Powered by Deep Web Technologies
Note: This page contains sample records for the topic "industrial sector emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Energy use and CO2 emissions of China’s industrial sector from a global perspective  

SciTech Connect (OSTI)

The industrial sector has accounted for more than 50% of China’s final energy consumption in the past 30 years. Understanding the future emissions and emissions mitigation opportunities depends on proper characterization of the present-day industrial energy use, as well as industrial demand drivers and technological opportunities in the future. Traditionally, however, integrated assessment research has handled the industrial sector of China in a highly aggregate form. In this study, we develop a technologically detailed, service-oriented representation of 11 industrial subsectors in China, and analyze a suite of scenarios of future industrial demand growth. We find that, due to anticipated saturation of China’s per-capita demands of basic industrial goods, industrial energy demand and CO2 emissions approach a plateau between 2030 and 2040, then decrease gradually. Still, without emissions mitigation policies, the industrial sector remains heavily reliant on coal, and therefore emissions-intensive. With carbon prices, we observe some degree of industrial sector electrification, deployment of CCS at large industrial point sources of CO2 emissions at low carbon prices, an increase in the share of CHP systems at industrial facilities. These technological responses amount to reductions of industrial emissions (including indirect emission from electricity) are of 24% in 2050 and 66% in 2095.

Zhou, Sheng; Kyle, G. Page; Yu, Sha; Clarke, Leon E.; Eom, Jiyong; Luckow, Patrick W.; Chaturvedi, Vaibhav; Zhang, Xiliang; Edmonds, James A.

2013-07-10T23:59:59.000Z

2

Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings  

SciTech Connect (OSTI)

Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.

Price, Lynn; Worrell, Ernst; Khrushch, Marta

1999-09-01T23:59:59.000Z

3

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network [OSTI]

Fuels used in the refinery sector were also collected fromof the emissions from the refinery sector are included incommitment of 44% and the refinery and food sectors

Price, Lynn

2010-01-01T23:59:59.000Z

4

Implications for decision making: Industrial sector perspectives  

SciTech Connect (OSTI)

Implications for decision making in areas related to policy towards greenhouse gas emissions are discussed from the perspective of the industrial sector. Industry is presented as supportive of energy conservation measures in spite of the large uncertainties in the global warming issue. Perspectives of developed and developing countries are contrasted, and carbon dioxide emissions are compared. Socioeconomic implications of reducing greenhouse gas emissions, particularly in the form of higher prices for goods and services, are outlined.

Mangelsdorf, F.E. [Texaco, Inc., Beacon, NY (United States)

1992-12-31T23:59:59.000Z

5

Geothermal: Sponsored by OSTI -- Industrial Sector Technology...  

Office of Scientific and Technical Information (OSTI)

Industrial Sector Technology Use Model (ISTUM): industrial energy use in the United States, 1974-2000. Volume 1. Primary model documentation. Final report...

6

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network [OSTI]

DEFRA), 2005a. UK Emissions Trading Scheme. London: DEFRA.Energy/GHG Tax Emissions trading Target Setting Penaltiesthe European Union Emissions Trading Scheme and a lack of

Price, Lynn

2010-01-01T23:59:59.000Z

7

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network [OSTI]

industry (iron foundries, cold storage and refrigeration,Energy management Cold storage and refrigeration ? Newelectric power; heat/cold storage; heat pumps using ambient

Price, Lynn

2010-01-01T23:59:59.000Z

8

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network [OSTI]

chemicals, light industry (iron foundries, cold storage andindustry ? Use of CHP ? Debottlenecking ? Increased production capacity ? Better use of production capacity ? Energy management Cold storage

Price, Lynn

2010-01-01T23:59:59.000Z

9

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network [OSTI]

to provide training and energy audits and to help industrial1997 to end of March - Energy audits have allow to avoidagrees to undertake an energy audit, develop a management

Price, Lynn

2010-01-01T23:59:59.000Z

10

Carbon dioxide emissions from the U.S. electricity sector  

SciTech Connect (OSTI)

As climate change negotiators from around the world prepared together in 1996 to consider new international targets and policies for greenhouse-gas reductions, the US Department of Energy asked the authors to review the options available to the electricity sector to reduce CO{sub 2} emissions. The charge was to focus on supply-side options and utility demand-side management (DSM) programs because other researchers were considered energy efficiency options for the residential, commercial, and industrial sectors. The next section presents the EIA baseline projections of electricity production, use, and CO{sub 2} emissions to the year 2010. Subsequent sections briefly summarize the options available to the electricity industry to reduce its CO{sub 2} emissions, speculate on how industry restructuring might affect the ability of the industry and its regulators to reduce CO{sub 2} emissions, and discuss the policies available to affect those emissions: research and development, voluntary programs, regulation, and fiscal policies.

Hirst, E.; Baxter, L. [Oak Ridge National Lab., TN (United States)

1998-02-01T23:59:59.000Z

11

China's industrial sector in an international context  

SciTech Connect (OSTI)

The industrial sector accounts for 40% of global energy use. In 1995, developing countries used an estimated 48 EJ for industrial production, over one-third of world total industrial primary energy use (Price et al., 1998). Industrial output and energy use in developing countries is dominated by China, India, and Brazil. China alone accounts for about 30 EJ (National Bureau of Statistics, 1999), or about 23% of world industrial energy use. China's industrial sector is extremely energy-intensive and accounted for almost 75% of the country's total energy use in 1997. Industrial energy use in China grew an average of 6.6% per year, from 14 EJ in 1985 to 30 EJ in 1997 (Sinton et al., 1996; National Bureau of Statistics, 1999). This growth is more than three times faster than the average growth that took place in the world during the past two decades. The industrial sector can be divided into light and heavy industry, reflecting the relative energy-intensity of the manufacturing processes. In China, about 80% of the energy used in the industrial sector is consumed by heavy industry. Of this, the largest energy-consuming industries are chemicals, ferrous metals, and building materials (Sinton et al., 1996). This paper presents the results of international comparisons of production levels and energy use in six energy-intensive subsectors: iron and steel, aluminum, cement, petroleum refining, ammonia, and ethylene. The sectoral analysis results indicate that energy requirements to produce a unit of raw material in China are often higher than industrialized countries for most of the products analyzed in this paper, reflecting a significant potential to continue to improve energy efficiency in heavy industry.

Price, Lynn; Worrell, Ernst; Martin, Nathan; Lehman, Bryan; Sinton, Jonathan

2000-05-01T23:59:59.000Z

12

China's Pathways to Achieving 40percent 45percent Reduction in CO2 Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential  

E-Print Network [OSTI]

heater Residential CO2 Emissions (Mt CO2) 2020 ResidentialEnergy Industrial Sector CO2 Emissions (Mt CO2) IndustrialFigure 5. Power Sector CO2 Emissions by Scenario E3 Max Tech

Zheng, Nina

2013-01-01T23:59:59.000Z

13

Designing Effective State Programs for the Industrial Sector...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Effective State Programs for the Industrial Sector provides state regulators, utilities, and other program administrators with an overview of U.S. industrial energy...

14

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

SciTech Connect (OSTI)

This report analyzed the potential for increasing energy efficiency and reducing greenhouse gas emissions (GHGs) in the non-residential building and the industrial sectors in India. The first two sections describe the research and analysis supporting the establishment of baseline energy consumption using a bottom up approach for the non residential sector and for the industry sector respectively. The third section covers the explanation of a modeling framework where GHG emissions are projected according to a baseline scenario and alternative scenarios that account for the implementation of cleaner technology.

Sathaye, Jayant; de la Rue du Can, Stephane; Iyer, Maithili; McNeil, Michael; Kramer, Klaas Jan; Roy, Joyashree; Roy, Moumita; Chowdhury, Shreya Roy

2011-04-15T23:59:59.000Z

15

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

Agency (IEA), 2004c. CO2 emissions from fuel combustion,12. Global Energy-Related CO2 Emissions by End-Use Sector,2030. Energy-Related CO2 Emissions (GtC) Transport Buildings

2006-01-01T23:59:59.000Z

16

Carbon Emissions: Food Industry  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,64397 272 522 542Peru (MillionFood Industry

17

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

Efficiency Scenario (non-residential sector only) – AssumesIndia: Industry and Non Residential Sectors Jayant Sathaye,and support. The Non Residential sector analysis benefited

Sathaye, Jayant

2011-01-01T23:59:59.000Z

18

Voluntary agreements in the industrial sector in China  

SciTech Connect (OSTI)

China faces a significant challenge in the years ahead to continue to provide essential materials and products for a rapidly-growing economy while addressing pressing environmental concerns. China's industrial sector is heavily dependent on the country's abundant, yet polluting, coal resources. While tremendous energy conservation and environmental protection achievements were realized in the industrial sector in the past, there remains a great gulf between the China's level of energy efficiency and that of the advanced countries of the world. Internationally, significant energy efficiency improvement in the industrial sector has been realized in a number of countries using an innovative policy mechanism called Voluntary Agreements. This paper describes international experience with Voluntary Agreements in the industrial sector as well as the development of a pilot program to test the use of such agreements with two steel mills in Shandong Province, China.

Price, Lynn; Worrell, Ernst; Sinton, Jonathan

2003-03-31T23:59:59.000Z

19

Energy Use and Savings in the Canadian Industrial Sector  

E-Print Network [OSTI]

The changing role of energy as a production input in the industrial sector in Canada is examined. Energy use patterns are reviewed in terms of the energy input types, both purchased and self-produced, the actual energy form and quality requirements...

James, B.

1982-01-01T23:59:59.000Z

20

Modeling ruminant methane emissions from the U.S. beef cattle industry  

E-Print Network [OSTI]

Computer models were constructed to estimate methane emissions from cow/calf, replacement heifers, burs, stockers and feedlot sectors of the U.S. beef cattle industry. Methane (CH4) yields were calculated based on net energy values and forage...

Turk, Danny Carroll

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Garnering the Industrial Sector: A Comparison of Cutting Edge Industrial DSM Programs  

E-Print Network [OSTI]

The industrial sector has posed a daunting DSM challenge to utilities throughout North America, even to those with successful and creative residential and commercial DSM programs. Most utilities have had great difficulty in going beyond conventional...

Kyricopoulos, P. F.; Wikler, G. A.; Faruqui, A.; Wood, B. G.

22

Analysis of fuel shares in the industrial sector  

SciTech Connect (OSTI)

These studies describe how fuel shares have changed over time; determine what factors are important in promoting fuel share changes; and project fuel shares to the year 1995 in the industrial sector. A general characterization of changes in fuel shares of four fuel types - coal, natural gas, oil and electricity - for the industrial sector is as follows. Coal as a major fuel source declined rapidly from 1958 to the early 1970s, with oil and natural gas substituting for coal. Coal's share of total fuels stabilized after the oil price shock of 1972-1973, and increased after the 1979 price shock. In the period since 1973, most industries and the industrial sector as a whole appear to freely substitute natural gas for oil, and vice versa. Throughout the period 1958-1981, the share of electricity as a fuel increased. These observations are derived from analyzing the fuel share patterns of more than 20 industries over the 24-year period 1958 to 1981.

Roop, J.M.; Belzer, D.B.

1986-06-01T23:59:59.000Z

23

Hybrid modeling of industrial energy consumption and greenhouse gas emissions with an application to Canada  

E-Print Network [OSTI]

implemented in Canada, what would be the response of the industrial sector in terms of energy consumptionHybrid modeling of industrial energy consumption and greenhouse gas emissions with an application for modeling industrial energy consumption, among them a series of environmental and security externalities

24

Captive power plants and industrial sector in the developing countries  

SciTech Connect (OSTI)

The electrical power and energy is essential for the industrial sector of the countries which are transferring its social structure to the industry oriented one from the agrarian society. In Asian countries, this kind of transformation has actively been achieved in this century starting from Japan and followed by Korea, Taiwan, and it is more actively achieved in the countries of Malaysia, Indonesia, Thailand, Philippine, India and China(PRC) in these days. It is valuable to review the effective utilizing of Power and Energy in the industrial sector of the developing countries. In this paper, it is therefore focussed to the captive power plants comparing those of utility companies such as government owned electrical power company and independent power company. It is noticed that major contribution to the electrical power generation in these days is largely dependent on the fossil fuel such as coal, oil and gas which are limited in source. Fossil energy reserves are assumed 1,194 trillion cubic meters or about 1,182 billion barrels of oil equivalent for natural gas 1,009 billion barrels for oil and at least 930 billion tons for coal in the world. According to the statistic data prepared by the World Energy Council, the fossil fuel contribution to electrical power generation records 92.3% in 1970 and 83.3% in 1990 in the world wide. Primary energy source for electrical power generation is shown in figure 1. It is therefore one of the most essential task of human being on how to utilize the limited fossil energy effectively and how to maximize the thermal efficiency in transferring the fossil fuel to usable energy either electrical power and energy or thermal energy of steam or hot/chilled water.

Lee, Rim-Taig [Hyundai Engineering Co. (Korea, Republic of)

1996-12-31T23:59:59.000Z

25

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

in Building Sector Electricity Consumption parameterin Building Sector Electricity Consumption Appendix 1. WorldElectricity in Building Sector Electricity Consumption iii

2006-01-01T23:59:59.000Z

26

Impact of European Emissions Trading System (EU-ETS) on carbon emissions and investment decisions in the power sector .  

E-Print Network [OSTI]

??This masters thesis assesses the impact of a emissions trading on short-term carbon abatement and investment decisions in the power sector. Environmental benefits from carbon… (more)

Feilhauer, Stephan M. (Stephan Marvin)

2009-01-01T23:59:59.000Z

27

Emissions trading and its likely effects on the airline industry.  

E-Print Network [OSTI]

??This study concerns the extension of emissions trading to the airline industry and was designed to clarify and substantiate likely effects of the Emissions Trading… (more)

Recht-Hansen, Sonja

2010-01-01T23:59:59.000Z

28

Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors  

SciTech Connect (OSTI)

As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy security through more effective utilization of our country’s resources while simultaneously providing economic stability and growth (through predictable energy prices and high value jobs), in an environmentally sustainable and secure manner (through lower land and water use, and decreased byproduct emissions). The reduction in imported oil will also increase the retention of wealth within the U.S. economy while still supporting economic growth. Nuclear energy is the only non-fossil fuel that has been demonstrated to reliably supply energy for a growing industrial economy.

David Petti; J. Stephen Herring

2010-03-01T23:59:59.000Z

29

Impact of European Emissions Trading System (EU-ETS) on carbon emissions and investment decisions in the power sector  

E-Print Network [OSTI]

This masters thesis assesses the impact of a emissions trading on short-term carbon abatement and investment decisions in the power sector. Environmental benefits from carbon abatement due to emissions trading are quantified ...

Feilhauer, Stephan M. (Stephan Marvin)

2009-01-01T23:59:59.000Z

30

Industry  

SciTech Connect (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

31

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

Building Sector Electricity Consumption parameter logisticin Building Sector Electricity Consumption iii iv Sectoralsome water with electricity consumption, it is not possible

2006-01-01T23:59:59.000Z

32

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

values. Figure 7. Global Primary Energy by End-Use Sector,Scenario Figure 8. Global Primary Energy by End-Use Sector,

2006-01-01T23:59:59.000Z

33

Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States  

SciTech Connect (OSTI)

Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil-fuel; Carbon dioxide emissions; Sectoral; Spatial cluster; Emissions mitigation policy

Zhou, Yuyu; Gurney, Kevin R.

2011-07-01T23:59:59.000Z

34

Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)  

Reports and Publications (EIA)

For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

2007-01-01T23:59:59.000Z

35

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

not provide data on primary energy consumption by sector. Inconsumption into primary energy consumption by multiplyingA.3.5 provides primary energy consumption values for the

2006-01-01T23:59:59.000Z

36

A Sectoral Prospective Analysis of CO2 Emissions in China, USA and France, 2010-2050  

E-Print Network [OSTI]

1 A Sectoral Prospective Analysis of CO2 Emissions in China, USA and France, 2010-2050 Pascal da mitigation targets for CO2 emissions, which reflect their own specific situations. In this article, scenarios for CO2 emissions up to 2050 are set up for three representative countries: the United States of America

Boyer, Edmond

37

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

Agency (IEA), 2004c. CO2 emissions from fuel combustion,of Carbon Dioxide Emissions on GNP Growth: Interpretation ofD. , 2000. Special Report on Emissions Scenarios: Report of

2006-01-01T23:59:59.000Z

38

Distributed Energy: Modeling Penetration in Industrial Sector Over the Long-Term  

E-Print Network [OSTI]

Distributed Energy: Modeling Penetration in Industrial Sector over the Long-Term Lorna Greening, Private Consultant, Los Alamos, NM Distributed energy (DE) sources provide a number of benefits when utilized. For industrial facilities... and the generation of steam. Within the framework of a US energy system model (MARKAL using the assumptions underlying AEO 2005), where all sources of energy supply and demand are depicted, the potential penetration of DE options is evaluated. The industrial...

Greening, L.

2006-01-01T23:59:59.000Z

39

BC Hydro Industrial Sector: Marketing Sector Marketing Plan (Fiscal 2005/Fiscal 2006)  

E-Print Network [OSTI]

BC Hydro, the major electricity utility in the Province of British Columbia has been promoting industrial energy efficiency for more than 15 years. Recently it has launched a new Demand Side Management initiative with the objective of obtaining 2000...

Willis, P.; Wallace, K.

2005-01-01T23:59:59.000Z

40

India's iron and steel industry: Productivity, energy efficiency and carbon emissions  

SciTech Connect (OSTI)

Historical estimates of productivity growth in India's iron and steel sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both growth accounting and econometric estimates of productivity growth for this sector. Their results show that over the observed period from 1973--74 to 1993--94 productivity declined by 1.71{percent} as indicated by the Translog index. Calculations of the Kendrick and Solow indices support this finding. Using a translog specification the econometric analysis reveals that technical progress in India's iron and steel sector has been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protective policy regarding price and distribution of iron and steel as well as by large inefficiencies in public sector integrated steel plants. Will these trends continue into the future, particularly where energy use is concerned? Most likely they will not. The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with the liberalization of the iron and steel sector, the industry is rapidly moving towards world-best technology, which will result in fewer carbon emissions and more efficient energy use in existing and future plants.

Schumacher, Katja; Sathaye, Jayant

1998-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

BNL-68198-AB COMPILATION OF INVENTORIES OF INDUSTRIAL EMISSIONS  

E-Print Network [OSTI]

BNL-68198-AB COMPILATION OF INVENTORIES OF INDUSTRIAL EMISSIONS Carmen M. Benkovitz Atmospheric-5000 March 2001 To be presented at the International Workshop on Emissions ofChemical Species and Aerosols perspectives accurate inventories of emissions of the trace species at the appropriate spatial, temporal

42

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network [OSTI]

energy efficiency. Among industries included are cement, pulp and paper and plasticenergy efficiency in industry. Achievements: Production standards have been set for the engineering, plastics,

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

43

Comparative analysis of energy data bases for the industrial and commercial sectors  

SciTech Connect (OSTI)

Energy data bases for the industrial and commercial sectors were analyzed to determine how valuable this data might be for policy analysis. The approach is the same for both end-use sectors: first a descrption or overview of relevant data bases identifies the available data; the coverage and methods used to generate the data are then explained; the data are then characterized and examples are provided for the major data sets under consideration. A final step assesses the data bases under consideration and draws conclusions. There are a variety of data bases considered for each of the end-use sectors included in this report. Data bases for the industrial sector include the National Energy Accounts, process-derived data bases such as the Drexel data base and data obtained from industry trade associations. For the commercial sector, three types of data bases are analyzed: the Nonresidential Building Energy Consumption Surveys, Dodge Construction Data and the Building Owners and Manager's Association Experience Exchange Report.

Roop, J.M.; Belzer, D.B.; Bohn, A.A.

1986-12-01T23:59:59.000Z

44

Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions  

SciTech Connect (OSTI)

United States industry consumed 32.5 Quads (34,300 PJ) of energy during 2003, which was 33.1% of total U.S. energy consumption (EIA 2003 Annual Energy Review). The U.S. industrial complex yields valuable goods and products. Through its manufacturing processes as well as its abundant energy consumption, it supports a multi-trillion dollar contribution to the gross domestic product and provides millions of jobs in the U.S. each year. Industry also yields waste products directly through its manufacturing processes and indirectly through its energy consumption. These waste products come in two forms, chemical and thermal. Both forms of waste have residual energy values that are not routinely recovered. Recovering and reusing these waste products may represent a significant opportunity to improve the energy efficiency of the U.S. industrial complex. This report was prepared for the U.S. Department of Energy Industrial Technologies Program (DOE-ITP). It analyzes the opportunity to recover chemical emissions and thermal emissions from U.S. industry. It also analyzes the barriers and pathways to more effectively capitalize on these opportunities. A primary part of this analysis was to characterize the quantity and energy value of the emissions. For example, in 2001, the industrial sector emitted 19% of the U.S. greenhouse gases (GHG) through its industrial processes and emitted 11% of GHG through electricity purchased from off-site utilities. Therefore, industry (not including agriculture) was directly and indirectly responsible for emitting 30% of the U.S. GHG. These emissions were mainly comprised of carbon dioxide (CO2), but also contained a wide-variety of CH4 (methane), CO (carbon monoxide), H2 (hydrogen), NMVOC (non-methane volatile organic compound), and other chemicals. As part of this study, we conducted a survey of publicly available literature to determine the amount of energy embedded in the emissions and to identify technology opportunities to capture and reuse this energy. As shown in Table E-1, non-CO2 GHG emissions from U.S. industry were identified as having 2180 peta joules (PJ) or 2 Quads (quadrillion Btu) of residual chemical fuel value. Since landfills are not traditionally considered industrial organizations, the industry component of these emissions had a value of 1480 PJ or 1.4 Quads. This represents approximately 4.3% of the total energy used in the United States Industry.

Viswanathan, Vish V.; Davies, Richard W.; Holbery, Jim D.

2006-04-01T23:59:59.000Z

45

Energy use and carbon dioxide emissions in energy-intensive industries in key developing countries  

SciTech Connect (OSTI)

The industrial sector is the most important end-use sector in developing countries in terms of energy use and was responsible for 50% of primary energy use and 53% of associated carbon dioxide emissions in 1995 (Price et al., 1999). The industrial sector is extremely diverse, encompassing the extraction of natural resources, conversion of these resources into raw materials, and manufacture of finished products. Five energy-intensive industrial subsectors account for the bulk of industrial energy use and related carbon dioxide emissions: iron and steel, chemicals, petroleum refining, pulp and paper, and cement. In this paper, we focus on the steel and cement sectors in Brazil, China, India, and Mexico.1 We review historical trends, noting that China became the world's largest producer of cement in 1985 and of steel in 1996. We discuss trends that influence energy consumption, such as the amount of additives in cement (illustrated through the clinker/cement ratio), the share of electric arc furnaces, and the level of adoption of continuous casting. To gauge the potential for improvement in production of steel and cement in these countries, we calculate a ''best practice'' intensity based on use of international best practice technology to produce the mix of products manufactured in each country in 1995. We show that Brazil has the lowest potential for improvement in both sectors. In contrast, there is significant potential for improvement in Mexico, India, and especially China, where adoption of best practice technologies could reduce energy use and carbon dioxide emissions from steel production by 50% and cement production by 37%. We conclude by comparing the identified potential for energy efficiency improvement and carbon dioxide emissions reduction in these key developing countries to that of the U.S. This comparison raises interesting questions related to efforts to improve energy efficiency in developing countries, such as: what is the appropriate role of industrialized countries in promoting the adoption of low carbon technologies, how do international steel and cement companies influence the situation, and how can such information be used in the context of Clean Development Mechanism in the Kyoto Protocol?

Price, Lynn; Worrell, Ernst; Phylipsen, Dian

1999-09-01T23:59:59.000Z

46

The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport...  

Open Energy Info (EERE)

for emissions from purchased electricity, stationary combustion, refrigeration and air conditioning equipment, and several industrial sectors. References Retrieved from...

47

Market-Based Emissions Regulation and Industry Dynamics  

E-Print Network [OSTI]

We assess the long-run dynamic implications of market-based regulation of carbon dioxide emissions in the US Portland cement industry. We consider several alternative policy designs, including mechanisms that use production ...

Fowlie, Meredith

48

India's cement industry: Productivity, energy efficiency and carbon emissions  

SciTech Connect (OSTI)

Historical estimates of productivity growth in India's cement sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Analysis shows that in the twenty year period, 1973 to 1993, productivity in the aluminum sector increased by 0.8% per annum. An econometric analysis reveals that technical progress in India's cement sector has been biased towards the use of energy and capital, while it has been material and labor saving. The increase in productivity was mainly driven by a period of progress between 1983 and 1991 following partial decontrol of the cement sector in 1982. The authors examine the current changes in structure and energy efficiency in the sector. Their analysis shows that the Indian cement sector is moving towards world-best technology, which will result in fewer carbon emissions and more efficient energy use. However, substantial further energy savings and carbon reduction potentials still exist.

Schumacher, Katja; Sathaye, Jayant

1999-07-01T23:59:59.000Z

49

Model documentation report: Industrial sector demand module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects. The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2015) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

NONE

1997-01-01T23:59:59.000Z

50

The impact of the European Union Emission Trading Scheme on electricity generation sectors  

E-Print Network [OSTI]

. This paper will be presented at the 2009 International Energy Workshop meeting (Venice, June 17th - 19th). 1 break, Non Parametric Approach, Energy prices. JEL classi...cation: C14 C32 C51 Q49 Q58 Centre d the energy1 and industrial sectors major emitters. The market is based on a mechanism of "cap and trade

Paris-Sud XI, Université de

51

Economies of Scale and Scope in Network Industries: Lessons for the UK water and sewerage sectors  

E-Print Network [OSTI]

was directly transferred to 12 private firms. The government sold its remaining share of the power generators in the year 2000.4 The 2001 New Electricity Trading Arrangements (NETA) changed the mechanism for electricity trading and the latest major reform... sectors1 Michael G. Pollitt Steven J. Steer ESRC Electricity Policy Research Group University of Cambridge August 2011 Abstract Many studies of the water and sewerage industries place significant importance on the benefits of economies...

Pollitt, Michael G.; Steer, Stephen J.

52

Voluntary Agreements for Energy Efficiency or GHG EmissionsReduction in Industry: An Assessment of Programs Around the World  

SciTech Connect (OSTI)

Voluntary agreements for energy efficiency improvement and reduction of energy-related greenhouse gas (GHG) emissions have been a popular policy instrument for the industrial sector in industrialized countries since the 1990s. A number of these national-level voluntary agreement programs are now being modified and strengthened, while additional countries--including some recently industrialized and developing countries--are adopting these type of agreements in an effort to increase the energy efficiency of their industrial sectors.Voluntary agreement programs can be roughly divided into three broad categories: (1) programs that are completely voluntary, (2) programs that use the threat of future regulations or energy/GHG emissions taxes as a motivation for participation, and (3) programs that are implemented in conjunction with an existing energy/GHG emissions tax policy or with strict regulations. A variety of government-provided incentives as well as penalties are associated with these programs. This paper reviews 23 energy efficiency or GHG emissions reduction voluntary agreement programs in 18 countries, including countries in Europe, the U.S., Canada, Australia, New Zealand, Japan, South Korea, and Chinese Taipei (Taiwan) and discusses preliminary lessons learned regarding program design and effectiveness. The paper notes that such agreement programs, in which companies inventory and manage their energy use and GHG emissions to meet specific reduction targets, are an essential first step towards GHG emissions trading programs.

Price, Lynn

2005-06-01T23:59:59.000Z

53

Economic impact of the European Union Emission Trading Scheme : evidence from the refining sector  

E-Print Network [OSTI]

I study the economic impact of the European Union Emission Trading Scheme (EU ETS) on the refining industry in Europe. I contrast previous ex-ante studies with the lessons from a series of interviews I conducted with ...

Lacombe, Romain H

2008-01-01T23:59:59.000Z

54

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network [OSTI]

company and the Danish Energy Agency. The agreements, whichDanish Energy Authority [1] The Ministry of the Environment [2] and its Environmental Protection Agency [agencies 1. Voluntary Agreements with industry – Danish Energy

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

55

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network [OSTI]

CHP) ** Uncertainties with hydrogen production are not estimated ***includes emissions from other sectors such as other industry, residential,CHP) ** Uncertainties with hydrogen production are not estimated ***ncludes emissions from other sectors such as other industry, residential,

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

56

Carbon Emissions: Stone, Clay, and Glass Industry  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,64397 272 522 542PeruCarbon Emissions in the

57

Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 1: Part 1, Electricity supply sector; Part 2, Residential and commercial buildings sector; Part 3, Industrial sector  

SciTech Connect (OSTI)

DOE encourages you to report your achievements in reducing greenhouse gas emissions and sequestering carbon under this program. Global climate change is increasingly being recognized as a threat that individuals and organizations can take action against. If you are among those taking action, reporting your projects may lead to recognition for you, motivation for others, and synergistic learning for the global community. This report discusses the reporting process for the voluntary detailed guidance in the sectoral supporting documents for electricity supply, residential and commercial buildings, industry, transportation, forestry, and agriculture. You may have reportable projects in several sectors; you may report them separately or capture and report the total effects on an entity-wide report.

Not Available

1994-10-01T23:59:59.000Z

58

Published by Oak Ridge National Laboratory No. 1 2010 The industrial sector accounts for nearly one-third of the  

E-Print Network [OSTI]

Published by Oak Ridge National Laboratory No. 1 2010 The industrial sector accounts for nearly one research and development agreements (CRADAs) and two large work-for-others projects. Ev- ery single one

Pennycook, Steve

59

Comparison Study of Energy Intensity in the Textile Industry: A Case Study in Five Textile Sub-sectors  

E-Print Network [OSTI]

This paper contributes to the understanding of energy use in the textile industry by comparing the energy intensity of textile plants in five major sub-sectors, i.e. spinning, weaving, wet-processing, worsted fabric manufacturing, and carpet...

Hasanbeigi, A.; Hasanabadi, A.; Abdorrazaghi, M.

2011-01-01T23:59:59.000Z

60

Long-term Industrial Energy Forecasting (LIEF) model (18-sector version)  

SciTech Connect (OSTI)

The new 18-sector Long-term Industrial Energy Forecasting (LIEF) model is designed for convenient study of future industrial energy consumption, taking into account the composition of production, energy prices, and certain kinds of policy initiatives. Electricity and aggregate fossil fuels are modeled. Changes in energy intensity in each sector are driven by autonomous technological improvement (price-independent trend), the opportunity for energy-price-sensitive improvements, energy price expectations, and investment behavior. Although this decision-making framework involves more variables than the simplest econometric models, it enables direct comparison of an econometric approach with conservation supply curves from detailed engineering analysis. It also permits explicit consideration of a variety of policy approaches other than price manipulation. The model is tested in terms of historical data for nine manufacturing sectors, and parameters are determined for forecasting purposes. Relatively uniform and satisfactory parameters are obtained from this analysis. In this report, LIEF is also applied to create base-case and demand-side management scenarios to briefly illustrate modeling procedures and outputs.

Ross, M.H. (Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Physics); Thimmapuram, P.; Fisher, R.E.; Maciorowski, W. (Argonne National Lab., IL (United States))

1993-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Long-Term US Industrial Energy Use and CO2 Emissions  

SciTech Connect (OSTI)

We present a description and scenario results from our recently-developed long-term model of United States industrial sector energy consumption, which we have incorporated as a module within the ObjECTS-MiniCAM integrated assessment model. This new industrial model focuses on energy technology and fuel choices over a 100 year period and allows examination of the industrial sector response to climate policies within a global modeling framework. A key challenge was to define a level of aggregation that would be able to represent the dynamics of industrial energy demand responses to prices and policies, but at a level that remains tractable over a long time frame. In our initial results, we find that electrification is an important response to a climate policy, although there are services where there are practical and economic limits to electrification, and the ability to switch to a low-carbon fuel becomes key. Cogeneration of heat and power using biomass may also play a role in reducing carbon emissions under a policy constraint.

Wise, Marshall A.; Sinha, Paramita; Smith, Steven J.; Lurz, Joshua P.

2007-12-03T23:59:59.000Z

62

Industry sector analysis, China: Petrochemical industry in east China. Export trade information  

SciTech Connect (OSTI)

The market survey covers the petrochemical equipment and technology market in East China. The analysis contains statistical and narrative information on projected market demand, end-users; receptivity of Chinese consumers to U.S. products; the competitive situation, and market access (tariffs, non-tariff barriers, standards, taxes, distribution channels). It also contains key contact information and information on upcoming trade events related to the industry.

Not Available

1993-01-01T23:59:59.000Z

63

The Potential for Energy-Efficient Technologies to Reduce Carbon Emissions in the United States: Transport Sector  

SciTech Connect (OSTI)

The world is searching for a meaningful answer to the likelihood that the continued build-up of greenhouse gases in the atmosphere will cause significant changes in the earth`s climate. If there is to be a solution, technology must play a central role. This paper presents the results of an assessment of the potential for cost-effective technological changes to reduce greenhouse gas emissions from the U.S. transportation sector by the year 2010. Other papers in this session address the same topic for buildings and industry. U.S.transportation energy use stood at 24.4 quadrillion Btu (Quads) in 1996, up 2 percent over 1995 (U.S. DOE/EIA, 1997, table 2.5). Transportation sector carbon dioxide emissions amounted to 457.2 million metric tons of carbon (MmtC) in 1995, almost one third of total U.S. greenhouse gas emissions (U.S. DOE/EIA,1996a, p. 12). Transport`s energy use and CO{sub 2} emissions are growing, apparently at accelerating rates as energy efficiency improvements appear to be slowing to a halt. Cost-effective and nearly cost-effective technologies have enormous potential to slow and even reverse the growth of transport`s CO{sub 2} emissions, but technological changes will take time and are not likely to occur without significant, new public policy initiatives. Absent new initiatives, we project that CO{sub 2} emissions from transport are likely to grow to 616 MmtC by 2010, and 646 MmtC by 2015. An aggressive effort to develop and implement cost-effective technologies that are more efficient and fuels that are lower in carbon could reduce emissions by about 12% in 2010 and 18% in 2015, versus the business-as- usual projection. With substantial luck, leading to breakthroughs in key areas, reductions over the BAU case of 17% in 2010 and 25% in 2015,might be possible. In none of these case are CO{sub 2} emissions reduced to 1990 levels by 2015.

