Powered by Deep Web Technologies
Note: This page contains sample records for the topic "industrial residential solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Regional comparisons of on-site solar potential in the residential and industrial sectors  

SciTech Connect

Regional and sub-regional differences in the potential development of decentralized solar technologies are studied. Two sectors of the economy were selected for intensive analysis: the residential and industrial sectors. In both investigations, the sequence of analysis follows the same general steps: (1) selection of appropriate prototypes within each land-use sector disaggregated by census region; (2) characterization of the end-use energy demand of each prototype in order to match an appropriate decentralized solar technology to the energy demand; (3) assessment of the energy conservation potential within each prototype limited by land use patterns, technology efficiency, and variation in solar insolation; and (4) evaluation of the regional and sub-regional differences in the land use implications of decentralized energy supply technologies that result from the combination of energy demand, energy supply potential, and the subsequent addition of increasingly more restrictive policies to increase the percent contribution of on-site solar energy. Results are presented and discussed. It is concluded that determining regional variations in solar energy contribution for both the residential and industrial sectors appears to be more dependent upon a characterization of existing demand and conservation potential than regional variations in solar insolation. Local governmental decisions influencing developing land use patterns can significantly promote solar energy use and reduce reliance on non-renewable energy sources. These decisions include such measures as solar access protection through controls on vegetation and on building height and density in the residential sector, and district heating systems and industrial co-location in the manufacturing sector. (WHK)

Gatzke, A.E.; Skewes-Cox, A.O.

1980-10-01T23:59:59.000Z

2

Chicopee Electric Light - Residential Solar Rebate Program |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chicopee Electric Light - Residential Solar Rebate Program Chicopee Electric Light - Residential Solar Rebate Program Eligibility Residential Savings For Solar Buying & Making...

3

Residential Commercial Industrial Year  

Gasoline and Diesel Fuel Update (EIA)

4 4 Residential Commercial Industrial Year and State Volume (million cubic feet) Consumers Volume (million cubic feet) Consumers Volume (million cubic feet) Consumers 2000 Total ................... 4,996,179 59,252,728 3,182,469 5,010,817 8,142,240 220,251 2001 Total ................... 4,771,340 60,286,364 3,022,712 4,996,446 7,344,219 217,026 2002 Total ................... 4,888,816 61,107,254 3,144,169 5,064,384 7,507,180 205,915 2003 Total ................... R 5,079,351 R 61,871,450 R 3,179,493 R 5,152,177 R 7,150,396 R 205,514 2004 Total ................... 4,884,521 62,469,142 3,141,653 5,135,985 7,250,634 212,191 Alabama ...................... 43,842 806,175 26,418 65,040 169,135 2,800 Alaska.......................... 18,200 104,360 18,373 13,999 46,580 10 Arizona ........................

4

Residential Solar Sales Tax Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Solar Sales Tax Exemption Residential Solar Sales Tax Exemption Residential Solar Sales Tax Exemption < Back Eligibility Commercial General Public/Consumer Industrial Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Program Info Start Date 09/01/2005 State New York Program Type Sales Tax Incentive Rebate Amount 100% exemption from state sales tax Provider New York State Department of Taxation and Finance New York enacted legislation in July 2005 exempting the sale and installation of residential solar-energy systems from the state's sales and compensating use taxes. The exemption was extended to non-residential solar systems in August 2012 (S.B. 3203), effective beginning January 1, 2013.

5

Burbank Water and Power - Residential and Commercial Solar Support Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Burbank Water and Power - Residential and Commercial Solar Support Burbank Water and Power - Residential and Commercial Solar Support Program Burbank Water and Power - Residential and Commercial Solar Support Program < Back Eligibility Commercial Industrial Low-Income Residential Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate Maximum payment of 400,000 per year for performance-based incentives Program Info Start Date 1/1/2010 Expiration Date 12/31/2016 State California Program Type Utility Rebate Program Rebate Amount PV rebates will be awarded via lottery on August 12, 2013 Residential PV: $1.28/W CEC-AC Commercial PV (less than 30 kW): $0.97/W CEC-AC Commercial PV (30 kW or larger): ineligible at this time Solar Water Heaters (residential domestic hot water only; not pools):

6

New Hampshire Electric Co-Op - Residential Solar Photovoltaic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Solar Photovoltaic Incentive Program New Hampshire Electric Co-Op - Residential Solar Photovoltaic Incentive Program Eligibility Residential Savings For Solar Buying &...

7

Waverly Light & Power - Residential Solar Thermal Rebates | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waverly Light & Power - Residential Solar Thermal Rebates Waverly Light & Power - Residential Solar Thermal Rebates Eligibility Residential Savings For Heating & Cooling Solar...

8

Residential Solar Rights | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Solar Rights Residential Solar Rights Residential Solar Rights < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Program Info State New Jersey Program Type Solar/Wind Access Policy In 2007, New Jersey enacted legislation preventing homeowners associations from prohibiting the installation of solar collectors on certain types of residential properties. The term "solar collector" is not defined, but would seem to include both solar photovoltaic and solar thermal technologies which use collectors installed on the roof of a dwelling. This law covers only dwellings that are ''not'' deemed community property of the association, including townhouses which have at least two sides that are

9

Guam - Solar-Ready Residential Building Requirement | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar-Ready Residential Building Requirement Guam - Solar-Ready Residential Building Requirement < Back Eligibility Construction Residential Savings Category Heating & Cooling...

10

Austin Energy's Residential Solar Rate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leslie Libby Leslie Libby Austin Energy Project Manager 2020 Utility Scale Solar Goal 175 MW 30 MW PPA at Webberville 2020 Distributed Solar Goal 25 MW Residential - 7.0 MW Commercial - 1.4 MW Municipal and Schools - 1.0 MW TOTAL - 9.4 MW $0 $2 $4 $6 $8 $10 $12 $14 FY04 FY05 FY06 FY07 FY08 FY09 FY10 FY11 FY12 Installed Cost ($/Watt-DC) Residential Commercial Municipal Residential Rebate $2.00/Watt Average Installed Cost $3.75/Watt - SEIA Q2 2012 Report - Austin had the lowest installed cost in the nation ($3.88/W-DC)

11

Residential Solar Energy Tax Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Energy Tax Credit Residential Solar Energy Tax Credit Eligibility Residential Savings For Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling...

12

Residential solar home resale analysis  

DOE Green Energy (OSTI)

One of the determinants of the market acceptance of solar technologies in the residential housing sector is the value placed upon the solar property at the time of resale. The resale factor is shown to be an important economic parameter when net benefits of the solar design are considered over a typical ownership cycle rather than the life cycle of the system. Although a study of solar resale in Davis, Ca, indicates that those particular homes have been appreciating in value faster than nonsolar market comparables, no study has been made that would confirm this conclusion for markets in other geograhical locations with supporting tests of statistical significance. The data to undertake such an analysis is available through numerous local sources; however, case by case data collection is prohibitively expensive. A recommended alternative approach is to make use of real estate market data firms who compile large data bases and provide multi-variate statistical analysis packages.

Noll, S.A.

1980-01-01T23:59:59.000Z

13

Residential Solar Tax Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Tax Credit Solar Tax Credit Residential Solar Tax Credit < Back Eligibility Multi-Family Residential Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Maximum Rebate 5,000 for solar-energy systems Program Info Start Date 01/01/1998 (solar electric); 01/01/2006 (solar thermal) State New York Program Type Personal Tax Credit Rebate Amount 25% for solar-electric (PV) and solar-thermal systems; for third-party owned systems this is in reference to the aggregate amount owed under the contract rather than the amount owed in any single year Provider New York State Department of Taxation and Finance Enacted in August 1997, this personal income tax credit originally applied to expenditures on solar-electric (PV) equipment used on residential

14

Orlando Utilities Commission - Residential Solar Water Heater...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program (Florida) < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate 1,000 Program Info State Florida Program Type Utility...

15

Solar Photovoltaic Financing: Residential Sector Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

(a subsidiary of U.S. Bancorp), AFC First Financial Corporation, and Gemstone Lease Management, LLC, announced a residential solar lease program for homeowners who meet certain...

16

Austin Energy - Residential Solar Loan Program (Texas) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Marketing Administration Other Agencies You are here Home Savings Austin Energy - Residential Solar Loan Program (Texas) Austin Energy - Residential Solar Loan...

17

FirstEnergy (West Penn Power) - Residential Solar Water Heating...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FirstEnergy (West Penn Power) - Residential Solar Water Heating Program (Pennsylvania) FirstEnergy (West Penn Power) - Residential Solar Water Heating Program (Pennsylvania)...

18

First Energy (MetEd, Penelec, Penn Power) - Residential Solar...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Energy (MetEd, Penelec, Penn Power) - Residential Solar Water Heating Program First Energy (MetEd, Penelec, Penn Power) - Residential Solar Water Heating Program Eligibility...

19

Austin Energy - Residential Solar Loan Program (Texas) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loan Program (Texas) Austin Energy - Residential Solar Loan Program (Texas) Eligibility Residential Savings For Solar Buying & Making Electricity Heating & Cooling Water Heating...

20

Solar Leasing for Residential Photovoltaic Systems (Fact Sheet)  

DOE Green Energy (OSTI)

This publication examines the solar lease option for residential PV systems and describes two solar lease programs already in place.

Not Available

2009-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial residential solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Chicopee Electric Light- Residential Solar Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Chicopee Electric Light offered rebates to residential customers who install solar photovoltaic systems on their homes. Customer rebates are $0.50 per watt for a maximum of $2,500 per installation.

22

Property Tax Exemption for Residential Solar Systems  

Energy.gov (U.S. Department of Energy (DOE))

[http://www.nmlegis.gov/Sessions/10%20Regular/final/HB0233.pdf HB 233 of 2010] exempted residential solar energy systems from property tax assessments. According to state law, for the purposes of...

23

Austin Energy- Residential Solar PV Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Austin Energy's Solar Rebate Program offers a $1.50 per watt incentive to eligible residential who install photovoltaic (PV) systems on their homes. Rebates are limited to $15,000 per home...

24

Burbank Water and Power - Residential and Commercial Solar Support...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Income Residential Nonprofit Residential Schools State Government Savings For Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate Maximum...

25

Austin Energy - Value of Solar Residential Rate (Texas) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Austin Energy - Value of Solar Residential Rate (Texas) Austin Energy - Value of Solar Residential Rate (Texas) Austin Energy - Value of Solar Residential Rate (Texas) < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Program Info Start Date 10/01/2012 State Texas Austin Energy, the municipal utility of Austin Texas, offers the Value of Solar rate for residential solar photovoltaic (PV) systems. The Value of Solar tariff, designed by Austin Energy and approved by Austin City Council in June 2012, will be available for all past, present and future residential solar customers beginning October 1, 2012. This tariff replaces net billing for residential solar PV systems no larger than 20 kilowatts (kW). Under this new tariff, residential customers will be credited monthly for their solar generation based on the Value of Solar energy generated from

26

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network (OSTI)

38 3.2.1. SDG&E Residential Electric Rates and TheirFootprint of Single-Family Residential New Construction.Solar photovoltaic financing: residential sector deployment,

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

27

Residential Solar Thermal Power Plant  

Solar power is a renewable source of energy that involves no fossil fuel combustion, and releases no greenhouse gases. In the past, solar power has not been ...

28

Commercial & Industrial Solar Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The New Hampshire Public Utilities Commission initiated a new solar rebate program for non-residential applicants in November 2010. Funded by alternative compliance payments under the state's...

29

Solar Adoption and Energy Consumption in the Residential Sector.  

E-Print Network (OSTI)

??This dissertation analyzes the energy consumption behavior of residential adopters of solar photovoltaic systems (solar-PV). Based on large data sets from the San Diego region (more)

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

30

Residential Building Industry Consulting Services | Open Energy Information  

Open Energy Info (EERE)

Residential Building Industry Consulting Services Residential Building Industry Consulting Services Jump to: navigation, search Name Residential Building Industry Consulting Services Place New York, NY Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Residential Building Industry Consulting Services is a company located in New York, NY. References Retrieved from "http://en.openei.org/w/index.php?title=Residential_Building_Industry_Consulting_Services&oldid=381757" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages

31

Solar energy industry survey  

SciTech Connect

This report describes the results of a survey of companies in the solar energy industry. The general objective of the survey was to provide information to help evaluate the effectiveness of technology transfer mechanisms for the development of the solar industry. The specific objectives of the survey included: (1) determination of the needs of the solar industry; (2) identification of special concerns of the solar industry; and (3) determination of the types of technology transfer mechanisms that would be most helpful to the solar industry in addressing these needs and concerns. The major focus was on technical problems and developments, but institutional and marketing considerations were also treated. The majority of the sample was devoted to the solar heating and cooling (SHAC) component of the industry. However, a small number of photovoltaic (PV), wind, and power generation system manufacturers were also surveyed. Part I discusses the methodology used in the selection, performance, and data reduction stages of the survey, comments on the nature of the responses, and describes the conclusions drawn from the survey. The latter include both general conclusions concerning the entire solar industry, and specific conclusions concerning component groups, such as manufacturers, architects, installers, or dealers. Part II consists of tabulated responses and non-attributed verbatim comments that summarize and illustrate the survey results.

1979-08-06T23:59:59.000Z

32

Residential Solar Data Center: grant reports  

Science Conference Proceedings (OSTI)

The Residential Solar Data Center project staff in the Center for Building Technology, National Bureau of Standards, has been responsible for the establishment and operation of a computerized data base containing non-instrumented residential data generated by the Solar Heating and Cooling Demonstration Program sponsored by the Department of Energy (DoE) and the Department of Housing and Urban Development (HUD). This document includes computer reports of data contained in the Grant file, one of six computer files comprising the data base. These reports contain data recorded on applications submitted to HUD by organizations or individual builders applying for grants to build solar energy systems in new and/or existing homes. Approximately 668 grants have been awarded in six award cycles.

Christopher, P.M.; Charlton, L.L.

1981-09-01T23:59:59.000Z

33

Salem Electric - Residential, Commercial, and Industrial Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salem Electric - Residential, Commercial, and Industrial Efficiency Salem Electric - Residential, Commercial, and Industrial Efficiency Rebate Program Salem Electric - Residential, Commercial, and Industrial Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Multi-Family Residential Nonprofit Residential State Government Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Ventilation Manufacturing Heating & Cooling Commercial Heating & Cooling Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Maximum Rebate ENERGY Star Light Fixtures: Not to exceed 50% of the fixture cost Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Refrigerators: $60 Freezers: $60 Clothes Washers: $60

34

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network (OSTI)

capture such savings: the solar provider has unique pricingscale solar industry. Solar providers will need both to

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

35

Solar Photovoltaic Financing: Residential Sector Deployment  

DOE Green Energy (OSTI)

This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the commercial sector. Together, these mechanisms are critical for making the economic case for a residential PV installation, given its high upfront costs. Unfortunately, these programs are presently limited to select locations around the country. By calling attention to these innovative initiatives, this report aims to help policy makers consider greater adoption of these models to benefit homeowners interested installing a residential PV system.

Coughlin, J.; Cory, K.

2009-03-01T23:59:59.000Z

36

Solar Leasing for Residential Photovoltaic Systems (Revised) (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

In the past year, the residential solar lease has received In the past year, the residential solar lease has received significant attention in the solar marketplace, primarily for its ability to leverage two key commercial tax credits for the individual homeowner. However, on January 1, 2009, the $2,000 cap on the residential investment tax credit (ITC) was lifted. As a result, the expansion of the solar lease model across the United States may be slower than antici-

37

Residential solar energy use in Michigan  

SciTech Connect

Residential use of solar energy has meant installation of various types of solar systems for home and water heating and, to a lesser degree, for electrical power and cooling. This study represents an analysis of solar energy as an innovation and the perception of that innovation by recent system adopters. Specific objectives include an analysis of the solar energy adoption process in terms of: (1) the availability of innovation-evaluation information, (2) the perceived attributes of solar energy systems, and (3) the spatial-distribution patterns of adopting homeowners. This study was conducted from 331 responses to a questionnaire of single-family homeowners in Michigan who had installed solar energy systems during the four-year period from 1980-1983. The five subject solar energy systems were thermosyphon air panel (TAP), solar gain (direct and indirect passive systems), domestic hot water, space heat, and greenhouse. Results indicate that the primary solar system use was for home heating with the thermosyphon air panel (TAP) being the single most preferred type. The tax credit program was a necessary ingredient in minimizing the financial risk for most system installers. High concern for system standards, certification, and guarantees suggest that homeowners feel improvements should be made on efficiency and performance levels.

Jones, H.C. Jr.

1987-01-01T23:59:59.000Z

38

New Braunfels Utilities - Residential Solar Water Heater Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Braunfels Utilities - Residential Solar Water Heater Rebate New Braunfels Utilities - Residential Solar Water Heater Rebate Program New Braunfels Utilities - Residential Solar Water Heater Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Texas Program Type Utility Rebate Program Rebate Amount $0.265/kWh Provider New Braunfels Utilities New Braunfels Utilities offers a rebate for residential customers who purchase and install solar water heating systems on eligible homes. A rebate of the equivalent of $0.265 per kWh is available to these customers. The maximum rebate amount is $900 for participating customers. Applicants must have an active residential electric service account with NBU in order to be eligible. Solar water heaters must preheat water for an electric

39

New York City - Residential Solar Sales Tax Exemption | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City - Residential Solar Sales Tax Exemption City - Residential Solar Sales Tax Exemption New York City - Residential Solar Sales Tax Exemption < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Program Info Start Date 12/01/2005 State New York Program Type Sales Tax Incentive Rebate Amount 100% local sales tax exemption Provider New York City In July 2005, New York enacted [http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=NY24F&re... legislation] that allows local governments to grant a local sales tax exemption for residential solar energy systems. New York City passed Resolution 1121 in August 2005 (effective December 1, 2005) to exempt residential solar energy systems equipment and services from sales tax.

40

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network (OSTI)

Efficiency Scenario (non-residential sector only) AssumesIndia: Industry and Non Residential Sectors Jayant Sathaye,and support. The Non Residential sector analysis benefited

Sathaye, Jayant

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial residential solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

National Grid - Residential (Gas) Solar Water Heating Rebate...  

Open Energy Info (EERE)

of 12 months in order to receive funding. National Grid works directly with residential solar installers, who submit rebate applications on behalf of the customer. Funding is...

42

Austin Energy - Residential Solar Loan Program (Texas) | Open...  

Open Energy Info (EERE)

Page Edit with form History Share this page on Facebook icon Twitter icon Austin Energy - Residential Solar Loan Program (Texas) This is the approved revision of this...

