Powered by Deep Web Technologies
Note: This page contains sample records for the topic "industrial sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Energy Use and Savings in the Canadian Industrial Sector  

E-Print Network [OSTI]

The changing role of energy as a production input in the industrial sector in Canada is examined. Energy use patterns are reviewed in terms of the energy input types, both purchased and self-produced, the actual energy form and quality requirements...

James, B.

1982-01-01T23:59:59.000Z

2

International industrial sector energy efficiency policies  

E-Print Network [OSTI]

company and the Danish Energy Agency (Ezban et al. , 1994;company and the Danish Energy Agency. The agreements, whichagreements with the Danish Energy Agency, representing 45%

Price, Lynn; Worrell, Ernst

2000-01-01T23:59:59.000Z

3

Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)  

Reports and Publications (EIA)

For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

2007-01-01T23:59:59.000Z

4

Energy use and CO2 emissions of China’s industrial sector from a global perspective  

SciTech Connect (OSTI)

The industrial sector has accounted for more than 50% of China’s final energy consumption in the past 30 years. Understanding the future emissions and emissions mitigation opportunities depends on proper characterization of the present-day industrial energy use, as well as industrial demand drivers and technological opportunities in the future. Traditionally, however, integrated assessment research has handled the industrial sector of China in a highly aggregate form. In this study, we develop a technologically detailed, service-oriented representation of 11 industrial subsectors in China, and analyze a suite of scenarios of future industrial demand growth. We find that, due to anticipated saturation of China’s per-capita demands of basic industrial goods, industrial energy demand and CO2 emissions approach a plateau between 2030 and 2040, then decrease gradually. Still, without emissions mitigation policies, the industrial sector remains heavily reliant on coal, and therefore emissions-intensive. With carbon prices, we observe some degree of industrial sector electrification, deployment of CCS at large industrial point sources of CO2 emissions at low carbon prices, an increase in the share of CHP systems at industrial facilities. These technological responses amount to reductions of industrial emissions (including indirect emission from electricity) are of 24% in 2050 and 66% in 2095.

Zhou, Sheng; Kyle, G. Page; Yu, Sha; Clarke, Leon E.; Eom, Jiyong; Luckow, Patrick W.; Chaturvedi, Vaibhav; Zhang, Xiliang; Edmonds, James A.

2013-07-10T23:59:59.000Z

5

Distributed Energy: Modeling Penetration in Industrial Sector Over the Long-Term  

E-Print Network [OSTI]

Distributed Energy: Modeling Penetration in Industrial Sector over the Long-Term Lorna Greening, Private Consultant, Los Alamos, NM Distributed energy (DE) sources provide a number of benefits when utilized. For industrial facilities... and the generation of steam. Within the framework of a US energy system model (MARKAL using the assumptions underlying AEO 2005), where all sources of energy supply and demand are depicted, the potential penetration of DE options is evaluated. The industrial...

Greening, L.

2006-01-01T23:59:59.000Z

6

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network [OSTI]

energy efficiency. Among industries included are cement, pulp and paper and plasticenergy efficiency in industry. Achievements: Production standards have been set for the engineering, plastics,

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

7

Geothermal: Sponsored by OSTI -- Industrial Sector Technology...  

Office of Scientific and Technical Information (OSTI)

Industrial Sector Technology Use Model (ISTUM): industrial energy use in the United States, 1974-2000. Volume 1. Primary model documentation. Final report...

8

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

world best practice energy intensity values for productionWorld best practice energy intensity values for productionWorld Best Practice Final Energy Intensity Values for Aluminium Production (

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

9

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

Best Practice Final Energy Intensity Values for Stand-AloneBest Practice Final Energy Intensity Values for Stand-AloneBest Practice Primary Energy Intensity Values for Stand-

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

10

Industrial Sector Energy Efficiency Modeling (ISEEM) Framework Documentation  

E-Print Network [OSTI]

Model Part I, Energy Technology Systems Analysis Programme,A Report of the Energy Technology Systems Analysis Project,Energy Efficiency Technologies in Integrated Assessment

Karali, Nihan

2014-01-01T23:59:59.000Z

11

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

report describes best practices in energy efficiency for keyImproving Energy Efficiency of shape casting. Best practice

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

12

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network [OSTI]

company and the Danish Energy Agency. The agreements, whichDanish Energy Authority [1] The Ministry of the Environment [2] and its Environmental Protection Agency [agencies 1. Voluntary Agreements with industry – Danish Energy

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

13

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

and 30% of total energy consumption in China. During the30 kWh/ADt 54 for total energy consumption of 11.2 GJ/ADt (leads to a total overall energy consumption value of 11.1

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

14

Greenhouse Gas Programs, Energy Efficiency, and the Industrial Sector  

E-Print Network [OSTI]

The United States has made significant progress in reducing total energy use through energy efficiency improvements over the past decade, yet the United States still ranks as the highest absolute greenhouse gas (GHG) emitter in the world with 23...

Zhou, A.; Tutterow, V.; Harris, J.

15

Comparative analysis of energy data bases for the industrial and commercial sectors  

SciTech Connect (OSTI)

Energy data bases for the industrial and commercial sectors were analyzed to determine how valuable this data might be for policy analysis. The approach is the same for both end-use sectors: first a descrption or overview of relevant data bases identifies the available data; the coverage and methods used to generate the data are then explained; the data are then characterized and examples are provided for the major data sets under consideration. A final step assesses the data bases under consideration and draws conclusions. There are a variety of data bases considered for each of the end-use sectors included in this report. Data bases for the industrial sector include the National Energy Accounts, process-derived data bases such as the Drexel data base and data obtained from industry trade associations. For the commercial sector, three types of data bases are analyzed: the Nonresidential Building Energy Consumption Surveys, Dodge Construction Data and the Building Owners and Manager's Association Experience Exchange Report.

Roop, J.M.; Belzer, D.B.; Bohn, A.A.

1986-12-01T23:59:59.000Z

16

Model documentation report: Industrial sector demand module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects. The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2015) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

NONE

1997-01-01T23:59:59.000Z

17

Table E5. Industrial Sector Energy Price Estimates, 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefinerMotorSummary5.E4.E5.

18

Comparison Study of Energy Intensity in the Textile Industry: A Case Study in Five Textile Sub-sectors  

E-Print Network [OSTI]

This paper contributes to the understanding of energy use in the textile industry by comparing the energy intensity of textile plants in five major sub-sectors, i.e. spinning, weaving, wet-processing, worsted fabric manufacturing, and carpet...

Hasanbeigi, A.; Hasanabadi, A.; Abdorrazaghi, M.

2011-01-01T23:59:59.000Z

19

Long-term Industrial Energy Forecasting (LIEF) model (18-sector version)  

SciTech Connect (OSTI)

The new 18-sector Long-term Industrial Energy Forecasting (LIEF) model is designed for convenient study of future industrial energy consumption, taking into account the composition of production, energy prices, and certain kinds of policy initiatives. Electricity and aggregate fossil fuels are modeled. Changes in energy intensity in each sector are driven by autonomous technological improvement (price-independent trend), the opportunity for energy-price-sensitive improvements, energy price expectations, and investment behavior. Although this decision-making framework involves more variables than the simplest econometric models, it enables direct comparison of an econometric approach with conservation supply curves from detailed engineering analysis. It also permits explicit consideration of a variety of policy approaches other than price manipulation. The model is tested in terms of historical data for nine manufacturing sectors, and parameters are determined for forecasting purposes. Relatively uniform and satisfactory parameters are obtained from this analysis. In this report, LIEF is also applied to create base-case and demand-side management scenarios to briefly illustrate modeling procedures and outputs.

Ross, M.H. (Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Physics); Thimmapuram, P.; Fisher, R.E.; Maciorowski, W. (Argonne National Lab., IL (United States))

1993-05-01T23:59:59.000Z

20

World Best Practice Energy Intensity Values for SelectedIndustrial Sectors  

SciTech Connect (OSTI)

"World best practice" energy intensity values, representingthe most energy-efficient processes that are in commercial use in atleast one location worldwide, are provided for the production of iron andsteel, aluminium, cement, pulp and paper, ammonia, and ethylene. Energyintensity is expressed in energy use per physical unit of output for eachof these commodities; most commonly these are expressed in metric tonnes(t). The energy intensity values are provided by major energy-consumingprocesses for each industrial sector to allow comparisons at the processlevel. Energy values are provided for final energy, defined as the energyused at the production facility as well as for primary energy, defined asthe energy used at the production facility as well as the energy used toproduce the electricity consumed at the facility. The "best practice"figures for energy consumption provided in this report should beconsidered as indicative, as these may depend strongly on the materialinputs.

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky,Christina; Zhou, Nan

2007-06-05T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings  

SciTech Connect (OSTI)

Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.

Price, Lynn; Worrell, Ernst; Khrushch, Marta

1999-09-01T23:59:59.000Z

22

Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About UsIndustrial Energy Efficiency AssessmentsJobs

23

Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector: Executive Summary  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About UsIndustrial Energy Efficiency

24

Rank Residential Sector Commercial Sector Industrial Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S.Feet) Year

25

China's industrial sector in an international context  

SciTech Connect (OSTI)

The industrial sector accounts for 40% of global energy use. In 1995, developing countries used an estimated 48 EJ for industrial production, over one-third of world total industrial primary energy use (Price et al., 1998). Industrial output and energy use in developing countries is dominated by China, India, and Brazil. China alone accounts for about 30 EJ (National Bureau of Statistics, 1999), or about 23% of world industrial energy use. China's industrial sector is extremely energy-intensive and accounted for almost 75% of the country's total energy use in 1997. Industrial energy use in China grew an average of 6.6% per year, from 14 EJ in 1985 to 30 EJ in 1997 (Sinton et al., 1996; National Bureau of Statistics, 1999). This growth is more than three times faster than the average growth that took place in the world during the past two decades. The industrial sector can be divided into light and heavy industry, reflecting the relative energy-intensity of the manufacturing processes. In China, about 80% of the energy used in the industrial sector is consumed by heavy industry. Of this, the largest energy-consuming industries are chemicals, ferrous metals, and building materials (Sinton et al., 1996). This paper presents the results of international comparisons of production levels and energy use in six energy-intensive subsectors: iron and steel, aluminum, cement, petroleum refining, ammonia, and ethylene. The sectoral analysis results indicate that energy requirements to produce a unit of raw material in China are often higher than industrialized countries for most of the products analyzed in this paper, reflecting a significant potential to continue to improve energy efficiency in heavy industry.

Price, Lynn; Worrell, Ernst; Martin, Nathan; Lehman, Bryan; Sinton, Jonathan

2000-05-01T23:59:59.000Z

26

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network [OSTI]

sustainable energy system was begun, further supporting those goals of increased renewable energy sources and energy efficiency. Sweden

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

27

Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors  

SciTech Connect (OSTI)

As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy security through more effective utilization of our country’s resources while simultaneously providing economic stability and growth (through predictable energy prices and high value jobs), in an environmentally sustainable and secure manner (through lower land and water use, and decreased byproduct emissions). The reduction in imported oil will also increase the retention of wealth within the U.S. economy while still supporting economic growth. Nuclear energy is the only non-fossil fuel that has been demonstrated to reliably supply energy for a growing industrial economy.

David Petti; J. Stephen Herring

2010-03-01T23:59:59.000Z

28

Designing Effective State Programs for the Industrial Sector...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Effective State Programs for the Industrial Sector provides state regulators, utilities, and other program administrators with an overview of U.S. industrial energy...

29

Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)  

E-Print Network [OSTI]

energy demand. The energy consumption mix i n China'sstructure and product mix in energy-intensive industries;Table 4). The sector's mix of energy sources that year was

Zhiping, L.

2010-01-01T23:59:59.000Z

30

Model documentation report: Industrial sector demand module of the national energy modeling system  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its model. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

NONE

1998-01-01T23:59:59.000Z

31

Implications for decision making: Industrial sector perspectives  

SciTech Connect (OSTI)

Implications for decision making in areas related to policy towards greenhouse gas emissions are discussed from the perspective of the industrial sector. Industry is presented as supportive of energy conservation measures in spite of the large uncertainties in the global warming issue. Perspectives of developed and developing countries are contrasted, and carbon dioxide emissions are compared. Socioeconomic implications of reducing greenhouse gas emissions, particularly in the form of higher prices for goods and services, are outlined.

Mangelsdorf, F.E. [Texaco, Inc., Beacon, NY (United States)

1992-12-31T23:59:59.000Z

32

Public/private sector cooperation to promote industrial energy efficiency: Allied partners and the US Department of Energy  

SciTech Connect (OSTI)

Since 1996, the US Department of Energy's Office of Industrial Technologies (USDOE) has been involved in a unique voluntary collaboration with industry called the Allied Partner program. Initially developed under the Motor Challenge program, the partnership concept continues as a central element of USDOE's BestPractices, which in 2001 integrated all of USDOE's near-term industrial program offerings including those in motors, compressed air, pump, fan, process heating and steam systems. Partnerships are sought with end use industrial companies as well as equipment suppliers and manufacturers, utilities, consultants, and state agencies that have extensive existing relationships with industrial customers. Partners are neither paid nor charged a fee for participation. Since the inception of Allied Partners, the assumption has been that these relationships could serve as the foundation for conveying a system energy-efficiency message to many more industrial facilities than could be reached through a typical government-to-end-user program model. An independent evaluation of the Motor Challenge program, reported at the last EEMODS conference, attributed US $16.9 million or nearly 67 percent of the total annual program energy savings to the efforts of Allied Partners in the first three years of operation. A recent evaluation of the Compressed Air Challenger, which grew out of the former Motor Challenger program, attribute additional energy savings from compressed air training alone at US $12.1 million per year. Since the reorganization under BestPractices, the Allied Partner program has been reshaped to extend the impact of all BestPractices program activities. This new model is more ambitious than the former Motor Challenge program concerning the level of collaborative activities negotiated with Allied Partners. This paper describes in detail two new types of program initiatives involving Allied Partners: Qualified Specialist Training and Energy Events. The Qualified Specialist activity was conceived as a way of engaging the supply side of industry, consultants, and utilities to greatly increase use of decision making software developed by USDOE to assist industrial facilities in assessing the energy efficiency of their energy-using systems. To date, USDOE has launched Qualified Specialist training with member companies of the Hydraulic Institute (HI) and with distributors and consultants associated with the Compressed Air Challenge. These activities train and qualify industry professionals to use and to train customers to use USDOE's Pumping System Assessment Tool (PSAT) and AIRMaster + software programs, respectively. The industry experts provide a public benefit by greatly increasing customer access to the software and assessment techniques. Participating Specialists anticipate a business benefit by providing a valuable service to key customers that is associated with USDOE. The Energy Event concept was developed in 2001 in cooperation with the California Energy Commission in response to the state's energy crisis and has been extended to other geographic areas during 2002. The three California events, named ''Energy Solutions for California Industry,'' relied on Allied Partners to provide system-based solutions to industrial companies as both speakers and exhibitors. These one-day events developed a model for a serious solutions-oriented format that avoids the typical trade show atmosphere through strict exhibitor guidelines, careful screening of speaker topics, and reliance on case studies to illustrate cost- and energy-saving opportunities from applying a systems approach. Future plans to use this activity model are discussed as well as lessons learned from the California series.

McKane, Aimee; Cockrill, Chris; Tutterow, Vestal; Radspieler, Anthony

2003-05-18T23:59:59.000Z

33

Perform, Achieve and Trade (PAT): An Innovative Mechanism for Enhancing Energy Efficiency in India's Industrial Sector  

E-Print Network [OSTI]

by Energy Conservation Act, 2001 of India and National Mission on Enhanced Energy Efficiency (NMEEE) under National Action Plan on Climate Change (NAPCC). The Energy Conservation Act, 2001 which is the first legislative initiative by Govt. of India to give...

Garnik, S. P.; Martin, M.

2014-01-01T23:59:59.000Z

34

Voluntary agreements in the industrial sector in China  

SciTech Connect (OSTI)

China faces a significant challenge in the years ahead to continue to provide essential materials and products for a rapidly-growing economy while addressing pressing environmental concerns. China's industrial sector is heavily dependent on the country's abundant, yet polluting, coal resources. While tremendous energy conservation and environmental protection achievements were realized in the industrial sector in the past, there remains a great gulf between the China's level of energy efficiency and that of the advanced countries of the world. Internationally, significant energy efficiency improvement in the industrial sector has been realized in a number of countries using an innovative policy mechanism called Voluntary Agreements. This paper describes international experience with Voluntary Agreements in the industrial sector as well as the development of a pilot program to test the use of such agreements with two steel mills in Shandong Province, China.

Price, Lynn; Worrell, Ernst; Sinton, Jonathan

2003-03-31T23:59:59.000Z

35

A State Regulator's View of 'PURPA' And Its Impact on Energy Conservation in the Industrial Sector  

E-Print Network [OSTI]

improving utility production efficiency, lowering costs and possibly reducing the need for new high cost production facilities. On the other hand, time of use rates may ultimately cause some electric users, especially certain large industrial customers... and resources by electric utilities." Two types of efficiency are addressed here. The first, is economic efficiency, which in classical economics implies the setting of prices which result in the appropriate allocation and conservation of society...

Williams, M. L.

1981-01-01T23:59:59.000Z

36

Energy Savings in Industrial Buildings  

E-Print Network [OSTI]

The industrial sector accounts for more than one-third of total energy use in the United States and emits 28.7 percent of the country’s greenhouse gases. Energy use in the industrial sector is largely for steam and process heating systems...

Zhou, A.; Tutterow, V.; Harris, J.

37

Energy Sector Market Analysis  

SciTech Connect (OSTI)

This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

2006-10-01T23:59:59.000Z

38

Energy End-Use Flow Maps for the Buildings Sector  

SciTech Connect (OSTI)

Graphical presentations of energy flows are widely used within the industrial sector to depict energy production and use. PNNL developed two energy flow maps, one each for the residential and commercial buildings sectors, in response to a need for a clear, concise, graphical depiction of the flows of energy from source to end-use in the building sector.

Belzer, David B.

2006-12-04T23:59:59.000Z

39

Energy Sector Cybersecurity Framework Implementation Guidance  

Broader source: Energy.gov (indexed) [DOE]

DRAFT FOR PUBLIC COMMENT SEPTEMBER, 2014 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE Energy Sector Cybersecurity Framework Implementation Guidance Table of...

40

Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)  

E-Print Network [OSTI]

Plans Organization and Implementation of Energy ConservationIndustrial Energy Conservation Investment Funding 3.Case Studies of Energy Conservation Investments by Industry

Zhiping, L.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network [OSTI]

industry’s share of global primary energy use declined toused 91 EJ of primary energy, 40% of the global total of 227eq/yr. Global and sectoral data on final energy use, primary

Worrell, Ernst

2009-01-01T23:59:59.000Z

42

Energy Sector Cybersecurity Framework Implementation Guidance  

Broader source: Energy.gov (indexed) [DOE]

JANUARY 2015 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY Energy Sector...

43

Canada's Voluntary Industrial Energy Conservation Program  

E-Print Network [OSTI]

Industrial Energy Conservation in Canada is organized and promoted through a voluntary program that is administered by industry. Industry is divided into fifteen sectors, each of which is represented by a Voluntary Task Force. Information exchange...

Wolf, C. A., Jr.

1980-01-01T23:59:59.000Z

44

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

SciTech Connect (OSTI)

Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

Sathaye, J.; Xu, T.; Galitsky, C.

2010-08-15T23:59:59.000Z

45

Greenhouse Gas Emission Reduction in the ENERGY STAR Commercial, Industrial and Residential Sectors. An Example of How the Refinery Industry is Capitalizing on ENERGY STAR  

E-Print Network [OSTI]

infrastructures. EPA - Region 6's ENERGY STAR and Green Building Program assistance has led to some unique solutions and the beginning workups for the integrated expansion of effort to support State Implementation Plans in new innovative voluntary approaches...

Patrick, K.

2008-01-01T23:59:59.000Z

46

Federal Sector Renewable Energy Project Implementation: ""What...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by...

47

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network [OSTI]

storage technology (thermal energy storage, TES). Accordingmight benefit from Thermal Energy Storage (TES). Include

Akbari, H.

2008-01-01T23:59:59.000Z

48

Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector  

SciTech Connect (OSTI)

Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. With the working of energy programs and policies on carbon regulation, how to effectively analyze and manage the costs associated with GHG reductions become extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions (e.g., carbon emission) for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct brief overview on different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by problem statements, and a description of the basic concepts of quantifying the cost of conserved energy including integrating non-regrets options. A non-regrets option is defined as a GHG reduction option that is cost effective, without considering their additional benefits related to reducing GHG emissions. Based upon these, we develop information on costs of mitigation measures and technological change. These serve as the basis for collating the data on energy savings and costs for their future use in integrated assessment models. In addition to descriptions of the iron and steel making processes, and the mitigation measures identified in this study, the report includes tabulated databases on costs of measure implementation, energy savings, carbon-emission reduction, and lifetimes. The cost curve data on mitigation measures are available over time, which allows an estimation of technological change over a decade-long historical period. In particular, the report will describe new treatment of technological change in energy-climate modeling for this industry sector, i.e., assessing the changes in costs and energy-savings potentials via comparing 1994 and 2002 conservation supply curves. In this study, we compared the same set of mitigation measures for both 1994 and 2002 -- no additional mitigation measure for year 2002 was included due to unavailability of such data. Therefore, the estimated potentials in total energy savings and carbon reduction would most likely be more conservative for year 2002 in this study. Based upon the cost curves, the rate of change in the savings potential at a given cost can be evaluated and be used to estimate future rates of change that can be the input for energy-climate models. Through characterizing energy-efficiency technology costs and improvement potentials, we have developed and presented energy cost curves for energy efficiency measures applicable to the U.S. iron and steel industry for the years 1994 and 2002. The cost curves can change significantly under various scenarios: the baseline year, discount rate, energy intensity, production, industry structure (e.g., integrated versus secondary steel making and number of plants), efficiency (or mitigation) measures, share of iron and steel production to which the individual measures can be applied, and inclusion of other non-energy benefits. Inclusion of other non-energy benefits from implementing mitigation measures can reduce the costs of conserved energy significantly. In addition, costs of conserved energy (CCE) for individual mitigation measures increase with the increases in discount rates, resulting in a general increase in total cost of mitigation measures for implementation and operation with a higher discount rate. In 1994, integrated steel mills in the U.S. produced 55.

Xu, T.T.; Sathaye, J.; Galitsky, C.

2010-09-30T23:59:59.000Z

49

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network [OSTI]

by ERC, is 448.3 trillion Btu (TBtu). The total CaliforniaBecause the cost of an electrical Btu is roughly 4 timesthat of a source fuel Btu, industrial categories that use

Akbari, H.

2008-01-01T23:59:59.000Z

50

Energy-Sector Stakeholders Attend the Department of Energy's...  

Broader source: Energy.gov (indexed) [DOE]

Energy-Sector Stakeholders Attend the Department of Energy's 2010 Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's...

51

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network [OSTI]

industry or plants could benefit from new technologies such as cold storagecold storage and space cooling systems technology has. The electricity use in these industriesindustries may also be able to take advan- tage of TES; however, the technology of integrating cold storage

Akbari, H.

2008-01-01T23:59:59.000Z

52

Industrial Energy Use and Energy Efficiency in Developing Countries  

E-Print Network [OSTI]

The industrial sector accounts for over 50% of energy used in developing countries. Growth in this sector has been over 4.5% per year since 1980. Energy intensity trends for four energy-intensive sub-sectors (iron and steel, chemicals, building...

Price, L.; Martin, N.; Levine, M. D.; Worrell, E.

53

Captive power plants and industrial sector in the developing countries  

SciTech Connect (OSTI)

The electrical power and energy is essential for the industrial sector of the countries which are transferring its social structure to the industry oriented one from the agrarian society. In Asian countries, this kind of transformation has actively been achieved in this century starting from Japan and followed by Korea, Taiwan, and it is more actively achieved in the countries of Malaysia, Indonesia, Thailand, Philippine, India and China(PRC) in these days. It is valuable to review the effective utilizing of Power and Energy in the industrial sector of the developing countries. In this paper, it is therefore focussed to the captive power plants comparing those of utility companies such as government owned electrical power company and independent power company. It is noticed that major contribution to the electrical power generation in these days is largely dependent on the fossil fuel such as coal, oil and gas which are limited in source. Fossil energy reserves are assumed 1,194 trillion cubic meters or about 1,182 billion barrels of oil equivalent for natural gas 1,009 billion barrels for oil and at least 930 billion tons for coal in the world. According to the statistic data prepared by the World Energy Council, the fossil fuel contribution to electrical power generation records 92.3% in 1970 and 83.3% in 1990 in the world wide. Primary energy source for electrical power generation is shown in figure 1. It is therefore one of the most essential task of human being on how to utilize the limited fossil energy effectively and how to maximize the thermal efficiency in transferring the fossil fuel to usable energy either electrical power and energy or thermal energy of steam or hot/chilled water.