Greene, D.L.

1997-07-01T23:59:59.000Z

64

ISTUM PC: industrial sector technology use model for the IBM-PC  

SciTech Connect (OSTI)

A project to improve and enhance the Industrial Sector Technology Use Model (ISTUM) was originated in the summer of 1983. The project had dix identifiable objectives: update the data base; improve run-time efficiency; revise the reference base case; conduct case studies; provide technical and promotional seminars; and organize a service bureau. This interim report describes which of these objectives have been met and which tasks remain to be completed. The most dramatic achievement has been in the area of run-time efficiency. From a model that required a large proportion of the total resources of a mainframe computer and a great deal of effort to operate, the current version of the model (ISTUM-PC) runs on an IBM Personal Computer. The reorganization required for the model to run on a PC has additional advantages: the modular programs are somewhat easier to understand and the data base is more accessible and easier to use. A simple description of the logic of the model is given in this report. To generate the necessary funds for completion of the model, a multiclient project is proposed. This project will extend the industry coverage to all the industrial sectors, including the construction of process flow models for chemicals and petroleum refining. The project will also calibrate this model to historical data and construct a base case and alternative scenarios. The model will be delivered to clients and training provided. 2 references, 4 figures, 3 tables.

Roop, J.M.; Kaplan, D.T.

1984-09-01T23:59:59.000Z

65

Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About UsIndustrial Energy Efficiency AssessmentsJobs

66

Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector: Executive Summary  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About UsIndustrial Energy Efficiency

67

China's Pathways to Achieving 40% ~ 45% Reduction in CO{sub 2} Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential  

SciTech Connect (OSTI)

Achieving China’s goal of reducing its carbon intensity (CO{sub 2} per unit of GDP) by 40% to 45% percent below 2005 levels by 2020 will require the strengthening and expansion of energy efficiency policies across the buildings, industries and transport sectors. This study uses a bottom-up, end-use model and two scenarios -- an enhanced energy efficiency (E3) scenario and an alternative maximum technically feasible energy efficiency improvement (Max Tech) scenario – to evaluate what policies and technical improvements are needed to achieve the 2020 carbon intensity reduction target. The findings from this study show that a determined approach by China can lead to the achievement of its 2020 goal. In particular, with full success in deepening its energy efficiency policies and programs but following the same general approach used during the 11th Five Year Plan, it is possible to achieve 49% reduction in CO{sub 2} emissions per unit of GDP (CO{sub 2} emissions intensity) in 2020 from 2005 levels (E3 case). Under the more optimistic but feasible assumptions of development and penetration of advanced energy efficiency technology (Max Tech case), China could achieve a 56% reduction in CO{sub 2} emissions intensity in 2020 relative to 2005 with cumulative reduction of energy use by 2700 Mtce and of CO{sub 2} emissions of 8107 Mt CO{sub 2} between 2010 and 2020. Energy savings and CO{sub 2} mitigation potential varies by sector but most of the energy savings potential is found in energy-intensive industry. At the same time, electricity savings and the associated emissions reduction are magnified by increasing renewable generation and improving coal generation efficiency, underscoring the dual importance of end-use efficiency improvements and power sector decarbonization.

Zheng, Nina; Fridley, David; Zhou, Nan; Levine, Mark; Price, Lynn; Ke, Jing

2011-09-30T23:59:59.000Z

68

Meeting State Carbon Emission Requirements through Industrial Energy Efficiency: The Southern California Gas Company’s Industrial End User Program  

Broader source: Energy.gov [DOE]

This case study describes the Southern California Gas Company’s Industrial End User program, which helps large industrial customers increase energy efficiency and reduce energy use and greenhouse gas emissions.

69

World Best Practice Energy Intensity Values for SelectedIndustrial Sectors  

SciTech Connect (OSTI)

"World best practice" energy intensity values, representingthe most energy-efficient processes that are in commercial use in atleast one location worldwide, are provided for the production of iron andsteel, aluminium, cement, pulp and paper, ammonia, and ethylene. Energyintensity is expressed in energy use per physical unit of output for eachof these commodities; most commonly these are expressed in metric tonnes(t). The energy intensity values are provided by major energy-consumingprocesses for each industrial sector to allow comparisons at the processlevel. Energy values are provided for final energy, defined as the energyused at the production facility as well as for primary energy, defined asthe energy used at the production facility as well as the energy used toproduce the electricity consumed at the facility. The "best practice"figures for energy consumption provided in this report should beconsidered as indicative, as these may depend strongly on the materialinputs.

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky,Christina; Zhou, Nan

2007-06-05T23:59:59.000Z

70

Monitoring Industrial Pharmaceutical Crystallization Processes Using Acoustic Emission in Pure and Impure Media.  

E-Print Network [OSTI]

Monitoring Industrial Pharmaceutical Crystallization Processes Using Acoustic Emission in Pure processes was almost never evaluated in the field of industrial pharmaceutical crystallization. Few papers. Introduction The pharmaceutical industry is set against strong requests on behalf of both consumers

Paris-Sud XI, Université de

71

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

public sector, and one in the private sector. Total energy consumptionenergy consumption increased by over 60% in the commercial building (including both public and private) sector.public sector ownership. 2.2.3 Energy data At the national or state level, end-use level energy consumption

Sathaye, Jayant

2011-01-01T23:59:59.000Z

72

Stormwater Best Management Practices (BMPs) for Selected Industrial Sectors in the Lower Fraser Basin  

E-Print Network [OSTI]

Concrete Industry Lime Industry Refined Petroleum Products (Bulk Storage) Other Petroleum and Coal Products and Planing Mill Products Industry Wire and Wire Products Industries Hydraulic Cernent Industry Ready Mixed

73

Energy efficiency and carbon dioxide emissions reduction opportunities in the U.S. cement industry  

SciTech Connect (OSTI)

This paper reports on an in-depth analysis of the U.S. cement industry, identifying cost-effective energy efficiency measures and potentials. The authors assess this industry at the aggregate level (Standard Industrial Classification 324), which includes establishments engaged in manufacturing hydraulic cements, including Portland, natural, masonry, and pozzolana when reviewing industry trends and when making international comparisons. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Between 1970 and 1997, primary physical energy intensity for cement production (SIC 324) dropped 30%,from 7.9 GJ/t to 5.6 GJ/t, while carbon dioxide intensity due to fuel consumption (carbon dioxide emissions expressed in tons of carbon per ton cement) dropped 25%, from 0.16 tC/ton to 0.12 tC/ton. Carbon dioxide intensity due to fuel consumption and clinker calcination dropped 17%, from 0.29 tC/ton to 0.24 tC/ton. They examined 30 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. They constructed an energy conservation supply curve for U.S. cement industry which found a total cost-effective reduction of 0.6 GJ/ton of cement consisting of measures having a simple payback period of 3 years or less. This is equivalent to potential energy savings of 11% of 1994 energy use for cement making and a savings of 5% of total 1994 carbon dioxide emissions by the U.S. cement industry. Assuming the increased production of blended cement in the U.S., as is common in many parts of the world, the technical potential for energy efficiency improvement would not change considerably. However, the cost-effective potential, would increase to 1.1 GJ/ton cement or 18% of total energy use, and carbon dioxide emissions would be reduced by 16%.

Martin, Nathan; Worrell, Ernst; Price, Lynn

1999-08-01T23:59:59.000Z

74

Estimating carbon dioxide emission factors for the California electric power sector  

SciTech Connect (OSTI)

The California Climate Action Registry (''Registry'') was initially established in 2000 under Senate Bill 1771, and clarifying legislation (Senate Bill 527) was passed in September 2001. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) has been asked to provide technical assistance to the California Energy Commission (CEC) in establishing methods for calculating average and marginal electricity emissions factors, both historic and current, as well as statewide and for sub-regions. This study is exploratory in nature. It illustrates the use of three possible approaches and is not a rigorous estimation of actual emissions factors. While the Registry will ultimately cover emissions of all greenhouse gases (GHGs), presently it is focusing on carbon dioxide (CO2). Thus, this study only considers CO2, which is by far the largest GHG emitted in the power sector. Associating CO2 emissions with electricity consumption encounters three major complications. First, electricity can be generated from a number of different primary energy sources, many of which are large sources of CO2 emissions (e.g., coal combustion) while others result in virtually no CO{sub 2} emissions (e.g., hydro). Second, the mix of generation resources used to meet loads may vary at different times of day or in different seasons. Third, electrical energy is transported over long distances by complex transmission and distribution systems, so the generation sources related to electricity usage can be difficult to trace and may occur far from the jurisdiction in which that energy is consumed. In other words, the emissions resulting from electricity consumption vary considerably depending on when and where it is used since this affects the generation sources providing the power. There is no practical way to identify where or how all the electricity used by a certain customer was generated, but by reviewing public sources of data the total emission burden of a customer's electricity supplier can b e found and an average emissions factor (AEF) calculated. These are useful for assigning a net emission burden to a facility. In addition, marginal emissions factors (MEFs) for estimating the effect of changing levels of usage can be calculated. MEFs are needed because emission rates at the margin are likely to diverge from the average. The overall objective of this task is to develop methods for estimating AEFs and MEFs that can provide an estimate of the combined net CO2 emissions from all generating facilities that provide electricity to California electricity customers. The method covers the historic period from 1990 to the present, with 1990 and 1999 used as test years. The factors derived take into account the location and time of consumption, direct contracts for power which may have certain atypical characteristics (e.g., ''green'' electricity from renewable resources), resource mixes of electricity providers, import and export of electricity from utility owned and other sources, and electricity from cogeneration. It is assumed that the factors developed in this way will diverge considerably from simple statewide AEF estimates based on standardized inventory estimates that use conventions inconsistent with the goals of this work. A notable example concerns the treatment of imports, which despite providing a significant share of California's electricity supply picture, are excluded from inventory estimates of emissions, which are based on geographical boundaries of the state.

Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

2002-08-01T23:59:59.000Z

75

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

43 Energy efficiency and CO2 emission reduction measures and58 CO2 emission reduction measures and associated68 CO2 emission reduction measures and associated

Sathaye, Jayant

2011-01-01T23:59:59.000Z

76

Imperfect Enforcement of Emissions Trading and Industry Welfare: A Laboratory Investigation  

E-Print Network [OSTI]

March 2008 Imperfect Enforcement of Emissions Trading and Industry Welfare: A Laboratory of Emissions Trading and Industry Welfare: A Laboratory Investigation Abstract: This paper uses laboratory to be low. Thus, although a standard model of compliance with emissions trading programs tends to predict

Murphy, James J.

77

Estimating the Impact (Energy, Emissions and Economics) of the US Fluid Power Industry  

SciTech Connect (OSTI)

The objective of this report is to estimate the impact (energy, emissions and economics) of United Fluid power (hydraulic and pneumatic actuation) is the generation, control, and application of pumped or compressed fluids when this power is used to provide force and motion to mechanisms. This form of mechanical power is an integral part of United States (U.S.) manufacturing and transportation. In 2008, according to the U.S. Census Bureau, sales of fluid power components exceeded $17.7B, sales of systems using fluid power exceeded $226B. As large as the industry is, it has had little fundamental research that could lead to improved efficiency since the late 1960s (prior to the 1970 energy crisis). While there have been some attempts to replace fluid powered components with electric systems, its performance and rugged operating condition limit the impact of simple part replacement. Oak Ridge National Laboratory and the National Fluid Power Association (NFPA) collaborated with 31 industrial partners to collect and consolidate energy specific measurements (consumption, emissions, efficiency) of deployed fluid power systems. The objective of this study was to establish a rudimentary order of magnitude estimate of the energy consumed by fluid powered systems. The analysis conducted in this study shows that fluid powered systems consumed between 2.0 and 2.9 Quadrillion (1015) Btus (Quads) of energy per year; producing between 310 and 380 million metric tons (MMT) of Carbon Dioxide (CO2). In terms of efficiency, the study indicates that, across all industries, fluid power system efficiencies range from less than 9% to as high as 60% (depending upon the application), with an average efficiency of 22%. A review of case studies shows that there are many opportunities to impact energy savings in both the manufacturing and transportation sectors by the development and deployment of energy efficient fluid power components and systems.

Love, Lonnie J [ORNL

2012-12-01T23:59:59.000Z

78

Emissions Trading, Electricity Industry Restructuring, and Investment in Pollution Abatement  

E-Print Network [OSTI]

Foss, B . "Carbon Emissions Trading is New Weapon to BattleBehavior and the Emission Trading Market, Resources andof Sulfur Dioxide Emissions Trading." The Journal of

Fowlie, Meredith

2005-01-01T23:59:59.000Z

79

Ethiopia-National Greenhouse Gas Emissions Baseline Scenarios...  

Open Energy Info (EERE)

through a consultative process. These sectors are: agriculture (including forestry, soil- based emissions, and livestock), green cities and build- ings, industry, transport,...

80

The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary...  

Open Energy Info (EERE)

for emissions from purchased electricity, transport or mobile sources, refrigeration and air conditioning equipment, and several industrial sectors. References 1.0 1.1...

Note: This page contains sample records for the topic "industrial sector emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

ENCUENTRO EMPRESA-UNIVERSIDAD OPORTUNIDADES DE NEGOCIO EN EL MBITO DEL SECTOR INDUSTRIAL MARINO E  

E-Print Network [OSTI]

. Producción industrial de biomasa de insectos, mediante la valorización de subproductos de origen vegetal

Escolano, Francisco

82

A Comparative Evaluation of Greenhouse Gas Emission Reduction Strategies for the Maritime Shipping and Aviation Sectors  

E-Print Network [OSTI]

2001) The impact of CO 2 emissions trading on the EuropeanJ. D. et al. (2007) Emissions Trading for internationalinvestigating an open emission trading system for aviation

Hansen, Mark; Smirti, Megan; Zou, Bo

2008-01-01T23:59:59.000Z

83

Energy use and carbon dioxide emissions in the steel sector in key developing countries  

E-Print Network [OSTI]

intensities and the carbon emission factor for each process.through fuel switching. Carbon emissions factors used infor reduction in carbon emissions was slightly larger than

Price, Lynn; Phylipsen, Dian; Worrell, Ernst

2001-01-01T23:59:59.000Z

84

Future Public Policy and Ethical Issues Facing the Agricultural and Microbial Genomics Sectors of the Biotechnology Industry: A Roundtable Discussion  

SciTech Connect (OSTI)

On September 12, 2003, the University of Maryland School of Law's Intellectual Property and Law & Health Care Programs jointly sponsored and convened a roundtable discussion on the future public policy and ethical issues that will likely face the agricultural and microbial genomics sectors of the biotechnology industry. As this industry has developed over the last two decades, societal concerns have moved from what were often local issues, e.g., the safety of laboratories where scientists conducted recombinant DNA research on transgenic microbes, animals and crops, to more global issues. These newer issues include intellectual property, international trade, risks of genetically engineered foods and microbes, bioterrorism, and marketing and labeling of new products sold worldwide. The fast paced nature of the biotechnology industry and its new developments often mean that legislators, regulators and society, in general, must play ''catch up'' in their efforts to understand the issues, the risks, and even the benefits, that may result from the industry's new ways of conducting research, new products, and novel methods of product marketing and distribution. The goal of the roundtable was to develop a short list of the most significant public policy and ethical issues that will emerge as a result of advances in these sectors of the biotechnology industry over the next five to six years. More concretely, by ''most significant'' the conveners meant the types of issues that would come to the attention of members of Congress or state legislators during this time frame and for which they would be better prepared if they had well researched and timely background information. A concomitant goal was to provide a set of focused issues for academic debate and scholarship so that policy makers, industry leaders and regulators would have the intellectual resources they need to better understand the issues and concerns at stake. The goal was not to provide answers to any of the issues or problems, simply to identify those topics that deserve our attention as a society. Some of the issues may benefit from legislation at the federal or state levels, others may be more appropriately addressed by the private sector. Participants at the roundtable included over a dozen experts in the areas of microbiology, intellectual property, agricultural biotechnology, microbial genomics, bioterrorism, economic development, biotechnology research, and bioethics. These experts came from federal and state government, industry and academia. The participants were asked to come to the roundtable with a written statement of the top three to five public policy/ ethical issues they viewed as most likely to be significant to the industry and to policy makers over the next several years.

Diane E. Hoffmann

2003-09-12T23:59:59.000Z

85

Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)  

E-Print Network [OSTI]

energy demand. The energy consumption mix i n China'sstructure and product mix in energy-intensive industries;Table 4). The sector's mix of energy sources that year was

Zhiping, L.

2010-01-01T23:59:59.000Z

86

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

SciTech Connect (OSTI)

Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

Sathaye, J.; Xu, T.; Galitsky, C.

2010-08-15T23:59:59.000Z

87

Market-Based Emissions Regulation and Industry Dynamics  

E-Print Network [OSTI]

. Examples include the Emissions Trading Scheme (ETS) in the European Union and California's greenhouse gas (GHG) emissions trading program. In these "cap-and-trade" (CAT) programs, regulators impose a cap- sions is that, provided a series of conditions are met, an emissions trading program designed to equate

Fowlie, Meredith

88

Market-Based Emissions Regulation and Industry Dynamics  

E-Print Network [OSTI]

. The authors gratefully acknowledge the support of NSF grant SES-0922401. 1 #12;Emissions Trading Scheme (ETS) in the European Union and California's greenhouse gas (GHG) emissions trading program. In these "cap is that, provided a series of conditions are met, an emissions trading program designed to equate marginal

Fowlie, Meredith

89

Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector  

SciTech Connect (OSTI)

Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. With the working of energy programs and policies on carbon regulation, how to effectively analyze and manage the costs associated with GHG reductions become extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions (e.g., carbon emission) for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct brief overview on different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by problem statements, and a description of the basic concepts of quantifying the cost of conserved energy including integrating non-regrets options. A non-regrets option is defined as a GHG reduction option that is cost effective, without considering their additional benefits related to reducing GHG emissions. Based upon these, we develop information on costs of mitigation measures and technological change. These serve as the basis for collating the data on energy savings and costs for their future use in integrated assessment models. In addition to descriptions of the iron and steel making processes, and the mitigation measures identified in this study, the report includes tabulated databases on costs of measure implementation, energy savings, carbon-emission reduction, and lifetimes. The cost curve data on mitigation measures are available over time, which allows an estimation of technological change over a decade-long historical period. In particular, the report will describe new treatment of technological change in energy-climate modeling for this industry sector, i.e., assessing the changes in costs and energy-savings potentials via comparing 1994 and 2002 conservation supply curves. In this study, we compared the same set of mitigation measures for both 1994 and 2002 -- no additional mitigation measure for year 2002 was included due to unavailability of such data. Therefore, the estimated potentials in total energy savings and carbon reduction would most likely be more conservative for year 2002 in this study. Based upon the cost curves, the rate of change in the savings potential at a given cost can be evaluated and be used to estimate future rates of change that can be the input for energy-climate models. Through characterizing energy-efficiency technology costs and improvement potentials, we have developed and presented energy cost curves for energy efficiency measures applicable to the U.S. iron and steel industry for the years 1994 and 2002. The cost curves can change significantly under various scenarios: the baseline year, discount rate, energy intensity, production, industry structure (e.g., integrated versus secondary steel making and number of plants), efficiency (or mitigation) measures, share of iron and steel production to which the individual measures can be applied, and inclusion of other non-energy benefits. Inclusion of other non-energy benefits from implementing mitigation measures can reduce the costs of conserved energy significantly. In addition, costs of conserved energy (CCE) for individual mitigation measures increase with the increases in discount rates, resulting in a general increase in total cost of mitigation measures for implementation and operation with a higher discount rate. In 1994, integrated steel mills in the U.S. produced 55.

Xu, T.T.; Sathaye, J.; Galitsky, C.

2010-09-30T23:59:59.000Z

90

Unrestricted. Siemens AG 2013. All rights reserved.Page 2 October 2013 Corporate Technology Siemens is organized in 4 Sectors: Industry,  

E-Print Network [OSTI]

· Smart Grid · Building Technologies · Osram 2) Corporate functions Corporate Technology Corp. Finance Siemens is organized in 4 Sectors: Industry, Energy, Healthcare and Infrastructure & Cities Siemens: Facts ... Corp. Technology Corp. Development Infrastructure & Cities HealthcareEnergyIndustry ~ 14 bn.1) ~ 18 bn

Oak Ridge National Laboratory

91

Rank Residential Sector Commercial Sector Industrial Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S.Feet) Year

92

Reductions in ozone concentrations due to controls on variability in industrial flare emissions in Houston, Texas  

E-Print Network [OSTI]

High concentrations of ozone in the Houston/Galveston area are associated with industrial plumes of highly reactive hydrocarbons, mixed with NOx. The emissions leading to these plumes can have significant temporal variability, ...

Nam, Junsang

2007-01-01T23:59:59.000Z

93

Russian Policy on Methane Emissions in the Oil and Gas Sector: A Case Study in Opportunities and Challenges in Reducing Short-Lived Forcers  

SciTech Connect (OSTI)

This paper uses Russian policy in the oil and gas sector as a case study in assessing options and challenges for scaling-up emission reductions. We examine the challenges to achieving large-scale emission reductions, successes that companies have achieved to date, how Russia has sought to influence methane emissions through its environmental fine system, and options for helping companies achieve large-scale emission reductions in the future through simpler and clearer incentives.

Evans, Meredydd; Roshchanka, Volha

2014-08-04T23:59:59.000Z

94

Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Regulations while Using  

E-Print Network [OSTI]

Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Regulations while Using a Broad Range of Alternative Fuels Luke Cowell. Solar Turbines Abstract: Solar Turbines Incorporated is a leading manufacturer of industrial gas turbine packages for the power generation

Ponce, V. Miguel

95

emissions: mineral carbonation and Finnish pulp and paper industry (CO2  

E-Print Network [OSTI]

CO2 emissions: mineral carbonation and Finnish pulp and paper industry (CO2 Nordic Plus) and Use carbonation processes. One aspect was to verify the possible use of mineral carbon- ation for the separation, utilisation and long-term storage of carbon dioxide (CO2) in the pulp and paper industry. The Geological

Zevenhoven, Ron

96

Model documentation report: Industrial sector demand module of the national energy modeling system  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its model. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

NONE

1998-01-01T23:59:59.000Z

97

Impact of the energy sector upon environment, policies of reducing the polluting emissions  

SciTech Connect (OSTI)

The deep changes in Romania is facing during the transition from a planned, centralized economy to a market economy and Romania's integration into the European Community, have imposed the necessity to adopt some proper strategies for the energy sector reorganization and development, taking account the economic, social, public health and environmental aspects. The environmental protection, the pollution reduction, their positive direct and indirect effects the increasing energy efficiency in using fossil fuels, have an important role on energy policies as well as on the planning of long term measures. For the future evolution of the energy sector in order to cover the electric and thermal energy consumption, a special attention is given to impact of different development strategies, upon environment, the stress being also laid on the expenses required for affiliating the sector to the limits imposed by the convention which Romania has adhered.

Teodorescu, S.; Popescu, M.A.

1998-07-01T23:59:59.000Z

98

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

World Others Share Source: Murthy, 2007 3.3.3 Energy data The productionthe World Bank. 4.2.2 Industrial Production Intensity EnergyEnergy) Production Of crude steel Mt SEC GJ/t cs Coal Elect FO LPG Gas SEC World

Sathaye, Jayant

2011-01-01T23:59:59.000Z

99

Allocation, incentives and distortions: the impact of EU ETS emissions allowance allocations to the electricity sector  

E-Print Network [OSTI]

in electricity prices (Harrison and Radov 2002) could trigger higher electricity consumption, production, further increasing CO2 emissions. This approach will also have consequences on neighbouring jurisdictions. Figure 2 illustrates a case with two... into the electricity prices limits investment in energy efficiency and results in higher electricity consumption. Thus electricity production and national CO2 emissions increase. If all European countries implement such policies the suggested higher CO2 emissions...

Neuhoff, Karsten; Keats, Kim; Sato, Misato

100

A State Regulator's View of 'PURPA' And Its Impact on Energy Conservation in the Industrial Sector  

E-Print Network [OSTI]

improving utility production efficiency, lowering costs and possibly reducing the need for new high cost production facilities. On the other hand, time of use rates may ultimately cause some electric users, especially certain large industrial customers... and resources by electric utilities." Two types of efficiency are addressed here. The first, is economic efficiency, which in classical economics implies the setting of prices which result in the appropriate allocation and conservation of society...

Williams, M. L.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

International Experience with Key Program Elements of IndustrialEnergy Efficiency or Greenhouse Gas Emissions Reduction Target-SettingPrograms  

SciTech Connect (OSTI)

Target-setting agreements, also known as voluntary ornegotiated agreements, have been used by a number of governments as amechanism for promoting energy efficiency within the industrial sector. Arecent survey of such target-setting agreement programs identified 23energy efficiency or GHG emissions reduction voluntary agreement programsin 18 countries. International best practice related to target-settingagreement programs calls for establishment of a coordinated set ofpolicies that provide strong economic incentives as well as technical andfinancial support to participating industries. The key program elementsof a target-setting program are the target-setting process,identification of energy-saving technologies and measures usingenergy-energy efficiency guidebooks and benchmarking as well as byconducting energy-efficiency audits, development of an energy-savingsaction plan, development and implementation of energy managementprotocols, development of incentives and supporting policies, monitoringprogress toward targets, and program evaluation. This report firstprovides a description of three key target-setting agreement programs andthen describes international experience with the key program elementsthat comprise such programs using information from the three keytarget-setting programs as well as from other international programsrelated to industrial energy efficiency or GHG emissionsreductions.

Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

2008-02-02T23:59:59.000Z

102

Special Coating Emission Control System At Goulds Pumps ITT Industries  

E-Print Network [OSTI]

. In 1996, Goulds Pumps ITT Industries of Seneca Falls, NY with the assistance of the New York State Energy Research and Development Authority began a project with the goal of finding a way to use waterborne coatings for the majority of their applications...

Caropolo, B.; Evans, T.

103

Electric Power Interruption Cost Estimates for Individual Industries, Sectors, and the U.S. Economy  

E-Print Network [OSTI]

(Lehtonen et at. 1995) Finland 1992 1993 Industrial- US$15.79/kW - I-Hour Interruption Commercial - US$17.86/kW - I-Hour Interruption Residential- US$3.16/kW - I-Hour Interruption Lehtonen and Lemstroem (Lehtonen et al. 1995) Iceland 1992 1993.... VTT Energy. Jyvaskyla, Finland. (1995). 9. New York City Office of Economic Development. Statistical Profile of Emergency Aid Corrunission Applications. New York, New York. (1977). 10. Ontario Hydro. Ontario Hydro Survey on Power System...

Balducci, P. J.; Roop, J. M.; Schienbein, L. A.; DeSteese, J. G.; Weimar, M. R.

104

Energy use and carbon dioxide emissions in the steel sector in key developing countries  

E-Print Network [OSTI]

1996. COREX, Revolution in Ironmaking, Linz, Austria:VAI.Steel Industry in India,” Ironmaking and Steelmaking, 23(4):Proc. 2nd European Ironmaking Congress, Glasgow, UK, 15-18

Price, Lynn; Phylipsen, Dian; Worrell, Ernst

2001-01-01T23:59:59.000Z

105

A Statistical Model to Assess Indirect CO2 Emissions of the UAE Residential Sector  

E-Print Network [OSTI]

. Determination of household energy using ?fingerprints? from energy billing data. Energy Research 10(4), pp: 393?405. [5] Snakin JPA, 2000. An engineering model for heating energy and emission assessment The case of North Karelia, Finland. Applied Energy...

Radhi, H.; Fikry, F.

2010-01-01T23:59:59.000Z

106

Lobbying during the revision of the European Emissions Trading System: : Easier for Swedish industrial insiders than for Norwegian outsiders?.  

E-Print Network [OSTI]

??This thesis examines and compares Swedish and Norwegian energy intensive industry firms’ lobbying during the revision of the European Emissions Trading Scheme. In the applied… (more)

Miard, Kadri

2010-01-01T23:59:59.000Z

107

Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from various industrial sources  

SciTech Connect (OSTI)

This study characterized the emissions of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) from the stack flue gases of 17 industrial sources, which were classified into 10 categories. The results show that the mean PCDD/PCDF concentration of secondary zinc smelter (Zn-S) and secondary copper smelter (Cu-S) is 2.44 ng international toxic equivalent (I-TEQ)/Nm{sup 3} (N represents normal conditions at 0{sup o}C, 760 mmHg), which was found to be significantly greater than that of industrial waste incinerators (mean concentration = 0.15 ng I-TEQ/Nm{sup 3}). These results imply that the controlling of secondary metallurgical melting processes is more important than industrial waste incineration for the reduction of PCDD/PCDF emissions. The mean emission factors of cement production, Zn-S and Cu-S, are 0.052, 1.99, and 1.73 {mu}g I-TEQ/t product, respectively. The cement plant uses bituminous coal as fuel. For industrial waste incineration, the mean emission factors of waste rubber, waste liquor, waste sludge, industrial waste solid (IWI)-1, IWI-2, IWI-3, and IWI-4 are 0.752, 0.435, 0.760, 6.64, 1.67, 2.38, and 0.094 {mu}g I-TEQ/t feed, respectively. Most of the PCDD/PCDF emission factors established in this study are less than those reported in previous studies, which could be because of the more stringent regulations for PCDD/PCDF emissions in recent years. 20 refs., 1 fig., 7 tabs.

Long-Full Lin; Wen-Jhy Lee; Guo-Ping Chang-Chien [National Cheng Kung University, Tainan (Taiwan). Department of Environmental Engineering, and Sustainable Environment Research Center

2006-12-15T23:59:59.000Z

108

Agricultural Sector Analysis on Greenhouse Gas Emission Mitigation in the United States  

E-Print Network [OSTI]

............................................................................ 14 2.2.2 Agriculture - A GHG Sequestering Sink............................................... 15 vi Page 2.2.2.1 Soil Sequestration ........................................................................ 15 2.2.2.2 Forest Sequestration... systems (Flach, Barnwell, and Crosson). Similarly, total forestland in the U.S. has been slightly increasing during the last decade (U.S. Forest Service). In countries with large rates of deforestation emissions are important. Houghton estimates...

Schneider, Uwe A.

2000-01-01T23:59:59.000Z

109

Probe into Gaseous Pollution and Assessment of Air Quality Benefit under Sector Dependent Emission Control Strategies over Megacities in Yangtze River Delta, China  

SciTech Connect (OSTI)

On February 29th 2012, China published its new National Ambient Air Quality Standard (CH-NAAQS) aiming at revising the standards and measurements for both gaseous pollutants including ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2), and also particle pollutants including PM10 and PM2.5. In order to understand the air pollution status regarding this new standard, the integrated MM5/CMAQ modeling system was applied over Yangtze River Delta (YRD) within this study to examine the criteria gaseous pollutants listed in the new CH-NAAQS. Sensitivity simulations were also conducted to assess the responses of gaseous pollutants under 8 different sector-dependent emission reduction scenarios in order to evaluate the potential control strategies. 2006 was selected as the simulation year in order to review the air quality condition at the beginning of China’s 11th Five-Year-Plan (FYP, from 2006 to 2010), and also compared with air quality status in 2010 as the end of 11th FYP to probe into the effectiveness of the national emission control efforts. Base case simulation showed distinct seasonal variation for gaseous pollutants: SO2, and NO2 were found to have higher surface concentrations in winter while O3 was found to have higher concentrations in spring and summer than other seasons. According to the analyses focused on 3 megacities within YRD, Shanghai, Nanjing, and Hangzhou, we found different air quality conditions among the cities: NO2 was the primary pollutant that having the largest number of days exceeding the CH-NAAQS daily standard (80 ?g/m3) in Shanghai (59 days) and Nanjing (27 days); SO2 was the primary pollutant with maximum number of days exceeding daily air quality standard (150 ?g/m3) in Hangzhou (28 days), while O3 exceeding the daily maximum 8-hour standard (160 ?g/m3) for relatively fewer days in all the three cities (9 days in Shanghai, 14 days in Nanjing, and 11 days in Hangzhou). Simulation results from predefined potential applicable emission control scenarios suggested significant air quality improvements from emission reduction: 90% of SO2 emission removed from power plant in YRD would be able to reduce more than 85% of SO2 pollution, 85% NOx emission reduction from power plant would reduce more than 60% of NO2 pollution, in terms of reducing the number of days exceeding daily air quality standard. NOx emission reduction from transportation and industry were also found to effectively reduce NO2 pollution but less efficient than emission control from power plants. We also found that multi-pollutants emission control including both NOx and VOC would be a better strategy than independent NOx control over YRD which is China’s 12th Five-Year-Plan (from 2011 to 2015), because O3 pollution would be increased as a side effect of NOx control and counteract NO2 pollution reduction benefit.

Dong, Xinyi; Gao, Yang; Fu, Joshua S.; Li, Juan; Huang, Kan; Zhuang, G.; Zhou, Ying

2013-11-01T23:59:59.000Z

110

Industry  

E-Print Network [OSTI]

sector’s share of global primary energy use declined fromused 91 EJ of primary energy, 40% of the global total of 227Global and sectoral data on final energy use, primary energy

Bernstein, Lenny

2008-01-01T23:59:59.000Z

111

Energy efficiency for greenhouse gas emission reduction in China: The case of the cement industry  

SciTech Connect (OSTI)

A project at LBNL has combined two different approaches to investigate changes in efficiency in China`s cement industry, which currently accounts for over 6% of China`s total commercial energy use and over 1% of global carbon emissions. Cement output has doubled over the past five years, and will double again within 15 years. Addressing cement industry carbon emissions will be a key element of any program to control China`s carbon emissions. Macro-level analysis was used to investigate industry-wide trends, and detailed case studies of individual plants illuminated key issues in technology choice that fundamentally affect efficiency. In general, enterprises adopted technologies that increased output and improved quality, and had little regard for energy efficiency, though most new technologies and practices did improve efficiency. Changes in energy prices were a surprisingly weak factor in adoption of efficient technologies. Unexpectedly, many enterprises developed a strong preference for the least fuel-efficient technology, which allows power generation with kiln waste heat. This preference was motivated in a large part by the desire to achieve security in electricity supply, and by some reforms. This alternative has become increasingly popular, and threatens to reverse some progress made in reducing the carbon-intensiveness of China`s cement industry. Foreign technical assistance and more importantly, greater participation in China`s cement industry of foreign cement companies would speed the adoption of large scale very efficient precalciner plants. Paradoxically, improving energy efficiency in China`s cement industry is also a supply-side issue, improved reliability in China`s power network will make the more fuel-efficient alternative more attractive.