43

Prince George's County- Solar and Geothermal Residential Property Tax Credit  

Energy.gov (U.S. Department of Energy (DOE))

In 2008 Prince George's County enacted legislation offering a property tax credit on residential structures equipped with solar and geothermal systems. As originally devised, the credit could only...

44

Orlando Utilities Commission- Residential Solar Water Heater Rebate Program (Florida)  

Energy.gov (U.S. Department of Energy (DOE))

The Orlando Utilities Commission (OUC) offers residential electric customers a point-of-sale rebate of $1,000 for new solar water heating systems.

45

City of Portland - Streamlined Building Permits for Residential Solar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Commercial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Oregon Program Type Solar/Wind Permitting Standards Provider City of Portland The City of Portland's Bureau of Development Services (BDS) developed an electronic permitting process for residential solar energy system installations. With this streamlined, expedited process, solar contractors can submit the project plans and permit application online for residential installations. In order to file the online application, the contractor must first be trained. The City of Portland has staff at the permitting desk trained as solar experts to assist solar contractors who need help filing their permits in person. This process has a turnaround time of

46

Solar industrial process heat  

DOE Green Energy (OSTI)

The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

Lumsdaine, E.

1981-04-01T23:59:59.000Z

47

Solar Energy Option Requirement for Residential Developments | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Energy Option Requirement for Residential Developments Solar Energy Option Requirement for Residential Developments Solar Energy Option Requirement for Residential Developments < Back Eligibility Construction Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Program Info State New Jersey Program Type Building Energy Code Provider New Jersey Department of Community Affairs In March 2009 New Jersey enacted legislation ([http://www.njleg.state.nj.us/2008/Bills/PL09/33_.PDF A.B. 1558]) designed to support the integration of solar energy systems into new residential developments. The law requires that, whenever "technically feasible", developers of residential developments with 25 or more dwelling units (i.e., single-family residences) offer to install or provide for the

48

Duquesne Light Company - Residential Solar Water Heating Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duquesne Light Company - Residential Solar Water Heating Program Duquesne Light Company - Residential Solar Water Heating Program Duquesne Light Company - Residential Solar Water Heating Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Program Info Start Date 11/30/2009 Expiration Date 03/31/2013 State Pennsylvania Program Type Utility Rebate Program Rebate Amount $286/system Provider Duquesne Light Company Duquesne Light provides rebates to its residential customers for purchasing and installing qualifying solar water heating systems. Eligible systems may receive a flat rebate of $286 per qualifying system. Various equipment, installation, contractor, and warranty requirements apply, as summarized above and described in more detail in program documents. Customers must

49

Entergy New Orleans - Residential Solar Water Heating Program (Louisiana) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Entergy New Orleans - Residential Solar Water Heating Program Entergy New Orleans - Residential Solar Water Heating Program (Louisiana) Entergy New Orleans - Residential Solar Water Heating Program (Louisiana) < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Residential Solutions: $1000/improvement Program Info Start Date 1/1/2011 State Louisiana Program Type Utility Rebate Program Rebate Amount kWh savings(annual) x $0.34/kWh Provider Energy Smart Solutions Center Entergy New Orleans offers a Solar Water Heater Rebate pilot program designed to help residential customers make energy efficiency improvements. Rebates will be offered on a first-come, first-served basis and reflected on the invoice as a discount. All systems must be OG 300 rated and incentive amount is based on kWh savings. Walk-through energy assessments

50

Estimating solar access of typical residential rooftops: A case study in San Jose, CA  

E-Print Network (OSTI)

the solar access of rooftop solar-energy systems, includingthe solar access of rooftop solar-energy systems, includingof shading on residential rooftop solar access in various

Levinson, Ronnen M

2008-01-01T23:59:59.000Z

51

Solar zoning and energy in detached residential dwellings  

Science Conference Proceedings (OSTI)

The Solar Envelope is a three dimensional envelope on a site which ensures adjacent neighbors a specified minimum direct solar access time per day throughout the year. The solar envelope was developed as a tool to give buildings in an urban setting the ... Keywords: detached single family residential, solar envelope, solar zoning

Jeffrey Niemasz; Jon Sargent; Christoph F. Reinhart

2011-04-01T23:59:59.000Z

52

EWEB - Residential Solar Water Heating Loan Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EWEB - Residential Solar Water Heating Loan Program EWEB - Residential Solar Water Heating Loan Program EWEB - Residential Solar Water Heating Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Maximum Rebate $7,000 Program Info State Oregon Program Type Utility Loan Program Rebate Amount Up to 75% of system cost after rebate Provider Eugene Water and Electric Board Eugene Water and Electric Board (EWEB) offers residential customers a loan and cash discount program called, "The Bright Way To Heat Water." The program is designed to promote the installation of solar water heaters and solar pool heating systems. It began in May 1990 as part of a demand-side management initiative. The loans have been offered since May 1995. EWEB provides all funding for both loans and cash discounts. Customers may

53

Residential Solar Water Heating Rebates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Solar Water Heating Rebates Residential Solar Water Heating Rebates Residential Solar Water Heating Rebates < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Maximum Rebate $1,900 Program Info Funding Source New Hampshire Renewable Energy Fund (REF) Start Date 04/21/2010 Expiration Date When funding is exhausted State New Hampshire Program Type State Rebate Program Rebate Amount $1,500, $1,700 or $1,900, depending on annual estimated system output Provider New Hampshire Public Utilities Commission New Hampshire offers a rebate for residential solar water-heating systems and solar space-heating systems. The rebate is equal to $1,500 for systems with an annual estimated output of 5.5 MMBTU to 19.9 MMBTU; $1,700 for

54

Coweta-Fayette EMC - Residential Solar Water Heater Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coweta-Fayette EMC - Residential Solar Water Heater Rebate Program Coweta-Fayette EMC - Residential Solar Water Heater Rebate Program (Georgia) Coweta-Fayette EMC - Residential Solar Water Heater Rebate Program (Georgia) < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Georgia Program Type Utility Rebate Program Rebate Amount Existing Homes Solar Water Heater: $750 New Homes Solar Water Heater: $1,250 - $1,500 Provider Coweta-Fayette Electric Membership Corporation Coweta-Fayette Electric Membership Corporation (EMC) provides electric and natural gas service to 58,000 customers in Georgia's Coweta, Fayette, Meriwether, Heard, Troop and Fulton counties. Currently, Coweta-Fayette EMC offers rebates on solar water heaters from $750 up to $1,500 as part of the Touchstone Energy Home Program. Solar

55

HUD Residential Solar Demonstration Program data. Data file  

Science Conference Proceedings (OSTI)

The Residential Solar Data Center (SDC) at the National Bureau of Standards was responsible for the establishment and operation of a computerized data base containing data collected from the DOE/HUD Solar Heating and Cooling Demonstration Program. This card-image tape contains the files which comprised the solar data base including: grant, grantee reports, technical descriptions, technical concerns, marketing survey; and utility consumption. NBSIR 81-2369, Residential Solar Data Center: Data Resources and reports, describes these files in detail.

Christopher, P.M.; Freeborne, W.

1981-01-01T23:59:59.000Z

56

Waverly Light and Power - Residential Solar Thermal Rebates | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Thermal Rebates Solar Thermal Rebates Waverly Light and Power - Residential Solar Thermal Rebates < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $3,500 Program Info Start Date 07/01/2009 State Iowa Program Type Utility Rebate Program Rebate Amount 30/sq. foot of collector area Provider Waverly Light and Power Waverly Light and Power (WL&P) offers rebates for solar hot water heating systems to its residential customers. All purchases must be pre-approved through WL&P's solar water heater application process. In addition, residential customers must obtain a county-issued permit prior to installing a solar water heating system. There is a limit of one rebate per address. Funding is available until the rebate fund is exhausted.

57

Clallam County PUD - Residential and Small Business Solar Loan Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clallam County PUD - Residential and Small Business Solar Loan Clallam County PUD - Residential and Small Business Solar Loan Program Clallam County PUD - Residential and Small Business Solar Loan Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $15,000 Program Info State District of Columbia Program Type Utility Loan Program Rebate Amount $1,000 - $15,000 Provider PUD #1 of Clallam County In conjunction with First Federal Savings and Loan, Clallam County PUD offers residential and small commercial customers a low-interest loan program for the purchase of solar photovoltaic systems. There is no application fee and Clallam County PUD covers the loan fee. A list of [http://www.clallampud.net/conservation/res_Eligible_Measures.asp eligible measures] for the loan program is located on the program website. Loans are

58

Lake Worth Utilities - Residential Solar Water Heating Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake Worth Utilities - Residential Solar Water Heating Rebate Lake Worth Utilities - Residential Solar Water Heating Rebate Program Lake Worth Utilities - Residential Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $450 Rebates must not exceed purchase price Program Info State Florida Program Type Utility Rebate Program Rebate Amount $450 per system Provider City of Lake Worth Utilities The City of Lake Worth Utilities (CLWU), in conjunction with Florida Municipal Power Agency, offers rebates to customers who purchase and install a solar water heating system for residential use. A rebate of $450 per system is available to eligible applicants. Eligible equipment must be located on customer premises within the CLWU service territory, and must

59

Commonwealth Solar Hot Water Residential Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commonwealth Solar Hot Water Residential Program Commonwealth Solar Hot Water Residential Program Commonwealth Solar Hot Water Residential Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Maximum Rebate $3,500 per building or 25% of total installed costs Program Info Funding Source Massachusetts Renewable Energy Trust Fund Start Date 02/07/2011 Expiration Date 12/31/2016 State Massachusetts Program Type State Rebate Program Rebate Amount Base rate: $45 X SRCC rating in thousands btu/panel/day (Category D, Mildly Cloudy Day) Additional $200/system for systems with parts manufactured in Massachusetts Additional $1,500/system for metering installation Adder for natural disaster relief of twice the base rebate.

60

SMUD - Residential Solar Loan Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Loan Program Solar Loan Program SMUD - Residential Solar Loan Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate $30,000 Program Info State California Program Type Utility Loan Program Rebate Amount Secured: $30,000 Unsecured: $5,000 Provider Sacramento Municipal Utility District The Sacramento Municipal Utility District's (SMUD) Residential Loan Program provides 100% financing to customers who install solar water heating systems. All solar water heating systems must meet standards set by the Solar Rating and Certification Corporation (SRCC), must be installed by a SMUD-approved solar water heating contractor, and must pass inspection by SMUD representatives. Source http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=CA13F

Note: This page contains sample records for the topic "industrial residential solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

City of Portland - Streamlined Building Permits for Residential Solar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Oregon Program Type Green Building Incentive Provider City of Portland The City of Portland's Bureau of Development Services (BDS) developed an electronic permitting process for residential solar energy system installations. With this streamlined, expedited process, solar contractors can submit the project plans and permit application online for residential installations. In order to file the online application, the contractor must first be trained. The City of Portland has staff at the permitting desk trained as solar experts to assist solar contractors who need help filing their permits in person. This process has a turnaround time of approximately 2-3 business days for building permits.

62

California Solar Energy Industries Association | Open Energy...  

Open Energy Info (EERE)

Name California Solar Energy Industries Association Place Rio Vista, California Zip 94571 Sector Solar Product California Solar Energy Industries Association is a trade group...

63

Residential solar data center: data dictionary/directory  

Science Conference Proceedings (OSTI)

The Residential Solar Data Center project staff in the Center for Building Technology, National Bureau of Standards, maintains a computerized data base containing non-instrumented residential data from the DOE/HUD Solar Heating and Cooling Demonstration Program. This document provides a dictionary of data elements collected as part of the Residential Solar Program and a directory of the specific files which contain the data elements. This data dictionary/directory was produced by a computer program written in ASCII COBOL. The automated procedure is briefly described in an appendix.

Christopher, P.M.

1981-08-01T23:59:59.000Z

64

Could Solar Energy Storage be Key for Residential Solar? | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Could Solar Energy Storage be Key for Residential Solar? Could Solar Energy Storage be Key for Residential Solar? Could Solar Energy Storage be Key for Residential Solar? October 26, 2010 - 4:52pm Addthis This is the silent power storage device the Sacramento Municipal Utility District intends to install in residential homes as part of its distributed solar power storage study. | Photo Courtesy of the Sacramento Municipal Utility District This is the silent power storage device the Sacramento Municipal Utility District intends to install in residential homes as part of its distributed solar power storage study. | Photo Courtesy of the Sacramento Municipal Utility District Lorelei Laird Writer, Energy Empowers What are the key facts? SolarSmart Homes storage pilot project gearing up in Sacramento. Pilot project is funded by a $4.3 million Recovery Act grant.

65

Net Zero Residential Test Facility Gaithersburg, MD Solar Photovoltaic Panels  

E-Print Network (OSTI)

1 Net Zero Residential Test Facility Gaithersburg, MD Solar Photovoltaic Panels Solar Thermal R-35 Rim Joist Area 5" open cell spray foam 2" mineral wool insulation blanket R-10 Basement Slab electric WH #12;NZERTF Gaithersburg, MD Solar Photovoltaic Array Roof Mounted South half of main roof

Oak Ridge National Laboratory

66

Long Island Power Authority - Residential Solar Water Heating Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Long Island Power Authority - Residential Solar Water Heating Long Island Power Authority - Residential Solar Water Heating Rebate Program Long Island Power Authority - Residential Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,500 or 50% of installed cost; $2,000 for systems purchased by 12/31/13 Program Info Funding Source LIPA Efficiency Long Island Program Start Date December 2010 State New York Program Type Utility Rebate Program Rebate Amount $20 per kBTU (based on SRCC collector rating) Bonus Incentive for systems purchased by 12/31/13: 2 Collector system: $500 bonus rebate 1 Collector system: $250 bonus rebate Provider Long Island Power Authority '''''Note: For system purchased by December 31, 2013, LIPA is providing a

67

Richland Energy Services - Residential Energy Conservation and Solar Loan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Richland Energy Services - Residential Energy Conservation and Richland Energy Services - Residential Energy Conservation and Solar Loan Program Richland Energy Services - Residential Energy Conservation and Solar Loan Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Appliances & Electronics Design & Remodeling Windows, Doors, & Skylights Ventilation Heating & Cooling Commercial Heating & Cooling Heat Pumps Water Heating Solar Buying & Making Electricity Maximum Rebate $15,000 Equipment Specific Maximums Heat Pump: $10,000 Ductwork: $1,500 Clothes washer $1,500 Refrigerator $3,000 Freezer $800 Electric water heater $700 Solar water heater $4,000 Program Info State District of Columbia Program Type Utility Loan Program Rebate Amount up to $15,000

68

Clallam County PUD- Residential and Small Business Solar Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

In conjunction with First Federal Savings and Loan, Clallam County PUD offers residential and small commercial customers a low-interest loan program for the purchase of solar photovoltaic systems....

69

Austin Energy's Residential Solar Rate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Austin Energy's Residential Solar Rate This presentation was given by Leslie Libby of Austin Energy at the February 19, 2013, CommRE webinar which focused on how municipal...

70

Texas Gas Service- Residential Solar Water Heating Rebate Program (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

Texas Gas Service offers a flat rebate of $750 for its residential customers within the Austin and Sunset Valley city limits for the installation and purchase of a new solar water heater with...

71

Questar Gas- Residential Solar Assisted Water Heating Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

72

Questar Gas- Residential Solar Assisted Water Heating Rebate Program (Idaho)  

Energy.gov (U.S. Department of Energy (DOE))

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

73

Battery Power for Your Residential Solar Electric System: Better Buildings Series Solar Electric Fact Sheet  

DOE Green Energy (OSTI)

This consumer fact sheet provides an overview of battery power for residential solar electric systems, including sizing, estimating costs, purchasing, and performing maintenance.

Not Available

2002-10-01T23:59:59.000Z

74

National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet)  

DOE Green Energy (OSTI)

This technical highlight describes NREL research to develop a publicly available database of energy retrofit measures containing performance characteristics and cost estimates for nearly 3,000 measures. Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost-effective retrofit measures to improve the energy efficiency of residential buildings. The database provides a single, consistent source of current data for DOE and private-sector energy audit and simulation software tools and the retrofit industry. The database will reduce risk for residential retrofit industry stakeholders by providing a central, publicly vetted source of up-to-date information.

Not Available

2012-01-01T23:59:59.000Z

75

Residential solar-absorption chiller thermal dynamics  

DOE Green Energy (OSTI)

Research is reported on the transient performance of a commercial residential 3 ton lithium bromide-water absorption chiller designed for solar firing. Emphasis was placed on separating the chiller response from that of the entire test facility so that its transient response could solely be observed and quantified. It was found that the entire system time response and thermal capacitance has a major impact on performance degradation due to transient operation. Tests run to ascertain computer algorithms which simulate system isolated chiller performance, revealed processes hitherto undocumented. Transient operation is simulated by three distinct algorithms associated with the three phases of chiller operation. The first phase is start up time. It was revealed during testing that the time required to reach steady state performance values, when the chiller was turned on, was a linear function of steady state water supply temperatures. The second phase is quasi steady state performance. Test facility's performance compared favorably with the manufacturer's published data. The third phase is the extra capacity produced during spin down. Spin down occurs when the hot water supply pump is turned off while the other system pumps remain operating for a few minutes, thus allowing extra chiller capacity to be realized. The computer algorithms were used to generate plots which show the operational surface of an isolated absorption chiller subjected to off design and transient operation.

Guertin, J.M.; Wood, B.D.; McNeill, B.W.

1981-03-01T23:59:59.000Z

76

Sales and Use Tax Exemption for Residential Solar and Wind Electricity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

providing a sales and use tax exemption for sales of electricity from qualifying solar energy and residential wind energy equipment to residential customers. In order to...

77

Solar Water Heating Requirement for New Residential Construction |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating Requirement for New Residential Construction Water Heating Requirement for New Residential Construction Solar Water Heating Requirement for New Residential Construction < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Hawaii Program Type Building Energy Code Provider Hawaii Department of Business, Economic Development, and Tourism In June 2008, Hawaii enacted legislation, [http://www.capitol.hawaii.gov/session2008/bills/SB644_CD1_.htm SB 644], with the intent to require solar water-heating (SWH) systems to be installed on all single-family new home construction, with a few exceptions. This legislation had several errors that were corrected by legislation passed during the 2009 legislative session. In June 2009, HB 1464 was signed by the governor and addressed the errors in the previous

78

Orlando Utilities Commission - Residential Solar Loan Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

For Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate Solar PV: 20,000 Solar Thermal: 7,500 Program Information Florida Program Type Utility...

79

Aditya Solar Power Industries | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Aditya Solar Power Industries Jump to: navigation, search Name Aditya Solar Power Industries...