Lee, Rim-Taig [Hyundai Engineering Co. (Korea, Republic of)

1996-12-31T23:59:59.000Z

54

Energy intensity in China's iron and steel sector  

E-Print Network [OSTI]

In this study, I examine the spatial and economic factors that influence energy intensity in China's iron and steel sector, namely industrial value added, renovation investment, coke consumption, and local coke supply. ...

Xu, Jingsi, M.C.P. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

55

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

only 19 percent from 2011 to 2040 in the AEO2013 Reference case. The continued decline in energy intensity of the industrial sector is explained in part by a shift in the share of...

56

A Water Conservation Scenario for the Residential and Industrial Sectors in California: Potential Saveings of Water and Related Energy  

E-Print Network [OSTI]

energy was supplied by hydroelectric power. needed for powerprovide flood control, hydroelectric power, and But they arewas generated by hydroelectric power. is also needed for

Benenson, P.

2010-01-01T23:59:59.000Z

57

Delivered Energy Consumption Projections by Industry in the Annual Energy Outlook 2002  

Reports and Publications (EIA)

This paper presents delivered energy consumption and intensity projections for the industries included in the industrial sector of the National Energy Modeling System.

2002-01-01T23:59:59.000Z

58

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network [OSTI]

still appears important. Electric motor energy consumpt1m isHeat Space Heat Electric Motors Hot Water Miscellaneous PG&EHeat Space Heat Electric Motors Hot Water Miscellaneous PG&E

Akbari, H.

2008-01-01T23:59:59.000Z

59

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

Efficiency Scenario (non-residential sector only) – AssumesIndia: Industry and Non Residential Sectors Jayant Sathaye,and support. The Non Residential sector analysis benefited

Sathaye, Jayant

2011-01-01T23:59:59.000Z

60

Industrial energy efficiency policy in China  

SciTech Connect (OSTI)

Chinese industrial sector energy-efficiency policy has gone through a number of distinct phases since the founding of the People s Republic in 1949. An initial period of energy supply growth in the 1950s, 1960s, and 1970s was followed by implementation of significant energy efficiency programs in the 1980s. Many of these programs were dismantled in the 1990s during the continuing move towards a market-based economy. In an effort to once again strengthen energy efficiency, the Chinese government passes the Energy Conservation Law in 1997 which provides broad guidance for the establishment of energy efficiency policies. Article 20 of the Energy Conservation Law requires substantial improvement in industrial energy efficiency in the key energy-consuming industrial facilities in China. This portion of the Law declares that ''the State will enhance energy conservation management in key energy consuming entities.'' In 1999, the industrial sector consumed nearly 30 EJ, or 76 percent of China's primary energy. Even though primary energy consumption has dropped dramatically in recent years, due mostly to a decline in coal consumption, the Chinese government is still actively developing an overall policy for energy efficiency in the industrial sector modeled after policies in a number of industrialized countries. This paper will describe recent Chinese government activities to develop industrial sector energy-efficiency targets as a ''market-based'' mechanism for improving the energy efficiency of key industrial facilities.

Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

2001-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

SciTech Connect (OSTI)

This report analyzed the potential for increasing energy efficiency and reducing greenhouse gas emissions (GHGs) in the non-residential building and the industrial sectors in India. The first two sections describe the research and analysis supporting the establishment of baseline energy consumption using a bottom up approach for the non residential sector and for the industry sector respectively. The third section covers the explanation of a modeling framework where GHG emissions are projected according to a baseline scenario and alternative scenarios that account for the implementation of cleaner technology.

Sathaye, Jayant; de la Rue du Can, Stephane; Iyer, Maithili; McNeil, Michael; Kramer, Klaas Jan; Roy, Joyashree; Roy, Moumita; Chowdhury, Shreya Roy

2011-04-15T23:59:59.000Z

62

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors  

E-Print Network [OSTI]

of which: CHP ele generation Residential Nonspecified (OtherOther Services (CHP heat Fuel use) Residential End Use (non-Residential Nonspecified (Other Sector) NEW Office (CHP heat

de la Rue du Can, Stephane

2014-01-01T23:59:59.000Z

63

EIA Energy Efficiency-Commercial Buildings Sector Energy Intensities...  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities: 1992- 2003 Released Date: December 2004 Page Last Revised: August 2009 These tables...

64

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors  

E-Print Network [OSTI]

Losses CHP, Commercial Power CHP, Electric Power CHP, Industrial Power Electric Generators, Utilities

de la Rue du Can, Stephane

2014-01-01T23:59:59.000Z

65

Public Sector Energy Efficiency Aggregation Program  

Broader source: Energy.gov [DOE]

The Illinois Department of Commerce and Economic Opportunity (DCEO) administers the Illinois Energy Now programs, including the Public Sector Energy Efficiency Aggregation Program. The program will...

66

Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 1: Part 1, Electricity supply sector; Part 2, Residential and commercial buildings sector; Part 3, Industrial sector  

SciTech Connect (OSTI)

DOE encourages you to report your achievements in reducing greenhouse gas emissions and sequestering carbon under this program. Global climate change is increasingly being recognized as a threat that individuals and organizations can take action against. If you are among those taking action, reporting your projects may lead to recognition for you, motivation for others, and synergistic learning for the global community. This report discusses the reporting process for the voluntary detailed guidance in the sectoral supporting documents for electricity supply, residential and commercial buildings, industry, transportation, forestry, and agriculture. You may have reportable projects in several sectors; you may report them separately or capture and report the total effects on an entity-wide report.

Not Available

1994-10-01T23:59:59.000Z

67

Private Sector | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowderClimateMeadows, NewPrior Lake,Sector Jump to:

68

China's industrial sector in an international context  

E-Print Network [OSTI]

steam reforming plants consume 30 to 31 GJ/tonne, and recent estimates for energy use for ammonia production

Price, Lynn; Worrell, Ernst; Martin, Nathan; Lehman, Bryan; Sinton, Jonathan

2000-01-01T23:59:59.000Z

69

Energy Sector Cybersecurity Framework Implementation Guidance...  

Broader source: Energy.gov (indexed) [DOE]

Cybersecurity Framework Implementation Guidance - Notice of Public Comment: Federal Register Notice, Volume 79, No. 177, September 12, 2014 Energy Sector Cybersecurity Framework...

70

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors  

E-Print Network [OSTI]

2005. Development of Energy Balances for the State ofIEA). 2010. World Energy Balance, 1971 to 2008. Paris: IEA.REPORT California Energy Balance Update and Decomposition

de la Rue du Can, Stephane

2014-01-01T23:59:59.000Z

71

Energy-Sector Stakeholders Attend the Department of Energy's...  

Office of Environmental Management (EM)

Stakeholders Attend the Department of Energy's Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's...

72

Garnering the Industrial Sector: A Comparison of Cutting Edge Industrial DSM Programs  

E-Print Network [OSTI]

The industrial sector has posed a daunting DSM challenge to utilities throughout North America, even to those with successful and creative residential and commercial DSM programs. Most utilities have had great difficulty in going beyond conventional...

Kyricopoulos, P. F.; Wikler, G. A.; Faruqui, A.; Wood, B. G.

73

Industrial sector energy conservation programs in the People`s Republic of China during the seventh five-year plan (1986--1990)  

SciTech Connect (OSTI)

The impetus at the national level to invest in energy conservation is quite strong and has long been reflected not only in official pronouncements, but also in the investments and organizational activities of the Chinese government. In the early 1980s the central government began a program of direct investments in industrial energy conservation that continues to the present. In addition, concurrently established governmental and quasi-governmental agencies have pursued conservation through administrative and educational measures. In Section 2 of this paper the authors outline the policies and institutions that supported China`s program of energy conservation investments in the Sixth and Seventh Five-Year Plans (FYPs) (1981--1985 and 1986--1990). In Section 3 they describe examples of the types of conservation projects pursued in four industrial subsectors: ferrous metals manufacturing; non-ferrous metals mining and manufacturing; chemicals manufacturing; and building materials manufacturing. Section 4 presents a simple methodology for comparing the costs of energy conservation to those of energy supply. Further discussion points out the applicability and limitations of this methodology to State Planning Commission published statistical material on the overall results of energy conservation investments. Though problematic, such analysis indicates that energy conservation investments were probably substantially cheaper than investments in equivalent energy supply would have been. They end with a discussion of some of the difficulties encountered in carrying out the conservation investment programs.

Liu Zhiping [State Planning Commission, Beijing (China). Energy Research Inst.; Sinton, J.E.; Yang Fuqiang; Levine, M.D.; Ting, M.K. [Lawrence Berkeley Lab., CA (United States)

1994-09-01T23:59:59.000Z

74

Analysis of fuel shares in the industrial sector  

SciTech Connect (OSTI)

These studies describe how fuel shares have changed over time; determine what factors are important in promoting fuel share changes; and project fuel shares to the year 1995 in the industrial sector. A general characterization of changes in fuel shares of four fuel types - coal, natural gas, oil and electricity - for the industrial sector is as follows. Coal as a major fuel source declined rapidly from 1958 to the early 1970s, with oil and natural gas substituting for coal. Coal's share of total fuels stabilized after the oil price shock of 1972-1973, and increased after the 1979 price shock. In the period since 1973, most industries and the industrial sector as a whole appear to freely substitute natural gas for oil, and vice versa. Throughout the period 1958-1981, the share of electricity as a fuel increased. These observations are derived from analyzing the fuel share patterns of more than 20 industries over the 24-year period 1958 to 1981.

Roop, J.M.; Belzer, D.B.

1986-06-01T23:59:59.000Z

75

Energy Department Announces New Private Sector Partnership to...  

Office of Environmental Management (EM)

Energy Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate...

76

Energy-economy interactions revisited within a comprehensive sectoral model  

SciTech Connect (OSTI)

This paper describes a computable general equilibrium (CGE) model with considerable sector and technology detail, the ``All Modular Industry Growth Assessment'' Model (AMIGA). It is argued that a detailed model is important to capture and understand the several rolls that energy plays within the economy. Fundamental consumer and industrial demands are for the services from energy; hence, energy demand is a derived demand based on the need for heating, cooling mechanical, electrical, and transportation services. Technologies that provide energy-services more efficiently (on a life cycle basis), when adopted, result in increased future output of the economy and higher paths of household consumption. The AMIGA model can examine the effects on energy use and economic output of increases in energy prices (e.g., a carbon charge) and other incentive-based policies or energy-efficiency programs. Energy sectors and sub-sector activities included in the model involve energy extraction conversion and transportation. There are business opportunities to produce energy-efficient goods (i.e., appliances, control systems, buildings, automobiles, clean electricity). These activities are represented in the model by characterizing their likely production processes (e.g., lighter weight motor vehicles). Also, multiple industrial processes can produce the same output but with different technologies and inputs. Secondary recovery, i.e., recycling processes, are examples of these multiple processes. Combined heat and power (CHP) is also represented for energy-intensive industries. Other modules represent residential and commercial building technologies to supply energy services. All sectors of the economy command real resources (capital services and labor).

Hanson, D. A.; Laitner, J. A.

2000-07-24T23:59:59.000Z

77

Analysis of the Energy Intensity of Industries in California  

E-Print Network [OSTI]

the aggregate energy-intensity of industry. Applied Energyindustries with final energy intensities of 12.3 Billion BtuAs mentioned, the energy intensity of this sector is much

Can, Stephane de la Rue du

2014-01-01T23:59:59.000Z

78

Energy Matters: Industrial Energy Efficiency | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Matters: Industrial Energy Efficiency Energy Matters: Industrial Energy Efficiency November 18, 2011 - 2:33pm Addthis On November 16, 2011, Deputy Assistant Secretary for Energy...

79

Energy Department Announces New Private Sector Partnership to...  

Office of Environmental Management (EM)

Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate Renewable...

80

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

values. Figure 7. Global Primary Energy by End-Use Sector,Scenario Figure 8. Global Primary Energy by End-Use Sector,

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

BC Hydro Industrial Sector: Marketing Sector Marketing Plan (Fiscal 2005/Fiscal 2006)  

E-Print Network [OSTI]

BC Hydro, the major electricity utility in the Province of British Columbia has been promoting industrial energy efficiency for more than 15 years. Recently it has launched a new Demand Side Management initiative with the objective of obtaining 2000...

Willis, P.; Wallace, K.

2005-01-01T23:59:59.000Z

82

Clean Energy Manufacturing Initiative Industrial Efficiency and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

83

Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector  

E-Print Network [OSTI]

Energy Efficiency Improvements in Electric Motors andEnergy Efficiency Improvements in Electric Motors and

Xu, T.T.

2011-01-01T23:59:59.000Z

84

Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)  

E-Print Network [OSTI]

relies heavily on coal as its energy source. Small-scaledominance of coal, providing 52% of energy inputs (includingrelying on coal for 52% of energy inputs (including

Zhiping, L.

2010-01-01T23:59:59.000Z

85

Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)  

E-Print Network [OSTI]

which holds an energy conservation product trade fair everyState Economic and Trade Commission (SETC), organized energyOffice of Energy Conservation Work State Economie and Trade

Zhiping, L.

2010-01-01T23:59:59.000Z

86

Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)  

E-Print Network [OSTI]

projects, and rural energy demonstration projects. AsSociety, and the China Rural Energy Society. Newspapers and1. We do not evaluate rural energy conservation programs in

Zhiping, L.

2010-01-01T23:59:59.000Z

87

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

public sector, and one in the private sector. Total energy consumptionenergy consumption increased by over 60% in the commercial building (including both public and private) sector.public sector ownership. 2.2.3 Energy data At the national or state level, end-use level energy consumption

Sathaye, Jayant

2011-01-01T23:59:59.000Z

88

Financing Energy Efficiency Retrofits in the Commercial Sector Webinar  

Broader source: Energy.gov [DOE]

Financing Energy Efficiency Retrofits in the Commercial Sector Webinar, from the U.S. Department of Energy's Better Buildings program.

89

Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity  

SciTech Connect (OSTI)

Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

Selldorff, John; Atwell, Monte

2014-09-23T23:59:59.000Z

90

Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity  

ScienceCinema (OSTI)

Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

Selldorff, John; Atwell, Monte

2014-12-03T23:59:59.000Z

91

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the U.S. Pulp and Paper Sector  

E-Print Network [OSTI]

Best Practices in the Netherlands: Top Ten Energy Saving Opportunities. Proceedings COST Strategic Workshop “Improving Energy Efficiency

Xu, Tengfang

2014-01-01T23:59:59.000Z

92

Interfuel Substitution and Energy Use in the UK Manufacturing Sector  

E-Print Network [OSTI]

of the following reasons. First, studies based on the aggregate data fail to account for large di¤erences in technological requirements for fuel types used in speci?c industries. For ex- ample, most cement kilns today use coal and petroleum coke as primary fuels... in the manufacturing processes. Waverman (1992) pointed out that fuels used by industrial sectors for non-energy purposes, such as coking coal, petrochemical feedstocks, or lubricants, have few available substitutes, and should therefore be excluded from the data...

Steinbuks, Jevgenijs

93

Industrial Energy Efficiency: Designing Effective State Programs...  

Office of Environmental Management (EM)

State Programs for the Industrial Sector This report provides state regulators, utilities, and other program administrators an overview of the spectrum of U.S. industrial...

94

Siemens AG 2009 Energy Sector  

E-Print Network [OSTI]

der Energieversorgung Intelligente Netze ­ Smart Grid Karl-Josef Kuhn Siemens AG, Corporate Technology pressure on infrastructures Cities are responsible for around 75% of the world's energy consumption Cities directly or indirectly account for 60% of the world's water use An overloaded power grid caused a 3-day

Ulm, Universität

95

WATER AND ENERGY SECTOR VULNERABILITY TO CLIMATE  

E-Print Network [OSTI]

WATER AND ENERGY SECTOR VULNERABILITY TO CLIMATE WARMING IN THE SIERRA NEVADA: Water Year explores the sensitivity of water indexing methods to climate change scenarios to better understand how water management decisions and allocations will be affected by climate change. Many water management

96

Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)  

E-Print Network [OSTI]

capacity came from cogeneration, fuel gas emissionsof waste heat cogeneration capacity, and improvements to theof energy (e.g. , cogeneration); (ix) improving energy

Zhiping, L.

2010-01-01T23:59:59.000Z

97

Energy Efficiency Services Sector: Workforce Size and Expectations for Growth  

E-Print Network [OSTI]

of Labor Statistics. Energy Efficiency Services Sector:Renewable Energy and Energy Efficiency: Economic Drivers forStatewide Long Term Energy Efficiency Strategic Plan. ” San

Goldman, Charles

2010-01-01T23:59:59.000Z

98

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network [OSTI]

the end user while primary energy consumption includes finalWEC 2001). GDP Primary Energy Consumption (EJ) natural gasHistorical Primary Energy Consumption by sector Energy Use

2008-01-01T23:59:59.000Z

99

Industrial Energy Use Indices  

E-Print Network [OSTI]

of variations for all industry types in warm versus cold regions of the U.S. generally is greater than unity. Data scatter may have several explanations, including climate, plant area accounting, the influence of low cost energy and low cost buildings used...

Hanegan, A.; Heffington, W. M.

2007-01-01T23:59:59.000Z

100

Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)  

E-Print Network [OSTI]

Feng L i u , and Jonathan E. Sinton. China's energy system:Energy), No. 4,1991. Sinton, Jonathan E. Interviews withand Nanjing, May, 1994. Sinton, Jonathan E. and Mark D.

Zhiping, L.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)  

E-Print Network [OSTI]

crude oil and oil products; (iii) retrofitting existing inefficient equipment; (iv) removing grossly inefficient equipment from service; (v) issuing energy-consumption

Zhiping, L.

2010-01-01T23:59:59.000Z

102

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the U.S. Pulp and Paper Sector  

E-Print Network [OSTI]

2001. The Energy Technology Systems Analysis Programme (and Institute of Paper Science and Technology (IPST) atGeorgia Institute of Technology, Atlanta. Kramer, K. J. ,

Xu, Tengfang

2014-01-01T23:59:59.000Z

103

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

not provide data on primary energy consumption by sector. Inconsumption into primary energy consumption by multiplyingA.3.5 provides primary energy consumption values for the

2006-01-01T23:59:59.000Z

104

Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)  

E-Print Network [OSTI]

by the Ministry of Metallurgy. (6) Coal gas recovery fromby the Ministry of Metallurgy. China's most energy-efficientNo. 1,1991. Ministry of Metallurgy (MOM), Zhongguo Gangti

Zhiping, L.

2010-01-01T23:59:59.000Z

105

Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)  

E-Print Network [OSTI]

i n cement plants Installing electricity generation capacityelectricity generation was assumed to be a 6 MW power plant,electricity generation, then is considered to be the difference between actual energy consumption at the cogeneration plant

Zhiping, L.

2010-01-01T23:59:59.000Z

106

Scottish Energy Research Academy Energy Industry Doctorates  

E-Print Network [OSTI]

on a case by case basis. · Wind energy · Marine energy · Bio-energy · Solar energy · Energy conversionScottish Energy Research Academy (SERA) Energy Industry Doctorates Project Selection Process Notes The Energy Technology Partnership (ETP) has established an Energy Industry Doctorate Programme

Painter, Kevin

107

Industrial energy use indices  

E-Print Network [OSTI]

gas consumption. Data from milder climates appears more scattered than that from colder climates. For example, the ratio of the average of coefficient of variations for all industry types in warm versus cold regions of the U.S. varies from 1....1 to 1.7 depending on the energy sources considered. The large data scatter indicates that predictions of energy use obtained by multiplying standard EUI data by plant area may be inaccurate and are less accurate in warmer than colder climates (warmer...

Hanegan, Andrew Aaron

2008-10-10T23:59:59.000Z

108

A New, Stochastic, Energy Model of the U.S. is Under Construction: SEDS and Its Industrial Structure  

E-Print Network [OSTI]

-duty vehicles and heavy-duty vehicles. The industrial sector is currently modeled as a single sector, using the latest Manufacturing Energy Consumption Survey (MECS) to calibrate energy consumption to end-use energy categories: boilers, process heating...

Roop, J. M.

109

Energy Sector Vulnerability to Climate Change: Adaptation Options to Increase Resilience (Presentation)  

SciTech Connect (OSTI)

The U.S. Department of Energy is conducting an assessment of vulnerabilities of the U.S. energy sector to climate change and extreme weather. Emphasizing peer reviewed research, it seeks to quantify vulnerabilities and identify specific knowledge or technology gaps. It draws upon a July 2012 workshop, ?Climate Change and Extreme Weather Vulnerability Assessment of the US Energy Sector?, hosted by the Atlantic Council and sponsored by DOE to solicit industry input.

Newmark, R. L.; Bilello, D.; Macknick, J.; Hallet, K. C.; Anderson, R.; Tidwell, V.; Zamuda, C.

2013-02-01T23:59:59.000Z

110

Energy Efficiency Services Sector: Workforce Size and Expectations for Growth  

SciTech Connect (OSTI)

The energy efficiency services sector (EESS) is poised to become an increasingly important part of the U.S. economy. Climate change and energy supply concerns, volatile and increasing energy prices, and a desire for greater energy independence have led many state and national leaders to support an increasingly prominent role for energy efficiency in U.S. energy policy. The national economic recession has also helped to boost the visibility of energy efficiency, as part of a strategy to support economic recovery. We expect investment in energy efficiency to increase dramatically both in the near-term and through 2020 and beyond. This increase will come both from public support, such as the American Recovery and Reinvestment Act (ARRA) and significant increases in utility ratepayer funds directed toward efficiency, and also from increased private spending due to codes and standards, increasing energy prices, and voluntary standards for industry. Given the growing attention on energy efficiency, there is a concern among policy makers, program administrators, and others that there is an insufficiently trained workforce in place to meet the energy efficiency goals being put in place by local, state, and federal policy. To understand the likelihood of a potential workforce gap and appropriate response strategies, one needs to understand the size, composition, and potential for growth of the EESS. We use a bottom-up approach based upon almost 300 interviews with program administrators, education and training providers, and a variety of EESS employers and trade associations; communications with over 50 sector experts; as well as an extensive literature review. We attempt to provide insight into key aspects of the EESS by describing the current job composition, the current workforce size, our projections for sector growth through 2020, and key issues that may limit this growth.

Goldman, Charles; Fuller, Merrian C.; Stuart, Elizabeth; Peters, Jane S.; McRae, Marjorie; Albers, Nathaniel; Lutzenhiser, Susan; Spahic, Mersiha

2010-03-22T23:59:59.000Z

111

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network [OSTI]

J. , 2001. “Changing Energy Intensity in Chinese Industry”,M. ,1994. “Changing Energy Intensity in Chinese Industry”,2006. Indicators of Energy Intensity in the Unites States,

2008-01-01T23:59:59.000Z

112

Energy Efficiency and Industrial Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next Generation Nuclear Plant Docs CONTACT US Center for Advanced Energy Studies Energy Efficiency and Industrial Technology The Department conducts research for DOE, other...

113

India's Fertilizer Industry: Productivity and Energy Efficiency  

SciTech Connect (OSTI)

Historical estimates of productivity growth in India's fertilizer sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Our analysis shows that in the twenty year period, 1973 to 1993, productivity in the fertilizer sector increased by 2.3% per annum. An econometric analysis reveals that technical progress in India's fertilizer sector has been biased towards the use of energy, while it has been capital and labor saving. The increase in productivity took place during the era of total control when a retention price system and distribution control was in effect. With liberalization of the fertilizer sector and reduction of subsidies productivity declined substantially since the early 1990s. Industrial policies and fiscal incentives still play a major role in the Indian fertilizer sect or. As substantial energy savings and carbon reduction potential exists, energy policies can help overcome barriers to the adoption of these measures in giving proper incentives and correcting distorted prices.

Schumacher, K.; Sathaye, J.

1999-07-01T23:59:59.000Z

114

Charting a Path to Net Zero Energy: Public-Private Sector Perspectives of the Commercial Buildings Consortium  

E-Print Network [OSTI]

Transforming the commercial buildings market to become "net-zero-energy-capable" will require dramatically lower levels of energy use sector wide. A comprehensive and concerted industry effort, partnering with utilities and government, must...

Harris, J.

2011-01-01T23:59:59.000Z

115

DOE has published the revised 2010 Energy Sector Specific Plan  

Broader source: Energy.gov [DOE]

The Department of Energy announces the publication of the Energy Sector-Specific Plan: An Annex to the National Infrastructure Protection Plan 2010.

