneration gas turbine system: Hot End Simulation Rig  

DOE Green Energy (OSTI)

This Hot End Simulation Rig (HESR) was an integral part of the overall Solar/METC program chartered to prove the technical, economic, an environmental feasibility of a coal-fueled gas turbine, for cogeneration applications. The program was to culminate in a test of a Solar Centaur Type H engine system operated on coal slurry fuel throughput the engine design operating range. This particular activity was designed to verify the performance of the Centaur Type H engine hot section materials in a coal-fired environment varying the amounts of alkali, ash, and sulfur in the coal to assess the material corrosion. Success in the program was dependent upon the satisfactory resolution of several key issues. Included was the control of hot end corrosion and erosion, necessary to ensure adequate operating life. The Hot End Simulation Rig addressed this important issue by exposing currently used hot section turbine alloys, alternate alloys, and commercially available advanced protective coating systems to a representative coal-fueled environment at turbine inlet temperatures typical of Solar`s Centaur Type H. Turbine hot end components which would experience material degradation include the transition duct from the combustor outlet to the turbine inlet, the shroud, nozzles, and blades. A ceramic candle filter vessel was included in the system as the particulate removal device for the HESR. In addition to turbine material testing, the candle material was exposed and evaluated. Long-term testing was intended to sufficiently characterize the performance of these materials for the turbine.

Galica, M.A.

1994-02-01T23:59:59.000Z

270

Liquid natural gas as a transportation fuel in the heavy trucking industry. Second quarterly progress report, [October 1, 1994-- December 30, 1994  

DOE Green Energy (OSTI)

Emphasis of this project focuses on LNG research issues in use of liquefied natural as a transportation fuel in heavy trucking industry. These issues maybe categorized as: task 1--direct diesel replacement with LNG fuel; and task 2--short and long term storage. Accomplishments for these tasks are discussed. Task 1 consists of atomization, fundamentals of direct replacement, and distribution of emissions. Task 2 includes modified adsorbents, vent gas, and LNG storage at moderate conditions.

Sutton, W.H.

1994-12-01T23:59:59.000Z

271

EPRI Ergonomics Handbook for the Electric Power Industry: Ergonomic Interventions for Plant Operators and Mechanics in Fossil-Fueled Generating Stations  

Science Conference Proceedings (OSTI)

The EPRI Occupational Health and Safety (OHS) Committee Research Program has provided ergonomic information to the electric energy industry workforce since 1999. This is the sixth EPRI ergonomics handbook; it specifically focuses on tasks performed by plant operators and mechanics working in fossil-fueled generating stations and also addresses some tasks performed by steam services technicians. Fossil-fueled generating station operational and mechanical work is physically strenuous and can expose workers...

2008-12-15T23:59:59.000Z

272

Dairy Industry: Industry Brief  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) Industry Brief provides an overview of the U.S. dairy industry and ways in which electric-powered processes and technologies can be used in milk production and processing. Because of the different processes involved, the characteristics of energy consumption at milk production and processing facilities vary by facility. Most energy used in milk production is in the form of diesel fuel, followed by electricity and then by petroleum products such as gasoline an...

2011-03-30T23:59:59.000Z

273

California Industrial Energy Efficiency Potential  

E-Print Network (OSTI)

The Potential for Energy Efficiency. Prepared for The EnergyIndustrial Sector Energy Efficiency Potential Study - DraftIndustrial Energy Efficiency Market Characterization Study.

Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; Rafael Friedmann; Rufo, Mike

2005-01-01T23:59:59.000Z

274

Sector X  

NLE Websites -- All DOE Office Websites (Extended Search)

X X If there is an emergency at ETTP requiring evacuation, Sector X reports to the shelter at: Oak Ridge High School 127 Providence Road Oak Ridge, TN 37830 Take most direct route to northbound Bethel Valley Road toward Oak Ridge. Turn left onto Illinois Avenue (Highway 62). Turn right onto Oak Ridge Turnpike and turn left to Oak Ridge High School. If there is an emergency at ORNL requiring evacuation, Sector X reports to the shelter at: Karns High School 2710 Byington Solway Road Knoxville, TN 37931 Take most direct route to northbound Bethel Valley Road toward Knoxville. Then take a left at Highway 62 (Oak Ridge Highway) eastbound to Knoxville. Take a right onto State Route 131 (Byington Beaver Ridge) to Karns High School. If there is an emergency at Y-12 requiring evacuation, Sector X reports to the shelter at:

275

Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector  

E-Print Network (OSTI)

energy savings with discounts rates 10%, 20% and 30% in the U.S. iron and steel industryenergy savings with discounts rates 10%, 20% and 30% in the U.S. iron and steel industry.

Xu, T.T.

2011-01-01T23:59:59.000Z

276

Industrial Retrofits are Possible  

E-Print Network (OSTI)

Ontario is the industrial heartland of Canada and more than 80% of its energy comes from Canadian sources with the remainder from the neighbouring U.S. states. Because of the ever increasing demand for energy relating to increased economic activity, the provincial government's major energy priority is efficiency. In April of 1987, the provincial government initiated a program to assist industrial energy users to reduce their energy usage. This program was designed to concentrate on an in-depth analysis of the complete operations of industrial plants with the analyses being performed by specialist, private sector, engineering consultants. The program is in 3 phases providing an Ontario industrial plant with an Energy Analysis, a Feasibility Analysis Grant and a Project Engineering Design Grant. In this presentation, the author will outline the results of the program to date and will attempt to share with the audience the individual case experiences. Since the program's start, the Ontario Ministry of Energy has completed over 320 energy analyses of industrial plants which had combined energy bills of over $420 million. The potential annual energy savings identified were over $40 million or 9.51%. Electricity and natural gas are the major fuels used by Ontario industries and our surveys to date have shown savings of 6% in electricity and 11% in natural gas. Over the first two years of the program, individual plants have or are intending to implement more than half of the energy analysis recommendations.

Stobart, E. W.

1990-06-01T23:59:59.000Z

277

Sipping fuel and saving lives: increasing fuel economy withoutsacrificing safety  

SciTech Connect

The public, automakers, and policymakers have long worried about trade-offs between increased fuel economy in motor vehicles and reduced safety. The conclusion of a broad group of experts on safety and fuel economy in the auto sector is that no trade-off is required. There are a wide variety of technologies and approaches available to advance vehicle fuel economy that have no effect on vehicle safety. Conversely, there are many technologies and approaches available to advance vehicle safety that are not detrimental to vehicle fuel economy. Congress is considering new policies to increase the fuel economy of new automobiles in order to reduce oil dependence and reduce greenhouse gas emissions. The findings reported here offer reassurance on an important dimension of that work: It is possible to significantly increase the fuel economy of motor vehicles without compromising their safety. Automobiles on the road today demonstrate that higher fuel economy and greater safety can co-exist. Some of the safest vehicles have higher fuel economy, while some of the least safe vehicles driven today--heavy, large trucks and SUVs--have the lowest fuel economy. At an October 3, 2006 workshop, leading researchers from national laboratories, academia, auto manufacturers, insurance research industry, consumer and environmental groups, material supply industries, and the federal government agreed that vehicles could be designed to simultaneously improve safety and fuel economy. The real question is not whether we can realize this goal, but the best path to get there. The experts' studies reveal important new conclusions about fuel economy and safety, including: (1) Vehicle fuel economy can be increased without affecting safety, and vice versa; (2) Reducing the weight and height of the heaviest SUVs and pickup trucks will simultaneously increase both their fuel economy and overall safety; and (3) Advanced materials can decouple size from mass, creating important new possibilities for increasing both fuel economy and safety without compromising functionality.

Gordon, Deborah; Greene, David L.; Ross, Marc H.; Wenzel, Tom P.

2007-06-11T23:59:59.000Z

278

Checklist for transition to new highway fuel(s).  

DOE Green Energy (OSTI)

Transportation is vital to the U.S. economy and society. As such, U.S. Presidents have repeatedly stated that the nation needs to reduce dependence on petroleum, especially for the highway transportation sector. Throughout history, highway transportation fuel transitions have been completed successfully both in United States and abroad. Other attempts have failed, as described in Appendix A: Historical Highway Fuel Transitions. Planning for a transition is critical because the changes can affect our nation's ability to compete in the world market. A transition will take many years to complete. While it is tempting to make quick decisions about the new fuel(s) of choice, it is preferable and necessary to analyze all the pertinent criteria to ensure that correct decisions are made. Doing so will reduce the number of changes in highway fuel(s). Obviously, changes may become necessary because of occurrences such as significant technology breakthroughs or major world events. With any and all of the possible transitions to new fuel(s), the total replacement of gasoline and diesel fuels is not expected. These conventional fuels are envisioned to coexist with the new fuel(s) for decades, while the revised fuel and vehicle infrastructures are implemented. The transition process must analyze the needs of the primary 'players,' which consist of the customers, the government, the fuel industry, and the automotive industry. To maximize the probability of future successes, the prime considerations of these groups must be addressed. Section 2 presents a succinct outline of the Checklist. Section 3 provides a brief discussion about the groupings on the Checklist.

Risch, C.; Santini, D.J. (Energy Systems)

2011-12-15T23:59:59.000Z

279

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

280

The National Energy Modeling System: An Overview 2000 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing industries, subject to delivered prices of energy and macroeconomic variables representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to the electricity grid. The IDM structure is shown in Figure 7. industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing industries, subject to delivered prices of energy and macroeconomic variables representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to the electricity grid. The IDM structure is shown in Figure 7. Figure 7. Industrial Demand Module Structure Industrial energy demand is projected as a combination of “bottom up” characterizations of the energy-using technology and “top down” econometric estimates of behavior. The influence of energy prices on industrial energy consumption is modeled in terms of the efficiency of use of existing capital, the efficiency of new capital acquisitions, and the mix of fuels utilized, given existing capital stocks. Energy conservation from technological change is represented over time by trend-based “technology possibility curves.” These curves represent the aggregate efficiency of all new technologies that are likely to penetrate the future markets as well as the aggregate improvement in efficiency of 1994 technology.

Note: This page contains sample records for the topic "industrial sector fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Sector 7  

NLE Websites -- All DOE Office Websites (Extended Search)

: News : News Sector 7 calendar of events. APS News APS Monthly meeting slides What's new at the APS Sector 7? 2013 news 2012 news 2011 news 2010 news 2009 news 2008 news 2007 news 2006 news 2005 news 2004 news 2003 news 2002 news 2001 news 2013 News from APS Sector 7 May 2013: Ruben Reininger et al. recently published an article on the optical design of the SPX Imaging and Microscopy beamline (SPXIM). The details can be found on the RSI web site here. A new web page is now available to guide 7-BM users. See the official 7-BM web page for more details. 2012 News from APS Sector 7 August 2012: Jin Wang gave a talk on August 29, 2012 entitled "The APS 7-BM is Open for Business, Officially!" at the August APS Monthly Operation Meeting. On August 1, Alan Kastengren joined the X-ray Science Division to operate the 7-BM beamline. Alan has been involved in the construction

282

Advanced coal-fueled industrial cogeneration gas turbine system particle removal system development  

SciTech Connect

Solar Turbines developed a direct coal-fueled turbine system (DCFT) and tested each component in subscale facilities and the combustion system was tested at full-scale. The combustion system was comprised of a two-stage slagging combustor with an impact separator between the two combustors. Greater than 90 percent of the native ash in the coal was removed as liquid slag with this system. In the first combustor, coal water slurry mixture (CWM) was injected into a combustion chamber which was operated loan to suppress NO{sub x} formation. The slurry was introduced through four fuel injectors that created a toroidal vortex because of the combustor geometry and angle of orientation of the injectors. The liquid slag that was formed was directed downward toward an impaction plate made of a refractory material. Sixty to seventy percent of the coal-borne ash was collected in this fashion. An impact separator was used to remove additional slag that had escaped the primary combustor. The combined particulate collection efficiency from both combustors was above 95 percent. Unfortunately, a great deal of the original sulfur from the coal still remained in the gas stream and needed to be separated. To accomplish this, dolomite or hydrated lime were injected in the secondary combustor to react with the sulfur dioxide and form calcium sulfite and sulfates. This solution for the sulfur problem increased the dust concentrations to as much as 6000 ppmw. A downstream particulate control system was required, and one that could operate at 150 psia, 1850-1900{degrees}F and with low pressure drop. Solar designed and tested a particulate rejection system to remove essentially all particulate from the high temperature, high pressure gas stream. A thorough research and development program was aimed at identifying candidate technologies and testing them with Solar`s coal-fired system. This topical report summarizes these activities over a period beginning in 1987 and ending in 1992.

Stephenson, M.

1994-03-01T23:59:59.000Z

283

Capital requirements for energy sector: capital market access. The shift to successful efforts accounting: preliminary review of probable effects on oil and gas industry participants  

SciTech Connect

This report provides an initial assessment of the effects that the adoption of uniform successful efforts accounting might have on access to capital markets and investment behavior in the oil and gas industry. It also proposes a plan of interviews and analysis which would permit informed revision and expansion of that initial assessment. Section II presents a discussion of the origins and current status of the controversy between advocates of successful efforts and full cost accounting. An important underpinning of the argument in favor of uniform successful efforts accounting is the premise that all industry participants are fundamentally comparable and, thus, should be subject to uniform accounting treatment. Section III questions this premise by examining the various classes of industry participants. Section IV presents data on the roles of those classes of industry participants, paying particular attention to the importance of the independents in the exploration phase of the business. Section V discusses the effects which a shift to uniform successful efforts accounting might have on the various industry participants. A discussion of our initial conclusions are presented in Section VI. Section VII reviews a plan of interviews and analysis which would permit a more informed evaluation of policy options. Finally, Section VIII presents a series of policy alternatives.

Bennett, V.

1978-02-01T23:59:59.000Z

284

Microsoft Word - 201302_Fuels_Industry_Newsletter_Feb_2013_v2.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Linde licenses gasification technology to Finish company" Linde licenses gasification technology to Finish company" By Erin Voegele, Biomass Magazine, January 28, 2013 Germany-based Linde Engineering Dresden GmbH has signed an agreement to license its Carbo- V biomass gasification technology to Forest BtL Oy, a Finish biofuel developer. According to information released by Linde, the Carbo-V technology will be implemented at a new biomass- to-liquid facility in Kemi, Finland. The transaction represents the first licensing agreement for the technology, which Linde acquired from Choren Industries GmbH in Feb. 2012. The process is a multi-stage biomass gasification process. Information published by Linde notes that during the first phase, a low-temperature gasifier converts biomass into biocoke and carbonization gas. The second stage involves partial

285

Powerplant and Industrial Fuel Use Act, PL 95-620: legislative history, 1978  

SciTech Connect

Hearings continued on H.R. 6831, the President's proposed National Energy Act. Witnesses aired views on the impacts that industries would experience on converting boilers to coal. The final hearing of the three-week session was held on June 1, 1977. The June 1 session took a step back from the details of the many components of the President's plan and took a broad and longer term view of the plan as a whole. The hearings elicited substantial criticism of the many costs and burdens that would accompany the President's program. This is largely because the costs of conservation and conversion to coal precede the benefits by several years. A summary of the National Energy Plan is presented. (MCW)

1979-06-01T23:59:59.000Z

286

Biogas Technologies and Integration with Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL BIOGAS WORKSHOP NREL BIOGAS WORKSHOP BIOGAS TECHNOLOGIES AND INTEGRATION WITH FUEL CELLS Ian Handley Ros Roca Envirotec USA American Biogas Council SUMMARY * Introduction and Background * Anaerobic Digestion * Biogas Utilization * Biogas Upgrading Technology * Biogas Specification * Biogas to Fuel Cell * Conclusions Promoting the use of Biogas and Anaerobic Digestion O 149 Members from the U.S., Germany, Italy, Canada and the UK O All Industry Sectors Represented Key Industry Goals: O Promote biogas markets, technologies and infrastructure O Achieve policy parity O Promote as a best practice for environmental stewardship and greenhouse gas reduction www.americanbiogascouncil.org Products and technologies for environmental protection Pneumatic waste

287

OpenEI - Industrial  

Open Energy Info (EERE)

renewable energy consumption (in quadrillion btu) for electricity generation in the United States by energy use sector (commercial, industrial and electric power) and by...