80

Commercial and Industrial Solar Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Solar Rebate Program Commercial and Industrial Solar Rebate Program Commercial and Industrial Solar Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Maximum Rebate The lesser of 25% of the total cost or $50,000 Program Info Funding Source RPS alternative compliance payments Start Date 11/1/2010 State New Hampshire Program Type State Rebate Program Rebate Amount PV: $0.80/W (DC) for new systems; $0.50/W (DC) for additions to existing systems Solar Thermal: $0.12/rated or modeled kBtu/year for new systems with 15 or fewer collectors; $0.07/rated or modeled kBtu/year for new systems with

Note: This page contains sample records for the topic "industrial residential solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

California Solar Initiative - Solar Thermal Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Thermal Program California Solar Initiative - Solar Thermal Program Eligibility Commercial Fed. Government Industrial Local Government Low-Income Residential Multi-Family...

82

Residential Solar Photovoltaics: Comparison of Financing Benefits Innovations and Options  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Solar Photovoltaics: Residential Solar Photovoltaics: Comparison of Financing Benefits, Innovations, and Options Bethany Speer Technical Report NREL/TP-6A20-51644 October 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Residential Solar Photovoltaics: Comparison of Financing Benefits, Innovations, and Options Bethany Speer Prepared under Task Nos. SM10.2442, SM12.3010 Technical Report NREL/TP-6A20-51644 October 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

83

Residential Solar Data Center Mirads User's Guide. Final report  

Science Conference Proceedings (OSTI)

The Residential Solar Data Center Project staff in the Center for Building Technology, National Bureau of Standards, maintains a computerized data base containing non-instrumented residential data from the DOE/HUD Solar Heating and Cooling Demonstration Program. Data contained in the solar data base are accessible online to users of the NBS Center Computer via remote terminals with a data base retrieval software package called MIRADS (Marshall Information Retrieval And Display System). This document is a self-teaching user's guide to the solar data base. It is complete with the basic MIRADS language rules, examples of use, and a step-by-step walk-through of a typical interactive session. Appendices contain all the data element names and coded values needed to use the solar data with MIRADS, as well as many examples of actual computer sessions.

Christopher, P.M.; Vogt, M.; Hall, D.

1980-10-01T23:59:59.000Z

84

Solar Easements & Rights Laws | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Easements & Rights Laws Solar Easements & Rights Laws Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential...

85

Impacts of the Residential Conservation Service program on residential solar developments  

Science Conference Proceedings (OSTI)

The roles of the various participants in the Residential Conservation Service (RCS) program are examined, with special attention to their potential influence on the program's effectiveness in accelerating solar commercialization. Cooperation and support of the participants will be necessary for the information and implementation assistance goals of the program to be achieved, but resistance and obstructions are noted.

Potter, T.; Bircher, T.

1981-04-01T23:59:59.000Z

86

Entity State Ownership Residential Commercial Industrial Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

. 1 Constellation Solar Arizona LLC AZ Non_Utility . . 1 . 1 FRV SI Transport Solar LP AZ Non_Utility . 1 . . 1 MFP Co III, LLC AZ Non_Utility . 1 . . 1 RV CSU Power II LLC AZ Non_Utility . 1 . . 1 Scottsdate Solar Holdings LLC AZ Non_Utility . 1 . . 1 SunE M5C Holdings LLC AZ Non_Utility . . 1 . 1 Alliance Star Energy LLC CA Non_Utility . 1 . . 1 Applied Energy Inc CA Non_Utility . . 1 . 1 Bloom Energy 2009 PPA CA Non_Utility . 1 . . 1 Bloom Energy 2009 PPA CA Non_Utility . 1 . . 1 Bloom Energy 2009 PPA CA Non_Utility . 1 . . 1 Bloom Energy 2009 PPA CA Non_Utility . 1 . . 1 CPKelco U S Inc CA Non_Utility . . 1 . 1 Calpine Corp-Agnews CA Non_Utility . 1 . . 1 Cardinal Cogen Inc CA Non_Utility . 1 . . 1 City of Madera CA WWTP CA Non_Utility . . 1 . 1 DPC Juniper, LLC CA Non_Utility . . 1 . 1 DPC Juniper, LLC CA Non_Utility . . 1 . 1 Energy Alchemy TA Vernalis, LLC CA Non_Utility . . 1 . 1 Enfinity NorCal 1 FAA LLC

87

Entity State Ownership Residential Commercial Industrial Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

,735 ,735 . 1,735 Constellation Solar Arizona LLC AZ Non_Utility . . 798 . 798 FRV SI Transport Solar LP AZ Non_Utility . 243 . . 243 MFP Co III, LLC AZ Non_Utility . 603 . . 603 RV CSU Power II LLC AZ Non_Utility . 436 . . 436 Scottsdate Solar Holdings LLC AZ Non_Utility . 49 . . 49 SunE M5C Holdings LLC AZ Non_Utility . . 212 . 212 Alliance Star Energy LLC CA Non_Utility . 266 . . 266 Applied Energy Inc CA Non_Utility . . 935 . 935 Bloom Energy 2009 PPA CA Non_Utility . 183 . . 183 Bloom Energy 2009 PPA CA Non_Utility . 382 . . 382 Bloom Energy 2009 PPA CA Non_Utility . 583 . . 583 Bloom Energy 2009 PPA CA Non_Utility . 771 . . 771 CPKelco U S Inc CA Non_Utility . . 4 . 4 Calpine Corp-Agnews CA Non_Utility . 47 . . 47 Cardinal Cogen Inc CA Non_Utility . 15,846 . . 15,846 City of Madera CA WWTP CA Non_Utility . . 310 . 310 DPC Juniper, LLC CA Non_Utility . . 21 . 21 DPC Juniper, LLC

88

Residential Solar Investment Program (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Investment Program (Connecticut) Solar Investment Program (Connecticut) Residential Solar Investment Program (Connecticut) < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Customer-owned: $11,500 Program Info Funding Source Clean Energy Finance and Investment Authority (CEFIA) Start Date 03/02/2012 State Connecticut Program Type State Rebate Program Rebate Amount Customer-owned: first 5 kW: $1.75/W, for the next 5 kW up to and including 10 kW: $0.55/W Third-party-owned: $0.300/kWh for six years Provider Clean Energy Finance and Investment Authority Note: This program has multiple steps in which incentives are periodically reduced. The rebate incentive is currently in step three; the performance-based incentive is in step two. For the latest update on

89

Residential solar photovoltaic systems: Final report for the Northeast Residential Experiment Station  

Science Conference Proceedings (OSTI)

This report covers research and development work conducted by the MIT Energy Lab. from July 1982 through June 1986. This Energy Lab. work in the field of solar photovoltaic systems followed six years of similar work at the MIT Lincoln Lab. under the same contract with the US DOE. The final report from the Lincoln Lab. period was published by Lincoln Lab. in 1983. During the period of Energy Lab. involvement, the project focused on the refinement of residential scale, roof-mounted photovoltaic systems for application in the northeastern US. Concurrent with the conclusion of MIT`s involvement, the New England Electric Co. is building a major field test of residential photovoltaics in Gardner, Massachusetts to determine experimentally the effects of photovoltaics on electric power company operations. Using systems designs and technology developed at MIT, the long-term performance of these thirty residential systems in Gardner will provide a measure of our success.

Kern, E.C. Jr.

1986-06-01T23:59:59.000Z

90

Solar Industry Update 2012  

Science Conference Proceedings (OSTI)

Worldwide energy demand is projected to double before 2050 and triple by the end of this century. Fossil fuel reserves are expected to fall short of demand over the next several decades and become increasingly expensive in the long term. In addition, continued reliance on fossil fuels has environmental consequences ranging from pollution to global climate change. Clean, inexhaustible solar power technologies have the potential to make critical contributions to the energy mix of the 21st ...

2012-12-31T23:59:59.000Z

91

Solar Industry Update  

Science Conference Proceedings (OSTI)

Worldwide energy demand is projected to double before 2050, and triple by the end of this century. Fossil fuel reserves are expected to fall short of demand over the next several decades and become increasingly expensive in the long term. In addition, continued reliance on fossil fuels has environmental consequences ranging from pollution to global climate change. Clean, inexhaustible solar power technologies have the potential to make critical contributions to the energy mix of the 21st Century. The U....

2011-12-21T23:59:59.000Z

92

Homeowners survey: gas utilities and the residential solar market  

Science Conference Proceedings (OSTI)

The market potential for a gas/solar energy market in the residential sector prompted the American Gas Association's Solar Energy Committee to analyze national homeowner data collected by Gallup for the Solar Energy Research Institute to see if it applies to gas-utility diversification. The survey results show that the public is interested in utility involvement. Key findings in the survey cover not only attitudes, but profile potential buyers, project market shares, and note regional-attitude differences. The utilities that diversify in this way could improve their relations with both customers and regulators as well as increasing their profits. 4 figures, 17 tables. (DCK)

Pilgrim, B.F.

1982-04-01T23:59:59.000Z

93

Use of solar energy to produce process heat for industry  

DOE Green Energy (OSTI)

The role of solar energy in supplying heat and hot water to residential and commercial buildings is familiar. On the other hand, the role that solar energy may play in displacing imported energy supplies in the industrial and utility sectors often goes unrecognized. The versatility of solar technology lends itself well to applications in industry; particularly to the supplemental supply of process heat of all kinds. The realization of that potential will depend, however, on the identification of the most suitable applications and locations for industrial solar energy and the continued improvement in cost, durability, and reliability of solar equipment. The status of solar thermal technology for industrial process heat applications is surveyed, including a description of current costs and operating histories. Because the current status is unsatisfactory in view of the goals established by President Carter for solar industrial energy, the most important objectives to be met in improving system performance, reducing cost, and identifying markets for solar IPH are outlined. The effect of government tax policy will be of little impact until technical efficiency and cost effectiveness are significantly improved.

Brown, K.

1980-04-01T23:59:59.000Z

94

Solar Energy Option Requirement for Residential Developments...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

95

Commonwealth Solar Hot Water Residential Program (Massachusetts...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

96

Electric utilities and residential solar systems  

DOE Green Energy (OSTI)

The long-run incremental cost (LRIC) of providing electricity for solar heating and hot water systems is estimated for three utilities using a utility capacity expansion model and compared to the cost of providing electricity to electric-only systems. All investment, fuel and operating costs are accounted for. Hot water systems and combined heating and hot water systems are analyzed separately. It is found that the LRIC for solar backup is no more than the LRIC of electricity used for purely electric heating and hot water devices and also no more than the incremental cost of normal load growth. For the three utilities studied, there appears to be little basis for rate distinctions between solar devices using electric backup and electric-only heating and hot water devices. Off-peak storage heating and hot water devices have a much lower LRIC than the standard systems; again, there appears to be no basis for distinguishing between solar and electric off-peak devices. Compared to average cost pricing, incremental cost pricing offers considerable benefits to customers using solar and electric heat and hot water, especially if a separate lower rate is adopted for off-peak storage devices; these benefits can amount to several hundred dollars per year. Substantial savings in the use of oil and gas fuels can be achieved if residences using these fuels convert to solar systems, savings not necessarily achievable by a shift, instead, to electric systems.

Bright, R; Davitian, H

1980-04-01T23:59:59.000Z

97

Solar photovoltaic/thermal residential systems  

DOE Green Energy (OSTI)

The results of a conceptual design study using computer simulations to determine the physical and economic performance of combined photovoltaic/thermal collector heat-pump solar systems for a single-family residence are presented. Economic analyses are based upon projected costs for a 1986 system installation. The results show that PV/T collector systems can be economically competitive for a cold climate residence, that systems employing on-site electrical storage batteries are not economically competitive with utility-interactive systems, and that an ambient-air-source heat-pump system has a lower life-cycle cost than a solar-source heat-pump system.

Russell, M.C.

1979-12-28T23:59:59.000Z

98

RESIDENTIAL ON SITE SOLAR HEATING SYSTEMS: A PROJECT EVALUATION USING THE CAPITAL ASSET PRICING MODEL  

E-Print Network (OSTI)

representation of an On Site Solar Heating System. CML w c6782 Residential On"Site Solar Heating Systems: A p-r~jectof an On Site Solar Heating System. Representation of

Schutz, Stephen Richard

2011-01-01T23:59:59.000Z

99

Tax Credit for Solar Energy Systems on Residential Property (Personal) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Personal) Personal) Tax Credit for Solar Energy Systems on Residential Property (Personal) < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Maximum Rebate $12,500 per installed system; 1 installed system per residence Program Info Start Date 1/1/2008 Expiration Date 12/31/2017 State Louisiana Program Type Personal Tax Credit Rebate Amount 50% of the first $25,000 of the cost of each system Leased systems installed after December 31, 2013: 38% of the first $25,000 of the cost of each system Provider LA Department of Revenue '''''Note: HB 705 of 2013 made several significant changes to this tax credit. Among other changes, wind energy systems are no longer eligible,

100

Tax Credit for Solar Energy Systems on Residential Property (Corporate) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Corporate) Corporate) Tax Credit for Solar Energy Systems on Residential Property (Corporate) < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Maximum Rebate $12,500 per installed system; 1 installed system per residence Program Info Start Date 1/1/2008 Expiration Date 12/31/2017 State Louisiana Program Type Corporate Tax Credit Rebate Amount 50% of the first $25,000 of the cost of each system Leased systems installed after December 31, 2013: 38% of the first $25,000 of the cost of each system Provider LA Department of Revenue '''''Note: HB 705 of 2013 made several significant changes to this tax credit. Among other changes, wind energy systems are no longer eligible,

Note: This page contains sample records for the topic "industrial residential solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Sales and Use Tax Exemption for Residential Solar and Wind Electricity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sales and Use Tax Exemption for Residential Solar and Wind Sales and Use Tax Exemption for Residential Solar and Wind Electricity Sales (Maryland) Sales and Use Tax Exemption for Residential Solar and Wind Electricity Sales (Maryland) < Back Eligibility General Public/Consumer Residential Savings Category Solar Buying & Making Electricity Wind Maximum Rebate None Program Info Start Date 07/01/2011 State Maryland Program Type Sales Tax Incentive Rebate Amount 100% exemption from sales and use tax Provider Revenue Administration Center In May 2011 Maryland enacted legislation providing a sales and use tax exemption for sales of electricity from qualifying solar energy and residential wind energy equipment to residential customers. In order to qualify for the exemption, the sale of electricity must be for residential

102

System integration issues of residential solar photovoltaic systems  

DOE Green Energy (OSTI)

The objective of this study is to evaluate the economic effects of residential solar PV systems on the utility's revenue, capacity, and energy requirements from the electric utility's perspective and to estimate the price that it might pay for surplus energy compared to what it would charge for deficits. The power and energy generated by the solar PV systems reduce the capital and operating costs that would otherwise be incurred by the utility. These avoided costs suggest what the utility might pay for surplus solar PV energy. The avoided costs are evaluated under three integration hypotheses, namely: (1) the utility has no system storage, (2) the utility has system storage, and (3) the solar PV systems are supported by dedicated storage devices, the purpose of which is to minimize sales to and purchases from the utility. Findings are reported in detail. (WHK)

Yamayee, Z.A.; Peschon, J.

1980-03-01T23:59:59.000Z

103

Solar Industry At Work: Streamlining Home Solar Installation | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Industry At Work: Streamlining Home Solar Installation Solar Industry At Work: Streamlining Home Solar Installation Solar Industry At Work: Streamlining Home Solar Installation June 12, 2012 - 11:59am Addthis Sunrun is a home solar installation company based in San Francisco. | Photo by Francis Fine Art Photography. Sunrun is a home solar installation company based in San Francisco. | Photo by Francis Fine Art Photography. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs What are the key facts? Tillie Peterson works at Sunrun a home solar installation company based in San Francisco. As Director of Operations, Tillie works to get solar panels up and running for homeowners as simply and quickly as possible. Our Solar Industry At Work Series shares the personal success of

104

Non-Residential Solar & Wind Tax Credit (Corporate)  

Energy.gov (U.S. Department of Energy (DOE))

Arizonas tax credit for solar and wind installations in commercial and industrial applications was established in June 2006 ([http://www.azleg.gov/legtext/47leg/2r/bills/hb2429s.pdf HB 2429]). In...

105

Non-Residential Solar & Wind Tax Credit (Personal)  

Energy.gov (U.S. Department of Energy (DOE))

Arizonas tax credit for solar and wind installations in commercial and industrial applications was established in June 2006 ([http://www.azleg.gov/legtext/47leg/2r/bills/hb2429s.pdf HB 2429]). In...

106

Solar Power Industries SPI | Open Energy Information  

Open Energy Info (EERE)

Solar Power Industries SPI Solar Power Industries SPI Jump to: navigation, search Name Solar Power Industries (SPI) Place Belle Vernon, Pennsylvania Zip 15012 Product US-based manufacturer of mono and multicrystalline PV cells, modules and systems. References Solar Power Industries (SPI)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Power Industries (SPI) is a company located in Belle Vernon, Pennsylvania . References ↑ "Solar Power Industries (SPI)" Retrieved from "http://en.openei.org/w/index.php?title=Solar_Power_Industries_SPI&oldid=351318" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

107

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network (OSTI)

the predominant residential electricity rate structure. Itresidential electricity customers, over 90%, are on the standard domestic residential (DR) rate,

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

108

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ulm Public Utilities - Solar Electric Rebate Program New Ulm Public Utilities provides solar photovoltaic (PV) rebates for residential, commercial, and industrial customers....

109

Non-Residential Solar and Wind Tax Credit (Personal) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Personal) Personal) Non-Residential Solar and Wind Tax Credit (Personal) < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Tribal Government Savings Category Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Wind Maximum Rebate 25,000 for any one building in the same year and 50,000 per business in total credits in any year Program Info Start Date 1/1/2006 State Arizona Program Type Personal Tax Credit Rebate Amount 10% of installed cost Provider Arizona Commerce Authority Arizona's tax credit for solar and wind installations in commercial and

110

Non-Residential Solar and Wind Tax Credit (Corporate) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Corporate) Corporate) Non-Residential Solar and Wind Tax Credit (Corporate) < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Tribal Government Savings Category Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Wind Maximum Rebate $25,000 for any one building in the same year and $50,000 per business in total credits in any year Program Info Start Date 1/1/2006 State Arizona Program Type Corporate Tax Credit Rebate Amount 10% of installed cost Provider Arizona Commerce Authority Arizona's tax credit for solar and wind installations in commercial and

111

TrendSetter Solar Products Inc aka Trendsetter Industries formerly...  

Open Energy Info (EERE)

TrendSetter Solar Products Inc aka Trendsetter Industries formerly Six River Solar Jump to: navigation, search Name TrendSetter Solar Products Inc (aka Trendsetter Industries,...