116

Energy Use in China: Sectoral Trends and Future Outlook  

SciTech Connect (OSTI)

This report provides a detailed, bottom-up analysis ofenergy consumption in China. It recalibrates official Chinese governmentstatistics by reallocating primary energy into categories more commonlyused in international comparisons. It also provides an analysis of trendsin sectoral energy consumption over the past decades. Finally, itassesses the future outlook for the critical period extending to 2020,based on assumptions of likely patterns of economic activity,availability of energy services, and energy intensities. The followingare some highlights of the study's findings: * A reallocation of sectorenergy consumption from the 2000 official Chinese government statisticsfinds that: * Buildings account for 25 percent of primary energy, insteadof 19 percent * Industry accounts for 61 percent of energy instead of 69percent * Industrial energy made a large and unexpected leap between2000-2005, growing by an astonishing 50 percent in the 3 years between2002 and 2005. * Energy consumption in the iron and steel industry was 40percent higher than predicted * Energy consumption in the cement industrywas 54 percent higher than predicted * Overall energy intensity in theindustrial sector grew between 2000 and 2003. This is largely due tointernal shifts towards the most energy-intensive sub-sectors, an effectwhich more than counterbalances the impact of efficiency increases. *Industry accounted for 63 percent of total primary energy consumption in2005 - it is expected to continue to dominate energy consumption through2020, dropping only to 60 percent by that year. * Even assuming thatgrowth rates in 2005-2020 will return to the levels of 2000-2003,industrial energy will grow from 42 EJ in 2005 to 72 EJ in 2020. * Thepercentage of transport energy used to carry passengers (instead offreight) will double from 37 percent to 52 percent between 2000 to 2020,.Much of this increase is due to private car ownership, which willincrease by a factor of 15 from 5.1 million in 2000 to 77 million in2020. * Residential appliance ownership will show signs of saturation inurban households. The increase in residential energy consumption will belargely driven by urbanization, since rural homes will continue to havelow consumption levels. In urban households, the size of appliances willincrease, but its effect will be moderated by efficiency improvements,partially driven by government standards. * Commercial energy increaseswill be driven both by increases in floor space and by increases inpenetration of major end uses such as heating and cooling. Theseincreases will be moderated somewhat, however, by technology changes,such as increased use of heat pumps. * China's Medium- and Long-TermDevelopment plan drafted by the central government and published in 2004calls for a quadrupling of GDP in the period from 2000-2020 with only adoubling in energy consumption during the same period. A bottom-upanalysis with likely efficiency improvements finds that energyconsumption will likely exceed the goal by 26.12 EJ, or 28 percent.Achievements of these goals will there fore require a more aggressivepolicy of encouraging energy efficiency.

Zhou, Nan; McNeil, Michael A.; Fridley, David; Lin, Jiang; Price,Lynn; de la Rue du Can, Stephane; Sathaye, Jayant; Levine, Mark

2007-10-04T23:59:59.000Z

117

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Consumption XLS Table 17. Renewable Energy Consumption by Sector and Source XLS Table 18. Carbon Dioxide Emissions by Sector and Source - United States XLS Table 18.1. Carbon...

118

Energy Analysis by Sector | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 & 6, 2012 MEETING OF THEofEndstatesOctober marks

119

Unrestricted. Siemens AG 2013. All rights reserved.Page 2 October 2013 Corporate Technology Siemens is organized in 4 Sectors: Industry,  

E-Print Network [OSTI]

· Smart Grid · Building Technologies · Osram 2) Corporate functions Corporate Technology Corp. Finance Siemens is organized in 4 Sectors: Industry, Energy, Healthcare and Infrastructure & Cities Siemens: Facts ... Corp. Technology Corp. Development Infrastructure & Cities HealthcareEnergyIndustry ~ 14 bn.1) ~ 18 bn

Oak Ridge National Laboratory

120

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

vehicles. dDoes not include lease, plant, and pipeline fuel. eNatural gas consumed in the residential and commercial sectors. f Includes consumption for industrial combined heat...

Note: This page contains sample records for the topic "industrial sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

cDoes not includes lease, plant, and pipeline fuel. dNatural gas consumed in the residential and commercial sectors. eIncludes consumption for industrial combined heat and...

122

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Natural Gas Industrial and electric power sectors lead U.S. growth in natural gas consumption figure data U.S. total natural gas consumption grows from 24.4 trillion cubic feet in...

123

Scottish Energy Research Academy Energy Industry Doctorates  

E-Print Network [OSTI]

· Solar energy · Energy conversion and storage · Energy materials · Grid and networks · Energy utilisationScottish Energy Research Academy (SERA) Energy Industry Doctorates in Renewable Energy Technologies ­ Notes for Guidance 1. Introduction The Energy Technology Partnership (ETP) has established an Energy

Painter, Kevin

124

Industrial Energy Audit Guidebook: Guidelines for Conducting...  

Open Energy Info (EERE)

Industry Resource Type: Guidemanual Website: china.lbl.govsiteschina.lbl.govfilesLBNL-3991E.Industrial%20Energy Industrial Energy Audit Guidebook: Guidelines for Conducting...

125

The energy sector is comprised of a wide range of businesses involved in the exploration, extraction, production, refining, distribution, and sale of energy. The primary  

E-Print Network [OSTI]

, extraction, production, refining, distribution, and sale of energy. The primary industries within this sector of ways. Some examples include: · Using global surface hourly data for studies of wind energy potentialOVERVIEW The energy sector is comprised of a wide range of businesses involved in the exploration

126

Interacting vacuum energy in the dark sector  

E-Print Network [OSTI]

We analyse three cosmological scenarios with interaction in the dark sector, which are particular cases of a general expression for the energy flux from vacuum to matter. In the first case the interaction leads to a transition from an unstable de Sitter phase to a radiation dominated universe, avoiding in this way the initial singularity. In the second case the interaction gives rise to a slow-roll power-law inflation. Finally, the third scenario is a concordance model for the late-time universe, with the vacuum term decaying into cold dark matter. We identify the physics behind these forms of interaction and show that they can be described as particular types of the modified Chaplygin gas.

L. P. Chimento; S. Carneiro

2014-04-02T23:59:59.000Z

127

Climate Change Mitigation in the Energy and Forestry Sectors...  

Open Energy Info (EERE)

of Developing Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change Mitigation in the Energy and Forestry Sectors of Developing Countries...

128

Manufacturing Energy and Carbon Footprint - Sector: Iron and...  

Broader source: Energy.gov (indexed) [DOE]

Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006) Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006)...

129

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network [OSTI]

structure. From 51% of total energy consumption in 1980, thefor 61% of total energy consumption. Industrial energy usethis scenario, China’s total energy consumption by 2020 will

2008-01-01T23:59:59.000Z

130

Constraining Energy Consumption of China's Largest Industrial Enterprises Through the Top-1000 Energy-Consuming Enterprise Program  

E-Print Network [OSTI]

China’s total primary energy consumption in 2005, along withthe industrial sector primary energy consumption was 1,416of China’s total primary energy consumption (Lin et al. ,

Price, Lynn; Wang, Xuejun

2007-01-01T23:59:59.000Z

131

U.S. Department of Energy (DOE) Industrial Programs and Their Impacts  

E-Print Network [OSTI]

P.O. Box 999 Battelle Blvd. MS: K6-05 P.O. Box 999 Battelle Blvd. MS: K6-05 Richland, Washington 99352 Richland, Washington 99352 ABSTRACT The U.S. Department of Energy?s Industrial Technologies Program (ITP) has been working... in the nation's indus- trial sector far exceeds any other sector and is more diverse. In 2006, the industrial sector used 32.43 Figure 1. Industrial Energy Flows (Quad), 2006 ESL-IE-08-05-33 Proceedings from the Thirtieth Industrial Energy Technology...

Weakley, S. A.; Roop, J. M.

2008-01-01T23:59:59.000Z

132

EPRI's Industrial Energy Management Program  

E-Print Network [OSTI]

the Electric Power Research Institute has been establishing industry specific Centers and Offices nationwide to assist electric utilities and their customers in managing for a better use of energy. Hundreds of joint industry/utility projects... services thus supporting national objectives for a clean environment and a strong economic future. The Electric Power Research Institute (EPRI) recognizes that the management of energy use and the environmental impacts of industrial activity...

Mergens, E.; Niday, L.

133

Industrial Energy Efficiency Technical Review Guidelines and Best Practices  

E-Print Network [OSTI]

of commercial and other sector programs. The following programs were deemed to represent the best combination of applicability and access to relevant information: ? BC Hydro?s Power Smart Partners - Industrial (Transmission and Distribution...) ? Wisconsin?s Focus on Energy ? Industrial ? California Public Utilities Commission?s (CPUC) Southern California Industrial and Agricultural (SCIA) and Pacific Gas & Electric?s (PG&E) Fabrication, Process and Manufacturing Review of Impact Evaluation...

Dalziel, N.

2013-01-01T23:59:59.000Z

134

Oklahoma Industrial Energy Management Program  

E-Print Network [OSTI]

The need for sound energy management is no longer worthy of debate. Action is necessary and much is being done by U.S. industry. Unfortunately, however, the majority of the work is being done by the few large energy intensive industries throughout...

Turner, W. C.; Webb, R. E.; Phillips, J. M.; Viljoen, T. A.

1979-01-01T23:59:59.000Z

135

Industry  

E-Print Network [OSTI]

sector’s share of global primary energy use declined fromused 91 EJ of primary energy, 40% of the global total of 227Global and sectoral data on final energy use, primary energy

Bernstein, Lenny

2008-01-01T23:59:59.000Z

136

Scottish Energy Research Academy Energy Industry Doctorates  

E-Print Network [OSTI]

effectiveness. A defining characteristic of the programme is strong industry engagement where companies are co universities, across ETP's nine thematic focus areas: · Wind energy · Marine energy · Bio-energy · Solar energy · Energy conversion and storage · Energy materials · Grid and networks · Energy utilisation in buildings

Painter, Kevin

137

Fact #792: August 12, 2013 Energy Consumption by Sector and Energy...  

Broader source: Energy.gov (indexed) [DOE]

2: August 12, 2013 Energy Consumption by Sector and Energy Source, 1982 and 2012 Fact 792: August 12, 2013 Energy Consumption by Sector and Energy Source, 1982 and 2012 In the...

138

DOE Issues Energy Sector Cyber Organization NOI  

Broader source: Energy.gov (indexed) [DOE]

sector stakeholders to protect the bulk power electric grid and aid the integration of smart grid technology to enhance the security of the grid. The cyber organization is...

139

Draft Energy Sector Cybersecurity Framework Implementation Guidance...  

Broader source: Energy.gov (indexed) [DOE]

and Technology (NIST) released a Cybersecurity Framework. DOE has collaborated with private sector stakeholders through the Electricity Subsector Coordinating Council (ESCC)...

140

Energy Sector Cybersecurity Framework Implementation Guidance...  

Broader source: Energy.gov (indexed) [DOE]

Technology (NIST) released a Cybersecurity Framework. DOE has collaborated with private sector stakeholders through the Electricity Subsector Coordinating Council (ESCC) and the...

Note: This page contains sample records for the topic "industrial sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Industrial Energy Efficiency Achieving Success in a Difficult Environment  

E-Print Network [OSTI]

Energy use and the resulting environmental impacts are major points of concern for the world in the 21st century. Opinions that define the challenges of sustainable energy options are as diverse as the proposed solutions. The industrial sector is a...

Castellow, C.

2011-01-01T23:59:59.000Z

142

Sectoral trends in global energy use and greenhouse gasemissions  

SciTech Connect (OSTI)

In 2000, the Intergovernmental Panel on Climate Change (IPCC) published a new set of baseline greenhouse gas (GHG) emissions scenarios in the Special Report on Emissions Scenarios (SRES) (Nakicenovic et al., 2000). The SRES team defined four narrative storylines (A1, A2, B1 and B2) describing the relationships between the forces driving GHG and aerosol emissions and their evolution during the 21st century. The SRES reports emissions for each of these storylines by type of GHG and by fuel type to 2100 globally and for four world regions (OECD countries as of 1990, countries undergoing economic reform, developing countries in Asia, rest of world). Specific assumptions about the quantification of scenario drivers, such as population and economic growth, technological change, resource availability, land-use changes, and local and regional environmental policies, are also provided. End-use sector-level results for buildings, industry, or transportation or information regarding adoption of particular technologies and policies are not provided in the SRES. The goal of this report is to provide more detailed information on the SRES scenarios at the end use level including historical time series data and a decomposition of energy consumption to understand the forecast implications in terms of end use efficiency to 2030. This report focuses on the A1 (A1B) and B2 marker scenarios since they represent distinctly contrasting futures. The A1 storyline describes a future of very rapid economic growth, low population growth, and the rapid introduction of new and more efficient technologies. Major underlying themes are convergence among regions, capacity building, and increased cultural and social interactions, with a substantial reduction in regional differences in per capita income. The B2 storyline describes a world with an emphasis on economic, social, and environmental sustainability, especially at the local and regional levels. It is a world with moderate population growth, intermediate levels of economic development, and less rapid and more diverse technological change (Nakicenovic et al., 2000). Data were obtained from the SRES modeling teams that provide more detail than that reported in the SRES. For the A1 marker scenario, the modeling team provided final energy demand and carbon dioxide (CO{sub 2}) emissions by fuel for industry, buildings, and transportation for nine world regions. Final energy use and CO{sub 2} emissions for three sectors (industry, transport, buildings) for the four SRES world regions were provided for the B2 marker scenario. This report describes the results of a disaggregation of the SRES projected energy use and energy-related CO{sub 2} emissions for the industrial, transport, and buildings sectors for 10 world regions (see Appendix 1) to 2030. An example of further disaggregation of the two SRES scenarios for the residential buildings sector in China is provided, illustrating how such aggregate scenarios can be interpreted at the end use level.

Price, Lynn; de la Rue du Can, Stephane; Sinton, Jonathan; Worrell, Ernst; Zhou, Nan; Sathaye, Jayant; Levine, Mark

2006-07-24T23:59:59.000Z

143

Energy Department Partners with Industry to Train Federal Energy...  

Energy Savers [EERE]

Partners with Industry to Train Federal Energy Managers and Reduce Energy Costs Energy Department Partners with Industry to Train Federal Energy Managers and Reduce Energy Costs...

144

Hybrid modeling of industrial energy consumption and greenhouse gas emissions with an application to Canada  

E-Print Network [OSTI]

implemented in Canada, what would be the response of the industrial sector in terms of energy consumptionHybrid modeling of industrial energy consumption and greenhouse gas emissions with an application for modeling industrial energy consumption, among them a series of environmental and security externalities

145

Proposed Final Opinion on GHG Strategies in the Energy Sectors  

E-Print Network [OSTI]

1 Proposed Final Opinion on GHG Strategies in the Energy Sectors Key Findings and Recommendations;3 Background and Context Energy Commission and PUC developing recommendations to ARB for reducing GHG emissions multi-sector cap-and-trade program for GHG emissions allowances #12;5 September 2008 Interim Opinion

146

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

Process in the Adoption of Solar Energy Systems." Journal ofthe diffusion of innovation: Solar energy technology in Sri2010. Washington, DC, Solar Energy Industries Association:

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

147

Strategies for reducing energy demand in the materials sector  

E-Print Network [OSTI]

This research answers a key question - can the materials sector reduce its energy demand by 50% by 2050? Five primary materials of steel, cement, aluminum, paper, and plastic, contribute to 50% or more of the final energy ...

Sahni, Sahil

2013-01-01T23:59:59.000Z

148

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

Agency (IEA), 2004c. CO2 emissions from fuel combustion,12. Global Energy-Related CO2 Emissions by End-Use Sector,2030. Energy-Related CO2 Emissions (GtC) Transport Buildings

2006-01-01T23:59:59.000Z

149

Student Trainee (Energy Industry)  

Broader source: Energy.gov [DOE]

The Federal Energy Regulatory Commission (FERC) is an independent regulatory agency that regulates and oversees various aspects of the energy markets within the United States. We value independence...

150

U.S. Energy Sector Vulnerability Report | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sector Transportation EnergyGlossary API gravity: AnU.S.

151

Outlook for Industrial Energy Benchmarking  

E-Print Network [OSTI]

The U.S. Environmental Protection Agency is exploring options to sponsor an industrial energy efficiency benchmarking study to identify facility specific, cost-effective best practices and technologies. Such a study could help develop a common...

Hartley, Z.

152

CALIFORNIA ENERGY PETROLEUM INDUSTRY INFORMATION  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION PETROLEUM INDUSTRY INFORMATION REPORTING ACT (PIIRA) PROGRAM REPORTING PETROLEUM AND NON-PETROLEUM ................................................... 40 PRODUCT DEFINITIONS Major Petroleum Product Storer and Terminal Weekly Report Major petroleum product storers, terminal

153

Energy conservation guide for industrial processes  

SciTech Connect (OSTI)

Th Energy Conservation Guide for industrial processes has simple instructions to survey energy use areas at Navy industrial activities like shipyards, Naval air rework facilities and government owned, contractor operated (GOCO) plants. This guide includes information and procedures on: organizing and conducting an industrial energy survey; evaluating purchased energy data; descriptions of industrial systems; and evaluation of industrial processes for conservation.

Not Available

1981-01-01T23:59:59.000Z

154

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect (OSTI)

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model's parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. (Lawrence Berkeley Lab., CA (United States) Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.); Hwang, R. (Lawrence Berkeley Lab., CA (United States))

1992-02-01T23:59:59.000Z

155

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect (OSTI)

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model`s parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. [Lawrence Berkeley Lab., CA (United States)]|[Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics]|[Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Hwang, R. [Lawrence Berkeley Lab., CA (United States)

1992-02-01T23:59:59.000Z

156

Industrial Energy Conservation Technology  

SciTech Connect (OSTI)

A separate abstract was prepared for each of the 55 papers presented in this volume, all of which will appear in Energy Research Abstracts (ERA); 18 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

Not Available

1980-01-01T23:59:59.000Z

157

Industrial energy conservation technology  

SciTech Connect (OSTI)

A separate abstract was prepared for each of the 60 papers included in this volume, all of which will appear in Energy Research Abstracts (ERA); 21 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

Schmidt, P.S.; Williams, M.A. (eds.)

1980-01-01T23:59:59.000Z

158

Energy Department Announces New Minorities in Energy Industry...  

Energy Savers [EERE]

Energy Department Announces New Minorities in Energy Industry Partner Network Energy Department Announces New Minorities in Energy Industry Partner Network November 18, 2014 -...

159

Industrial Energy Efficiency Projects Improve Competitiveness...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs U.S. Department of...

160

Geothermal Energy Association Annual Industry Briefing: 2015...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Energy Association Annual Industry Briefing: 2015 State of Geothermal Geothermal Energy Association Annual Industry Briefing: 2015 State of Geothermal February 24, 2015...

Note: This page contains sample records for the topic "industrial sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

at a modest rate Slow consumption growth, fast investment growth, and an ever-improving trade surplus Output growth for energy-intensive industries remains slow Energy...

162

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Industrial and commercial... Renewable sources... Transportation uses... U.S. average energy use per person and per dollar of GDP declines through 2035 Growth in energy use is...

163

Oklahoma Industrial Energy Management Program  

E-Print Network [OSTI]

In Oklahoma, industry consumes about 35% of the total energy consumed. While it is true that much work has been done in the larger companies, most small to medium sized companies have yet to undertake a substantial energy management program. Often...

Turner, W. C.; Estes, C. B.

1982-01-01T23:59:59.000Z

164

Energy Industry Analyst  

Broader source: Energy.gov [DOE]

This position is located in the Northeast Satellite Office of the Office of Energy Market Regulation (OEMR)/Division of Electric Power Regulation, East. OEMR works to promote and maintain...

165

Energy Industry Analyst  

Broader source: Energy.gov [DOE]

This Subject Matter Expert position is located in the Northeast satellite office of the Office of Energy Market Regulation (OEMR)/Division of Electric Power Regulation-East. OEMR serves the public...

166

India's pulp and paper industry: Productivity and energy efficiency  

SciTech Connect (OSTI)

Historical estimates of productivity growth in India's pulp and paper sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both statistical and econometric estimates of productivity growth for this sector. Their results show that productivity declined over the observed period from 1973-74 to 1993-94 by 1.1% p.a. Using a translog specification the econometric analysis reveals that technical progress in India's pulp and paper sector has been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protection afforded by high tariffs on imported paper products and other policies, which allowed inefficient, small plants to enter the market and flourish. Will these trends continue into the future, particularly where energy use is concerned? The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with liberalization of the sector, and tighter environmental controls, the industry is moving towards higher efficiency and productivity. However, the analysis also shows that because these improvements are being hampered by significant financial and other barriers the industry might have a long way to go.

Schumacher, Katja

1999-07-01T23:59:59.000Z

167

Roadmap to Secure Control Systems in the Energy Sector 2006 ...  

Broader source: Energy.gov (indexed) [DOE]

2006 - Presentation to the 2008 ieRoadmap Workshop Roadmap to Secure Control Systems in the Energy Sector 2006 - Presentation to the 2008 ieRoadmap Workshop Presentation by Hank...

168

Climate VISION: PrivateSector Initiatives: Minerals - Industry Associations  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -ResultsLinks -

169

Industry  

SciTech Connect (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

170

Industrial Energy Efficiency Assessments  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.Indiana College Provides TrainingEnergy Efficiency

171

Designing Effective State Programs for the Industrial Sector - New SEE  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit Services AuditTransatlantic Relations &Energy FTCPEnergyAction

172

Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity  

SciTech Connect (OSTI)

In November 2012, the Joint Institute for Strategic Energy Analysis (JISEA) released a new report, 'Natural Gas and the Transformation of the U.S. Energy Sector: Electricity.' The study provides a new methodological approach to estimate natural gas related greenhouse gas (GHG) emissions, tracks trends in regulatory and voluntary industry practices, and explores various electricity futures. The Executive Summary provides key findings, insights, data, and figures from this major study.

Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

2013-01-01T23:59:59.000Z

173

Methodology for Modeling Building Energy Performance across the Commercial Sector  

SciTech Connect (OSTI)

This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

2008-03-01T23:59:59.000Z

174

ENERGY SMART INDUSTRIAL PARTNER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutronEnvironment > Voluntary ReportingAbout UsSponsorsIssue No.

175

Types of Nuclear Industry Jobs Commercial and Government Sectors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButlerTransportation6/14/11 Page 1Two NovelTwoTypesTypes of

176

Fact #619: April 19, 2010 Transportation Sector Revenue by Industry |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report1:Energy 2: MarchDepartment of

177

HOW DO WE CONVERT THE TRANSPORT SECTOR TO RENEWABLE ENERGY AND IMPROVE THE SECTOR'S INTERPLAY WITH THE  

E-Print Network [OSTI]

..........................................................................................................16 #12;2 1. Summary The global energy scene is currently dominated by two overriding concerns relies almost 100 % on oil, and in 2004 transport energy use amounted to 26% of total world energy useHOW DO WE CONVERT THE TRANSPORT SECTOR TO RENEWABLE ENERGY AND IMPROVE THE SECTOR'S INTERPLAY

178

Property:DeploymentSector | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyoCoolingTowerWaterUseSummerConsumed Jump to:DOEInvolveDeploymentSector Jump to:

179

Borla Performance Industries, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Borla Performance Industries, Inc. America's Next Top Energy Innovator Challenge 1830 likes Borla Performance Industries, Inc. Oak Ridge National Laboratory Borla Performance...

180

'Tilted' Industrial Electric Rates: A New Negative Variable for Energy Engineers  

E-Print Network [OSTI]

The cost of purchased electricity for industry is rising even faster than for other sectors. Conventional means of reducing power costs include internal techniques like load management, demand controls and energy conservation. External mechanisms...

Greenwood, R. W.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Setting the Standard for Industrial Energy Efficiency  

E-Print Network [OSTI]

Voluntary Agreements for Energy Efficiency or GHG EmissionsACEEE Summer Study on Energy Efficiency in Industry, WestStandard for Industrial Energy Efficiency A. McKane 1 , R.

McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

2008-01-01T23:59:59.000Z

182

Energy-Efficiency Improvement Opportunities for the Textile Industry  

SciTech Connect (OSTI)

The textile industry is one of the most complicated manufacturing industries because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. Especially in times of high energy price volatility, improving energy efficiency should be a primary concern for textile plants. There are various energy-efficiency opportunities that exist in every textile plant, many of which are cost-effective. However, even cost-effective options often are not implemented in textile plants mostly because of limited information on how to implement energy-efficiency measures, especially given the fact that a majority of textile plants are categorized as SMEs and hence they have limited resources to acquire this information. Know-how on energy-efficiency technologies and practices should, therefore, be prepared and disseminated to textile plants. This guidebook provides information on energy-efficiency technologies and measures applicable to the textile industry. The guidebook includes case studies from textile plants around the world and includes energy savings and cost information when available. First, the guidebook gives a brief overview of the textile industry around the world, with an explanation of major textile processes. An analysis of the type and the share of energy used in different textile processes is also included in the guidebook. Subsequently, energy-efficiency improvement opportunities available within some of the major textile sub-sectors are given with a brief explanation of each measure. The conclusion includes a short section dedicated to highlighting a few emerging technologies in the textile industry as well as the potential for the use of renewable energy in the textile industry.

China Energy Group; Hasanbeigi, Ali

2010-09-29T23:59:59.000Z

183

Energy Conservation Progress and Opportunities in the Pulp and Paper Industry  

E-Print Network [OSTI]

In 1980 the pulp and paper industry was the third ranking consumer of total purchased fuels and energy in the U.S. industrial sector and the highest single industry in terms of residual oil consumption. Over the past decade in response to rapidly...

Watkins, J. J.; Hunter, W. D.