Sinton, J. [Lawrence Berkeley National Lab., Berkeley, CA (United States)

1996-12-31T23:59:59.000Z

112

Industry  

E-Print Network [OSTI]

competitiveness in the EU emissions trading scheme: Optionson NO x and CO 2 emissions trading. Emissions Trader -Economy. DTI, 2005: EU Emissions trading scheme: Benchmark

Bernstein, Lenny

2008-01-01T23:59:59.000Z

113

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

Policies in the Electricity Sector. Discussion Paper 99-51,emissions from the electricity sector. Several states have2020 emissions from the electricity sector by 18%. Extending

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

114

Implications of changing natural gas prices in the United States electricity sector for SO and life cycle GHG emissions  

E-Print Network [OSTI]

to the choice of coal over natural gas. External incentives such as low natural gas prices compared to coalImplications of changing natural gas prices in the United States electricity sector for SO 2 , NO X of changing natural gas prices in the United States electricity sector for SO2, NOX and life cycle GHG

Jaramillo, Paulina

115

Life cycle GHG emissions from Malaysian oil palm bioenergy development: The impact on transportation sector's energy security  

E-Print Network [OSTI]

on transportation sector's energy security Mohd Nor Azman Hassan a,n , Paulina Jaramillo a , W. Michael Griffin a sector accounts for 41% of the country's total energy use. The country is expected to become a net oil% of total energy consumption. This is expected to increase to about 1100 PJ in 2015 extrapolat- ing

Jaramillo, Paulina

116

Carbon emissions reduction potential in the US chemicals and pulp and paper industries by applying CHP technologies  

SciTech Connect (OSTI)

The chemical and the pulp/paper industries combined provide 55% of CHP generation in the US industry. Yet, significant potential for new CHP capacities exists in both industries. From the present steam consumption data, the authors estimate about 50 GW of additional technical potential for CHP in both industries. The reduced carbon emissions will be equivalent to 44% of the present carbon emissions in these industries. They find that most of the carbon emissions reductions can be achieved at negative costs. Depending on the assumptions used in calculations, the economic potential of CHP in these industries can be significantly lower, and carbon emissions mitigation costs can be much higher. Using sensitivity analyses, they determine that the largest effect on the CHP estimate have the assumptions in the costs of CHP technology, in the assumed discount rates, in improvements in efficiency of CHP technologies, and in the CHP equipment depreciation periods. Changes in fuel and electricity prices and the growth in the industries' steam demand have less of an effect. They conclude that the lowest carbon mitigation costs are achieved with the CHP facility is operated by the utility and when industrial company that owns the CHP unit can sell extra electricity and steam to the open wholesale market. Based on the results of the analyses they discuss policy implications.

Khrushch, M.; Worrell, E.; Price, L.; Martin, N.; Einstein, D.

1999-07-01T23:59:59.000Z

117

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network [OSTI]

by ERC, is 448.3 trillion Btu (TBtu). The total CaliforniaBecause the cost of an electrical Btu is roughly 4 timesthat of a source fuel Btu, industrial categories that use

Akbari, H.

2008-01-01T23:59:59.000Z

118

Air pollution and early deaths in the United States : attribution of PM?.? exposure to emissions species, time, location and sector  

E-Print Network [OSTI]

Combustion emissions constitute the largest source of anthropogenic emissions in the US. They lead to the degradation of air quality and human health, by contributing to the formation of fine particulate matter (PM2 .5 ), ...

Dedoussi, Irene Constantina

2014-01-01T23:59:59.000Z

119

Industry  

E-Print Network [OSTI]

SHIP - Solar heat for industrial processes. Internationalsolar power could be used to provide process heat for

Bernstein, Lenny

2008-01-01T23:59:59.000Z

120

Effect of industrial by-products containing electron acceptors on mitigating methane emission during rice cultivation  

SciTech Connect (OSTI)

Three industrial by-products (fly ash, phosphogypsum and blast furnace slag), were evaluated for their potential re-use as soil amendments to reduce methane (CH{sub 4}) emission resulting from rice cultivation. In laboratory incubations, CH{sub 4} production rates from anoxic soil slurries were significantly reduced at amendment levels of 0.5%, 1%, 2% and 5% (wt wt{sup -1}), while observed CO{sub 2} production rates were enhanced. The level of suppression in methane production was the highest for phosphogypsum, followed by blast slag and then fly ash. In the greenhouse experiment, CH{sub 4} emission rates from the rice planted potted soils significantly decreased with the increasing levels (2-20 Mg ha{sup -1}) of the selected amendments applied, while rice yield simultaneously increased compared to the control treatment. At 10 Mg ha{sup -1} application level of the amendments, total seasonal CH{sub 4} emissions were reduced by 20%, 27% and 25%, while rice grain yields were increased by 17%, 15% and 23% over the control with fly ash, phosphogypsum, and blast slag amendments, respectively. The suppression of CH{sub 4} production rates as well as total seasonal CH{sub 4} flux could be due to the increased concentrations of active iron, free iron, manganese oxides, and sulfate in the amended soil, which acted as electron acceptors and controlled methanogens' activity by limiting substrates availability. Among the amendments, blast furnace slag and fly ash contributed mainly to improve the soil nutrients balance and increased the soil pH level towards neutral point, but soil acidity was developed with phosphogypsum application. Conclusively, blast slag among the selected amendments would be a suitable soil amendment for reducing CH{sub 4} emissions as well as sustaining rice productivity.

Ali, Muhammad Aslam [Department of Environmental Science, Bangladesh Agricultural University, Mymensingh 2202 (Bangladesh); Lee, Chang Hoon [Functional Cereal Crop Research Division, National Institute of Crop Science, RDA, 1085, Naey-dong, Milyang (Korea, Republic of); Kim, Sang Yoon [Division of Applied Life Science, Graduate School (Brain Korea 21 Program), Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Kim, Pil Joo [Division of Applied Life Science, Graduate School (Brain Korea 21 Program), Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)], E-mail: pjkim@gnu.ac.kr

2009-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels  

SciTech Connect (OSTI)

This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a path forward to utilize both fossil and alternative liquid fuels in the same combustion system. In particular, experiments show that straight VO can be cleanly combusted without the need for chemical processing or preheating steps, which can result in significant economic and environmental benefits. Next, low-emission combustion of glycerol/methane was achieved by utilizing FB injector to yield fine droplets of highly viscous glycerol. Heat released from methane combustion further improves glycerol pre-vaporization and thus its clean combustion. Methane addition results in an intensified reaction zone with locally high temperatures near the injector exit. Reduction in methane flow rate elongates the reaction zone, which leads to higher CO emissions and lower NOx emissions. Similarly, higher air to liquid (ALR) mass ratio improves atomization and fuel pre-vaporization and shifts the flame closer to the injector exit. In spite of these internal variations, all fuel mixes of glycerol with methane produced similar CO and NOx emissions at the combustor exit. Results show that FB concept provides low emissions with the flexibility to utilize gaseous and highly viscous liquid fuels, straight VO and glycerol, without preheating or preprocessing the fuels. Following these initial experiments in quartz combustor, we demonstrated that glycerol combustion can be stably sustained in a metal combustor. Phase Doppler Particle Analyzer (PDPA) measurements in glycerol/methane flames resulted in flow-weighted Sauter Mean Diameter (SMD) of 35 to 40 ?m, depending upon the methane percentage. This study verified that lab-scale dual-fuel burner using FB injector can successfully atomize and combust glycerol and presumably other highly viscous liquid fuels at relatively low HRR (<10 kW). For industrial applications, a scaled-up glycerol burner design thus seemed feasible.

Agrawal, Ajay; Taylor, Robert

2013-09-30T23:59:59.000Z

122

Public/private sector cooperation to promote industrial energy efficiency: Allied partners and the US Department of Energy  

SciTech Connect (OSTI)

Since 1996, the US Department of Energy's Office of Industrial Technologies (USDOE) has been involved in a unique voluntary collaboration with industry called the Allied Partner program. Initially developed under the Motor Challenge program, the partnership concept continues as a central element of USDOE's BestPractices, which in 2001 integrated all of USDOE's near-term industrial program offerings including those in motors, compressed air, pump, fan, process heating and steam systems. Partnerships are sought with end use industrial companies as well as equipment suppliers and manufacturers, utilities, consultants, and state agencies that have extensive existing relationships with industrial customers. Partners are neither paid nor charged a fee for participation. Since the inception of Allied Partners, the assumption has been that these relationships could serve as the foundation for conveying a system energy-efficiency message to many more industrial facilities than could be reached through a typical government-to-end-user program model. An independent evaluation of the Motor Challenge program, reported at the last EEMODS conference, attributed US $16.9 million or nearly 67 percent of the total annual program energy savings to the efforts of Allied Partners in the first three years of operation. A recent evaluation of the Compressed Air Challenger, which grew out of the former Motor Challenger program, attribute additional energy savings from compressed air training alone at US $12.1 million per year. Since the reorganization under BestPractices, the Allied Partner program has been reshaped to extend the impact of all BestPractices program activities. This new model is more ambitious than the former Motor Challenge program concerning the level of collaborative activities negotiated with Allied Partners. This paper describes in detail two new types of program initiatives involving Allied Partners: Qualified Specialist Training and Energy Events. The Qualified Specialist activity was conceived as a way of engaging the supply side of industry, consultants, and utilities to greatly increase use of decision making software developed by USDOE to assist industrial facilities in assessing the energy efficiency of their energy-using systems. To date, USDOE has launched Qualified Specialist training with member companies of the Hydraulic Institute (HI) and with distributors and consultants associated with the Compressed Air Challenge. These activities train and qualify industry professionals to use and to train customers to use USDOE's Pumping System Assessment Tool (PSAT) and AIRMaster + software programs, respectively. The industry experts provide a public benefit by greatly increasing customer access to the software and assessment techniques. Participating Specialists anticipate a business benefit by providing a valuable service to key customers that is associated with USDOE. The Energy Event concept was developed in 2001 in cooperation with the California Energy Commission in response to the state's energy crisis and has been extended to other geographic areas during 2002. The three California events, named ''Energy Solutions for California Industry,'' relied on Allied Partners to provide system-based solutions to industrial companies as both speakers and exhibitors. These one-day events developed a model for a serious solutions-oriented format that avoids the typical trade show atmosphere through strict exhibitor guidelines, careful screening of speaker topics, and reliance on case studies to illustrate cost- and energy-saving opportunities from applying a systems approach. Future plans to use this activity model are discussed as well as lessons learned from the California series.

McKane, Aimee; Cockrill, Chris; Tutterow, Vestal; Radspieler, Anthony

2003-05-18T23:59:59.000Z

123

Energy efficiency and carbon dioxide emissions reduction opportunities in the U.S. cement industry  

E-Print Network [OSTI]

Table 2. Energy Consumption, Carbon Emissions Coefficients,and Carbon Emissions from Energy Consumption, and CarbonEnergy – Related Carbon Emissions Fuel Energy Use Carbon (

Martin, Nathan; Worrell, Ernst; Price, Lynn

1999-01-01T23:59:59.000Z

124

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces  

E-Print Network [OSTI]

7 Subsectoral CO2 Emissions at the National7 Subsectoral CO2 Emissions at the ProvincialResults Subsectoral CO2 Emissions at the National Level In

Lu, Hongyou

2013-01-01T23:59:59.000Z

125

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network [OSTI]

industry or plants could benefit from new technologies such as cold storagecold storage and space cooling systems technology has. The electricity use in these industriesindustries may also be able to take advan- tage of TES; however, the technology of integrating cold storage

Akbari, H.

2008-01-01T23:59:59.000Z

126

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Cement Industry  

E-Print Network [OSTI]

Model Inputs Emissions Factors CO2 Emission factor for grid tonne CO2/MWh)  CO2 Emission factor for fuel  (tonne CO2/TJ)Improvements and CO2 Emission Reduction Potentials in the

Morrow III, William R.

2014-01-01T23:59:59.000Z

127

Impacts of emission reduction policies in a multi-regional multi-sectoral small open economy with  

E-Print Network [OSTI]

to an increasingly constraining environmental policy driving up the ratio price of permits to price of energy is higher. Given an environmental policy that increases the price of energy (through an energy tax policy in the energy intensive sector. We show that such a property does not necessarily hold

Nesterov, Yurii

128

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network [OSTI]

sector. The electricity sector is disaggregated into fivefuel is used in the electricity sector, the industry sector,Electricity and CHP Sector ..

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

129

20th-Century Industrial Black Carbon Emissions Altered Arctic Climate Forcing Joseph R. McConnell,  

E-Print Network [OSTI]

in ice cores indicate that sources and concentrations of BC in Greenland precipitation varied greatly, industrial emissions resulted in a seven-fold increase in ice core BC concentrations with most change to 1910, estimated surface climate forcing in early summer from BC in Arctic snow was about 3 W m­2

Saltzman, Eric

130

Modeling of shippingModeling of shipping NONOxx emissions in globalemissions in global GeertGeert VinkenVinken11,, FolkertFolkert BoersmaBoersma22, and Daniel J. Jacob, and Daniel J. Jacob33  

E-Print Network [OSTI]

) emissions 5-7% of global sulfur dioxide (SO2) emissions 3-4% of global carbon dioxide (CO2) emissions ShipModeling of shippingModeling of shipping NONOxx emissions in globalemissions in global CTMs 70% of the ship emissions occur within 400 km of land Only industrial sector not regulated under

Haak, Hein

131

Operational energy consumption and GHG emissions in residential sector in urban China : an empirical study in Jinan  

E-Print Network [OSTI]

Driven by rapid urbanization and increasing household incomes, residential energy consumption in urban China has been growing steadily in the past decade, posing critical energy and greenhouse gas emission challenges. ...

Zhang, Jiyang, M.C.P. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

132

Automobile Fuel; Economy and CO2 Emissions in Industrialized Countries: Troubling Trends through 2005/6  

E-Print Network [OSTI]

Energy Savings and CO2 Emissions Implications. J. ofcommitment to reduce CO2 emissions from new passenger carsACEA’s Commitment on CO2 Emission Reductions from Passenger

Schipper, Lee

2008-01-01T23:59:59.000Z

133

Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry  

E-Print Network [OSTI]

2050 China Energy and CO2 Emissions Report. Science Press,Energy Savings and CO2 Emissions Reduction of China’s CementEnergy Savings and CO2 Emissions Reduction of China’s Cement

Ke, Jing

2013-01-01T23:59:59.000Z

134

Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry  

E-Print Network [OSTI]

Energy Savings and CO2 Emissions Reduction of China’s CementEnergy Savings and CO2 Emissions Reduction of China’s Cementenergy savings and CO2 emission reduction potentials are

Ke, Jing

2013-01-01T23:59:59.000Z

135

Energy use and carbon dioxide emissions in energy-intensive industries in key developing countries  

E-Print Network [OSTI]

Steel Industry in India,” Ironmaking and Steelmaking, 23(4):and Future Trends,” Ironmaking and Steelmaking World Energymanufacturing industries. Ironmaking. During the ironmaking

Price, Lynn; Worrell, Ernst; Phylipsen, Dian

1999-01-01T23:59:59.000Z

136

Industry  

E-Print Network [OSTI]

of its electricity requirements in the USA (US DOE, 2002)USA, where motor-driven systems account for 63% of industrial electricity

Bernstein, Lenny

2008-01-01T23:59:59.000Z

137

Industry  

E-Print Network [OSTI]

Emission reduction at Engen refinery in South Durban. Paperenergy consumed in refineries and other energy conversionCement Membrane separation Refinery gas Natural gas Bio-

Bernstein, Lenny

2008-01-01T23:59:59.000Z

138

Industry  

E-Print Network [OSTI]

of world production and typically uses 60–70% less energy (world steel production, finding potential CO 2 emission reductions due to energy

Bernstein, Lenny

2008-01-01T23:59:59.000Z

139

Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry  

E-Print Network [OSTI]

dioxide (CO2) emissions from fossil fuel combustion, as wellCO2 emissions (including cement process and fossil fuel combustion

Ke, Jing

2013-01-01T23:59:59.000Z

140

Production, Energy, and Carbon Emissions: A Data Profile of the Iron and Steel Industry  

Reports and Publications (EIA)

Energy-related carbon emissions in manufacturing analysis and issues related to the energy use, energy efficiency, and carbon emission indicators.

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Automobile Fuel; Economy and CO2 Emissions in Industrialized Countries: Troubling Trends through 2005/6  

E-Print Network [OSTI]

s Commitment on CO2 Emission Reductions from Passenger Cars.is a small extra reduction in CO2 emissions per km due to a

Schipper, Lee

2008-01-01T23:59:59.000Z

142

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network [OSTI]

agreements, to undertake energy audits, develop energyplatforms, provided energy audits, and provided financialmembers to undertake an energy audit and set energy or

Price, Lynn

2010-01-01T23:59:59.000Z

143

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network [OSTI]

Copenhagen: DEC. Danish Energy Agency (DEA). 2000. Greennergy_management.pdf Danish Energy Agency (DEA). 2005. Greenagreements with the Danish Energy Agency, representing 60%

Price, Lynn

2010-01-01T23:59:59.000Z

144

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network [OSTI]

while 20% integrated with ISO 9001 and OHSAS 18001; ? Mostquality management system (ISO 9001). This explained in part

Price, Lynn

2010-01-01T23:59:59.000Z

145

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network [OSTI]

2009). In 2008, energy-efficient design, HVAC, refrigerationprocedures for energy- efficient design, monitoring and

Price, Lynn

2010-01-01T23:59:59.000Z

146

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network [OSTI]

of a flue gas condenser with a steam boiler. ? Improvedsteam dryers by gas ? Dryers and filtration equipment ? Applied CHP ? Purchased flue gas condensers ?

Price, Lynn

2010-01-01T23:59:59.000Z

147

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network [OSTI]

TPER) includes total energy consumption and energy used inrepresented 52% of the total energy consumption of the LIEN.of 2 to 4% of total energy consumption per agreement after

Price, Lynn

2010-01-01T23:59:59.000Z

148

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network [OSTI]

thermal output in combined heat and power (CHP) plants. 2workshop on Combined Heat and Power; a heating, ventilation,motors, fans, combined heat and power systems, and variable

Price, Lynn

2010-01-01T23:59:59.000Z

149

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network [OSTI]

opportunities; an Energy Awareness Workshop to demonstrateof technologies and measures. Energy awareness campaigns andof energy consumption, technical information and awareness

Price, Lynn

2010-01-01T23:59:59.000Z

150

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network [OSTI]

R. , 2000. The UK Energy Efficiency Best Practice http://through the Energy Efficiency Best Practices Program whichinternational best practice in terms of energy efficiency

Price, Lynn

2010-01-01T23:59:59.000Z

151

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network [OSTI]

rates from the electricity sector to assumed values inrates from the electricity sector to assumed values intend to underestimate electricity sector emissions, and it

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

152

Industry  

E-Print Network [OSTI]

options for combined heat and power in Canada. Office ofpolicies to promote combined heat and power in US industry.with fuel inputs in combined heat and power plants being

Bernstein, Lenny

2008-01-01T23:59:59.000Z

153

Industry  

E-Print Network [OSTI]

EJ of primary energy, 40% of the global total of 227 EJ. Bytotal energy use by industry and on the fraction of electricity use consumed by motor driven systems was taken as representative of global

Bernstein, Lenny

2008-01-01T23:59:59.000Z

154

Industry  

E-Print Network [OSTI]

and fuel used in the primary smelter. PFC emission includedto current state-of-the art smelter electricity use and 50%commonly been connected to smelter retrofit, conversion, or

Bernstein, Lenny

2008-01-01T23:59:59.000Z

155

Industry  

E-Print Network [OSTI]

both emis- sions from incineration and the demand for fossilyr (Okazaki et al. , 2004). Incineration of wastes (e.g. ,by reducing emissions from incineration and the demand for

Bernstein, Lenny

2008-01-01T23:59:59.000Z

156

Ultra-High Efficiency and Low-Emissions Combustion Technology for Manufacturing Industries  

SciTech Connect (OSTI)

The purpose of this research was to develop and test a transformational combustion technology for high temperature furnaces to reduce the energy intensity and carbon footprint of U.S. manufacturing industries such as steel, aluminum, glass, metal casting, and petroleum refining. A new technology based on internal and/or external Flue Gas Recirculation (FGR) along with significant enhancement in flame radiation was developed. It produces "Radiative Flameless Combustion (RFC)" and offers tremendous energy efficiency and pollutant reduction benefits over and above the now popular "flameless combustion." It will reduce the energy intensity (or fuel consumption per unit system output) by more than 50% and double the furnace productivity while significantly reducing pollutants and greenhouse gas emissions (10^3 times reduction in NOx and 10 times reduction in CO & hydrocarbons and 3 times reduction in CO2). Product quality improvements are also expected due to uniform radiation, as well as, reduction in scale/dross formation is expected because of non-oxidative atmosphere. RFC is inexpensive, easy to implement, and it was successfully tested in a laboratory-scale furnace at the University of Michigan during the course of this work. A first-ever theory with gas and particulate radiation was also developed. Numerical programs were also written to design an industrial-scale furnace. Nine papers were published (or are in the process of publication). We believe that this early stage research adequately proves the concept through laboratory experiments, modeling and computational models. All this work is presented in the published papers. Important conclusions of this work are: (1) It was proved through experimental measurements that RFC is not only feasible but a very beneficial technology. (2) Theoretical analysis of RFC was done in (a) spatially uniform strain field and (b) a planar momentum jet where the strain rate is neither prescribed nor uniform. Four important non-dimensional parameters controlling RFC in furnaces were identified. These are: (i) The Boltzmann number; (ii) The Damkohler number, (iii) The dimensionless Arrhenius number, and (iv) The equivalence ratio. Together they define the parameter space where RFC is possible. It was also found that the Damkohler number must be small for RFC to exist and that the Boltzmann number expands the RFC domain. The experimental data obtained during the course of this work agrees well with the predictions made by the theoretical analysis. Interestingly, the equivalence ratio dependence shows that it is easier to establish RFC for rich mixtures than for lean mixtures. This was also experimentally observed. Identifying the parameter space for RFC is necessary for controlling the RFC furnace operation. It is hoped that future work will enable the methodology developed here to be applied to the operation of real furnaces, with consequent improvement in efficiency and pollutant reduction. To reiterate, the new furnace combustion technology developed enables intense radiation from combustion products and has many benefits: (i) Ultra-High Efficiency and Low-Emissions; (ii) Uniform and intense radiation to substantially increase productivity; (iii) Oxygen-free atmosphere to reduce dross/scale formation; (iv) Provides multi-fuel capability; and (v) Enables carbon sequestration if pure oxygen is used for combustion.

Atreya, Arvind

2013-04-15T23:59:59.000Z

157

Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry  

E-Print Network [OSTI]

way of reducing total energy consumption and CO2 emissions.deducted from the total energy consumption to avoid double-However, total energy consumption and CO2 emissions will

Ke, Jing

2013-01-01T23:59:59.000Z

158

Practical guide: Tools and methodologies for an oil and gas industry emission inventory  

SciTech Connect (OSTI)

During the preparation of Title V Permit applications, the quantification and speciation of emission sources from oil and gas facilities were reevaluated to determine the {open_quotes}potential-to-emit.{close_quotes} The existing emissions were primarily based on EPA emission factors such as AP-42, for tanks, combustion sources, and fugitive emissions from component leaks. Emissions from insignificant activities and routine operations that are associated with maintenance, startups and shutdowns, and releases to control devices also required quantification. To reconcile EPA emission factors with test data, process knowledge, and manufacturer`s data, a careful review of other estimation options was performed. This paper represents the results of this analysis of emission sources at oil and gas facilities, including exploration and production, compressor stations and gas plants.

Thompson, C.C. [C-K Associates, Inc., Baton Rouge, LA (United States); Killian, T.L. [Conoco, Inc., Houston, TX (United States)

1996-12-31T23:59:59.000Z

159

Industrial process data and estimating potential to emit (PTE): The effects of process chemistry on PTE and the emissions inventory  

SciTech Connect (OSTI)

Title V of the Clean Air Act Amendments of 1990 (Title V) requires facilities to perform an inventory of their air pollutant emissions to determine if a Title V air permit is required. Facilities emitting air pollutants below applicable Title V thresholds (i.e., particulates, oxides of sulfur (SO{sub x}), oxides of nitrogen (NO{sub x}), carbon monoxide, ozone, volatile organic compounds (VOCs), lead, and hazardous air pollutants (HAPs)) still must show proof to the regulatory agencies that the Title V permitting requirements do not apply. Recently, the authors have performed several emissions inventories for some large industrial facilities in New York State with up to 250 air emissions sources. As a result, they have identified several reoccurring process/chemistry data issues that have impacted the estimation of PTE, the current New York State (NYS) point source permit compliance, and the potential Title V application status. Although there are many training courses that focus on how environmental managers should perform a comprehensive facility air emissions inventory and should prepare Title V applications, these courses generally assume that all emission source data are readily available. However, to the authors` knowledge, no one has communicated key process/chemistry issues and obstacles encountered in completing emissions inventories at large facilities or recommended potential solutions. The authors will highlight their experience with reoccurring facility emission data and data management shortfalls found during the performance of several large facility inventories. This includes their findings of apparently systemic loose practices, procedures, data management, and utilization of process data and chemistry for estimation of potential emissions needed for Title V compliance.

Najjar, R.C.; Podsiadlo, K. [URS Greiner, Inc., Buffalo, NY (United States)

1997-12-31T23:59:59.000Z

160

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors  

E-Print Network [OSTI]

of which: CHP ele generation Residential Nonspecified (OtherOther Services (CHP heat Fuel use) Residential End Use (non-Residential Nonspecified (Other Sector) NEW Office (CHP heat

de la Rue du Can, Stephane

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry  

E-Print Network [OSTI]

report of cement industry waste heat power generation. ChinaWorrell et al. , 2001). Waste heat recovery (WHR) poweradoption and utilization of waste heat recovery (WHR) power

Ke, Jing

2013-01-01T23:59:59.000Z

162

Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry  

E-Print Network [OSTI]

goal to reduce its carbon intensity (CO2 emissions per unitmeet the national carbon intensity reduction target, China’sthe leakage issue of carbon intensity targets with trade

Ke, Jing

2013-01-01T23:59:59.000Z

163

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces  

E-Print Network [OSTI]

Conversion Factors methodology as well as conversion factors used for the CO 2related emissions. Conversion Factors This study uses the

Lu, Hongyou

2013-01-01T23:59:59.000Z

164

Greenhouse Gas Emission Reduction in the ENERGY STAR Commercial, Industrial and Residential Sectors. An Example of How the Refinery Industry is Capitalizing on ENERGY STAR  

E-Print Network [OSTI]

infrastructures. EPA - Region 6's ENERGY STAR and Green Building Program assistance has led to some unique solutions and the beginning workups for the integrated expansion of effort to support State Implementation Plans in new innovative voluntary approaches...

Patrick, K.

2008-01-01T23:59:59.000Z

165

Use of continuous emission monitoring in the electric utility industry. Paper 81. 48. 3  

SciTech Connect (OSTI)

Steam electric generating plants are subject to continuous monitoring regulations. Reliable emission data are recorded to be reported to regulatory agencies. The continuous monitor is being used as a diagnostic tool for optimizing operation of control equipment also. Monitored data identify the magnitude, duration, and time of any emissions exceeding compliance standards so that corrective actions may be taken.

Van Gieson, J.

1981-01-01T23:59:59.000Z

166

Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)  

E-Print Network [OSTI]

Plans Organization and Implementation of Energy ConservationIndustrial Energy Conservation Investment Funding 3.Case Studies of Energy Conservation Investments by Industry

Zhiping, L.

2010-01-01T23:59:59.000Z

167

The Role of the Sellafield Ltd Centres of Expertise in Engaging with the Science, Environment and Technology Supply Chain and University Sector to Support Site Operations and Decommissioning in the UK Nuclear Industry - 13018  

SciTech Connect (OSTI)

The development and maintenance of the broad range of the highly technical skills required for safe and successful management of nuclear sites is of vital importance during routine operations, decommissioning and waste treatment activities.. In order to maintain a core team of technical experts, across all of the disciplines required for these tasks, the approach which has been taken by the Sellafield Ltd has been the formation of twenty five Centres of Expertise (CoE), each covering key aspects of the technical skills required for nuclear site operations. Links with the Specialist University Departments: The CoE leads are also responsible for establishing formal links with university departments with specialist skills and facilities relevant to their CoE areas. The objective of these links is to allow these very specialist capabilities within the university sector to be more effectively utilized by the nuclear industry, which benefits both sectors. In addition to the utilization of specialist skills, the university links are providing an important introduction to the nuclear industry for students and researchers. This is designed to develop the pipeline of potential staff, who will be required in the future by both the academic and industrial sectors. (authors)

Butcher, Ed [Uranium and Reactive Metals Centre of Expertise Lead, Technical Directorate, Sellafield Ltd, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)] [Uranium and Reactive Metals Centre of Expertise Lead, Technical Directorate, Sellafield Ltd, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom); Connor, Donna [Technical Capability Manager, Technical Directorate, Sellafield Ltd, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)] [Technical Capability Manager, Technical Directorate, Sellafield Ltd, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom); Keighley, Debbie [Head of Profession, Technical Directorate, Sellafield Ltd, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)] [Head of Profession, Technical Directorate, Sellafield Ltd, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)

2013-07-01T23:59:59.000Z

168

Energy and complex industrial systems environmental emissions data reporting and acquisition  

SciTech Connect (OSTI)

The Joint International Atomic Energy Agency (IAEA), UNEP and WHO Project on Assessing and Managing Health and Environmental risks from Energy and Other Complex Technologies intends to complile emissions data for mportant energy systems and other complex technologies from a wide variety of countries. To facilitate data generation and compilation, this report: outlines data reporting protocols; identifies potential information sources; demonstrates how to estimate coefficients; presents some compiled US emission coefficients or criteria air pollutants for some energy process; and, compares national air emission standards for electricity generating plants in OECD member countries. 27 refs., 2 fis., 1 tabs.

Moskowitz, P.D.; Hamilton, L.D.

1987-07-01T23:59:59.000Z

169

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors  

E-Print Network [OSTI]

Losses CHP, Commercial Power CHP, Electric Power CHP, Industrial Power Electric Generators, Utilities

de la Rue du Can, Stephane

2014-01-01T23:59:59.000Z

170

The effect of variability in industrial emissions on ozone formation in Houston, Texas  

E-Print Network [OSTI]

Ambient observations have indicated that high concentrations of ozone observed in the Houston/Galveston area are associated with plumes of highly reactive hydrocarbons, mixed with NOx, from industrial facilities. Ambient ...

Webster, Mort David

2007-01-01T23:59:59.000Z

171

Forecasting and Capturing Emission Reductions Using Industrial Energy Management and Reporting Systems  

E-Print Network [OSTI]

The Mandatory 2010 Green House Gas (GHG) Reporting Regulations and pending climate change legislation has increased interest in Energy Management and Reporting Systems (EMRS) as a means of both reducing and reporting GHG emissions. This paper...

Robinson, J.

2010-01-01T23:59:59.000Z

172

32,000 than that found in the emissions from the industrial powerhouse burning  

E-Print Network [OSTI]

of chlorinated dibenzo-p- dioxins in emissions from refuse and chemical waste incinerators (2, 16) should airborne and waterborne particulates which con- tain chlorinated dioxins." B. J. KIMBLE Laboratory

Fairbanks, Richard G.

173

Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the US pulp and paper industry  

SciTech Connect (OSTI)

The pulp and paper industry accounts for over 12% of total manufacturing energy use in the US (US EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the US This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then the cost-effective energy savings potential in case B increases to 22%.

Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

2000-07-01T23:59:59.000Z

174

Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the U.S. pulp and paper industry  

SciTech Connect (OSTI)

The pulp and paper industry accounts for over 12% of total manufacturing energy use in the U.S. (U.S. EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the U.S. This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then the cost-effective energy savings potential in case B increases to 22%.

Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

2000-07-01T23:59:59.000Z

175

Inventory of China's Energy-Related CO2 Emissions in 2008  

E-Print Network [OSTI]

China’s 2008 Thermal Electricity Sector CO 2 Emissions byheat. Share of thermal electricity sector’s CO 2 emissionsheat. Share of thermal electricity sector’s CO 2 emissions

Fridley, David

2011-01-01T23:59:59.000Z

176

Coal Industry Annual 1995  

SciTech Connect (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

NONE

1996-10-01T23:59:59.000Z

177

Coal industry annual 1996  

SciTech Connect (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

NONE

1997-11-01T23:59:59.000Z

178

Climate policy and the airline industry : emissions trading and renewable jet fuel  

E-Print Network [OSTI]

In this thesis, I assess the impact of the current EU Emissions Trading Scheme and a hypothetical renewable jet fuel mandate on US airlines. I find that both the EU Scheme up until 2020 and a renewable jet fuel mandate of ...

McConnachie, D. (Dominic Alistair)

2012-01-01T23:59:59.000Z

179

The technology path to deep greenhouse gas emissions cuts by 2050: The pivotal role of electricity  

E-Print Network [OSTI]

consumption (EJ) Primary energy consumption and emissions,Total all sectors Primary energy consumption and emissions,

Williams, J.H.