112

Solar access of residential rooftops in four California cities  

DOE Green Energy (OSTI)

Shadows cast by trees and buildings can limit the solar access of rooftop solar-energy systems, including photovoltaic panels and thermal collectors. This study characterizes residential rooftop shading in Sacramento, San Jose, Los Angeles and San Diego, CA. Our analysis can be used to better estimate power production and/or thermal collection by rooftop solar-energy equipment. It can also be considered when designing programs to plant shade trees. High-resolution orthophotos and LiDAR (Light Detection And Ranging) measurements of surface height were used to create a digital elevation model of all trees and buildings in a well-treed 2.5-4 km{sup 2} residential neighborhood. On-hour shading of roofing planes (the flat elements of roofs) was computed geometrically from the digital elevation model. Values in future years were determined by repeating these calculations after simulating tree growth. Parcel boundaries were used to determine the extent to which roofing planes were shaded by trees and buildings in neighboring parcels. For the subset of S+SW+W-facing planes on which solar equipment is commonly installed for maximum solar access, absolute light loss in spring, summer and fall peaked about two to four hours after sunrise and about two to four hours before sunset. The fraction of annual insolation lost to shading increased from 0.07-0.08 in the year of surface-height measurement to 0.11-0.14 after 30 years of tree growth. Only about 10% of this loss results from shading by trees and buildings in neighboring parcels.

Levinson, Ronnen; Akbari, Hashem; Pomerantz, Melvin

2010-05-14T23:59:59.000Z

113

Solar access of residential rooftops in four California cities  

Science Conference Proceedings (OSTI)

Shadows cast by trees and buildings can limit the solar access of rooftop solar-energy systems, including photovoltaic panels and thermal collectors. This study characterizes residential rooftop shading in Sacramento, San Jose, Los Angeles and San Diego, CA. Our analysis can be used to better estimate power production and/or thermal collection by rooftop solar-energy equipment. It can also be considered when designing programs to plant shade trees. High-resolution orthophotos and LiDAR (Light Detection And Ranging) measurements of surface height were used to create a digital elevation model of all trees and buildings in a well-treed 2.5-4 km{sup 2} residential neighborhood. On-hour shading of roofing planes (the flat elements of roofs) was computed geometrically from the digital elevation model. Values in future years were determined by repeating these calculations after simulating tree growth. Parcel boundaries were used to determine the extent to which roofing planes were shaded by trees and buildings in neighboring parcels. For the subset of S + SW + W-facing planes on which solar equipment is commonly installed for maximum solar access, absolute light loss in spring, summer and fall peaked about 2 to 4 h after sunrise and about 2 to 4 h before sunset. The fraction of annual insolation lost to shading increased from 0.07-0.08 in the year of surface-height measurement to 0.11-0.14 after 30 years of tree growth. Only about 10% of this loss resulted from shading by trees and buildings in neighboring parcels. (author)

Levinson, Ronnen; Akbari, Hashem; Pomerantz, Melvin [Heat Island Group, Lawrence Berkeley National Laboratory (United States); Gupta, Smita [California Energy Commission, Sacramento, CA 95814 (United States)

2009-12-15T23:59:59.000Z

114

Utility-impacts assessment of residential passive-solar systems. Final report  

SciTech Connect

This report summarizes a project undertaken to provide the electric-utility industry with a tool to use in analyzing the advantages and disadvantages for themselves and their customers of passive-solar residential construction within their service areas. A methodology to accomplish this was created and then tested in cooperation with seven participating utilities. Results indicate that passive solar homes and well-insulated homes are more economic to both utilities and homeowners than conventional homes insulated to ASHRAE 90-75 standards, still the norm for building construction in many parts of the country. Further indications are that passive-solar homes may have lower life-cycle costs for heating and cooling than well-insulated homes in areas of the country where the annual heating load predominates over the annual cooling load, and where there is an adequate amount of sunshine during the heating season. The methodology developed also has the capability of simulating and comparing the performance of a wide variety of non-solar electrical heating and cooling systems. As a result, it can be adapted by utilities for a broad range of residential energy analyses.

Wood, R.A.; Siegel, M.D.

1983-03-01T23:59:59.000Z

115

NREL: News - NREL Assembles Industry Working Group to Advance Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

713 713 NREL Assembles Industry Working Group to Advance Solar Securitization Webinar focusing on SAPC to be held on March 22 March 19, 2013 The U.S. Department of Energy's (DOE)'s National Renewable Energy Laboratory (NREL) recently convened the Solar Access to Public Capital (SAPC) working group with a mission to enable securitization of solar PV assets and associated cash flows in the marketplace. SAPC's primary efforts center on the standardization of power purchase agreements, leases, and other documents relevant to residential and commercial deployment, and the development of robust datasets to assess performance and credit-default risk. These activities are designed to allow projects to be grouped into tradable securities. Securitization is expected to attract additional investors to the solar asset class, enabling the

116

Battery Power for Your Residential Solar Electric System: Better Buildings Series Solar Electric Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

ELECTRIC ELECTRIC Battery Power for Your Residential Solar Electric System A Winning Combination-Design, Efficiency, and Solar Technology A battery bank stores electricity produced by a solar electric system. If your house is not connected to the utility grid, or if you antici- pate long power outages from the grid, you will need a battery bank. This fact sheet pro- vides an overview of battery basics, including information to help you select and maintain your battery bank. Types of Batteries There are many types of batteries avail- able, and each type is designed for specific applications. Lead-acid batteries have been used for residential solar electric systems for many years and are still the best choice for this application because of their low mainte- nance requirements and cost. You may

117

Site-specific solar resource measurements for industrial solar applications  

DOE Green Energy (OSTI)

The solar industry can borrow solar radiation measuring equipment from the National Renewable Energy Laboratory (NREL) as part of NREL`s Solar Industrial Program. This program provides assistance to qualified parties in quantifying the solar radiation resource at prospective sites to reduce the risks of deploying industrial solar energy systems. Up-to-date solar radiation measurements permit comparisons of fresh data with existing data to verify established data bases and also provide data based on actual measurements instead of on less accurate models. This report outlines the responsibilities and obligations of NREL and the solar industry participant. It also describes the equipment for measuring solar radiation, the data quality assessment procedures, and the format of the data provided.

Marion, W.

1994-06-01T23:59:59.000Z

118

ET Solar Group Formerly CNS Solar Industry | Open Energy Information  

Open Energy Info (EERE)

Solar Group Formerly CNS Solar Industry Solar Group Formerly CNS Solar Industry Jump to: navigation, search Name ET Solar Group (Formerly CNS Solar Industry) Place Nanjing, Jiangsu Province, China Zip 210009 Sector Solar Product A Chinese solar company specializing in ingot, wafer, modules and solar trackers production. Coordinates 32.0485°, 118.778969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.0485,"lon":118.778969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

119

California Solar Initiative - Solar Thermal Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California Solar Initiative - Solar Thermal Program California Solar Initiative - Solar Thermal Program California Solar Initiative - Solar Thermal Program < Back Eligibility Commercial Fed. Government Industrial Local Government Low-Income Residential Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Maximum Rebate Step 1 Incentive Limits (contact utility to determine current incentive limits): Single-family residential systems that displace natural gas: $2,719 Single-family residential systems that displace electricity or propane: $1,834 Commercial and multifamily residential systems that displace natural gas: $500,000 Commercial and multifamily residential systems that displace electricity or propane: $250,000

120

Renewable energy options in Saudi Arabia: the economic viability of solar photovoltaics within the residential sector  

Science Conference Proceedings (OSTI)

Renewable energy options, including solar power, are becoming progressively more viable and thus increasingly pose challenges to conventional sources of energy, such as oil, coal and natural gas. Solar Photovoltaic technology is one type of solar energy ... Keywords: Saudi Arabia, feasibility study, renewable energy, residential buildings, solar photovoltaics

Yasser Al-Saleh; Hanan Taleb

2009-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial residential solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Commonwealth Solar Hot Water Commercial Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Program Commonwealth Solar Hot Water Commercial Program Eligibility Agricultural Commercial Fed. Government Industrial Local Government Multi-Family Residential...

122

Implementation of solar industrial process heat: summary  

SciTech Connect

The implementation of solar industrial process heat systems will depend not only on the successful development of reliable and efficient solar technologies, but also on the intelligent and sound application of process engineering principles. This poses an important challenge which must be given increasing attention if SIPH systems are to be adopted by industry. (MOW)

Kearney, D. W.

1979-11-01T23:59:59.000Z

123

Property Tax Exclusion for Solar Energy Systems | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion for Solar Energy Systems Property Tax Exclusion for Solar Energy Systems Eligibility Commercial Industrial Residential Savings For Solar Buying & Making Electricity...

124

Residential Solar and Wind Energy Systems Tax Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Solar and Wind Energy Systems Tax Credit Residential Solar and Wind Energy Systems Tax Credit Residential Solar and Wind Energy Systems Tax Credit < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Wind Maximum Rebate 1,000 maximum credit per residence, regardless of number of energy devices installed Program Info Start Date 1/1/1995 State Arizona Program Type Personal Tax Credit Rebate Amount 25% Provider Arizona Department of Revenue Arizona's Solar Energy Credit is available to individual taxpayers who install a solar or wind energy device at the taxpayer's Arizona residence. The credit is allowed against the taxpayer's personal income tax in the

125

Reliability assessment of active residential solar energy systems, Phase I  

SciTech Connect

Experiences with active solar energy systems in the last few years have, in many cases, been less than encouraging. A quantification of the problem areas discovered in a sampling of the active residential solar energy systems in the state of Colorado is presented. While many problems were found, the potential for easy solution of the problems by design or installation refinement is great. Reported is a summary of the findings of the mechanical inspections of twelve systems during the 1978-79 winter. Only one system operated at its expected mechanical, thermal and economic performance level. Four other systems performed well mechanically, but only one of these had thermal performance meeting design expectations. The remaining seven systems did not work well mechanically or thermally. One significantly raised the utility bill of the residence on which it was installed. Poor system design was found to be the major cause of low performance. Also, installation quality was low and installation errors were frequent. Qualified solar system service was virtually unavailable. Nearly all the problems found were solvable using present technology. The greatest immediate need is for training of designers, installers and service people and support of off-market development of total systems.

Sharp, K.

1980-01-01T23:59:59.000Z

126

National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost- effective retrofit measures to improve the energy efficiency of residential buildings. This database: * Provides information in a standardized format. * Improves the technical consistency and accuracy of the results of software programs. * Enables experts and stakeholders to view the retrofit information and provide comments to improve data

127

Solar access of residential rooftops in four California cities  

E-Print Network (OSTI)

the solar access of rooftop solar-energy systems, includingthermal collection by rooftop solar-energy equipment. It canthe solar access of rooftop solar-energy systems, including

Levinson, Ronnen

2010-01-01T23:59:59.000Z

128

NREL Successfully Transfers VSHOT Technology to Solar Industry  

NREL Successfully Transfers VSHOT Technology to Solar Industry ... The increasing demand for concentrating solar power, ... Technology Transfer Home;

129

Solar Industry At Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry At Work Industry At Work Solar Industry At Work Addthis 1 of 11 Vice President Joe Biden talks with staff at the National Renewable Energy Lab's Process Development and Integration Laboratory (PDIL). The PDIL brings together technical experts from NREL, the solar industry, and universities for collaborative research. Image: Dennis Schroeder (NREL) 2 of 11 Steven Bohn, an engineer at SunEdison oversees SunEdison's testing facility at SolarTAC in Aurora, CO. The SolarTAC mission is to increase the efficiency of solar energy products and rapidly deploy them to the commercial market. Image: Dennis Schroeder (NREL) 3 of 11 NREL scientists Ki Ye and Joe Berry peer into the glass siding of a deposition instrument to view the latest results of an experiment with a new material.

130

Market analysis of the solar energy industry  

SciTech Connect

This report describes the results of a survey of companies in the solar energy industry. The general objective of the survey was to provide information to help evaluate the effectiveness of technology transfer mechanisms for the development of the solar industry. The specific objectives of the survey included: (1) determination of the needs of the solar industry; (2) identification of special concerns of the solar industry; and (3) determination of the types of technology transfer mechanisms that would be most helpful to the solar industry in addressing these needs and concerns. The major focus was on technical problems and developments, but institutional and marketing considerations were also treated. The majority of the sample was devoted to the solar heating and cooling (SHAC) component of the industry. However, a small number of photovoltaic (PV), wind, and power generation system manufacturers were also surveyed. Part I discusses the methodology used in the selection, performance, and data reduction stages of the survey, comments on the nature of the responses, and describes the conclusions drawn from the survey. The latter include both general conclusions concerning the entire solar industry, and specific conclusions concerning component groups, such as manufacturers, architects, installers, or dealers. Part II consists of tabulated responses and non-attributed verbatim comments that summarize and illustrate the survey results.

1979-08-01T23:59:59.000Z

131

Baseline study of US industry solar exports  

DOE Green Energy (OSTI)

This study is a detailed aggregate profile of US solar export activity in 1979 based on a survey of all segments of the solar industry. It identifies the dollar volume of exports by technology: (1) solar heating and cooling products; (2) wind products; (3) photovoltaics; (4) solar thermal electric; (5) OTEC and biomass; and (6) support products and services. The study offers to government and industry groups, for the first time, comprehensive information with which to formulate export goals and assistance measures based on the current realities of the solar export marketplace. Specific and aggregate recommendations which can lead to identification of realistic solar export opportunities and development of solar export markets are included.

Jacobius, T M; Levi, R S; Bereny, J A

1980-10-01T23:59:59.000Z

132

Strategies for Low Carbon Growth In India: Industry and Non Residential  

NLE Websites -- All DOE Office Websites (Extended Search)

Strategies for Low Carbon Growth In India: Industry and Non Residential Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors Title Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors Publication Type Report Refereed Designation Unknown LBNL Report Number LBNL-4557E Year of Publication 2011 Authors Sathaye, Jayant A., Stephane Rue de la du Can, Maithili Iyer, Michael A. McNeil, Klaas Jan Kramer, Joyashree Roy, Moumita Roy, and Shreya Roy Chowdhury Date Published 5/2011 Publisher LBNL Keywords Buildings Energy Efficiency, CO2 Accounting Methodology, CO2 mitigation, Demand Side Management, energy efficiency, greenhouse gas (ghg), india, industrial energy efficiency, industrial sector, Low Carbon Growth, Low Growth, Non Residential Abstract This report analyzed the potential for increasing energy efficiency and reducing greenhouse gas emissions (GHGs) in the non-residential building and the industrial sectors in India. The first two sections describe the research and analyses supporting the establishment of baseline energy consumption using a bottom up approach for the non residential sector and for the industry sector respectively. The third section covers the explanation of a modeling framework where GHG emissions are projected according to a baseline scenario and alternative scenarios that account for the implementation of cleaner technology.

133

Stratified thermal storage in residential solar energy applications  

DOE Green Energy (OSTI)

The benefits of thermal stratification in sensible heat storage were investigated for several residential solar applications. The operation of space heating, air conditioning and water heating systems with water storage was simulated on a computer. The performance of comparable systems with mixed and stratified storage was determined in terms of the fraction of the total load supplied by solar energy. The effects of design parameters such as collector efficiency, storage volume, tank geometry, etc., on the relative advantage of stratified over well-mixed storage were assessed. The results show that significant improvements in system performance (5 to 15%) may be realized if stratification can be maintained in the storage tank. The magnitude of the improvement is greatest and the sensitivity to design variables is smallest in the service hot water application. The results also show that the set of design parameters which describes the optimum system is likely to be substantially different for a system employing stratified storage than for a mixed storage system. In both the water heating and space heating applications collector flowrates lower than currently suggested for mixed storage systems were found to yield optimum performance for a system with stratified storage.

Sharp, M.K.; Loehrke, R.I.

1978-06-01T23:59:59.000Z

134

Existing and potential market for residential solar energy use in California  

DOE Green Energy (OSTI)

Research findings are reported on a four-part solar market survey program which identified barriers for residential solar energy use in California. The approach and the framework for analysis are described for the survey program. Summaries and discussions are presented on survey data from solar retrofitters; new construction solar home market and buyers; focus groups of non-solar homeowners; and a statewide survey. (MCW)

Rains, D.

1980-01-01T23:59:59.000Z

135

Solar Heat Gain Coefficient Worksheet WS-3R Residential (Page 1 of 2)  

E-Print Network (OSTI)

Solar Heat Gain Coefficient Worksheet WS-3R Residential (Page 1 of 2) Site Address: Enforcement Table for Fenestration Products (Table 116-B of the Standards), NFRC certified data, or Solar Heat Gain SHGCmin Total SHGC Note: Calculated Solar Heat Gain Coefficient values for Total SHGC may be used directly

136

Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition  

DOE Green Energy (OSTI)

This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

None

1980-09-01T23:59:59.000Z

137

Existing and potential market for residential solar energy use in California. Summary of findings from CEC solar market surveys  

SciTech Connect

In order to assess the existing and potential solar energy market, the residential sector was split into four subgroups, each of which was interviewed in depth. These subgroups include homeowners who had retrofitted their houses with solar energy systems and a control group of their neighbors, homeowners in seven new solarized subdivisions and seven adjacent nonsolarized subdivisions, and individuals deciding to postpone or not purchase a solar energy system for a home, and a statewide random sample of California households. Five major questions are addressed: how much and what kinds of information about residential solar energy systems do Californians have now; what are the characteristics of individuals purchasing solar energy equipment, and do these individuals represent identifiable market segments; what are the major channels through which solar energy equipment information is flowing; what are the principal barriers to, and incentives for the adoption of solar energy systems; and what are public attitudes towards government regulations regarding the use of solar energy. (LEW)

Rains, D.

1980-09-01T23:59:59.000Z

138

Solar ponds for industrial process heat  

DOE Green Energy (OSTI)

Solar ponds offer perhaps the simplest technique for conversion of solar energy to thermal energy, which can be used for industrial process heat. It is unique in its capability in acting both as collector and storage. Further, the cost of solar pond per unit area is less than any active collectors available today. Combination of these economic and technical factors make solar ponds attractive as a fuel saver in IPH applications. Detailed calculations are given for solar ponds in two specific applications: providing hot water for aluminum can washing in a manufacturing plant and hot water for washing in a large commercial laundry. With the help of computer codes developed at SERI for other solar IPH systems, it is shown that solar ponds are far more cost effective than any other solar IPH technology for these applications.

Brown, K.C.; Edesess, M.; Jayadev, T.S.