288

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network (OSTI)

in the agriculture sector. Electricity Industry Agriculture$2008/tonne CO2e) Electricity Industry Agriculture Buildingssector’s (i.e. , electricity, industry, etc. ) reference

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

289

Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications  

SciTech Connect

The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

Joseph Rabovitser

2009-06-30T23:59:59.000Z

290

Expanding the Use of Biogas with Fuel Cell Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

eere.energy.gov eere.energy.gov Biogas with Fuel Cells Workshop National Renewable Energy Laboratory Golden, Colorado Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 6/11/2012 Expanding the Use of Biogas with Fuel Cell Technologies U.S. Energy Consumption U.S. Primary Energy Consumption by Source and Sector Renewable Electric Power Energy 8% Coal 21% Nuclear Energy 9% Industrial Residential & Commercial Petroleum 37% Natural Gas 25% Transportation Total U.S. Energy = 98 Quadrillion Btu/yr Source: Energy Information Administration, Annual Energy Review 2010, Table 1.3 Fuel Cells can apply to diverse sectors Share of Energy Consumed by Major Sectors of the Economy, 2010 Electric Power 29% Residential 16% Commercial 13%

291

Crop production without fossil fuel.  

E-Print Network (OSTI)

??With diminishing fossil fuel reserves and concerns about global warming, the agricultural sector needs to reduce its use of fossil fuels. The objective of this… (more)

Ahlgren, Serina

2009-01-01T23:59:59.000Z

292

Fuel Cells as an Emerging Technology  

E-Print Network (OSTI)

The United States Department of Energy (DOE) has been directing a fuel cell research and development program since 1976. The intention of this program is to pursue improvements in utilization of domestic natural gas, coal, and alternate fuels to produce electric power as a part of the National Energy Plan. The goal of this program is to develop the technology base required to enable private sector commercialization of this new energy option for power generation to take place. Under sponsorship of DOE and other Government and private agencies, fuel cell technology has evolved from limited applications for alkaline fuel cells in the space program of the 1960's to large multikilowatt and multimegawatt power plants capable of utilization by the industrial sector in many types of applications. This paper will briefly examine the technical progress and status of this technology.

Jewell, D. M.

1986-06-01T23:59:59.000Z

293

service sector | OpenEI  

Open Energy Info (EERE)

service sector service sector Dataset Summary Description The energy consumption data consists of five spreadsheets: "overall data tables" plus energy consumption data for each of the following sectors: transport, domestic, industrial and service. Each of the five spreadsheets contains a page of commentary and interpretation. Source UK Department of Energy and Climate Change (DECC) Date Released July 31st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption coal Coke domestic Electricity Electricity Consumption energy data Industrial Natural Gas Petroleum service sector transportation UK Data application/zip icon Five Excel spreadsheets with UK Energy Consumption data (zip, 2.6 MiB) Quality Metrics Level of Review Peer Reviewed Comment The data in ECUK are classified as National Statistics

294

Emerging Industrial Innovations for New Energy Efficient Technologies  

E-Print Network (OSTI)

The discussion surrounding industrial efficiency gains typically focuses on industry’s own use of energy and the set of technologies that might cost-effectively reduce that consumption. Often overlooked is industry’s role as a primary developer of the materials and technologies that can generate large efficiency gains within all other sectors of the economy. For example, its role in developing a new generation of fuel cell vehicles, “on demand” manufacturing capabilities, or new plastics that double as integrated photovoltaic systems may play an even larger role in the more productive use of our energy resources. This paper explores recent work on industrial innovation, often involving public-private partnerships, and provides a context to understand the role of innovation. It highlights a number of emerging technologies that may foster an even greater energy savings than might be apparent from looking at industry’s own energy use patterns alone.

Laitner, J. A.

2007-01-01T23:59:59.000Z

295

Customizable Fuel Processor Technology Benefits Fuel Cell ...  

Customizable Fuel Processor Technology Benefits Fuel Cell Power Industry (ANL-IN-00-030) Argonne National Laboratory. Contact ANL About This ...

296

Industry Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

idatech.com idatech.com info@idatech.com 63065 NE 18 th Street Bend, OR 97701 541.383.3390 Industry Perspective Biogas and Fuel Cell Workshop National Renewable Energy Laboratory June 11 - 13, 2012 Mike Hicks Chairman of the Board of Directors, FCHEA Treasurer of the Board of Directors, FCS&E Engineering Manager, Technology Development & Integration, IdaTech Outline 1. Critical Factors * Fuel Purity * Fuel Cost 2. Natural Gas - The Wild Card & Competition 3. IdaTech's Experience Implementing Biofuel Critical Factor - Fuel Purity All fuel cell system OEMs have fuel purity specifications * Independent of * Raw materials or feed stocks * Manufacturing process * Depends on * Fuel processor technology * Fuel cell technology - low temp PEM versus SOFC

297

Electricity savings potentials in the residential sector of Bahrain  

SciTech Connect

Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to the peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.

Akbari, H. [Lawrence Berkeley National Lab., CA (United States); Morsy, M.G.; Al-Baharna, N.S. [Univ. of Bahrain, Manama (Bahrain)

1996-08-01T23:59:59.000Z

298

Oak Ridge Industrial Model: an introduction  

SciTech Connect

The Oak Ridge Industrial Model (ORIM) was initially developed for the Energy Information Administration to forecast demand for five types of fuel and electricity by the manufacturing sector in the ten federal regions. Recently, the model has been used by the office of Coal Utilization to forecast market penetration of new technologies which use coal. ORIM divides the national market into about 100,000 submarkets based on region, industry, vintage of capital stock, and characteristic type of energy service. For each of the submarkets, ORIM estimates the probability that a fuel will capture the submarket. Regional forecasts are obtained by summing over the submarkets. The ORIM energy demand forecasts are influenced by energy prices, the fuel use act, tax regulations, and environmental regulations.

Reister, D.B.; Barnes, R.W.; Edmonds, J.A.

1980-01-01T23:59:59.000Z

299

Energy savings by means of fuel cell electrodes in electro-chemical industries. Progress report, August 1-October 31, 1978  

DOE Green Energy (OSTI)

Caustic half cells are described and data reported for tests run to evaluate the technology involved in the operation of air cathodes for the Caustic-Chlorine Industry. The majority of tests were run at 300 ASF in a 23% NaOH electrolyte at 75/sup 0/C with a CO/sub 2/ free air efficiency of 33%. Data are presented for a 7200-h life test which is in operation and represents the state of the art. Runs have been made to identify the limiting current density and air efficiency for the standard RA19 type air cathode. Also presented are tests involving cell temperature, electrode platinum variation and evaluation of several thin, porous, conducting substrates on which the catalyst layer is deposited during electrode fabrication. Technical data on advisory meetings and experimental cell design for hydrogen anode evaluation in the electrowinning of zinc were reported. Preliminary results demonstrate a savings of over 0.6 kWh/lb of zinc for 3 to 4 hours runs employing pure hydrogen as fuel and a 0.33 mg/cm/sup 2/ Pt anode. In the area of metal-water-air batteries a consultatory meeting was held, and the initial data obtained at Lawrence Livermore Laboratory for a standard Prototech Company air cathode in an Aluminum-Air Battery were reported to be most encouraging.

Allen, R.J.; Juda, W.; Lindstrom, R.W.

1978-12-01T23:59:59.000Z

300

List of Fuel Cells Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 1021 Fuel Cells Incentives. CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1021) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 2003 Climate Change Fuel Cell Buy-Down Program (Federal) Federal Grant Program United States Commercial Nonprofit Schools Local Government State Government Fed. Government Fuel Cells No Abatement of Air Pollution: Control of Carbon Dioxide Emissions/Carbon Dioxide Budget Trading Program (Connecticut) Environmental Regulations Connecticut Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential

Note: This page contains sample records for the topic "industrial sector fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

List of Renewable Fuels Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 97 Renewable Fuels Incentives. CSV (rows 1 - 97) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Alabama Commercial Industrial Institutional Building Insulation Doors Energy Mgmt. Systems/Building Controls Lighting Lighting Controls/Sensors Steam-system upgrades Water Heaters Windows Biodiesel Biomass CHP/Cogeneration Ethanol Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Photovoltaics Renewable Fuels Solar Water Heat Commercial Refrigeration Equipment Natural Gas Yes Alternative Energy Personal Property Tax Exemption (Michigan) Property Tax Incentive Michigan Commercial

302

Culture-independent analysis of bacterial fuel contamination provides insight into the level of concordance with the standard industry practice of aerobis cultivation.  

SciTech Connect

Bacterial diversity in contaminated fuels has not been systematically investigated using cultivation-independent methods. The fuel industry relies on phenotypic cultivation-based contaminant identification, which may lack accuracy and neglect difficult-to-culture taxa. By the use of industry practice aerobic cultivation, 16S rRNA gene sequencing, and strain genotyping, a collection of 152 unique contaminant isolates from 54 fuel samples was assembled, and a dominance of Pseudomonas (21%), Burkholderia (7%), and Bacillus (7%) was demonstrated. Denaturing gradient gel electrophoresis (DGGE) of 15 samples revealed Proteobacteria and Firmicutes to be the most abundant phyla. When 16S rRNA V6 gene pyrosequencing of four selected fuel samples (indicated by 'JW') was performed, Betaproteobacteria (42.8%) and Gammaproteobacteria (30.6%) formed the largest proportion of reads; the most abundant genera were Marinobacter (15.4%; JW57), Achromobacter (41.6%; JW63), Burkholderia (80.7%; JW76), and Halomonas (66.2%; JW78), all of which were also observed by DGGE. However, the Clostridia (38.5%) and Deltaproteobacteria (11.1%) identified by pyrosequencing in sample JW57 were not observed by DGGE or aerobic culture. Genotyping revealed three instances where identical strains were found: (i) a Pseudomonas sp. strain recovered from 2 different diesel fuel tanks at a single industrial site; (ii) a Mangroveibacter sp. strain isolated from 3 biodiesel tanks at a single refinery site; and (iii) a Burkholderia vietnamiensis strain present in two unrelated automotive diesel samples. Overall, aerobic cultivation of fuel contaminants recovered isolates broadly representative of the phyla and classes present but lacked accuracy by overrepresenting members of certain groups such as Pseudomonas.

White, J.; Gilbert, J. A.; Hill, G.; Hill, E.; Huse, S. M.; Weightman, A. J.; Mahenthiralingam, E. (CLS-CI); (Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University); (ECHA Microbiology Ltd.); (Josephine Bay Paul Centre for Comparative Molecular Biology and Evolution)

2011-07-01T23:59:59.000Z

303

Sector 7  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Programs Research Programs Sector 7's research program exploits the brilliance of the APS undulator radiation to perform material research studies with high spatial and temporal resolution. Microbeam studies are made using x-ray beam sizes on the submicron-scale, and time-resolved diffraction measurements are carried out with picosecond resolution. Sector 7's undulator line has experimental enclosures dedicated to both time-resolved and microbeam research. In one of these enclosures (7ID-D), a femtosecond laser facility is set up for ultrafast diffraction and spectroscopy studies in a pump-probe geometry. The 7ID-B hutch is a white beam capable station used for time-resolved phase-contrast imaging and beamline optics development. A third enclosure (7ID-C) is instrumented for high-resolution diffraction studies with a Huber 6-circle diffractometer. The instrument is ideal for thin-film and interface studies, including the recently developed Coherent Bragg Rod Analysis (COBRA) technique. The fs-laser has recently been delivered to 7ID-C so time-resolved laser pump-x-ray probe can be performed in 7ID-C since March 2007. An x-ray streak camera is also being commissioned in 7ID-C. 7ID-C is equipped for microdiffraction studies with a small Huber 4-cicle diffractometer used with zone-plate optics.

304

Industrial sector energy conservation programs in the People`s Republic of China during the seventh five-year plan (1986--1990)  

Science Conference Proceedings (OSTI)

The impetus at the national level to invest in energy conservation is quite strong and has long been reflected not only in official pronouncements, but also in the investments and organizational activities of the Chinese government. In the early 1980s the central government began a program of direct investments in industrial energy conservation that continues to the present. In addition, concurrently established governmental and quasi-governmental agencies have pursued conservation through administrative and educational measures. In Section 2 of this paper the authors outline the policies and institutions that supported China`s program of energy conservation investments in the Sixth and Seventh Five-Year Plans (FYPs) (1981--1985 and 1986--1990). In Section 3 they describe examples of the types of conservation projects pursued in four industrial subsectors: ferrous metals manufacturing; non-ferrous metals mining and manufacturing; chemicals manufacturing; and building materials manufacturing. Section 4 presents a simple methodology for comparing the costs of energy conservation to those of energy supply. Further discussion points out the applicability and limitations of this methodology to State Planning Commission published statistical material on the overall results of energy conservation investments. Though problematic, such analysis indicates that energy conservation investments were probably substantially cheaper than investments in equivalent energy supply would have been. They end with a discussion of some of the difficulties encountered in carrying out the conservation investment programs.