2013-01-01T23:59:59.000Z

180

Global Climate Change and the Unique Challenges Posed by the Transportation Sector  

SciTech Connect (OSTI)

Addressing the challenges posed by global climate change will eventually require the active participation of all industrial sectors and consumers on the planet. To date, however, most efforts to address climate change have focused on only a few sectors of the economy (e.g., refineries and fossil-fired electric power plants) and a handful of large industrialized nations. While useful as a starting point, these efforts must be expanded to include other sectors of the economy and other nations. The transportation sector presents some unique challenges, with its nearly exclusive dependence on petroleum based products as a fuel source coupled with internal combustion engines as the prime mover. Reducing carbon emissions from transportation systems is unlikely to be solely accomplished by traditional climate mitigation policies that place a price on carbon. Our research shows that price signals alone are unlikely to fundamentally alter the demand for energy services or to transform the way energy services are provided in the transportation sector. We believe that a technological revolution will be necessary to accomplish the significant reduction of greenhouse gas emissions from the transportation sector.

Dooley, J.J.; Geffen, C.A.; Edmonds, J.A.

2002-08-26T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Greenhouse gas performance standards: From each according to his emission intensity or from each according to his emissions?  

E-Print Network [OSTI]

regard to emissions, electricity sector contributes aboutthe exception of the electricity sector. With respect tofor Electricity, Pipelines and Organic chemicals sectors but

Rajagopal, Deepak

2013-01-01T23:59:59.000Z

182

Energy use and sulphur dioxide emissions in Asia  

SciTech Connect (OSTI)

This paper presents a review of energy use in 22 selected countries of Asia and estimates the anthropogenic emission of sulphur dioxide (SO{sub 2}) for the selected countries, both at national and disaggregated sub-country-regional levels. The paper also makes a comparative assessment of the Asian countries in terms of SO{sub 2} emission intensity (i.e. emission per GDP), emission per capita and emission density (i.e. emission per unit area). Total SO{sub 2} emission in the region was estimated to be about 38 million tons in 1990 Five countries, China, India, South Korea, Japan and Thailand, accounted for over 91% of the regional SO{sub 2} emission. Coal use had the dominant share (81%) of the total emission from the region. Among the economic sectors, industry contributed the largest share (49%) to the total emissions of the selected countries as a whole, followed by the power sector (30%). These findings suggest the need for mitigation strategies focussed on the industry and power sectors of the major emitting countries in Asia. 20 refs., 10 tabs.

Shrestha, R.M.; Bhattacharya, S.C.; Malla, S. [Asian Inst. of Technology, Bangkok (Thailand)] [Asian Inst. of Technology, Bangkok (Thailand)

1996-04-01T23:59:59.000Z

183

China's Pathways to Achieving 40percent 45percent Reduction in CO2 Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential  

E-Print Network [OSTI]

Generation Growth Demand Side Management Industrial Sectortechnology and demand side management. For electricity

Zheng, Nina

2013-01-01T23:59:59.000Z

184

Global Climate Change and the Transportation Sector: An Update on Issues and Mitigation Options  

SciTech Connect (OSTI)

It is clear from numerous energy/economic modeling exercises that addressing the challenges posed by global climate change will eventually require the active participation of all industrial sectors and all consumers on the planet. Yet, these and similar modeling exercises indicate that large stationary CO2 point sources (e.g., refineries and fossil-fired electric power plants) are often the first targets considered for serious CO2 emissions mitigation. Without participation of all sectors of the global economy, however, the challenges of climate change mitigation will not be met. Because of its operating characteristics, price structure, dependence on virtually one energy source (oil), enormous installed infrastructure, and limited technology alternatives, at least in the near-term, the transportation sector will likely represent a particularly difficult challenge for CO2 emissions mitigation. Our research shows that climate change induced price signals (i.e., putting a price on carbon that is emitted to the atmosphere) are in the near term insufficient to drive fundamental shifts in demand for energy services or to transform the way these services are provided in the transportation sector. We believe that a technological revolution will be necessary to accomplish the significant reduction of greenhouse gas emissions from the transportation sector. This paper presents an update of ongoing research into a variety of technological options that exist for decarbonizing the transportation sector and the various tradeoffs among them.

Geffen, CA; Dooley, JJ; Kim, SH

2003-08-24T23:59:59.000Z

185

Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)  

E-Print Network [OSTI]

emissions recovery, and district heating projects. The mostSEC Strengthen management work in urban district heating.Expanding district heating management systems, open up new

Zhiping, L.

2010-01-01T23:59:59.000Z

186

China's Energy and Carbon Emissions Outlook to 2050  

E-Print Network [OSTI]

Coal Generation Shares Demand Reduction from EE CIS Emissions Powercoal and electricity in demand sectors, and the decarbonization of the power sector. Under AIS, annual emissions

Zhou, Nan

2011-01-01T23:59:59.000Z

187

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China  

E-Print Network [OSTI]

Efficiency Improvement and CO2 Emission Reduction Potentialsand Its Impact on CO2 Emission," Iron & Steel, 2010, 45(5):Emissions Factors CO2 Emission factor for grid electricity (

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

188

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Iron and Steel Industry  

E-Print Network [OSTI]

Efficiency Improvement and CO2 Emission Reduction PotentialsModel Inputs Emissions Factors CO2 Emission factor for grid electricity (tonne CO2/MWh)  CO2 Emission factor for fuel (

Morrow III, William R.

2014-01-01T23:59:59.000Z

189

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China  

E-Print Network [OSTI]

Improvement and CO2 Emission Reduction Potentials in theElectricity Saving and CO2 Emission Reduction in the Iron

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

190

Coupled Physical/Chemical and Biofiltration Technologies to Reduce Air Emissions from Forest Products Industries  

SciTech Connect (OSTI)

The research is a laboratory and bench-scale investigation of a system to concentrate and destroy volatile organic compounds (VOCs), including hazardous air pollutants, formed from the drying of wood and the manufacture of wood board products (e.g., particle board and oriented strandboard). The approach that was investigated involved concentrating the dilute VOCs (<500 ppmv) with a physical/chemical adsorption unit, followed by the treatment of the concentrated voc stream (2,000 to 2,500 ppmv) with a biofiltration unit. The research program lasted three years, and involved three research organizations. Michigan Technological University was the primary recipient of the financial assistance, the USDA Forest Products Laboratory (FPL) and Mississippi State University (MSU) were subcontractors to MTU. The ultimate objective of this research was to develop a pilot-scale demonstration of the technology with sufficient data to provide for the design of an industrial system. No commercialization activities were included in this project.

Gary D. McGinnis

2001-12-31T23:59:59.000Z

191

Coal industry annual 1993  

SciTech Connect (OSTI)

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

192

An Assessment of carbon reduction technology opportunities in the petroleum refining industry.  

SciTech Connect (OSTI)

The refining industry is a major source of CO{sub 2} emissions in the industrial sector and therefore in the future can expect to face increasing pressures to reduce emission levels. The energy used in refining is impacted by market dictates, crude quality, and environmental regulations. While the industry is technologically advanced and relatively efficient opportunities nevertheless exist to reduce energy usage and CO{sub 2} emissions. The opportunities will vary from refinery to refinery and will necessarily have to be economically viable and compatible with each refiner's strategic plans. Recognizing the many factors involved, a target of 15-20% reduction in CO{sub 2} emissions from the refining sector does not appear to be unreasonable, assuming a favorable investment climate.

Petrick, M.

1998-09-14T23:59:59.000Z

193

China's Pathways to Achieving 40percent 45percent Reduction in CO2 Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential  

E-Print Network [OSTI]

CO2 Emissions (Mt CO2) % of Installed Capacity Decarbonization (Fuel Switching) & Coal Tech Switching Demand Reduction

Zheng, Nina

2013-01-01T23:59:59.000Z

194

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China  

E-Print Network [OSTI]

Potentials in the Iron and steel Industry in China. Reportfor the U.S. Iron and Steel Industry. An ENERGY STAR Guidebusiness/industry/Iron_Steel_Guide.pdf Worrell, E. Ramesohl,

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

195

International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs  

E-Print Network [OSTI]

Affairs (DEFRA), 2005. UK Emissions Trading Scheme. http://targets through the UK Emissions Trading Scheme. 6 Table 1is to be adjusted for emissions trading. The reports must be

Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

2008-01-01T23:59:59.000Z

196

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Iron and Steel Industry  

E-Print Network [OSTI]

Improvement and CO2 Emission Reduction Potentials in theUS $/GJ- saved) CO2 Emissions Reduction (Mt CO 2 ) CCF RankUS$/GJ- saved) CO2 Emissions Reduction (Mt CO 2 ) * The

Morrow III, William R.

2014-01-01T23:59:59.000Z

197

Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity  

SciTech Connect (OSTI)

In November 2012, the Joint Institute for Strategic Energy Analysis (JISEA) released a new report, 'Natural Gas and the Transformation of the U.S. Energy Sector: Electricity.' The study provides a new methodological approach to estimate natural gas related greenhouse gas (GHG) emissions, tracks trends in regulatory and voluntary industry practices, and explores various electricity futures. The Executive Summary provides key findings, insights, data, and figures from this major study.

Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

2013-01-01T23:59:59.000Z

198

Implications of changing natural gas prices in the United States electricity sector for SO2, NOX and life cycle GHG emissions: Supplementary Information  

E-Print Network [OSTI]

/MJ = 59 kg CO2 e/MWh Combustion emissions at natural gas plant A in ERCOT: 500 kg CO2 e/MWh Annual = 59 kg CO2 e/MWh / 40% = 148 kg CO2 e/MWh Combustion emissions per MWh = 500 kg CO2 e/MWh Life cycle-level combustion emissions at fossil fuel plants in ERCOT, MISO and PJM. The red lines represent median values

Jaramillo, Paulina

199

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Consumption XLS Table 17. Renewable Energy Consumption by Sector and Source XLS Table 18. Carbon Dioxide Emissions by Sector and Source - United States XLS Table 18.1. Carbon...

200

Industrial Energy Efficiency: Designing Effective State Programs...  

Office of Environmental Management (EM)

State Programs for the Industrial Sector This report provides state regulators, utilities, and other program administrators an overview of the spectrum of U.S. industrial...

Note: This page contains sample records for the topic "industrial sector emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Technologies and Policies to Improve Energy Efficiency in Industry  

SciTech Connect (OSTI)

The industrial sector consumes nearly 40% of annual global primary energy use and is responsible for a similar share of global energy-related carbon dioxide (CO2) emissions. Many studies and actual experience indicate that there is considerable potential to reduce the amount of energy used to manufacture most commodities, concurrently reducing CO2 emissions. With the support of strong policies and programs, energy-efficient technologies and measures can be implemented that will reduce global CO2 emissions. A number of countries, including the Netherlands, the UK, and China, have experience implementing aggressive programs to improve energy efficiency and reduce related CO2 emissions from industry. Even so, there is no silver bullet and all options must be pursued if greenhouse gas emissions are to be constrained to the level required to avoid significant negative impacts from global climate change.

Price, Lynn; Price, Lynn

2008-03-01T23:59:59.000Z

202

China Energy and Emissions Paths to 2030  

SciTech Connect (OSTI)

After over two decades of staggering economic growth and soaring energy demand, China has started taking serious actions to reduce its economic energy and carbon intensity by setting short and medium-term intensity reduction targets, renewable generation targets and various supporting policies and programs. In better understanding how further policies and actions can be taken to shape China's future energy and emissions trajectory, it is important to first identify where the largest opportunities for efficiency gains and emission reduction lie from sectoral and end-use perspectives. Besides contextualizing China's progress towards reaching the highest possible efficiency levels through the adoption of the most advanced technologies from a bottom-up perspective, the actual economic costs and benefits of adopting efficiency measures are also assessed in this study. This study presents two modeling methodologies that evaluate both the technical and economic potential of raising China's efficiency levels to the technical maximum across sectors and the subsequent carbon and energy emission implications through 2030. The technical savings potential by efficiency measure and remaining gap for improvements are identified by comparing a reference scenario in which China continues the current pace of with a Max Tech scenario in which the highest technically feasible efficiencies and advanced technologies are adopted irrespective of costs. In addition, from an economic perspective, a cost analysis of selected measures in the key industries of cement and iron and steel help quantify the actual costs and benefits of achieving the highest efficiency levels through the development of cost of conserved energy curves for the sectors. The results of this study show that total annual energy savings potential of over one billion tonne of coal equivalent exists beyond the expected reference pathway under Max Tech pathway in 2030. CO2 emissions will also peak earlier under Max Tech, though the 2020s is a likely turning point for both emission trajectories. Both emission pathways must meet all announced and planned policies, targets and non-fossil generation targets, or an even wider efficiency gap will exist. The savings potential under Max Tech varies by sector, but the industrial sector appears to hold the largest energy savings and emission reduction potential. The primary source of savings is from electricity rather than fuel, and electricity savings are magnified by power sector decarbonization through increasing renewable generation and coal generation efficiency improvement. In order to achieve the maximum energy savings and emission reduction potential, efficiency improvements and technology switching must be undertaken across demand sectors as well as in the growing power sector. From an economic perspective, the cost of conserved energy analysis indicates that nearly all measures for the iron and steel and cement industry are cost-effective. All 23 efficiency measures analyzed for the cement industry are cost-effective, with combined CO2 emission reduction potential of 448 Mt CO2. All of the electricity savings measures in the iron and steel industry are cost-effective, but the cost-effective savings potential for fuel savings measures is slightly lower than total technical savings potential. The total potential savings from these measures confirm the magnitude of savings in the scenario models, and illustrate the remaining efficiency gap in the cement and iron and steel industries.

Fridley, David; Zheng, Nina; Zhou, Nan; Ke, Jing; Hasanbeigi, Ali; Morrow, Bill; Price, Lynn

2011-01-14T23:59:59.000Z

203

Carbon Emissions: Chemicals Industry  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,64397 272 522 542Peru (Million

204

Carbon Emissions: Paper Industry  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,64397 272 522 542Peru (MillionFoodPaper

205

Industrial policy and the Indian electronics industry  

E-Print Network [OSTI]

Recently, production within India's Electronics sector amounted to a low $12 billion when compared to the global output of $1400 billion. The slow growth in the local industry is often judged to be the result of late ...

Love, Robert (Robert Eric)

2008-01-01T23:59:59.000Z

206

Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications  

SciTech Connect (OSTI)

Air Products is carrying out a scope of work under DOE Award No. DE-FE0012065 “Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications.” The Statement of Project Objectives (SOPO) includes a Task 4f in which a Decision Point shall be reached, necessitating a review of Tasks 2-5 with an emphasis on Task 4f. This Topical Report constitutes the Decision Point Application pertaining to Task 4f. The SOPO under DOE Award No. DE-FE0012065 is aimed at furthering the development of the Ion Transport Membrane (ITM) Oxygen production process toward a demonstration scale facility known as the Oxygen Development Facility (ODF). It is anticipated that the completion of the current SOPO will advance the technology significantly along a pathway towards enabling the design and construction of the ODF. Development progress on several fronts is critical before an ODF project can commence; this Topical Report serves as an early update on the progress in critical development areas. Progress was made under all tasks, including Materials Development, Ceramic Processing Development, Engineering Development, and Performance Testing. Under Task 4f, Air Products carried out a cost and performance study in which several process design and cost parameters were varied and assessed with a process model and budgetary costing exercise. The results show that the major variables include ceramic module reliability, ITM operating temperature, module production yield, and heat addition strategy. High-temperature compact heat exchangers are shown to contribute significant cost benefits, while directly firing into the feed stream to an ITM are even a mild improvement on the high-temperature recuperation approach. Based on the findings to-date, Air Products recommends no changes to the content or emphasis in the current SOPO and recommends its completion prior to another formal assessment of these factors.

Armstrong, Phillip

2014-11-01T23:59:59.000Z

207

Industrial sector energy conservation programs in the People`s Republic of China during the seventh five-year plan (1986--1990)  

SciTech Connect (OSTI)

The impetus at the national level to invest in energy conservation is quite strong and has long been reflected not only in official pronouncements, but also in the investments and organizational activities of the Chinese government. In the early 1980s the central government began a program of direct investments in industrial energy conservation that continues to the present. In addition, concurrently established governmental and quasi-governmental agencies have pursued conservation through administrative and educational measures. In Section 2 of this paper the authors outline the policies and institutions that supported China`s program of energy conservation investments in the Sixth and Seventh Five-Year Plans (FYPs) (1981--1985 and 1986--1990). In Section 3 they describe examples of the types of conservation projects pursued in four industrial subsectors: ferrous metals manufacturing; non-ferrous metals mining and manufacturing; chemicals manufacturing; and building materials manufacturing. Section 4 presents a simple methodology for comparing the costs of energy conservation to those of energy supply. Further discussion points out the applicability and limitations of this methodology to State Planning Commission published statistical material on the overall results of energy conservation investments. Though problematic, such analysis indicates that energy conservation investments were probably substantially cheaper than investments in equivalent energy supply would have been. They end with a discussion of some of the difficulties encountered in carrying out the conservation investment programs.

Liu Zhiping [State Planning Commission, Beijing (China). Energy Research Inst.; Sinton, J.E.; Yang Fuqiang; Levine, M.D.; Ting, M.K. [Lawrence Berkeley Lab., CA (United States)

1994-09-01T23:59:59.000Z

208

CO sub 2 emissions from developing countries: Better understanding the role of energy in the long term  

SciTech Connect (OSTI)

This study examines energy use and carbon emissions in the developing world. Based on analyses of present energy-use patterns in 17 developing nations, this study presents high emissions and low emissions scenarios for these nations in the year 2025. These nations combined account for two thirds of the energy-related carbon emissions presently generated in the developing world. The analysis reveals that energy demand expands dramatically by 2025 and grows increasingly carbon intensive. In the high emissions scenario, carbon emissions from these countries increase four-fold. The greatest share of carbon stems from the industrial sector in 2025, followed by the transport and residential sectors. With the implementation of policies aimed at reducing CO{sub 2} emissions, the low emissions scenario reduces the level of carbon in 2025 by 20 percent relative to the high emissions scenario figure. These nations achieve 80 percent of the carbon reductions by improving the efficiency of energy production and use and the remaining 20 percent by implementing fuel-switching measures. Of all the sectors examined, the industrial sector offers the greatest opportunity for absolute carbon savings (39 percent of the total). This summary is volume one of five volumes.

Sathaye, J.; Ketoff, A.

1991-02-01T23:59:59.000Z

209

Risk assessment for the Waste Technologies Industries (WTI) Hazardous Waste Incineration Facility (East Liverpool, Ohio). Volume 3. Characterization of the nature and magnitude of emissions  

SciTech Connect (OSTI)

Contents: Introduction; Data Used in Characterizing Emissions; Incinerator Stack Emissions; Fugitive Emissions; Uncertainty in Emissions Characterization; and References.

NONE

1997-05-01T23:59:59.000Z

210

High Penetration of Renewable Energy in the Transportation Sector: Scenarios, Barriers, and Enablers; Preprint  

SciTech Connect (OSTI)

Transportation accounts for 71% of U.S. petroleum use and 33% of its greenhouse gases emissions. Pathways toward reduced greenhouse gas emissions and petroleum dependence in the transportation sector have been analyzed in considerable detail, but with some limitations. To add to this knowledge, the U.S. Department of Energy has launched a study focused on underexplored greenhouse-gas-abatement and oil-savings opportunities related to transportation. This Transportation Energy Futures study analyzes specific issues and associated key questions to strengthen the existing knowledge base and help cultivate partnerships among federal agencies, state and local governments, and industry.

Vimmerstedt, L.; Brown, A.; Heath, G.; Mai, T.; Ruth, M.; Melaina, M.; Simpkins, T.; Steward, D.; Warner, E.; Bertram, K.; Plotkin, S.; Patel, D.; Stephens, T.; Vyas, A.

2012-06-01T23:59:59.000Z

211

Land Transport Sector in Bangladesh: An Analysis Toward Motivating...  

Open Energy Info (EERE)

Bangladesh: An Analysis Toward Motivating GHG Emission Reduction Strategies Jump to: navigation, search Name Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG...

212

Regional Power Sector Integration: Lessons from Global Case Studies...  

Open Energy Info (EERE)

Appropriate regional institutions Technical and regulatory harmonization Power sector reform and integration The role of donor agencies Reducing emissions through RPSI RPSI and...

213

Industry Supply Chain Development (Ohio)  

Broader source: Energy.gov [DOE]

Supply Chain Development programs are focused on targeted industries that have significant growth opportunities for Ohio's existing manufacturing sector from emerging energy resources and...

214

WHAT TO EXPECT FROM SECTORAL TRADING: A US-CHINA EXAMPLE  

E-Print Network [OSTI]

and increases electricity generation. Keywords: Climate; sectoral agreements; emissions trading; carbon leakage an Emissions Trading Scheme, international negotiations aim to foster wider agreements, particularly

215

Ris-R-1203(EN) The Feasibility of Domestic CO2 Emissions  

E-Print Network [OSTI]

feasible in Poland. However, a pilot emissions trading system in the power and Combined Heat and Power (CHP focus on power and heat generation as well as energy intensive industries. Such an approach was found system could be introduced in the professional power and heat sector. Here, awareness concerning

216

Research Projects in Industrial Technology.  

SciTech Connect (OSTI)

The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

United States. Bonneville Power Administration. Industrial Technology Section.

1990-06-01T23:59:59.000Z

217

A Multi-Model Analysis of the Regional and Sectoral Roles of Bioenergy in Near- and Long-Term CO2 Emissions  

SciTech Connect (OSTI)

We study the near term and the longer term the contribution of bioenergy in different LIMITS scenarios as modeled by the participating models in the LIMITS project. With These scenarios have proven useful for exploring a range of outcomes for bioenergy use in response to both regionally diverse near term policies and the transition to a longer-term global mitigation policy and target. The use of several models has provided a source of heterogeneity in terms of incorporating uncertain assumptions about future socioeconomics and technology, as well as different paradigms for how the world may respond to policies. The results have also highlighted the heterogeneity and versatility of bioenergy itself, with different types of resources and applications in several energy sectors. In large part due to this versatility, the contribution of bioenergy to climate mitigation is a robust response across all models, despite their differences.

Calvin, Katherine V.; Wise, Marshall A.; Klein, David; McCollum, David; Tavoni, Massimo; van der Zwaan, Bob; Van Vuuren, Detlef

2013-11-01T23:59:59.000Z

218

International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs  

E-Print Network [OSTI]

of industrial primary energy consumption in The Netherlands.included total primary energy consumption for twelve typeswas converted into primary energy consumption and the energy

Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

2008-01-01T23:59:59.000Z

219

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Cement Industry in China  

E-Print Network [OSTI]

Wang, L. , 2008. Alternative fuel using and waste materialPolicy Research on Alternative Fuels for Cement Industry inis very little use of alternative fuels (defined as waste

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

220

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Cement Industry in China  

E-Print Network [OSTI]

for Improving Energy Efficiency, Reducing Pollution andSummer Study on Energy Efficiency in Industry. Washington,R. N. , 1994, “The energy-efficiency gap: What does it

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

China's Energy and Carbon Emissions Outlook to 2050  

E-Print Network [OSTI]

Figure 62 Transport CO2 Emission Reduction under AIS by Fuel57 Figure 67 AIS Power Sector CO2 Emissions Reduction by67 AIS Power Sector CO2 Emissions Reduction by Source Energy

Zhou, Nan

2011-01-01T23:59:59.000Z

222

Energy End-Use Flow Maps for the Buildings Sector  

SciTech Connect (OSTI)

Graphical presentations of energy flows are widely used within the industrial sector to depict energy production and use. PNNL developed two energy flow maps, one each for the residential and commercial buildings sectors, in response to a need for a clear, concise, graphical depiction of the flows of energy from source to end-use in the building sector.

Belzer, David B.

2006-12-04T23:59:59.000Z

223

Detailed Modeling of Industrial Energy Use and Greenhouse Gas Emissions in an Integrated Assessment Model of Long-term Global Change  

E-Print Network [OSTI]

in the manufacturing sector, about 26% is electricity, 58% is natural gas, 10% is coal (excluding coal coke and breeze) and the remainder is from liquid fuels. 1 AdaptedfromTableE6.4. EndUsesofFuelConsumption,1998(URL: ftp://ftp.eia.doe.gov/pub/consumption/industry/d98...FuelConsumptionbyEnd-UseforallMECSIndustries,1998,trillionBTU Electricity Liquid Fuels Natural Gas Coal (excluding Coal Cokeand Breeze) Total BoilerFuel 29 308 2,538 770 3,645 ProcessHeating 363 185 3,187 331 4,066 ProcessCoolingand Refrigeration 209 2 22 233 MachineDrive 1,881 25 99 7 2...

Sinha, P.; Wise, M.; Smith, S.

2006-01-01T23:59:59.000Z

224

Sectoral trends in global energy use and greenhouse gasemissions  

SciTech Connect (OSTI)

In 2000, the Intergovernmental Panel on Climate Change (IPCC) published a new set of baseline greenhouse gas (GHG) emissions scenarios in the Special Report on Emissions Scenarios (SRES) (Nakicenovic et al., 2000). The SRES team defined four narrative storylines (A1, A2, B1 and B2) describing the relationships between the forces driving GHG and aerosol emissions and their evolution during the 21st century. The SRES reports emissions for each of these storylines by type of GHG and by fuel type to 2100 globally and for four world regions (OECD countries as of 1990, countries undergoing economic reform, developing countries in Asia, rest of world). Specific assumptions about the quantification of scenario drivers, such as population and economic growth, technological change, resource availability, land-use changes, and local and regional environmental policies, are also provided. End-use sector-level results for buildings, industry, or transportation or information regarding adoption of particular technologies and policies are not provided in the SRES. The goal of this report is to provide more detailed information on the SRES scenarios at the end use level including historical time series data and a decomposition of energy consumption to understand the forecast implications in terms of end use efficiency to 2030. This report focuses on the A1 (A1B) and B2 marker scenarios since they represent distinctly contrasting futures. The A1 storyline describes a future of very rapid economic growth, low population growth, and the rapid introduction of new and more efficient technologies. Major underlying themes are convergence among regions, capacity building, and increased cultural and social interactions, with a substantial reduction in regional differences in per capita income. The B2 storyline describes a world with an emphasis on economic, social, and environmental sustainability, especially at the local and regional levels. It is a world with moderate population growth, intermediate levels of economic development, and less rapid and more diverse technological change (Nakicenovic et al., 2000). Data were obtained from the SRES modeling teams that provide more detail than that reported in the SRES. For the A1 marker scenario, the modeling team provided final energy demand and carbon dioxide (CO{sub 2}) emissions by fuel for industry, buildings, and transportation for nine world regions. Final energy use and CO{sub 2} emissions for three sectors (industry, transport, buildings) for the four SRES world regions were provided for the B2 marker scenario. This report describes the results of a disaggregation of the SRES projected energy use and energy-related CO{sub 2} emissions for the industrial, transport, and buildings sectors for 10 world regions (see Appendix 1) to 2030. An example of further disaggregation of the two SRES scenarios for the residential buildings sector in China is provided, illustrating how such aggregate scenarios can be interpreted at the end use level.

Price, Lynn; de la Rue du Can, Stephane; Sinton, Jonathan; Worrell, Ernst; Zhou, Nan; Sathaye, Jayant; Levine, Mark

2006-07-24T23:59:59.000Z

225

RESULTS FROM THE U.S. DOE 2006 SAVE ENERGY NOW ASSESSMENT INITIATIVE: DOE's Partnership with U.S. Industry to Reduce Energy Consumption, Energy Costs, and Carbon Dioxide Emissions  

SciTech Connect (OSTI)

In the wake of Hurricane Katrina and other severe storms in 2005, natural gas supplies were restricted, prices rose, and industry sought ways to reduce its natural gas use and costs. In October 2005, U.S. Department of Energy (DOE) Energy Secretary Bodman launched his Easy Ways to Save Energy campaign with a promise to provide energy assessments to 200 of the largest U.S. manufacturing plants. A major thrust of the campaign was to ensure that the nation's natural gas supplies would be adequate for all Americans, especially during home heating seasons. In a presentation to the National Press Club on October 3, 2005, Secretary Bodman said: 'America's businesses, factories, and manufacturing facilities use massive amounts of energy. To help them during this period of tightening supply and rising costs, our Department is sending teams of qualified efficiency experts to 200 of the nation's most energy-intensive factories. Our Energy Saving Teams will work with on-site managers on ways to conserve energy and use it more efficiently.' DOE's Industrial Technologies Program (ITP) responded to the Secretary's campaign with its Save Energy Now initiative, featuring a new and highly cost-effective form of energy assessments. The approach for these assessments drew heavily on the existing resources of ITP's Technology Delivery component. Over the years, ITP-Technology Delivery had worked with industry partners to assemble a suite of respected software decision tools, proven assessment protocols, training curricula, certified experts, and strong partnerships for deployment. Because of the program's earlier activities and the resources that had been developed, ITP was prepared to respond swiftly and effectively to the sudden need to promote improved industrial energy efficiency. Because of anticipated supply issues in the natural gas sector, the Save Energy Now initiative strategically focused on natural gas savings and targeted the nation's largest manufacturing plants--those that consume a total of 1 trillion British thermal units (Btu) or more annually. The approximately 6800 U.S. facilities that fall into this category collectively account for about 53% of all energy consumed by industry in the United States. The 2006 Save Energy Now energy assessments departed from earlier DOE plant assessments by concentrating solely on steam and process heating systems, which are estimated to account for approximately 74% of all natural gas use for manufacturing. The assessments also integrated a strong training component designed to teach industrial plant personnel how to use DOE's steam or process heating opportunity assessment software tools. This approach had the advantages of promoting strong buy-in of plant personnel for the assessment and its outcomes and preparing them better to independently replicate the assessment process at the company's other facilities. The Save Energy Now initiative also included provisions to help plants that applied for but did not qualify for assessments (based on the 1 trillion Btu criterion). Services offered to these plants included (1) an assessment by one of DOE's 26 university-based Industrial Assessment Centers (IACs), (2) a telephone consultation with a systems expert at the DOE's Energy Efficiency and Renewable Energy Information Center, or (3) other technical materials and services available through ITP (e.g., the Save Energy Now CD). By the end of 2006, DOE had completed all 200 of the promised assessments, identifying potential natural gas savings of more than 50 trillion Btu and energy cost savings of about $500 million. These savings, if fully implemented, could reduce CO2 emissions by 4.04 million metric tons annually. These results, along with the fact that a large percentage of U.S. energy is used by a relatively small number of very large plants, clearly suggest that assessments are an expedient and cost-effective way to significantly affect large amounts of energy use. Building on the success of the 2006 initiative, ITP has expanded the effort in 2007 with the goal of conducting 250 more asse

Wright, Anthony L [ORNL; Martin, Michaela A [ORNL; Gemmer, Bob [U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; Scheihing, Paul [U.S. Department of Energy, Industrial Technologies Program; Quinn, James [U.S. Department of Energy

2007-09-01T23:59:59.000Z

226

CO{sub 2} emissions from developing countries: Better understanding the role of energy in the long term. Volume 1, Summary: Revision  

SciTech Connect (OSTI)

This study examines energy use and carbon emissions in the developing world. Based on analyses of present energy-use patterns in 17 developing nations, this study presents high emissions and low emissions scenarios for these nations in the year 2025. These nations combined account for two thirds of the energy-related carbon emissions presently generated in the developing world. The analysis reveals that energy demand expands dramatically by 2025 and grows increasingly carbon intensive. In the high emissions scenario, carbon emissions from these countries increase four-fold. The greatest share of carbon stems from the industrial sector in 2025, followed by the transport and residential sectors. With the implementation of policies aimed at reducing CO{sub 2} emissions, the low emissions scenario reduces the level of carbon in 2025 by 20 percent relative to the high emissions scenario figure. These nations achieve 80 percent of the carbon reductions by improving the efficiency of energy production and use and the remaining 20 percent by implementing fuel-switching measures. Of all the sectors examined, the industrial sector offers the greatest opportunity for absolute carbon savings (39 percent of the total). This summary is volume one of five volumes.

Sathaye, J.; Ketoff, A.

1991-02-01T23:59:59.000Z

227

Canada's Voluntary Industrial Energy Conservation Program  

E-Print Network [OSTI]

Industrial Energy Conservation in Canada is organized and promoted through a voluntary program that is administered by industry. Industry is divided into fifteen sectors, each of which is represented by a Voluntary Task Force. Information exchange...

Wolf, C. A., Jr.

1980-01-01T23:59:59.000Z

228

Proposed Final Opinion on GHG Strategies in the Energy Sectors  

E-Print Network [OSTI]

1 Proposed Final Opinion on GHG Strategies in the Energy Sectors Key Findings and Recommendations;3 Background and Context Energy Commission and PUC developing recommendations to ARB for reducing GHG emissions multi-sector cap-and-trade program for GHG emissions allowances #12;5 September 2008 Interim Opinion

229

Climate Policies and the Power Sector: Challenges and Issues  

E-Print Network [OSTI]

of renewable energy e.g., renewable portfolio standard or RPS are also expected to play an important role the power sector and other energy-intensive sectors. Implementation of CO2 emissions policies the need to design policies offering compa- nies incentives for emissions reduction. Climate policies

Tseng, Chung-Li

230

World population growth, industrialization, energy demand, and environmental goals are presently driving rapid global change in emissions with complex conse-  

E-Print Network [OSTI]

395 World population growth, industrialization, energy demand, and environmental goals the average transport time is 2­3 weeks (Liu and Mauzerall 2005). Circumpolar trans- port of pollution around

Mauzerall, Denise

231

World population growth, industrialization, energy demand, and environmental goals are presently driving rapid global change in emissions with complex conse-  

E-Print Network [OSTI]

377 World population growth, industrialization, energy demand, and environmental goals the average transport time is 2­3 weeks (Liu and Mauzerall 2005). Circumpolar trans- port of pollution around

Mauzerall, Denise

232

Review of concurrent mass emission and opacity measurements for coal-burning utility and industrial boilers. Final report Aug 79-Feb 80  

SciTech Connect (OSTI)

The report gives results of concurrent particulate emissions and opacity measurements based on visual observations and/or in-stack transmissometry for more than 400 compliance, acceptance, or experimental tests on coal-fired utility and industrial boilers. The sampling, which includes a capacity range of a few to several hundred megawatts and typical firing methods (pulverized, stoker, and cyclone), in most cases reflects flyash control by electrostatic precipitation, although filters or mechanical collectors were used at a few installations. All opacity measurements were standardized to their equivalent values for a 4 m (13.0 ft) diameter stack before being compared with their corresponding particulate emissions, the latter expressed as actual grams per cubic meter. No discernible correlations applicable to all sources were observed, although some modest (but apparently significant) correlations were noted on an individual source basis. Report findings were sufficiently encouraging to warrant further analyses relating to in-stack transmissometer measurements.