1979-10-01T23:59:59.000Z

139

FirstEnergy (West Penn Power)- Residential Solar Water Heating Program (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE))

West Penn Power, a First Energy utility, provides rebates to residential customers for purchasing and installing qualifying solar water heating systems. Eligible systems may receive a rebate of up...

140

Developing a solar energy industry in Egypt  

E-Print Network (OSTI)

This paper assesses Egypt's current energy infrastructure and its problems, the available solar energy resource, and the technologies required to harness this resource. After this assessment, an industry based on high ...

AbdelMessih, Sherife (Sherife Mohsen)

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial residential solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Cutting Industrial Solar System Costs in Half  

E-Print Network (OSTI)

While there are technical, social, environmental and institutional barriers to the widespread use of solar systems, the principle barrier is economic. For commercial and industrial firms to turn to this alternate energy source, the first cost must be sharply reduced so that the annual savings that are achievable will provide an attractive return on the incremental investment. This paper discusses one proven method of combining the energy efficiency of high temperature industrial heat pumps with solar collectors that result in an installed first cost that approximates one half of that of conventional solar systems. This technology is now available for producing up to 220 F hot water for industrial process heat, space heating, and service hot water heating. The basic principles of the technology are reviewed, including the typical operating characteristics of the industrial heat pumps and the solar collectors, plus the generic application schematics comparing this approach with conventional solar collector only systems. Several case histories are reviewed, including an industrial plant, townhouse project, and hospital. Not only is a lower first cost demonstrated, but the combination uses small solar arrays, ideal where roof area is limited, and use less expensive solar collectors.

Niess, R. C.; Weinstein, A.

1982-01-01T23:59:59.000Z

142

Local Option - Property Tax Exemption for Solar | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Maximum Rebate Varies (local...

143

Solar Renewable Energy Credits (SRECs) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Credits (SRECs) Solar Renewable Energy Credits (SRECs) Eligibility Agricultural Commercial Industrial Institutional Local Government Low-Income Residential...

144

California Solar Initiative - PV Incentives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Incentives California Solar Initiative - PV Incentives Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Low-Income Residential...

145

Solar access of residential rooftops in four California cities  

E-Print Network (OSTI)

uence of cloudy weather on direct solar irradiance (Figurenormal solar irradiances values contained in the weather ?

Levinson, Ronnen

2010-01-01T23:59:59.000Z

146

Solar technology and the insurance industry: Issues and applications  

DOE Green Energy (OSTI)

Today's insurance industry strongly emphasizes developing cost-effective hazard mitigation programs, increasing and retaining commercial and residential customers through better service, educating customers on their exposure and vulnerabilities to natural disasters, collaborating with government agencies and emergency management organizations, and exploring the use of new technologies to reduce the financial impact of disasters. Solar technology can be used in underwriting, claims, catastrophe response, loss control, and risk management. This report will address the above issues, with an emphasis on pre-disaster planning and mitigation alternatives. It will also discuss how energy efficiency and renewable technologies can contribute to reducing insurance losses and offer suggestions on how to collaborate with the utility industry and how to develop educational programs for business and consumers.

Deering, A.; Thornton, J. P.

1999-07-01T23:59:59.000Z

147

Solar energy for agricultural and industrial process heat  

SciTech Connect

A state-of-the-art review of solar process heat is given; near term prospects are discussed; and the federal solar industrial process heat program is reviewed. Existing solar industrial process heat projects are tabulated. (WHK)

1979-06-22T23:59:59.000Z

148

Solarize Guidebook: A Community Guide to Collective Purchasing of Residential PV Systems (Book)  

Science Conference Proceedings (OSTI)

This guidebook is intended as a road map for project planners and solar advocates who want to convert 'interest' into 'action,' to break through market barriers and permanently transform the market for residential solar installations in their communities. It describes the key elements of the Solarize campaigns in Portland, and offers several program refinements from projects beyond Portland. The guidebook provides lessons, considerations, and step-by-step plans for project organizers to replicate the success of Solarize Portland.

Not Available

2012-05-01T23:59:59.000Z

149

Solarize Guidebook: A Community Guide to Collective Purchasing of Residential PV Systems  

DOE Green Energy (OSTI)

This handbook is intended as a road map for project planners and solar advocates who want to convert interest into action, to break through market barriers and permanently transform the market for residential solar installations in their communities. It describes the key elements of the Solarize campaigns in Portland, and offers several program refinements from projects beyond Portland. The handbook provides lessons, considerations, and step-by-step plans for project organizers to replicate the success of Solarize Portland.

Irvine, L.; Sawyer, A.; Grove, J.

2011-02-01T23:59:59.000Z

150

Solar synthesis of advanced materials: A solar industrial program initiative  

SciTech Connect

This is an initiative for accelerating the use of solar energy in the advanced materials manufacturing industry in the United States. The initiative will be based on government-industry collaborations that will develop the technology and help US industry compete in the rapidly expanding global advanced materials marketplace. Breakthroughs in solar technology over the last 5 years have created exceptional new tools for developing advanced materials. Concentrated sunlight from solar furnaces can produce intensities that approach those on the surface of the sun and can generate temperatures well over 2000{degrees}C. Very thin layers of illuminated surfaces can be driven to remarkably high temperatures in a fraction of a second. Concentrated solar energy can be delivered over large areas, allowing for rapid processing and high production rates. By using this technology, researchers are transforming low-cost raw materials into high-performance products. Solar synthesis of advanced materials uses bulk materials and energy more efficiently, lowers processing costs, and reduces the need for strategic materials -- all with a technology that does not harm the environment. The Solar Industrial Program has built a unique, world class solar furnace at NREL to help meet the growing need for applied research in advanced materials. Many new advanced materials processes have been successfully demonstrated in this facility, including the following: Metalorganic deposition, ceramic powders, diamond-like carbon materials, rapid heat treating, and cladding (hard coating).

Lewandowski, A.

1992-06-01T23:59:59.000Z

151

Solar access of residential rooftops in four California cities  

E-Print Network (OSTI)

the 14th European Photovoltaic Solar Energy Conference androoftop solar-energy systems, including photovoltaic panelsrooftop solar-energy systems, including photovoltaic panels

Levinson, Ronnen

2010-01-01T23:59:59.000Z

152

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network (OSTI)

10 1.5. The Coordination of Solar and Energyintegration of solar and energy efficiency. Currentlytension between solar and energy efficiency remains much

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

153

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network (OSTI)

meteorological year (TMY) solar radiation data. The goaleither TMY or actual solar radiation data, and thus servesmodeling (using actual solar radiation data, though this

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

154

Solar access of residential rooftops in four California cities  

NLE Websites -- All DOE Office Websites (Extended Search)

panels and thermal collectors. This study characterizes residential rooftop shading in Sacramento, San Jose, Los Angeles and San Diego, CA. Our analysis can be used to better...

155

MISR -- Solar and steam for industry  

SciTech Connect

The goal of the MISR project is to assist industry in developing viable Solar Energy Systems which have high reliability and low cost because they do not require custom engineering and installation for each industrial site. The collector field, piping and steam generation equipment are pre-engineered to be suitable for a wide range of industrial steam applications. The approach of the MISR project is twofold: to develop line-focus industrial solar thermal energy systems which, like conventional packaged steam boilers, are based on the modular concept; and to install and operate a number (10 or less) of these systems at existing industrial plants, supplementing steam produced by conventional boilers. The project is briefly described.

1981-12-31T23:59:59.000Z

156

All Green Residential Solar Energy to Heat Absorption Cooling / Heating Systems  

Science Conference Proceedings (OSTI)

An all-green residential solar to heat absorption cooling / heating system system is designed. It describes the components of the system and working principle, and analyze the prospects of the system and academic value. Finally, To Changsha, for example, ... Keywords: solar, ground-source heat pump, absorption, heat tube

Xu Feng

2013-01-01T23:59:59.000Z

157

Residential solar data center: data resources and reports. Final report Sep 79-Sep 81  

Science Conference Proceedings (OSTI)

The Residential Solar Data Center (SDC) was responsible for the establishment and operation of a computerized data base containing non-instrumented residential data collected from the DoE/HUD Solar Heating and Cooling Demonstration Program. This document includes a summary of the history and background of the SDC and its role in the demonstration program, a list of the final computer reports which are available, sample pages of representative reports, and a description of the data files which comprised the solar data base.

Christopher, P.M.; Houser, A.O.

1981-10-01T23:59:59.000Z

158

DOE Solar Decathlon: 2007 Building Industry Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

team Puerto Rico student stands over the team's gray-water pool, which is filled with green plants, and explains to visitors surrounding the pool how it recycles water for reuse. team Puerto Rico student stands over the team's gray-water pool, which is filled with green plants, and explains to visitors surrounding the pool how it recycles water for reuse. Universidad de Puerto Rico student Wilfredo Rodriguez explains the team's gray-water pool to visitors at the 2007 Solar Decathlon. The pool is used to filter wash water for reuse. Solar Decathlon 2007 Building Industry Workshops Below are descriptions of the workshops offered at the 2007 Solar Decathlon on Building Industry Day, Thursday, October 18, 2007. Solar Applications for Homes Revised Title: Translating Sustainability to Affordable Housing 9:00 a.m. Presenter: ASHRAE and John Quale, Assistant Professor, University of Virginia School of Architecture The focus of the workshop is translating sustainability to affordable

159

Industrial Solar Technology Corp | Open Energy Information  

Open Energy Info (EERE)

Industrial Solar Technology Corp Industrial Solar Technology Corp Jump to: navigation, search Name Industrial Solar Technology Corp Place Golden, Colorado Zip CO 80403-1 Product IST designs, manufactures, installs and operates large scale parabolic trough collector systems. Coordinates 32.729747°, -95.562678° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.729747,"lon":-95.562678,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

160

Solar Energy Industries Association | Open Energy Information  

Open Energy Info (EERE)

Solar Energy Industries Association Solar Energy Industries Association Name Solar Energy Industries Association Address 575 7th Street NW #400 Place Washington, DC Zip 20004 Number of employees 11-50 Year founded 1974 Website http://www.seia.org/ Coordinates 38.897162°, -77.021563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.897162,"lon":-77.021563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "industrial residential solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Denmark Solar Industry DSI | Open Energy Information  

Open Energy Info (EERE)

Industry DSI Industry DSI Jump to: navigation, search Name Denmark Solar Industry (DSI) Place Copenhagen, Denmark Zip DK-1550 Sector Solar Product Manufactures and distributes solar panels and systems. Coordinates 55.67631°, 12.569355° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.67631,"lon":12.569355,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

162

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

Science Conference Proceedings (OSTI)

This report analyzed the potential for increasing energy efficiency and reducing greenhouse gas emissions (GHGs) in the non-residential building and the industrial sectors in India. The first two sections describe the research and analysis supporting the establishment of baseline energy consumption using a bottom up approach for the non residential sector and for the industry sector respectively. The third section covers the explanation of a modeling framework where GHG emissions are projected according to a baseline scenario and alternative scenarios that account for the implementation of cleaner technology.

Sathaye, Jayant; de la Rue du Can, Stephane; Iyer, Maithili; McNeil, Michael; Kramer, Klaas Jan; Roy, Joyashree; Roy, Moumita; Chowdhury, Shreya Roy

2011-04-15T23:59:59.000Z

163

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network (OSTI)

respond to having a rooftop solar system. There is a robustindustry, since a small rooftop solar system can producecompliance. 27 . Each kW of rooftop solar capacity produces

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

164

Solar access of residential rooftops in four California cities  

E-Print Network (OSTI)

Data Center (NREL MIDC) Solar Position and Intensity (14] J.A. Du?e and W.A. Beckman. Solar Engineering of Thermalthe 14th European Photovoltaic Solar Energy Conference and

Levinson, Ronnen

2010-01-01T23:59:59.000Z

165

Solar access of residential rooftops in four California cities  

E-Print Network (OSTI)

irradiance (incident solar power/area) incident on unshaded,losses (loss of incident solar power/area) were calculatedreduces the aggregate solar power incident on the planes at

Levinson, Ronnen

2010-01-01T23:59:59.000Z

166

Block IV solar cell module design and test specification for residential applications  

SciTech Connect

This specification provides near-term design, qualification and acceptance requirements for terrestrial solar cell modules suitable for incorporation in photovoltaic power sources (2 kW to 10 kW) applied to single family residential installations. Requirement levels and recommended design limits for selected performance criteria have been specified for modules intended principally for rooftop installations. Modules satisfying the requirements of this specification fall into one of two categories, residential panel or residential shingle, both meeting general performance requirements plus additional category peculiar constraints.

1978-11-01T23:59:59.000Z

167

Austin Energy - Residential Solar PV Rebate Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

offers a 1.50 per watt incentive to eligible residential who install photovoltaic (PV) systems on their homes. Rebates are limited to 15,000 per home installation and...

168

Richland Energy Services- Residential Energy Conservation & Solar Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

The City of Richland provides low-interest loans to encourageit residential customers to pursue equipment upgrades and home improvement measures that will increase the energy efficiency of their...

169

Residential Solar Photovoltaics: Comparison of Financing Benefits, Innovations, and Options  

DOE Green Energy (OSTI)

This report examines relatively new, innovative financing methods for residential photovoltaics (PV) and compares them to traditional self-financing. It provides policymakers with an overview of the residential PV financing mechanisms, describes relative advantages and challenges, and analyzes differences between them where data is available. Because these innovative financing mechanisms have only been implemented in a few locations, this report can inform their wider adoption.

Speer, B.

2012-10-01T23:59:59.000Z

170

Local Option - Solar, Wind & Biomass Energy Systems Exemption...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar, Wind & Biomass Energy Systems Exemption Local Option - Solar, Wind & Biomass Energy Systems Exemption Eligibility Agricultural Commercial Industrial Residential Savings For...

171

Solar Energy Sales Tax Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Energy Sales Tax Exemption Solar Energy Sales Tax Exemption Eligibility Commercial General PublicConsumer Industrial Residential Savings For Heating & Cooling Commercial...

172

Solar and Wind Energy Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar and Wind Energy Rebate Program Solar and Wind Energy Rebate Program Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State...

173

Active Solar Heating and Cooling Systems Exemption | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Active Solar Heating and Cooling Systems Exemption Active Solar Heating and Cooling Systems Exemption < Back Eligibility Commercial Industrial Residential Savings Category Heating...

174

Modular Industrial Solar Retrofit fact sheet  

SciTech Connect

The MISR project has two goals. One is to assist industry in developing viable Solar Energy Systems which have high reliability and low cost because they do not require tailored engineering and installation for each industrial site. The collector field, piping and steam generation equipment are pre-engineered to be suitable for a wide range of industrial steam applications. This is the Modular Concept. The second goal is to fabricate, install, and test qualification test systems (representative of full-size MISR designs in all but the size of the collector field) to determine design quality, fabrication and installation correctness, and system cost. This activity allows the designers to produce the first MISR system, experimentally verify its operation and performance before committing to large scale solar installations, thereby avoiding the risks associated with the first system. It provides the potential industrial user with information upon which to base solar energy decisions. Five separate system designs are being developed under the MISR project. Four of the designs are being tested at Sandia National Laboratories at Albuquerque, New Mexico and one is being tested at the Solar energy Research Institute in Golden, Colorado.

1981-12-31T23:59:59.000Z

175

The Solarex Solar Power Industrial Facility  

E-Print Network (OSTI)

The Solarex Corporation has designed, built and operated an industrial facility which is totally powered by a Solarex solar electric power system. The solar power system, energy-conserving building and manufacturing operations were treated as a total system for optimizing the entire design. Many special features were included to ensure that highly reliable operations could be achieved without requiring electric utility back-up. The facility was built as both an operating plant for Solarex and as a demonstration of the possibility of solar powered industrial plants. The facility has been in operation since October 1982. During this period the solar power system has operated reliably with only two incidents of short losses of power while the local electric utility has experienced more than seven incidences of power loss for a significant amount of total downtime. This paper presents summaries for the design and operational features of the solar powered facility and the potential for other solar powered plants in the U.S. and abroad.

Macomber, H. L.; Bumb, D. R.

1984-01-01T23:59:59.000Z

176

Mulk Renewable Energy Aditya Solar Power Industries JV | Open Energy  

Open Energy Info (EERE)

Mulk Renewable Energy Aditya Solar Power Industries JV Mulk Renewable Energy Aditya Solar Power Industries JV Jump to: navigation, search Name Mulk Renewable Energy & Aditya Solar Power Industries JV Place United Arab Emirates Sector Solar Product UAE-based company that is developing a 200MW solar thermal plant in Sharjah. References Mulk Renewable Energy & Aditya Solar Power Industries JV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Mulk Renewable Energy & Aditya Solar Power Industries JV is a company located in United Arab Emirates . References ↑ "Mulk Renewable Energy & Aditya Solar Power Industries JV" Retrieved from "http://en.openei.org/w/index.php?title=Mulk_Renewable_Energy_Aditya_Solar_Power_Industries_JV&oldid=348970"

177

Solar Industry At Work: Video Interview with Alta Devices' Laila...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Industry At Work: Video Interview with Alta Devices' Laila Mattos Solar Industry At Work: Video Interview with Alta Devices' Laila Mattos June 6, 2012 - 12:07pm Addthis Laila...

178

Residential solar energy users: a review of empirical research and related literature  

DOE Green Energy (OSTI)

This report reviews 15 empirical studies of residential solar energy users and related literature on residential solar energy use. The purpose of the review is to summarize and analyze the experiences of residential solar users for helping formulate policies concerning the accelerated commercialization of solar technologies. Four of the studies employed case histories or focus group techniques. The 11 questionnaire studies represented interviews with over 1,600 owners of solar systems. The demographic characteristics of samples are listed and compared; research findings and conclusions are presented. Findings on user satisfaction and system performance, possible reasons for evidence of lacking correlation between them, and implications for consumer protection and future research are discussed. General findings are: (1) systematic research on the experiences of solar users is lacking - much research remains to be done; (2) the reported overall experiences of users has been very positive; (3) user reports indicate that system performance is generally good but there is some evidence that user reports are not accurate measures of actual performance; (4) a need exists for adequate consumer protection; (5) design or installation problems are evidenced in significant numbers of early solar installations; and (6) these problems evidently are resolvable. An annotated bibliography describes 10 other studies in progress.

Unseld, C.T.; Crews, R.