1984-01-01T23:59:59.000Z

184

Detection and Analysis of Threats to the Energy Sector: DATES  

SciTech Connect (OSTI)

This report summarizes Detection and Analysis of Threats to the Energy Sector (DATES), a project sponsored by the United States Department of Energy and performed by a team led by SRI International, with collaboration from Sandia National Laboratories, ArcSight, Inc., and Invensys Process Systems. DATES sought to advance the state of the practice in intrusion detection and situational awareness with respect to cyber attacks in energy systems. This was achieved through adaptation of detection algorithms for process systems as well as development of novel anomaly detection techniques suited for such systems into a detection suite. These detection components, together with third-party commercial security systems, were interfaced with the commercial Security Information Event Management (SIEM) solution from ArcSight. The efficacy of the integrated solution was demonstrated on two testbeds, one based on a Distributed Control System (DCS) from Invensys, and the other based on the Virtual Control System Environment (VCSE) from Sandia. These achievements advance the DOE Cybersecurity Roadmap [DOE2006] goals in the area of security monitoring. The project ran from October 2007 until March 2010, with the final six months focused on experimentation. In the validation phase, team members from SRI and Sandia coupled the two test environments and carried out a number of distributed and cross-site attacks against various points in one or both testbeds. Alert messages from the distributed, heterogeneous detection components were correlated using the ArcSight SIEM platform, providing within-site and cross-site views of the attacks. In particular, the team demonstrated detection and visualization of network zone traversal and denial-of-service attacks. These capabilities were presented to the DistribuTech Conference and Exhibition in March 2010. The project was hampered by interruption of funding due to continuing resolution issues and agreement on cost share for four months in 2008. This resulted in delays in finalizing agreements with commercial partners, and in particular the Invensys testbed was not installed until December 2008 (as opposed to the March 2008 plan). The project resulted in a number of conference presentations and publications, and was well received when presented at industry forums. In spite of some interest on the part of the utility sector, we were unfortunately not able to engage a utility for a full-scale pilot deployment.

Alfonso Valdes

2010-03-31T23:59:59.000Z

185

Ontario's Industrial Energy Services Program  

E-Print Network [OSTI]

% of the engineering costs up to a maximum depending on the size of the annual energy bill. Once the work has been completed and the consultant's invoice paid, a copy of the invoice and a co~y of the report is sent to the Ministry. After internal review, a cheque... represent approximately $600 million annually. Recently, the Ontario Ministry of Energy released a policy paper outlining the government's commitment to energy conservation and efficiency. One of the key areas was Industry, and the Ministry's programs...

Ploeger, L. K.

186

Two Paths to Transforming Markets through Public Sector Energy Efficiency: Bottom Up versus Top Down  

E-Print Network [OSTI]

public sector buildings in four provinces to develop a baseline of equipment usage and energy consumption;

Van Wie McGrory, Laura; Coleman, Philip; Fridley, David; Harris, Jeffrey; Villasenor Franco, Edgar

2006-01-01T23:59:59.000Z

187

Energy Efficiency Improvement in the Petroleum RefiningIndustry  

SciTech Connect (OSTI)

Information has proven to be an important barrier inindustrial energy efficiency improvement. Voluntary government programsaim to assist industry to improve energy efficiency by supplyinginformation on opportunities. ENERGY STAR(R) supports the development ofstrong strategic corporate energy management programs, by providingenergy management information tools and strategies. This paper summarizesENERGY STAR research conducted to develop an Energy Guide for thePetroleum Refining industry. Petroleum refining in the United States isthe largest in the world, providing inputs to virtually every economicsector, including the transport sector and the chemical industry.Refineries spend typically 50 percent of the cash operating costs (e.g.,excluding capital costs and depreciation) on energy, making energy amajor cost factor and also an important opportunity for cost reduction.The petroleum refining industry consumes about 3.1 Quads of primaryenergy, making it the single largest industrial energy user in the UnitedStates. Typically, refineries can economically improve energy efficiencyby 20 percent. The findings suggest that given available resources andtechnology, there are substantial opportunities to reduce energyconsumption cost-effectively in the petroleum refining industry whilemaintaining the quality of the products manufactured.

Worrell, Ernst; Galitsky, Christina

2005-05-01T23:59:59.000Z

188

Economies of Scale and Scope in Network Industries: Lessons for the UK water and sewerage sectors  

E-Print Network [OSTI]

was directly transferred to 12 private firms. The government sold its remaining share of the power generators in the year 2000.4 The 2001 New Electricity Trading Arrangements (NETA) changed the mechanism for electricity trading and the latest major reform... sectors1 Michael G. Pollitt Steven J. Steer ESRC Electricity Policy Research Group University of Cambridge August 2011 Abstract Many studies of the water and sewerage industries place significant importance on the benefits of economies...

Pollitt, Michael G.; Steer, Stephen J.

189

Benteler Industries | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy Resources (Redirected from ECOWASBennington,Vermont:Benteler Industries

190

Manufacturing Energy and Carbon Footprint - Sector: Transportation...  

Broader source: Energy.gov (indexed) [DOE]

for) Electricity Export 1 Combustion Emissions (MMT CO 2 e Million Metric Tons Carbon Dioxide Equivalent) Total Emissions Offsite Emissions + Onsite Emissions Energy...

191

Manufacturing Energy and Carbon Footprint - Sector: Computer...  

Broader source: Energy.gov (indexed) [DOE]

for) Electricity Export 0 Combustion Emissions (MMT CO 2 e Million Metric Tons Carbon Dioxide Equivalent) Total Emissions Offsite Emissions + Onsite Emissions Energy...

192

Greenline Industries | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: EnergyGrasslandsGreen2V Jump506384°,AES GE EFSGreenline Industries

193

Guardian Industries | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:Net Jump to:EnergyEnergy°Guadeloupe:Industries

194

Energy Programs of the Texas Industrial Commission  

E-Print Network [OSTI]

The objectives of the Industrial Energy Conservation Program are to assist Texas industry in using energy more efficiently through seminars, workshops, technical information exchange and other supportive programs with the goal of conserving at least...

Heare, J.; dePlante, L. E.

1979-01-01T23:59:59.000Z

195

Sharing the burden of climate change stabilization: An energy sector perspective  

E-Print Network [OSTI]

energy demand in the electricity sector and demand in all2070 when in the electricity sector coal is largely replaceddemand both in the electricity sector and the non-electric

Wagner, Fabian; Sathaye, Jayant

2006-01-01T23:59:59.000Z

196

DOE Issues Energy Sector Cyber Organization NOI  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE ChallengeThese(Notice ofIssues National Energy

197

Dams and Energy Sectors Interdependency Study  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix DOE-STD-3009-2014ofOutline of RemarksType text] Dams and

198

US Energy Sector Vulnerabilities to Climate Change  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energyof Energy8,November 2012U.S.Department2

199

Industrial Energy Management: Doing More with Less  

E-Print Network [OSTI]

during the course of business — with energy-intensive operations such as aluminum and chemical processing plants experiencing energy costs between five and 10 times higher than industry averages (Source: Department of Energy, Office of Industrial... INDUSTRIAL ENERGY MANAGEMENT: DOING MORE WITH LESS Jason Sheppard, Industrial Market Segment Manager Anthony Tisot, Communications Manager Power Monitoring and Control SCHNEIDER ELECTRIC Victoria, BC, Canada ABSTRACT The cost of doing...

Sheppard, J.; Tisot, A.

2006-01-01T23:59:59.000Z

200

Sustainable Energy Future in China's Building Sector  

E-Print Network [OSTI]

, The Netherlands and Finland (11W/m²). Heating and hot water consumption represent 2/3 of energy demand in buildings in China. The thermal performance and heating system efficiency need to be improved dramatically in order to contain the soaring... Efficiency Standard for New Residential Buildings in 1995, the average energy consumption for heating in China is about 90~100kWh/m²a 3 which is still almost twice of that in Sweden, Denmark, The Netherlands and Finland (40~50KWh/m²a). Furthermore...

Li, J.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy Sector Cybersecurity Framework Implementation Guidance  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoThese WebThese caseEnergyA123 Systems BatteryDRAFT

202

Energy Sector Cybersecurity Framework Implementation Guidance  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoThese WebThese caseEnergyA123 Systems

203

US Energy Sector Vulnerabilities to Climate Change  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research Petroleum ReserveDepartment of Energy AtNoticeMotor Company |

204

Superheavy hidden sectors and the vacuum energy density  

E-Print Network [OSTI]

In the present work a quintessence like mechanism is presented, which models a considerable fraction of the critical energy density today $\\rho_c\\simeq 10^{-47}\\;\\hbox{GeV}^4$. By assuming that the Quantum Field Theory vacuum energy is lowered down to zero by a suitable adjustment mechanism, the critical energy density is modelled in terms of a quintessence axion field $a$. This axion is a pseudo-Goldstone boson arising due to a symmetry breaking mechanism in a hidden sector, corresponding to an $\\hbox{SU(2)}$ gauge interaction. The unification between the latter sector and QCD is produced at a very large energy scale, of the order of the GUT or even of the Planck energy. This theory is confining at a very low scale, of the order of a very light neutrino mass $m_\

Santillán, Osvaldo P

2015-01-01T23:59:59.000Z

205

Published by Oak Ridge National Laboratory No. 1 2010 The industrial sector accounts for nearly one-third of the  

E-Print Network [OSTI]

Published by Oak Ridge National Laboratory No. 1 2010 The industrial sector accounts for nearly one research and development agreements (CRADAs) and two large work-for-others projects. Ev- ery single one

Pennycook, Steve

206

LEDSGP/sector/AFOLU | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformationparticipants < LEDSGP‎ | events‎source

207

LEDSGP/sector/Agriculture | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformationparticipants < LEDSGP‎ |

208

Restructuring our Transportation Sector | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN RENEWABLE ENERGYWorld OilEnergyRestructuring our

209

MIT and Energy Industries MIT Industry Brief  

E-Print Network [OSTI]

and demand, security and environmental impact. MITEI's interdisci- plinary research program focuses on: 1 of nanotechnology to solar and thermoelectric energy conversion. The mission of the MIT Photovoltaic Research synthesizes and characterizes commer- cial and next-generation photovoltaic materials and devices, engineering

Polz, Martin

210

Department of Energy Wind Vision: An Industry Preview | Department...  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Wind Vision: An Industry Preview Department of Energy Wind Vision: An Industry Preview The "Department of Energy Wind Vision: An Industry Preview,"...

211

Industry sector analysis, China: Petrochemical industry in east China. Export trade information  

SciTech Connect (OSTI)

The market survey covers the petrochemical equipment and technology market in East China. The analysis contains statistical and narrative information on projected market demand, end-users; receptivity of Chinese consumers to U.S. products; the competitive situation, and market access (tariffs, non-tariff barriers, standards, taxes, distribution channels). It also contains key contact information and information on upcoming trade events related to the industry.

Not Available

1993-01-01T23:59:59.000Z

212

Property:ProgramSector | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy CoFirstNovosPatriot WindSubpropertiesThis is

213

Energy Sector Cybersecurity Framework Implementation Guidance | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessinSupporting Jobs andHVAC |andofBillion in TaxPublicof

214

Category:Sectors | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWind FarmAddSRML Map Files Jump to:WA Jump

215

NREL: Energy Analysis: Electric Sector Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo ofTravis LowderWesley ColeElectric

216

Category:Private Sectors | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascadeJump to:Lists Jump to:Political Actioncurrently

217

Private Sector Outreach and Partnerships | Department of Energy  

Energy Savers [EERE]

Private Sector Outreach and Partnerships Private Sector Outreach and Partnerships ISER's partnerships with the private sector are a strength which has enabled the division to...

218

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

in Building Sector Electricity Consumption parameterin Building Sector Electricity Consumption Appendix 1. WorldElectricity in Building Sector Electricity Consumption iii

2006-01-01T23:59:59.000Z

219

Energy Conservation in China North Industries Corporation  

E-Print Network [OSTI]

ENERGY CONSERVATION IN CHINA NORTH INDUSTRIES CORPORATION Wang Tian You, Chen Hua De, Jing Xing Chu, Ling Rui Fu, China North Industries Corporation Beijing, People's Republic of China ABSTRACT This paper describes an overview of the energy... conservation in China North Industries Corporation. It shows how the corporation improves energy effi ciencies and how it changes constitution of fuel-- converting oil consumption to coal. Energy management organization, energy balance in plants...

You, W. T.; De, C. H.; Chu, J. X.; Fu, L. R.

220

Secure Control Systems for the Energy Sector  

SciTech Connect (OSTI)

Schweitzer Engineering Laboratories (SEL) will conduct the Hallmark Project to address the need to reduce the risk of energy disruptions because of cyber incidents on control systems. The goals is to develop solutions that can be both applied to existing control systems and designed into new control systems to add the security measures needed to mitigate energy network vulnerabilities. The scope of the Hallmark Project contains four primary elements: 1. Technology transfer of the Secure Supervisory Control and Data Acquisition (SCADA) Communications Protocol (SSCP) from Pacific Northwest National Laboratories (PNNL) to Schweitzer Engineering Laboratories (SEL). The project shall use this technology to develop a Federal Information Processing Standard (FIPS) 140-2 compliant original equipment manufacturer (OEM) module to be called a Cryptographic Daughter Card (CDC) with the ability to directly connect to any PC enabling that computer to securely communicate across serial to field devices. Validate the OEM capabilities with another vendor. 2. Development of a Link Authenticator Module (LAM) using the FIPS 140-2 validated Secure SCADA Communications Protocol (SSCP) CDC module with a central management software kit. 3. Validation of the CDC and Link Authenticator modules via laboratory and field tests. 4. Creation of documents that record the impact of the Link Authenticator to the operators of control systems and on the control system itself. The information in the documents can assist others with technology deployment and maintenance.

Smith, Rhett; Campbell, Jack; Hadley, Mark

2012-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Voluntary agreements for increasing energy-efficiency in industry: Case study of a pilot project with the steel industry in Shandong Province, China  

SciTech Connect (OSTI)

China faces a significant challenge in the years ahead to continue to provide essential materials and products for a rapidly-growing economy while addressing pressing environmental concerns. China's industrial sector is heavily dependent on the country's abundant, yet polluting, coal resources. While tremendous energy conservation and environmental protection achievements were realized in the industrial sector in the past, there remains a great gulf between the China's level of energy efficiency and that of the advanced countries of the world. Internationally, significant energy efficiency improvement in the industrial sector has been realized in a number of countries using an innovative policy mechanism called Voluntary Agreements. This paper describes international experience with Voluntary Agreements in the industrial sector as well as the development of a pilot program to test the use of such agreements with two steel mills in Shandong Province, China.

Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

2003-03-01T23:59:59.000Z

222

ISTUM PC: industrial sector technology use model for the IBM-PC  

SciTech Connect (OSTI)

A project to improve and enhance the Industrial Sector Technology Use Model (ISTUM) was originated in the summer of 1983. The project had dix identifiable objectives: update the data base; improve run-time efficiency; revise the reference base case; conduct case studies; provide technical and promotional seminars; and organize a service bureau. This interim report describes which of these objectives have been met and which tasks remain to be completed. The most dramatic achievement has been in the area of run-time efficiency. From a model that required a large proportion of the total resources of a mainframe computer and a great deal of effort to operate, the current version of the model (ISTUM-PC) runs on an IBM Personal Computer. The reorganization required for the model to run on a PC has additional advantages: the modular programs are somewhat easier to understand and the data base is more accessible and easier to use. A simple description of the logic of the model is given in this report. To generate the necessary funds for completion of the model, a multiclient project is proposed. This project will extend the industry coverage to all the industrial sectors, including the construction of process flow models for chemicals and petroleum refining. The project will also calibrate this model to historical data and construct a base case and alternative scenarios. The model will be delivered to clients and training provided. 2 references, 4 figures, 3 tables.

Roop, J.M.; Kaplan, D.T.

1984-09-01T23:59:59.000Z

223

Energy Sector Management Assistance Program of the World Bank (ESMAP) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen Energy Information Energy Sector Management Assistance

224

Development of an energy conservation voluntary agreement pilot project in the steel sector in Shandong  

SciTech Connect (OSTI)

China faces a significant challenge in the years ahead to continue to provide essential materials and products for a rapidly-growing economy while addressing pressing environmental concerns. Energy is a fundamental element of the national economy and the conditions of its use have a direct impact on China's ability to reach its sustainable development goals. China's industrial sector, which accounts for over 70 percent of the nation's total energy consumption each year, provides materials such as steel and cement that build the nation's roads, bridges, homes, offices and other buildings. Industrial products include bicycles, cars, buses, trains, ships, office equipment, appliances, furniture, packaging, pharmaceuticals, and many other components of everyday life in an increasingly modern society. This vital production of materials and products, however, comes with considerable problems. China's industrial sector is heavily dependent on the country's abundant, yet polluting, coal resources. Industrial production locally pollutes the air with emissions of particulates, carbon monoxide, sulfur dioxide, and nitrogen oxides, uses scarce water and oil resources, emits greenhouse gases contributing to the warming global atmosphere, and often produces hazardous and polluting wastes. Fostering innovative approaches to reduce the use of polluting energy resources and to diminish pollution from industrial production that are tailored to China's emerging market-based economy is one of the most important challenges facing the nation today. The pressures of rapid industrial production growth, continued environmental degradation, and increased competition create a situation that calls for a strategically-planned evolution of China's industries into world-class production facilities that are competitive, energy-efficient and less polluting. Such a transition requires the complete commitment of industrial enterprises and the government to work together to transform the industrial facilities of China. Internationally, such a transformation of the industrial sector has been realized in a number of countries using an innovative policy mechanism called Voluntary Agreements. Voluntary Agreements are essentially a contract between the government and industry, or negotiated targets with commitments and time schedules on the part of all participating parties. These agreements typically have a long-term outlook, covering a period of five to ten years, so that strategic energy-efficiency investments can be planned and implemented. A key element of Voluntary Agreements is that they focus the attention of all actors on energy efficiency or emission reduction goals. Internationally, Voluntary Agreements have been shown to result in increased energy efficiency, with the more successful programs even doubling autonomous energy efficiency improvement rates. In addition, Voluntary Agreements have important longer-term impacts including changes of attitudes and awareness of manage rial and technical staff regarding energy efficiency, addressing barriers to technology adoption and innovation, creating market transformation to establish greater potential for sustainable energy-efficiency investments, promoting positive dynamic interactions between different actors involved in technology research and development, deployment, and market development, and facilitating cooperative arrangements that provide learning mechanisms within an industry. The essential steps for reaching a Voluntary Agreement are the assessment of the energy-efficiency potential of the participants as well as target-setting through a negotiated process. Participation by industries is motivated through the use of carrots and sticks, which refers to incentives and disincentives. Supporting programs and policies (the carrots), such as enterprise audits, assessments, benchmarking, monitoring, information dissemination, and financial incentives all play an important role in assisting the participants in meeting the target goals. Some of the more successful Voluntary Agreement programs are base

Price, Lynn; Yun, Jiang; Worrell, Ernst; Wenwei, Du; Sinton, Jonathan E.

2004-02-05T23:59:59.000Z

225

Industrial Energy Efficiency Assessments | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About UsIndustrial Energy Efficiency Assessments

226

Pulp & Paper Industry- A Strategic Energy Review  

E-Print Network [OSTI]

The pulp and paper industry with yearly energy purchases of $5 billion per year including 50 billion kWh of power is one of the largest industrial energy producers in the U.S. However, structural changes in the global pulp and paper industry could...

Stapley, C. E.

227

Industrial Energy Auditing: An Opportunity for Improving Energy Efficiency and Industrial Competitiveness  

E-Print Network [OSTI]

INDUSTRIAL ENERGY AUDITING: AN OPPORTUNITY FOR IMPROVING ENERGY EFFICIENCY AND INDUSTRIAL COMPETITIVENESS CHARLES GLASER, PROGRAM MANAGER, IMPLEMENTATION AND DEPLOYMENT DIVISION OFFICE OF INDUSTRIAL TECHNOLOGIES, U.S. DEPARTMENT OF ENERGY..., WASHINGTON, D.C. ABSTRACT This paper describes the Department of Energy's industrial energy auditing program, its achievements to date, and future plans. The Energy Analysis and Diagnostic Center (EADC) Program provides no-cost energy audits to small...

Glaser, C.

228

Industrial Energy Efficiency and Climate Change Mitigation  

SciTech Connect (OSTI)

Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

2009-02-02T23:59:59.000Z

229

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

World Others Share Source: Murthy, 2007 3.3.3 Energy data The productionthe World Bank. 4.2.2 Industrial Production Intensity EnergyEnergy) Production Of crude steel Mt SEC GJ/t cs Coal Elect FO LPG Gas SEC World

Sathaye, Jayant

2011-01-01T23:59:59.000Z

230

Energy and water sector policy strategies for drought mitigation.  

SciTech Connect (OSTI)

Tensions between the energy and water sectors occur when demand for electric power is high and water supply levels are low. There are several regions of the country, such as the western and southwestern states, where the confluence of energy and water is always strained due to population growth. However, for much of the country, this tension occurs at particular times of year (e.g., summer) or when a region is suffering from drought conditions. This report discusses prior work on the interdependencies between energy and water. It identifies the types of power plants that are most likely to be susceptible to water shortages, the regions of the country where this is most likely to occur, and policy options that can be applied in both the energy and water sectors to address the issue. The policy options are designed to be applied in the near term, applicable to all areas of the country, and to ease the tension between the energy and water sectors by addressing peak power demand or decreased water supply.

Kelic, Andjelka; Vugrin, Eric D.; Loose, Verne W.; Vargas, Vanessa N.

2009-03-01T23:59:59.000Z

231

Technologies and Policies to Improve Energy Efficiency in Industry  

SciTech Connect (OSTI)

The industrial sector consumes nearly 40% of annual global primary energy use and is responsible for a similar share of global energy-related carbon dioxide (CO2) emissions. Many studies and actual experience indicate that there is considerable potential to reduce the amount of energy used to manufacture most commodities, concurrently reducing CO2 emissions. With the support of strong policies and programs, energy-efficient technologies and measures can be implemented that will reduce global CO2 emissions. A number of countries, including the Netherlands, the UK, and China, have experience implementing aggressive programs to improve energy efficiency and reduce related CO2 emissions from industry. Even so, there is no silver bullet and all options must be pursued if greenhouse gas emissions are to be constrained to the level required to avoid significant negative impacts from global climate change.

Price, Lynn; Price, Lynn

2008-03-01T23:59:59.000Z

232

Duke Energy- Small Commercial and Industrial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Duke Energy encourages its business customers to increase the energy efficiency of eligible facilities through the Commercial and Industrial Energy Efficiency Rebate Program. The equipment rebates...

233

DTE Energy (Electric)- Commercial and Industrial Energy Efficiency Program  

Broader source: Energy.gov [DOE]

DTE Energy's Commercial Your Energy Savings Program provides prescriptive incentives to commercial and industrial customers who implement energy efficiency upgrades in facilities. Custom incentives...

234

Progress Energy Carolinas- Commercial and Industrial Energy-Efficiency Program  

Broader source: Energy.gov [DOE]

Progress Energy provides rebates for energy efficiency measures in new construction or retrofits, as well as Technical Assistance for feasibility/energy studies to commercial, industrial and...

235

High Penetration of Renewable Energy in the Transportation Sector: Scenarios, Barriers, and Enablers; Preprint  

SciTech Connect (OSTI)

Transportation accounts for 71% of U.S. petroleum use and 33% of its greenhouse gases emissions. Pathways toward reduced greenhouse gas emissions and petroleum dependence in the transportation sector have been analyzed in considerable detail, but with some limitations. To add to this knowledge, the U.S. Department of Energy has launched a study focused on underexplored greenhouse-gas-abatement and oil-savings opportunities related to transportation. This Transportation Energy Futures study analyzes specific issues and associated key questions to strengthen the existing knowledge base and help cultivate partnerships among federal agencies, state and local governments, and industry.

Vimmerstedt, L.; Brown, A.; Heath, G.; Mai, T.; Ruth, M.; Melaina, M.; Simpkins, T.; Steward, D.; Warner, E.; Bertram, K.; Plotkin, S.; Patel, D.; Stephens, T.; Vyas, A.

2012-06-01T23:59:59.000Z

236

Advanced, Energy-Efficient Hybrid Membrane System for Industrial...  

Energy Savers [EERE]

(1 slide) Develo Project Objecve Current StateChallenges Heavy industrial water utilization footprint Freshwater Withdrawals in the U.S. by Sector (2005) Domestic...

237

Energy Management Through Innovative Rates  

E-Print Network [OSTI]

of energy efficiency in the industrial sector and specific rate design alternatives for doing so....

Williams, M. L.

1982-01-01T23:59:59.000Z

238

Energy Technical Assistance: Industrial Processes Program  

E-Print Network [OSTI]

The Energy Technical Assistance Division of Texas Engineering Extension Service (TEEX) has implemented an energy conservation program to assist small industry in using energy more efficiently. This full time service, an outgrowth of the Texas A...

McClure, J. D.

1980-01-01T23:59:59.000Z

239

Industrial Energy Efficiency Programs: Development and Trends  

E-Print Network [OSTI]

As more states establish Energy Efficiency Resource Standards (EERS), goals for energy efficiency savings are increasing across the country. Increasingly, states are relying on their industrial energy efficiency programs to find and help implement...