Brennan, R.J.; Dennis, R.; Roeck, D.R.

1980-03-01T23:59:59.000Z

233

Trace gas and particle emissions from domestic and industrial biofuel use and garbage burning in central Mexico  

E-Print Network [OSTI]

In central Mexico during the spring of 2007 we measured the initial emissions of 12 gases and the aerosol speciation for elemental and organic carbon (EC, OC), anhydrosugars, Cl?, NO[subscript 3]?, and 20 metals from 10 ...

Christian, T. J.

234

Energy Savings in Industrial Buildings  

E-Print Network [OSTI]

The industrial sector accounts for more than one-third of total energy use in the United States and emits 28.7 percent of the country’s greenhouse gases. Energy use in the industrial sector is largely for steam and process heating systems...

Zhou, A.; Tutterow, V.; Harris, J.

235

A new challenge for the energy efficiency evaluation community: energy savings and emissions reductions from urban transportation policies  

E-Print Network [OSTI]

programs for industries, residential and commercial sectors. But now the largest share of the energyA new challenge for the energy efficiency evaluation community: energy savings and emissions de Nantes, France Abstract The energy efficiency evaluation community has a large experience about

Boyer, Edmond

236

Industry Alliance Industry Alliance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century October, 2010...

237

National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers; Guidance for Calculating Emission Credits Resulting from Implementation of Energy Conservation Measures  

SciTech Connect (OSTI)

The purpose of this document is to provide guidance for developing a consistent approach to documenting efficiency credits generated from energy conservation measures in the Implementation Plan for boilers covered by the Boiler MACT rule (i.e., subpart DDDDD of CFR part 63). This document divides Boiler System conservation opportunities into four functional areas: 1) the boiler itself, 2) the condensate recovery system, 3) the distribution system, and 4) the end uses of the steam. This document provides technical information for documenting emissions credits proposed in the Implementation Plan for functional areas 2) though 4). This document does not include efficiency improvements related to the Boiler tune-ups.

Cox, Daryl [ORNL; Papar, Riyaz [Hudson Technologies; Wright, Dr. Anthony [ALW Consulting

2012-07-01T23:59:59.000Z

238

International industrial sector energy efficiency policies  

E-Print Network [OSTI]

company and the Danish Energy Agency (Ezban et al. , 1994;company and the Danish Energy Agency. The agreements, whichagreements with the Danish Energy Agency, representing 45%

Price, Lynn; Worrell, Ernst

2000-01-01T23:59:59.000Z

239

Quality of Power in the Industrial Sector  

E-Print Network [OSTI]

and assistance to upgrade the quality of power into the plant. Even though studies have shown only 20% of the problems identified are actually utility generated it is the responsibility of the utility to help the customer isolate and solve the problem.... The motto of the Oklahoma Gas and Electric Quality of Power program is "If a customer perceives he has a problem, we have a problem." The commitment has been made to assist the customer until he is satis fied the problem is in fact solved. INTRODUCTION...

Marchbanks, G. J.

240

China's industrial sector in an international context  

E-Print Network [OSTI]

steam reforming plants consume 30 to 31 GJ/tonne, and recent estimates for energy use for ammonia production

Price, Lynn; Worrell, Ernst; Martin, Nathan; Lehman, Bryan; Sinton, Jonathan

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Industry Sector Case Study Building Technologies Division  

E-Print Network [OSTI]

's remote location far away from any infrastructure, planning focused on making it as self and its control components. If needed, the system is backed up by a combined heat and power (CHP) plant might be used up, necessitating a switch to LP gas, a scarce resource at this remote location. Desigo

Fischlin, Andreas

242

The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry  

SciTech Connect (OSTI)

For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-05-01T23:59:59.000Z

243

Abstract--The profound change in the electric industry worldwide in the last twenty years assigns an increasing  

E-Print Network [OSTI]

Value. I. INTRODUCTION He reformed electric industry scheme sets the transmission sector at the center

Catholic University of Chile (Universidad Católica de Chile)

244

202-328-5000 www.rff.orgSector Effects of the Shale Gas Revolution in the United States  

E-Print Network [OSTI]

This paper reviews the impact of the shale gas revolution on the sectors of electricity generation, transportation, and manufacturing in the United States. Natural gas is being substituted for other fuels, particularly coal, in electricity generation, resulting in lower greenhouse gas emissions from this sector. The use of natural gas in the transportation sector is currently negligible but is projected to increase with investments in refueling infrastructure and natural gas vehicle technologies. Petrochemical and other manufacturing industries have responded to lower natural gas prices by investing in domestically located manufacturing projects. This paper also speculates on the impact of a possible shale gas boom in China. Key Words: shale gas, electricity, transportation, and manufacturing JEL Classification Numbers: L71, L9, Q4 © 2013 Resources for the Future. All rights reserved. No portion of this paper may be reproduced without permission of the authors. Discussion papers are research materials circulated by their authors for purposes of information and discussion.

245

The Contribution of Services and other Sectors to Australian Productivity Growth 1980-2004  

E-Print Network [OSTI]

The Contribution of Services and other Sectors to Australian Productivity Growth 1980-2004 A Report pointers to the Australian literature on sectoral productivity growth. Finally, we would like to thank ................................................................................................................................6 Labour Productivity: Macroeconomic Trends and Industry Patterns

de Gispert, Adrià

246

Climate change adaptation in the U.S. electric utility sector  

E-Print Network [OSTI]

The electric utility sector has been a focus of policy efforts to reduce greenhouse gas emissions, but even if these efforts are successful, the sector will need to adapt to the impacts of climate change. These are likely ...

Higbee, Melissa (Melissa Aura)

2013-01-01T23:59:59.000Z

247

ANALYSIS OF MEASURES FOR REDUCING TRANSPORTATION SECTOR GREENHOUSE GAS  

E-Print Network [OSTI]

(CO2) emission reduction estimates were obtained for each of the measures. The package of measures the problem of reducing greenhouse gas (GHG) emissions from the Canadian transportation sector. Reductions-makers will require estimates of both the potential emission reductions and the costs or benefits associated

248

The development of Comprehensive Community NOx Emissions Reduction Toolkit (CCNERT)  

E-Print Network [OSTI]

from the Texas Comptroller of Public Accounts Database ........................ 75 Figure 4-14: Procedure for Cross-Checking the Industrial Sector?s Energy Use Estimation with the Actual Energy Use..................................................................................................................... 152 Figure 5-12: The Commercial Sector?s Energy Use.................................................................... 155 Figure 5-13: Comparison of Baseline Model with Actual Consumption in the Commercial Sector...

Sung, Yong Hoon

2004-11-15T23:59:59.000Z

249

NEMS industrial module documentation report  

SciTech Connect (OSTI)

The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2010) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of output of industrial activity. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

Not Available

1994-01-01T23:59:59.000Z

250

2008 Industrial Technologies Market Report, May 2009  

SciTech Connect (OSTI)

The industrial sector is a critical component of the U.S. economy, providing an array of consumer, transportation, and national defense-related goods we rely on every day. Unlike many other economic sectors, however, the industrial sector must compete globally for raw materials, production, and sales. Though our homes, stores, hospitals, and vehicles are located within our borders, elements of our goods-producing industries could potentially be moved offshore. Keeping U.S. industry competitive is essential to maintaining and growing the U.S. economy. This report begins with an overview of trends in industrial sector energy use. The next section of the report focuses on some of the largest and most energy-intensive industrial subsectors. The report also highlights several emerging technologies that could transform key segments of industry. Finally, the report presents policies, incentives, and drivers that can influence the competitiveness of U.S. industrial firms.

Energetics; DOE

2009-07-01T23:59:59.000Z

251

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network [OSTI]

industry’s share of global primary energy use declined toused 91 EJ of primary energy, 40% of the global total of 227eq/yr. Global and sectoral data on final energy use, primary

Worrell, Ernst

2009-01-01T23:59:59.000Z

252

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

vehicles. dDoes not include lease, plant, and pipeline fuel. eNatural gas consumed in the residential and commercial sectors. f Includes consumption for industrial combined heat...

253

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

cDoes not includes lease, plant, and pipeline fuel. dNatural gas consumed in the residential and commercial sectors. eIncludes consumption for industrial combined heat and...

254

Energy intensity in China's iron and steel sector  

E-Print Network [OSTI]

In this study, I examine the spatial and economic factors that influence energy intensity in China's iron and steel sector, namely industrial value added, renovation investment, coke consumption, and local coke supply. ...

Xu, Jingsi, M.C.P. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

255

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

only 19 percent from 2011 to 2040 in the AEO2013 Reference case. The continued decline in energy intensity of the industrial sector is explained in part by a shift in the share of...

256

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Natural Gas Industrial and electric power sectors lead U.S. growth in natural gas consumption figure data U.S. total natural gas consumption grows from 24.4 trillion cubic feet in...

257

Environmental Protection- Industrial Compliance (Newfoundland and Labrador, Canada)  

Broader source: Energy.gov [DOE]

The Industrial Compliance Section develops and administers Certificates of Approval for the Construction and/or Operation of various industrial facilities. Industries with air emissions and/or...

258

Sectoral targets for developing countries: Combining "Common but differentiated responsibilities"  

E-Print Network [OSTI]

, as also is the impact on the electricity price. Keywords Sectoral approach, sectoral target, developing-type absolute commitments, whilst developing countries adopt an emission trading system limited to electricity are auctioned by the government, which distributes its revenues lump-sum to households. In a second scenario

Paris-Sud XI, Université de

259

Table 3. Top Five Retailers of Electricity, with End Use Sectors...  

U.S. Energy Information Administration (EIA) Indexed Site

of Provider","All Sectors","Residential","Commercial","Industrial","Transportation" 1,"Green Mountain Power Corp","Investor-Owned",2477751,835602,896610,745539,0 2,"Central...

260

E-Print Network 3.0 - annular sector cascade Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear industries where two-phase mixtures coexist. In the petroleum sector, gas... of inclination, and holdup were used as input. The output layer was consisted of slug,...

Note: This page contains sample records for the topic "industrial sector emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Industrial Use of Infrared Inspections  

E-Print Network [OSTI]

Infrared is and has been an established technology in the military and aerospace fields. However, only relatively recently has this technology found a "use" in the industrial sector. Many reasons exist why the technology has not been used...

Duch, A. A.

1979-01-01T23:59:59.000Z

262

Deregulating and regulatory reform in the U.S. electric power sector  

E-Print Network [OSTI]

This paper discusses the evolution of wholesale and retail competition in the U.S electricity sector and associated industry restructuring and regulatory reforms. It begins with a discussion of the industry structure and ...

Joskow, Paul L.

2000-01-01T23:59:59.000Z

263

Reducing Emissions Through Sustainable Transport: Proposal for...  

Open Energy Info (EERE)

Through Sustainable Transport: Proposal for a Sectoral Approach Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Reducing Emissions Through Sustainable Transport:...

264

Delivered Energy Consumption Projections by Industry in the Annual Energy Outlook 2002  

Reports and Publications (EIA)

This paper presents delivered energy consumption and intensity projections for the industries included in the industrial sector of the National Energy Modeling System.

2002-01-01T23:59:59.000Z

265

Electrotechnologies and Industrial Pollution Control  

E-Print Network [OSTI]

The role of electrotechnologies in the control of emissions and effluents from industrial processes is discussed. Matrices are presented identifying those electrotechnologies which impact pollution in various industries. Specific examples...

Schmidt, P. S.

266

Texas Industries of the Future  

E-Print Network [OSTI]

The purpose of the Texas Industries of the Future program is to facilitate the development, demonstration and adoption of advanced technologies and adoption of best practices that reduce industrial energy usage, emissions, and associated costs...

Ferland, K.

267

Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development  

SciTech Connect (OSTI)

The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

National Energy Technology Laboratory

2002-07-31T23:59:59.000Z

268

Development of an energy conservation voluntary agreement pilot project in the steel sector in Shandong  

SciTech Connect (OSTI)

China faces a significant challenge in the years ahead to continue to provide essential materials and products for a rapidly-growing economy while addressing pressing environmental concerns. Energy is a fundamental element of the national economy and the conditions of its use have a direct impact on China's ability to reach its sustainable development goals. China's industrial sector, which accounts for over 70 percent of the nation's total energy consumption each year, provides materials such as steel and cement that build the nation's roads, bridges, homes, offices and other buildings. Industrial products include bicycles, cars, buses, trains, ships, office equipment, appliances, furniture, packaging, pharmaceuticals, and many other components of everyday life in an increasingly modern society. This vital production of materials and products, however, comes with considerable problems. China's industrial sector is heavily dependent on the country's abundant, yet polluting, coal resources. Industrial production locally pollutes the air with emissions of particulates, carbon monoxide, sulfur dioxide, and nitrogen oxides, uses scarce water and oil resources, emits greenhouse gases contributing to the warming global atmosphere, and often produces hazardous and polluting wastes. Fostering innovative approaches to reduce the use of polluting energy resources and to diminish pollution from industrial production that are tailored to China's emerging market-based economy is one of the most important challenges facing the nation today. The pressures of rapid industrial production growth, continued environmental degradation, and increased competition create a situation that calls for a strategically-planned evolution of China's industries into world-class production facilities that are competitive, energy-efficient and less polluting. Such a transition requires the complete commitment of industrial enterprises and the government to work together to transform the industrial facilities of China. Internationally, such a transformation of the industrial sector has been realized in a number of countries using an innovative policy mechanism called Voluntary Agreements. Voluntary Agreements are essentially a contract between the government and industry, or negotiated targets with commitments and time schedules on the part of all participating parties. These agreements typically have a long-term outlook, covering a period of five to ten years, so that strategic energy-efficiency investments can be planned and implemented. A key element of Voluntary Agreements is that they focus the attention of all actors on energy efficiency or emission reduction goals. Internationally, Voluntary Agreements have been shown to result in increased energy efficiency, with the more successful programs even doubling autonomous energy efficiency improvement rates. In addition, Voluntary Agreements have important longer-term impacts including changes of attitudes and awareness of manage rial and technical staff regarding energy efficiency, addressing barriers to technology adoption and innovation, creating market transformation to establish greater potential for sustainable energy-efficiency investments, promoting positive dynamic interactions between different actors involved in technology research and development, deployment, and market development, and facilitating cooperative arrangements that provide learning mechanisms within an industry. The essential steps for reaching a Voluntary Agreement are the assessment of the energy-efficiency potential of the participants as well as target-setting through a negotiated process. Participation by industries is motivated through the use of carrots and sticks, which refers to incentives and disincentives. Supporting programs and policies (the carrots), such as enterprise audits, assessments, benchmarking, monitoring, information dissemination, and financial incentives all play an important role in assisting the participants in meeting the target goals. Some of the more successful Voluntary Agreement programs are base

Price, Lynn; Yun, Jiang; Worrell, Ernst; Wenwei, Du; Sinton, Jonathan E.

2004-02-05T23:59:59.000Z

269

SCENARIOS FOR MEETING CALIFORNIA'S 2050 CLIMATE GOALS California's Carbon Challenge Phase II Volume I: Non-Electricity Sectors and Overall Scenario Results  

SciTech Connect (OSTI)

This study provides an updated analysis of long-term energy system scenarios for California consistent with the State meeting its 2050 climate goal, including detailed analysis and assessment of electricity system build-out, operation, and costs across the Western Electricity Coordinating Council (WECC) region. Four key elements are found to be critical for the State to achieve its 2050 goal of 80 percent greenhouse (GHG) reductions from the 1990 level: aggressive energy efficiency; clean electricity; widespread electrification of passenger vehicles, building heating, and industry heating; and large-scale production of low-carbon footprint biofuels to largely replace petroleum-based liquid fuels. The approach taken here is that technically achievable energy efficiency measures are assumed to be achieved by 2050 and aggregated with the other key elements mentioned above to estimate resultant emissions in 2050. The energy and non-energy sectors are each assumed to have the objective of meeting an 80 percent reduction from their respective 1990 GHG levels for the purposes of analysis. A different partitioning of energy and non-energy sector GHG greenhouse reductions is allowed if emission reductions in one sector are more economic or technically achievable than in the other. Similarly, within the energy or non-energy sectors, greater or less than 80 percent reduction from 1990 is allowed for sub-sectors within the energy or non-energy sectors as long as the overall target is achieved. Overall emissions for the key economy-wide scenarios are considered in this report. All scenarios are compliant or nearly compliant with the 2050 goal. This finding suggests that multiple technical pathways exist to achieve the target with aggressive policy support and continued technology development of largely existing technologies.

Wei, Max; Greenblatt, Jeffrey; Donovan, Sally; Nelson, James; Mileva, Ana; Johnston, Josiah; Kammen, Daniel

2014-06-01T23:59:59.000Z

270

Carbon Emissions: Petroleum Refining Industry  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,64397 272 522 542Peru

271

Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector  

SciTech Connect (OSTI)

The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’s and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are represented, in addition to the extensive data compiled from recent studies on bottom-up representation of efficiency measures for the sector. We also defined various mitigation scenarios including long-term production trends to project country-specific production, energy use, trading, carbon emissions, and costs of mitigation. Such analyses can provide useful information to assist policy-makers when considering and shaping future emissions mitigation strategies and policies. The technical objective is to analyze the costs of production and CO{sub 2} emission reduction in the U.S, China, and India’s iron and steel sectors under different emission reduction scenarios, using the ISEEM-IS as a cost optimization model. The scenarios included in this project correspond to various CO{sub 2} emission reduction targets for the iron and steel sector under different strategies such as simple CO{sub 2} emission caps (e.g., specific reduction goals), emission reduction via commodity trading, and emission reduction via carbon trading.

Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

2013-12-01T23:59:59.000Z

272

Process Intensification - Chemical Sector Focus  

Office of Environmental Management (EM)

Process Intensification - Chemical Sector Focus 1 Technology Assessment 2 Contents 3 1. Introduction ......

273

Advanced, Energy-Efficient Hybrid Membrane System for Industrial...  

Energy Savers [EERE]

(1 slide) Develo Project Objecve Current StateChallenges Heavy industrial water utilization footprint Freshwater Withdrawals in the U.S. by Sector (2005) Domestic...

274

Urban Form Energy Use and Emissions in China: Preliminary Findings and Model Proof of Concept  

E-Print Network [OSTI]

urban areas US national-level data on transportation and land use Purpose Development of sector GHG emissions inventories

Aden, Nathaniel

2011-01-01T23:59:59.000Z

275

Inventory of China's Energy-Related CO2 Emissions in 2008  

E-Print Network [OSTI]

emissions are allocated to that sector accordingly. Biogas.The majority of biogas consumed in China is from rural

Fridley, David

2011-01-01T23:59:59.000Z

276

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector...

277

Final Technical Report HFC Concrete: A Low-Ã?Â?Ã?Â?Ã?Â?Ã?­Ã?Â?Ã?¢Ã?Â?Ã?Â?Ã?Â?Ã?Energy, Carbon-Ã?Â?Ã?Â?Ã?Â?Ã?­Dioxide-Ã?Â?Ã?Â?Ã?Â?Ã?­Negative Solution for reducing Industrial Greenhouse Gas Emissions  

SciTech Connect (OSTI)

Solidia/CCSM received funding for further research and development of its Low Temperature Solidification Process (LTS), which is used to create hydrate-free concrete (HFC). LTS/HFC is a technology/materials platform that offers wide applicability in the built infrastructure. Most importantly, it provides a means of making concrete without Portland cement. Cement and concrete production is a major consumer of energy and source of industrial greenhouse gas (GHG) emissions. The primary goal of this project was to develop and commercialize a novel material, HFC, which by replacing traditional concrete and cement, reduces both energy use and GHG emissions in the built infrastructure. Traditional concrete uses Portland Cement (PC) as a binder. PC production involves calcination of limestone at {approx}1450 C, which releases significant amounts of CO{sub 2} gas to the atmosphere and consumes a large amount of energy due to the high temperature required. In contrast, HFC is a carbonate-based hydrate-free concrete (HFC) that consumes CO{sub 2} gas in its production. HFC is made by reaction of silicate minerals with CO{sub 2} at temperatures below 100 C, more than an order-of-magnitude below the temperature required to make PC. Because of this significant difference in temperature, it is estimated that we will be able to reduce energy use in the cement and concrete industry by up to 30 trillion Btu by 2020. Because of the insulating properties of HFC, we believe we will also be able to significantly reduce energy use in the Building sector, though the extent of this saving is not yet quantified. It is estimated that production of a tonne of PC-based concrete requires about 6.2 million Btu of energy and produces over 1 tonne of CO{sub 2} emissions (Choate, 2003). These can be reduced to 1.9 million Btu and 0.025 tonnes of CO{sub 2} emissions per tonne of HFC (with overall CO{sub 2}-negativity possible by increasing carbonation yield). In this way, by replacing PC-based concrete with HFC in infrastructure we can reduce energy use in concrete production by 70%, and reduce CO{sub 2} emissions by 98%; thus the potential to reduce the impact of building materials on global warming and climate change is highly significant. Low Temperature Solidification (LTS) is a breakthrough technology that enables the densification of inorganic materials via a hydrothermal process. The resulting product exhibits excellent control of chemistry and microstructure, to provide durability and mechanical performance that exceeds that of concrete or natural stone. The technology can be used in a wide range of applications including facade panels, interior tiles, roof tiles, countertops, and pre-cast concrete. Replacing traditional building materials and concrete in these applications will result in significant reduction in both energy consumption and CO{sub 2} emissions.

Dr. Larry McCandlish, Principal Investigator; Dr. Richard Riman, Co-Principal Investigator

2012-05-14T23:59:59.000Z

278

Evaluation of metrics and baselines for tracking greenhouse gas emissions trends: Recommendations for the California climate action registry  

SciTech Connect (OSTI)

Executive Summary: The California Climate Action Registry, which was initially established in 2000 and began operation in Fall 2002, is a voluntary registry for recording annual greenhouse gas (GHG) emissions. The purpose of the Registry is to assist California businesses and organizations in their efforts to inventory and document emissions in order to establish a baseline and to document early actions to increase energy efficiency and decrease GHG emissions. The State of California has committed to use its ''best efforts'' to ensure that entities that establish GHG emissions baselines and register their emissions will receive ''appropriate consideration under any future international, federal, or state regulatory scheme relating to greenhouse gas emissions.'' Reporting of GHG emissions involves documentation of both ''direct'' emissions from sources that are under the entity's control and indirect emissions controlled by others. Electricity generated by an off-site power source is consider ed to be an indirect GHG emission and is required to be included in the entity's report. Registry participants include businesses, non-profit organizations, municipalities, state agencies, and other entities. Participants are required to register the GHG emissions of all operations in California, and are encouraged to report nationwide. For the first three years of participation, the Registry only requires the reporting of carbon dioxide (CO2) emissions, although participants are encouraged to report the remaining five Kyoto Protocol GHGs (CH4, N2O, HFCs, PFCs, and SF6). After three years, reporting of all six Kyoto GHG emissions is required. The enabling legislation for the Registry (SB 527) requires total GHG emissions to be registered and requires reporting of ''industry-specific metrics'' once such metrics have been adopted by the Registry. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) was asked to provide technical assistance to the California Energy Commission (Energy Commission) related to the Registry in three areas: (1) assessing the availability and usefulness of industry-specific metrics, (2) evaluating various methods for establishing baselines for calculating GHG emissions reductions related to specific actions taken by Registry participants, and (3) establishing methods for calculating electricity CO2 emission factors. The third area of research was completed in 2002 and is documented in Estimating Carbon Dioxide Emissions Factors for the California Electric Power Sector (Marnay et al., 2002). This report documents our findings related to the first areas of research. For the first area of research, the overall objective was to evaluate the metrics, such as emissions per economic unit or emissions per unit of production that can be used to report GHG emissions trends for potential Registry participants. This research began with an effort to identify methodologies, benchmarking programs, inventories, protocols, and registries that u se industry-specific metrics to track trends in energy use or GHG emissions in order to determine what types of metrics have already been developed. The next step in developing industry-specific metrics was to assess the availability of data needed to determine metric development priorities. Berkeley Lab also determined the relative importance of different potential Registry participant categories in order to asses s the availability of sectoral or industry-specific metrics and then identified industry-specific metrics in use around the world. While a plethora of metrics was identified, no one metric that adequately tracks trends in GHG emissions while maintaining confidentiality of data was identified. As a result of this review, Berkeley Lab recommends the development of a GHG intensity index as a new metric for reporting and tracking GHG emissions trends.Such an index could provide an industry-specific metric for reporting and tracking GHG emissions trends to accurately reflect year to year changes while protecting proprietary data. This GHG intensity index changes

Price, Lynn; Murtishaw, Scott; Worrell, Ernst

2003-06-01T23:59:59.000Z

279

Fuel Mix and Emissions Disclosure  

Broader source: Energy.gov [DOE]

Virginia’s 1999 electric industry restructuring law requires the state's electricity providers to disclose -- "to the extent feasible" -- fuel mix and emissions data regarding electric generation....

280

Fuel Mix and Emissions Disclosure  

Broader source: Energy.gov [DOE]

Ohio's 1999 electric industry restructuring law requires the state's electricity suppliers to disclose details regarding their fuel mix and emissions to customers. Electric utilities and...

Note: This page contains sample records for the topic "industrial sector emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Multi-project baselines for potential clean development mechanism projects in the electricity sector in South Africa  

SciTech Connect (OSTI)

The United Nations Framework Convention on Climate Change (UNFCCC) aims to reduce emissions of greenhouse gases (GHGs) in order to ''prevent dangerous anthropogenic interference with the climate system'' and promote sustainable development. The Kyoto Protocol, which was adopted in 1997 and appears likely to be ratified by 2002 despite the US withdrawing, aims to provide means to achieve this objective. The Clean Development Mechanism (CDM) is one of three ''flexibility mechanisms'' in the Protocol, the other two being Joint Implementation (JI) and Emissions Trading (ET). These mechanisms allow flexibility for Annex I Parties (industrialized countries) to achieve reductions by extra-territorial as well as domestic activities. The underlying concept is that trade and transfer of credits will allow emissions reductions at least cost. Since the atmosphere is a global, well-mixed system, it does not matter where greenhouse gas emissions are reduced. The CDM allows Annex I Parties to meet part of their emissions reductions targets by investing in developing countries. CDM projects must also meet the sustainable development objectives of the developing country. Further criteria are that Parties must participate voluntarily, that emissions reductions are ''real, measurable and long-term'', and that they are additional to those that would have occurred anyway. The last requirement makes it essential to define an accurate baseline. The remaining parts of section 1 outline the theory of baselines, emphasizing the balance needed between environmental integrity and reducing transaction costs. Section 2 develops an approach to multi-project baseline for the South African electricity sector, comparing primarily to near future capacity, but also considering recent plants. Five potential CDM projects are briefly characterized in section 3, and compared to the baseline in section 4. Section 5 concludes with a discussion of options and choices for South Africa regarding electricity sector baselines.

Winkler, H.; Spalding-Fecher, R.; Sathaye, J.; Price, L.

2002-06-26T23:59:59.000Z

282

Emerging Energy-efficiency and CO{sub 2} Emission-reduction Technologies for Cement and Concrete Production  

SciTech Connect (OSTI)

Globally, the cement industry accounts for approximately 5 percent of current anthropogenic carbon dioxide (CO{sub 2}) emissions. World cement demand and production are increasing significantly, leading to an increase in this industry's absolute energy use and CO{sub 2} emissions. Development of new energy-efficiency and CO{sub 2} emission-reduction technologies and their deployment in the market will be key for the cement industry's mid- and long-term climate change mitigation strategies. This report is an initial effort to compile available information on process description, energy savings, environmental and other benefits, costs, commercialization status, and references for emerging technologies to reduce the cement industry's energy use and CO{sub 2} emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies for the cement industry that have already been commercialized, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. This report consolidates available information on nineteen emerging technologies for the cement industry, with the goal of providing engineers, researchers, investors, cement companies, policy makers, and other interested parties with easy access to a well-structured database of information on these technologies.

Hasanbeigi, Ali; Price, Lynn; Lin, Elina

2012-04-06T23:59:59.000Z

283

Industrial Energy Use and Energy Efficiency in Developing Countries  

E-Print Network [OSTI]

The industrial sector accounts for over 50% of energy used in developing countries. Growth in this sector has been over 4.5% per year since 1980. Energy intensity trends for four energy-intensive sub-sectors (iron and steel, chemicals, building...

Price, L.; Martin, N.; Levine, M. D.; Worrell, E.

284

Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 3. Characterization of the nature and magnitude of emissions. Draft report  

SciTech Connect (OSTI)

This report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. Volume III of the report describes the methods used to estimate both stack and fugitive emission rates from the facility.

NONE

1995-11-01T23:59:59.000Z

285

Industrial Permit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Protection Obeying Environmental Laws Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the...

286

Development Requirements for Advanced Industrial Heat Pumps  

E-Print Network [OSTI]

DOE is attempting to advance the use of heat pumps to save energy in industrial processes. The approach has emphasized developing better heat pump technology and transferring that technology to the private sector. DOE requires that heat pump...

Chappell, R. N.; Priebe, S. J.; Bliem, C. J.; Mills, J. I.

287

Natural Gas and the Transformation of the U.S. Energy Sector: Electricity  

SciTech Connect (OSTI)

The Joint Institute for Strategic Energy Analysis (JISEA) designed this study to address four related key questions, which are a subset of the wider dialogue on natural gas: 1. What are the life cycle greenhouse gas (GHG) emissions associated with shale gas compared to conventional natural gas and other fuels used to generate electricity?; 2. What are the existing legal and regulatory frameworks governing unconventional gas development at federal, state, and local levels, and how are they changing in response to the rapid industry growth and public concerns?; 3. How are natural gas production companies changing their water-related practices?; and 4. How might demand for natural gas in the electric sector respond to a variety of policy and technology developments over the next 20 to 40 years?

Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

2012-11-01T23:59:59.000Z

288

Estimating the benefits of greenhouse gas emission reduction from agricultural policy reform  

SciTech Connect (OSTI)

Land use and agricultural activities contribute directly to the increased concentrations of atmospheric greenhouse gases. Economic support in industrialized countries generally increases agriculture's contribution to global greenhouse gas concentrations through fluxes associated with land use change and other sources. Changes in economic support offers opportunities to reduce net emissions, through this so far has gone unaccounted. Estimates are presented here of emissions of methane from livestock in the UK and show that, in monetary terms, when compared to the costs of reducing support, greenhouse gases are a significant factor. As signatory parties to the Climate Change Convection are required to stabilize emissions of all greenhouse gases, options for reduction of emissions of methane and other trace gases from the agricultural sector should form part of these strategies.

Adger, W.N. (Univ. of East Anglia, Norwich (United Kingdom). Centre for Social and Economic Research on the Global Environment); Moran, D.C. (Univ. College, London (United Kingdom). Centre for Social and Economic Research on the Global Environment)

1993-09-01T23:59:59.000Z

289

The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.  

SciTech Connect (OSTI)

Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nation’s CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.

Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

2009-11-02T23:59:59.000Z

290

Inventory of China's Energy-Related CO2 Emissions in 2008  

SciTech Connect (OSTI)

Although China became the world's largest emitter of energy-related CO{sub 2} emissions in 2007, China does not publish annual estimates of CO{sub 2} emissions and most published estimates of China's emissions have been done by other international organizations. Undertaken at the request of the Energy Information Administration (EIA) of the US Department of Energy, this study examines the feasibility of applying the EIA emissions inventory methodology to estimate China's emissions from published Chinese data. Besides serving as a proof of concept, this study also helps develop a consistent and transparent method for estimating China's CO{sub 2} emissions using an Excel model and identified China-specific data issues and areas for improvement. This study takes a core set of data from the energy balances published in the China Energy Statistical Yearbook 2009 and China Petrochemical Corporation Yearbook 2009 and applies the EIA's eight-step methodology to estimate China's 2008 CO{sub 2} emissions. First, China's primary and secondary fuel types and consumption by end use are determined with slight discrepancies identified between the two data sources and inconsistencies in product categorization with the EIA. Second, energy consumption data are adjusted to eliminate double counting in the four potential areas identified by EIA; consumption data from China's Special Administrative Regions are not included. Physical fuel units are then converted to energy equivalents using China's standard energy measure of coal equivalent (1 kilogram = 29.27 MJ) and IPCC carbon emissions coefficients are used to calculate each fuel's carbon content. Next, carbon sequestration is estimated following EIA conventions for other petroleum products and non-energy use of secondary fuels. Emissions from international bunker fuels are also subtracted under the 'reference' calculation of estimating apparent energy consumption by fuel type and the 'sectoral' calculation of summing emissions across end-use sectors. Adjustments for the China-specific conventions of reporting foreign bunkers and domestic bunkers fueling abroad are made following IPCC definitions of international bunkers and EIA reporting conventions, while the sequestration of carbon in carbon steel is included as an additional adjustment. Under the sectoral approach, fuel consumption of bunkers and other transformation losses as well as gasoline consumption are reallocated to conform to EIA sectoral reporting conventions. To the extent possible, this study relies on official energy data from primary sources. A limited number of secondary sources were consulted to provide insight into the nature of consumption of some products and to guide the analysis of carbon sequestered in steel. Beyond these, however, the study avoided trying to estimate figures where directly unavailable, such as natural gas flaring. As a result, the basic calculations should be repeatable for other years with the core set of data from National Bureau of Statistics and Sinopec (or a similarly authoritative source of oil product data). This study estimates China's total energy-related CO{sub 2} emissions in 2008 to be 6666 Mt CO{sub 2}, including 234.6 Mt of non-fuel CO{sub 2} emissions and 154 Mt of sequestered CO{sub 2}. Bunker fuel emissions in 2008 totaled 15.9 Mt CO{sub 2}, but this figure is underestimated because fuel use by Chinese ship and planes for international transportation and military bunkers are not included. Of emissions related to energy consumption, 82% is from coal consumption, 15% from petroleum and 3% from natural gas. From the sectoral approach, industry had the largest share of China's energy-related CO{sub 2} emissions with 72%, followed by residential at 11%, transport and telecommunications at 8%, and the other four (commerce, agriculture, construction and other public) sectors having a combined share of 9%. Thermal electricity and (purchased) heat (to a lesser degree) are major sources of fuel consumption behind sectoral emissions, responsible for 2533 Mt CO2 and 321 Mt CO{sub 2}, respec

Fridley, David; Zheng, Nina; Qin, Yining

2011-03-31T23:59:59.000Z

291

AIJ in the Non-Energy Sector in India: Opportunities and Concerns  

SciTech Connect (OSTI)

Although the U.N. Framework Convention on Climate Change (FCCC) has been signed and ratified by 168 countries, global greenhouse gas (GHG) emissions have increased substantially since the 1992 Rio Summit. In both developing countries (DCs) and industrialized countries (ICs), there has been a need to find mechanisms to facilitate environmentally sound mitigation strategies. This need led to the formation of Activities Implemented Jointly (AIJ) at the first Conference-of the Parties (COP) in 1995. In Article 4A, para 2D, the COP established an AIJ pilot phase in which Annex I (IC) countries would enter into agreements to implement activities jointly with non-Annex I parties. DCs would engage in AIJ on a purely voluntary basis and all AIJ projects should be compatible with and supportive of national environment and development goals. AIJ does not imply GHG reduction commitments by DCs. Neither do all projects undertaken during the pilot phase qualify as a fulfillment of current commitment s of Annex I parties under the COP. The current pilot phase for AIJ ends in the year 2000, a date which may be extended. Current AIJ activities are largely focused on the energy sector. The Nordic countries, for example, feel that the most important potential areas for cooperation in AIJ are fuel conversion, more effective energy production, increased energy efficiency, and reforms in energy-intensive industry (Nordic Council of Ministers, 1995). Denmark does not want to include non-energy sector projects such as carbon sink enhancement projects in the pilot phase (Nordic Council of Ministers, 1995). However, other countries, including the US, have already funded a number of forestry sector projects (Development Alternatives, 1997). Moreover, energy-sector projects involving high technology or capital-intensive technology are often a source of controversy between DCs and ICs regarding the kind of technology transferred and sharing of costs and benefits. Further, the pilot phase provide s an opportunity for capacity-building and learning about methods of planning, implementation, and monitoring of GHG abatement in land-based non-energy sector projects.

Ravindranath, N.H.; Meili, A.; Anita, R.

1998-11-01T23:59:59.000Z

292

Carbon emissions and sequestration in forests: Case studies from seven developing countries. Volume 4: Mexico: Draft  

SciTech Connect (OSTI)

Estimates of carbon emissions from deforestation in Mexico are derived for the year 1985 and for two contrasting scenarios in 2025. Carbon emissions are calculated through an in-depth review of the existing information on forest cover deforestation mtes and area affected by forest fires as well as on forests` carbon-related biological characteristics. The analysis covers both tropical -- evergreen and deciduous -- and temperate -- coniferous and broadleaf -- closed forests. Emissions from the forest sector are also compared to those from energy and industry. Different policy options for promoting the sustainable management of forest resources in the country are discussed. The analysis indicates that approximately 804,000 hectares per year of closed forests suffered from major perturbations in the mid 1980`s in Mexico, leading to an annual deforestation mte of 668,000 hectares. Seventy five percent of total deforestation is concentrated in tropical forests. The resulting annual carbon balance is estimated in 53.4 million tons per year, and the net committed emissions in 45.5 million tons or 41% and 38%, respectively, of the country`s total for 1985--87. The annual carbon balance from the forest sector in 2025 is expected to decline to 16.5 million tons in the low emissions scenario and to 22.9 million tons in the high emissions scenario. Because of the large uncertainties in some of the primary sources of information, the stated figures should be taken as preliminary estimates.

Makundi, W.; Sathaye, J. [eds.] [Lawrence Berkeley Lab., CA (United States); Cerutti, O.M.; Ordonez, M.J.; Minjarez, R.D. [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico) Centro de Ecologia

1992-08-01T23:59:59.000Z

293

Carbon emissions and sequestration in forests: Case studies from seven developing countries  

SciTech Connect (OSTI)

Estimates of carbon emissions from deforestation in Mexico are derived for the year 1985 and for two contrasting scenarios in 2025. Carbon emissions are calculated through an in-depth review of the existing information on forest cover deforestation mtes and area affected by forest fires as well as on forests' carbon-related biological characteristics. The analysis covers both tropical -- evergreen and deciduous -- and temperate -- coniferous and broadleaf -- closed forests. Emissions from the forest sector are also compared to those from energy and industry. Different policy options for promoting the sustainable management of forest resources in the country are discussed. The analysis indicates that approximately 804,000 hectares per year of closed forests suffered from major perturbations in the mid 1980's in Mexico, leading to an annual deforestation mte of 668,000 hectares. Seventy five percent of total deforestation is concentrated in tropical forests. The resulting annual carbon balance is estimated in 53.4 million tons per year, and the net committed emissions in 45.5 million tons or 41% and 38%, respectively, of the country's total for 1985--87. The annual carbon balance from the forest sector in 2025 is expected to decline to 16.5 million tons in the low emissions scenario and to 22.9 million tons in the high emissions scenario. Because of the large uncertainties in some of the primary sources of information, the stated figures should be taken as preliminary estimates.

Makundi, W.; Sathaye, J. (eds.) (Lawrence Berkeley Lab., CA (United States)); Cerutti, O.M.; Ordonez, M.J.; Minjarez, R.D. (Universidad Nacional Autonoma de Mexico, Mexico City (Mexico) Centro de Ecologia)

1992-08-01T23:59:59.000Z

294

Verifying Greenhouse Gas Emissions: Methods to Support International...  

Open Energy Info (EERE)

Greenhouse Gas Emissions: Methods to Support International Climate Agreements AgencyCompany Organization: Board on Atmospheric Sciences and Climate Sector: Energy, Land...

295

Methodology for Estimating Reductions of GHG Emissions from Mosaic...  

Open Energy Info (EERE)

Methodology for Estimating Reductions of GHG Emissions from Mosaic Deforestation AgencyCompany Organization: World Bank Sector: Land Focus Area: Forestry Topics: Co-benefits...

296

South Africa-Quantifying Emission Reduction Opportunities in...  

Open Energy Info (EERE)

AgencyCompany Organization Ecofys Sector Energy Topics Background analysis, GHG inventory, Low emission development planning, Pathways analysis Website http:www.ecofys.com...

297

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network [OSTI]

added to the power sector emissions for coal listed in Tableemissions of each pollutant. AEO projections of the mix of coals used for power

Coughlin, Katie

2013-01-01T23:59:59.000Z

298

Estimated Carbon Dioxide Emissions in 2008: United States  

SciTech Connect (OSTI)

Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three major energy resources: natural gas, coal, and petroleum. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states, the District of Columbia, and one national) carbon dioxide flow charts representing a comprehensive systems view of national CO{sub 2} emissions. Lawrence Livermore National Lab (LLNL) has published flow charts (also referred to as 'Sankey Diagrams') of important national commodities since the early 1970s. The most widely recognized of these charts is the U.S. energy flow chart (http://flowcharts.llnl.gov). LLNL has also published charts depicting carbon (or carbon dioxide potential) flow and water flow at the national level as well as energy, carbon, and water flows at the international, state, municipal, and organizational (i.e. United States Air Force) level. Flow charts are valuable as single-page references that contain quantitative data about resource, commodity, and byproduct flows in a graphical form that also convey structural information about the system that manages those flows. Data on carbon dioxide emissions from the energy sector are reported on a national level. Because carbon dioxide emissions are not reported for individual states, the carbon dioxide emissions are estimated using published energy use information. Data on energy use is compiled by the U.S. Department of Energy's Energy Information Administration (U.S. EIA) in the State Energy Data System (SEDS). SEDS is updated annually and reports data from 2 years prior to the year of the update. SEDS contains data on primary resource consumption, electricity generation, and energy consumption within each economic sector. Flow charts of state-level energy usage and explanations of the calculations and assumptions utilized can be found at: http://flowcharts.llnl.gov. This information is translated into carbon dioxide emissions using ratios of carbon dioxide emissions to energy use calculated from national carbon dioxide emissions and national energy use quantities for each particular sector. These statistics are reported annually in the U.S. EIA's Annual Energy Review. Data for 2008 (US. EIA, 2010) was updated in August of 2010. This is the first presentation of a comprehensive state-level package of flow charts depicting carbon dioxide emissions for the United States.

Smith, C A; Simon, A J; Belles, R D

2011-04-01T23:59:59.000Z

299

Private sector cautious on Pemex reorganization  

SciTech Connect (OSTI)

Private sector interest in the privatization of the petrochemical subsidiaries of Mexico`s state oil company Petroleos Mexicanos (Pemex) will hinge on the government`s decisions on minority ownership, says Raul Millares, president of Aniq, the Mexican chemical industry association. The murkiest issues are how the subsidiaries will be operated and what rights minority owners will have. {open_quotes}The question is who is going to manage the subsidiaries on a day-to-day basis,{close_quotes} says Millares. {open_quotes}There is a lot of doubt as to whether private companies will be able to get the flexibility they need.{close_quotes}

Sissell, K.

1997-03-19T23:59:59.000Z

300

Searching for Dark Sector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2)ScienceScientists InSearchsuperconduct* FindDark Sector

Note: This page contains sample records for the topic "industrial sector emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Sector1 Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) SrEvaluating the Seasonalsw ' b 0 % bP. May,2015Sector 1

302

Sector4 FAQs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) SrEvaluating the Seasonalsw ' b 0 % bP. May,2015Sector 1FAQs

303

Sector4 redirect  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) SrEvaluating the Seasonalsw ' b 0 % bP. May,2015Sector 1FAQs

304

Tax and Fiscal Policies for Promotion of Industrial EnergyEfficiency: A Survey of International Experience  

SciTech Connect (OSTI)

The Energy Foundation's China Sustainable Energy Program (CSEP) has undertaken a major project investigating fiscal and tax policy options for stimulating energy efficiency and renewable energy development in China. This report, which is part of the sectoral sub-project studies on energy efficiency in industry, surveys international experience with tax and fiscal policies directed toward increasing investments in energy efficiency in the industrial sector. The report begins with an overview of tax and fiscal policies, including descriptions and evaluations of programs that use energy or energy-related carbon dioxide (CO2) taxes, pollution levies, public benefit charges, grants or subsidies, subsidized audits, loans, tax relief for specific technologies, and tax relief as part of an energy or greenhouse gas (GHG) emission tax or agreement scheme. Following the discussion of these individual policies, the report reviews experience with integrated programs found in two countries as well as with GHG emissions trading programs. The report concludes with a discussion of the best practices related to international experience with tax and fiscal policies to encourage investment in energy efficiency in industry.

Price, Lynn; Galitsky, Christina; Sinton, Jonathan; Worrell,Ernst; Graus, Wina

2005-09-15T23:59:59.000Z

305

Advanced Vehicle Electrification & Transportation Sector Electrificati...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

306

Energy Sector Cybersecurity Framework Implementation Guidance  

Broader source: Energy.gov (indexed) [DOE]

DRAFT FOR PUBLIC COMMENT SEPTEMBER, 2014 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE Energy Sector Cybersecurity Framework Implementation Guidance Table of...

307

Behavioral Assumptions Underlying California Residential Sector...  

Broader source: Energy.gov (indexed) [DOE]

Behavioral Assumptions Underlying California Residential Sector Energy Efficiency Programs (2009 CIEE Report) Behavioral Assumptions Underlying California Residential Sector Energy...

308

Promoting Green Jobs in the Building and Construction Sector  

E-Print Network [OSTI]

Promoting Green Jobs in the Building and Construction Sector BUILDING FOR ECOLOGICALLY RESPONSIVE Industries" SMX Convention Center, Pasay City CHRISTOPHER CRUZ DE LA CRUZ Philippine Green Building Council 8 the ability of future generations to meet their own needs" #12;· "The fastest growing regional green building

309

DRAFT DRAFT Electricity and Natural Gas Sector Description  

E-Print Network [OSTI]

DRAFT DRAFT Electricity and Natural Gas Sector Description For Public Distribution AB 32 Scoping of electricity and natural gas; including electricity generation, combined heat and power, and electricity and natural gas end uses for residential and commercial purposes. Use of electricity and/or gas for industrial

310

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network [OSTI]

electricity sector assets and prices to prevent de- industrialization and cushion the impact of hyperinflation on householdelectricity to “households and other socially-important consumer groups” at priceshousehold incomes, and price increases will not go unnoticed. 862 Russians also care about reliable electricity

Wengle, Susanne Alice

2010-01-01T23:59:59.000Z

311

Setting the Standard for Industrial Energy Efficiency  

E-Print Network [OSTI]

Voluntary Agreements for Energy Efficiency or GHG EmissionsACEEE Summer Study on Energy Efficiency in Industry, WestStandard for Industrial Energy Efficiency A. McKane 1 , R.

McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

2008-01-01T23:59:59.000Z

312

Allowance Allocation and Effects on the Electricity Sector  

E-Print Network [OSTI]

Allowance Allocation and Effects on the Electricity Sector Karen Palmer Resources for the Future of Earthweek #12;Allocation and Electricity · Prior cap-and-trade programs grandfather (GF) allowances on electricity markets depends on CO2 emissions rates · Different regional effect of GF on electricity markets

313

Industrial Energy Efficiency and Climate Change Mitigation  

SciTech Connect (OSTI)

Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

2009-02-02T23:59:59.000Z

314

Compilationof Regional to Global Inventoriesof Anthropogenic Emissions  

E-Print Network [OSTI]

inventories of emissions of the trace species included in the study at the appropriate sectoral, spatial inventories calculated global emissions by large geographic areas (Vfkhelyi, 1985), with very little spatial to compile regional to global inventories of anthropogenic emissions. This discussion is by no means

315

Energy-saving technology adoption under uncertainty in the residential sector  

E-Print Network [OSTI]

Energy-saving technology adoption under uncertainty in the residential sector Dorothée Charlier in a context of growing energy demand. This phenomenon is in part due to the importance of residential energy: in France, buildings account for 23% of CO2 emissions, of which 70% are generated by the residential sector

Paris-Sud XI, Université de

316

Modeling the Transport Sector: The Role of Existing Fuel Taxes in Climate Policy  

E-Print Network [OSTI]

Existing fuel taxes play a major role in determining the welfare effects of exempting the transportation sector from measures to control greenhouse gases. To study this phenomenon we modify the MIT Emissions Prediction and ...

Paltsev, Sergey.

317

CO2 Abatement in the UK Power Sector: Evidence from the EU ETS Trial Period  

E-Print Network [OSTI]

This paper provides an empirical assessment of CO2 emissions abatement in the UK power sector during the trial period of the EU ETS. Using an econometrically estimated model of fuel switching, it separates the impacts of ...

Ellerman, A. Denny

2008-01-01T23:59:59.000Z

318

Technology detail in a multi-sector CGE model : transport under climate policy  

E-Print Network [OSTI]

A set of three analytical models is used to study the imbedding of specific transport technologies within a multi-sector, multi-region evaluation of constraints on greenhouse emissions. Key parameters of a computable general ...

Schafer, Andreas.

319

Technology investment decisions under uncertainty : a new modeling framework for the electric power sector  

E-Print Network [OSTI]

Effectively balancing existing technology adoption and new technology development is critical for successfully managing carbon dioxide (CO2) emissions from the fossil-dominated electric power generation sector. The long ...

Santen, Nidhi

2013-01-01T23:59:59.000Z

320

Inventory of China's Energy-Related CO2 Emissions in 2008  

E-Print Network [OSTI]

China's 2008 Total CO 2 Emissions from Energy Consumption:10. China's 2008 Total CO 2 Emissions from Energy: Sectoral16 Table 11. China's 2008 CO 2 Emissions from Energy:

Fridley, David

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Parcel Per Parcel Toward A More Refined Carbon Emissions Estimation For Livermore, CA  

E-Print Network [OSTI]

A More Refined Carbon Emissions Estimation For Livermore, CAof lifestyle on carbon emissions in the residential sector [an all-time low in carbon emissions, though most use overall

Živanovi?, Ana

2014-01-01T23:59:59.000Z

322

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

Case 25 Figure 9 CO2 Emissions from Commercial Buildings (27 Figure 12 CO2 Emissions by Sector (Primary Energy,16 Office Building CO2 Emissions (Reference Case, Primary

Fridley, David G.

2008-01-01T23:59:59.000Z

323

Carbon Emissions Reduction Potential in the US Chemicals and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies, June 1999 Carbon Emissions Reduction Potential in the US...

324

Public Sector Electric Efficiency Programs  

Broader source: Energy.gov [DOE]

The Illinois Department of Commerce and Economic Opportunity (DCEO) Bureau of Energy and Recycling administers the public sector energy efficiency programs required by the Illinois Energy...

325

Energy Sector Market Analysis  

SciTech Connect (OSTI)

This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

2006-10-01T23:59:59.000Z

326

Industrial energy efficiency policy in China  

SciTech Connect (OSTI)

Chinese industrial sector energy-efficiency policy has gone through a number of distinct phases since the founding of the People s Republic in 1949. An initial period of energy supply growth in the 1950s, 1960s, and 1970s was followed by implementation of significant energy efficiency programs in the 1980s. Many of these programs were dismantled in the 1990s during the continuing move towards a market-based economy. In an effort to once again strengthen energy efficiency, the Chinese government passes the Energy Conservation Law in 1997 which provides broad guidance for the establishment of energy efficiency policies. Article 20 of the Energy Conservation Law requires substantial improvement in industrial energy efficiency in the key energy-consuming industrial facilities in China. This portion of the Law declares that ''the State will enhance energy conservation management in key energy consuming entities.'' In 1999, the industrial sector consumed nearly 30 EJ, or 76 percent of China's primary energy. Even though primary energy consumption has dropped dramatically in recent years, due mostly to a decline in coal consumption, the Chinese government is still actively developing an overall policy for energy efficiency in the industrial sector modeled after policies in a number of industrialized countries. This paper will describe recent Chinese government activities to develop industrial sector energy-efficiency targets as a ''market-based'' mechanism for improving the energy efficiency of key industrial facilities.

Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

2001-05-01T23:59:59.000Z

327

SCENARIOS FOR DEEP CARBON EMISSION REDUCTIONS FROM ELECTRICITY BY 2050 IN WESTERN NORTH AMERICA USING THE SWITCH ELECTRIC POWER SECTOR PLANNING MODEL California's Carbon Challenge Phase II Volume II  

SciTech Connect (OSTI)

This study used a state-of-the-art planning model called SWITCH for the electric power system to investigate the evolution of the power systems of California and western North America from present-day to 2050 in the context of deep decarbonization of the economy. Researchers concluded that drastic power system carbon emission reductions were feasible by 2050 under a wide range of possible futures. The average cost of power in 2050 would range between $149 to $232 per megawatt hour across scenarios, a 21 to 88 percent increase relative to a business-as-usual scenario, and a 38 to 115 percent increase relative to the present-day cost of power. The power system would need to undergo sweeping change to rapidly decarbonize. Between present-day and 2030 the evolution of the Western Electricity Coordinating Council power system was dominated by implementing aggressive energy efficiency measures, installing renewable energy and gas-fired generation facilities and retiring coal-fired generation. Deploying wind, solar and geothermal power in the 2040 timeframe reduced power system emissions by displacing gas-fired generation. This trend continued for wind and solar in the 2050 timeframe but was accompanied by large amounts of new storage and long-distance high-voltage transmission capacity. Electricity storage was used primarily to move solar energy from the daytime into the night to charge electric vehicles and meet demand from electrified heating. Transmission capacity over the California border increased by 40 - 220 percent by 2050, implying that transmission siting, permitting, and regional cooperation will become increasingly important. California remained a net electricity importer in all scenarios investigated. Wind and solar power were key elements in power system decarbonization in 2050 if no new nuclear capacity was built. The amount of installed gas capacity remained relatively constant between present-day and 2050, although carbon capture and sequestration was installed on some gas plants by 2050.

Collaboration/ University of California, Berkeley; Nelson, James; Mileva, Ana; Johnston, Josiah; Kammen, Daniel; Wei, Max; Greenblatt, Jeffrey

2014-01-01T23:59:59.000Z

328

Industrial Engineering Industrial Advisory Board  

E-Print Network [OSTI]

Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

Gelfond, Michael

329

National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers; Guidance for Calculating Efficiency Credits Resulting from Implementation of Energy Conservation Measures  

SciTech Connect (OSTI)

The purpose of this document is to provide guidance for developing a consistent approach to documenting efficiency credits generated from energy conservation measures in the Implementation Plan for boilers covered by the Boiler MACT rule (i.e., subpart DDDDD of CFR part 63). This document divides Boiler System conservation opportunities into four functional areas: 1) the boiler itself, 2) the condensate recovery system, 3) the distribution system, and 4) the end uses of the steam. This document provides technical information for documenting emissions credits proposed in the Implementation Plan for functional areas 2) though 4). This document does not include efficiency improvements related to the Boiler tune-ups.

Cox, Daryl [ORNL; Papar, Riyaz [Hudson Technologies; Wright, Dr. Anthony [ALW Consulting

2013-02-01T23:59:59.000Z

330

The supply chain of CO2 emissions  

E-Print Network [OSTI]

on GTAP data of energy consumed and trade in each region byper unit of energy. Using trade data, these emissions aretrade, economic input–output by sector, GDP, population, energy

Davis, S. J; Peters, G. P; Caldeira, K.

2011-01-01T23:59:59.000Z

331

The Industries of the Future Program: What's in it for Texas Industries?  

E-Print Network [OSTI]

The purpose of the TEXAS INDUSTRIES OF THE FUTURE program is to facilitate the development, demonstration and adoption of emerging technologies that reduce industrial energy usage, emissions, and associated costs, resulting in improved competitive...

Ferland, K. A.

332

Promoting technological investment in the Australian rail freight sector: evaluating the feasibility of accelerated depreciation.  

E-Print Network [OSTI]

??Although regulation for emissions, pollution, etc., is becoming stricter, the Australian rail freight industry is still locked in to using large numbers of existing rolling… (more)

Koowattanatianchai, Nattawoot

2011-01-01T23:59:59.000Z

333

Regulatory Reform to Promote Clean Energy: The Potential of Output-Based Emissions Standards  

SciTech Connect (OSTI)

Barriers to industrial energy-efficient technologies hinder their use. A number of EPA analyses and industrial experts have found that the utilization of input-based emissions standards (measured in parts-per-million or pounds/MMBtu) in the Clean Air Act creates a regulatory barrier to the installation and deployment of technologies that emit fewer criteria pollutants and use energy more efficiently. Changing emission management strategies to an output-based emissions standard (measured in tons of pollutant emitted) is a way to ameliorate some of these barriers. Combined heat and power (CHP) is one of the key technologies that would see increased industrial application if the emissions standards were modified. Many states have made this change since the EPA first approved it in 2000, although direction from the Federal government could speed implementation modifications. To analyze the national impact of accelerated state adoption of output-based standards on CHP technologies, this paper uses detailed National Energy Modeling System (NEMS) and spreadsheet analysis illustrating two phased-in adoption scenarios for output-based emissions standards in the industrial sector. Benefit/cost metrics are calculated from a private and public perspective, and also a social perspective that considers the criteria and carbon air pollution emissions. These scenarios are compared to the reference case of AEO 2010 and are quite favorable, with a social benefit-cost ratio of 16.0 for a five-year phase-in scenario. In addition, the appropriateness of the Federal role, applicability, technology readiness, and administrative feasibility are discussed.

Cox, Matthew [Georgia Institute of Technology] [Georgia Institute of Technology; Brown, Dr. Marilyn Ann [Georgia Institute of Technology] [Georgia Institute of Technology; Jackson, Roderick K [ORNL] [ORNL

2011-01-01T23:59:59.000Z

334

Labor's Share By Sector And Industry, 1948-1965  

E-Print Network [OSTI]

.6548 0.8667 0.8742 0.6078 0.6050 0.4867 0.7133 0.7113 0.6700 0.6553 0.8821 0.8888 0.6007 0.5978 0.4652 0.7465 0.7445 0.6829 0.6641 0.8709 0.8760 0.5934 0.5909 0.4666 0.7409 0.7389 0.6809 0.6649 0.8686 0.8810 0.5784 0.5757 0.4640 0.7393 0.7372 0.6828 0...

Close, Frank A.; Shulenburger, David E.

1971-01-01T23:59:59.000Z

335

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

1996. COREX, Revolution in Ironmaking, Linz, Austria:VAI. ;GJ/t Material Preparation Ironmaking Sintering PelletizingGJ/t Material Preparation Ironmaking Sintering Pelletizing

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

336

Industrial Sector Energy Efficiency Modeling (ISEEM) Framework Documentation  

E-Print Network [OSTI]

INVESTMENT COST . anninvcost Annualized investment cost of a technology bound_Total of discounted investment costs discinvcost Discounted

Karali, Nihan

2014-01-01T23:59:59.000Z

337

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

world best practice energy intensity values for productionWorld best practice energy intensity values for productionWorld Best Practice Final Energy Intensity Values for Aluminium Production (

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

338

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

and 30% of total energy consumption in China. During the30 kWh/ADt 54 for total energy consumption of 11.2 GJ/ADt (leads to a total overall energy consumption value of 11.1

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

339

Greenhouse Gas Programs, Energy Efficiency, and the Industrial Sector  

E-Print Network [OSTI]

The United States has made significant progress in reducing total energy use through energy efficiency improvements over the past decade, yet the United States still ranks as the highest absolute greenhouse gas (GHG) emitter in the world with 23...

Zhou, A.; Tutterow, V.; Harris, J.

340

Efficient Energy Utilization in the Industrial Sector - Case Studies  

E-Print Network [OSTI]

. Leakage and misuse of compressed air can normally be reduced by 10 percent, resulting in an annual savings of approximately $10,000 to $20,000. Heat recovery, using air compressor cooling water, can and is being used for space heating...

Davis, S. R.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

recovered from the black liquor recovery process (combustingand development in black liquor gasification has not yetgreen liquor”, similar to the black liquor recovery process,

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

342

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

can be produced onsite at the smelter or in separate plants19, 20 The most efficient smelters consume 400-440 kg ofyears five aluminum smelter types have become widespread:

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

343

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

Best Practice Final Energy Intensity Values for Stand-AloneBest Practice Final Energy Intensity Values for Stand-AloneBest Practice Primary Energy Intensity Values for Stand-

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

344

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

report describes best practices in energy efficiency for keyImproving Energy Efficiency of shape casting. Best practice

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

345

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

feedstock would use a coal gasifier to convert the coal tosynthesis gas. Most coal gasifier-based ammonia plants areof a modern entrained bed gasifier, selexol gas cleanup and

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

346

Types of Nuclear Industry Jobs Commercial and Government Sectors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButlerTransportation6/14/11 Page 1Two NovelTwoTypesTypes of

347

Table E5. Industrial Sector Energy Price Estimates, 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefinerMotorSummary5.E4.E5.

348

Industrial Sector Energy Efficiency Modeling (ISEEM) Framework Documentation  

E-Print Network [OSTI]

Model Part I, Energy Technology Systems Analysis Programme,A Report of the Energy Technology Systems Analysis Project,Energy Efficiency Technologies in Integrated Assessment

Karali, Nihan

2014-01-01T23:59:59.000Z

349

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

in a back-pressure steam turbine to generate electricity (compressor uses a steam turbine, using internally generatedwith a gas turbine, producing steam and electricity. The hot

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

350

Fact #619: April 19, 2010 Transportation Sector Revenue by Industry |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report1:Energy 2: MarchDepartment of

351

Designing Effective State Programs for the Industrial Sector - New SEE  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit Services AuditTransatlantic Relations &Energy FTCPEnergyAction

352

Climate VISION: PrivateSector Initiatives: Minerals - Industry Associations  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -ResultsLinks -

353

Solar-Assisted Technology Provides Heat for California Industries  

E-Print Network [OSTI]

Solar-Assisted Technology Provides Heat for California Industries Industrial/Agriculture/Water End 2011 The Issue Solar thermal technology focuses the Sun's rays to heat water, and is a promising renewable resource for California's industrial sector. Commercially available solar water heating

354

Understanding Sectoral Labor Market Dynamics: An Equilibrium Analysis of the Oil and Gas Field Services  

E-Print Network [OSTI]

Understanding Sectoral Labor Market Dynamics: An Equilibrium Analysis of the Oil and Gas Field examines the response of employment and wages in the US oil and gas ...eld services industry to changes the dynamic response of wages and employment in the U.S. Oil and Gas Field Services (OGFS) industry to changes

Sadoulet, Elisabeth

355

Efficient electric motor systems for industry. Report on roundtable discussions of market problems and ways to overcome them  

SciTech Connect (OSTI)

Improving the efficiency of electric motor systems is one of the best energy-saving opportunities for the United States. The Department of Energy (DOE) Office of Industrial Technologies estimates that by the year 2010 in the industrial sector, the opportunities for savings from improved efficiency in electric motor systems could be roughly as follows: 240 billion kilowatthours per year. $13 billion per year from US industry`s energy bill. Up to 50,000 megawatts in new powerplant capacity avoided. Up to 44 million metric tons of carbon-equivalent emissions mitigated per year, corresponding to 3 percent of present US emissions. Recognizing the benefits of this significant opportunity for energy savings, DOE has targeted improvements in the efficiency of electric motor systems as a key initiative in the effort to promote flexibility and efficiency in the way electricity is produced and used. Efficient electric motor systems will help the United States reach its national goals for energy savings and greenhouse gas emission reductions.

Not Available

1993-11-01T23:59:59.000Z

356

A New, Stochastic, Energy Model of the U.S. is Under Construction: SEDS and Its Industrial Structure  

E-Print Network [OSTI]

-duty vehicles and heavy-duty vehicles. The industrial sector is currently modeled as a single sector, using the latest Manufacturing Energy Consumption Survey (MECS) to calibrate energy consumption to end-use energy categories: boilers, process heating...

Roop, J. M.

357

Federal Sector Renewable Energy Project Implementation: ""What...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by...

358

Transitioning the Transportation Sector: Exploring the Intersection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles Transitioning the Transportation Sector: Exploring the Intersection...

359

Energy Sector Cybersecurity Framework Implementation Guidance  

Broader source: Energy.gov (indexed) [DOE]

JANUARY 2015 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY Energy Sector...

360

Coal industry annual 1997  

SciTech Connect (OSTI)

Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

NONE

1998-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Electricity savings potentials in the residential sector of Bahrain  

SciTech Connect (OSTI)

Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to the peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.

Akbari, H. [Lawrence Berkeley National Lab., CA (United States); Morsy, M.G.; Al-Baharna, N.S. [Univ. of Bahrain, Manama (Bahrain)

1996-08-01T23:59:59.000Z

362

Utility Sector Impacts of Reduced Electricity Demand  

SciTech Connect (OSTI)

This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

Coughlin, Katie

2014-12-01T23:59:59.000Z

363

COMPILATION OF REGIONAL TO GLOBAL INVENTORIES OF ANTHROPOGENIC EMISSIONS  

SciTech Connect (OSTI)

The mathematical modeling of the transport and transformation of trace species in the atmosphere is one of the scientific tools currently used to assess atmospheric chemistry, air quality, and climatic conditions. From the scientific but also from the management perspectives accurate inventories of emissions of the trace species at the appropriate spatial, temporal, and species resolution are required. There are two general methodologies used to estimate regional to global emissions: bottom-up and top-down (also known as inverse modeling). Bottom-up methodologies to estimate industrial emissions are based on activity data, emission factors (amount of emissions per unit activity), and for some inventories additional parameters (such as sulfur content of fuels). Generally these emissions estimates must be given finer sectoral, spatial (usually gridded), temporal, and for some inventories species resolution. Temporal and spatial resolution are obtained via the use of surrogate information, such as population, land use, traffic counts, etc. which already exists in or can directly be converted to gridded form. Speciation factors have been and are being developed to speciate inventories of NO{sub x}, particulate matter, and hydrocarbons. Top-down (inverse modeling) methodologies directly invert air quality measurements in terms of poorly known but critical parameters to constrain the emissions needed to explain these measurements; values of these parameters are usually computed using atmospheric transport models. Currently there are several strong limitations of inverse modeling, but the continued evolution of top-down estimates will be facilitated by the development of denser monitoring networks and by the massive amounts of data from satellite observations.

BENKOVITZ,C.M.

2002-11-01T23:59:59.000Z

364

Energy-economy interactions revisited within a comprehensive sectoral model  

SciTech Connect (OSTI)

This paper describes a computable general equilibrium (CGE) model with considerable sector and technology detail, the ``All Modular Industry Growth Assessment'' Model (AMIGA). It is argued that a detailed model is important to capture and understand the several rolls that energy plays within the economy. Fundamental consumer and industrial demands are for the services from energy; hence, energy demand is a derived demand based on the need for heating, cooling mechanical, electrical, and transportation services. Technologies that provide energy-services more efficiently (on a life cycle basis), when adopted, result in increased future output of the economy and higher paths of household consumption. The AMIGA model can examine the effects on energy use and economic output of increases in energy prices (e.g., a carbon charge) and other incentive-based policies or energy-efficiency programs. Energy sectors and sub-sector activities included in the model involve energy extraction conversion and transportation. There are business opportunities to produce energy-efficient goods (i.e., appliances, control systems, buildings, automobiles, clean electricity). These activities are represented in the model by characterizing their likely production processes (e.g., lighter weight motor vehicles). Also, multiple industrial processes can produce the same output but with different technologies and inputs. Secondary recovery, i.e., recycling processes, are examples of these multiple processes. Combined heat and power (CHP) is also represented for energy-intensive industries. Other modules represent residential and commercial building technologies to supply energy services. All sectors of the economy command real resources (capital services and labor).