Liu Zhiping [State Planning Commission, Beijing (China). Energy Research Inst.; Sinton, J.E.; Yang Fuqiang; Levine, M.D.; Ting, M.K. [Lawrence Berkeley Lab., CA (United States)

1994-09-01T23:59:59.000Z

305

Fuel  

E-Print Network (OSTI)

heavy-water-moderated, light-water-moderated and liquid-metal cooled fast breeder reactors fueled with natural or low-enriched uranium and containing thorium mixed with the uranium or in separate target channels. U-232 decays with a 69-year half-life through 1.9-year half-life Th-228 to Tl-208, which emits a 2.6 MeV gamma ray upon decay. We find that pressurized light-water-reactors fueled with LEU-thorium fuel at high burnup (70 MWd/kg) produce U-233 with U-232 contamination levels of about 0.4 percent. At this contamination level, a 5 kg sphere of U-233 would produce a gammaray dose rate of 13 and 38 rem/hr at 1 meter one and ten years after chemical purification respectively. The associated plutonium contains 7.5 percent of the undesirable heat-generating 88-year half-life isotope Pu-238. However, just as it is possible to produce weapon-grade plutonium in low-burnup fuel, it is also practical to use heavy-water reactors to produce U-233 containing only a few ppm of U-232 if the thorium is segregated in “target ” channels and discharged a few times more frequently than the natural-uranium “driver ” fuel. The dose rate from a 5-kg solid sphere of U-233 containing 5 ppm U-232 could be reduced by a further factor of 30, to about 2 mrem/hr, with a close-fitting lead sphere weighing about 100 kg. Thus the proliferation resistance of thorium fuel cycles depends very much upon how they are implemented. The original version of this manuscript was received by Science & Global Security on

Jungmin Kang A

2001-01-01T23:59:59.000Z

306

Global Climate Change and the Unique Challenges Posed by the Transportation Sector  

DOE Green Energy (OSTI)

Addressing the challenges posed by global climate change will eventually require the active participation of all industrial sectors and consumers on the planet. To date, however, most efforts to address climate change have focused on only a few sectors of the economy (e.g., refineries and fossil-fired electric power plants) and a handful of large industrialized nations. While useful as a starting point, these efforts must be expanded to include other sectors of the economy and other nations. The transportation sector presents some unique challenges, with its nearly exclusive dependence on petroleum based products as a fuel source coupled with internal combustion engines as the prime mover. Reducing carbon emissions from transportation systems is unlikely to be solely accomplished by traditional climate mitigation policies that place a price on carbon. Our research shows that price signals alone are unlikely to fundamentally alter the demand for energy services or to transform the way energy services are provided in the transportation sector. We believe that a technological revolution will be necessary to accomplish the significant reduction of greenhouse gas emissions from the transportation sector.

Dooley, J.J.; Geffen, C.A.; Edmonds, J.A.

2002-08-26T23:59:59.000Z

307

Thin film battery/fuel cell power generation system. Topical report covering Task 5: the design, cost and benefit of an industrial cogeneration system, using a high-temperature solid-oxide-electrolyte (HTSOE) fuel-cell generator  

DOE Green Energy (OSTI)

A literature search and review of the studies analyzing the relationship between thermal and electrical energy demand for various industries and applications resulted in several applications affording reasonable correlation to the thermal and electrical output of the HTSOE fuel cell. One of the best matches was in the aluminum industry, specifically, the Reynolds Aluminum Production Complex near Corpus Christi, Texas. Therefore, a preliminary design of three variations of a cogeneration system for this plant was effected. The designs were not optimized, nor were alternate methods of providing energy compared with the HTSOE cogeneration systems. The designs were developed to the extent necessary to determine technical practicality and economic viability, when compared with alternate conventional fuel (gas and electric) prices in the year 1990.

Not Available

1981-02-25T23:59:59.000Z

308

Assessment of costs and benefits of flexible and alternative fuel use in the U.S. transportation sector. Technical report fourteen: Market potential and impacts of alternative fuel use in light-duty vehicles -- A 2000/2010 analysis  

DOE Green Energy (OSTI)

In this report, estimates are provided of the potential, by 2010, to displace conventional light-duty vehicle motor fuels with alternative fuels--compressed natural gas (CNG), liquefied petroleum gas (LPG), methanol from natural gas, ethanol from grain and from cellulosic feedstocks, and electricity--and with replacement fuels such as oxygenates added to gasoline. The 2010 estimates include the motor fuel displacement resulting both from government programs (including the Clean Air Act and EPACT) and from potential market forces. This report also provides an estimate of motor fuel displacement by replacement and alterative fuels in the year 2000. However, in contrast to the 2010 estimates, the year 2000 estimate is restricted to an accounting of the effects of existing programs and regulations. 27 figs., 108 tabs.

NONE

1996-01-01T23:59:59.000Z

309

The Misuse of Spreadsheets in the Nuclear Fuel Industry: The Falsification of Safety Critical Data Using Spreadsheets at British Nuclear Fuels Limited BNFL  

Science Conference Proceedings (OSTI)

This paper considers the management, technological and human factor issues that led to the BNFL fuel rod spreadsheet data falsification incident in 1999. BNFL discovered in 1999 that some data supporting quality assurance and safety processes had been ... Keywords: British Nuclear Fuels Limited BNFL, Falsifying Data, Fraud, Mangerial Failings, Spreadsheet Misuse

Simon Thorne

2013-07-01T23:59:59.000Z

310

Sector 7  

NLE Websites -- All DOE Office Websites (Extended Search)

User Information & Getting Beamtime User Information & Getting Beamtime There are three ways to request beamtime to perform an experiment on APS-7ID. One can request beam time as an APS General User, as an APS Partner User, or one can contact a staff member of Sector 7 to work collaboratively with them using a small amount of staff time to gather preliminary data. 80% of the available beamtime on 7ID is given to General and Partner Users, while 20% is reserved for staff use. Beam time is allocated and announced by email shortly before the start of an experimental run. In October 2002, beamline 7ID welcomed its first APS General Users (GU). To gain access to 7ID, General or Partner Users are required to submit a proposal to the APS GU Website by the specified deadline. Sucessful proposals will be scheduled for the next cycle following the proposal deadline. There are three proposal cycles per year with deadlines about two months before the start of a run. The deadlines and General User forms are available on the web through the APS General User Web site. Specific instructions for new General Users are available on the site. These instructions can be helpful also for new APS Users in general.

311

Sector 7  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview and History Overview and History Sector 7 consists of two APS beamlines: 7-ID: an insertion device beamline based on an APS Type-A Undulator 7-BM: a bend magnet beam line for time-resolved radiography (currently being commissioned) Overview of 7-ID 7-ID comprises four large experimental enclosures designated A, B, C, and D. In 2004, a laser enclosure was also added (7ID-E). Enclosure 7-ID-A is the first optics enclosure and houses a polished Be window, an empty x-ray filter unit, a pair of white beam slits, a water-cooled double crystal diamond monochromator (Kohzu HLD4), and a P4 mode shutter. The beamline vertical offset is 35 mm. Enclosure 7-ID-B is a white-, or monochromatic-beam experimental enclosure. It is equipped with two precision motorized table for alignment and positioning of experimental equipment. This station is used for white-beam imaging or microdiffraction experiments.

312

Fuel.vp  

Gasoline and Diesel Fuel Update (EIA)

Table F9: Residual Fuel Oil Consumption Estimates, 2011 State Commercial Industrial Transportation Electric Power Total Commercial Industrial Transportation Electric Power Total...

313

EIA Electric Industry Data Collection  

U.S. Energy Information Administration (EIA)

Steam Production EIA Electric Industry Data Collection Residential Industrial ... Monthly data on cost and quality of fuels delivered to cost-of-service plants

314

Green Energy Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Energy Industries Inc Jump to: navigation, search Name Green Energy Industries Inc Sector Marine and Hydrokinetic Website http:http:www.gecorpusa.co Region United States...

315

Kishimura Industry Co | Open Energy Information  

Open Energy Info (EERE)

Kishimura Industry Co Jump to: navigation, search Name Kishimura Industry Co Place Kanagawa-Ken, Japan Sector Solar, Vehicles Product Developer of solar power systems and...

316

Millennium Energy Industries | Open Energy Information  

Open Energy Info (EERE)

Industries Jump to: navigation, search Name Millennium Energy Industries Place Jordan Zip 1182 Sector Solar Product Jordan-based solar energy firm focused in MENA region....

317

California Solar Energy Industries Association | Open Energy...  

Open Energy Info (EERE)

Name California Solar Energy Industries Association Place Rio Vista, California Zip 94571 Sector Solar Product California Solar Energy Industries Association is a trade group...

318

Danish Wind Industry Association | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Danish Wind Industry Association Place Copenhagen V, Denmark Zip DK-1552 Sector Wind energy Product The Danish Wind Industry Association (DWIA) is...

319

CRV industrial Ltda | Open Energy Information  

Open Energy Info (EERE)

CRV industrial Ltda Place Carmo do Rio Verde, Goias, Brazil Sector Biomass Product Ethanol and biomass energy producer References CRV industrial Ltda1 LinkedIn Connections...

320

The National Energy Modeling System: An Overview 1998 - Industrial...  

Gasoline and Diesel Fuel Update (EIA)

representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to electric...

Note: This page contains sample records for the topic "industrial sector fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report, May 10, 1994--December 30, 1995  

DOE Green Energy (OSTI)

This report encompasses the first year of a proposed three year project with emphasis focused on LNG research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (i) direct diesel replacement with LNG fuel, and (ii) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. Since this work was for fundamental research in a number of related areas to the use of LNG as a transportation fuel for long haul trucking, many of those results have appeared in numerous refereed journal and conference papers, and significant graduate training experiences (including at least one M.S. thesis and one Ph.D. dissertation) in the first year of this project. In addition, a potential new utilization of LNG fuel has been found, as a part of this work on the fundamental nature of adsorption of LNG vent gases in higher hydrocarbons; follow on research for this and other related applications and transfer of technology are proceeding at this time.

Sutton, W.H.

1995-12-31T23:59:59.000Z

322

Summary report : universal fuel processor.  

DOE Green Energy (OSTI)

The United States produces only about 1/3 of the more than 20 million barrels of petroleum that it consumes daily. Oil imports into the country are roughly equivalent to the amount consumed in the transportation sector. Hence the nation in general, and the transportation sector in particular, is vulnerable to supply disruptions and price shocks. The situation is anticipated to worsen as the competition for limited global supplies increases and oil-rich nations become increasingly willing to manipulate the markets for this resource as a means to achieve political ends. The goal of this project was the development and improvement of technologies and the knowledge base necessary to produce and qualify a universal fuel from diverse feedstocks readily available in North America and elsewhere (e.g. petroleum, natural gas, coal, biomass) as a prudent and positive step towards mitigating this vulnerability. Three major focus areas, feedstock transformation, fuel formulation, and fuel characterization, were identified and each was addressed. The specific activities summarized herein were identified in consultation with industry to set the stage for collaboration. Two activities were undertaken in the area of feedstock transformation. The first activity focused on understanding the chemistry and operation of autothermal reforming, with an emphasis on understanding, and therefore preventing, soot formation. The second activity was focused on improving the economics of oxygen production, particularly for smaller operations, by integrating membrane separations with pressure swing adsorption. In the fuel formulation area, the chemistry of converting small molecules readily produced from syngas directly to fuels was examined. Consistent with the advice from industry, this activity avoided working on improving known approaches, giving it an exploratory flavor. Finally, the fuel characterization task focused on providing a direct and quantifiable comparison of diesel fuel and JP-8.

Coker, Eric Nicholas; Rice, Steven F. (Sandia National Laboratories, Livermore, CA); Kemp, Richard Alan; Stewart, Constantine A.; Miller, James Edward; Cornelius, Christopher James; Staiger, Chad Lynn; Pickett, Lyle M. (Sandia National Laboratories, Livermore, CA)

2008-01-01T23:59:59.000Z

323

Local Option - Industrial Facilities and Development Bonds |...  

Open Energy Info (EERE)

Sector Commercial, Industrial, Institutional, Local Government Eligible Technologies Boilers, Building Insulation, CaulkingWeather-stripping, Central Air conditioners, Chillers,...

324

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

U.S. energy demand U.S. energy demand In the United States, average energy use per person declines from 2010 to 2035 figure data Growth in energy use is linked to population growth through increases in housing, commercial floorspace, transportation, and goods and services. These changes affect not only the level of energy use but also the mix of fuels consumed. Changes in the structure of the economy and in the efficiency of the equipment deployed throughout the economy also have an impact on energy use per capita. The shift in the industrial sector away from energy-intensive manufacturing toward services is one reason for the projected decline in industrial energy intensity (energy use per dollar of GDP), but its impact on energy consumption per capita is less direct (Figure 71). From 1990 to

325

A New, Stochastic, Energy Model of the U.S. is Under Construction: SEDS and Its Industrial Structure  

E-Print Network (OSTI)

"A new energy model for the United States is currently being constructed by staff at five National Laboratories for the Office of Energy Efficiency and Renewable Energy at the Department of Energy. This new model, SEDS (Stochastic Energy Deployment Model), is designed to test the impact of DOE R&D on energy use in the economy. The “stochastic” part of this model will also allow examination of the risks associated with sudden oil shocks, imposition of carbon taxes or trading schemes, and other shocks to the energy economy. SEDS is organized by supply-side and demand-side sectors. The supply-side sectors include electricity, liquid fuels, natural gas, coal, and various renewable energy options. On the demand side, there are the usual suspects: industry, commercial buildings, residential buildings, and two transport sectors, light-duty vehicles and heavy-duty vehicles. The industrial sector is currently modeled as a single sector, using the latest Manufacturing Energy Consumption Survey (MECS) to calibrate energy consumption to end-use energy categories: boilers, process heating, electro-chemical processes, and other process requirements. As with the CIMS model, these process requirements have ancillary requirements – conveyance, motor drive, pumps, fans, and compressors – that all require certain classes of motors. Lighting and HVAC are considered separately from process requirements. The current version of SEDS, called SEDS-Lite, has technology detail in many sectors, but these are quite simple. The intent is to add detail over time: this year, we expect to add a pulp and paper sector and a iron and steel sector, pull these and petroleum refining out of the aggregate industrial sector, and add the non-manufacturing industrial component to the model. In future years, we expect the industrial detail to replicate CIMS. Our simulations with the industrial sector of SEDS-Lite will show how closely it tracks the NEMS forecasts. Other simulations will demonstrate how the stochastic component can be used to show industry"

Roop, J. M.

2009-05-01T23:59:59.000Z

326

Industry Supply Chain Development (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Supply Chain Development (Ohio) Industry Supply Chain Development (Ohio) Industry Supply Chain Development (Ohio) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Retail Supplier Systems Integrator Fuel Distributor Transportation Savings Category Solar Buying & Making Electricity Wind Program Info State Ohio Program Type Grant Program Industry Recruitment/Support Loan Program Provider Ohio Development Services Agency Supply Chain Development programs are focused on targeted industries that have significant growth opportunities for Ohio's existing manufacturing sector from emerging energy resources and technologies. The Office of Energy is currently working on developing the supply chains for the wind,

327

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Mexico Incentives and Laws Mexico Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Biofuels Strategic Plan Archived: 03/31/2013 The Green Jobs Cabinet prepared a statewide strategic plan for clean energy and clean technology economic development and job creation, to include biofuels. The New Mexico Department of Agriculture must work with the biofuels industry, state universities, national laboratories, and industry groups to evaluate the economic opportunities of biofuel production in the state. Toward a New Mexico State Plan for Biofuels Leadership, published in May 2010, provides recommendations to grow and develop the biofuels sector

328

Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities  

DOE Green Energy (OSTI)

Fuel cells (FCs) are considered essential future energy technologies by developed and developing economies alike. Several countries, including the United States, Japan, Germany, and South Korea have established publicly funded R&D and market transformation programs to develop viable domestic FC industries for both automotive and non-automotive applications. Important non-automotive applications include large scale and small scale distributed combined heat and electrical power, backup and uninterruptible power, material handling and auxiliary power units. The U.S. FC industry is in the early stages of development, and is working to establish sustainable markets in all these areas. To be successful, manufacturers must reduce costs, improve performance, and overcome market barriers to new technologies. U.S. policies are assisting via research and development, tax credits and government-only and government-assisted procurements. Over the past three years, the industry has made remarkable progress, bringing both stack and system costs down by more than a factor of two while improving durability and efficiency, thanks in part to government support. Today, FCs are still not yet able to compete in these markets without continued policy support. However, continuation or enhancement of current policies, such as the investment tax credit and government procurements, together with continued progress by the industry, appears likely to establish a viable domestic industry within the next decade.