1979-12-01T23:59:59.000Z

179

Solar-Assisted Technology Provides Heat for California Industries  

E-Print Network (OSTI)

Solar-Assisted Technology Provides Heat for California Industries Industrial/Agriculture/Water End 2011 The Issue Solar thermal technology focuses the Sun's rays to heat water, and is a promising renewable resource for California's industrial sector. Commercially available solar water heating

180

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network (OSTI)

actual solar radiation and other necessary weather dataSolar 71 Table 5.2. 10x10km Weathersolar energy is actually generated; this makes intuitive sense as edge effects such as shading and weather

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial residential solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network (OSTI)

project with both efficiency and solar may be the optimal solution for some customersand the one that costs

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

182

Solar Energy LLC Industrial Investors Group | Open Energy Information  

Open Energy Info (EERE)

LLC Industrial Investors Group LLC Industrial Investors Group Jump to: navigation, search Name Solar Energy LLC - Industrial Investors Group Place Moscow, Russian Federation Zip 119017 Sector Solar Product The company Solar Energy plans to use turnkey equipment from GT Solar and others to make silicon, ingots, wafers and cells in Russia. References Solar Energy LLC - Industrial Investors Group[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Energy LLC - Industrial Investors Group is a company located in Moscow, Russian Federation . References ↑ "Solar Energy LLC - Industrial Investors Group" Retrieved from "http://en.openei.org/w/index.php?title=Solar_Energy_LLC_Industrial_Investors_Group&oldid=351271

183

US Solar Energy Industries Association SEIA | Open Energy Information  

Open Energy Info (EERE)

Energy Industries Association SEIA Energy Industries Association SEIA Jump to: navigation, search Name US Solar Energy Industries Association (SEIA) Place Washington, Washington, DC Zip 20005 Sector Solar Product US national trade association of solar energy manufacturers, dealers, distributors, consultants, and marketers. References US Solar Energy Industries Association (SEIA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. US Solar Energy Industries Association (SEIA) is a company located in Washington, Washington, DC . References ↑ "US Solar Energy Industries Association (SEIA)" Retrieved from "http://en.openei.org/w/index.php?title=US_Solar_Energy_Industries_Association_SEIA&oldid=352621

184

Residential Solar and Efficiency Tax Credit - Personal (Massachusetts...  

Open Energy Info (EERE)

Programmable Thermostats, DuctAir sealing, Building Insulation, Windows, Solar Water Heat, Other Unspecified Technologies Active Incentive No Implementing Sector State...

185

Residential Solar and Efficiency Tax Credit - Corporate (Massachusetts...  

Open Energy Info (EERE)

Programmable Thermostats, DuctAir sealing, Building Insulation, Windows, Solar Water Heat, Other Unspecified Technologies Active Incentive No Implementing Sector State...

186

Clallam County PUD - Residential Solar Rebate Program (Washington...  

Open Energy Info (EERE)

Heat Water specifications and must be installed by Bright Way certified installers. All solar installations must be approved by the PUD prior to installation and must be...

187

Walton EMC - Residential Solar Water Heating Rebate Program ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebate 200 Program Information Georgia Program Type Utility Rebate Program Rebate Amount Solar Water Heater: 200 per location Walton Electric Membership Corporation (WEMC) is an...

188

Austin Energy - Value of Solar Residential Rate (Texas) | Open...  

Open Energy Info (EERE)

month. The Value of Solar rate is based upon several factors* including: loss savings, energy savings, generation capacity savings, fuel price hedge value, transmission and...

189

Most new residential solar PV projects in California ...  

U.S. Energy Information Administration (EIA)

weather; gasoline; capacity; exports; ... The solar leasing company will also usually own the renewable energy certificates (RECs) generated by the PV ...

190

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network (OSTI)

59. City of San Diego and California Center for SustainablePOLICIES AND FUNDING FOR THE CALIFORNIA SOLAR INITIATIVE.San Francisco, California Public Utilities Commission: 44.

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

191

Residential heating costs: a comparison of geothermal, solar and conventional resources  

DOE Green Energy (OSTI)

The costs of residential heating throughout the United States using conventional, solar, and geothermal energy were determined under current and projected conditions. These costs are very sensitive to location - being dependent on the local prices of conventional energy supplies, local solar insolation, cimate, and the proximity and temperature of potential geothermal resources. The sharp price increases in imported fuels during 1979 and the planned decontrol of domestic oil and natural gas prices have set the stage for geothermal and solar market penetration in the 1980's.

Bloomster, C.H.; Garrett-Price, B.A.; Fassbender, L.L.

1980-08-01T23:59:59.000Z

192

Cost Effectiveness for Solar Control Film for Residential Applications  

E-Print Network (OSTI)

For the existing housing, retrofitting single or double glazed clear glass window with solar films can be an effective measure to reduce their peak power demand, and large scale application of the same on national level can be an effective tool for demand side management. This paper analyses the field performance data of a solar control film, retrofitted in a Kuwait villa, for establishing its technical viability and cost effectiveness. The paper concludes that the solar film, besides enhancing the thermal comfort, reduced the peak cooling demand and the peak power demand by 6.7% and 4.7%, respectively, during the peak summer period.

Al-Taqi, H. H.; Maheshwari, G. P.; Alasseri, R.

2010-01-01T23:59:59.000Z

193

Code manual for passive solar design single family residential construction  

DOE Green Energy (OSTI)

General information is presented on types of passive solar techniques and a method for estimating passive solar performance. Important codes and standards are described, each description listing the items in the code which could have a potential impact on a passive solar design and analyzing the effect of the code on the use of such techniques. State and local codes and code agencies are summarized. The local summary contains the name of a contact in the enforcement agency to whom specific questions may be addressed. The requirements to file for a building permit are given briefly. (LEW)

None

1979-08-01T23:59:59.000Z

194

Pulse combustion: Commercial, industrial, and residential applications. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the evolution of pulse combustion, the types of pulse combustion burners and their applications, and selected fuels utilized. Topics include fuel combustion efficiency, energy conversion and utilization technologies, modeling of chemical kinetics, and dynamics and thermal characteristics of pulse combustors. Pulse combustion systems for water heaters, gas furnaces, industrial and residential boilers, commercial cooking equipment, and space heating devices are presented. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-10-01T23:59:59.000Z

195

Fuel consumption: Industrial, residential, and general studies. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning fuel consumption in industrial and residential sectors. General studies of fuel supply, demand, policy, forecasts, and consumption models are presented. Citations examine fuel information and forecasting systems, fuel production, international economic and energy activities, heating oils, and pollution control. Fuel consumption in the transportation sector is covered in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-08-01T23:59:59.000Z

196

Non-Residential Solar & Wind Tax Credit (Corporate) (Arizona...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

197

Residential Solar and Wind Energy Systems Tax Credit (Arizona...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

198

Non-Residential Solar & Wind Tax Credit (Personal) (Arizona)...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

199

Residential Solar Energy Tax Credit (West Virginia) | Open Energy...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

200

Residential Solar Tax Credit (New York) | Open Energy Information  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

Note: This page contains sample records for the topic "industrial residential solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Austin Energy - Residential Solar PV Rebate Program (Texas) ...  

Open Energy Info (EERE)

for the fiscal year ending September 30, 2004. For 2005, 2,000,000 was budgeted for solar PV rebates and 500,000 for PV installations on municipal buildings. For 2006, the...

202

Brunswick EMC - Residential Energy Efficiency and Solar Water...  

Open Energy Info (EERE)

insulation, and solar water heaters. The loans of up to 6,000 are available to homeowners served by BEMC for at least one year and who have a good credit history. Incentive...

203

Piedmont EMC - Residential Solar Loan Program | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

available to eligible consumers to finance the purchase and installation of photovoltaic (PV) and solar water heating systems. Approved consumers may borrow up to 10,000 for seven...

204

EWEB - Residential Solar Water Heating Loan Program (Oregon)...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

205

EWEB - Residential Solar Water Heating Rebate (Oregon) | Open...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

206

Solar Water Heating Requirement for New Residential Construction...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

207

Burbank Water and Power - Residential and Commercial Solar Support...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

208

Residential Solar Water Heating Rebates (New Hampshire) | Open...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

209

Value of solar thermal industrial process heat  

DOE Green Energy (OSTI)

This study estimated the value of solar thermal-generated industrial process heat (IPH) as a function of process heat temperature. The value of solar thermal energy is equal to the cost of producing energy from conventional fuels and equipment if the energy produced from either source provides an equal level of service. This requirement put the focus of this study on defining and characterizing conventional process heat equipment and fuels. Costs (values) were estimated for 17 different design points representing different combinations of conventional technologies, temperatures, and fuels. Costs were first estimated for median or representative conditions at each design point. The cost impact of capacity factor, efficiency, fuel escalation rate, and regional fuel price differences were then evaluated by varying each of these factors within credible ranges.

Brown, D.R.; Fassbender, L.L.; Chockie, A.D.

1986-03-01T23:59:59.000Z

210

Performance comparison between air and liquid residential solar heating systems  

SciTech Connect

Comparisons of system performance for the flat plate liquid-heating system in CSU Solar House I, the evacuated-tube collector system in Solar House I, and the flat plate air-heating system in CSU Solar House II are described for selected months of the 1976 and 1977 heating seasons. Only space and domestic water heating data are compared. The flat plate air- and liquid-heating collectors operating with complete heating systems have nearly equal efficiencies when based upon solar flux while the collector fluids are flowing, but approximately 40% more energy is collected during a heating season with the air-heating system because the air system operates over a longer period of the day. On the basis of short-term data, the evacuated tube collector array on Solar House I is about 27% more efficient than the flat plate air-heating collector array on Solar House II based on gross roof area occupied by the collectors and manifolds.

Karaki, S.; Duff, W.S.; Loef, G.O.G.

1978-01-01T23:59:59.000Z

211

Test results, Industrial Solar Technology parabolic trough solar collector  

DOE Green Energy (OSTI)

Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)

1995-11-01T23:59:59.000Z

212

National Residential Efficiency Measures Database Reduces Risk for Home Retrofit Industry (Fact Sheet), NREL Highlights, Research & Development  

SciTech Connect

A new database of residential building measures and estimated costs helps the U.S. building industry determine the most cost-effective means of improving efficiency of existing homes.

Not Available

2011-05-01T23:59:59.000Z

213

The Influence of Residential Solar Water Heating on Electric Utility Demand  

E-Print Network (OSTI)

Similar sets of residences in Austin, Texas with electric water heaters and solar water heaters with electric back-up were monitored during 1982 to determine their instantaneous electric demands, the purpose being to determine the influence of residential solar water heating on electric utility demand. The electric demand of solar water hears was found to be approximately 0.39 kW lass than conventional electric water heaters during the late late afternoon, early evening period in the summer months when the Austin utility experiences its peak demand. The annual load factor would be only very slightly reduced if there were a major penetration of solar water heaters in the all electric housing sector. Thus solar water heating represents beneficial load management for utilities experiencing summer peaks.

Vliet, G. C.; Askey, J. L.

1984-01-01T23:59:59.000Z

214

Approaches for identifying consumer preferences for the design of technology products : a case study of residential solar panels  

E-Print Network (OSTI)

This thesis investigates ways to obtain consumer preferences for technology products to help designers identify the key attributes that contribute to a product's market success. A case study of residential solar PV panels ...

Chen, Heidi Qianyi

2012-01-01T23:59:59.000Z

215

DOE Solar Decathlon: News Blog Blog Archive Building Industry...  

NLE Websites -- All DOE Office Websites (Extended Search)

(far left), Rob Minnick, and members of their company's green team attended Building Industry Day. (Credit: Alexis PowersU.S. Department of Energy Solar Decathlon) Consumer...

216

Cooling-load implications for residential passive-solar-heating systems  

DOE Green Energy (OSTI)

Ongoing research on quantifying the cooling loads in residential buildings, particularly buildings with passive solar heating systems, is described, along with the computer simulation model used for calculating cooling loads. A sample of interim results is also presented. The objective of the research is to develop a simple analysis method, useful early in design, to estimate the annual cooling energy requirement of a given building.

Jones, R.W.; McFarland, R.D.

1983-01-01T23:59:59.000Z

217

Solar Easements & Rights Laws | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rights Laws Solar Easements & Rights Laws Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State Government Savings For Heating &...

218

Estimating solar access of typical residential rooftops: A case study in San Jose, CA  

DOE Green Energy (OSTI)

Shadows cast by trees and buildings can limit the solar access of rooftop solar-energy systems, including photovoltaic panels and thermal collectors. This study characterizes rooftop shading in a residential neighborhood of San Jose, CA, one of four regions analyzed in a wider study of the solar access of California homes.High-resolution orthophotos and LiDAR (Light Detection And Ranging) measurements of surface height were used to create a digital elevation model of all trees and buildings in a 4 km2 residential neighborhood. Hourly shading of roofing planes (the flat elements of roofs) was computed geometrically from the digital elevation model. Parcel boundaries were used to determine the extent to which roofing planes were shaded by trees and buildings in neighboring parcels.In the year in which surface heights were measured (2005), shadows from all sources ("total shading") reduced the insolation received by S-, SW-, and W-facing residential roofing planes in the study area by 13 - 16percent. Shadows cast by trees and buildings in neighboring parcels reduced insolation by no more than 2percent. After 30 years of simulated maximal tree growth, annual total shading increased to 19 - 22percent, and annual extraparcel shading increased to 3 - 4percent.

Levinson, Ronnen M.; Gupta, Smita; Akbari, Hashem; Pomerantz, Melvin

2008-03-03T23:59:59.000Z

219

Solar America Initiative--In Focus: The Building Industry  

DOE Green Energy (OSTI)

Fact sheet introduces the building industry to the U.S. Department of Energy's Solar America Initiative (SAI) and describes how the building industry can benefit from and contribute to the SAI.

Not Available

2007-01-01T23:59:59.000Z

220

Solar America Initiative--In Focus: The Building Industry  

SciTech Connect

Fact sheet introduces the building industry to the U.S. Department of Energy's Solar America Initiative (SAI) and describes how the building industry can benefit from and contribute to the SAI.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial residential solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Residential solar heating at no cost to the homeowner  

SciTech Connect

This paper describes a method making solar heating economically desireable by choosing the types of systems and levels of fuel savings that permit a well-designed simple system to be installed with no cash outlay on the part of the homeowner and no increase in the cash flow experienced. In some cases, the cash flow may actually be reduced. The method assists installers in determining where efforts can most profitably be placed and suggests that they are a part of the overall financing scheme, since they can frequently locate the proper lending agency to finance the projects. Limited experience has already shown the methods herein described to be useful. Solar heating should increase in importance as more installers employ the suggested methods of selecting installations and of financing them.

Newton, A.B.

1983-01-01T23:59:59.000Z

222

SLIDESHOW: Solar Industry At Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SLIDESHOW: Solar Industry At Work SLIDESHOW: Solar Industry At Work SLIDESHOW: Solar Industry At Work June 4, 2012 - 9:37am Addthis 1 of 11 Vice President Joe Biden talks with staff at the National Renewable Energy Lab's Process Development and Integration Laboratory (PDIL). The PDIL brings together technical experts from NREL, the solar industry, and universities for collaborative research. Image: Dennis Schroeder (NREL) 2 of 11 Steven Bohn, an engineer at SunEdison oversees SunEdison's testing facility at SolarTAC in Aurora, CO. The SolarTAC mission is to increase the efficiency of solar energy products and rapidly deploy them to the commercial market. Image: Dennis Schroeder (NREL) 3 of 11 NREL scientists Ki Ye and Joe Berry peer into the glass siding of a deposition instrument to view the latest results of an experiment with a

223

Solar heating and cooling of residential buildings: design of systems, 1980 edition  

SciTech Connect

This manual was prepared primarily for use in conducting a practical training course on the design of solar heating and cooling systems for residential and small office buildings, but may also be useful as a general reference text. The content level is appropriate for persons with different and varied backgrounds, although it is assumed that readers possess a basic understanding of heating, ventilating, and air-conditioning systems of conventional (non-solar) types. This edition is a revision of the manual with the same title, first printed and distributed by the US Government Printing Office in October 1977. The manual has been reorganized, new material has been added, and outdated information has been deleted. Only active solar systems are described. Liquid and air-heating solar systems for combined space and service water heating or service water heating are included. Furthermore, only systems with proven experience are discussed to any extent.

None

1980-09-01T23:59:59.000Z

224

Overview of developing programs in solar desiccant cooling for residential buildings  

DOE Green Energy (OSTI)

An overview is provided of the ongoing work in desiccant cooling under the national solar heating and cooling research program. Open cycle adsorption and absorption systems are examined. The different dehumidifier bed configurations are the distinguishing features of these systems. The basic operating principles of each dehumidifier concept are explained along with some discussion of their comparative features. Performance predictions developed by SERI for a solar desiccant solar system employing an axial-flow desiccant wheel dehumidifier are presented. In terms of life-cycle cost and displaced fossil-fuel energy, the results indicate that it should be beneficial to use solar desiccant coolers in residential applications. Although no prototype testing of any of these concepts is currently underway, test results are expected and will be reported within one year.

Not Available

1979-01-01T23:59:59.000Z

225

Solar energy and the oil refining industry  

DOE Green Energy (OSTI)

This paper surveys process heat requirements of the major petroleum refinery processes. Previous studies have overestimated requirements for process heat at high temperatures. About 22% of the process heat in a refinery is consumed below 550/sup 0/F; 62.5% is consumed between 550/sup 0/ and 1100/sup 0/F. A refinery gets about 40% of its total energy supply, and 50% of its process heat, from natural gas and fuel oil. Technological constraints limit the use of alternatives such as coal or solar energy to processes operating below 700/sup 0/F (about 25% of process heat requirements). Curtailments of natural gas supplies and advances in bottom of the barrel oil processing technology will produce strong incentives to develop alternatives to the burning of liquid fuels for low-temperature processes. Energy from coal or solar radiation is most appropriately generated at a central facility to heat a heat transfer fluid, which is then heat exchanged with the process medium. The same process could also produce steam. The cost of installing coal-burning equipment can be up to eight times the cost of the equivalent gas or oil-burning facility. The major obstacle ot the use of coal is environmental. An analysis of a central-receiver solar system, without storage, and sized to deliver a maximum of 25% of process heat needs, indicates that 4.1% of refinery fuel needs could be displaced. For the entire industry, this is equivalent to 57,000 BPD of fuel oil. If long-term cost goals are achieved, capital expenditures to realize these savings would amount to $6.5 billion.

May, E.K.