Hanson, D. A.; Laitner, J. A.

2000-07-24T23:59:59.000Z

365

Interfuel Substitution and Energy Use in the UK Manufacturing Sector  

E-Print Network [OSTI]

of the following reasons. First, studies based on the aggregate data fail to account for large di¤erences in technological requirements for fuel types used in speci?c industries. For ex- ample, most cement kilns today use coal and petroleum coke as primary fuels... in the manufacturing processes. Waverman (1992) pointed out that fuels used by industrial sectors for non-energy purposes, such as coking coal, petrochemical feedstocks, or lubricants, have few available substitutes, and should therefore be excluded from the data...

Steinbuks, Jevgenijs

366

Analysis of the Energy Intensity of Industries in California  

E-Print Network [OSTI]

the aggregate energy-intensity of industry. Applied Energyindustries with final energy intensities of 12.3 Billion BtuAs mentioned, the energy intensity of this sector is much

Can, Stephane de la Rue du

2014-01-01T23:59:59.000Z

367

An Overview of the Louisiana Primary Solid Wood Products Industry  

E-Print Network [OSTI]

Laboratory can better serve Louisiana companies in this industry sector. Results include a discussion in Louisiana consists of 81 companies compared to approximately 750 companies in the secondary wood products sector. * Just over 36 percent of companies surveyed have 50 employees or more and 18.2 percent have 200

368

Charting a Path to Net Zero Energy: Public-Private Sector Perspectives of the Commercial Buildings Consortium  

E-Print Network [OSTI]

Transforming the commercial buildings market to become "net-zero-energy-capable" will require dramatically lower levels of energy use sector wide. A comprehensive and concerted industry effort, partnering with utilities and government, must...

Harris, J.

2011-01-01T23:59:59.000Z

369

CDM as a Solution for the Present World Energy Problems (An Overview with Respect to the Building and Construction Sector)  

E-Print Network [OSTI]

for more than one third of the total conventional energy use and associated greenhouse gas emissions. The Inter-governmental Panel on Climate Change (IPCC) stated that, the building sector has the largest potential for significantly reducing greenhouse gas...

Sudarsan, N.; Jayaraj, S.; Sreekanth, K. J.

2010-01-01T23:59:59.000Z

370

The Value of End-Use Energy Efficiency in Mitigation of U.S. Carbon Emissions  

SciTech Connect (OSTI)

This report documents a scenario analysis exploring the value of advanced technologies in the U.S. buildings, industrial, and transportation sectors in stabilizing atmospheric greenhouse gas concentrations. The analysis was conducted by staff members of Pacific Northwest National Laboratory (PNNL), working at the Joint Global Change Research Institute (JGCRI) in support of the strategic planning process of the U.S. Department of Energy (U.S. DOE) Office of Energy Efficiency and Renewable Energy (EERE). The conceptual framework for the analysis is an integration of detailed buildings, industrial, and transportation modules into MiniCAM, a global integrated assessment model. The analysis is based on three technology scenarios, which differ in their assumed rates of deployment of new or presently available energy-saving technologies in the end-use sectors. These technology scenarios are explored with no carbon policy, and under two CO2 stabilization policies, in which an economic price on carbon is applied such that emissions follow prescribed trajectories leading to long-term stabilization of CO2 at roughly 450 and 550 parts per million by volume (ppmv). The costs of meeting the emissions targets prescribed by these policies are examined, and compared between technology scenarios. Relative to the reference technology scenario, advanced technologies in all three sectors reduce costs by 50% and 85% for the 450 and 550 ppmv policies, respectively. The 450 ppmv policy is more stringent and imposes higher costs than the 550 ppmv policy; as a result, the magnitude of the economic value of energy efficiency is four times greater for the 450 ppmv policy than the 550 ppmv policy. While they substantially reduce the costs of meeting emissions requirements, advanced end-use technologies do not lead to greenhouse gas stabilization without a carbon policy. This is due mostly to the effects of increasing service demands over time, the high consumption of fossil fuels in the electricity sector, and the use of unconventional feedstocks in the liquid fuel refining sector. Of the three end-use sectors, advanced transportation technologies have the greatest potential to reduce costs of meeting carbon policy requirements. Services in the buildings and industrial sectors can often be supplied by technologies that consume low-emissions fuels such as biomass or, in policy cases, electricity. Passenger transportation, in contrast, is especially unresponsive to climate policies, as the fuel costs are small compared to the time value of transportation and vehicle capital and operating costs. Delaying the transition from reference to advanced technologies by 15 years increases the costs of meeting 450 ppmv stabilization emissions requirements by 21%, but the costs are still 39% lower than the costs assuming reference technology. The report provides a detailed description of the end-use technology scenarios and provides a thorough analysis of the results. Assumptions are documented in the Appendix.

Kyle, G. Page; Smith, Steven J.; Clarke, Leon E.; Kim, Son H.; Wise, Marshall A.

2007-11-27T23:59:59.000Z

371

Manufacturing Energy and Carbon Footprint - Sector: Transportation...  

Broader source: Energy.gov (indexed) [DOE]

for) Electricity Export 1 Combustion Emissions (MMT CO 2 e Million Metric Tons Carbon Dioxide Equivalent) Total Emissions Offsite Emissions + Onsite Emissions Energy...

372

Manufacturing Energy and Carbon Footprint - Sector: Computer...  

Broader source: Energy.gov (indexed) [DOE]

for) Electricity Export 0 Combustion Emissions (MMT CO 2 e Million Metric Tons Carbon Dioxide Equivalent) Total Emissions Offsite Emissions + Onsite Emissions Energy...

373

What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions  

SciTech Connect (OSTI)

After rapid growth in economic development and energy demand over the last three decades, China has undertaken energy efficiency improvement efforts to reduce its energy intensity under the 11th Five Year Plan (FYP). Since becoming the world's largest annual CO{sub 2} emitter in 2007, China has set reduction targets for energy and carbon intensities and committed to meeting 15% of its total 2020 energy demand with non-fossil fuel. Despite having achieved important savings in 11th FYP efficiency programs, rising per capita income and the continued economic importance of trade will drive demand for transport activity and fuel use. At the same time, an increasingly 'electrified' economy will drive rapid power demand growth. Greater analysis is therefore needed to understand the underlying drivers, possible trajectories and mitigation potential in the growing industrial, transport and power sectors. This study uses scenario analysis to understand the likely trajectory of China's energy and carbon emissions to 2030 in light of the current and planned portfolio of programs, policies and technology development and ongoing urbanization and demographic trends. It evaluates the potential impacts of alternative transportation and power sector development using two key scenarios, Continued Improvement Scenario (CIS) and Accelerated Improvement Scenario (AIS). CIS represents the most likely path of growth based on continuation of current policies and meeting announced targets and goals, including meeting planned appliance efficiency standard revisions, fuel economy standards, and industrial targets and moderate phase-out of subcritical coal-fired generation with additional non-fossil generation. AIS represents a more aggressive trajectory of accelerated improvement in energy intensity and decarbonized power and transport sectors. A range of sensitivity analysis and power technology scenarios are tested to evaluate the impact of additional actions such as carbon capture and sequestration (CCS) and integrated mine-mouth generation. The CIS and AIS results are also contextualized and compared to model scenarios in other published studies. The results of this study show that China's energy and CO{sub 2} emissions will not likely peak before 2030, although growth is expected to slow after 2020. Moreover, China will be able to meet its 2020 carbon intensity reduction target of 40 to 45% under both CIS and AIS, but only meet its 15% non-fossil fuel target by 2020 under AIS. Under both scenarios, efficiency remains a key resource and has the same, if not greater, mitigation potential as new technologies in transport and power sectors. In the transport sector, electrification will be closely linked the degree of decarbonization in the power sector and EV deployment has little or no impact on China's crude oil import demand. Rather, power generation improvements have the largest sector potential for overall emission mitigation while mine-mouth power generation and CCS have limited mitigation potential compared to fuel switching and efficiency improvements. Comparisons of this study's results with other published studies reveal that CIS and AIS are within the range of other national energy projections but alternative studies rely much more heavily on CCS for carbon reduction. The McKinsey study, in particular, has more optimistic assumptions for reductions in crude oil imports and coal demand in its abatement scenario and has much higher gasoline reduction potential for the same level of EV deployment. Despite these differences, this study's scenario analysis of both transport and power sectors illustrate the necessity for continued efficiency improvements and aggressive power sector decarbonization in flattening China's CO{sub 2} emissions.

G. Fridley, David; Zheng, Nina; T. Aden, Nathaniel

2010-07-01T23:59:59.000Z

374

Industrial Advanced Turbine Systems: Development and Demonstration. Annual report, September 14, 1995--September 30, 1996  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has initiated a program for advanced turbine systems (ATS) that will serve industrial power generation markets. The objective of the cooperative agreements granted under the program is to join the DOE with industry in research and development that will lead to commercial offerings in the private sector. The ATS will provide ultra-high efficiency, environmental superiority, and cost competitiveness. The ATS will foster (1) early market penetration that enhances the global competitiveness of U.S. industry, (2) public health benefits resulting from reduced exhaust gas emissions of target pollutants, (3) reduced cost of power used in the energy-intensive industrial marketplace and (4) the retention and expansion of the skilled U.S. technology base required for the design, development and maintenance of state-of-the-art advanced turbine products. The Industrial ATS Development and Demonstration program is a multi-phased effort. Solar Turbines Incorporated (Solar) has participated in Phases 1 and 2 of the program. On September 14, 1995 Solar was awarded a Cooperative Agreement for Phases 3 and 4 of the program (DE-FC21-95MC31173) by the DOE`s Office of Energy Efficiency and Renewable Energy (EE). Technical administration of the Cooperative Agreement will be provided from EE`s Chicago Operations Office. Contract administration of the Cooperative Agreement will be provided from DOE`s Office of Fossil Energy, Morgantown Energy Technology Center (METC).

NONE

1998-12-31T23:59:59.000Z

375

Program Program Organization Country Region Topic Sector Sector  

Open Energy Info (EERE)

Industrial Energy Efficiency Deployment Project United States Department of Energy USDOE Oak Ridge National Laboratory ORNL Alliance for Energy Efficient Economy India...

376

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

produced. Primary energy associated with coal products wasUse EJ China Residential Energy Use Gas Coal Oil Biomass GasUse EJ China Residential Energy Use Gas Coal Oil Gas Biomass

2006-01-01T23:59:59.000Z

377

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

St Vincent and Grenadine, Suriname, Trinidad and Tobago,St Vincent and Grenadine, Suriname, Trinidad and Tobago,

2006-01-01T23:59:59.000Z

378

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

Energy Consumption 11and a decomposition of energy consumption to understand theData Historical energy consumption and energy-related CO 2

2006-01-01T23:59:59.000Z

379

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

Approximately 30% of total energy consumption is residualrepresented 37% of total energy consumption globally inwe observed how the total energy consumption projected by A1

2006-01-01T23:59:59.000Z

380

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

Agency (IEA), 2002. World Energy Outlook. Paris: IEA/OECD.Agency (IEA), 2004d. World Energy Outlook, Paris, IEA/OECD.Comparison of SRES and World Energy Outlook Scenarios This

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

all fuels including electricity and syngas will be used forGas Electricity Biomass Syngas Space Heating Coal Oil Gas

2006-01-01T23:59:59.000Z

382

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

of projected world energy consumption by fuel type. For theTable 1. World Primary Energy Consumption, A1 and B2has slightly higher world final energy consumption values,

2006-01-01T23:59:59.000Z

383

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

de la Rue du Can, Jonathan Sinton, Ernst Worrell, Zhou Nan,de la Rue du Can, Jonathan Sinton, Ernst Worrell, Zhou Nan,de la Rue du Can, Jonathan Sinton, Ernst Worrell, Zhou Nan,

2006-01-01T23:59:59.000Z

384

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

A1 scenario forecasts GDP energy intensity to continue toby activity levels and the energy intensity of the specificDemand Activity x Energy Intensity Additional information on

2006-01-01T23:59:59.000Z

385

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

Final energy per GDP decreased considerably inper unit of GDP. Final energy per GDP decreased considerablysubstantial decline in final energy demand per unit of GDP.

2006-01-01T23:59:59.000Z

386

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

on significant levels of hydroelectric power have a lowerhas a high share of hydroelectric power has the lowest CO 2

2006-01-01T23:59:59.000Z

387

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

and rural homes exhibit very different energy intensitieshigher demand for energy services than do rural households.that rural households will have a useful energy demand for

2006-01-01T23:59:59.000Z

388

Policies to Reduce Emissions from the Transportation Sector | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilips Color KineticsGrowth Jump to:

389

Reducing Emissions Through Sustainable Transport: Proposal for a Sectoral  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRausWyoming: EnergyElec AssnRedmond,OpenApproach |

390

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

renewables and nuclear energy are equal to one according to the direct equivalent methodology. Regions like Latin America

2006-01-01T23:59:59.000Z

391

CARBON DIOXIDE EMISSION REDUCTION  

E-Print Network [OSTI]

.5 Primary Energy Use and Carbon Dioxide Emissions for Selected US Chemical Subsectors in 1994 ...............................................................................................................16 Table 2.7 1999 Energy Consumption and Specific Energy Consumption (SEC) in the U.S. Cement Efficiency Technologies and Measures in Cement Industry.................22 Table 2.9 Energy Consumption

Delaware, University of

392

Energy Sector Vulnerability to Climate Change: Adaptation Options to Increase Resilience (Presentation)  

SciTech Connect (OSTI)

The U.S. Department of Energy is conducting an assessment of vulnerabilities of the U.S. energy sector to climate change and extreme weather. Emphasizing peer reviewed research, it seeks to quantify vulnerabilities and identify specific knowledge or technology gaps. It draws upon a July 2012 workshop, ?Climate Change and Extreme Weather Vulnerability Assessment of the US Energy Sector?, hosted by the Atlantic Council and sponsored by DOE to solicit industry input.

Newmark, R. L.; Bilello, D.; Macknick, J.; Hallet, K. C.; Anderson, R.; Tidwell, V.; Zamuda, C.

2013-02-01T23:59:59.000Z

393

Industrial Hygienist  

Broader source: Energy.gov [DOE]

A successful candidate in this position wil l serve as an Industrial Hygienist in the Operations Division, providing technical oversight of the Pacific Northwest National Laboratory contractors...

394

The Office of Industrial Technologies technical reports  

SciTech Connect (OSTI)

The US Department of Energy's Office of Industrial Technologies (OIT) conducts R D activities which focus on the objectives of improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial energy conservation. The Office also conducts programs to reduce waste generation, increase recycling efforts, and improve the use of wastes as process feedstocks. An active program of technology transfer and education supports these activities and encourages adoption of new technologies. To accomplish these objectives OIT cooperates with the private sector to identify its technological needs and to share R D efforts. R D is conducted to the point that a new technology is shown to work and that it can be transferred to the private sector end-users. This bibliography contains information on all scientific and technical reports sponsored by the DOE Industrial Energy Conservation Program during the years 1988--1990.

Not Available

1992-01-01T23:59:59.000Z

395

NICE3: Industrial Refrigeration System  

SciTech Connect (OSTI)

Energy Concepts has developed an absorption-augmented system as a cost-effective means of achieving more cooling capacity with a substantial reduction in energy consumption and greenhouse gas emissions for industrial refrigeration. It cuts fuel consumption by 30% by combining an internal combustion engine with a mechanical compression refrigeration system and an absorption refrigeration system. The absorption system is powered by engine waste heat. Conventional industrial refrigeration uses mechanical vapor compression, powered by electric motors, which results in higher energy costs. By the year 2010, the new system could cut fuel consumption by 19 trillion Btu and greenhouse emissions by more than 1 million tons per year.

Simon, P.

1999-09-29T23:59:59.000Z

396

State Air Emission Regulations That Affect Electric Power Producers (Update) (released in AEO2006)  

Reports and Publications (EIA)

Several states have recently enacted air emission regulations that will affect the electricity generation sector. The regulations govern emissions of NOx, SO2, CO2, and mercury from power plants.

2006-01-01T23:59:59.000Z

397

Industrial Demand-Side Management in Texas  

E-Print Network [OSTI]

of programs result in lower consumption and/or lower peak demand, and ultimately reduce the need to build new capacity. Hence demand-side management can be used as a resource option to be considered alongside more traditional supply-side resources in a...INDUSTRIAL DEMAND-SIDE MANAGEMENT IN TEXAS Danielle Jaussaud Economic Analysis Section Public Utility Commission of Texas Austin, Texas ABSTRACT The industrial sector in Texas is highly energy intensive and represents a large share...

Jaussaud, D.

398

U.S. Department of Energy (DOE) Industrial Programs and Their Impacts  

E-Print Network [OSTI]

P.O. Box 999 Battelle Blvd. MS: K6-05 P.O. Box 999 Battelle Blvd. MS: K6-05 Richland, Washington 99352 Richland, Washington 99352 ABSTRACT The U.S. Department of Energy?s Industrial Technologies Program (ITP) has been working... in the nation's indus- trial sector far exceeds any other sector and is more diverse. In 2006, the industrial sector used 32.43 Figure 1. Industrial Energy Flows (Quad), 2006 ESL-IE-08-05-33 Proceedings from the Thirtieth Industrial Energy Technology...

Weakley, S. A.; Roop, J. M.

2008-01-01T23:59:59.000Z

399

Industrial Technologies Program ORNL-developed cast nickel aluminide rolls  

E-Print Network [OSTI]

intensity by 25% over ten years and to reduce industry's carbon footprint. The program works to develop). Our program works to reduce industrial energy intensity and to develop energy saving products with industry to reduce energy use and carbon emissions and to improve industrial competitiveness. We

400

Carbon Emissions: Iron and Steel Industry  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,64397 272 522 542Peru (MillionFood

Note: This page contains sample records for the topic "industrial sector emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

4 September 2014 Industry Skills Fund  

E-Print Network [OSTI]

pertaining to future activities to be funded and the scope of the Single Business Service Initiative on behalf of the broader ATN network. The ATN supports the creation of the Single Business Service with industry figures, including from SME's, in the Government-identified priority sectors of: Food

University of Technology, Sydney

402

Technological Change, Industry Structure and the Environment  

E-Print Network [OSTI]

applied to the projection of GHG emissions from the energy sector" (p.141). This paper extends the work qualitatively in terms of changes in production scale and resource intensity and their resulting impact technological changes are bound to have important implications for the future state of the environment

Watson, Andrew

403

Howell, R.A., 2012 Living with a carbon allowance 1 Living with a carbon allowance: the experiences of Carbon  

E-Print Network [OSTI]

Emissions Trading Scheme operating in the industrial sector. The Sustainable Development Commission has

404

Water Impacts of the Electricity Sector (Presentation)  

SciTech Connect (OSTI)

This presentation discusses the water impacts of the electricity sector. Nationally, the electricity sector is a major end-user of water. Water issues affect power plants throughout the nation.

Macknick, J.

2012-06-01T23:59:59.000Z

405

Estimating carbon emissions from less-than-truckload (LTL) shipments  

E-Print Network [OSTI]

Less-than-truckload (LTL) is a $32-billion sector of the trucking industry that focuses on moving smaller shipments, typically with weights between 100 and 10,000 pounds, that do not require a full trailer to be moved. ...

Veloso de Aguiar, Guilherme

2014-01-01T23:59:59.000Z

406

Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector  

SciTech Connect (OSTI)

The DOE is conducting a comprehensive technical analysis of a flexible-fuel transportation system in the United States -- that is, a system that could easily switch between petroleum and another fuel, depending on price and availability. The DOE Alternative Fuels Assessment is aimed directly at questions of energy security and fuel availability, but covers a wide range of issues. This report examines environmental, health, and safety concerns associated with a switch to alternative- and flexible-fuel vehicles. Three potential alternatives to oil-based fuels in the transportation sector are considered: methanol, compressed natural gas (CNG), and electricity. The objective is to describe and discuss qualitatively potential environmental, health, and safety issues that would accompany widespread use of these three fuels. This report presents the results of exhaustive literature reviews; discussions with specialists in the vehicular and fuel-production industries and with Federal, State, and local officials; and recent information from in-use fleet tests. Each chapter deals with the end-use and process emissions of air pollutants, presenting an overview of the potential air pollution contribution of the fuel --relative to that of gasoline and diesel fuel -- in various applications. Carbon monoxide, particulate matter, ozone precursors, and carbon dioxide are emphasized. 67 refs., 6 figs. , 8 tabs.

Not Available

1991-10-01T23:59:59.000Z

407

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and...

408

Private Sector Outreach and Partnerships | Department of Energy  

Energy Savers [EERE]

Private Sector Outreach and Partnerships Private Sector Outreach and Partnerships ISER's partnerships with the private sector are a strength which has enabled the division to...

409

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network [OSTI]

Private Participation in the Electricity Sector World BankTelecommunications and Electricity Sectors." Governance 19,41 with journalist covering electricity sector, Vladivostok,

Wengle, Susanne Alice

2010-01-01T23:59:59.000Z

410

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network [OSTI]

sustainable energy system was begun, further supporting those goals of increased renewable energy sources and energy efficiency. Sweden

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

411

Analysis of Emissions Calculators for the National Center of Excellence on Displaced Emission Reductions (CEDER): Annual Report  

E-Print Network [OSTI]

In August 2004, the USEPA issued guidance on quantifying the air emission benefits from electric sector energy efficiency and renewable energy. Because there was no clear best strategy, the EPA’s guidance provided a framework and the basic...

Yazdani, Bahman; Culp, Charles; Haberl, Jeff; Baltazar, Juan-Carlos; Do, Sung Lok

412

Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave  

E-Print Network [OSTI]

Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave INFORME para la Sostenibilidad Energética y Ambiental, FUNSEAM. #12;Smart Grids: Sectores y actividades clave eléctrica y los diferentes sectores que forman la smart grid. 6 Figura 2. Evolución y previsión de

Politècnica de Catalunya, Universitat

413

Financial Sector Ups and Downs and the Real Sector: Up by the Stairs and Down by the Parachute  

E-Print Network [OSTI]

May 2012 Financial Sector Ups and Downs and the Real Sector:to reclassifying financial sector ups and downs as turning

Aizenman, Joshua; Pinto, Brian; Sushko, Vladyslav

2012-01-01T23:59:59.000Z

414

The Changing US Electric Sector Business Model  

E-Print Network [OSTI]

The Changing US Electric Sector Business Model CATEE 2013 Clean Air Through Energy Efficiency Conference San Antonio, Texas December 17, 2013 ESL-KT-13-12-57 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16...-18 Copyright © 2013 Deloitte Development LLC. All rights reserved. • Fundamentals of the US Electric Sector Business Model • Today’s Challenges Faced by U.S. Electric Sector • The Math Does Not Lie: A Look into the Sector’s Future • Disruption to Today...

Aliff, G.

2013-01-01T23:59:59.000Z

415

Estakhri and Saylak 1 Potential for Reduced Greenhouse Gas Emissions in Texas Through the Use of  

E-Print Network [OSTI]

per cent of CO2 emissions come from the combustion of fossil fuels, and approximately 30% of those emissions are from the transportation sector. The next largest source of CO2 emissions is from the manufacture of cement and account for approximately 10% of all CO2 emissions (1). When faced

416

Changing Trends in the Bulk Chemicals and Pulp and Paper Industries (released in AEO2005)  

Reports and Publications (EIA)

Compared with the experience of the 1990s, rising energy prices in recent years have led to questions about expectations of growth in industrial output, particularly in energy-intensive industries. Given the higher price trends, a review of expected growth trends in selected industries was undertaken as part of the production of Annual Energy Outlook 2005 (AEO). In addition, projections for the industrial value of shipments, which were based on the Standard Industrial Classification (SIC) system in AEO2004, are based on the North American Industry Classification System (NAICS) in AEO2005. The change in industrial classification leads to lower historical growth rates for many industrial sectors. The impacts of these two changes are highlighted in this section for two of the largest energy-consuming industries in the U.S. industrial sector-bulk chemicals and pulp and paper.

2005-01-01T23:59:59.000Z

417

Private Sector | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowderClimateMeadows, NewPrior Lake,Sector Jump to:

418

Cross-sector Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases on &gamma;-Al2O3.Winter (Part 2) |IOCriticalCross-Sector Sign

419

Industrial Energy Efficiency Technical Review Guidelines and Best Practices  

E-Print Network [OSTI]

of commercial and other sector programs. The following programs were deemed to represent the best combination of applicability and access to relevant information: ? BC Hydro?s Power Smart Partners - Industrial (Transmission and Distribution...) ? Wisconsin?s Focus on Energy ? Industrial ? California Public Utilities Commission?s (CPUC) Southern California Industrial and Agricultural (SCIA) and Pacific Gas & Electric?s (PG&E) Fabrication, Process and Manufacturing Review of Impact Evaluation...

Dalziel, N.

2013-01-01T23:59:59.000Z

420

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network [OSTI]

Electricity Sector in Russia: Regional Aspects " In Economics EducationElectricity Sector in Russia: Regional Aspects " in Economics Education

Wengle, Susanne Alice

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial sector emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum...

422

Energy and GHG Emissions in British Columbia 1990 -2010  

E-Print Network [OSTI]

supply and use, greenhouse gas emissions and energy efficiency in British Columbia Canadian Industrial Energy End-use Data and Analysis Centre (CIEEDAC) Simon Fraser University June 2012 Environment Canada, Natural Resources Canada, Aluminium Industry Association, Canadian Chemical Producers

Pedersen, Tom

423

Synthetic Assessment of Historical Anthropogenic Sulfur Dioxide (SO2) Emissions  

E-Print Network [OSTI]

and climate change since industrial revolution. · This study assesses the original researches on historical 1850, anthropogenic SO2 emissions were distributed mostly by open burning sources and industrial

424

Gas Turbine Emissions  

E-Print Network [OSTI]

technology developers and electric utilities will share emissions reductions in the coming era of pollution allowance trading is becoming prominent on the agendas of strategic planners at technology vendors and the electric power industry ??? ? (1...., "Authority to Construct for Badger Creek Limited," Kern County Air Pollution Control District, Bakersfield.. Ca., June 20, 1989. 3) Wark, K. and Warner, C. F., Air Pollution - Its Origin and Control, Harper and Row, New York, New York, 1976, pp. 453...

Frederick, J. D.

425

An Analysis of the European Emission Trading Scheme  

E-Print Network [OSTI]

An international emissions trading system is a featured instrument in the Kyoto Protocol to the Framework Convention on Climate Change, designed to reduce emissions of greenhouse gases among major industrial countries. The ...

Reilly, John M.

426

Macroscopic theory of dark sector  

E-Print Network [OSTI]

A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant. Massive fields {\\phi}_{I} with {\\phi}^{K}{\\phi}_{K}0 describe two different forms of dark matter. The space-like ({\\phi}^{K}{\\phi}_{K}0) massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the universe. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerate expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the boundary of existence of regular oscillating solutions in the absence of vector fields. The simplicity of the general covariant expression for the energy-momentum tensor allows to display the main properties of the dark sector analytically and avoid unnecessary model assumptions.

Boris E. Meierovich

2014-10-06T23:59:59.000Z

427

INDUST: An Industrial Data Base  

E-Print Network [OSTI]

.5% of the natural gas consump tion, 98.1% of the fuel oil consumption, 99.2% of the coal/coke consumption, and 99.7% of a class of fuels called "other" fuels. Within these 13 indus try groups, INDUST addresses a wide variety of energy-intense industries... the manufac turing sector, Table 1 shows the latest EIA pro visional estimate of energy consumption (in trillion Btu) for 1985. The EIA reports fuel consumption according to five categories: electricity, fuel oil, natural gas, coal and coke, and other...

Wilfert, G. L.; Moore, N. L.

428

The impact on photovoltaic worth of utulity rate and reform and of specific market, financial, and policy variables : a commercialindustrialinstitution sector analysis  

E-Print Network [OSTI]

This work provides an assessment of the economic outlook for photovoltaic systems in the commercial, industrial and institutional sectors in the year 1986. We first summarize the expected cost and performance goals for ...

Dinwoodie, Thomas L.

1980-01-01T23:59:59.000Z

429

Industrial ecology Prosperity Game{trademark}  

SciTech Connect (OSTI)

Industrial ecology (IE) is an emerging scientific field that views industrial activities and the environment as an interactive whole. The IE approach simultaneously optimizes activities with respect to cost, performance, and environmental impact. Industrial Ecology provides a dynamic systems-based framework that enables management of human activity on a sustainable basis by: minimizing energy and materials usage; insuring acceptable quality of life for people; minimizing the ecological impact of human activity to levels that natural systems can sustain; and maintaining the economic viability of systems for industry, trade and commerce. Industrial ecology applies systems science to industrial systems, defining the system boundary to incorporate the natural world. Its overall goal is to optimize industrial activities within the constraints imposed by ecological viability, globally and locally. In this context, Industrial systems applies not just to private sector manufacturing and services but also to government operations, including provision of infrastructure. Sandia conducted its seventeenth Prosperity Game{trademark} on May 23--25, 1997, at the Hyatt Dulles Hotel in Herndon, Virginia. The primary sponsors of the event were Sandia National Laboratories and Los Alamos National Laboratory, who were interested in using the format of a Prosperity Game to address some of the issues surrounding Industrial Ecology. Honorary game sponsors were: The National Science Foundation; the Committee on Environmental Improvement, American Chemical Society; the Industrial and Engineering Chemistry Division, American Chemical Society; the US EPA--The Smart Growth Network, Office of Policy Development; and the US DOE-Center of Excellence for Sustainable Development.

Beck, D.; Boyack, K.; Berman, M.

1998-03-01T23:59:59.000Z

430

Fuel-Neutral Studies of Particulate Matter Transport Emissions  

Broader source: Energy.gov (indexed) [DOE]

characterization with single-cylinder test engines, guided by industry Barrier: Lack of cost-effective emission control Objective: Seek to shorten development time of filtration...

431

The energy sector is comprised of a wide range of businesses involved in the exploration, extraction, production, refining, distribution, and sale of energy. The primary  

E-Print Network [OSTI]

, extraction, production, refining, distribution, and sale of energy. The primary industries within this sector of ways. Some examples include: · Using global surface hourly data for studies of wind energy potentialOVERVIEW The energy sector is comprised of a wide range of businesses involved in the exploration

432

Voluntary agreements for increasing energy-efficiency in industry: Case study of a pilot project with the steel industry in Shandong Province, China  

SciTech Connect (OSTI)

China faces a significant challenge in the years ahead to continue to provide essential materials and products for a rapidly-growing economy while addressing pressing environmental concerns. China's industrial sector is heavily dependent on the country's abundant, yet polluting, coal resources. While tremendous energy conservation and environmental protection achievements were realized in the industrial sector in the past, there remains a great gulf between the China's level of energy efficiency and that of the advanced countries of the world. Internationally, significant energy efficiency improvement in the industrial sector has been realized in a number of countries using an innovative policy mechanism called Voluntary Agreements. This paper describes international experience with Voluntary Agreements in the industrial sector as well as the development of a pilot program to test the use of such agreements with two steel mills in Shandong Province, China.

Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

2003-03-01T23:59:59.000Z

433

Sponsors of CIEEDAC: Natural Resources Canada, Canadian Industry Program for Energy Conservation, Aluminium Industry Association, Canadian Petroleum Products Institute, Canadian Portland Cement Association, Canadian Pulp  

E-Print Network [OSTI]

of REGIONAL TRENDS IN INDUSTRIAL GREENHOUSE GAS EMISSIONS, 1990 - 1996 in Canada Prepared for EnvironmentSponsors of CIEEDAC: Natural Resources Canada, Canadian Industry Program for Energy Conservation. Not for Quotation GHG Emissions, 1990 - 1996 CIEEDAC i March, 2001 Analysis of Regional Trends in Industrial

434

Emission of polycyclic aromatic hydrocarbons in China  

SciTech Connect (OSTI)

Emission of 16 polycyclic aromatic hydrocarbons (PAHs) listed as U.S. Environmental Protection Agency (U.S. EPA) priority pollutants from major sources in China were compiled. Geographical distribution and temporal change of the PAH emission, as well as emission profiles, are discussed. It was estimated that the total PAH emission in China was 25,300 tons in 2003. The emission profile featured a relatively higher portion of high molecular weight (HMW) species with carcinogenic potential due to large contributions of domestic coal and coking industry. Among various sources, biomass burning, domestic coal combustion, and the coking industry contributed 60%, 20%, and 16% of the total emission, respectively. Total emission, emission density, emission intensity, and emission per capita showed geographical variations. In general, the southeastern provinces were characterized by higher emission density, while those in western and northern China featured higher emission intensity and population-normalized emission. Although energy consumption in China went up continuously during the past two decades, annual emission of PAHs fluctuated depending on the amount of domestic coal consumption, coke production, and the efficiency of energy utilization. 47 refs., 6 figs.

Shanshan Xu; Wenxin Liu; Shu Tao [Peking University, Beijing (China). Laboratory for Earth Surface Processes, College of Environmental Sciences

2006-02-01T23:59:59.000Z

435

Energy Conservation Progress and Opportunities in the Pulp and Paper Industry  

E-Print Network [OSTI]

In 1980 the pulp and paper industry was the third ranking consumer of total purchased fuels and energy in the U.S. industrial sector and the highest single industry in terms of residual oil consumption. Over the past decade in response to rapidly...

Watkins, J. J.; Hunter, W. D.