Greene, David L [ORNL; Duleep, K. G. [ICF International; Upreti, Girish [ORNL

2011-06-01T23:59:59.000Z

329

The Economic Development Potential of the Green Sector  

E-Print Network (OSTI)

large potential investment in Green firms. Bank of America’sof the Green industry requires substantial investment inand private investment in financing the Green sector. Key

Ong, Paul M.; Patraporn, Rita Varisa

2006-01-01T23:59:59.000Z

330

Energy Efficiency Services Sector: Workforce Size and Expectations for Growth  

E-Print Network (OSTI)

of Labor Statistics. Energy Efficiency Services Sector:of Energy Engineers 2009a. “Energy Independence and MarketTrends: AEE Survey of the Energy Industry 2009. ” http://

Goldman, Charles

2010-01-01T23:59:59.000Z

331

Renewable Fuels Limited RFL | Open Energy Information  

Open Energy Info (EERE)

RFL Jump to: navigation, search Name Renewable Fuels Limited (RFL) Place York, United Kingdom Zip YO19 6ET Sector Biomass Product Supplies various biomass fuels and offers...

332

Lousiana Green Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

Lousiana Green Fuels LLC Jump to: navigation, search Name Lousiana Green Fuels LLC Place Louisiana Sector Biomass Product Developing a cellulosic biomass-to-ethanol plant in...

333

Clean Custom Fuels Inc | Open Energy Information  

Open Energy Info (EERE)

Custom Fuels Inc Jump to: navigation, search Name Clean Custom Fuels Inc Place Brush Prairie,, Washington State Zip 98606 Sector Biofuels, Biomass Product String representation...

334

Alternative Fuels Group | Open Energy Information  

Open Energy Info (EERE)

Group Place Maryland Sector Renewable Energy Product US-based producer of renewable fuels. References Alternative Fuels Group1 LinkedIn Connections CrunchBase Profile No...

335

AgriFuel Company | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name AgriFuel Company Place Cranford, New Jersey Sector Biofuels Product AgriFuel produces and markets biofuels refined from waste vegetable oil,...

336

Fuel Cell Store Inc | Open Energy Information  

Open Energy Info (EERE)

search Name Fuel Cell Store, Inc Place San Diego, California Zip 92154 Sector Hydro, Hydrogen Product San Diego-based firm selling fuel cell stacks, components, and hydrogen...

337

Sunrise Agri Fuels | Open Energy Information  

Open Energy Info (EERE)

Zip 55310 Sector Biomass Product Manufacturer of Biomass Fuel Pellets for Pellet Burning Stoves. References Sunrise Agri Fuels1 LinkedIn Connections CrunchBase Profile No...

338

Sector 30 - useful links  

NLE Websites -- All DOE Office Websites (Extended Search)

Useful Links Sector 30 Sector Orientation Form HERIX experiment header for lab book MERIX experiment header for lab book Printing from your laptop at the beamline Other IXS sectors...

339

Shrenik Industries | Open Energy Information  

Open Energy Info (EERE)

India Zip 416 109 Sector Wind energy Product Maharashtra-based wind turbine tower manufacturer and subsidiary of the Sanjay Ghodawat Group of Industries. References...

340

Ventower Industries | Open Energy Information  

Open Energy Info (EERE)

Place Monroe, Michigan Zip 48161 Sector Wind energy Product Michigan-based wind turbine tower manufacturer. References Ventower Industries1 LinkedIn Connections CrunchBase...

Note: This page contains sample records for the topic "industrial sector fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Eolica Industrial | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Eolica Industrial Place Sao Paulo, Sao Paulo, Brazil Zip 01020-901 Sector Wind energy Product Brazil based wind turbine steel towers and...

342

Industrial Relations | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

and introduce technologies to the private sector. How Industry Can Work with Argonne Argonne has many types of contractual agreements to meet the needs and interests of...

343

Hong Kong`s macro economic trends and power industry structure  

SciTech Connect

This report summarizes information and numerical data describing the current and projected structure of the power industry in Hong Kong. Major economic trends are briefly analyzed by examining main indicators of the national economy and the current energy consumption and mix. Data and information provided describing the existing power industry structure include a discussion of energy policy, installed capacity, electricity generation and fuel consumption, transmission and distribution system capability, technology, electricity consumption, and electricity tariffs. Projections of Hong Kong`s power industry are made based on data provided, which includes peak load, gross generation, and electricity consumption by sector; installed capacity by fuel, and electricity generation by fuel and fuel consumption. 12 tabs.

Binsheng Li; Johnson, C.J.; Hagen, R.

1994-09-01T23:59:59.000Z

344

Electricity Supply Sector  

U.S. Energy Information Administration (EIA)

Electricity Supply Sector Part 1 of 6 Supporting Documents Sector-Specific Issues and Reporting Methodologies Supporting the General Guidelines for the Voluntary

345

International industrial sector energy efficiency policies  

E-Print Network (OSTI)

and Opportunities,” Energy Policy 26(11): 859-872. Hall,1999. “Incentives in Energy Policy – A Comparison BetweenVoluntary Agreements in Energy Policy – Implementation and

Price, Lynn; Worrell, Ernst

2000-01-01T23:59:59.000Z

346

China's industrial sector in an international context  

E-Print Network (OSTI)

improvement and increasing refinery complexity. Data forenergy consumption in refineries accounted for roughly 8% (and expand capacity. Refinery capacity and production of

Price, Lynn; Worrell, Ernst; Martin, Nathan; Lehman, Bryan; Sinton, Jonathan

2000-01-01T23:59:59.000Z

347

Research Projects in Industrial Technology.  

Science Conference Proceedings (OSTI)

The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

United States. Bonneville Power Administration. Industrial Technology Section.

1990-06-01T23:59:59.000Z

348

Phantom Power: The Status of Fuel Cell Technology Markets  

E-Print Network (OSTI)

Fuel cells have been touted as one of the most reliable and environmentally sound methods of producing high-quality electricity for use in the industrial sector. Fuel cell developers are racing to produce larger quantities of fuel cells at lower prices. While the power densities of fuel-cell stacks have been increasing, fuel cell technologies have unfortunately remained uneconomical for the majority of industrial customers. The growth of the fuel cell market has not increased at the rate at which developers and marketers would like us to believe. With stricter federal air regulations coming into effect in 2007 and more urban/industrial areas falling into non-attainment for pollutants such as NOx operators of distributed generation systems may begin to consider fuel cells a more viable option. In this paper we will explore the potential of various fuel cell technologies for providing on-site generation at industrial facilities. Our analysis will include brief technical descriptions of the various fuel cell technologies as well as a description of applicable end-use applications for the various technologies. We will determine which technologies hold the most potential for providing reliable power and heat for processes as well as estimates of technically and economically feasible industrial fuel cell capacity between now and 2020. The manufacturing service infrastructure, technical and market barriers to increased demand, and regulatory, permitting, and siting issues will be explored. We will outline the various factors that play in the technical and economic diffusion and offer sample diffusion curves for the various fuel cell technologies.

Shipley, A. M.; Elliott, R. N.

2003-05-01T23:59:59.000Z

349

industrial | U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Perspectives: Industrial and transportation sectors lead energy use by sector. ... New EIA data show total grid-connected photovoltaic solar capacity. October ...

350

Canadian Fuel Cell Commercialization Roadmap Update: Progress...  

Open Energy Info (EERE)

Fuel Cell Commercialization Roadmap Update: Progress of Canada's Hydrogen and Fuel Cell Industry Jump to: navigation, search Name Canadian Fuel Cell Commercialization Roadmap...

351

Analysis of ultimate energy consumption by sector in Islamic republic of Iran  

Science Conference Proceedings (OSTI)

Total ultimate energy consumption in Iran was 1033.32 MBOE in 2006, and increased at an average annual rate of 6% in 1996-2006. Household and commercial sector has been the main consumer sector (418.47 MBOE) and the fastest-growing sector (7.2%) that ... Keywords: Iran, agricultural sector, energy audits, energy consumption, industrial sector, residential and commercial sector, transportation sector

B. Farahmandpour; I. Nasseri; H. Houri Jafari

2008-02-01T23:59:59.000Z

352

Sector-Specific information infrastructure issues in the oil, gas, and petrochemical sector  

Science Conference Proceedings (OSTI)

In this chapter we have discussed vulnerabilities and mitigating actions to improve safety, security and continuity of the information and process infrastructure used in the oil, gas and petrochemical sector. An accident in the oil and gas industry can ...

Stig O. Johnsen; Andreas Aas; Ying Qian

2012-01-01T23:59:59.000Z

353

Energy End-Use Flow Maps for the Buildings Sector  

SciTech Connect

Graphical presentations of energy flows are widely used within the industrial sector to depict energy production and use. PNNL developed two energy flow maps, one each for the residential and commercial buildings sectors, in response to a need for a clear, concise, graphical depiction of the flows of energy from source to end-use in the building sector.

Belzer, David B.

2006-12-04T23:59:59.000Z

354

Microcab Industries Ltd | Open Energy Information  

Open Energy Info (EERE)

Microcab Industries Ltd Microcab Industries Ltd Jump to: navigation, search Name Microcab Industries Ltd Place Coventry, United Kingdom Zip CV1 2TT Sector Hydro, Hydrogen Product Urban taxi and light freight vehicle powered by a hydrogen fuel cell. Coordinates 44.866737°, -72.263927° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.866737,"lon":-72.263927,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

355

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Market Trends - Industrial sector energy demand Market Trends - Industrial sector energy demand Growth in industrial energy consumption is slower than growth in shipments figure data Despite a 76-percent increase in industrial shipments, industrial delivered energy consumption increases by only 19 percent from 2011 to 2040 in the AEO2013 Reference case. The continued decline in energy intensity of the industrial sector is explained in part by a shift in the share of shipments from energy-intensive manufacturing industries (bulk chemicals, petroleum refineries, paper products, iron and steel, food products, aluminum, cement and lime, and glass) to other, less energy-intensive industries, such as plastics, computers, and transportation equipment. Also, the decline in energy intensity for the less energy-intensive industries is almost twice

356

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Industrial sector energy demand Industrial sector energy demand Growth in industrial energy consumption is slower than growth in shipments figure data Despite a 76-percent increase in industrial shipments, industrial delivered energy consumption increases by only 19 percent from 2011 to 2040 in the AEO2013 Reference case. The continued decline in energy intensity of the industrial sector is explained in part by a shift in the share of shipments from energy-intensive manufacturing industries (bulk chemicals, petroleum refineries, paper products, iron and steel, food products, aluminum, cement and lime, and glass) to other, less energy-intensive industries, such as plastics, computers, and transportation equipment. Also, the decline in energy intensity for the less energy-intensive industries is almost twice

357

Woodfuel Usage Update 1 I Wood fuel use in Scotland 2010 I Hudson Consulting I October 2010  

E-Print Network (OSTI)

woodfuel usage in the commercial, industrial and electrical energy sectors of the Scottish market) to 30 of electrical energy generation, was paramount in the initial survey and remains so. Total woodfuel usageWoodfuel Usage Update 1 I Wood fuel use in Scotland 2010 I Hudson Consulting I October 2010

358

Fuel cell systems multi-year program plan, fiscal years 1995 to 2000  

SciTech Connect

Fuel cell power systems are emerging power generation technologies for the efficient, economical and environmentally acceptable production of electricity. In some applications the by-product heat can also be efficiently used in cogeneration. Fuel cells produce electricity through the electrochemical oxidation of a fuel. They can be operated on a variety of fuels, including natural gas, coal gas, land fill gas and renewable fuels. First market entry units are fueled by natural gas. Fuel cells offer the opportunity for a major new manufacturing industry. System studies have shown that fuel cell power plants can be designed with overall system efficiencies in the 50 to 60 percent range (higher heating value basis) (55 to 65 percent on lower heating value basis). Fuel cell power plants are unique in that they offer high efficiency and low emissions even at part-load and in small sizes. Because of their efficiency, fuel cells will help in reducing CO{sub 2} emissions. Additional benefits are the environmentally desirable operating characteristics offered by fuel cells. Because electricity is produced through an electrochemical reaction rather than by combustion, fuel cells generate very little NO{sub x} and are extremely quiet. This combination of operating characteristics and high efficiency make fuel cells attractive for future electric utility applications. On-site industrial and commercial applications where the by-product heat can be utilized are also attractive. The DOE Office of Fossil Energy, the Gas Research Institute (GRI), and the Electric Power Research Institute (EPRI) are cooperatively sponsoring the development of fuel cell systems for applications in the utility, commercial and industrial sectors. Funding of development and demonstration is also provided by fuel cell developers and potential users. This document describes the fuel cell program of the DOE Office of Fossil Energy and its coordination with other fuel cell activities.

NONE

1995-07-01T23:59:59.000Z

359

End User Perspective - Industrial  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid State Research Center Solid State Research Center DOE Fuel Cell Portable Power Workshop End User Perspective - Industrial Consumer Electronics Power (< 20-50W) Department of Energy Fuel Cell Portable Power Workshop Jerry Hallmark Manager Energy Technologies Lab Motorola Labs Solid State Research Center DOE Fuel Cell Portable Power Workshop Outline * Energy & Power of Portable Devices * Fuel Cell Applications & Cost * Key Requirements & Challenges * Fuels for Portable Fuel Cells * Fuel Transportation Regulations and Standards * Methanol Fuel Cells - Direct Methanol Fuel Cells - Reformed Methanol Fuel Cells * Technical Challenges 2 Solid State Research Center DOE Fuel Cell Portable Power Workshop Portable Electronics Yearly Energy Usage  :KU 1990 1980  :KU

360

EIA - 2010 International Energy Outlook - Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial International Energy Outlook 2010 Industrial Sector Energy Consumption Worldwide industrial energy consumption increases by 42 percent, or an average of 1.3 percent per year, from 2007 to 2035 in the IEO2010 Reference case. Ninety-five percent of the growth occurs in non-OECD nations. Overview The world's industries make up a diverse sector that includes manufacturing, agriculture, mining, and construction. Industrial energy demand varies across regions and countries, depending on the level and mix of economic activity and technological development, among other factors. Energy is consumed in the industrial sector for a wide range of activities, such as processing and assembly, space conditioning, and lighting. Industrial energy use also includes natural gas and petroleum products used as feedstocks to produce non-energy products, such as plastics. In aggregate, the industrial sector uses more energy than any other end-use sector, consuming about one-half of the world's total delivered energy.