1980-03-01T23:59:59.000Z

226

Improving the Energy Efficiency of Residential Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings Residential Buildings Improving the Energy Efficiency of Residential Buildings Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology. Learn More Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology. Learn More The Building Technologies Office (BTO) collaborates with the residential building industry to improve the energy efficiency of both new and existing homes. By developing, demonstrating, and deploying cost-effective solutions, BTO strives to reduce energy consumption across the residential building sector by at least 50%. Research and Development Conduct research that focuses on engineering solutions to design, test, and

227

Survey of failure modes from 122 residential solar water heaters  

DOE Green Energy (OSTI)

This report describes the results of a survey on the operation of active solar heating and cooling systems and their components. Questionnaires were sent to homeowners and installers, covering 122 systems. Results were categorized according to problem severity, location, system type, length of system operation, and time of the year. Approximately 47% of the systems had at least one reliability problem over a two-year period. Flat-plate collector and storage systems were highly reliable. Improper operation of these components was attributed to installation problems. Drainback designs also had the greatest reliability; draindown systems were the least reliable, largely because of the failure of draindown valves. Differential controllers caused the largest number of failures that resulted in a repair cost in excess of $50 to the homeowner.

Not Available

1984-10-01T23:59:59.000Z

228

Weaving New York's Solar Industry Web | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weaving New York's Solar Industry Web Weaving New York's Solar Industry Web Weaving New York's Solar Industry Web June 29, 2010 - 11:00am Addthis Solar films are manufactured at Precision Flow Technologies in Kingston, N.Y., facility. The factory once served as an IBM plant. | Photo Courtesy of Kevin Brady Solar films are manufactured at Precision Flow Technologies in Kingston, N.Y., facility. The factory once served as an IBM plant. | Photo Courtesy of Kevin Brady Stephen Graff Former Writer & editor for Energy Empowers, EERE These days in New York, it seems whatever The Solar Energy Consortium (TSEC) touches turns to green. The nonprofit has been building up a supply chain across the state for the last three years by helping companies bring on new, solar-related manufacturing processes and jobs.

229

Opportunities for Minority Students in the Solar Industry | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Opportunities for Minority Students in the Solar Industry Opportunities for Minority Students in the Solar Industry Opportunities for Minority Students in the Solar Industry November 20, 2012 - 9:00am Addthis The Long Island Solar Farm (LISF) -- currently the largest solar photovoltaic power plant in the Eastern United States -- generates enough renewable energy to power approximately 4,500 homes. LISF is located at Brookhaven National Laboratory. | Photo courtesy of Brookhaven National Laboratory. The Long Island Solar Farm (LISF) -- currently the largest solar photovoltaic power plant in the Eastern United States -- generates enough renewable energy to power approximately 4,500 homes. LISF is located at Brookhaven National Laboratory. | Photo courtesy of Brookhaven National Laboratory. Dot Harris Dot Harris

230

Weaving New York's Solar Industry Web | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weaving New York's Solar Industry Web Weaving New York's Solar Industry Web Weaving New York's Solar Industry Web June 29, 2010 - 11:00am Addthis Solar films are manufactured at Precision Flow Technologies in Kingston, N.Y., facility. The factory once served as an IBM plant. | Photo Courtesy of Kevin Brady Solar films are manufactured at Precision Flow Technologies in Kingston, N.Y., facility. The factory once served as an IBM plant. | Photo Courtesy of Kevin Brady Stephen Graff Former Writer & editor for Energy Empowers, EERE These days in New York, it seems whatever The Solar Energy Consortium (TSEC) touches turns to green. The nonprofit has been building up a supply chain across the state for the last three years by helping companies bring on new, solar-related manufacturing processes and jobs.

231

Residential conservation service program support. Final report  

SciTech Connect

Five tasks conducted by the Mid-American Solar Energy Center to research and prepare information for various constituents of the Residential Conservation Program are described. The tasks are: preparing cost data on renewable program (specifically solar) measure; designing and publishing a consumer agency guide to advise consumers of preventive and corrective actions to take when contracting for home improvements; providing a report on financing residential energy improvements; designing solar industry information releases, specifically on solar water heaters; and preparing a brochure, Your Place in the Sun - Solar Options Available to Homeowners. (MCW)

Not Available

1981-09-01T23:59:59.000Z

232

Making the Most of Financed Energy Projects The energy engineers in the Residential, Commercial, and Industrial  

E-Print Network (OSTI)

Making the Most of Financed Energy Projects The energy engineers in the Residential, Commercial Oak Ridge National Laboratory Energy and Transportation Science Division Residential, Commercial

233

Preliminary economic assessment or residential passive solar cooling potential in the United States  

DOE Green Energy (OSTI)

In many areas of the continental United States, residential cooling loads are equal to or greater than energy used for residential space heating. Offsetting part of the cooling load could yield considerable dollar savings to the consumer as well as total energy savings. The physical performances of three passive cooling designs are used to estimate the dollar value of first-year fuel savings (excluding heating benefits) and a maximum affordable design cost. The designs include natural ventilation, forced ventilation, and evaoprative cooling concepts. Because economic performance is primarily governed by the level of electricity prices, dollars savings are greatest in regions that show both good physical performance of the cooling design and high electricity prices. Physical and economic performance summaries are presented in mapped form for 220 solar regions within the continental United States.

Kirschner, C.; Mangeng, C.; Yemans, M.; Roach, F.

1982-01-01T23:59:59.000Z

234

Reliance Industries Limited Solar Group | Open Energy Information  

Open Energy Info (EERE)

Reliance Industries Limited Solar Group Reliance Industries Limited Solar Group Jump to: navigation, search Name Reliance Industries Limited Solar Group Place Bangalore, Karnataka, India Zip 560076 Sector Solar Product String representation "Reliance solar, ... n solar energy." is too long. Coordinates 12.97092°, 77.60482° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":12.97092,"lon":77.60482,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

Solar and Wind Easements and Rights Laws | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laws Solar and Wind Easements and Rights Laws < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State Government Savings...

236

New Ulm Public Utilities - Solar Electric Rebate Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Rebate Amount 1watt (nameplate capacity) New Ulm Public Utilities provides solar photovoltaic (PV) rebates for residential, commercial, and industrial customers....

237

Solar Industry At Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar PV Solar Smarter Faster Sec. Chu Online Town Hall Science Lecture: Talking the Higgs Boson with Dr. Joseph Incandela What We Do For You Month by month the clean energy...

238

The solar energy industries FY 1995 appropriations recommendations for the U. S. Department of Energy: The solar commercialization challenge  

SciTech Connect

This article contains the Solar Energy Industries Association budget recommendations for DOE for the commercialization of solar energy. Areas covered are photovoltaics, solar buildings, solar thermal, and other programs such as resource assessment and integrated resource planning.

Butler, B.; Sklar, S.

1994-01-01T23:59:59.000Z

239

STATEMENT OF CONSIDERATIONS REQUEST BY SHELL SOLAR INDUSTRIES...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH-1345 As set out in the attached waiver petition and in subsequent discussions with DOE Patent Counsel, Shell Solar Industries LP (SSI) has requested an advance waiver of...

240

STATEMENT OF CONSIDERATIONS REQUEST BY SHELL SOLAR INDUSTRIES...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

As set out in the attached waiver petition and in subsequent discussions with DOE, Shell Solar Industries, LP (SSI) has requested an advance waiver of domestic and foreign patent...

Note: This page contains sample records for the topic "industrial residential solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

STATEMENT OF CONSIDERATIONS REQUEST BY SIEMENS SOLAR INDUSTRIES...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NO. DE-AC36-83CH10093, WAIVER NO. W(A)-95-002, CH0850. The attached petition by Siemens Solar Industries (hereafter Siemens) is for an advance waiver of patent rights under...

242

STATEMENT OF CONSIDERATIONS REQUEST BY SIEMENS SOLAR INDUSTRIES...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UNDER DOE CONTRACT NO. DE- AC36-83CH10093; W(A)-98-019; CH-0987 The Petitioner, Siemens Solar Industries (hereinafter "SSI"), has requested a waiver of domestic and foreign...

243

Pages that link to "Denmark Solar Industry DSI" | Open Energy...  

Open Energy Info (EERE)

250 | 500) Retrieved from "http:en.openei.orgwikiSpecial:WhatLinksHereDenmarkSolarIndustryDSI" Special pages About us Disclaimers Energy blogs Developer services OpenEI...

244

Factors that affect the share price index of Taiwan's solar energy industrythe crude oil prices and industry scale.  

E-Print Network (OSTI)

??This paper discusses the factors that affect the share price index of Taiwan solar power industry, crude oil prices and the size of the solar (more)

Deng, Yu-chi

2012-01-01T23:59:59.000Z

245

Benefits of the International Residential Code's Maximum Solar heat Gain Coefficient Requirement for Windows  

E-Print Network (OSTI)

Texas adopted in its residential building energy code a maximum 0.40 solar heat gain coefficient (SHGC) for fenestration (e.g., windows, glazed doors and skylights)-a critical driver of cooling energy use, comfort and peak demand. An analysis of the expected costs and benefits of low solar heat gain glazing, and specifically the SHGC requirement in the new Texas Residential Building Energy Code,1 shows that the 0.40 SHGC requirement is ideal for Texas and that the benefits far outweigh the expected costs. For consumers, the requirement will increase comfort and reduce their cost of home ownership. The anticipated public benefits are also substantial - the result of full implementation can be expected to: 1) Reduce cumulative statewide cooling energy use over ten years by 15 billion kWh; 2) Reduce cumulative statewide electric peak demand over ten years by over 1200 MW; 3) Result in cooling cost savings of more than a billion dollars; and 4) Reduce cumulative statewide key air pollutants.

Stone, G. A.; DeVito, E. M.; Nease, N. H.

2002-01-01T23:59:59.000Z

246

Proceedings of the solar industrial process heat symposium  

DOE Green Energy (OSTI)

The purpose of the symposium was to review the progress of various solar energy systems currently under design for supplying industrial process heat. Formal presentations consisted of a review of solar energy applications in industrial process heat as well as several on-going project reviews. An Open Forum was held to solicit the comments of the participants. The recommendations of this Open Forum are included in these proceedings. Eighteen papers were included. Separate abstracts were prepared for each paper.

none,

1978-06-01T23:59:59.000Z

247

Solar production of industrial process steam. Final detail design report  

SciTech Connect

The application of solar energy to produce 110 psig industrial steam for processing laundry and drycleaning for a facility in Pasadena, California, is described. The system uses tracking parabolic trough collectors. The collectors, the detailed process analyses, solar calculations and insolation data, energy reduction analyses, economic analyses, design of the solar system, construction, and costs are presented in detail. Included in appendices are the following: mechanical specifications and calculations, electrical specifications and calculations, and structural specifications and calculations. (MHR)

Eldridge, B.G.

1978-06-15T23:59:59.000Z

248

The Department of Energy's Solar Industrial Program: New ideas for American industry  

SciTech Connect

As society becomes more and more sensitive to the environment, and energy supplies become more scarce, the application of solar energy is expanding into new areas. The industrial sector is one of the most difficult for solar energy to impact because of its technical diversity and economic requirements. However, the opportunities are still abundant. The Department of Energy's Solar Industrial Program is dedicated to advancing the applications of solar energy in this sector. Research and technology development activities are currently focused in three areas: solar process heat, advanced materials manufacturing, and destruction of chemical wastes. The Solar Energy Research Institute manages these activities for DOE with close interactions with other federal agencies, private industry, and universities. 7 figs.

Anderson, J.V.; Hauser, S.G.; Clyne, R.J.

1991-07-01T23:59:59.000Z

249

The Department of Energy's Solar Industrial Program: New ideas for American industry  

DOE Green Energy (OSTI)

As society becomes more and more sensitive to the environment, and energy supplies become more scarce, the application of solar energy is expanding into new areas. The industrial sector is one of the most difficult for solar energy to impact because of its technical diversity and economic requirements. However, the opportunities are still abundant. The Department of Energy's Solar Industrial Program is dedicated to advancing the applications of solar energy in this sector. Research and technology development activities are currently focused in three areas: solar process heat, advanced materials manufacturing, and destruction of chemical wastes. The Solar Energy Research Institute manages these activities for DOE with close interactions with other federal agencies, private industry, and universities. 7 figs.

Anderson, J.V.; Hauser, S.G.; Clyne, R.J.

1991-07-01T23:59:59.000Z

250

Commercial & Industrial Solar Rebate Program | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

state's renewable portfolio standard (RPS), this program supports photovoltaic (PV) and solar-thermal installations. Installations must be located in the state of New Hampshire,...

251

Applications and systems studies for solar industrial process heat  

SciTech Connect

The program has been highlighted by the development of analytical computer programs, engineering case studies in specific industries, applications and market studies and the assessment of operating experience in actual solar installations. For example, two analytical computer codes (known as PROSYS and ECONMAT) have been assembled and used for the large-scale matching of industrial processes with different types of solar equipment. Verification of the results of this large-scale matching have resulted in a program of detailed case studies of solar and conservation options in local dairies, metal can manufacturing plants, meatpacking plants, and other factories.

Brown, K.C.

1980-01-01T23:59:59.000Z

252

Survey and analyze the business conditions of the solar industry, June-July 1981. Task I  

DOE Green Energy (OSTI)

Progress is reported on the following tasks: surveying and analyzing the business conditions of the solar industry, administrative analysis of solar system product certification standards and codes, and solar industry advertising guidelines. (MHR)

Not Available

1981-01-01T23:59:59.000Z

253

Market development directory for solar industrial process heat systems  

DOE Green Energy (OSTI)

The purpose of this directory is to provide a basis for market development activities through a location listing of key trade associations, trade periodicals, and key firms for three target groups. Potential industrial users and potential IPH system designers were identified as the prime targets for market development activities. The bulk of the directory is a listing of these two groups. The third group, solar IPH equipment manufacturers, was included to provide an information source for potential industrial users and potential IPH system designers. Trade associates and their publications are listed for selected four-digit Standard Industrial Code (SIC) industries. Since industries requiring relatively lower temperature process heat probably will comprise most of the near-term market for solar IPH systems, the 80 SIC's included in this chapter have process temperature requirements less than 350/sup 0/F. Some key statistics and a location list of the largest plants (according to number of employees) in each state are included for 15 of the 80 SIC's. Architectural/engineering and consulting firms are listed which are known to have solar experience. Professional associated and periodicals to which information on solar IPH sytstems may be directed also are included. Solar equipment manufacturers and their associations are listed. The listing is based on the SERI Solar Energy Information Data Base (SEIDB).

None

1980-02-01T23:59:59.000Z

254

Break-Even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities  

NLE Websites -- All DOE Office Websites (Extended Search)

Break-even Cost for Residential Break-even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities Hannah Cassard, Paul Denholm, and Sean Ong Technical Report NREL/TP-6A20-48986 February 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Break-even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities Hannah Cassard, Paul Denholm, and Sean Ong Prepared under Task No. SS10.2110 Technical Report

255

Overcoming Barriers to Solar Use  

E-Print Network (OSTI)

Solar water heating systems built during the past ten years represent the beginning of a strong North American Solar Industry. The opportunities provided through Government assistance programs have enabled the Industry to develop products, standards and the research capability to the edge of commercially realisable solar water heating systems for residential, commercial and industrial applications. With continued Government support and access to creative financing programs, the Solar Industry is a short step away from creating large demands from large sectors of the economy.

Halme, D. S.; Sicotte, J. R.

1986-06-01T23:59:59.000Z

256

Application of solar thermal energy to buildings and industry  

DOE Green Energy (OSTI)

Flat plate collectors and evacuated tube collectors are described, as are parabolic troughs, Fresnel lenses, and compound parabolic concentrators. Use of solar energy for domestic hot water and for space heating and cooling are discussed. Some useful references and methods of system design and sizing are given. This includes mention of the importance of economic analysis. The suitability of solar energy for industrial use is discussed, and solar ponds, point-focus receivers and central receivers are briefly described. The use of solar energy for process hot water, drying and dehydration, and process steam are examined, industrial process heat field tests by the Department of Energy are discussed, and a solar total energy system in Shenandoah, GA is briefly described. (LEW)

Kutscher, C. F.

1981-05-01T23:59:59.000Z

257

Solar Augmented Steam Cycles: 2010 Industry Update  

Science Conference Proceedings (OSTI)

Several studies were performed to evaluate a range of solar augmented steam cycle design options. All the designs use steam generated by a solar field in a conventional steam cycle, either offsetting some of the fuel required to generate power or boosting plant power output. The scope of the studies included a conceptual design modeling effort to evaluate a broad range of solar integration design options for biomass and natural gas combined-cycle (NGCC) power plants and two detailed case studies at NGCC ...

2010-12-23T23:59:59.000Z

258

Commercial & Industrial Solar Rebate Program (New Hampshire)...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

259

Industrial solar breeder project using concentrator photovoltaics  

DOE Green Energy (OSTI)

The purpose of this program is to demonstrate the use of a concentrating photovoltaic system to provide the energy for operating a silicon solar cell production facility, i.e., to demonstrate a solar breeder. Solarex has proposed to conduct the first real test of the solar breeder concept by building and operating a 200 kW(e) (peak) concentrating photovoltaic system based on the prototype and system design developed during Phase I. This system will provide all of the electrical and thermal energy required to operate a solar cell production line. This demonstration would be conducted at the Solarex Rockville facility, with the photovoltaic array located over the company parking lot and on an otherwise unusable flood plain. Phase I of this program included a comprehensive analysis of the application, prototype fabrication and evaluation, system design and specification, and a detailed plan for Phases II and III. A number of prototype tracking concentrator solar collectors were constructed and operated. Extensive system analysis was performed to design the Phase II system as a stand-alone power supply for a solar cell production line. Finally, a detailed system fabrication proposal for Phase II and an operation and evaluation plan for Phase III were completed. These proposals included technical, management, and cost plans for the fabrication and exercise of the proposed system.

Hamilton, R.; Wohlgemuth, J.; Burkholder, J.; Levine, A.; Storti, G.; Wrigley, C.; McKegg, A.

1979-08-01T23:59:59.000Z

260

Evaluation of solar gain through skylights for inclusion in the SP53 residential building loads data base  

DOE Green Energy (OSTI)

The energy performance of skylights is similar to that of windows in admitting solar heat gain, while at the same time providing a pathway for convective and conductive heat transfer through the building envelope. Since skylights are typically installed at angles ranging from 0{degrees} to 45{degrees}, and differ from windows in both their construction and operation, their conductive and convective heat gains or losses, as well as solar heat gain, will differ for the same rough opening and thermal characteristics. The objective of this work is to quantify the impact of solar gain through skylights on building heating and cooling loads in 45 climates, and to develop a method for including these data into the SP53 residential loads data base previously developed by LBL in support of DOE`s Automated Residential Energy Standard (ARES) program. The authors used the DOE-2.1C program to simulate the heating and cooling loads of a prototypical residential building while varying the size and solar characteristics of skylights and windows. The results are presented as Skylight Solar Loads, which are the contribution of solar gains through skylights to the overall building heating and cooling loads, and as Skylight Solar Load Ratios, which are the ratios of skylight solar loads to those for windows with the same orientation. The study shows that skylight solar loads are larger than those for windows in both heating and cooling. Skylight solar cooling loads are from three to four times greater than those for windows regardless of the skylight tilt, except for those facing north. These cooling loads are largest for south-facing skylights at a tilt angle of approximately 20{degrees}, and drop off at higher tilts and other orientations.