Chittum, A.; Kaufman, N.; Elliot, N.

2010-01-01T23:59:59.000Z

240

USING DISPLAY ENERGY CERTIFICATES TO QUANTIFY PUBLIC SECTOR OFFICE ENERGY CONSUMPTION  

E-Print Network [OSTI]

This paper explores how internal and external characteristics affect energy use in the public sector office stock in England and Wales, using a database of 2,600 Display Energy Certificates (DECs) combined with other sources of disaggregated office...

Armitage, Peter; Godoy-Shimizu, Daniel; Steemers, Koen; Chenvidyakarn, Torwong

2014-11-05T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Roadmap to Secure Control Systems in the Energy Sector- January 2006  

Broader source: Energy.gov [DOE]

This document, the Roadmap to Secure Control Systems in the Energy Sector, outlines a coherent plan for improving cyber security in the energy sector. It is the result of an unprecedented...

242

Examination of the factors and issues for an environmental technology utilization partnership between the private sector and the Department of Energy. Final report  

SciTech Connect (OSTI)

The Department of Energy (DOE) held a meeting on November 12, 1992 to evaluate the DOE relations with industry and university partners concerning environmental technology utilization. The goal of this meeting was to receive feedback from DOE industry and university partners for the identification of opportunities to improve the DOE cooperative work processes with the private sector. The meeting was designed to collect information and to turn that information into action to improve private sector partnerships with DOE.

Brouse, P.

1997-05-01T23:59:59.000Z

243

End use energy consumption data base: transportation sector  

SciTech Connect (OSTI)

The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

Hooker, J.N.; Rose, A.B.; Greene, D.L.

1980-02-01T23:59:59.000Z

244

Save Energy Now for Maryland Industry Project Fact Sheet | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Maryland Industry Project Fact Sheet More Documents & Publications Reducing Industrial Energy Intensity in the Southeast Project Fact Sheet Idaho Save Energy Now - Industries of...

245

Energy Efficiency Services Sector: Workforce Education and Training Needs  

SciTech Connect (OSTI)

This report provides a baseline assessment of the current state of energy efficiency-related education and training programs and analyzes training and education needs to support expected growth in the energy efficiency services workforce. In the last year, there has been a significant increase in funding for 'green job' training and workforce development (including energy efficiency), through the American Recovery and Reinvestment Act (ARRA). Key segments of the energy efficiency services sector (EESS) have experienced significant growth during the past several years, and this growth is projected to continue and accelerate over the next decade. In a companion study (Goldman et al. 2009), our research team estimated that the EESS will increase two- to four-fold by 2020, to 220,000 person-years of employment (PYE) (low-growth scenario) or up to 380,000 PYE (high-growth scenario), which may represent as many as 1.3 million individuals. In assessing energy efficiency workforce education and training needs, we focus on energy-efficiency services-related jobs that are required to improve the efficiency of residential and nonresidential buildings. Figure ES-1 shows the market value chain for the EESS, sub-sectors included in this study, as well as the types of market players and specific occupations. Our assessment does not include the manufacturing, wholesale, and retail distribution subsectors, or energy efficiency-focused operations and maintenance performed by facility managers.

Goldman, Charles A.; Peters, Jane S.; Albers, Nathaniel; Stuart, Elizabeth; Fuller, Merrian C.

2010-03-19T23:59:59.000Z

246

Business Opportunities in the Energy Industry  

Broader source: Energy.gov [DOE]

An opportunity for small businesses to network with industry professionals, sponsored by the American Association of Blacks in Energy and the Denver Chapter & MBDA Business Center, Denver CO

247

Unitil- Commercial and Industrial Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

Unitil offers three different programs for its commercial, industrial, and institutional customers in New Hampshire: the Small Business Energy Efficiency Services Program, the Large Business...

248

Superior Energy Performance Industrial Facility Best Practice...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

activities, processes or procedures that are "above and beyond" the requirements of ISO 50001. Superior Energy Performance Industrial Facility Best Practice Scorecard...

249

Building a State Industrial Energy Efficiency Network  

E-Print Network [OSTI]

Industries of the Future brings the tools and resources of the Industrial Technology Program of the Department of Energy to the state level. In addition, with the guidance of an industry-led advisory board, the program has developed conferences and forums...

Ferland, K.

2005-01-01T23:59:59.000Z

250

End User Functional and Performance Requirements for HTGR Energy Supply to Industrial Processes  

SciTech Connect (OSTI)

This document specifies end user functional and performance requirements to be used in the development of the design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to industrial processes. These requirements were developed from collaboration with industry and HTGR suppliers and from detailed evaluation of integration of the HTGR technology in industrial processes. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a plant design that will serve the broadest range of industrial applications.

L.E. Demick

2010-09-01T23:59:59.000Z

251

Energy Intensity Development of the German Iron and Steel Industry between 1991 and 2007 Marlene Arensa), 1)  

E-Print Network [OSTI]

1 Energy Intensity Development of the German Iron and Steel Industry between 1991 and 2007 Marlene industry, energy intensity 1) Corresponding Author. Tel: +49 721 6809 408, fax: +49 721 6809 272, marlene a decomposition method [25]. Kim and Worrell (2002) compared energy and CO2intensity in the steel sector among

Paris-Sud XI, Université de

252

AIJ in the Non-Energy Sector in India: Opportunities and Concerns  

SciTech Connect (OSTI)

Although the U.N. Framework Convention on Climate Change (FCCC) has been signed and ratified by 168 countries, global greenhouse gas (GHG) emissions have increased substantially since the 1992 Rio Summit. In both developing countries (DCs) and industrialized countries (ICs), there has been a need to find mechanisms to facilitate environmentally sound mitigation strategies. This need led to the formation of Activities Implemented Jointly (AIJ) at the first Conference-of the Parties (COP) in 1995. In Article 4A, para 2D, the COP established an AIJ pilot phase in which Annex I (IC) countries would enter into agreements to implement activities jointly with non-Annex I parties. DCs would engage in AIJ on a purely voluntary basis and all AIJ projects should be compatible with and supportive of national environment and development goals. AIJ does not imply GHG reduction commitments by DCs. Neither do all projects undertaken during the pilot phase qualify as a fulfillment of current commitment s of Annex I parties under the COP. The current pilot phase for AIJ ends in the year 2000, a date which may be extended. Current AIJ activities are largely focused on the energy sector. The Nordic countries, for example, feel that the most important potential areas for cooperation in AIJ are fuel conversion, more effective energy production, increased energy efficiency, and reforms in energy-intensive industry (Nordic Council of Ministers, 1995). Denmark does not want to include non-energy sector projects such as carbon sink enhancement projects in the pilot phase (Nordic Council of Ministers, 1995). However, other countries, including the US, have already funded a number of forestry sector projects (Development Alternatives, 1997). Moreover, energy-sector projects involving high technology or capital-intensive technology are often a source of controversy between DCs and ICs regarding the kind of technology transferred and sharing of costs and benefits. Further, the pilot phase provide s an opportunity for capacity-building and learning about methods of planning, implementation, and monitoring of GHG abatement in land-based non-energy sector projects.

Ravindranath, N.H.; Meili, A.; Anita, R.

1998-11-01T23:59:59.000Z

253

New interactions in the dark sector mediated by dark energy  

E-Print Network [OSTI]

Cosmological observations have revealed the existence of a dark matter sector, which is commonly assumed to be made up of one particle species only. However, this sector might be more complicated than we currently believe: there might be more than one dark matter species (for example two components of cold dark matter or a mixture of hot and cold dark matter) and there may be new interactions between these particles. In this paper we study the possibility of multiple dark matter species and interactions mediated by a dark energy field. We study both the background and the perturbation evolution in these scenarios. We find that the background evolution of a system of multiple dark matter particles (with constant couplings) mimics a single fluid with a time-varying coupling parameter. However, this is no longer true on the perturbative level. We study the case of attractive and repulsive forces as well as a mixture of cold and hot dark matter particles.

A. W. Brookfield; C. van de Bruck; L. M. H. Hall

2008-04-10T23:59:59.000Z

254

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network [OSTI]

Total Primary Energy Consumption World US China Californiaprimary energy consumption, compared to the world (39%), theFigure 3. Energy consumption by sector for the world, the

Price, Lynn

2008-01-01T23:59:59.000Z

255

Current and future industrial energy service characterizations. Volume II. Energy data on the US manufacturing subsector  

SciTech Connect (OSTI)

In order to characterize industrial energy service, current energy demand, its end uses, and cost of typical energy applications and resultant services in the industrial sector were examined and a projection of state industrial energy demands and prices to 1990 was developed. Volume II presents in Section 2 data on the US manufacturing subsector energy demand, intensity, growth rates, and cost for 1971, 1974, and 1976. These energy data are disaggregated not only by fuel type but also by user classifications, including the 2-digit SIC industry groups, 3-digit subgroups, and 4-digit SIC individual industries. These data characterize typical energy applications and the resultant services in this subsector. The quantities of fuel and electric energy purchased by the US manufacturing subsector were converted to British thermal units and reported in billions of Btu. The conversion factors are presented in Table 4-1 of Volume I. To facilitate the descriptive analysis, all energy cost and intensity data were expressed in constant 1976 dollars. The specific US industrial energy service characteristics developed and used in the descriptive analysis are presented in Volume I. Section 3 presents the computer program used to produce the tabulated data.

Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

1980-10-01T23:59:59.000Z

256

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

Building Sector Electricity Consumption parameter logisticin Building Sector Electricity Consumption iii iv Sectoralsome water with electricity consumption, it is not possible

2006-01-01T23:59:59.000Z

257

Industrial Energy Audit Training for Engineers  

E-Print Network [OSTI]

The field of engineering energy conservation has witnessed an explosion of concern and activity during the last three years throughout the United States. In Texas, such activities have been enhanced by comprehensive industrial energy auditor...

Russell, B. D.; Willis, G.; Colburn, B.

1982-01-01T23:59:59.000Z

258

Developing a solar energy industry in Egypt  

E-Print Network [OSTI]

This paper assesses Egypt's current energy infrastructure and its problems, the available solar energy resource, and the technologies required to harness this resource. After this assessment, an industry based on high ...

AbdelMessih, Sherife (Sherife Mohsen)

2009-01-01T23:59:59.000Z

259

Industrial Conservation Technology Energy Savings Monitoring System  

E-Print Network [OSTI]

A system is described which monitors actual market penetration and energy savings of Department of Energy sponsored industrial conservation commercial technologies. The procedure to implement a new, technology into the Impact Scoreboard System (ISS...

Crowell, J. J.; Phipps, H. R., Jr.

1980-01-01T23:59:59.000Z

260

The Texas Industrial Energy Conservation Program  

E-Print Network [OSTI]

Industry is Texas' largest consumer of energy (46+% of total). With foresight of the escalating cost of energy, it was apparent these additional costs to industry would have two adverse effects. First, the cost of their product to the consumer would...

Waldrop, T.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

SEADS 3.0 Sectoral Energy/Employment Analysis and Data System  

SciTech Connect (OSTI)

SEADS 3.0, the Sectoral Energy/Employment Analysis and Data System, is a revision and upgrading of SEADS–PC, a software package designed for the analysis of policy that could be described by modifying final demands of consumer, businesses, or governments (Roop, et al., 1995). If a question can be formulated so that implications can be translated into changes in final demands for goods and services, then SEADS 3.0 provides a quick and easy tool to assess preliminary impacts. And SEADS 3.0 should be considered just that: a quick and easy way to get preliminary results. Often a thorough answer, even to such a simple question as, “What would be the effect on U. S. energy use and employment if the Federal Government doubled R&D expenditures?” requires a more sophisticated analytical framework than the input-output structure embedded in SEADS 3.0. This tool uses a static, input-output model to assess the impacts of changes in final demands on first industry output, then employment and energy use. The employment and energy impacts are derived by multiplying the industry outputs (derived from the changed final demands) by industry-specific energy and employment coefficients. The tool also allows for the specification of regional or state employment impacts, though this option is not available for energy impacts.

Roop, Joseph M.; Anderson, David A.; Schultz, Robert W.; Elliott, Douglas B.

2007-12-17T23:59:59.000Z

262

Raising awareness for energy efficiency in the service sector: learning from success stories to disseminate good practices  

E-Print Network [OSTI]

the residential sector. In the UK, the energy consumption growth of the service sector is assessed to be three time higher than for residential sector (SCRASE ­ 2001). Energy efficiency in the service sector1/15 Raising awareness for energy efficiency in the service sector: learning from success stories

Boyer, Edmond

263

Policy modeling for industrial energy use  

SciTech Connect (OSTI)

The international workshop on Policy Modeling for Industrial Energy Use was jointly organized by EETA (Professional Network for Engineering Economic Technology Analysis) and INEDIS (International Network for Energy Demand Analysis in the Industrial Sector). The workshop has helped to layout the needs and challenges to include policy more explicitly in energy-efficiency modeling. The current state-of-the-art models have a proven track record in forecasting future trends under conditions similar to those faced in the recent past. However, the future of energy policy in a climate-restrained world is likely to demand different and additional services to be provided by energy modelers. In this workshop some of the international models used to make energy consumption forecasts have been discussed as well as innovations to enable the modeling of policy scenarios. This was followed by the discussion of future challenges, new insights in the data needed to determine the inputs into energy model s, and methods to incorporate decision making and policy in the models. Based on the discussion the workshop participants came to the following conclusions and recommendations: Current energy models are already complex, and it is already difficult to collect the model inputs. Hence, new approaches should be transparent and not lead to extremely complex models that try to ''do everything''. The model structure will be determined by the questions that need to be answered. A good understanding of the decision making framework of policy makers and clear communication on the needs are essential to make any future energy modeling effort successful. There is a need to better understand the effects of policy on future energy use, emissions and the economy. To allow the inclusion of policy instruments in models, evaluation of programs and instruments is essential, and need to be included in the policy instrument design. Increased efforts are needed to better understand the effects of innovative (no n-monetary) policy instruments through evaluation and to develop approaches to model both conventional and innovative policies. The explicit modeling of barriers and decision making in the models seems a promising way to enable modeling of conventional and innovative policies. A modular modeling approach is essential to not only provide transparency, but also to use the available resources most effectively and efficiently. Many large models have been developed in the past, but have been abandoned after only brief periods of use. A development path based on modular building blocks needs the establishment of a flexible but uniform modeling framework. The leadership of international agencies and organizations is essential in the establishment of such a framework. A preference is given for ''softlinks'' between different modules and models, to increase transparency and reduce complexity. There is a strong need to improve the efficiency of data collection and interpretation efforts to produce reliable model inputs. The workshop participants support the need for the establishment of an (in-)formal exchanges of information, as well as modeling approaches. The development of an informal network of research institutes and universities to help build a common dataset and exchange ideas on specific areas is proposed. Starting with an exchange of students would be a relative low-cost way to start such collaboration. It would be essential to focus on specific topics. It is also essential to maintain means of regular exchange of ideas between researchers in the different focus points.

Worrell, Ernst; Park, Hi-Chun; Lee, Sang-Gon; Jung, Yonghun; Kato, Hiroyuki; Ramesohl, Stephan; Boyd, Gale; Eichhammer, Wolfgang; Nyboer, John; Jaccard, Mark; Nordqvist, Joakim; Boyd, Christopher; Klee, Howard; Anglani, Norma; Biermans, Gijs

2003-03-01T23:59:59.000Z

264

Energy data sourcebook for the US residential sector  

SciTech Connect (OSTI)

Analysts assessing policies and programs to improve energy efficiency in the residential sector require disparate input data from a variety of sources. This sourcebook, which updates a previous report, compiles these input data into a single location. The data provided include information on end-use unit energy consumption (UEC) values of appliances and equipment efficiency; historical and current appliance and equipment market shares; appliances and equipment efficiency and sales trends; appliance and equipment efficiency standards; cost vs. efficiency data for appliances and equipment; product lifetime estimates; thermal shell characteristics of buildings; heating and cooling loads; shell measure cost data for new and retrofit buildings; baseline housing stocks; forecasts of housing starts; and forecasts of energy prices and other economic drivers. This report is the essential sourcebook for policy analysts interested in residential sector energy use. The report can be downloaded from the Web at http://enduse.lbl. gov/Projects/RED.html. Future updates to the report, errata, and related links, will also be posted at this address.

Wenzel, T.P.; Koomey, J.G.; Sanchez, M. [and others

1997-09-01T23:59:59.000Z

265

Federal Support for Energy Efficiency in U.S. Industry: Collaboratively Addressing Energy Management in Small- and Medium-Sized Enterprises (SMEs)  

E-Print Network [OSTI]

The U.S. industrial sector consumes about one-third of energy in the United States each year. Improving energy efficiency in an industrial environment may come with a host of benefits to the facility owner, including a reduction in annual energy...

Bostrom, P.; Lung, R. B.; Harris, J.

2010-01-01T23:59:59.000Z

266

List of Companies in Wind Sector | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster And Coolbaugh, 2007)is 109.Lindley,LipscombWind Sector Jump to:

267

Property:Incentive/ImplSector | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2 Jump to: navigation, searchExpireDtString Jump to:ImplSector

268

Department Of Energy Offers $60 Million to Spur Industry Engagement...  

Office of Environmental Management (EM)

Of Energy Offers 60 Million to Spur Industry Engagement in Global Nuclear Energy Partnership Department Of Energy Offers 60 Million to Spur Industry Engagement in Global Nuclear...

269

Ohio Center for Industrial Energy Efficiency Fact Sheet | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Industrial Energy Efficiency Fact Sheet More Documents & Publications Reducing Industrial Energy Intensity in the Southeast Project Fact Sheet Save Energy Now Pennsylvania Project...

270

Industrial energy-efficiency-improvement program  

SciTech Connect (OSTI)

Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

Not Available

1980-12-01T23:59:59.000Z

271

Effective Transfer of Industrial Energy Conservation Technologies  

E-Print Network [OSTI]

. Various avenues exist for transferring energy conservation technologies to industry. Briefing documents, presentations at trade meetings and con ferences, or simple diffusion by word-of-mouth are a few methods. However, when left to chance, tech... of 444 ESL-IE-83-04-68 Proceedings from the Fifth Industrial Energy Technology Conference Volume II, Houston, TX, April 17-20, 1983 TABLE 1. Current Energy Impacts of Foam Processing of Textiles BROADWOVENS AND KNITS User Site (a) Average Production...

Clement, M.; Vallario, R. W.

1983-01-01T23:59:59.000Z

272

The Department of Energy`s Solar Industrial Program: 1995 review  

SciTech Connect (OSTI)

During 1995, the Department of Energy`s Solar Industrial (SI) Program worked to bring the benefits of solar energy to America`s industrial sector. Scientists and engineers within the program continued the basic research, applied engineering, and economic analyses that have been at the heart of the Program`s success since its inception in 1989. In 1995, all three of the SI Program`s primary areas of research and development--solar detoxification, advanced solar processes, and solar process heat--succeeded in increasing the contribution made by renewable and energy-efficient technologies to American industry`s sustainable energy future. The Solar Detoxification Program develops solar-based pollution control technologies for destroying hazardous environmental contaminants. The Advanced Solar Processes Program investigates industrial uses of highly concentrated solar energy. The Solar Process Heat Program conducts the investigations and analyses that help energy planners determine when solar heating technologies--like those that produce industrial-scale quantities of hot water, hot air, and steam--can be applied cost effectively. The remainder of this report highlights the research and development conducted within in each of these subprograms during 1995.

NONE

1996-04-01T23:59:59.000Z

273

Energy efficient industrialized housing research program  

SciTech Connect (OSTI)

This is the second volume of a two volume report on energy efficient industrialized housing. Volume II contains support documentation for Volume I. The following items are included: individual trip reports; software bibliography; industry contacts in the US, Denmark, and Japan; Cost comparison of industrialized housing in the US and Denmark; draft of the final report on the systems analysis for Fleetwood Mobile Home Manufacturers. (SM)

Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; Mc Donald, M.; McGinn, B.; Ryan, P.; Sekiguchi, T. (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

1989-01-01T23:59:59.000Z

274

Energy use and carbon dioxide emissions in energy-intensive industries in key developing countries  

SciTech Connect (OSTI)

The industrial sector is the most important end-use sector in developing countries in terms of energy use and was responsible for 50% of primary energy use and 53% of associated carbon dioxide emissions in 1995 (Price et al., 1999). The industrial sector is extremely diverse, encompassing the extraction of natural resources, conversion of these resources into raw materials, and manufacture of finished products. Five energy-intensive industrial subsectors account for the bulk of industrial energy use and related carbon dioxide emissions: iron and steel, chemicals, petroleum refining, pulp and paper, and cement. In this paper, we focus on the steel and cement sectors in Brazil, China, India, and Mexico.1 We review historical trends, noting that China became the world's largest producer of cement in 1985 and of steel in 1996. We discuss trends that influence energy consumption, such as the amount of additives in cement (illustrated through the clinker/cement ratio), the share of electric arc furnaces, and the level of adoption of continuous casting. To gauge the potential for improvement in production of steel and cement in these countries, we calculate a ''best practice'' intensity based on use of international best practice technology to produce the mix of products manufactured in each country in 1995. We show that Brazil has the lowest potential for improvement in both sectors. In contrast, there is significant potential for improvement in Mexico, India, and especially China, where adoption of best practice technologies could reduce energy use and carbon dioxide emissions from steel production by 50% and cement production by 37%. We conclude by comparing the identified potential for energy efficiency improvement and carbon dioxide emissions reduction in these key developing countries to that of the U.S. This comparison raises interesting questions related to efforts to improve energy efficiency in developing countries, such as: what is the appropriate role of industrialized countries in promoting the adoption of low carbon technologies, how do international steel and cement companies influence the situation, and how can such information be used in the context of Clean Development Mechanism in the Kyoto Protocol?

Price, Lynn; Worrell, Ernst; Phylipsen, Dian

1999-09-01T23:59:59.000Z

275

Stormwater Best Management Practices (BMPs) for Selected Industrial Sectors in the Lower Fraser Basin  

E-Print Network [OSTI]

Concrete Industry Lime Industry Refined Petroleum Products (Bulk Storage) Other Petroleum and Coal Products and Planing Mill Products Industry Wire and Wire Products Industries Hydraulic Cernent Industry Ready Mixed

276

Wind Energy Workforce Development: A Roadmap to a Sustainable Wind Industry (Poster)  

SciTech Connect (OSTI)

As the United States moves toward a vision of greatly expanded wind energy use as outlined in the U.S. Department of Energy's 20% Wind Energy by 2030 report, the need for skilled workers at all levels in the industry is repeatedly identified as a critical issue. This presentation is an overview of the educational infrastructure and expected industry needs to support the continued development of a vibrant U.S. wind industry through a discussion of the activities identified that must be put in place to train workers. The paper will also provide a framework to address issues raised from each of the education and industry sectors, identifying a roadmap for developing an educational infrastructure to support wind technology. The presentation will also provide an understanding of the available resources, materials, and programs available across the industry. This presentation provides an overview of the educational infrastructure and expected industry needs to support the continued development of a vibrant U.S. wind industry as part of a collaborative effort to develop a wind workforce roadmap. This presentation will provide 1) A review of needed programs to train workers for the wind industry; 2) An overview of the importance education will play if the nation is to expand wind energy (both in development and deployment terms) and a review of ongoing activities with a focus on federal efforts; 3) A review of the materials and resources available across the industry and a framework to address issues raised from each of the education and industry sectors.

Baring-Gould, I.; Kelly, M.

2010-05-01T23:59:59.000Z

277

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network [OSTI]

Total Primary Energy Consumption World US China Californiaenergy consumption, compared to the world (39%), the US (3. Energy consumption by sector for the world, the US, China

Price, Lynn

2008-01-01T23:59:59.000Z

278

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network [OSTI]

Renewable Energy. Renewable Energy Policy Project ResearchIndustrial Policy and Renewable Energy Technology.Development of Renewable Energy. Energy Policy, 31, 799-812.

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

279

Energy Responsibility Accounting - An Energy Conservation Tool for Industrial Facilities  

E-Print Network [OSTI]

As energy costs continue to rise faster than the rate of inflation, industrial energy management becomes a more important issue in the control of manufacturing costs. Energy Responsibility Accounting (ERA) is a tool which improves management...

Kelly, R. L.

1980-01-01T23:59:59.000Z

280

ITP Industrial Distributed Energy: Integrated Energy Systems...  

Broader source: Energy.gov (indexed) [DOE]

specifically for stationary power generation or compression applications in the oil and gas industries. Multiple stages are typical and differentiate these turbines, along with...

Note: This page contains sample records for the topic "industrial sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Electric vehicles and renewable energy in the transport sector energy system  

E-Print Network [OSTI]

energy resources, such as wind power. Economic aspects for electric vehicles interactingElectric vehicles and renewable energy in the transport sector ­ energy system consequences Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles Lars Henrik Nielsen and Kaj

282

Student Trainee (Energy Industry Analyst)  

Broader source: Energy.gov [DOE]

The Federal Energy Regulatory Commission (FERC) is an independent regulatory agency that regulates and oversees various aspects of the energy markets within the United States. We value independence...