Note: This page contains sample records for the topic "industrial sector fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

RE fuel Technology Ltd | Open Energy Information  

Open Energy Info (EERE)

RE fuel Technology Ltd Jump to: navigation, search Name RE-fuel Technology Ltd Place Wiltshire, United Kingdom Sector Efficiency Product RE-Fuel is developing high efficiency redox...

362

Fuel Cell Markets Ltd | Open Energy Information  

Open Energy Info (EERE)

Fuel Cell Markets Ltd Place Buckinghamshire, United Kingdom Zip SL0 9AQ Sector Hydro, Hydrogen Product Fuel Cell Markets was set up to assist companies in the fuel cell and...

363

Alternative Renewable Fuels 'Plus' Research and Development Fund (Ontario,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Renewable Fuels 'Plus' Research and Alternative Renewable Fuels &#039;Plus&#039; Research and Development Fund (Ontario, Canada) Alternative Renewable Fuels 'Plus' Research and Development Fund (Ontario, Canada) < Back Eligibility Commercial State/Provincial Govt Industrial Local Government Schools Institutional Program Info State Ontario Program Type Grant Program Provider Ministry of Agriculture, Food, and Rural Affairs "Exploration of new markets and new uses for bioproducts, alternative renewable fuels and their co-products will contribute to the long term sustainability of Ontario's agri-food, energy and rural sectors. Investment in research will help position Ontario to take advantage of new technologies in these areas. The Alternative Renewable Fuels 'Plus' Research and Development Fund is a

364

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 12 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS 27 data.

365

Public-Private Sector Media Partnerships  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public-Private Sector Public-Private Sector Media Partnerships Stacy Hunt, Confluence Communications March 1, 2012 Who is the Building America Retrofit Alliance (BARA)? * One of 10 industry teams funded in part by the U.S. Department of Energy's Building America program * Multidisciplinary and focused on building performance, multimedia content and program development, and EE/RE outreach Why are media partnerships important to Building America? * Access to large, loyal, qualified existing audiences * Tried and true communications channels, strategies, and materials * Often strong editorial voices and/or industry leadership positions Media Case Study The Cool Energy House Media Case Study What's Useful to Remodelers?

366

The Paradox of Regulatory Development in China: The Case of the Electricity Industry  

E-Print Network (OSTI)

chanye (China‘s Electricity Industry at the Crossroad). ? InCapture in the Electricity Industry 2. Cross-Sectorals Telecoms and Electricity Industries. ? European Journal of

Tsai, Chung-min

2010-01-01T23:59:59.000Z

367

Industry Energy Efficiency Workshop - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Notes on the Energy Information Administration's summary session on Industry Sector Energy-Efficiency Workshop on March 5, 1996

368

Pages that link to "Industry" | Open Energy Information  

Open Energy Info (EERE)

Transport Sectors: Policy Drivers and International Trade Aspects ( links) Asia-Energy Efficiency Guide to Industry ( links) Supporting Entrepreneurs for...

369

Current state, problems, and prospects of development of the fuel and power industry of the Russian Federation  

SciTech Connect

Despite the political and territorial changes that have occurred in the former USSR, the Russian Federation as before remains the core of the entire energy supply system of countries of the Commonwealth of Independent States (CIS), the three Baltic States, as well as an exporter of oil and gas to European countries. Demonstrated gas reserves in Russia amount to 47 trillion cubic meters and coal reserves more than 200 billion tons. With the dissolution of the USSR, the infrastructure of the entire region was affected. The main production of pipes remained in Ukraine and 80% of the production of oil equipment remained in Azerbaijan. The majority of underground gas storage facilities, refineries, and electric-power installations constructed during the past 20 years remained in Belarus, Baltic Countries, and Ukraine. To solve some of the problems, laws were passed that aimed at the formation of market relations in the economy and power industry. The transition to a market economy in the oil and gas industry should take 5-7 years and has a large effect on the overall markets reforms taking place. The article also outlines the history and present state of petroleum reserves and development in Russia.

Shatalov, A.T.

1994-09-01T23:59:59.000Z

370

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

Sector 1 Industrial Sector 2 Transportation Sector Electric Power Sector 3 Prices Percentage of Sector 7 Prices Percentage of Sector 7 Prices Percentage of Sector 7 Vehicle Fuel...

371

Component Testing for Industrial Trucks and Early Market Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Aaron Harris (Primary Contact), Brian Somerday, Chris San Marchi Sandia National Laboratories P.O. Box 969 Livermore, CA 94551-0969 Phone: (925) 294-4530 Email: apharri@sandia.gov DOE Manager HQ: Antonio Ruiz Phone: (202) 586-0729 Email: Antonio.Ruiz@ee.doe.gov Project Start Date: January 2010 Project End Date: May 2011 (carryover from Fiscal Year [FY] 2011 extended objectives into FY 2012) Fiscal Year (FY) 2012 Objectives (1) Provide technical basis for the development of standards defining the use of steel (Type 1) storage pressure vessels for gaseous hydrogen: Compare fracture mechanics based design approach - for fatigue assessment of pressure vessels for

372

Control of energy saving at industrial enterprises  

Science Conference Proceedings (OSTI)

Problems connected with improvement of control systems for power systems of industrial enterprises, which are most important elements of energy and fuel consumption in industry, are considered. The growth of energy and fuel cost, the increasing requirements ...

A. F. Rezchikov

2010-10-01T23:59:59.000Z

373

AlumiFuel Power Inc | Open Energy Information  

Open Energy Info (EERE)

search Name AlumiFuel Power Inc. Place Philadelphia, Pennsylvania Sector Hydro, Hydrogen Product Philadelphia-based hydrogen gas generator. References AlumiFuel Power Inc.1...

374

LiveFuels Inc | Open Energy Information  

Open Energy Info (EERE)

LiveFuels Inc LiveFuels Inc Jump to: navigation, search Name LiveFuels Inc Address 1300 Industrial Road Place San Carlos, California Zip 94070 Sector Biofuels Product Produces a biocrude from open-pond algae bioreactors Website http://www.livefuels.com/ Coordinates 37.500518°, -122.246433° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.500518,"lon":-122.246433,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

375

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

376

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

377

Manufacturing R&D of PEM Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

established industry. Engaging the power conditioner industry into transportation fuel cell applications is a pathway for advancing fuel cell power conditioning. System Controls...

378

Short-term CO? abatement in the European power sector  

E-Print Network (OSTI)

This paper focuses on the possibilities for short term abatement in response to a CO2 price through fuel switching in the European power sector. The model E-Simulate is used to simulate the electricity generation in Europe ...

Delarue, Erik D.

2008-01-01T23:59:59.000Z

379

The bunkering industry and its effect on shipping tanker operations  

E-Print Network (OSTI)

The bunkering industry provides the shipping industry with the fuel oil that the vessels consume. The quality of the fuel oil provided will ensure the safe operation of vessels. Shipping companies under their fuel oil ...

Boutsikas, Angelos

2004-01-01T23:59:59.000Z

380

Number of Retail Customers by State by Sector, 1990-2012  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Retail Customers by State by Sector, 1990-2012" Number of Retail Customers by State by Sector, 1990-2012" "Year","State","Industry Sector Category","Residential","Commercial","Industrial","Transportation","Other","Total" 2012,"AK","Total Electric Industry",275405,48790,1263,0,"NA",325458 2012,"AL","Total Electric Industry",2150977,357395,7168,0,"NA",2515540 2012,"AR","Total Electric Industry",1332154,181823,33926,2,"NA",1547905 2012,"AZ","Total Electric Industry",2585638,305250,7740,0,"NA",2898628 2012,"CA","Total Electric Industry",13101887,1834779,73805,12,"NA",15010483

Note: This page contains sample records for the topic "industrial sector fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Retail Sales of Electricity (Megawatthours) by State by Sector by Provider, 1990  

U.S. Energy Information Administration (EIA) Indexed Site

Retail Sales of Electricity (Megawatthours) by State by Sector by Provider, 1990-2012" Retail Sales of Electricity (Megawatthours) by State by Sector by Provider, 1990-2012" "Year","State","Industry Sector Category","Residential","Commercial","Industrial","Transportation","Other","Total" 2012,"AK","Total Electric Industry",2160196,2875038,1381177,0,"NA",6416411 2012,"AL","Total Electric Industry",30632261,21799181,33751106,0,"NA",86182548 2012,"AR","Total Electric Industry",17909301,12102048,16847755,463,"NA",46859567 2012,"AZ","Total Electric Industry",32922970,29692256,12448117,0,"NA",75063343 2012,"CA","Total Electric Industry",90109995,121791536,46951714,684793,"NA",259538038

382

State Clean Energy Practices: Renewable Fuel Standards  

SciTech Connect

The State Clean Energy Policies Analysis (SCEPA) project is supported by the Weatherization and Intergovernmental Program within the Department of Energy's Office of Energy Efficiency and Renewable Energy. This project seeks to quantify the impacts of existing state policies, and to identify crucial policy attributes and their potential applicability to other states. The goal is to assist states in determining which clean energy policies or policy portfolios will best accomplish their environmental, economic, and security goals. For example, renewable fuel standards (RFS) policies are a mechanism for developing a market for renewable fuels in the transportation sector. This flexible market-based policy, when properly executed, can correct for market failures and promote growth of the renewable fuels industry better than a more command-oriented approach. The policy attempts to correct market failures such as embedded fossil fuel infrastructure and culture, risk associated with developing renewable fuels, consumer information gaps, and lack of quantification of the non-economic costs and benefits of both renewable and fossil-based fuels. This report focuses on renewable fuel standards policies, which are being analyzed as part of this project.

Mosey, G.; Kreycik, C.

2008-07-01T23:59:59.000Z

383

State Clean Energy Practices: Renewable Fuel Standards  

SciTech Connect

The State Clean Energy Policies Analysis (SCEPA) project is supported by the Weatherization and Intergovernmental Program within the Department of Energy's Office of Energy Efficiency and Renewable Energy. This project seeks to quantify the impacts of existing state policies, and to identify crucial policy attributes and their potential applicability to other states. The goal is to assist states in determining which clean energy policies or policy portfolios will best accomplish their environmental, economic, and security goals. For example, renewable fuel standards (RFS) policies are a mechanism for developing a market for renewable fuels in the transportation sector. This flexible market-based policy, when properly executed, can correct for market failures and promote growth of the renewable fuels industry better than a more command-oriented approach. The policy attempts to correct market failures such as embedded fossil fuel infrastructure and culture, risk associated with developing renewable fuels, consumer information gaps, and lack of quantification of the non-economic costs and benefits of both renewable and fossil-based fuels. This report focuses on renewable fuel standards policies, which are being analyzed as part of this project.

Mosey, G.; Kreycik, C.

2008-07-01T23:59:59.000Z

384

Sector 1 welcome  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome to Sector 1 of the Advanced Photon Source (APS) located at Argonne Welcome to Sector 1 of the Advanced Photon Source (APS) located at Argonne National Laboratory (ANL). The Sector 1 beamlines are operated by the Materials Physics & Engineering Group (MPE) of the APS X-ray Science Division (XSD). Sector 1 consists of the 1-ID and 1-BM beamlines, and 80% of the available beamtime is accessible to outside users through the General User program. The main programs pursued at Sector 1 are described below. 1-ID is dedicated to providing and using brilliant, high-energy x-ray beams (50-150 keV) for the following activities: Coupled high-energy small- and wide-angle scattering (HE-SAXS/WAXS) High-energy diffraction microscopy (HEDM) Sector 1 General Layout Stress/strain/texture studies Pair-distribution function (PDF) measurements

385

"Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"  

U.S. Energy Information Administration (EIA) Indexed Site

2.4 Relative Standard Errors for Table 2.4;" 2.4 Relative Standard Errors for Table 2.4;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS"," ","Energy","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",27.5,"X",42,39.5,62,"X",0,9.8

386

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"  

U.S. Energy Information Administration (EIA) Indexed Site

3.4 Relative Standard Errors for Table 3.4;" 3.4 Relative Standard Errors for Table 3.4;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States"

387

EIA projects lower coal use by U.S. power sector in 2012 - Today ...  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants, fuel use, stocks, generation, ... Coal consumption by the U.S. electric power sector in 2012 is expected to fall below 900 ...

388

Table 2.1f Electric Power Sector Energy Consumption, 1949-2011 ...  

U.S. Energy Information Administration (EIA)

Table 2.1f Electric Power Sector Energy Consumption, 1949-2011 (Trillion Btu) Year: Primary Consumption 1: Fossil Fuels: Nuclear

389

Table F4. Delivered energy consumption in Canada by end-use sector ...  

U.S. Energy Information Administration (EIA)

228 U.S. Energy Information Administration International Energy Outloo 2013 Appendix F Table F4. Delivered energy consumption in Canada by end-use sector and fuel ...

390

Propane Demand by Sector  

U.S. Energy Information Administration (EIA)

We will be watching the agricultural sector, since the Agriculture Economic Research Service has predicted a record corn crop this year. ...

391

Advanced Energy Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Fort Collins, Colorado Zip 80525 Sector Solar Product US-based manufacturer of power conversion and control systems for the semiconductor and solar industries. The company also...

392

XH Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Jump to: navigation, search Name XH Industries Inc Place Ilwaco, Washington, DC Zip 98624-9046 Sector Wind energy Product Washington-based repairer of wind power...

393

Longjitaihe Industry Group | Open Energy Information  

Open Energy Info (EERE)

Zip 7400 Sector Solar Product Chinese real estate developer foraying into solar PV projects. References Longjitaihe Industry Group1 LinkedIn Connections CrunchBase Profile No...

394

Climate VISION: Private Sector Initiatives: Electric Power  

Office of Scientific and Technical Information (OSTI)

Letters of Intent/Agreements Letters of Intent/Agreements The electric power sector participates in the Climate VISION program through the Electric Power Industry Climate Initiative (EPICI) and its Power Partners program, which is being developed in cooperation with the Department of Energy. The memberships of the seven organizations that comprise EPICI represent 100% of the power generators in the United States. Through individual commitments and collective actions, the power sector will strive to make meaningful contributions to the President's greenhouse gas intensity goal. EPICI members also support efforts to increase technology research, development and deployment that will help the power sector, and other sectors, achieve the President's goal. The seven organizations comprising EPICI are the American Public Power

395

Fuels - Biodiesel  

NLE Websites -- All DOE Office Websites (Extended Search)

* Biodiesel * Biodiesel * Butanol * Ethanol * Hydrogen * Natural Gas * Fischer-Tropsch Batteries Cross-Cutting Assessments Engines GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Clean Diesel Fuels Background Reducing our country's dependence on foreign oil and the rising costs of crude oil are primary reasons for a renewed interest in alternative fuels for the transportation sector. Stringent emissions regulations and public concern about mobile sources of air pollution provide additional incentives to develop fuels that generate fewer emissions, potentially reducing the need for sophisticated, expensive exhaust after-treatment devices.