1984-01-01T23:59:59.000Z

436

Opportunities to improve energy efficiency in the U.S. pulp and paper industry  

SciTech Connect (OSTI)

This paper analyzes the energy efficiency and carbon dioxide emissions reductions potential of the U.S. pulp and paper industry, one of the largest energy users in the U.S. manufacturing sector. We examined over 45 commercially available state-of-the-art technologies and measures. The measures were characterized, and then ordered on the basis of cost-effectiveness. The report indicates that there still exists significant potential for energy savings and carbon dioxide emissions reduction in this industry. The cost-effective potential for energy efficiency improvement is defined as having a simple pay-back period of three years or less. Not including increased recycling the study identifies a cost-effective savings potential of 16% of the primary energy use in 1994. Including increased recycling leads to a higher potential for energy savings, i.e. a range of cost-effective savings between 16% and 24% of primary energy use. Future work is needed to further elaborate on key energy efficiency measures identified in the report including barriers and opportunities for increased recycling of waste paper.

Worrell, Ernst; Martin, Nathan; Anglani, Norma; Einstein, Dan; Krushch, Marta; Price, Lynn

2001-02-02T23:59:59.000Z

437

Examination of the factors and issues for an environmental technology utilization partnership between the private sector and the Department of Energy. Final report  

SciTech Connect (OSTI)

The Department of Energy (DOE) held a meeting on November 12, 1992 to evaluate the DOE relations with industry and university partners concerning environmental technology utilization. The goal of this meeting was to receive feedback from DOE industry and university partners for the identification of opportunities to improve the DOE cooperative work processes with the private sector. The meeting was designed to collect information and to turn that information into action to improve private sector partnerships with DOE.

Brouse, P.

1997-05-01T23:59:59.000Z

438

Yucca MountainTransportation: Private Sector Perspective  

Broader source: Energy.gov (indexed) [DOE]

Transportation: Private Sector "Lessons Learned" US Transport Council David Blee Executive Director dblee@ustransportcouncil.org DOE Transportation External Coordination (TEC)...

439

Decoupling limits in multi-sector supergravities  

SciTech Connect (OSTI)

Conventional approaches to cosmology in supergravity assume the existence of multiple sectors that only communicate gravitationally. In principle these sectors decouple in the limit M{sub pl}??. In practice such a limit is delicate: for generic supergravities, where sectors are combined by adding their Kähler functions, the separate superpotentials must contain non-vanishing vacuum expectation values supplementing the naïve global superpotential. We show that this requires non-canonical scaling in the naïve supergravity superpotential couplings to recover independent sectors of globally supersymmetric field theory in the decoupling limit M{sub pl} ? ?.

Achúcarro, Ana; Hardeman, Sjoerd; Schalm, Koenraad; Aalst, Ted van der [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, Leiden (Netherlands); Oberreuter, Johannes M., E-mail: achucar@lorentz.leidenuniv.nl, E-mail: j.m.oberreuter@uva.nl, E-mail: kschalm@lorentz.leidenuniv.nl, E-mail: vdaalst@lorentz.leidenuniv.nl [Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Science Park 904, Amsterdam (Netherlands)

2013-03-01T23:59:59.000Z

440

DOE Issues Energy Sector Cyber Organization NOI  

Broader source: Energy.gov (indexed) [DOE]

sector stakeholders to protect the bulk power electric grid and aid the integration of smart grid technology to enhance the security of the grid. The cyber organization is...

Note: This page contains sample records for the topic "industrial sector emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Accelerating Investments in the Geothermal Sector, Indonesia...  

Open Energy Info (EERE)

in the Geothermal Sector, Indonesia (Presentation) Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Accelerating Investments in the Geothermal...

442

Draft Energy Sector Cybersecurity Framework Implementation Guidance...  

Broader source: Energy.gov (indexed) [DOE]

and Technology (NIST) released a Cybersecurity Framework. DOE has collaborated with private sector stakeholders through the Electricity Subsector Coordinating Council (ESCC)...

443

Public Sector New Construction and Retrofit Program  

Broader source: Energy.gov [DOE]

The Illinois Department of Commerce and Economic Opportunity (DCEO) Bureau of Energy and Recycling administers the public sector energy efficiency programs required by the Illinois Energy...

444

Public Sector Energy Efficiency Aggregation Program  

Broader source: Energy.gov [DOE]

The Illinois Department of Commerce and Economic Opportunity (DCEO) administers the Illinois Energy Now programs, including the Public Sector Energy Efficiency Aggregation Program. The program will...

445

Energy Sector Cybersecurity Framework Implementation Guidance...  

Broader source: Energy.gov (indexed) [DOE]

Technology (NIST) released a Cybersecurity Framework. DOE has collaborated with private sector stakeholders through the Electricity Subsector Coordinating Council (ESCC) and the...

446

Energy Sector Cybersecurity Framework Implementation Guidance...  

Broader source: Energy.gov (indexed) [DOE]

Cybersecurity Framework Implementation Guidance - Notice of Public Comment: Federal Register Notice, Volume 79, No. 177, September 12, 2014 Energy Sector Cybersecurity Framework...

447

Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications  

SciTech Connect (OSTI)

Buildings are at the locus of three trends driving China's increased energy use and emissions: urbanization, growing personal consumption, and surging heavy industrial production. Migration to cities and urban growth create demand for new building construction. Higher levels of per-capita income and consumption drive building operational energy use with demand for higher intensity lighting, thermal comfort, and plug-load power. Demand for new buildings, infrastructure, and electricity requires heavy industrial production. In order to quantify the implications of China's ongoing urbanization, rising personal consumption, and booming heavy industrial sector, this study presents a lifecycle assessment (LCA) of the energy use and carbon emissions related to residential and commercial buildings. The purpose of the LCA model is to quantify the impact of a given building and identify policy linkages to mitigate energy demand and emissions growth related to China's new building construction. As efficiency has become a higher priority with growing energy demand, policy and academic attention to buildings has focused primarily on operational energy use. Existing studies estimate that building operational energy consumption accounts for approximately 25% of total primary energy use in China. However, buildings also require energy for mining, extracting, processing, manufacturing, and transporting materials, as well as energy for construction, maintenance, and decommissioning. Building and supporting infrastructure construction is a major driver of industry consumption--in 2008 industry accounted for 72% of total Chinese energy use. The magnitude of new building construction is large in China--in 2007, for example, total built floor area reached 58 billion square meters. During the construction boom in 2007 and 2008, more than two billion m{sup 2} of building space were added annually; China's recent construction is estimated to account for half of global construction. Lawrence Berkeley National Laboratory (LBNL) developed an integrated LCA model to capture the energy and emissions implications of all aspects of new buildings from material mining through construction, operations, and decommissioning. Over the following four sections, this report describes related existing research, the LBNL building LCA model structure and results, policy linkages of this lifecycle assessment, and conclusions and recommendations for follow-on work. The LBNL model is a first-order approach to gathering local data and applying lifecycle assessment to buildings in the Beijing area--it represents one effort among a range of established, predominantly American and European, LCA models. This report identifies the benefits, limitations, and policy applications of lifecycle assessment modeling for quantifying the energy and emissions impacts of specific residential and commercial buildings.

Aden, Nathaniel; Qin, Yining; Fridley, David

2010-09-15T23:59:59.000Z

448

Climate Policy and the Long-Term Evolution of the U.S. Buildings Sector  

SciTech Connect (OSTI)

Buildings are the dominant driver of daily and seasonal electric load cycles, and account for 40 percent of U.S. final energy use. They account for roughly 10 percent of direct U.S. CO2 emissions and roughly 40 percent including indirect emissions from electricity generation. This paper explores the possible evolution of this sector over the coming century, its potential role in climate action and response to climate policies, and the potential benefits of advances in building technologies for addressing climate change. The paper presents a set of scenarios based on a detailed, service-based model of the U.S. buildings sector that is embedded within a long-term, global, integrated assessment model, MiniCAM. Eight scenarios are created in total, combining two sets of assumptions regarding U.S. building service demand growth, two sets of assumptions regarding the improvements in building energy technologies, and two assumptions regarding long-term U.S. climate action – a no-climate-action assumption and an assumption of market-based policies to reduce U.S. CO2 emissions consistent with a 450 ppmv global target. Through these eight scenarios, the paper comments on the implications of continued growth in building service demands, the ability of efficiency measures to reduce emissions, and the strong link between decarbonization of electricity generation and building sector emissions.

Kyle, G. Page; Clarke, Leon E.; Rong, Fang; Smith, Steven J.

2010-04-01T23:59:59.000Z

449

Electricity sector restructuring and competition : lessons learned  

E-Print Network [OSTI]

I explore the advantages of tradable emission permits over uniform emission standards when the regulator has incomplete information on firms? emissions and costs of production and abatement (e.g., air pollution in large ...

Montero, Juan-Pablo

2004-01-01T23:59:59.000Z

450

Emissions trading to reduce greenhouse gas emissions in the United States : the McCain-Lieberman Proposal  

E-Print Network [OSTI]

The Climate Stewardship Act of 2003 (S. 139) is the most detailed effort to date to design an economy-wide cap-and-trade system for US greenhouse gas emissions reductions. The Act caps sectors at their 2000 emissions in ...

Paltsev, Sergey.

451

National Electric Sector Cybersecurity Organization Resource (NESCOR)  

SciTech Connect (OSTI)

The goal of the National Electric Sector Cybersecurity Organization Resource (NESCOR) project was to address cyber security issues for the electric sector, particularly in the near and mid-term. The following table identifies the strategies from the DOE Roadmap to Achieve Energy Delivery Systems Cybersecurity published in September 2011 that are applicable to the NESCOR project.

None, None

2014-06-30T23:59:59.000Z

452

Institute of Public Sector Accounting Research  

E-Print Network [OSTI]

THE STATE" New Public Sector Seminar, Edinburgh, 6-7th November 2014 Co-Chairs: Liisa Kurunmaki, Irvine and consultants depend on in the management of public service organisations, and what is the statusInstitute of Public Sector Accounting Research I·P·S·A·R In Government, Public Services

Edinburgh, University of

453

Managing Technical Risk: Understanding Private Sector  

E-Print Network [OSTI]

action. Our study seeks to inform the decisions of both government managers and private entrepreneursApril 2000 Managing Technical Risk: Understanding Private Sector Decision Making on Early Stage 00-787 Managing Technical Risk Understanding Private Sector Decision Making on Early Stage Technology

454

Sustainability Policy and Green Growth of the South Korean Construction Industry  

E-Print Network [OSTI]

South Korea is among a host of countries trying to achieve sustainable development across whole industry sectors by adopting "Green Growth" as the vision of the national development in the Korean government. The government has executed a vast effort...

Jeong, Hwayeon

2011-10-21T23:59:59.000Z

455

'Tilted' Industrial Electric Rates: A New Negative Variable for Energy Engineers  

E-Print Network [OSTI]

The cost of purchased electricity for industry is rising even faster than for other sectors. Conventional means of reducing power costs include internal techniques like load management, demand controls and energy conservation. External mechanisms...

Greenwood, R. W.

1981-01-01T23:59:59.000Z

456

Technology partnerships: Enhancing the competitiveness, efficiency, and environmental quality of American industry  

SciTech Connect (OSTI)

An overview of the Department of Energy`s Office of Industrial Technologies and its private sector partnerships is presented. Commercial success stories and real-world benefits of the technology partnerships are discussed.

NONE

1995-04-01T23:59:59.000Z

457

Economic Contributions of the Green Industry in the United States, 2007  

E-Print Network [OSTI]

include wholesale nursery, greenhouse and sod growers, landscape architects, contractors and maintenance, albeit slowing somewhat in recent years. The landscape design, construction, and maintenance sector has associated with ornamental plants, landscape and garden supplies and equipment. Segments of the industry

Florida, University of

458

Presentation 2.3: The sustainable forest products industry, carbon and climate change Mikael Hannus  

E-Print Network [OSTI]

emissions, the forest products industry can - become more energy efficient and increase its share of biomass International Seminar onFAO IEA ICFPA International Seminar on Energy and the Forest Products IndustryEnergy the industry. To assist in the efforts to reduce society's energy use and greenhouse gas emissions, the forest

459

“What Efficiency Projects are Being Installed in the Pulp and Paper Industry”  

E-Print Network [OSTI]

for this industrial sector. This paper would discuss these projects and trends to show what is working for the real investments in efficiency for the Pulp and Paper Sector. Also included in this paper will be a description of the Pulp and Paper Energy Best Practices...

Nicol, J.

2008-01-01T23:59:59.000Z

460

Industrial Users  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planningtoA Journey Inside the Complex andIndustrial

Note: This page contains sample records for the topic "industrial sector emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Industry Economists  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planningtoA Journey Inside the ComplexIndustry

462

Industry @ ALS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portaldefault Sign In AboutIn theIndustry @ ALS

463

Surety of the nation`s critical infrastructures: The challenge restructuring poses to the telecommunications sector  

SciTech Connect (OSTI)

The telecommunications sector plays a pivotal role in the system of increasingly connected and interdependent networks that make up national infrastructure. An assessment of the probable structure and function of the bit-moving industry in the twenty-first century must include issues associated with the surety of telecommunications. The term surety, as used here, means confidence in the acceptable behavior of a system in both intended and unintended circumstances. This paper outlines various engineering approaches to surety in systems, generally, and in the telecommunications infrastructure, specifically. It uses the experience and expectations of the telecommunications system of the US as an example of the global challenges. The paper examines the principal factors underlying the change to more distributed systems in this sector, assesses surety issues associated with these changes, and suggests several possible strategies for mitigation. It also studies the ramifications of what could happen if this sector became a target for those seeking to compromise a nation`s security and economic well being. Experts in this area generally agree that the U. S. telecommunications sector will eventually respond in a way that meets market demands for surety. Questions remain open, however, about confidence in the telecommunications sector and the nation`s infrastructure during unintended circumstances--such as those posed by information warfare or by cascading software failures. Resolution of these questions is complicated by the lack of clear accountability of the private and the public sectors for the surety of telecommunications.

Cox, R.; Drennen, T.E.; Gilliom, L.; Harris, D.L.; Kunsman, D.M.; Skroch, M.J.

1998-04-01T23:59:59.000Z

464

Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 1  

SciTech Connect (OSTI)

This volume contains input data and parameters used in the model of the transportation sector of the National Energy Modeling System. The list of Transportation Sector Model variables includes parameters for the following: Light duty vehicle modules (fuel economy, regional sales, alternative fuel vehicles); Light duty vehicle stock modules; Light duty vehicle fleet module; Air travel module (demand model and fleet efficiency model); Freight transport module; Miscellaneous energy demand module; and Transportation emissions module. Also included in these appendices are: Light duty vehicle market classes; Maximum light duty vehicle market penetration parameters; Aircraft fleet efficiency model adjustment factors; and List of expected aircraft technology improvements.

NONE

1998-01-01T23:59:59.000Z

465

Pacific Rim Summit on Industrial Biotechnology & Bioenergy  

Broader source: Energy.gov [DOE]

The ninth annual Pacific Rim Summit on Industrial Biotechnology and Bioenergy will be held from December 7–9, 2014, in San Diego, California, at the Westin Gaslamp Quarter. Bringing together representatives from various countries all around the Pacific Rim, this event will focus on the growth of the industrial biotechnology and bioenergy sectors in North America and the Asia-Pacific region. Glenn Doyle, BETO's Deployment & Demonstration Technology Manager, will be moderating and speaking at a session on entitled "Utilizing Strategic Partnerships to Grow Your Business" on December 9.

466

Encouraging Industrial Demonstrations of Fuel Cell Applications  

E-Print Network [OSTI]

amounts of electricity and process heat; yet none of these have tested a fuel cell. THE HARKET A recent study performed by the Department of Energy (reference 1) stated, "It is possi ble that the on-site market for fuel cells may eventually become... as large worldwide as that for electric utility fuel cell systems." The study included the industrial sector as part of the on-site market. It went on to state, "The potential industrial cogenera tion market is at present unknown. It may be as much...

Anderson, J. M.

467

India's Fertilizer Industry: Productivity and Energy Efficiency  

SciTech Connect (OSTI)

Historical estimates of productivity growth in India's fertilizer sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Our analysis shows that in the twenty year period, 1973 to 1993, productivity in the fertilizer sector increased by 2.3% per annum. An econometric analysis reveals that technical progress in India's fertilizer sector has been biased towards the use of energy, while it has been capital and labor saving. The increase in productivity took place during the era of total control when a retention price system and distribution control was in effect. With liberalization of the fertilizer sector and reduction of subsidies productivity declined substantially since the early 1990s. Industrial policies and fiscal incentives still play a major role in the Indian fertilizer sect or. As substantial energy savings and carbon reduction potential exists, energy policies can help overcome barriers to the adoption of these measures in giving proper incentives and correcting distorted prices.

Schumacher, K.; Sathaye, J.

1999-07-01T23:59:59.000Z

468

Mechanical & Industrial Engineering  

E-Print Network [OSTI]

Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board October 15, 2010 #12;Mechanical & Industrial Engineering 2 MIE Dorothy Adams Undergraduate/Graduate Secretary David Schmidt Associate Professor & Graduate Program Director #12;Mechanical & Industrial Engineering 3 MIE James Rinderle

Mountziaris, T. J.

469

Research in Industrial Combustion Systems - Current and Future R&D  

E-Print Network [OSTI]

/DIP have funded R&D primarily directed to applications that would benefit the industrial sector. The following material briefly describes some of the GRI2.3 and DOE/Olp3.4 program activi ties in industrial combustion systems. The overall goal of DOE... technology develop ments in gas-fired equipment. GRI's emphasis is on developing generic technologies which have diverse applications in many industries and on integrating these technologies in selected industries where the present gas load...

Rebello, W. J.; Keller, J. G.

470

Transportation Sector Model of the National Energy Modeling System. Volume 1  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

NONE

1998-01-01T23:59:59.000Z

471

Briefing Note 2010 -2 Tax Fraud from Emissions Trading in the European Union  

E-Print Network [OSTI]

Briefing Note 2010 - 2 7 May 2010 Tax Fraud from Emissions Trading in the European Union Neil Tansey and Ivan Watson Issue The European Union Emissions Trading Scheme (EU ETS) began in 2005 as the largest multi-country and multi-sector greenhouse gas emissions trading system in the world by volume

Pedersen, Tom

472

Engineering Industrial & Systems  

E-Print Network [OSTI]

Industrial Engineering Department of Industrial & Systems Engineering Leslie Monplaisir, Ph powerful tool sets used in industry today. -Brent Gillett, BSIE 2007 Advanced Planning Engineer at BMW I is available at: http://ise.wayne.edu/bs-industrial/index What is Industrial Engineering? The industrial

Berdichevsky, Victor

473

INDUSTRIAL ENGINEERING Industrial engineering is concerned  

E-Print Network [OSTI]

INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. Industrial engineers design and run the factories and systems

474

INDUSTRIAL ENGINEERING Industrial engineering is concerned  

E-Print Network [OSTI]

INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. The focus of industrial engineering is on process improvement

475

Impact of recent energy legislation on the aluminum industry  

SciTech Connect (OSTI)

This report examines the aluminum industry's technology in energy use and emissions control. Data on consumption and pollution levels are presented. A history of the aluminum industry in the Pacific Northwest, its role in providing power reserves, and how that role fits into the present power situation are given. The Northwest Power Act, the rates the industry will probably pay as a result of the Act, the implications of those rates to the industry, as well as the availability of federal power to the industry are discussed. Finally, the Act's effects on the relative competitiveness of the industry in both domestic and world markets are examined.

Edelson, E.; Emery, J.G.; Hopp, W.J.; Kretz, A.L.

1981-06-01T23:59:59.000Z

476

Implications for decision making: Auto industry perspectives  

SciTech Connect (OSTI)

Implications for decision making in areas related to policy towards greenhouse gas emissions are discussed from the perspective of the auto industry. Two methods of reducing fuel use are discussed: increasing fuel efficiency of automobiles and reducing vehicle fuel use by other methods. Regulatory and market-driven control of fuel consumption are discussed. It is concluded that the automobile industry would prefer market-driven control of fuel consumption to regulatory control of fuel efficiency.

Leonard, S.A. [General Motors Technical Center, Warren, MI (United States)

1992-12-31T23:59:59.000Z

477

Energy Department Announces New Private Sector Partnership to...  

Office of Environmental Management (EM)

Energy Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate...

478

Energy Department Announces New Private Sector Partnership to...  

Office of Environmental Management (EM)

Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate Renewable...

479

Combined Heat & Power Technology Overview and Federal Sector...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat & Power Technology Overview and Federal Sector Deployment Combined Heat & Power Technology Overview and Federal Sector Deployment Presentation covers the Combined...

480

Climate Change and the Transporation Sector - Challenges and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Climate Change and the Transporation Sector - Challenges and Mitigation Options Climate Change and the Transporation Sector - Challenges and Mitigation Options 2003 DEER Conference...

Note: This page contains sample records for the topic "industrial sector emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Changes Sweeping Through the Electricity Sector: Moving toward...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Changes Sweeping Through the Electricity Sector: Moving toward a 21st Century Electricity System Changes Sweeping Through the Electricity Sector: Moving toward a 21st Century...

482

EIA Energy Efficiency-Commercial Buildings Sector Energy Intensities...  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities: 1992- 2003 Released Date: December 2004 Page Last Revised: August 2009 These tables...

483

Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...  

Broader source: Energy.gov (indexed) [DOE]

Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program 2012 DOE Hydrogen...

484

Energy-Sector Stakeholders Attend the Department of Energy's...  

Broader source: Energy.gov (indexed) [DOE]

Energy-Sector Stakeholders Attend the Department of Energy's 2010 Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's...

485

Emission control technology  

SciTech Connect (OSTI)

Environmental protection is indispensable for preserving the earth for later generations. Indeed, industrial development has made our life rich; however, it also accelerates environmental pollution. Above all, such global problems as acid rain caused by SOx and NOx emissions and air pollution caused by particulates have become serious in recent years. Countermeasures currently in service or under development for these problems include: upgrading of fuel-burning systems; conversion of energy sources to clean fuels; pretreatment of fuels; and flue gas treatment. This chapter focuses on technologies that treat flue gases including the circumstances of the development of the technologies.

Yamaguchi, Fumihiko

1993-12-31T23:59:59.000Z

486

Electricity sector restructuring and competition : lessons learned  

E-Print Network [OSTI]

We now have over a decade of experience with the privatization, restructuring, regulatory reform, and wholesale and retail competition in electricity sectors around the world. The objectives and design attributes of these ...

Joskow, Paul L.

2003-01-01T23:59:59.000Z

487

Photovoltaic industry progress through 1984  

SciTech Connect (OSTI)

The growth of the US photovoltaics (PV) industry over the past decade has been impressive. First designed to provide power for satellites using high-cost production techniques, PV is now the economical choice in many remote terrestrial applications. The remarkable growth of PV in terms of quality of cells and modules, production techniques, and system design, was initiated by a cooperative effort of the US Government and the domestic PV manufacturers. European and Japanese firms entered the PV industry later, but are also growing rapidy. The Europeans continue to supply PV systems for village electrification and water pumping to many Third World countries. The Japanese have been developing the amorphous silicon (A-Si) technology by expanding its use in consumer goods. The world PV industry saw dramatic changes in industry ownership and in the emphasis on developing new and improved technology during 1984. The objective of this report is to present information on the developments of the world PV industry and focuses on developments occurring in 1984. Information is presented on a regional basis (US, Europe, Japan, other) to avoid disclosing company-confidential data. All information was gleaned from several sources, including a review of the technical literature and direct contacts with PV manufacturers. Prior to publishing the regional totals, all numbers were compared with those of other sources. The information contained in this report is prepared for use by the Department of Energy for their use in long-term R and D planning. However, this information should also be of interest by PV manufacturers and to those who may be contemplating entering the PV market. PV shipments for 1984, government supports for PV, and various PV market sectors are discussed.

Watts, R.L.; Smith, S.A.; Dirks, J.A.

1985-04-01T23:59:59.000Z

488

India's pulp and paper industry: Productivity and energy efficiency  

SciTech Connect (OSTI)

Historical estimates of productivity growth in India's pulp and paper sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both statistical and econometric estimates of productivity growth for this sector. Their results show that productivity declined over the observed period from 1973-74 to 1993-94 by 1.1% p.a. Using a translog specification the econometric analysis reveals that technical progress in India's pulp and paper sector has been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protection afforded by high tariffs on imported paper products and other policies, which allowed inefficient, small plants to enter the market and flourish. Will these trends continue into the future, particularly where energy use is concerned? The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with liberalization of the sector, and tighter environmental controls, the industry is moving towards higher efficiency and productivity. However, the analysis also shows that because these improvements are being hampered by significant financial and other barriers the industry might have a long way to go.

Schumacher, Katja

1999-07-01T23:59:59.000Z

489

The Economics of Public Sector Information  

E-Print Network [OSTI]

result in incentives for over-investment in quality and capacity improvements because, by over-investing, the PSIH stimulates demand and obtains a larger subsidy. In terms of responsiveness an organization operating a more ‘commercial’ pricing policy (e... area (building especially), or keeping up to date with the decisions of their elected representatives. While much data is supplied from outside the public sector, compared to many other areas of the economy, the public sector plays an unusually...

Pollock, Rufus

490

Broadening Industry Governance to Include Nonproliferation  

SciTech Connect (OSTI)

As industry is the first line of defense in detecting and thwarting illicit trade networks, the engagement of the private sector is critical to any government effort to strengthen existing mechanisms to protect goods and services throughout the supply chain. This study builds on previous PNNL work to continue to evaluate means for greater industry engagement to complement and strengthen existing governmental efforts to detect and stem the trade of illicit goods and to protect and secure goods that could be used in making a weapon of mass destruction. Specifically, the study evaluates the concept of Industry Self Regulation, defined as a systematic voluntary program undertaken by an industry or by individual companies to anticipate, implement, supplement, or substitute for regulatory requirements in a given field, generally through the adoption of best practices. Through a series of interviews with companies with a past history of non-compliance, trade associations and NGOs, the authors identify gaps in the existing regulatory infrastructure, drivers for a self regulation approach and the form such an approach might take, as well as obstacles to be overcome. The authors conclude that it is at the intersection of industry, government, and security that—through collaborative means—the effectiveness of the international nonproliferation system—can be most effectively strengthened to the mutual benefit of both government and the private sector. Industry has a critical stake in the success of this regime, and has the potential to act as an integrating force that brings together the existing mechanisms of the global nonproliferation regime: export controls, physical protection, and safeguards. The authors conclude that industry compliance is not enough; rather, nonproliferation must become a central tenant of a company’s corporate culture and be viewed as an integral component of corporate social responsibility (CSR).

Hund, Gretchen; Seward, Amy M.

2008-11-11T23:59:59.000Z

491

The Effect of Uncertainty on Pollution Abatement Investments: Measuring Hurdle Rates for Swedish Industry  

E-Print Network [OSTI]

The Effect of Uncertainty on Pollution Abatement Investments: Measuring Hurdle Rates for Swedish Industry Abstract: We estimate hurdle rates for firms' investments in pollution abatement technology, using, oil price uncertainty, abatement investment, sulfur emissions, pulp and paper industry, energy

Paris-Sud XI, Université de

492

E-Print Network 3.0 - advancing industrial efficiency Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

% 70 80 94 2010 Industrial Natural Gas Price MMBtu 5.19 5.19 5... of Existing Coal Industrial Boilers with Efficient Natural Gas Boilers A CO2 emissions reduction...

493

Climate Change Concerns and the Likely Impacts on Industrial Energy R&D  

E-Print Network [OSTI]

emissions, efforts to achieve this goal must involve industry. The most cost effective, politically acceptable and sustainable way to reduce GHGs is to invest in low or zero carbon generation technology and energy efficiency. Therefore, industry needs...

Foust, T. D.; Kaarsberg, T. M.

494

Energy Efficiency Services Sector: Workforce Size and Expectations for Growth  

SciTech Connect (OSTI)

The energy efficiency services sector (EESS) is poised to become an increasingly important part of the U.S. economy. Climate change and energy supply concerns, volatile and increasing energy prices, and a desire for greater energy independence have led many state and national leaders to support an increasingly prominent role for energy efficiency in U.S. energy policy. The national economic recession has also helped to boost the visibility of energy efficiency, as part of a strategy to support economic recovery. We expect investment in energy efficiency to increase dramatically both in the near-term and through 2020 and beyond. This increase will come both from public support, such as the American Recovery and Reinvestment Act (ARRA) and significant increases in utility ratepayer funds directed toward efficiency, and also from increased private spending due to codes and standards, increasing energy prices, and voluntary standards for industry. Given the growing attention on energy efficiency, there is a concern among policy makers, program administrators, and others that there is an insufficiently trained workforce in place to meet the energy efficiency goals being put in place by local, state, and federal policy. To understand the likelihood of a potential workforce gap and appropriate response strategies, one needs to understand the size, composition, and potential for growth of the EESS. We use a bottom-up approach based upon almost 300 interviews with program administrators, education and training providers, and a variety of EESS employers and trade associations; communications with over 50 sector experts; as well as an extensive literature review. We attempt to provide insight into key aspects of the EESS by describing the current job composition, the current workforce size, our projections for sector growth through 2020, and key issues that may limit this growth.

Goldman, Charles; Fuller, Merrian C.; Stuart, Elizabeth; Peters, Jane S.; McRae, Marjorie; Albers, Nathaniel; Lutzenhiser, Susan; Spahic, Mersiha

2010-03-22T23:59:59.000Z

495

The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency  

SciTech Connect (OSTI)

With the emergence of China as the world's largest energy consumer, the awareness of developing country energy consumption has risen. According to common economic scenarios, the rest of the developing world will probably see an economic expansion as well. With this growth will surely come continued rapid growth in energy demand. This paper explores the dynamics of that demand growth for electricity in the residential sector and the realistic potential for coping with it through efficiency. In 2000, only 66% of developing world households had access to electricity. Appliance ownership rates remain low, but with better access to electricity and a higher income one can expect that households will see their electricity consumption rise significantly. This paper forecasts developing country appliance growth using econometric modeling. Products considered explicitly - refrigerators, air conditioners, lighting, washing machines, fans, televisions, stand-by power, water heating and space heating - represent the bulk of household electricity consumption in developing countries. The resulting diffusion model determines the trend and dynamics of demand growth at a level of detail not accessible by models of a more aggregate nature. In addition, the paper presents scenarios for reducing residential consumption through cost-effective and/or best practice efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, which allows for a realistic assessment of efficiency opportunities at the national or regional level. The past decades have seen some of the developing world moving towards a standard of living previously reserved for industrialized countries. Rapid economic development, combined with large populations has led to first China and now India to emerging as 'energy giants', a phenomenon that is expected to continue, accelerate and spread to other countries. This paper explores the potential for slowing energy consumption and greenhouse gas emissions in the residential sector in developing countries and evaluates the potential of energy savings and emissions mitigation through market transformation programs such as, but not limited to Energy Efficiency Standards and Labeling (EES&L). The bottom-up methodology used allows one to identify which end uses and regions have the greatest potential for savings.

Letschert, Virginie; McNeil, Michael A.

2008-05-13T23:59:59.000Z

496

Electricity Use in the Pacific Northwest: Utility Historical Sales by Sector, 1989 and Preceding Years.  

SciTech Connect (OSTI)

This report officially releases the compilation of regional 1989 retail customer sector sales data by the Bonneville Power Administration. This report is intended to enable detailed examination of annual regional electricity consumption. It gives statistics covering the time period 1970--1989, and also provides observations based on statistics covering the 1983--1989 time period. The electricity use report is the only information source that provides data obtained from each utility in the region based on the amount of electricity they sell to consumers annually. Data is provided on each retail customer sector: residential, commercial, industrial, direct-service industrial, and irrigation. The data specifically supports forecasting activities, rate development, conservation and market assessments, and conservation and market program development and delivery. All of these activities require a detailed look at electricity use. 25 figs., 34 tabs.

United States. Bonneville Power Administration.

1990-06-01T23:59:59.000Z

497

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network [OSTI]

Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THEEVEN BEYOND MANURE-ASSOCIATED METHANE EMISSIONS, INDUSTRIAL

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

498

Analysis of Energy-Efficiency Opportunities for the Pulp and Paper Industry in China  

E-Print Network [OSTI]

and Emission Reduction Technologies. Food and AgriculturalIEA). 2009. Energy Technology Transitions for Industry -IEA). 2010. Energy Technology Perspectives - Scenarios and

Kong, Lingbo

2014-01-01T23:59:59.000Z

499

Optimal Production Policy under the Carbon Emission Market  

E-Print Network [OSTI]

Optimal Production Policy under the Carbon Emission Market Redouane Belaouar Arash Fahim Nizar Scheme (EU ETS) which provides a way to control the emission of CO2 within carbon polluters through carbon emission. Within ETS, certain industrial installations with intensive carbon pollution are given

Touzi, Nizar

500

Life Cycle Assessment Comparing the Use of Jatropha Biodiesel in the Indian Road and Rail Sectors  

SciTech Connect (OSTI)

This life cycle assessment of Jatropha biodiesel production and use evaluates the net greenhouse gas (GHG) emission (not considering land-use change), net energy value (NEV), and net petroleum consumption impacts of substituting Jatropha biodiesel for conventional petroleum diesel in India. Several blends of biodiesel with petroleum diesel are evaluated for the rail freight, rail passenger, road freight, and road-passenger transport sectors that currently rely heavily on petroleum diesel. For the base case, Jatropha cultivation, processing, and use conditions that were analyzed, the use of B20 results in a net reduction in GHG emissions and petroleum consumption of 14% and 17%, respectively, and a NEV increase of 58% compared with the use of 100% petroleum diesel. While the road-passenger transport sector provides the greatest sustainability benefits per 1000 gross tonne kilometers, the road freight sector eventually provides the greatest absolute benefits owing to substantially higher projected utilization by year 2020. Nevertheless, introduction of biodiesel to the rail sector might present the fewest logistic and capital expenditure challenges in the near term. Sensitivity analyses confirmed that the sustainability benefits are maintained under multiple plausible cultivation, processing, and distribution scenarios. However, the sustainability of any individual Jatropha plantation will depend on site-specific conditions.

Whitaker, M.; Heath, G.

2010-05-01T23:59:59.000Z