283

The Rise and Decline of U.S. Private Sector Investments in Energy R&D since the Arab Oil Embargo of 1973  

SciTech Connect (OSTI)

This paper presents two distinct datasets that describe investments in energy research and development (R&D) by the US private sector since the mid1970s, which is when the US government began to systematically collect these data. The first dataset is based upon a broad survey of more than 20,000 firms’ industrial R&D activities. This broad survey of US industry is coordinated by the US National Science Foundation. The second dataset discussed here is a much narrower accounting of the energy R&D activities of the approximately two dozen largest US oil and gas companies conducted by the US Department of Energy’s Energy Information Agency. Even given the large disparity in the breadth and scope of these two surveys of the private sector’s support for energy R&D, both datasets tell the same story in terms of the broad outlines of the private sector’s investments in energy R&D since the mid 1970s. The broad outlines of the US private sector’s support for energy R&D since the mid 1970s is: (1) In the immediate aftermath of the Arab Oil Embargo of 1973, there is a large surge in US private sector investments in energy R&D that peaked in the period between 1980 and 1982 at approximately $3.7 billion to $6.7 billion per year (in inflation adjusted 2010 US dollars) depending upon which survey is used (2) Private sector investments in energy R&D declined from this peak until bottoming out at approximately $1.8 billion to $1 billion per year in 1999; (3) US private sector support for energy R&D has recovered somewhat over the past decade and stands at $2.2 billion to $3.4 billion. Both data sets indicate that the US private sector’s support for energy R&D has been and remains dominated by fossil energy R&D and in particular R&D related to the needs of the oil and gas industry.

Dooley, James J.

2010-11-01T23:59:59.000Z

284

The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry  

SciTech Connect (OSTI)

For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-05-01T23:59:59.000Z

285

Energy sector analysis and modeling – From primary to final energy.  

E-Print Network [OSTI]

?? Climate change and energy supply limitation are growing concerns. Solving them requires strong implication from our societies and more and more stakeholders and scientists… (more)

Praz, Bastien

2012-01-01T23:59:59.000Z

286

EIA Energy Efficiency-Residential Sector Energy Intensities,...  

U.S. Energy Information Administration (EIA) Indexed Site

8c) html table 8c excel table 8c excel table 8c For questions about the "Residential Energy Intensity Tables," please contact: Behjat Hojjati Program Manager...

287

Energy Assessment Training Reduces Energy Costs for the U.S. Coast Guard Sector Guam: Success Stories (Fact Sheet)  

SciTech Connect (OSTI)

U.S. Coast Guard Sector Guam experiences considerable energy cost and use savings after implementing training from NREL's energy assessment training.

Not Available

2013-05-01T23:59:59.000Z

288

Energy efficiency in building sector in India through Heat  

E-Print Network [OSTI]

electricity consumption in India (2012) #12;Growth in electricity consumption by building sector At a conservative 9 % growth rate electricity consumption of building sector by 2020 will be more than 2 times ( Source: DB Research) #12;Electricity Consumption Pattern in Residential Sector (Source: BEE, Figure taken

Oak Ridge National Laboratory

289

Energy efficient industrialized housing research program  

SciTech Connect (OSTI)

This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

1989-12-01T23:59:59.000Z

290

Energy efficient industrialized housing research program  

SciTech Connect (OSTI)

This report summarizes three documents: Multiyear Research Plan, Volume I FY 1989 Task Reports, and Volume II Appendices. These documents describe tasks that were undertaken from November 1988 to December 1989, the first year of the project. Those tasks were: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. While this document summarizes information developed in each task area, it doesn't review task by task, as Volume I FY 1989 Task Reports does, but rather treats the subject of energy efficient industrialized housing as a whole to give the reader a more coherent view. 7 figs., 9 refs.

Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

1990-02-01T23:59:59.000Z

291

Energy Efficiency Fund (Gas)- Commercial and Industrial Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

Through the Connecticut Energy Efficiency Fund, rebates are available for commercial, industrial or municipal customers of Connecticut Natural Gas Corporation, Southern Connecticut Gas Company, or...

292

Low Carbon Society Toward 2050: Indonesia Energy Sector | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJunoMedanos Energy Center LLC JumpEnergyInformation

293

Energy-Sector Stakeholders Attend the Department of Energy's 2010  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessinSupporting JobsClean EnergyAcross

294

Industrial-energy-conservation technology  

SciTech Connect (OSTI)

Sixty-one papers presented at the meeting are included in this volume. A separate abstract was prepared for each paper for Energy Research Abstracts (ERA); nineteen were included in Energy Abstracts for Policy Analysis (EAPA). (LCL)

Not Available

1981-01-01T23:59:59.000Z

295

Energy Conservation in Industrial Lighting  

E-Print Network [OSTI]

In order to reduce energy use in lighting Union Carbide recently issued drastically reduced new lighting level standards. A computerized lighting cost program was also developed. Using this program a number of additional energy saving techniques...

Meharg, E.

1979-01-01T23:59:59.000Z

296

Presentation 1.1: An overview of existing and emerging EU policies relating to energy from biomass and their effects on forest based industries  

E-Print Network [OSTI]

products and wood-energy markets. Bearing in mind present EU forest resources and trends, the scope debate. 25 #12;International Seminar on Energy & the Forest Products' Industry FAO HQ, Rome, 30, Energy & Environment EU forest-based sector ­ NB no EU sectoral policy Communication on implementing

297

EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near...  

Broader source: Energy.gov (indexed) [DOE]

2: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX February 18, 2009 EIS-0412:...

298

ITP Industrial Distributed Energy: Combined Heat and Power -...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of Progress, A Vision for the Future ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of...

299

Policies and Measures to Realise Industrial Energy Efficiency...  

Open Energy Info (EERE)

Realise Industrial Energy Efficiency and Mitigate Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policies and Measures to Realise Industrial Energy...

300

NREL: News - NREL's Industry Growth Forum Brings Together Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4014 NREL's Industry Growth Forum Brings Together Energy Innovators Event recognizes the top clean energy technologies and startup businesses October 30, 2014 The Industry Growth...

Note: This page contains sample records for the topic "industrial sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Government and Industry A Force for Collaboration at the Energy...  

Broader source: Energy.gov (indexed) [DOE]

Government and Industry A Force for Collaboration at the Energy Roadmap Update Workshop Government and Industry A Force for Collaboration at the Energy Roadmap Update Workshop...

302

CenterPoint Energy- Commercial and Industrial Standard Offer Program  

Broader source: Energy.gov [DOE]

CenterPoint Energy's Commercial and Industrial Standard Offer Program pays incentives to service providers who install energy efficiency measures in commercial or industrial facilities that are...

303

Reducing Industrial Energy Intensity in the Southeast Project...  

Broader source: Energy.gov (indexed) [DOE]

Industrial Energy Intensity in the Southeast Project Fact Sheet Reducing Industrial Energy Intensity in the Southeast Project Fact Sheet This fact sheet contains details regarding...

304

Energy Storage Solutions Industrial Symposium | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Solutions Industrial Symposium Sep 04 2013 09:00 AM - 05:30 PM Energy Storage Solutions Industrial Symposium - Wednesday September 4, 2013 CONTACT : Email: Phone:...

305

Advanced, Energy-Efficient Hybrid Membrane System for Industrial...  

Broader source: Energy.gov (indexed) [DOE]

Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse hybridmembranesystemsfa...

306

Partnership for Energy Sector Climate Resilience | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiativesNationalNuclearRocky MountainEnergy Partnership between

307

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network [OSTI]

to provide training and energy audits and to help industrial1997 to end of March - Energy audits have allow to avoidagrees to undertake an energy audit, develop a management

Price, Lynn

2010-01-01T23:59:59.000Z

308

EA-0513: Approaches for Acquiring Energy Savings in Commercial Sector Buildings, Bonneville Power Administration  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal for DOE's Bonneville Power Administration to use several diverse approaches to purchase or acquire energy savings from commercial sector...

309

Energy-saving technology adoption under uncertainty in the residential sector  

E-Print Network [OSTI]

Energy-saving technology adoption under uncertainty in the residential sector Dorothée Charlier in a context of growing energy demand. This phenomenon is in part due to the importance of residential energy: in France, buildings account for 23% of CO2 emissions, of which 70% are generated by the residential sector

Paris-Sud XI, Université de

310

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

1996. COREX, Revolution in Ironmaking, Linz, Austria:VAI. ;GJ/t Material Preparation Ironmaking Sintering PelletizingGJ/t Material Preparation Ironmaking Sintering Pelletizing

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

311

Industrial Sector Energy Efficiency Modeling (ISEEM) Framework Documentation  

E-Print Network [OSTI]

INVESTMENT COST . anninvcost Annualized investment cost of a technology bound_Total of discounted investment costs discinvcost Discounted

Karali, Nihan

2014-01-01T23:59:59.000Z

312

Efficient Energy Utilization in the Industrial Sector - Case Studies  

E-Print Network [OSTI]

. Leakage and misuse of compressed air can normally be reduced by 10 percent, resulting in an annual savings of approximately $10,000 to $20,000. Heat recovery, using air compressor cooling water, can and is being used for space heating...

Davis, S. R.

1984-01-01T23:59:59.000Z

313

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

recovered from the black liquor recovery process (combustingand development in black liquor gasification has not yetgreen liquor”, similar to the black liquor recovery process,

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

314

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

can be produced onsite at the smelter or in separate plants19, 20 The most efficient smelters consume 400-440 kg ofyears five aluminum smelter types have become widespread:

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

315

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

feedstock would use a coal gasifier to convert the coal tosynthesis gas. Most coal gasifier-based ammonia plants areof a modern entrained bed gasifier, selexol gas cleanup and

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

316

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

in a back-pressure steam turbine to generate electricity (compressor uses a steam turbine, using internally generatedwith a gas turbine, producing steam and electricity. The hot

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

317

Innovative Energy Efficient Industrial Ventilation  

E-Print Network [OSTI]

?, a law of physics, shows why electricity savings can be high (Figure 5). 0 10 20 30 40 50 60 70 80 90 100 0 102030405060708090100 Air volume [CFM %] Power [H.P. %] P o w e r [ H .P . % ] A i r v o l u m e [ C FM %] C F M = 50 % of b l ast... and dust could settle. An on-demand dust collecting system solves this problem by using a PLC (industrial computer) which calculates necessary air volume based on information from the sensors. The PLC is adjusting the RPM of the fan accordingly...

Litomisky, A.

2005-01-01T23:59:59.000Z

318

Melink Industries | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalwayHydrothermalMcFarland isDiscoveries IncMelink Industries

319

Energy Demand: Limits on the Response to Higher Energy Prices in the End-Use Sectors (released in AEO2007)  

Reports and Publications (EIA)

Energy consumption in the end-use demand sectorsresidential, commercial, industrial, and transportationgenerally shows only limited change when energy prices increase. Several factors that limit the sensitivity of end-use energy demand to price signals are common across the end-use sectors. For example, because energy generally is consumed in long-lived capital equipment, short-run consumer responses to changes in energy prices are limited to reductions in the use of energy services or, in a few cases, fuel switching; and because energy services affect such critical lifestyle areas as personal comfort, medical services, and travel, end-use consumers often are willing to absorb price increases rather than cut back on energy use, especially when they are uncertain whether price increases will be long-lasting. Manufacturers, on the other hand, often are able to pass along higher energy costs, especially in cases where energy inputs are a relatively minor component of production costs. In economic terms, short-run energy demand typically is inelastic, and long-run energy demand is less inelastic or moderately elastic at best.

2007-01-01T23:59:59.000Z

320

Representation of Energy Use in the Food Products Industry  

E-Print Network [OSTI]

Traditional representations of energy in the manufacturing sector have tended to represent energy end-uses rather than actual energy service demands. While this representation if quite adequate for understanding how energy is used today...

Elliott, N. R.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Industrial-energy-conservation technology  

SciTech Connect (OSTI)

Fifty-nine papers presented at the meeting are included in this volume. A separate abstract was prepared for each, with all of the abstracts appearing in Energy Research Abstracts (ERA); 21 abstracts were selected for Energy Abstracts for Policy Analysis (EAPA). (LCL)

Not Available

1981-01-01T23:59:59.000Z

322

India's iron and steel industry: Productivity, energy efficiency and carbon emissions  

SciTech Connect (OSTI)

Historical estimates of productivity growth in India's iron and steel sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both growth accounting and econometric estimates of productivity growth for this sector. Their results show that over the observed period from 1973--74 to 1993--94 productivity declined by 1.71{percent} as indicated by the Translog index. Calculations of the Kendrick and Solow indices support this finding. Using a translog specification the econometric analysis reveals that technical progress in India's iron and steel sector has been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protective policy regarding price and distribution of iron and steel as well as by large inefficiencies in public sector integrated steel plants. Will these trends continue into the future, particularly where energy use is concerned? Most likely they will not. The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with the liberalization of the iron and steel sector, the industry is rapidly moving towards world-best technology, which will result in fewer carbon emissions and more efficient energy use in existing and future plants.

Schumacher, Katja; Sathaye, Jayant

1998-10-01T23:59:59.000Z

323

Industrial Compressed Air System Energy Efficiency Guidebook.  

SciTech Connect (OSTI)

Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

United States. Bonneville Power Administration.

1993-12-01T23:59:59.000Z

324

Aluminum industry energy conservation workshop V papers  

SciTech Connect (OSTI)

This book contains papers given at a recent meeting sponsored by The Aluminum Association. The focus of the meeting is on energy conservation in the aluminum industry. Topics include recovery of waste heat, more energy efficient design of plants, and government policies.

Not Available

1980-01-01T23:59:59.000Z

325

Department of Energy Releases New Report on Energy Sector Vulnerablities |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData Files DataADVANCESDepartment of| Department

326

Energy Efficient Industrial Building Design  

E-Print Network [OSTI]

" or precooled air concept of ventilation, with a high temperature hot-water/chilled-water changeover piping system. Extensive energy recovery systems would be provided for production equipment and oil mist control would be by local captive systems, rather...

Holness, G. V. R.

1983-01-01T23:59:59.000Z

327

Eolica Industrial | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen Energy Information EnergySolar Systems JumpEolica

328

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network [OSTI]

industry (iron foundries, cold storage and refrigeration,Energy management Cold storage and refrigeration ? Newelectric power; heat/cold storage; heat pumps using ambient

Price, Lynn

2010-01-01T23:59:59.000Z

329

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network [OSTI]

chemicals, light industry (iron foundries, cold storage andindustry ? Use of CHP ? Debottlenecking ? Increased production capacity ? Better use of production capacity ? Energy management Cold storage

Price, Lynn

2010-01-01T23:59:59.000Z

330

Electric Power Interruption Cost Estimates for Individual Industries, Sectors, and the U.S. Economy  

E-Print Network [OSTI]

(Lehtonen et at. 1995) Finland 1992 1993 Industrial- US$15.79/kW - I-Hour Interruption Commercial - US$17.86/kW - I-Hour Interruption Residential- US$3.16/kW - I-Hour Interruption Lehtonen and Lemstroem (Lehtonen et al. 1995) Iceland 1992 1993.... VTT Energy. Jyvaskyla, Finland. (1995). 9. New York City Office of Economic Development. Statistical Profile of Emergency Aid Corrunission Applications. New York, New York. (1977). 10. Ontario Hydro. Ontario Hydro Survey on Power System...

Balducci, P. J.; Roop, J. M.; Schienbein, L. A.; DeSteese, J. G.; Weimar, M. R.

331

State Level Analysis of Industrial Energy Use  

E-Print Network [OSTI]

of the regional Interestingly, approximately 98 percent of mining mining consumption, and 10 percent of the total Figure 1. Share of Total Industrial Electricity Consumption by Industry Group for Eight Selected States and the U.S. 90% 80% c: :g, 70% E... .2 1:1 C. E ::l .. g 20% +-------------1 u ~ u E u .. ." iii iii ... ::l ] 10% '0 l!! .. .J:: In 0% / /,. ~/ / 103 ESL-IE-03-05-12 Proceedings from theTwenty-Fifth Industrial Energy Technology Conference, Houston, TX, May 13...

Elliott, R. N.; Shipley, A. M.; Brown, E.

332

ITP Glass: Glass Industry of the Future: Energy and Environmental...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Glass Industry of the Future: Energy and Environmental Profile of the U.S. Glass Industry; April, 2002 ITP Glass: Glass Industry of the Future: Energy and Environmental Profile of...

333

Shrenik Industries | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New EnergyAnatoliaSciraShenhua Guohua EnergyTendoShree

334

Jax Industries | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy2005)Jamaica Beach,Janette° Loading5°JavaJax

335

Industry Supply Chain Development (Ohio)  

Broader source: Energy.gov [DOE]

Supply Chain Development programs are focused on targeted industries that have significant growth opportunities for Ohio's existing manufacturing sector from emerging energy resources and...

336

US Energy Service Company Industry: History and Business Models  

Office of Energy Efficiency and Renewable Energy (EERE)

Information about the history of US Energy Service Company including industry history, setbacks, and lessons learned.

337

Energy-Efficiency Improvement Opportunities for the Textile Industry  

E-Print Network [OSTI]

Cold Storage Facilities. ? Proceedings of the 2005 ACEEE Summer Study on Energy efficiency in Industry,

Hasanbeigi, Ali

2010-01-01T23:59:59.000Z

338

Industry Professional | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) Error 429IndianaProfessional Jump to: navigation, search

339

Two Paths to Transforming Markets through Public Sector Energy Efficiency: Bottom Up versus Top Down  

E-Print Network [OSTI]

Two Paths to Transforming Markets through Public Sector Energy Efficiency: Bottom Up versus Top agencies, reduced demand on capacity-constrained electric utility systems, increased energy system sector's buying power and visible leadership offer a powerful, non-regulatory means to stimulate market

340

The London Accord 1 Dynamics of technological development in the energy sector  

E-Print Network [OSTI]

that drive technological improvement, and using extrapolations based on past and present performance dataThe London Accord 1 Dynamics of technological development in the energy sector J. Doyne Farmer the literature on trends of technological improvement, focusing on the energy sector. We discuss the extent

Note: This page contains sample records for the topic "industrial sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Emerging energy-efficient industrial technologies  

SciTech Connect (OSTI)

U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if not more important in many cases) in influencing the decision on whether to adopt an emerging technology. The technologies were characterized with respect to energy efficiency, economics, and environmental performance. The results demonstrate that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. We show that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity and worker safety, and reduced capital costs.

Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

2000-10-01T23:59:59.000Z

342

Natural Gas and the Transformation of the U.S. Energy Sector: Electricity  

SciTech Connect (OSTI)

The Joint Institute for Strategic Energy Analysis (JISEA) designed this study to address four related key questions, which are a subset of the wider dialogue on natural gas: 1. What are the life cycle greenhouse gas (GHG) emissions associated with shale gas compared to conventional natural gas and other fuels used to generate electricity?; 2. What are the existing legal and regulatory frameworks governing unconventional gas development at federal, state, and local levels, and how are they changing in response to the rapid industry growth and public concerns?; 3. How are natural gas production companies changing their water-related practices?; and 4. How might demand for natural gas in the electric sector respond to a variety of policy and technology developments over the next 20 to 40 years?

Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

2012-11-01T23:59:59.000Z

343

Emerging energy-efficient technologies for industry  

SciTech Connect (OSTI)

U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, society is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology is essential in achieving these challenges. We report on a recent analysis of emerging energy-efficient technologies for industry, focusing on over 50 selected technologies. The technologies are characterized with respect to energy efficiency, economics and environmental performance. This paper provides an overview of the results, demonstrating that we are not running out of technologies to improve energy efficiency, economic and environmental performance, and neither will we in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity, and reduced capital costs compared to current technologies.

Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorne, Jennifer

2004-01-01T23:59:59.000Z

344

Industrial Technologies - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planningtoA Journey Inside the Complex and

345

Motech Industries | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:Moe WindMontMoraine IIMorro Bay,Moscow is

346

ENCUENTRO EMPRESA-UNIVERSIDAD OPORTUNIDADES DE NEGOCIO EN EL MBITO DEL SECTOR INDUSTRIAL MARINO E  

E-Print Network [OSTI]

. Producción industrial de biomasa de insectos, mediante la valorización de subproductos de origen vegetal

Escolano, Francisco

347

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network [OSTI]

Policy and Renewable Energy Technology. Proceedings of theDiffusion of Renewable Energy Technologies: Wind Power inFostering a Renewable Energy Technology Industry: An

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

348

Energy resource management for energy-intensive manufacturing industries  

SciTech Connect (OSTI)

A program to introduce energy resource management into an energy-intensive manufacturing industry is presented. The food industry (SIC No. 20) was chosen and 20 companies were selected for interviews, but thirteen were actually visited. The methodology for this program is detailed. Reasons for choosing the food industry are described. The substance of the information gained and the principal conclusions drawn from the interviews are given. Results of the model Energy Resource Management Plan applied to three companies are compiled at length. Strategies for dissemination of the information gained are described. (MCW)

Brenner, C.W.; Levangie, J.

1981-10-01T23:59:59.000Z

349

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network [OSTI]

L. , S. de la Rue du Can, J. Sinton, E. Worrell, N. Zhou, J.industry. Energy 23: 725-32. Sinton, J.E. and D.G. Fridley (Roy, 2000; IEA, 2003a,b; Sinton and Fridley, 2000). Hence,

Worrell, Ernst

2009-01-01T23:59:59.000Z

350

Developing an energy efficiency service industry in Shanghai  

SciTech Connect (OSTI)

The rapid development of the Chinese economy over the past two decades has led to significant growth in China's energy consumption and greenhouse gas (GHG) emissions. Between 1980 and 2000, China's energy consumption more than doubled from 602 million to 1.3 billion tons of coal-equivalent (NBS, 2003). In 2000, China's GHG emissions were about 12% of the global total, ranked second behind only the US. According to the latest national development plan issued by the Chinese government, China's energy demand is likely to double again by 2020 (DRC, 2004), based on a quadrupling of its gross domestic product (GDP). The objectives of the national development plan imply that China needs to significantly raise the energy efficiency of its economy, i.e., cutting the energy intensity of its economy by half. Such goals are extremely ambitious, but not infeasible. China has achieved such reductions in the past, and its current overall level of energy efficiency remains far behind those observed in other developed economies. However, challenges remain whether China can put together an appropriate policy framework and the institutions needed to improve the energy efficiency of its economy under a more market-based economy today. Shanghai, located at the heart of the Yangtze River Delta, is the most dynamic economic and financial center in the booming Chinese economy. With 1% of Chinese population (13 million inhabitants), its GDP in 2000 stood at 455 billion RMB yuan (5% of the national total), with an annual growth rate of 12%--much higher than the national average. It is a major destination for foreign as well as Chinese domestic investment. In 2003, Shanghai absorbed 10% of actual foreign investment in all China (''Economist'', January 17-23, 2004). Construction in Shanghai continues at a breakneck pace, with an annual addition of approximately 200 million square foot of residential property and 100 million square foot of commercial and industrial space over the last 5 years. It is one reason that China consumed over 60% of the world's cement production in 2003 (NBS 2004). Energy consumption in Shanghai has been growing at 6-8% annually, with the growth of electricity demand at over 10% per year. Shanghai, with very limited local energy resources, relies heavily on imported coal, oil, natural gas, and electricity. While coal still constitutes over half of Shanghai's energy consumption, oil and natural gas use have been growing in importance. Shanghai is the major market for China's West to East (natural gas) Pipeline (WEP). With the input from WEP and off-shore pipelines, it is expected that natural gas consumption will grow from 250 million cubic meters in 2000 to 3000-3500 million cubic meters in 2005. In order to secure energy supply to power Shanghai's fast-growing economy, the Shanghai government has set three priorities in its energy strategy: (1) diversification of its energy structure, (2) improving its energy efficiency, and (3) developing renewable and other cleaner forms of energy. Efficiency improvements are likely to be most critical, particularly in the near future, in addressing Shanghai's energy security, especially the recent electricity shortage in Shanghai. Commercial buildings and industries consume the majority of Shanghai's, as well as China's, commercial energy. In the building sector, Shanghai has been very active implementing energy efficiency codes for commercial and residential buildings. Following a workshop on building codes implementation held at LBNL for senior Shanghai policy makers in 2001, the Shanghai government recently introduced an implementation guideline on residential building energy code compliance for the downtown area of Shanghai to commence in April, 2004, with other areas of the city to follow in 2005. A draft code for commercial buildings has been developed as well. In the industrial sector, the Shanghai government started an ambitious initiative in 2002 to induce private capital to invest in energy efficiency improvements via energy management/services companies (EMC/ESCOs). In partic

Lin, Jiang; Goldman, Charles; Levine, Mark; Hopper, Nicole

2004-02-10T23:59:59.000Z

351

Industrial Energy Efficiency Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusiness PlanPosting

352

Industrial Geospatial Analysis Tool for Energy Evaluation  

E-Print Network [OSTI]

Industrial Geospatial Analysis Tool for Energy Evaluation- IGATE-E Nasr Alkadi, Researcher, Oak Ridge National Laboratory, Oak Ridge, TN Michael Starke, Researcher, Oak Ridge National Laboratory, Oak Ridge, TN Ookie Ma, Scientist, US Department... of Energy, Washington, DC Sachin Nimbalkar, Researcher, Oak Ridge National Laboratory, Oak Ridge, TN Daryl Cox, Researcher, Oak Ridge National Laboratory, Oak Ridge, TN Kevin Dowling, Student Researcher, University of Tennessee, Knoxville, TN Brendon...