396

Climate VISION: Private Sector Initiatives: Electric Power: Resources and  

Office of Scientific and Technical Information (OSTI)

Industry Associations Industry Associations Power Sector Programs/Initiatives Facilitating Organizations Other Resources Power Sector Programs/Initiatives To help achieve its Climate VISION commitment, the power sector has developed a series of programs and sector-wide initiatives. Power sector members are encouraged to participate in programs organized by their EPICI representative organization and join one of the sector-wide initiatives described below. PowerTree Carbon Company Through PowerTree Carbon Company, electric companies are partnering with government agencies and environmental groups to plant trees and restore natural ecosystems in Arkansas, Louisiana, and Mississippi. In addition to sequestering CO2 emissions, the PowerTree Carbon Company project will: create significant habitats for waterfowl, birds, and other native wildlife

397

Industrial Oil Products Division  

Science Conference Proceedings (OSTI)

A forum for professionals involved in research, development, engineering, marketing, and testing of industrial products and co-products from fats and oils, including fuels, lubricants, coatings, polymers, paints, inks, cosmetics, dielectric fluids, and ad

398

Iowa Renewable Fuels Association IRFA | Open Energy Information  

Open Energy Info (EERE)

Renewable Fuels Association IRFA Renewable Fuels Association IRFA Jump to: navigation, search Name Iowa Renewable Fuels Association (IRFA) Place Johnston, Iowa Zip 50131-2948 Sector Renewable Energy Product Fosters the development and growth of renewable fuels industry through education, promotion and infrastructure development in Iowa. Coordinates 33.831879°, -81.800645° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.831879,"lon":-81.800645,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

399

Energy Savings in Industrial Buildings  

E-Print Network (OSTI)

The industrial sector accounts for more than one-third of total energy use in the United States and emits 28.7 percent of the country’s greenhouse gases. Energy use in the industrial sector is largely for steam and process heating systems, and electricity for equipment such as pumps, air compressors, and fans. Lesser, yet significant, amounts of energy are used for industrial buildings – heating, ventilation, and air conditioning (HVAC), lighting and facility use (such as office equipment). Due to economic growth, energy consumption in the industrial sector will continue to increase gradually, as will energy use in industrial buildings. There is a large potential for energy saving and carbon intensity reduction by improving HVAC, lighting, and other aspects of building operation and technologies. Analyses show that most of the technologies and measures to save energy in buildings would be cost-effective with attractive rates of return. First, this paper will investigate energy performance in buildings within the manufacturing sector, as classified in the North American Industry Classification System (NAICS). Energy use patterns for HVAC and lighting in industrial buildings vary dramatically across different manufacturing sectors. For example, food manufacturing uses more electricity for HVAC than does apparel manufacturing because of the different energy demand patterns. Energy saving opportunities and potential from industrial buildings will also be identified and evaluated. Lastly, barriers for deployment of energy savings technologies will be explored along with recommendations for policies to promote energy efficiency in industrial buildings.

Zhou, A.; Tutterow, V.; Harris, J.

2009-05-01T23:59:59.000Z

400

Proceedings of the fuel cells `94 contractors review meeting  

DOE Green Energy (OSTI)

METC annually sponsors this conference to provide a forum for energy executives, engineers, etc. to discuss advances in fuel cell research and development projects, to exchange ideas with private sector attendees, and to review relevant results in fuel cell technology programs. Two hundred and three people from industry, academia, and Government attended. The conference attempts to showcase the partnerships with the Government and with industry, by seeking activity participation and involvement from the Office of Energy Efficiency and Renewable Energy, EPRI, GRI, and APRA. In addition to sessions on fuel cells (solid oxide, molten carbonate, etc.) for stationary electric power generation, sessions on US DOE`s Fuel Cell Transporation Program and on DOD/APRA`s fuel cell logistic fuel program were presented. In addition to the 29 technical papers, an abstract of an overview of international fuel cell development and commercialization plans in Europe and Japan is included. Selected papers were indexed separately for inclusion in the Energy Science and Technology Database.

Carpenter, C.P. II; Mayfield, M.J. [eds.] [USDOE Morgantown Energy Technology Center, WV (United States)

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Climate VISION: Private Sector Initiatives: Iron and Steel  

Office of Scientific and Technical Information (OSTI)

to a Climate VISION goal of achieving a 10 percent increase in sector-wide average energy efficiency by 2012 using a 2002 baseline. Read the U.S. Steel Industry Energy...

402

Energy-Sector Stakeholders Attend the Department of Energy's...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program on July 20-22, during which 28 R&D projects were presented for review by industry stakeholders. More than 65 energy sector stakeholders came to network, present, and...

403

Energy intensity in China's iron and steel sector  

E-Print Network (OSTI)

In this study, I examine the spatial and economic factors that influence energy intensity in China's iron and steel sector, namely industrial value added, renovation investment, coke consumption, and local coke supply. ...

Xu, Jingsi, M.C.P. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

404

EPIC Industry Manual for Printed Circuit Boards  

Science Conference Proceedings (OSTI)

The EPRI Partnership for Industrial Competitiveness (EPIC) focuses on identifying opportunities for improving the industrial efficiency of selected industries that are customers of participating utilities. The goal is to examine opportunities to improve the efficiency and productivity and reduce environmental impacts of any particular industrial customer. EPIC's industry manuals are intended to provide broad coverage within a candidate industry, with different sectors of the industry linked by focusing o...

2000-11-17T23:59:59.000Z

405

Climate VISION: Private Sector Initiatives: Progress Report  

Office of Scientific and Technical Information (OSTI)

PROGRESS REPORT PROGRESS REPORT Progress Report NEWS MEDIA CONTACT: Megan Barnett, (202) 586-4940 FOR IMMEDIATE RELEASE Friday, February 8, 2008 DOE Releases Climate VISION Progress Report 2007 Outlines Industry Progress in Reducing Greenhouse Gas Emissions Intensity through Climate VISION Partnership WASHINGTON, DC - The U.S. Department of Energy (DOE) today released the Climate VISION Progress Report 2007, which reports on the actions taken by energy-intensive industries to improve greenhouse gas emissions intensity of their operations from 2002 to 2006. The report indicates that the power and energy-intensive industrial sectors improved their combined emissions intensity by 9.4 percent over this four year period, and in 2006, actual greenhouse gas emissions for these sectors fell a combined 1.4 percent.

406

Proceedings of the third annual fuel cells contractors review meeting  

DOE Green Energy (OSTI)

The overall objective of this program is to develop the essential technology for private sector characterization of the various fuel cell electrical generation systems. These systems promise high fuel to electricity efficiencies (40 to 60 percent), distinct possibilities for cogeneration applications, modularity of design, possibilities of urban siting, and environmentally benign emissions. The purpose of this meeting was to provide the research and development (R D) participants in the DOE/Fossil Energy-sponsored Fuel Cells Program with the opportunity to present key results of their research and to establish closer business contacts. Major emphasis was on phosphoric acid, molten carbonate, and solid oxide technology efforts. Research results of the coal gasification and gas stream cleanup R D activities pertinent to the Fuel Cells Program were also highlighted. Two hundred seventeen attendees from industry, utilities, academia, and Government participated in this 2-day meeting. Twenty-three papers were given in three formal sessions: molten carbonate fuel cells R D (9 papers), solid oxide fuel cells (8 papers), phosphoric acid fuel cells R D (6 papers). In addition to the papers and presentations, these proceedings also include comments on the Fuel Cells Program from the viewpoint of DOE/METC Fuel Cell Overview by Rita A. Bajura, DOE/METC Perspective by Manville J. Mayfield, Electric Power Research Institute by Daniel M. Rastler, Natural Gas by Hugh D. Guthrie, and Transportation Applications by Pandit G. Patil.

Huber, W.J. (ed.)

1991-06-01T23:59:59.000Z

407

Award Recipients by Sector  

Science Conference Proceedings (OSTI)

... profile (PDF) Westinghouse Electric Corporation Commercial Nuclear Fuel Division ... for more information on their best management practices. *. ...

408

2008 Industrial Technologies Market Report, May 2009  

SciTech Connect

The industrial sector is a critical component of the U.S. economy, providing an array of consumer, transportation, and national defense-related goods we rely on every day. Unlike many other economic sectors, however, the industrial sector must compete globally for raw materials, production, and sales. Though our homes, stores, hospitals, and vehicles are located within our borders, elements of our goods-producing industries could potentially be moved offshore. Keeping U.S. industry competitive is essential to maintaining and growing the U.S. economy. This report begins with an overview of trends in industrial sector energy use. The next section of the report focuses on some of the largest and most energy-intensive industrial subsectors. The report also highlights several emerging technologies that could transform key segments of industry. Finally, the report presents policies, incentives, and drivers that can influence the competitiveness of U.S. industrial firms.

Energetics; DOE

2009-07-01T23:59:59.000Z

409

Sectoral trends in global energy use and greenhouse gasemissions  

Science Conference Proceedings (OSTI)

In 2000, the Intergovernmental Panel on Climate Change (IPCC) published a new set of baseline greenhouse gas (GHG) emissions scenarios in the Special Report on Emissions Scenarios (SRES) (Nakicenovic et al., 2000). The SRES team defined four narrative storylines (A1, A2, B1 and B2) describing the relationships between the forces driving GHG and aerosol emissions and their evolution during the 21st century. The SRES reports emissions for each of these storylines by type of GHG and by fuel type to 2100 globally and for four world regions (OECD countries as of 1990, countries undergoing economic reform, developing countries in Asia, rest of world). Specific assumptions about the quantification of scenario drivers, such as population and economic growth, technological change, resource availability, land-use changes, and local and regional environmental policies, are also provided. End-use sector-level results for buildings, industry, or transportation or information regarding adoption of particular technologies and policies are not provided in the SRES. The goal of this report is to provide more detailed information on the SRES scenarios at the end use level including historical time series data and a decomposition of energy consumption to understand the forecast implications in terms of end use efficiency to 2030. This report focuses on the A1 (A1B) and B2 marker scenarios since they represent distinctly contrasting futures. The A1 storyline describes a future of very rapid economic growth, low population growth, and the rapid introduction of new and more efficient technologies. Major underlying themes are convergence among regions, capacity building, and increased cultural and social interactions, with a substantial reduction in regional differences in per capita income. The B2 storyline describes a world with an emphasis on economic, social, and environmental sustainability, especially at the local and regional levels. It is a world with moderate population growth, intermediate levels of economic development, and less rapid and more diverse technological change (Nakicenovic et al., 2000). Data were obtained from the SRES modeling teams that provide more detail than that reported in the SRES. For the A1 marker scenario, the modeling team provided final energy demand and carbon dioxide (CO{sub 2}) emissions by fuel for industry, buildings, and transportation for nine world regions. Final energy use and CO{sub 2} emissions for three sectors (industry, transport, buildings) for the four SRES world regions were provided for the B2 marker scenario. This report describes the results of a disaggregation of the SRES projected energy use and energy-related CO{sub 2} emissions for the industrial, transport, and buildings sectors for 10 world regions (see Appendix 1) to 2030. An example of further disaggregation of the two SRES scenarios for the residential buildings sector in China is provided, illustrating how such aggregate scenarios can be interpreted at the end use level.

Price, Lynn; de la Rue du Can, Stephane; Sinton, Jonathan; Worrell, Ernst; Zhou, Nan; Sathaye, Jayant; Levine, Mark

2006-07-24T23:59:59.000Z

410

Synfuels industry opportunities  

SciTech Connect

Presentations made at the seminar are included in this volume. The present state in the development of synthetic fuels and the creation of the Synthetic Fuels Corporation are discussed by representatives of federal agencies and private industry. Separate abstracts of individual items were prepared for inclusion in the Energy Data Base and Energy Abstracts for Policy Analysis. (DMC)

Hill, R.F.; Boardman, E.B.; Heavner, M.L. (eds.)

1981-01-01T23:59:59.000Z

411

Measures to reduce industrial consumption of petroleum under a short-term energy emergency  

SciTech Connect

Significant opportunities for petroleum conservation in the industrial sector in the event of an energy emergency are discussed. The most feasible government options identified are presented. These and the probable savings are: removing institutional barriers to fuel switching in industrial boilers and burners (384 to 407 Mbbl/day); rescinding certain air pollution regulations (19 to 100 Mbbl/day); restricting export of energy-intensive goods (20 to 60 Mbbl/day); rescinding thermal pollution regulations for power plants (16 to 27 Mbbl/day); removing trade barriers on certain imports; restricting electricity production by industry; and restricting export of recyclable materials. The bases for many of the recommended options are presented. Specifically, characteristics of industrial petroleum consumption for the chemical, steel, cement, and paper industries are presented.

Tessmer, R.G. Jr; D' Acierno, J.; Pilati, D.A.

1979-02-01T23:59:59.000Z

412

Public Sector Energy Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Capitol dome Capitol dome Public Sector Energy Efficiency Research on sustainable federal operations supports the implementation of sustainable policies and practices in the public sector. This work serves as a bridge between the technology development of Department of Energy's National Laboratories and the operational needs of public sector. Research activities involve many aspects of integrating sustainability into buildings and government practices, including technical assistance for sustainable building design, operations, and maintenance; project financing for sustainable facilities; institutional change in support of sustainability policy goals; and procurement of sustainable products. All of those activities are supported by our work on program and project evaluation, which analyzes overall program effectiveness while ensuring

413

Summary of the GRI regional sectoral electricity model and the issues relating to those results. Occasional pub  

SciTech Connect

Results are summarized for an analysis of the U.S. electric utility industry conducted as an outgrowth of the '1984 GRI Baseline Projection of U.S. Energy Supply and Demand, 1983-2010.' The GRI Regional Sectoral Electricity Model shows a potential increase in gas demand by electric utilities of over one quad by the year 2000 if gas-fired combined-cycle is used to help offset any potential shortfall in generating capacity. Key issues emerging from the study include load growth, new generating capacity, capacity utilization, fuel choice, financial performance, and electricity prices.

Hilt, R.H.; Coyne, J.M.; Makovich, L.J.

1987-03-01T23:59:59.000Z

414

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial Mkt trends Market Trends Despite a 54-percent increase in industrial shipments, industrial energy consumption increases by only 19 percent from 2009 to 2035 in the AEO2011 Reference case. Energy consumption growth is moderated by a shift in the mix of output, as growth in energy-intensive manufacturing output (aluminum, steel, bulk chemicals, paper, and refining) slows and growth in high-value (but less energy-intensive) industries, such as computers and transportation equipment, accelerates. See more figure data Reference Case Tables Table 2. Energy Consumption by Sector and Source - United States XLS Table 2.1. Energy Consumption by Sector and Source - New England XLS Table 2.2. Energy Consumption by Sector and Source - Middle Atlantic XLS

415

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network (OSTI)

Competitiveness in the Renewable Energy Sector: The Case ofand Regulation Concerning Renewable Energy ElectricityIndustrial Policy and Renewable Energy Technology.