Alkadi, N.; Starke, M.; Ma, O.; Nimbalkar, S.; Cox, D.; Dowling, K.; Johnson, B.; Khan, S.

2013-01-01T23:59:59.000Z

353

NREL: Energy Systems Integration - NREL Handbook Helps Industry...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL Handbook Helps Industry Collect and Interpret Solar Resource Data for Solar Energy Applications Comprehensive handbook is a valuable resource for the solar industry on the...

354

US Energy Service Company Industry: History and Business Models  

Broader source: Energy.gov (indexed) [DOE]

Energy Service Company Industry: History and Business Models Don Gilligan President, NAESCO May 6, 2011 Overview of Presentation * US ESCO industry evolution: Five phases *...

355

Reducing Industrial Energy Intensity in the Southeast Project...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Authority and its project partners will establish the Southeastern Center for Industrial Energy Intensity Reduction (the Center) to inform industrial facilities about the U.S....

356

Policies for Promoting Industrial Energy Efficiency in Developing...  

Open Energy Info (EERE)

under the structure of an Industrial Standards Framework that are designed to promote the organizational culture change needed for industrial energy efficiency to be both realized...

357

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

38 3.2.1. SDG&E Residential Electric Rates and TheirFootprint of Single-Family Residential New Construction.Solar photovoltaic financing: residential sector deployment,

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

358

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

of Residential Source Heat Pump Gas Furnace HeatingResidential Heating Equipment (1) Database Year Minimum Type Code Fuel Effective (2) Efficiency (3) Heat Pumpheating technology of choice for almost 40% of the residential sector. Heat pumps

Wenzel, T.P.

2010-01-01T23:59:59.000Z

359

Green Energy Industries Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: EnergyGrasslands RenewableGreatwood, Texas:Open45.Place:

360

Future Public Policy and Ethical Issues Facing the Agricultural and Microbial Genomics Sectors of the Biotechnology Industry: A Roundtable Discussion  

SciTech Connect (OSTI)

On September 12, 2003, the University of Maryland School of Law's Intellectual Property and Law & Health Care Programs jointly sponsored and convened a roundtable discussion on the future public policy and ethical issues that will likely face the agricultural and microbial genomics sectors of the biotechnology industry. As this industry has developed over the last two decades, societal concerns have moved from what were often local issues, e.g., the safety of laboratories where scientists conducted recombinant DNA research on transgenic microbes, animals and crops, to more global issues. These newer issues include intellectual property, international trade, risks of genetically engineered foods and microbes, bioterrorism, and marketing and labeling of new products sold worldwide. The fast paced nature of the biotechnology industry and its new developments often mean that legislators, regulators and society, in general, must play ''catch up'' in their efforts to understand the issues, the risks, and even the benefits, that may result from the industry's new ways of conducting research, new products, and novel methods of product marketing and distribution. The goal of the roundtable was to develop a short list of the most significant public policy and ethical issues that will emerge as a result of advances in these sectors of the biotechnology industry over the next five to six years. More concretely, by ''most significant'' the conveners meant the types of issues that would come to the attention of members of Congress or state legislators during this time frame and for which they would be better prepared if they had well researched and timely background information. A concomitant goal was to provide a set of focused issues for academic debate and scholarship so that policy makers, industry leaders and regulators would have the intellectual resources they need to better understand the issues and concerns at stake. The goal was not to provide answers to any of the issues or problems, simply to identify those topics that deserve our attention as a society. Some of the issues may benefit from legislation at the federal or state levels, others may be more appropriately addressed by the private sector. Participants at the roundtable included over a dozen experts in the areas of microbiology, intellectual property, agricultural biotechnology, microbial genomics, bioterrorism, economic development, biotechnology research, and bioethics. These experts came from federal and state government, industry and academia. The participants were asked to come to the roundtable with a written statement of the top three to five public policy/ ethical issues they viewed as most likely to be significant to the industry and to policy makers over the next several years.

Diane E. Hoffmann

2003-09-12T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Efficient Industrialized Housing Research Program  

SciTech Connect (OSTI)

Six area reported progress in the Energy Efficient Industrialized Housing Research Program during FY 1991. As part of Industry Guidance, meetings were held with steering and technical committees in computers, housing design and manufacturing. This task area enables the program to benefit from the expertise of industry representatives and communicate research results directly to them. As part of the Design Process performance specifications were being developed for the future housing system designed last year. These house designs coordinate and optimize predicted and desirable advances in computerized design processes, materials, components, and manufacturing automation to achieve energy efficiency at reduced first cost. Energy design software were being developed for CAD systems, stressed skin insulating core panel manufacturers; and a prototype energy sales tool. A prototype design was to be developed to integrate one or more subsystems with the building skin. As part of the Manufacturing Process we are developing a manufacturing process simulation and data base to help current and new entrants to the industrialized housing industry in assessing the impact of implementing new manufacturing techniques. For Evaluation we are developing testing plans for six units of housing on the UO campus and the stressed skin insulating core house to be constructed in Oregon. The DOW Chemical test structure will be retrofitted with a tile roof and retested to compare to the dome and conventional construction structures. Calibration of the wind tunnel will be completed so that laboratory tests can be conducted to simulate the ventilation cooling efficiency of houses in design. Research utilization and program management were either aspects of this program.

Not Available

1992-03-01T23:59:59.000Z

362

ITP Industrial Distributed Energy: Combined Heat and Power: Effective...  

Broader source: Energy.gov (indexed) [DOE]

Energy Solutions for a Sustainable Future ITP Industrial Distributed Energy: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future Report describing the...

363

Energy Efficiency Improvement Opportunities for the Cement Industry  

E-Print Network [OSTI]

Lime Institute. 2001. Energy Efficiency Opportunity Guide inIndustry, Office of Energy Efficiency, Natural Resourcesof a Cement Kiln, Energy Efficiency Demonstration Scheme,

Worrell, Ernst

2008-01-01T23:59:59.000Z

364

Value Capture in the Global Wind Energy Industry  

E-Print Network [OSTI]

investigations/wind-energy-funds-going-overseas/ Dedrick,America. GWEC (Global Wind Energy Council) (2010). Globaland investment flows in the wind energy industry. Peterson

Dedrick, Jason; Kraemer, Kenneth L.

2011-01-01T23:59:59.000Z

365

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network [OSTI]

60% of total primary energy consumption, compared to theShare of Total Primary Energy Consumption World US Chinaof industrial primary energy consumption in The Netherlands.

Price, Lynn

2008-01-01T23:59:59.000Z

366

Reducing Industrial Energy Intensity in the Southeast Project Fact Sheet  

Broader source: Energy.gov [DOE]

This fact sheet contains details regarding a Save Energy Now industrial energy efficiency project that the U.S. Department of Energy funded in Mississippi.

367

Industrial Assessment Centers (IACs) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusiness PlanPosting of|ofIndustrial Assessment Centers

368

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network [OSTI]

Fuels used in the refinery sector were also collected fromof the emissions from the refinery sector are included incommitment of 44% and the refinery and food sectors

Price, Lynn

2010-01-01T23:59:59.000Z

369

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

Energy (PJ) Total Final Energy (PJ) Coal Electricity CementInvestment Energy Recovered Fuel (Coal) Saved / AnnumEnergy Use (PJ) Final Energy Use (PJ) Coal Electricity Fuel

Sathaye, Jayant

2011-01-01T23:59:59.000Z

370

Lighting Business Case -- A Report Analyzing Lighting Technology Opportunities with High Return on Investment Energy Savings for the Federal Sector  

SciTech Connect (OSTI)

This document analyzes lighting technology opportunities with high return on investment energy savings for the Federal sector.

Jones, Carol C.; Richman, Eric E.

2005-12-30T23:59:59.000Z

371

Industry, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) Error 429IndianaProfessional Jump to:

372

Industry, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) Error 429IndianaProfessional Jump to:

373

Characterizing emerging industrial technologies in energy models  

SciTech Connect (OSTI)

Conservation supply curves are a common tool in economic analysis. As such, they provide an important opportunity to include a non-linear representation of technology and technological change in economy-wide models. Because supply curves are closely related to production isoquants, we explore the possibility of using bottom-up technology assessments to inform top-down representations of energy models of the U.S. economy. Based on a recent report by LBNL and ACEEE on emerging industrial technologies within the United States, we have constructed a supply curve for 54 such technologies for the year 2015. Each of the selected technologies has been assessed with respect to energy efficiency characteristics, likely energy savings by 2015, economics, and environmental performance, as well as needs for further development or implementation of the technology. The technical potential for primary energy savings of the 54 identified technologies is equal to 3.54 Quads, or 8.4 percent of the assume d2015 industrial energy consumption. Based on the supply curve, assuming a discount rate of 15 percent and 2015 prices as forecasted in the Annual Energy Outlook2002, we estimate the economic potential to be 2.66 Quads - or 6.3 percent of the assumed forecast consumption for 2015. In addition, we further estimate how much these industrial technologies might contribute to standard reference case projections, and how much additional energy savings might be available assuming a different mix of policies and incentives. Finally, we review the prospects for integrating the findings of this and similar studies into standard economic models. Although further work needs to be completed to provide the necessary link between supply curves and production isoquants, it is hoped that this link will be a useful starting point for discussion with developers of energy-economic models.

Laitner, John A. (Skip); Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

2003-07-29T23:59:59.000Z

374

Industry Leaders Saving Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofTheDepartment of2012PathwaysJobsan overview

375

Millennium Energy Industries | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbH JumpSprings, Vermont:is a townMillardCommunication Co Ltd

376

Colorado Industrial Energy Challenge | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLE FORSuperiorThe Office ofScience Mission The

377

List of Companies in Carbon Sector | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolar (Texas)Biofuels Sector Jump to:Carbon Sector

378

List of Companies in Vehicles Sector | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolar (Texas)Biofuels Sector JumpVehicles Sector

379

Tax and Fiscal Policies for Promotion of Industrial EnergyEfficiency: A Survey of International Experience  

SciTech Connect (OSTI)

The Energy Foundation's China Sustainable Energy Program (CSEP) has undertaken a major project investigating fiscal and tax policy options for stimulating energy efficiency and renewable energy development in China. This report, which is part of the sectoral sub-project studies on energy efficiency in industry, surveys international experience with tax and fiscal policies directed toward increasing investments in energy efficiency in the industrial sector. The report begins with an overview of tax and fiscal policies, including descriptions and evaluations of programs that use energy or energy-related carbon dioxide (CO2) taxes, pollution levies, public benefit charges, grants or subsidies, subsidized audits, loans, tax relief for specific technologies, and tax relief as part of an energy or greenhouse gas (GHG) emission tax or agreement scheme. Following the discussion of these individual policies, the report reviews experience with integrated programs found in two countries as well as with GHG emissions trading programs. The report concludes with a discussion of the best practices related to international experience with tax and fiscal policies to encourage investment in energy efficiency in industry.

Price, Lynn; Galitsky, Christina; Sinton, Jonathan; Worrell,Ernst; Graus, Wina

2005-09-15T23:59:59.000Z

380

Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

Not Available

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

Conservation and Renewable Energy, Building EquipmentConservation and Renewable Energy, Building EquipmentConservation and Renewable Energy, Building Equipment

Wenzel, T.P.

2010-01-01T23:59:59.000Z

382

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

-- -- Residential excluding electricity 6.4 6.6 6.0 5.0 -- Commercial 8.6 8.6 8.5 -- -- Commercial excluding electricity 4.1 4.1 4.0 4.0 -- Buildings sector 19.9 20.1 19.3 --...

383

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Residential excluding electricity 6.7 6.5 6.2 6.0 -- -- Commercial 8.7 8.5 8.6 -- -- -- Commercial excluding electricity 4.2 3.9 4.0 4.0 -- -- Buildings sector 20.4 20.0 19.8...

384

Energy: Critical Infrastructure and Key Resources Sector-Specific...  

Broader source: Energy.gov (indexed) [DOE]

comprehensive risk management framework that defines critical infrastructure protection (CIP) roles and responsibilities for all levels of government, private industry, and other...

385

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Applications, Final Report (August 2010), The Cost and Performance of Distributed Wind Turbines, 2010-2035, Final Report (August 2010), and Commercial and Industrial CHP...

386

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

Energy Consumption 11and a decomposition of energy consumption to understand theData Historical energy consumption and energy-related CO 2

2006-01-01T23:59:59.000Z

387

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

of renewable energy as well as create incentives for largenew Renewable Energy Program to provide financial incentivesfinancial incentives to promote renewable energy than energy

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

388

Electrical Energy Monitoring in an Industrial Plant  

E-Print Network [OSTI]

studied from the end user's standpoint. Electric utilities have studied the use of energy by a few large industrial customers because it allows them to deal with a large amount of electricity usage through a small customer base. Traditionally, electric..., commercially available spreadsheet programs, the data can be graphed in various ways to show an hour, day, week, month, or a year of energy and demand use, or power factor. For this project, a 15-minute time window was chosen to match the HL&P demand interval...

Dorhofer, F. J.; Heffington, W. M.

389

Behavioral Assumptions Underlying California Residential Sector Energy Efficiency Programs (2009 CIEE Report)  

Broader source: Energy.gov [DOE]

This paper examines the behavioral assumptions that underlie California’s residential sector energy efficiency programs and recommends improvements that will help to advance the state’s ambitious greenhouse gas reduction goals.

390

The private sector's capacity to manage climate risks and finance carbon neutral energy infrastructure  

E-Print Network [OSTI]

This dissertation examines the financial aspects of climate change relating to the private sector's capacity to manage climate risks and finance carbon neutral energy infrastructure. The dissertation examines (a) potential ...

Hart, Craig A

2007-01-01T23:59:59.000Z

391

EUROPEAN ENERGY EFFICIENCY AND DECARBONIZATION STRATEGIES BEYOND 2030 --A SECTORAL MULTI-MODEL  

E-Print Network [OSTI]

EUROPEAN ENERGY EFFICIENCY AND DECARBONIZATION STRATEGIES BEYOND 2030 -- A SECTORAL MULTI-1800, USA **h.foerster@oeko.de Published 5 December 2013 Energy efficiency and decarbonization are important by improving energy efficiency, by at least 20%, and by investing in new and cleaner energy infrastructures

Paris-Sud XI, Université de

392

The Role of Professional Risk in Implementing Industrial Energy Improvements  

E-Print Network [OSTI]

This paper discusses the professional risks and rewards of being an industrial energy manager. The content is derived from the author's personal experience1 plus 80 separate interviews of industrial energy practitioners and experts conducted during...

Russell, C.

2014-01-01T23:59:59.000Z

393

Understanding and reducing energy and costs in industrial cooling systems  

E-Print Network [OSTI]

Industrial cooling remains one of the largest potential areas for electrical energy savings in industrial plants today. This is in spite of a relatively small amount of attention paid to it by energy auditors and rebate program designers. US DOE...

Muller, M.R.; Muller, M.B.

2012-01-01T23:59:59.000Z

394

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

report analyzed the potential for increasing energy efficiencyreport analyzed the potential for increasing energy efficiency

Sathaye, Jayant

2011-01-01T23:59:59.000Z

395

A Review of Energy Use and Energy Efficiency Technologies for the Textile Industry  

E-Print Network [OSTI]

Best practices/case studies - Indian Industries, Energy-efficiencyBest practices/case studies - Indian Industries, Energy-efficiencyBest practices/case studies - Indian Industries, Energy-efficiency

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

396

EIA - Annual Energy Outlook 2013 Early Release  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

A6 Industrial Sector Key Indicators and Consumption A7 Transportation Sector Key Indicators and Delivered Energy Consumption A8 Electricity Supply, Disposition, Prices,...

397

Entergy Arkansas- Commercial and Industrial Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

Entergy Arkansas has several programs to help commercial and industrial customers increase the energy efficiency of eligible facilities.

398

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

Neelis, Maarten; Worrell, Ernst; Masanet, Eric

2008-09-01T23:59:59.000Z

399

Characterization report. Romanian petroleum refining sector. A sector overview of capability, energy consumption, environmental impacts, May 1992. Export trade information  

SciTech Connect (OSTI)

The objective of the report is to provide data that will serve as a basis for the modernization and optimization of the economic performance of the petroleum refining industry of Romania. The report addresses the current status of the petroleum refining industry so that recommendations providing low cost economies to improve energy efficiency and environmental control at each refinery can be prepared. Following the collection of data on operating variables, equipment, and refinery impact on the environment, a computerized data base was prepared, which is the subject of a separate report.

Not Available

1992-05-01T23:59:59.000Z

400

China's Pathways to Achieving 40percent 45percent Reduction in CO2 Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential  

E-Print Network [OSTI]

heater Residential CO2 Emissions (Mt CO2) 2020 ResidentialEnergy Industrial Sector CO2 Emissions (Mt CO2) IndustrialFigure 5. Power Sector CO2 Emissions by Scenario E3 Max Tech

Zheng, Nina

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

Cell 2006. Detailed Energy Audit Report for Udyog Bhawan,Cell 2006. Detailed Energy Audit Report for NationalCell 2006. Detailed Energy Audit Report for Vigyan Bhawan,

Sathaye, Jayant

2011-01-01T23:59:59.000Z

402

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

best practices and demonstrates that large energy efficiencyscope for energy efficiency improvements. Best practices forbest practices subsists, which suggests that room for energy efficiency

Sathaye, Jayant

2011-01-01T23:59:59.000Z

403

Emerging energy-efficient technologies for industry  

SciTech Connect (OSTI)

For this study, we identified about 175 emerging energy-efficient technologies in industry, of which we characterized 54 in detail. While many profiles of individual emerging technologies are available, few reports have attempted to impose a standardized approach to the evaluation of the technologies. This study provides a way to review technologies in an independent manner, based on information on energy savings, economic, non-energy benefits, major market barriers, likelihood of success, and suggested next steps to accelerate deployment of each of the analyzed technologies. There are many interesting lessons to be learned from further investigation of technologies identified in our preliminary screening analysis. The detailed assessments of the 54 technologies are useful to evaluate claims made by developers, as well as to evaluate market potentials for the United States or specific regions. In this report we show that many new technologies are ready to enter the market place, or are currently under development, demonstrating that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity. Several technologies have reduced capital costs compared to the current technology used by those industries. Non-energy benefits such as these are frequently a motivating factor in bringing technologies such as these to market. Further evaluation of the profiled technologies is still needed. In particular, further quantifying the non-energy benefits based on the experience from technology users in the field is important. Interactive effects and inter-technology competition have not been accounted for and ideally should be included in any type of integrated technology scenario, for it may help to better evaluate market opportunities.

Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorn, Jennifer

2001-03-20T23:59:59.000Z

404

Energy Efficiency Services Sector: Workforce Education and Training Needs  

E-Print Network [OSTI]

Northwest Energy Efficiency Alliance New York EnergyIn New York, the New York Energy Research and Developmentenergy efficiency policies,” such as California, New York,

Goldman, Charles A.

2010-01-01T23:59:59.000Z

405

U.S. Building-Sector Energy Efficiency Potential  

E-Print Network [OSTI]

New York State Energy Research and Development Authority (of conserved energy values from the CEF and New York stateEnergy Efficiency Resource Development Potential In New York.

Brown, Rich

2008-01-01T23:59:59.000Z

406

Energy Efficiency Services Sector: Workforce Size and Expectations for Growth  

E-Print Network [OSTI]

the Massachusetts Energy Efficiency and Building ScienceSummer Study on Energy Efficiency in Buildings. The UnitedStudy on Energy Efficiency in Buildings. American Council

Goldman, Charles

2010-01-01T23:59:59.000Z

407

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

Summer Study on Energy Efficiency in Buildings. WashingtonSummer Study on Energy Efficiency in Buildings. WashingtonStudy on Energy Efficiency in Buildings. American Council

Wenzel, T.P.

2010-01-01T23:59:59.000Z

408

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

et al. (2005). Renewable energy policies and markets in theefficiency and renewable energy policy in the state. Inand Renewable Energy Technology and Policy. Washington,

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

409

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

Approximately 30% of total energy consumption is residualrepresented 37% of total energy consumption globally inwe observed how the total energy consumption projected by A1

2006-01-01T23:59:59.000Z

410

Energy Efficiency Services Sector: Workforce Education and Training Needs  

E-Print Network [OSTI]

of Excellence 2009b. “Energy Efficiency Occupations: Centralof Excellence 2009c. “Energy Efficiency Occupations: Greaterof Excellence 2009d. “Energy Efficiency Occupations: Inland

Goldman, Charles A.

2010-01-01T23:59:59.000Z

411

U.S. Building-Sector Energy Efficiency Potential  

E-Print Network [OSTI]

Washington, DC: Energy Information Administration, U.S.Washington, DC: Energy Information Administration, U.S.Washington, DC: Energy Information Administration, U.S.

Brown, Rich

2008-01-01T23:59:59.000Z

412

Energy Efficiency Services Sector: Workforce Size and Expectations for Growth  

E-Print Network [OSTI]

2009a. “Green Jobs & Energy Market Trends Relevant Trends,Engineers 2009a. “Energy Independence and Market Trends: AEEFace of Energy Efficiency and Market Transformation. ”

Goldman, Charles

2010-01-01T23:59:59.000Z

413

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

A1 scenario forecasts GDP energy intensity to continue toby activity levels and the energy intensity of the specificDemand Activity x Energy Intensity Additional information on

2006-01-01T23:59:59.000Z

414

Energy Efficiency Services Sector: Workforce Education and Training Needs  

E-Print Network [OSTI]

of Mechanical Engineering, MS in Energy Engineering (REof Mechanical Engineering, Center for Energy Efficiency andThis mechanical engineering department has an energy

Goldman, Charles A.

2010-01-01T23:59:59.000Z

415

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

Conservation vs. renewable energy: Cases (sic) studies from2009). Distributed Renewable Energy Operating Impacts anddeployment, National Renewable Energy Lab CPUC (2006). D.

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

416

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network [OSTI]

10 Historical Primary Energy Per GDP and Per11 Historical Primary Energy per GDP and perHistorical Primary Energy Per GDP and Per capita Population

2008-01-01T23:59:59.000Z

417

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

Final energy per GDP decreased considerably inper unit of GDP. Final energy per GDP decreased considerablysubstantial decline in final energy demand per unit of GDP.

2006-01-01T23:59:59.000Z

418

Energy Efficiency Services Sector: Workforce Education and Training Needs  

E-Print Network [OSTI]

a successful model to provide energy efficiency services toa successful model to provide energy efficiency services toa model for technical and community college energy programs.

Goldman, Charles A.

2010-01-01T23:59:59.000Z

419

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

and rural homes exhibit very different energy intensitieshigher demand for energy services than do rural households.that rural households will have a useful energy demand for

2006-01-01T23:59:59.000Z

420

Lincoln Electric System (Commercial and Industrial)- Sustainable Energy Program  

Broader source: Energy.gov [DOE]

Lincoln Electric System (LES) offers a variety of energy efficiency incentives for commercial and industrial customers through the Sustainable Energy Program (SEP). Some incentives are provided on...

Note: This page contains sample records for the topic "industrial sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Muscatine Power and Water- Commercial and Industrial Energy Efficiency Rebates  

Broader source: Energy.gov [DOE]

Muscatine Power and Water (MP&W) offers rebates for energy efficient upgrades to commercial and industrial customers. Rebates are available for commercial lighting retrofits, energy efficient...

422

Dakota Electric Association- Commercial and Industrial Custom Energy Grant Program  

Broader source: Energy.gov [DOE]

Dakota Electric's Custom Energy Grant Program is offered for any commercial or industrial customer that installs qualifying energy-efficient products which exceed conventional models and result in...

423

USDA, Departments of Energy and Navy Seek Input from Industry...  

Broader source: Energy.gov (indexed) [DOE]

USDA, Departments of Energy and Navy Seek Input from Industry to Advance Biofuels for Military and Commercial Transportation USDA, Departments of Energy and Navy Seek Input from...

424

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network [OSTI]

31% of the world’s energy consumption increase from 2003 totrends in energy consumption in the world’s largest country.s energy consumption has a growing impact on world energy

2008-01-01T23:59:59.000Z

425

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

solar systems and energy efficiency and conservationEnergy Tax Act encouraged homeowners to invest in energy conservation and solarenergy consumption patterns: that some adopters of solar will thereafter become adopters of energy conservation

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

426

Advanced Energy Industries, Inc. SEGIS developments.  

SciTech Connect (OSTI)

The Solar Energy Grid Integration Systems (SEGIS) initiative is a three-year, three-stage project that includes conceptual design and market analysis (Stage 1), prototype development/testing (Stage 2), and commercialization (Stage 3). Projects focus on system development of solar technologies, expansion of intelligent renewable energy applications, and connecting large-scale photovoltaic (PV) installations into the electric grid. As documented in this report, Advanced Energy Industries, Inc. (AE), its partners, and Sandia National Laboratories (SNL) successfully collaborated to complete the final stage of the SEGIS initiative, which has guided new technology development and development of methodologies for unification of PV and smart-grid technologies. The combined team met all deliverables throughout the three-year program and commercialized a broad set of the developed technologies.