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

416

Sector 6 Research Highlights  

NLE Websites -- All DOE Office Websites (Extended Search)

MM-Group Home MM-Group Home MMG Advisory Committees Beamlines 4-ID-C Soft Spectroscopy 4-ID-D Hard Spectroscopy 6-ID-B,C Mag. Scattering 6-ID-D HighE Scattering 29-ID IEX - ARPES,RSXS Getting Beamtime Sector Orientation Sector 4 Orientation Sector 6 Orientation Publications (4-ID) Publications (6-ID) Contact Us APS Ring Status Current APS Schedule Highlights of research on Sector 6 Teasing Out the Nature of Structural Instabilities in Ceramic Compounds Teasing Out the Nature of Structural Instabilities in Ceramic Compounds March 12, 2013 Researchers have used beamlines 6-ID-B at the APS and XmAS at the ESRF to probe the structure of the rare-earth magnetic material europium titanate. In a magnetic field, the optical properties of this system change quite dramatically, presenting hope of a strong magneto-electric material for potential use in new memory, processing, and sensor devices.

417

Buildings Sector Analysis  

DOE Green Energy (OSTI)

A joint NREL, ORNL, and PNNL team conducted market analysis to help inform DOE/EERE's Weatherization and Intergovernmental Program planning and management decisions. This chapter presents the results of the market analysis for the Buildings sector.

Hostick, Donna J.; Nicholls, Andrew K.; McDonald, Sean C.; Hollomon, Jonathan B.

2005-08-01T23:59:59.000Z

418

Buildings Sector Analysis  

SciTech Connect

A joint NREL, ORNL, and PNNL team conducted market analysis to help inform DOE/EERE's Weatherization and Intergovernmental Program planning and management decisions. This chapter presents the results of the market analysis for the Buildings sector.

Hostick, Donna J.; Nicholls, Andrew K.; McDonald, Sean C.; Hollomon, Jonathan B.

2005-08-01T23:59:59.000Z

419

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2012-12-19T23:59:59.000Z

420

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2013-11-05T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Bio Clean Fuels Inc | Open Energy Information  

Open Energy Info (EERE)

search Name Bio-Clean Fuels Inc Place California Sector Hydro Product Califonia-based biofuel technology and engineering company. The company is in developing technology for the...

422

On-site fuel cell field test support program. Annual report Jul 81-Jun 82  

SciTech Connect

United continued this past year to assist the utilities and the Gas Research Institute in the review and selection of sites for data monitoring. Each of these sites will be instrumented and its energy requirements monitored and analyzed for one year prior to the selection of 40 Kilowatt fuel cell field test sites. Analyses in support of the selection of sites for instrumentation continued to show that many building sectors offered considerable market potential. These sectors include nursing home, health club, restaurant, industrial, hotel/motel and apartment.

Staniunas, J.W.; Merten, G.P.

1982-09-01T23:59:59.000Z

423

Adjusted Distillate Fuel Oil Sales for Residential Use  

U.S. Energy Information Administration (EIA) Indexed Site

End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2 Distillate Industrial - No. 2 Fuel Oil Industrial - Low Sulfur Diesel Industrial - High Sulfur Diesel Industrial - No. 4 Fuel Oil Industrial - Residual Fuel Oil Industrial - Kerosene Farm - Distillate Fuel Oil Farm - Diesel Farm - Other Distillate Farm - Kerosene Electric Power - Distillate Fuel Oil Electric Power - Residual Fuel Oil Oil Company Use - Distillate Fuel Oil Oil Company Use - Residual Fuel Oil Total Transportation - Distillate Fuel Oil Total Transportation - Residual Fuel Oil Railroad Use - Distillate Fuel Oil Vessel Bunkering - Distillate Fuel Oil Vessel Bunkering - Residual Fuel Oil On-Highway - No. 2 Diesel Military - Distillate Fuel Oil Military - Diesel Military - Other Distillate Military - Residual Fuel Oil Off-Highway - Distillate Fuel Oil Off-Highway - Distillate F.O., Construction Off-Highway - Distillate F.O., Non-Construction All Other - Distillate Fuel Oil All Other - Residual Fuel Oil All Other - Kerosene Period:

424

An Analysis of Fuel Demand and Carbon Emissions in China  

E-Print Network (OSTI)

Under the Kyoto Protocol to the United Nations Framework Convention on Climate Change, targets have been set for various developed countries to reduce their carbon emissions. China's share of carbon emissions ranked the second highest in the world in 1996, only after the United States. Although China was not formally required to achieve a reduction in its carbon emissions under the protocol, pressures were mounting, especially from the United States, for China to address the issue seriously. Some recent research on China's carbon emissions has largely been carried out in the framework of computable general equilibrium models. For example, Fisher-Vanden (2003) used such models to assess the impact of market reforms on shaping the level and composition of carbon emissions; Garbaccio et al. (1999) and Zhang (1998) studied macroeconomic and sectoral effects of policies and instruments, such as, a carbon tax, on achieving predefined targets of carbon emissions. A common omission in these studies is the role of fuel price changes in determining the amount of carbon emissions. This paper first shows China's total CO2 emissions from burning all types of fossil fuels over the 50 years or so to 2001, with those from burning coal singled out for the purpose of illustrating coal as the major CO2 emitter. Then, using annual data for the period 1985-2000, the study investigates whether changes in the relative prices of various fuels reduce coal consumption. Four sectors in the Chinese economy are selected for the study, namely, the chemical industry, the metal industry, the non-metal materials industry and the residential sector, which are top energy as well as top coal consumers. Five fuels are considered, namely, coal, crude oil, electricity, natural gas and petroleum products, ...

Baiding Hu Department; Baiding Hu

2004-01-01T23:59:59.000Z

425

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

propane Go propane Go Propane_li_by_state Propane Incentives and Laws, by State Propane_li_by_state View Map Graph Propane-stations Propane Fueling Station Locations by State Propane-stations View Map Graph 10561_expenditures_by_sector_20130906 Per Capita Energy Expenditures by Sector 10561_expenditures_by_sector_20130906 Trend of transportation and residential energy expenditures from 1970-2010 Last update September 2013 View Graph Graph Download Data Generated_thumb20130810-31804-yezn9l Alternative Fuel Vehicles in Use Generated_thumb20130810-31804-yezn9l Trend of the number of AFVs in use by fuel type from 1992-2010 Last update May 2012 View Graph Graph Download Data Generated_thumb20130810-31804-1gs1r9t Estimated Consumption of Alternative Fuels by AFVs Generated_thumb20130810-31804-1gs1r9t

426

EIA - International Energy Outlook 2009-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2009 Chapter 7 - Transportation Sector Energy Consumption In the IEO2009 reference case, transportation energy use in the non-OECD countries increases by an average of 2.7 percent per year from 2006 to 2030, as compared with an average of 0.3 percent per year for the OECD countries. Figure 69. OECD and Non-OECD Transportation Sector Liquids Consumption, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure data Over the next 25 years, world demand for liquids fuels is projected to increase more rapidly in the transportation sector than in any other end-use sector. In the IEO2009 reference case, the transportation share of

427

The Sector Notebooks were developed by the EPA's Ofice of Compliance. Questions relating to the Sector  

E-Print Network (OSTI)

This report is one in a series of volumes published by the U.S. Environmental Protection Agency (EPA) to provide information of general. interest regarding environmental issues associated with specific industrial sectors. The documents were developed under contract by Abt Associates

Epn -r

1997-01-01T23:59:59.000Z

428

Deregulating and regulatory reform in the U.S. electric power sector  

E-Print Network (OSTI)

This paper discusses the evolution of wholesale and retail competition in the U.S electricity sector and associated industry restructuring and regulatory reforms. It begins with a discussion of the industry structure and ...

Joskow, Paul L.

2000-01-01T23:59:59.000Z

429

Green Spirit Fuels | Open Energy Information  

Open Energy Info (EERE)

Green Spirit Fuels Jump to: navigation, search Name Green Spirit Fuels Place Somerset, United Kingdom Zip BA8 OTN Sector Biofuels Product The company was founded to produce and...

430

AltAir Fuels | Open Energy Information  

Open Energy Info (EERE)

Sector Renewable Energy Product Seattle-based developer of projects for the production of jet fuel from renewable and sustainable oils. References AltAir Fuels1 LinkedIn...

431

Poultry Industry: Industry Brief  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) Industry Brief provides an overview of the U.S. poultry industry and ways in which electric-powered processes and technologies can be used in poultry and egg production and processing. The poultry industry, which consists of poultry production for meat as well as egg production and processing, is one of the fastest growing segments of the U.S. food manufacturing industry. It is also an energy-intensive industry. In fact, a 2010 report by the USDA illustrates ...

2011-03-30T23:59:59.000Z

432

Climate VISION: Private Sector Initiatives: Chemical Manufacturing  

Office of Scientific and Technical Information (OSTI)

Letters of Intent/Agreements Letters of Intent/Agreements American Chemistry Council (ACC), representing 85% of the chemical industry production in the U.S., has agreed American Chemistry Council Logo to an overall greenhouse gas intensity reduction target of 18% by 2012 from 1990 levels. ACC will measure progress based on data collected directly from its members. ACC also pledges to support the search for new products and pursue innovations that help other industries and sectors achieve the President's goal. Activities include increased production efficiencies, promoting coal gasification technology, increasing bio-based processes, and, most importantly, developing efficiency-enabling products for use in other sectors, such as appliance transportation and construction. The following documents are available for download as Adobe PDF documents.

433

Fuel Reliability Guidelines: Fuel Surveillance and Inspection, Revision 1  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) report presents revised guidance for performing nuclear fuel assessments and inspections. The revision provides technical guidance on the scope and frequency of fuel performance assessments and inspections to support the industry goal of zero fuel failures and performance issues. To help achieve this goal, both failed and healthy fuel must be inspected. Such inspections advance the understanding of fuel failure mechanisms and unit-specific fuel margins, leadi...

2012-03-30T23:59:59.000Z

434

What is the Industrial Technologies Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Together with our industry partners, we strive to: Together with our industry partners, we strive to: * Accelerate adoption of the many energy-efficient technologies and practices available today * Conduct vigorous technology innovation to radically improve future energy diversity, resource efficiency, and carbon mitigation * Promote a corporate culture of energy efficiency and carbon management What Is the Industrial Technologies Program ? The Industrial Technologies Program (ITP) is the lead federal agency responsible for improving energy efficiency in the largest energy-using sector of the country. Industrial Sector National Initiative Goal: Drive a 25% reduction in industrial energy intensity by 2017. Standards Training Information Assessments * Website * Information Center * Tip Sheets * Case studies * Webcasts * Emerging

435

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"  

U.S. Energy Information Administration (EIA) Indexed Site

4.4 Relative Standard Errors for Table 4.4;" 4.4 Relative Standard Errors for Table 4.4;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States" , 311,"Food",0.4,0.4,19.4,9,2,6.9,5.4,0,10.3

436

Roadmap to Secure Control Systems in the Energy Sector  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roadmap Roadmap to Secure Control Systems in the Energy Sector -  - Foreword T his document, the Roadmap to Secure Control Systems in the Energy Sector, outlines a coherent plan for improing cyber security in the energy sector. It is the result of an unprecedented collaboration between the energy sector and goernment to identify concrete steps to secure control systems used in the electricity, oil, and natural gas sectors oer the next ten years. The Roadmap proides a strategic framework for guiding industry and goernment efforts based on a clear ision supported by goals and time-based milestones. It addresses the energy sector's most urgent challenges as well as longer-term needs and practices. A distinctie feature of this collaboratie effort is the actie inolement and leadership of energy asset

437

Louisville Private Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Private Sector Attendees Private Sector Attendees ENERGY STAR Kick-off Meeting December 2007 5/3rd Bank Al J Schneider Company (The Galt House East) Baptist Hospital East Brown - Forman Building Owner and Managers Association (BOMA) Louisville CB Richard Ellis Commercial Real Estate Women (CREW) Louisville Cushman Wakefield General Electric Company Golden Foods Greater Louisville Chapter of International Facility Management Association (IFMA) Hines Humana, Inc Institute of Real Estate Management (IREM) Kentucky Chapter Jewish Hospital & St Mary's Healthcare Kentucky Chapter, Certified Commercial Investment Managers (CCIM) Kentucky Governor's Office of Energy Policy Kentucky Society of Health Care Engineers Kindred Health Care Louisville Air Pollution Control Board

438

the United States Petroleum Refining Industry William R. Morrow...  

NLE Websites -- All DOE Office Websites (Extended Search)

of the twelve processing units. The model is carbon and energy balanced such that crude oil inputs and major refinery sector outputs (fuels) are benchmarked to 2010 data....

439

DOE Announces $14 Million Industry Partnership Projects to Increase...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home DOE Announces 14 Million Industry Partnership Projects to Increase Fuel Efficiency DOE Announces 14 Million Industry...

440

Assumptions to the Annual Energy Outlook 1999 - Industrial Demand...  

Gasoline and Diesel Fuel Update (EIA)

industrial.gif (5205 bytes) The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing...

Note: This page contains sample records for the topic "industrial sector fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Table 7.4b Consumption of Combustible Fuels for Electricity ...  

U.S. Energy Information Administration (EIA)

and Useful Thermal Output: Electric Power Sector (Subset of Table 7.4a) Coala Petroleum Natural Gasf Other Gasesg Biomass Otherj Distillate Fuel Oilb Residual Fuel Oilc

442

Fuel cells seminar  

SciTech Connect

This year`s meeting highlights the fact that fuel cells for both stationary and transportation applications have reached the dawn of commercialization. Sales of stationary fuel cells have grown steadily over the past 2 years. Phosphoric acid fuel cell buses have been demonstrated in urban areas. Proton-exchange membrane fuel cells are on the verge of revolutionizing the transportation industry. These activities and many more are discussed during this seminar, which provides a forum for people from the international fuel cell community engaged in a wide spectrum of fuel cell activities. Discussions addressing R&D of fuel cell technologies, manufacturing and marketing of fuel cells, and experiences of fuel cell users took place through oral and poster presentations. For the first time, the seminar included commercial exhibits, further evidence that commercial fuel cell technology has arrived. A total of 205 papers is included in this volume.

1996-12-01T23:59:59.000Z

443

Impact of nuclear fuel cycle centers on shipping special nuclear materials and wastes  

SciTech Connect

The impact of integrated nuclear fuel cycle facilities on the transportation sector appears from this admittedly rather narrow study to be of only marginal significance. However, there are other factors which must be taken into account such as nuclear safeguards, economics, and radiological, ecological, institutional, and sociological impacts. Unless more clear-cut advantages can be shown by on-going studies for some of these other considerations, the regimentation and control of industry that would result from the imposition of the integrated fuel cycle facility concept probably could not be justified. (auth)

Blomeke, J.O.