Scharf, Mesa P. (Advanced Energy Industries, Inc., Bend, OR); Bower, Ward Isaac; Mills-Price, Michael A. (Advanced Energy Industries, Inc., Bend, OR); Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali; Kuszmaul, Scott S.; Gonzalez, Sigifredo

2012-03-01T23:59:59.000Z

427

Transportation Sector Model of the National Energy Modeling System. Volume 1  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

NONE

1998-01-01T23:59:59.000Z

428

Annual Energy Outlook 2012  

Gasoline and Diesel Fuel Update (EIA)

3 U.S. Energy Information Administration | Annual Energy Outlook 2012 Reference case Table A6. Industrial sector key indicators and consumption Energy Information Administration ...

429

Industry  

E-Print Network [OSTI]

EJ of primary energy, 40% of the global total of 227 EJ. Bytotal energy use by industry and on the fraction of electricity use consumed by motor driven systems was taken as representative of global

Bernstein, Lenny

2008-01-01T23:59:59.000Z

430

Towards a Very Low Energy Building Stock: Modeling the US Commercial Building Sector  

E-Print Network [OSTI]

Towards a Very Low Energy Building Stock: Modeling the US Commercial Building Sector to Support and continuing development of a model of time varying energy consumption in the US commercial building stock targeting very low future energy consumption in the building stock. Model use has highlighted the scale

431

Multi-Project Baselines for Evaluation of Industrial Energy-Efficiency and Electric Power Projects  

E-Print Network [OSTI]

of Industrial Energy-Efficiency and Electric Power Projectsof Industrial Energy-Efficiency and Electric Power ProjectsOf Industrial Energy-Efficiency And Electric Power Projects

2001-01-01T23:59:59.000Z

432

Process Energy Audit for Large Industries  

E-Print Network [OSTI]

can provide the necessary feedback signal to the VSO. Cement Manufacture. Figure 2 illustrates the basic generic flow diagram ofPortland cement manufacture (both wet and dry processes). Table 1 is the electricity consumption for various processes... for 230 ESL-IE-93-03-32 Proceedings from the Fifteenth National Industrial Energy Technology Conference, Houston, Tx, March 24-25, 1993 Figure 2 Process Flow Diagram for a Portland Cement Plant SHALE Attl IAON llAE -----+r------ll"'~~ ..., Il...

Chari, S.

433

Hanuman Agro Industries Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is8584°, -79.954985°is aHanoverHanuman Agro Industries

434

China's Energy Management System Program for Industry  

E-Print Network [OSTI]

Conference New Orleans, LA. May 20-23, 2014 | iipnetwork.org Waste Heat Recovery in Cement – Market Status 4 5 7 15 24 9 12 24 26 739 0 100 200 300 400 500 600 700 800 Rest of World Americas Europe Mid East Other Asia Pakistan Thailand Japan India China...MS Implementation guidance for Thermal Power – EnMS Implementation guidance for Coke – EnMS Implementation guidance Plate Coal Industry – M&V guidance on energy performance • 2015 – EnMS Implementation guidance for Paper – EnMS Implementation guidance...

Hedman, B.; Yu, Y.; Friedman, Z.; Taylor, R.

2014-01-01T23:59:59.000Z

435

TWS Industrial Holdings Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACAOpenSummersideJumpSyria: EnergyTESTTMATWS Industrial

436

MSM Industries Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point,ECO Auger <Industries Inc Place: New Jersey Zip:

437

Jinlong Industrial Group | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6 Climate ZoneJerome is aJinlong Industrial Group Jump to:

438

Agro Industrial Taruma | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil JumpAerowatt Energies JumpAgProMRVPark Jump to:Industrial

439

Department of Energy Wind Vision: An Industry Preview (Text Version...  

Broader source: Energy.gov (indexed) [DOE]

energy source, wind has already helped the nation reduce its greenhouse gas, water, and air pollution footprint from the power sector. The 96 million metric tons of avoided CO2...

440

List of Companies in Biofuels Sector | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolar (Texas)Biofuels Sector Jump to: navigation,

Note: This page contains sample records for the topic "industrial sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

List of Companies in Biomass Sector | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolar (Texas)Biofuels Sector Jump to:

442

List of Companies in Efficiency Sector | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolar (Texas)Biofuels Sector Jump to:Carbon

443

List of Companies in Geothermal Sector | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolar (Texas)Biofuels Sector Jump to:CarbonList of

444

List of Companies in Hydrogen Sector | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolar (Texas)Biofuels Sector Jump to:CarbonList

445

List of Companies in Services Sector | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolar (Texas)Biofuels Sector Jump

446

India's cement industry: Productivity, energy efficiency and carbon emissions  

SciTech Connect (OSTI)

Historical estimates of productivity growth in India's cement sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Analysis shows that in the twenty year period, 1973 to 1993, productivity in the aluminum sector increased by 0.8% per annum. An econometric analysis reveals that technical progress in India's cement sector has been biased towards the use of energy and capital, while it has been material and labor saving. The increase in productivity was mainly driven by a period of progress between 1983 and 1991 following partial decontrol of the cement sector in 1982. The authors examine the current changes in structure and energy efficiency in the sector. Their analysis shows that the Indian cement sector is moving towards world-best technology, which will result in fewer carbon emissions and more efficient energy use. However, substantial further energy savings and carbon reduction potentials still exist.

Schumacher, Katja; Sathaye, Jayant

1999-07-01T23:59:59.000Z

447

Impact of the energy sector upon environment, policies of reducing the polluting emissions  

SciTech Connect (OSTI)

The deep changes in Romania is facing during the transition from a planned, centralized economy to a market economy and Romania's integration into the European Community, have imposed the necessity to adopt some proper strategies for the energy sector reorganization and development, taking account the economic, social, public health and environmental aspects. The environmental protection, the pollution reduction, their positive direct and indirect effects the increasing energy efficiency in using fossil fuels, have an important role on energy policies as well as on the planning of long term measures. For the future evolution of the energy sector in order to cover the electric and thermal energy consumption, a special attention is given to impact of different development strategies, upon environment, the stress being also laid on the expenses required for affiliating the sector to the limits imposed by the convention which Romania has adhered.

Teodorescu, S.; Popescu, M.A.

1998-07-01T23:59:59.000Z

448

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network [OSTI]

fall in China's coal use and energy intensity after 1995 wasLPG is a major energy source, while coal and electricity arewas the dominance of coal in the energy structure. From 51%

2008-01-01T23:59:59.000Z

449

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

produced. Primary energy associated with coal products wasUse EJ China Residential Energy Use Gas Coal Oil Biomass GasUse EJ China Residential Energy Use Gas Coal Oil Gas Biomass

2006-01-01T23:59:59.000Z

450

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

Agency (IEA), 2002. World Energy Outlook. Paris: IEA/OECD.Agency (IEA), 2004d. World Energy Outlook, Paris, IEA/OECD.Comparison of SRES and World Energy Outlook Scenarios This

2006-01-01T23:59:59.000Z

451

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

of projected world energy consumption by fuel type. For theTable 1. World Primary Energy Consumption, A1 and B2has slightly higher world final energy consumption values,

2006-01-01T23:59:59.000Z

452

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

81). EIA, Energy Information Administration. US DOE, U.S.84). EIA, Energy Information Administration. US DOE, U.S.87). EIA, Energy Information Administration. US DOE, U.S.

Wenzel, T.P.

2010-01-01T23:59:59.000Z

453

The role of energy sector in sustainable development in Iran  

E-Print Network [OSTI]

Generally speaking, both supply and use of energy in Iran are unsustainable. The unsustainable energy supply and use coupled with an unreliable and unsecure energy system have striking and lasing impacts on economic, social ...

Golabi, Zanyar

2011-01-01T23:59:59.000Z

454

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

that forecast US residential energy consumption by end-use.new unit energy consumption in the U.S. DOE appliancethe Residential Energy Consumption Survey, or RECS (US DOE

Wenzel, T.P.

2010-01-01T23:59:59.000Z

455

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network [OSTI]

reliance on biomass for rural energy consumption shows theLiving area Urban and Rural area 17 Energy Use andBiomass is the major energy in rural area. Design Standard

2008-01-01T23:59:59.000Z

456

U.S. Building-Sector Energy Efficiency Potential  

E-Print Network [OSTI]

US DOE. 1998. Annual Energy Outlook 1999, with ProjectionsUS DOE. 2007b. Annual Energy Outlook 2007, with ProjectionsAdministration’s Annual Energy Outlook (AEO) 2007 Reference

Brown, Rich

2008-01-01T23:59:59.000Z

457

A Field Tested Model of Industrial Energy Conservation Assistance to Small Industries  

E-Print Network [OSTI]

The University of Tennessee is one of three universities selected by the Industrial Energy Conservation Program of the Department of Energy to develop and demonstrate the concept of an Energy Analysis and Diagnostics Center (EADC). The objective...

Jendrucko, R. J.; Mitchell, D. S.; Snyder, W. T.; Symonds, F. W.

1980-01-01T23:59:59.000Z

458

Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions  

SciTech Connect (OSTI)

United States industry consumed 32.5 Quads (34,300 PJ) of energy during 2003, which was 33.1% of total U.S. energy consumption (EIA 2003 Annual Energy Review). The U.S. industrial complex yields valuable goods and products. Through its manufacturing processes as well as its abundant energy consumption, it supports a multi-trillion dollar contribution to the gross domestic product and provides millions of jobs in the U.S. each year. Industry also yields waste products directly through its manufacturing processes and indirectly through its energy consumption. These waste products come in two forms, chemical and thermal. Both forms of waste have residual energy values that are not routinely recovered. Recovering and reusing these waste products may represent a significant opportunity to improve the energy efficiency of the U.S. industrial complex. This report was prepared for the U.S. Department of Energy Industrial Technologies Program (DOE-ITP). It analyzes the opportunity to recover chemical emissions and thermal emissions from U.S. industry. It also analyzes the barriers and pathways to more effectively capitalize on these opportunities. A primary part of this analysis was to characterize the quantity and energy value of the emissions. For example, in 2001, the industrial sector emitted 19% of the U.S. greenhouse gases (GHG) through its industrial processes and emitted 11% of GHG through electricity purchased from off-site utilities. Therefore, industry (not including agriculture) was directly and indirectly responsible for emitting 30% of the U.S. GHG. These emissions were mainly comprised of carbon dioxide (CO2), but also contained a wide-variety of CH4 (methane), CO (carbon monoxide), H2 (hydrogen), NMVOC (non-methane volatile organic compound), and other chemicals. As part of this study, we conducted a survey of publicly available literature to determine the amount of energy embedded in the emissions and to identify technology opportunities to capture and reuse this energy. As shown in Table E-1, non-CO2 GHG emissions from U.S. industry were identified as having 2180 peta joules (PJ) or 2 Quads (quadrillion Btu) of residual chemical fuel value. Since landfills are not traditionally considered industrial organizations, the industry component of these emissions had a value of 1480 PJ or 1.4 Quads. This represents approximately 4.3% of the total energy used in the United States Industry.

Viswanathan, Vish V.; Davies, Richard W.; Holbery, Jim D.

2006-04-01T23:59:59.000Z

459

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

40 Figure 3.2. Levelized Cost of Energyof Water and Power Levelized cost of energy Load-servingabove the expected levelized cost of energy (LCOE) for PV-

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

460

Energy Efficiency Services Sector: Workforce Education and Training Needs  

E-Print Network [OSTI]

Sustainable Energy Resource Management Community or Technical College EESS Workforce Educationsustainable energy field. This certificate will not provide an individual without prior education

Goldman, Charles A.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Energy Efficiency Services Sector: Workforce Education and Training Needs  

E-Print Network [OSTI]

contacts: Unions and trade associations Energy EfficiencyThird-party and Trade Association Programs supporting Energycontractors and trades, utility ratepayer-funded energy

Goldman, Charles A.

2010-01-01T23:59:59.000Z

462

U.S. Building-Sector Energy Efficiency Potential  

E-Print Network [OSTI]

consumption from Energy Star monitor savings calculator (USconsumption and savings percentage from Energy Star restaurant guide (USEnergy Star restaurant guide (US EPA 2007b). E15) Baseline consumption

Brown, Rich

2008-01-01T23:59:59.000Z

463

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

a number of national governments to provide incentives in support of the development of alternative energy sources, making renewables the world's fastest-growing source of energy...

464

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

10 1.5. The Coordination of Solar and Energyintegration of solar and energy efficiency. Currentlytension between solar and energy efficiency remains much

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

465

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

U.S. Energy Demand Mkt trends Market Trends Growth in energy use is linked to population growth through increases in housing, commercial floorspace, transportation, and goods and...

466

U.S. Building-Sector Energy Efficiency Potential  

E-Print Network [OSTI]

Product: Commercial Steam Cookers. Washington, DC: USEPA. 2004. ENERGY STAR Gas Steam Cooker Savings Calculator [source: Energy Star gas steam cooker savings calculator (US

Brown, Rich

2008-01-01T23:59:59.000Z

467

Do homes that are more energy efficient consume less energy?: A structural equation model for England's residential sector  

E-Print Network [OSTI]

Energy consumption from the residential sector is a complex sociotechnical problem that can be explained using a combination of physical, demographic and behavioural characteristics of a dwelling and its occupants. A structural equation model (SEM...

Kelly, Scott

468

Rotation With Industry | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industry Rotation With Industry 7ROTATIONWITHINDUSTRY.pdf More Documents & Publications Microsoft Word - APRIL 2009 PMCDP Module CHRIS ESS TutorialROTATIONWITHINDUSTRY.doc...

469

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network [OSTI]

mitigate 21 MtCO 2 . Cogeneration (also called Combined Heatefficiencies. Industrial cogeneration is an important partpotential for industrial cogeneration is estimated at almost

Worrell, Ernst

2009-01-01T23:59:59.000Z

470

atomic energy industry: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy industry First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 MIT and Energy Industries MIT Industry...

471

Measurement and Verification of Industrial Energy-Savings Projects – Lessons Learned By Measuring Successful and Not-So Successful Projects  

E-Print Network [OSTI]

The current BC Hydro energy-conservation program is called Power Smart and was started in 2001. Of the 1200 projects completed to date over 300 have been in the manufacturing and industrial sector with savings of more than 400 GWh annually...

Hebert, D

2008-01-01T23:59:59.000Z

472

Our Favorite Energy Management Opportunities: A Review of Over 150 Energy Audits of Industrial Firms  

E-Print Network [OSTI]

For five years the Oklahoma Industrial Energy Management Program at Oklahoma State University has been serving industry by offering energy audits and energy management conferences. To date, more than 50 conferences and 170 energy audits have been...

Webb, R. E.; Lewis, M.; Spivey, V.; Knight, N.; Turner, W. C.

473

Impact of Tight Energy Markets on Industrial Energy Planning  

E-Print Network [OSTI]

t in Oi l Prod u c t i o n ( b p d ) - 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 Sh ut in G a s Pro d u ct io n (M M c f / d ) Ivan Rit Wilma Katrina Source: ACEEE from MMS (2006) data. EIA 2006). These disruptions came while...IMPACT OF TIGHT ENERGY MARKETS ON INDUSTRIAL ENERGY PLANNING R. NEAL ELLIOTT, PH.D., P.E., INDUSTRIAL PROGRAM DIRECTOR, AMERICAN COUNCIL FOR AN ENERGY-EFFICIENT ECONOMY, WASHINGTON, D.C. ABSTRACT The past five years have seen growing...

Elliott, R. N.

2006-01-01T23:59:59.000Z

474

Industrial Energy Auditing - A Short Course for Engineers  

E-Print Network [OSTI]

This paper describes an intensive five day short course, directed toward engineers currently working in industry, which provides the participants with the rudiments of industrial energy auditing. Experience has shown that this format of training can...

Witte, L. C.

1979-01-01T23:59:59.000Z

475

Electrical Energy Conservation and Load Management - An Industrial User's Viewpoint  

E-Print Network [OSTI]

Conservation of electrical energy and load management can reduce industry's electric bills, conserves natural resources and reduces the need for new generating plants. In recent years, industry has implemented extensive conservation programs. Some...

Jackson, C. E.

1984-01-01T23:59:59.000Z

476

Online Modeling in the Process Industry for Energy Optimization  

E-Print Network [OSTI]

"This paper discusses how steady state models are being used in the process industry to perform online energy optimization of steam and electrical systems. It presents process demands commonly found in the processing industry in terms of steam...

Alexander, J.

477

Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice  

E-Print Network [OSTI]

organizational framework for industrial facilities to integrate energy efficiencyof energy efficiency. A first step once the organizational

McKane, Aimee

2010-01-01T23:59:59.000Z

478

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

of crude oil in the future. 3.6.3 Energy Consumption Thecrude oil throughput (Sathaye et al, 2005). Energy consumptioncrude oil throughput 15 (Sathaye et al, 2005). We estimated this consumption

Sathaye, Jayant

2011-01-01T23:59:59.000Z

479

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

for compressing air and syngas. In energy efficient plants,heat Air compressor turbine Syngas compressor turbine Flue-

Sathaye, Jayant

2011-01-01T23:59:59.000Z

480

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

J.E. 1986. The LBL Residential Energy Model. LawrenceInc. MEANS. 1992. Residential Cost Data: 11th Annual EditionInstitute. 1989. Residential End-Use Energy Consumption: A

Wenzel, T.P.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

S.W. Diegel, and R.G. Boundy, Transportation Energy Databook: Edition 31, ORNL-6987 (Oak Ridge, TN: July 2012), Chapter 2, Table 2.1, U.S. Consumption of Total Energy...

482

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

continues to grow after 2012, with the stronger growth in refining, declines in the energy intensity of heat and power production offset some the growth in their energy use....

483

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

light-duty vehicle greenhouse gas and fuel economy standards for model years 2017 to 2025 Energy intensity trends in AEO2010 Energy impacts of proposed CAFE standards for...

484

Energy Efficiency Services Sector: Workforce Size and Expectations for Growth  

E-Print Network [OSTI]

energy efficiency is refracted across utilities, federal and state programs, manufacturing, construction, and other disparate job classifications. ”

Goldman, Charles

2010-01-01T23:59:59.000Z

485

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

renewables and nuclear energy are equal to one according to the direct equivalent methodology. Regions like Latin America

2006-01-01T23:59:59.000Z

486

Renewable energy sector development in the Caribbean: Current trends and lessons from history  

E-Print Network [OSTI]

Report for Latin America and the Caribbean 2007 (CARICOM, 2007) that regional development agencies haveRenewable energy sector development in the Caribbean: Current trends and lessons from history in the Caribbean. c We conduct a cost benefit analysis of four Caribbean renewable energy projects. c Results show

Kammen, Daniel M.

487

Policy Options for Encouraging Energy Efficiency Best Practices in Shandong Province's Cement Industry  

E-Print Network [OSTI]

clinker production energy intensity Coal intensity ofin standard coal equivalent) ? sectoral energy consumptionfinal energy use) ? energy resources (coal, oil and natural

Price, Lynn

2013-01-01T23:59:59.000Z

488

Long-Term US Industrial Energy Use and CO2 Emissions  

SciTech Connect (OSTI)

We present a description and scenario results from our recently-developed long-term model of United States industrial sector energy consumption, which we have incorporated as a module within the ObjECTS-MiniCAM integrated assessment model. This new industrial model focuses on energy technology and fuel choices over a 100 year period and allows examination of the industrial sector response to climate policies within a global modeling framework. A key challenge was to define a level of aggregation that would be able to represent the dynamics of industrial energy demand responses to prices and policies, but at a level that remains tractable over a long time frame. In our initial results, we find that electrification is an important response to a climate policy, although there are services where there are practical and economic limits to electrification, and the ability to switch to a low-carbon fuel becomes key. Cogeneration of heat and power using biomass may also play a role in reducing carbon emissions under a policy constraint.

Wise, Marshall A.; Sinha, Paramita; Smith, Steven J.; Lurz, Joshua P.

2007-12-03T23:59:59.000Z

489

Utility Sector Leaders Make Firm Commitment to Energy Efficiency  

Broader source: Energy.gov [DOE]

More than 80 energy, environmental and other organizations announced commitments and public statements in support of the National Action Plan for Energy Efficiency (NAPEE), released today, which provides energy consumers and providers information on policies and techniques to save money as well as protect the environment. By adopting the plan's recommendations on low-cost, under-used energy efficiency, Americans could save hundreds of billions of dollars on their gas and electric utility bills, cut greenhouse gas emissions, and lower the costs for energy and pollution controls.

490

Municipal Aggregation and Retail Competition in the Ohio Energy Sector  

E-Print Network [OSTI]

& Electric (CG&E), now Duke Energy (Ohio) 0.7m Dayton Power and Light (DP&L) 0.5m. There are also 25 rural electric companies (or co-ops), serving nearly 0.4m customers.15 Senate Bill 3, signed into law in 1999, provided for the market to open... energy efficiency affiliate of FES), Independent, Eagle Energy and Buckeye Energy Brokers Inc (an electricity generation and transmission co-op owned by the 25 rural electricity co-ops). 24 By far the most active supplier at present is FirstEnergy...

Littlechild, Stephen C

491

Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors  

SciTech Connect (OSTI)

Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

Lee, A.; Zinaman, O.; Logan, J.

2012-12-01T23:59:59.000Z

492

Energy Investment Advisory Series No. 2. Investment opportunities in Indochina`s energy sector  

SciTech Connect (OSTI)

Indochina is well positioned to join Asia`s recent record of impressive economic growth. Vietnam, with the largest population and its long coast, seems poised to be the first nation in Indochina to succeed. It, and to a lesser extent Laos and Cambodia, are well positioned to take advantage of future tends in energy and energy-related markets. Electricity, hydro, renewables and nuclear are discussed as well as oil and gas. Areas of the energy industry in which investment might be possible in each country are tabulated.

Hagen, R.E.

1994-12-01T23:59:59.000Z

493

Evolving Role of the Power Sector Regulator: A Clean Energy Regulators Initiative Report  

SciTech Connect (OSTI)

This paper seeks to briefly characterize the evolving role of power sector regulation. Given current global dynamics, regulation of the power sector is undergoing dramatic changes. This transformation is being driven by various factors including technological advances and cost reductions in renewable energy, energy efficiency, and demand management; increasing air pollution and climate change concerns; and persistent pressure for ensuring sustainable economic development and increased access to energy services by the poor. These issues add to the already complex task of power sector regulation, of which the fundamental remit remains to objectively and transparently ensure least-cost service delivery at high quality. While no single regulatory task is trivial to undertake, it is the prioritization and harmonization of a multitude of objectives that exemplifies the essential challenge of power sector regulation. Evolving regulatory roles can be understood through the concept of existing objectives and an additional layer of emerging objectives. Following this categorization, we describe seven existing objectives of power sector regulators and nine emerging objectives, highlighting key challenges and outlining interdependencies. This essay serves as a preliminary installment in the Clean Energy Regulatory Initiative (CERI) series, and aims to lay the groundwork for subsequent reports and case studies that will explore these topics in more depth.

Zinaman, O.; Miller, M.; Bazilian, M.

2014-04-01T23:59:59.000Z

494

Tools for Assessing Building Energy Use in Industrial Plants  

E-Print Network [OSTI]

This presentation will cover a brief history of building energy measures savings potential for industrial plants and briefly characterize building energy measures and their savings identified over approximately the past 15 years in energy audits...

Martin, M.; MacDonald, M.

2007-01-01T23:59:59.000Z

495

Industrial Energy Conservation in Central America and Panama  

E-Print Network [OSTI]

The Regional Industrial Energy Efficiency Project (RIEEP) is the largest and most comprehensive energy conservation effort in Central America and Panama. This paper describes the regional economic and energy situation leading up to the project...

Oven, M. J.; Pashkevich, P. A.

496

Industrial Energy Efficiency in Ukraine: The Business Outlook  

E-Print Network [OSTI]

Ukraine is full of profitable opportunities for energy efficiency. Industry accounts for many of these opportunities because of its high level of energy consumption and its ability to pay for energy efficiency measures in hard currency. This paper...

Evans, M.

497

Energy, Water and Fish: Biodiversity Impacts of Energy-Sector Water Demand in the United States Depend on  

E-Print Network [OSTI]

for electricity generation from coal. Historical water use by the energy sector is related to patterns of fish Rising energy consumption in coming decades, combined with a changing energy mix, have the potential consumption would more rapidly increase by 26% due to increased biofuel production, going from 16

Olden, Julian D.

498

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

Management Cell Electrical Power Survey Energy Use IntensityAs per the 17th Electrical Power Survey (EPS) of the Central

Sathaye, Jayant

2011-01-01T23:59:59.000Z

499

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

43 Energy efficiency and CO2 emission reduction measures and58 CO2 emission reduction measures and associated68 CO2 emission reduction measures and associated

Sathaye, Jayant

2011-01-01T23:59:59.000Z

500

Industry Alliance Industry Alliance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century October, 2010...