1975-01-01T23:59:59.000Z

444

Commercial Sector Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

Kevin Jarzomski

2012-11-15T23:59:59.000Z

445

Commercial Sector Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

Kevin Jarzomski

2013-10-10T23:59:59.000Z

446

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China  

E-Print Network (OSTI)

electricity and fuel prices differ between industries andelectricity and fuel efficiency improvements in the iron and steel industryprice of electricity paid by the iron and steel industry in

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

447

Analyzing the oil refining industry in developing countries: A comparative study of China and India  

SciTech Connect

The oil refining industry is a critical link in the energy chain in many developing and industrialized countries, transforming crude oil into transport fuels (gasoline, jet fuel, and diesel), residual fuel oil (widely used as a fuel in industry and the electric power sector), and other products such as kerosine, frequently for lighting an cooking usages. Three to four decades ago, the demand for oil products in most developing countries was centered to a few large cities; thus, few refineries were built in these regions. But because of the astonishing economic growth in many developing nations, demand for oil products has increased rapidly. As a result, the refining industry has expanded rapidly in such countries, even in cases were there is no domestic crude oil production. Oil product demand and refinery expansion in Asian developing countries in particular have experienced significant growth. Between 1976 and 1993, oil product demand and refinery capacity in that region (excluding Japan) increased annually an average of 5.2 percent and 4.3 percent, respectively, whereas the comparable figures for the world as a whole remained virtually unchanged during the same period. The substantial gains in Asia`s crude oil production in the 1970s is believed to have facilitated this refinery expansion.

Tang, F.C.

1994-12-31T23:59:59.000Z

448

Making Africa's Power Sector Sustainable: An Analysis of Power Sector  

Open Energy Info (EERE)

Making Africa's Power Sector Sustainable: An Analysis of Power Sector Making Africa's Power Sector Sustainable: An Analysis of Power Sector Reforms in Africa Jump to: navigation, search Tool Summary Name: Making Africa's Power Sector Sustainable: An Analysis of Power Sector Reforms in Africa Agency/Company /Organization: United Nations Environment Programme, United Nations Economic Commission for Africa Sector: Energy Topics: Market analysis, Policies/deployment programs, Co-benefits assessment, - Energy Access, - Environmental and Biodiversity Resource Type: Guide/manual, Lessons learned/best practices Website: www.uneca.org/eca_programmes/nrid/pubs/powersectorreport.pdf UN Region: Eastern Africa References: Making Africa's Power Sector Sustainable: An Analysis of Power Sector Reforms in Africa[1] Overview "This study assesses the socio-economic and environmental impacts of power

449

Fuel Reliability Guidelines: BWR Fuel Cladding Corrosion and Crud  

Science Conference Proceedings (OSTI)

Developed in collaboration with utilities, industry organizations, and fuel vendors, a series of new EPRI guidelines capture state-of-the-art knowledge and describe best practices for eliminating fuel failures at nuclear power plants. The guidelines provide mandatory, needed, and best practice recommendations based on a thorough review of operating experience, fuel failure analyses, and fuel design and manufacturing procedures. More than 200 industry experts reviewed the guidelines to ensure accuracy and...

2008-04-01T23:59:59.000Z

450

Fuel Reliability Guidelines: PWR Fuel Cladding Corrosion and Crud  

Science Conference Proceedings (OSTI)

Developed in collaboration with utilities, industry organizations, and fuel vendors, a series of new EPRI guidelines capture state-of-the-art knowledge and describe best practices for eliminating fuel failures at nuclear power plants. The guidelines provide mandatory, needed, and best practice recommendations based on a thorough review of operating experience, fuel failure analyses, and fuel design and manufacturing procedures. More than 200 industry experts reviewed the guidelines to ensure accuracy and...

2008-04-01T23:59:59.000Z

451

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Virginia Incentives and Laws Virginia Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Alternative Fuel Public-Private Partnerships (PPPs) Expired: 01/31/2014 Archived: 03/01/2013 The Virginia Offices of the Secretary of Administration and the Secretary of Natural Resources released a PPP solicitation outlining their interest in forming partnerships with and among alternative fuel providers, infrastructure developers, vehicle manufacturers, and other alternative fuel industry stakeholders to expand fueling infrastructure and to support alternative fuel use in the commonwealth fleet. By May 2012, the Virginia

452

Minerals yearbook: The mineral industry of Mexico. 1988 international review  

SciTech Connect

Mexico is one of the major mineral-producing countries in the world, continuing in 1988 a role that the nation had assumed since the first European settlement of the Western Hemisphere. With respect to nonfuel minerals, Mexico was the world's leading producer of bismuth and silver; was among the top 5 producers of barite, fluorspar, graphite, molybdenum, and strontium; and was among the top 10 producers of antimony, white arsenic, cadmium, copper, lead, manganese, mercury, salt, selenium, sulfur, and zinc. In the mineral fuels sector, Mexico was the sixth largest producer of crude oil and ranked eighth in terms of proven oil reserves. In addition, Mexico was the largest foreign supplier of crude oil and cement to the United States. Topics discussed in the report include: Government policies and programs; Production; Trade; Commodity review--Metals, Industrial minerals, and Mineral fuels.

Machamer, J.F.

1988-01-01T23:59:59.000Z

453

Fideris Inc formerly Lynntech Industries | Open Energy Information  

Open Energy Info (EERE)

Fideris Inc formerly Lynntech Industries Fideris Inc formerly Lynntech Industries Jump to: navigation, search Name Fideris Inc (formerly Lynntech Industries) Place Lowell, Massachusetts Zip 1852 Sector Services Product Fideris offers a range of fuel cell test stations and testing equipment from under 1W to over 100KW, as well as supplies and services, to the fuel cell industry. Coordinates 43.33937°, -88.817939° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.33937,"lon":-88.817939,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

454

Structural Change and Futures for the Electric Utility Industry  

Science Conference Proceedings (OSTI)

Technological change and evolving customer needs have already combined to precipitate fundamental structural change in several capital-intensive industries, notably the telecommunications, natural gas, and transportation sectors. These forces are now being unleashed in the electric utility sector. This report outlines some common patterns of change across several industries and presents scenarios of structural change for the electric power industry.

1995-08-09T23:59:59.000Z

455

Fuel Cell Technologies Office: Fuel Cells for Portable Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

Session - Fuel Cell Portable Power Perspectives End User Perspective - Industry Consumer Electronics Power (PDF 1.51 MB) Jerry Hallmark, Motorola Portable Power Sources (above...

456

Emissions of CO/sub 2/ to the atmosphere due to U. S. A. fossil fuel consumption  

SciTech Connect

Analysis and projection of carbon dioxide emitted to the atmosphere are estimated based on the Brookhaven reference energy system. Some new results are given on carbon dioxide contribution to the atmosphere from US fossil fuel consumption by different sectors including residential, commercial, industrial and transportation. The total weight of carbon as carbon dioxide emitted to the atmosphere and the additional CO/sub 2/ concentration over background by different subsectors in the years 1977, 1980, 1985, 1990, 2000 and 2020 are presented.

Dang, V.D.; Steinberg, M.

1980-06-01T23:59:59.000Z

457

Synthetic fuels handbook: properties, process and performance  

Science Conference Proceedings (OSTI)

The handbook is a comprehensive guide to the benefits and trade-offs of numerous alternative fuels, presenting expert analyses of the different properties, processes, and performance characteristics of each fuel. It discusses the concept systems and technology involved in the production of fuels on both industrial and individual scales. Chapters 5 and 7 are of special interest to the coal industry. Contents: Chapter 1. Fuel Sources - Conventional and Non-conventional; Chapter 2. Natural Gas; Chapter 3. Fuels From Petroleum and Heavy Oil; Chapter 4. Fuels From Tar Sand Bitumen; Chapter 5. Fuels From Coal; Chapter 6. Fuels From Oil Shale; Chapter 7. Fuels From Synthesis Gas; Chapter 8. Fuels From Biomass; Chapter 9. Fuels From Crops; Chapter 10. Fuels From Wood; Chapter 11. Fuels From Domestic and Industrial Waste; Chapter 12. Landfill Gas. 3 apps.

Speight, J. [University of Utah, UT (United States)

2008-07-01T23:59:59.000Z

458

Long-Term US Industrial Energy Use and CO2 Emissions  

DOE Green Energy (OSTI)

We present a description and scenario results from our recently-developed long-term model of United States industrial sector energy consumption, which we have incorporated as a module within the ObjECTS-MiniCAM integrated assessment model. This new industrial model focuses on energy technology and fuel choices over a 100 year period and allows examination of the industrial sector response to climate policies within a global modeling framework. A key challenge was to define a level of aggregation that would be able to represent the dynamics of industrial energy demand responses to prices and policies, but at a level that remains tractable over a long time frame. In our initial results, we find that electrification is an important response to a climate policy, although there are services where there are practical and economic limits to electrification, and the ability to switch to a low-carbon fuel becomes key. Cogeneration of heat and power using biomass may also play a role in reducing carbon emissions under a policy constraint.

Wise, Marshall A.; Sinha, Paramita; Smith, Steven J.; Lurz, Joshua P.

2007-12-03T23:59:59.000Z

459

Liquid natural gas as a transportation fuel in the heavy trucking industry. Fourth quarterly progress report, April 1, 1995--June 30, 1995  

DOE Green Energy (OSTI)

This project encompasses the first year of a proposed three year project with emphasis focused on LNG research issues that may be categorized as direct diesel replacement with LNG fuel, and long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. In addition, a potential new utilization of LNG fuel has been found, as a part of this work on the fundamental nature of adsorption of LNG vent gases in higher hydrocarbons; follow on research for this and other related applications and transfer of technology are proceeding at this time.

Sutton, W.H.

1995-09-01T23:59:59.000Z

460

President Obama Announces Major Initiative to Spur Biofuels Industry and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Major Initiative to Spur Biofuels Major Initiative to Spur Biofuels Industry and Enhance America's Energy Security President Obama Announces Major Initiative to Spur Biofuels Industry and Enhance America's Energy Security August 16, 2011 - 11:45am Addthis USDA, Department of Energy and Navy Partner to Advance Biofuels to Fuel Military and Commercial Transportation, Displace Need for Foreign Oil, and Strengthen Rural America WASHINGTON, Aug. 16, 2011 - President Obama today announced that the U.S. Departments of Agriculture, Energy and Navy will invest up to $510 million during the next three years in partnership with the private sector to produce advanced drop-in aviation and marine biofuels to power military and commercial transportation. The initiative responds to a directive from President Obama issued in March as part of his Blueprint for A Secure

Note: This page contains sample records for the topic "industrial sector fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Property:Incentive/ImplSector | Open Energy Information  

Open Energy Info (EERE)

ImplSector ImplSector Jump to: navigation, search Property Name Incentive/ImplSector Property Type String Description Implementing Sector. Pages using the property "Incentive/ImplSector" Showing 25 pages using this property. (previous 25) (next 25) 2 2003 Climate Change Fuel Cell Buy-Down Program (Federal) + Federal + 3 30% Business Tax Credit for Solar (Vermont) + State/Territory + 4 401 Certification (Vermont) + State/Province + A AEP (Central and North) - CitySmart Program (Texas) + Utility + AEP (Central and North) - Residential Energy Efficiency Programs (Texas) + Utility + AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) + Utility + AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) + Utility + AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) + Utility +

462

EIA - International Energy Outlook 2008-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2008 Chapter 6 - Transportation Sector Energy Consumption In the IEO2008 reference case, transportation energy use in the non-OECD countries increases by an average of 3.0 percent per year from 2005 to 2030, as compared with an average of 0.7 percent per year for the OECD countries. Over the next 25 years, world demand for liquids fuels and other petroleum is expected to increase more rapidly in the transportation sector than in any other end-use sector. In the IEO2008 reference case, the transportation share of total liquids consumption increases from 52 percent in 2005 to 58 percent in 2030. Much of the growth in transportation energy use is projected for the non-OECD nations, where many rapidly expanding economies

463

MECS Fuel Oil Figures  

U.S. Energy Information Administration (EIA) Indexed Site

: Percentage of Total Purchased Fuels by Type of Fuel : Percentage of Total Purchased Fuels by Type of Fuel Figure 1. Percent of Total Purchased Fuel Sources: Energy Information Administration. Office of Energy Markets and End Use, Manufacturing Energy Consumption Survey (MECS): Consumption of Energy; U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures (ASM): Statistics for Industry Groups and Industries: Statistical Abstract of the United States. Note: The years below the line on the "X" Axis are interpolated data--not directly from the Manufacturing Energy Consumption Survey or the Annual Survey of Manufactures. Figure 2: Changes in the Ratios of Distillate Fuel Oil to Natural Gas Figure 2. Changes in the Ratios of Distillate Fuel Oil to Natural Gas Sources: Energy Information Administration. Office of

464

Liquid natural gas as a transportation fuel in the heavy trucking industry. Third quarterly progress report, January 1, 1995--March 31, 1995  

DOE Green Energy (OSTI)

Investigations are underway concerning the use of liquid natural gas as a fuel for trucks. Progress is reported in the following areas: direct diesel replacement and short and long term storage.

Sutton, W.H.

1995-04-01T23:59:59.000Z

465

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Oil/Liquids Oil/Liquids Petroleum and other liquids consumption outside industrial sector is stagnant or declines figure data Consumption of petroleum and other liquids peaks at 19.8 million barrels per day in 2019 in the AEO2013 Reference case and then falls to 18.9 million barrels per day in 2040 (Figure 93). The transportation sector accounts for the largest share of total consumption throughout the projection, although its share falls to 68 percent in 2040 from 72 percent in 2012 as a result of improvements in vehicle efficiency following the incorporation of CAFE standards for both LDVs and HDVs. Consumption of petroleum and other liquids increases in the industrial sector, by 0.6 million barrels per day from 2011 to 2040, but decreases in all the other end-use sectors.

466

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Oil/Liquids Oil/Liquids Petroleum and other liquids consumption outside industrial sector is stagnant or declines figure data Consumption of petroleum and other liquids peaks at 19.8 million barrels per day in 2019 in the AEO2013 Reference case and then falls to 18.9 million barrels per day in 2040 (Figure 93). The transportation sector accounts for the largest share of total consumption throughout the projection, although its share falls to 68 percent in 2040 from 72 percent in 2012 as a result of improvements in vehicle efficiency following the incorporation of CAFE standards for both LDVs and HDVs. Consumption of petroleum and other liquids increases in the industrial sector, by 0.6 million barrels per day from 2011 to 2040, but decreases in all the other end-use sectors.

467

Energy-Sector Stakeholders Attend the Department of Energy's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Sector Stakeholders Attend the Department of Energy's Energy-Sector Stakeholders Attend the Department of Energy's Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's Cybersecurity for Energy Delivery Systems Peer Review August 15, 2011 - 1:12pm Addthis The Department of Energy conducted a Peer Review of its Cybersecurity for Energy Delivery Systems (CEDS) Research and Development Program on July 20-22, during which 28 R&D projects were presented for review by industry stakeholders. More than 65 energy sector stakeholders came to network, present, and learn about DOE projects, while more than 20 joined in by webinar. The CEDS program's national lab, academic, and industry partners-including the National SCADA Test Bed (NSTB) partners and Trustworthy Cyber Infrastructure for the Power Grid (TCIPG)

468

Window Industry Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

Industry Technology Roadmap Industry Technology Roadmap Jump to: navigation, search Logo: Window Industry Technology Roadmap Name Window Industry Technology Roadmap Agency/Company /Organization United States Department of Energy Sector Energy Focus Area Energy Efficiency, Buildings Topics Technology characterizations Resource Type Guide/manual Website http://www.nrel.gov/docs/fy01o References Window Industry Technology Roadmap[1] Abstract The Window <