Hanford, J.W.; Huang, Y.J.

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial residential solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Changes related to "ET Solar Group Formerly CNS Solar Industry...  

Open Energy Info (EERE)

"http:en.openei.orgwikiSpecial:RecentChangesLinkedETSolarGroupFormerlyCNSSolarIndustry" Atom Special pages About us Disclaimers Energy blogs Developer services OpenEI...

262

Commercial/industrial applications spur solar development  

SciTech Connect

Several large commercial buildings with solar systems are examined. The first building mentioned is the La Quinta Motor Inn located in Dallas, Texas. The system supplies approximately 90% of the hot water for the rooms and laundry. The largest solar cooling system is located in Frenchman's Reef, the Holiday Inn, St. Thomas, Virgin Islands. The system was funded by a 75% grant from the Energy Research and Development Administration. In Decatur, Alabama, construction has begun on a solar heating system that will be used at a large soybean oil extraction facility. The project is also sponsored in part by ERDA. The solar panels will be used to air dry the soy beans. The largest solar-powered irrigation system is located in Gila River Ranch southwest of Phoenix, Arizona. The system includes a 50-hp pump capable of delivering up to 10,000 gallons of irrigation water per minute. It operates with 5,500 ft/sup 2/ of parabolic tracking collectors.

Comstock, W.S.

1977-11-01T23:59:59.000Z

263

Collaborating Towards a Common Goal to Advance America's Solar Industry |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Collaborating Towards a Common Goal to Advance America's Solar Collaborating Towards a Common Goal to Advance America's Solar Industry Collaborating Towards a Common Goal to Advance America's Solar Industry June 21, 2012 - 6:07pm Addthis Attendees gather to discuss, collaborate at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by Dennis Schroeder/NREL. Attendees gather to discuss, collaborate at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by Dennis Schroeder/NREL. Justin Vandenbroeck Intern, Office of Energy Efficiency and Renewable Energy Change takes more than desire -- it takes collaboration, communication, and a common goal. This idea was perhaps best exemplified at the SunShot Grand Challenge Summit in Denver. As a former participant in the Solar Decathlon and a current Energy Department intern, I attended the Summit to

264

Collaborating Towards a Common Goal to Advance America's Solar Industry |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Collaborating Towards a Common Goal to Advance America's Solar Collaborating Towards a Common Goal to Advance America's Solar Industry Collaborating Towards a Common Goal to Advance America's Solar Industry June 21, 2012 - 6:07pm Addthis Attendees gather to discuss, collaborate at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by Dennis Schroeder/NREL. Attendees gather to discuss, collaborate at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by Dennis Schroeder/NREL. Justin Vandenbroeck Intern, Office of Energy Efficiency and Renewable Energy Change takes more than desire -- it takes collaboration, communication, and a common goal. This idea was perhaps best exemplified at the SunShot Grand Challenge Summit in Denver. As a former participant in the Solar Decathlon and a current Energy Department intern, I attended the Summit to

265

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Apartment building exterior and interior Apartment building exterior and interior Residential Buildings EETD's research in residential buildings addresses problems associated with whole-building integration involving modeling, measurement, design, and operation. Areas of research include the movement of air and associated penalties involving distribution of pollutants, energy and fresh air. Contacts Max Sherman MHSherman@lbl.gov (510) 486-4022 Iain Walker ISWalker@lbl.gov (510) 486-4692 Links Residential Building Systems Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations

266

The Department of Energy`s Solar Industrial Program: 1994 review  

DOE Green Energy (OSTI)

This is a report on DOE`s Solar Industrial Program. The topics of the report include an overview of the program, it`s participants and it`s objectives; solar detoxification--using solar energy to destroy environmental contaminants in air, water, and soil; solar process heat--generating industrial quantities of hot water, steam, and hot air from solar energy; and advanced processes--using concentrated solar energy to manufacture high-technology materials and develop new industrial processes.

NONE

1995-03-01T23:59:59.000Z

267

Arizona Solar Energy Industries Association | Open Energy Information  

Open Energy Info (EERE)

Energy Industries Association Energy Industries Association Jump to: navigation, search Logo: Arizona Solar Energy Industries Association Name Arizona Solar Energy Industries Association Place Arizona Website http://www.arizonasolarindustr Coordinates 34.0489281°, -111.0937311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0489281,"lon":-111.0937311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

268

City of San Francisco - Solar Energy Incentive Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of San Francisco - Solar Energy Incentive Program City of San Francisco - Solar Energy Incentive Program City of San Francisco - Solar Energy Incentive Program < Back Eligibility Commercial Industrial Low-Income Residential Multi-Family Residential Nonprofit Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Multi-family residential owned by a non-profit: $60,000 Commercial: $10,000 Non-residential buildings owned by a non-profit: $120,000 Program Info Start Date 12/11/2007 State California Program Type Local Rebate Program Rebate Amount Residential: $2,000 - $2,750 Low-income Residential: $7,800 - $10,750 Multi-family residential owned by a non-profit: $3,500/kW Commercial: $1,500 per kW Non-residential buildings owned by a non-profit: $1,500/kW Provider San Francisco Public Utilities Commission

269

Assessment of New Motor Technologies and their Applications: Evaluation of an advanced circulator pump for residential, commercial and industrial applications  

Science Conference Proceedings (OSTI)

Electric pumps are the workhorses behind several industrial processes that help transfer liquids, gases and slurries from one location to another. From simple water pumping systems to sophisticated oil refineries, electric pumps are used in many different areas. Electric pumps are also used in various capacities in the commercial and residential sectors from hot water circulation systems to pool pumps. This technical update provides an assessment of a new circulator pump technology that uses ...

2013-12-04T23:59:59.000Z

270

Perpetual and low-cost power meter for monitoring residential and industrial appliances  

Science Conference Proceedings (OSTI)

The recent research efforts in smart grids and residential power management are oriented to monitor pervasively the power consumption of appliances in domestic and non-domestic buildings. Knowing the status of a residential grid is fundamental to keep ... Keywords: active ORing, energy harvesting, energy measuring, smart metering, wireless sensor networks

Danilo Porcarelli, Domenico Balsamo, Davide Brunelli, Giacomo Paci

2013-03-01T23:59:59.000Z

271

Residential photovoltaic module and array requirement study. Low-Cost Solar Array Project engineering area. Final report appendices  

DOE Green Energy (OSTI)

This volume contains the appendices to a study to identify design requirements for photovoltaic modules and arrays used in residential applications. Appendices include: (1) codes, standards, and manuals of accepted practice-definition and importance; (2) regional code variations-impact; (3) model and city codes-review; (4) National Electric Code (NEC)-review; (5) types of standards-definition and importance; (6) federal standards-review; (7) standards review method; (8) manuals of accepted practice; (9) codes and referenced standards-summary; (10) public safety testing laboratories; (11) insurance review; (12) studies approach; (13) mounting configurations; (14) module/panel size and shape cost analysis; (15) grounding, wiring, terminal and voltage studies; (16) array installation cost summary; (17) photovoltaic shingle/module comparison; (18) retrofit application; (19) residential photovoltaic module performance criteria; (20) critique of JPL's solar cell module design and test specifications for residential applications; and (21) CSI format specification. (WHK)

Not Available

1979-06-01T23:59:59.000Z

272

Foster Wheeler Solar Development Corporation modular industrial solar retrofit qualification test results  

DOE Green Energy (OSTI)

Under the Department of Energy's Modular Industrial Solar Retrofit project, industrial process steam systems incorporating line-focus solar thermal collectors were designed and hardware was installed and tested. This report describes the test results for the system designed by Foster Wheeler Solar Development Corporation. The test series included function and safety tests to determine that the system operated as specified, an unattended operations test to demonstrate automatic operation, performance tests to provide a database for predicting system performance, and life cycle tests to evaluate component and maintenance requirements. Component-level modifications to improve system performance and reliability were also evaluated.

Cameron, C.P.; Dudley, V.E.; Lewandoski, A.A.

1986-10-01T23:59:59.000Z

273

Residential on site solar heating systems: a project evaluation using the capital asset pricing model  

SciTech Connect

An energy source ready for immediate use on a commercial scale is solar energy in the form of On Site Solar Heating (OSSH) systems. These systems collect solar energy with rooftop panels, store excess energy in water storage tanks and can, in certain circumstances, provide 100% of the space heating and hot water required by the occupants of the residential or commercial structure on which the system is located. Such systems would take advantage of a free and inexhaustible energy source--sunlight. The principal drawback of such systems is the high initial capital cost. The solution would normally be a carefully worked out corporate financing plan. However, at the moment it is individual homeowners and not corporations who are attempting to finance these systems. As a result, the terms of finance are excessively stringent and constitute the main obstacle to the large scale market penetration of OSSH. This study analyzes the feasibility of OSSH as a private utility investment. Such systems would be installed and owned by private utilities and would displace other investment projects, principally electric generating plants. The return on OSSH is calculated on the basis of the cost to the consumer of the equivalent amount of electrical energy that is displaced by the OSSH system. The hurdle rate for investment in OSSH is calculated using the Sharpe--Lintner Capital Asset Pricing Model. The results of this study indicate that OSSH is a low risk investment having an appropriate hurdle rate of 7.9%. At this rate, OSSH investment appears marginally acceptable in northern California and unambiguously acceptable in southern California. The results also suggest that utility investment in OSSH should lead to a higher degree of financial leverage for utility companies without a concurrent deterioration in the risk class of utility equity.

Schutz, S.R.

1978-12-01T23:59:59.000Z

274

Comparative performance of two types of evacuated tubular solar collectors in a residential heating and cooling system. Final report, October 1, 1977-September 30, 1978. [CSU Solar House 1  

DOE Green Energy (OSTI)

Solar House I, the first residential solar system test facility at the Colorado State University, is described. Provision was made for the removal and replacement of the various subsystems so that the facility could be utilized to evaluate other residential size solar components and systems. Two evacuated tube collectors and one flat plate collector were evaluated. The operations history, system performance, performance assessment, and comparison with model are included. (MHR)

Loef, G.O.G.; Duff, W.S.

1979-09-01T23:59:59.000Z

275

Shenzhen Sumoncle Solar Energy Industrial Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Sumoncle Solar Energy Industrial Co Ltd Sumoncle Solar Energy Industrial Co Ltd Jump to: navigation, search Name Shenzhen Sumoncle Solar Energy Industrial Co Ltd Place Shenzhen, Guangdong Province, China Zip 518040 Sector Solar Product Produces a-Si thin-film solar cells for application in consumer products like calculators, watches, LCD apparatus, battery re-chargers, thermometers and so on. Coordinates 22.546789°, 114.112556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.546789,"lon":114.112556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

276

Maryland DC Virginia Solar Energy Industries Association MDV SEIA | Open  

Open Energy Info (EERE)

DC Virginia Solar Energy Industries Association MDV SEIA DC Virginia Solar Energy Industries Association MDV SEIA Jump to: navigation, search Name Maryland-DC-Virginia Solar Energy Industries Association (MDV-SEIA) Place Bethesda, Maryland Zip 20814-3954 Sector Solar Product Trade associaton to promote solar equipment in the Mid-Atlantic region in US. Coordinates 40.020185°, -81.073819° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.020185,"lon":-81.073819,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

277

Industrial applications of solar energy. First quarterly progress report  

DOE Green Energy (OSTI)

The objective of this program is to define solar energy systems that are technically and economically feasible, can satisfy all or part of selected industry demands, and to determine the market potential for such systems. The primary emphasis is placed on the application of total energy systems where industrial process heat, electrical needs, and space heating and cooling requirements are satisfied with a single solar collector field at maximum possible efficiency. Industrial energy usage in the United States and the Southwest was surveyed to determine which industries were most energy intensive. This resulted in the selection of six major groups: (1) Chemicals and Allied Products - SIC 28, (2) Primary Metals - SIC 33, (3) Petroleum and Coal Products - SIC 29, (4) Paper and Allied Products - SIC 26, (5) Stone, Clay, and Glass Products - SIC 32, and (6) Food and Kindred Products - SIC 20. These groupings account for approximately 80% of the total industrial energy usage, both nationwide and within the Southwest. These major groups were then pursued through their subdivisions to determine more specifically the largest energy users and their locations within the Southwest, allowing the final industry selection. Approximately 300 representatives of the selected industries were contacted to determine their specific energy requirements as well as architecturally related energy parameters. Climatic and seismic data is also being collected for the areas encompassing the selected regions.

Rogan, J.E.

1976-01-01T23:59:59.000Z

278

New York Solar Energy Industries Association | Open Energy Information  

Open Energy Info (EERE)

Solar Energy Industries Association Solar Energy Industries Association Name New York Solar Energy Industries Association Address 533 Woodford Avenue Place Endicott, New York Zip 13760 Region Northeast - NY NJ CT PA Area Website http://www.nyseia.org/ Notes Non-profit membership and trade association dedicated solely to advancing solar energy use in New York State Coordinates 42.105025°, -76.065685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.105025,"lon":-76.065685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

279

Potential for supplying solar thermal energy to industrial unit operations  

DOE Green Energy (OSTI)

Previous studies have identified major industries deemed most appropriate for the near-term adoption of solar thermal technology to provide process heat; these studies have been based on surveys that followed standard industrial classifications. This paper presents an alternate, perhaps simpler analysis of this potential, considered in terms of the end-use of energy delivered to industrial unit operations. For example, materials, such as animal feed, can be air dried at much lower temperatures than are currently used. This situation is likely to continue while economic supplies of natural gas are readily available. However, restriction of these supplies could lead to the use of low-temperature processes, which are more easily integrated with solar thermal technology. The adoption of solar technology is also favored by other changes, such as the relative rates of increase of the costs of electricity and natural gas, and by energy conservation measures. Thus, the use of low-pressure steam to provide process heat could be replaced economically with high-temperature hot water systems, which are more compatible with solar technology. On the other hand, for certain operations such as high-temperature catalytic and distillation processes employed in petroleum refining, there is no ready alternative to presently employed fluid fuels.

May, E.K.

1980-04-01T23:59:59.000Z

280

Colorado Solar Energy Industries Association | Open Energy Information  

Open Energy Info (EERE)

Solar Energy Industries Association Solar Energy Industries Association Name Colorado Solar Energy Industries Association Address 841 Front St. Place Louisville, Colorado Zip 80027 Region Rockies Area Website http://www.coseia.org/ Notes Promote the use of solar energy and conservation to improve the environment and create a sustainable future, CO state chapter of SEIA Coordinates 39.978565°, -105.131049° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.978565,"lon":-105.131049,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "industrial residential solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Bates solar industrial process steam application environmental impact assessment  

DOE Green Energy (OSTI)

It is planned to install 34,440 square feet of linear parabolic trough solar collectors at a new corrugator plant for making corrugated boxes. The system is to operate in parallel with a fossil fuel boiler. An assessment is presented of the impacts of the solar energy system on the existing environment and to determine whether or not a more detailed environmental impact statement is needed. The environmental assessment is based on actual operational data obtained on the collector, fluid, and heat transport system. A description of the design of the solar energy system and its application is given. Also included is a discussion of the location of the new plant in Fort Worth, Texas, and of the surrounding environment. Environmental impacts are discussed in detail, and alternatives to the solar industrial process steam retrofit application are offered. It is concluded that the overall benefits from the solar industrial process heat system outweigh any negative environmental factors. Benefits include reduced fossil fuel demand, with attending reductions in air pollutants. The selection of a stable heat transfer fluid with low toxicity and biodegradable qualities minimizes environmental damage due to fluid spills, personal exposure, and degradation byproducts. The collector is found to be aesthetically attractive with minimal hazards due to glare. (LEW)

Not Available

1981-06-30T23:59:59.000Z

282

Solar Electric Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Electric Incentive Program Solar Electric Incentive Program Solar Electric Incentive Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential (Homeowner or Third Party): $5,000 per home for Pacific Power and PGE Non-Residential: $100,000 for Pacific Power, $120,000 for PGE PGE Non-Residential Maximum for systems installed on or after May 24, 2013: $300,000 Program Info Funding Source Public Benefits Fund Start Date 05/2003 State Oregon Program Type State Rebate Program Rebate Amount Residential (Homeowner or Third Party-Owned): $0.75/W DC for Pacific Power and PGE Non-Residential PGE, 0-35 kW: $1.20/watt Non-Residential Pacific Power, 0-35 kW: $1.10/watt

283

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network (OSTI)

energy usage patterns and demand. On the basis of hourly temperature, various climatic parameters and solar

Sathaye, Jayant

2011-01-01T23:59:59.000Z

284

Estimating solar access of typical residential rooftops: A case study in San Jose, CA  

E-Print Network (OSTI)

the 14 th European Photovoltaic Solar Energy Conference androoftop solar-energy systems, including photovoltaic panelsrooftop solar-energy systems, including photovoltaic panels

Levinson, Ronnen M

2008-01-01T23:59:59.000Z

285

Financial modeling of consumer discount rate in residential solar photovoltaic purchasing decisions.  

E-Print Network (OSTI)

??Diffusion of microgeneration technologies, particularly rooftop photovoltaic (PV), represents a key option in reducing emissions in the residential sector. This thesis uses a uniquely rich (more)

Sigrin, Benjamin O.

2013-01-01T23:59:59.000Z

286

Feasibility evaluation for solar industrial process heat applications  

DOE Green Energy (OSTI)

An analytical method for assessing the feasibility of Solar Industrial Process Heat applications has been developed and implemented in a flexible, fast-calculating computer code - PROSYS/ECONMAT. The performance model PROSYS predicts long-term annual energy output for several collector types, including flat-plate, nontracking concentrator, one-axis tracking concentrator, and two-axis tracking concentrator. Solar equipment cost estimates, annual energy capacity cost, and optional net present worth analysis are provided by ECONMAT. User input consists of detailed industrial process information and optional economic parameters. Internal program data includes meteorological information for 248 US sites, characteristics of more than 20 commercially available collectors representing several generic collector types, and defaults for economic parameters. Because a fullscale conventional back-up fuel system is assumed, storage is not essential and is not included in the model.

Stadjuhar, S. A.

1980-01-01T23:59:59.000Z

287

Florida Power and Light - Solar Rebate Program (Florida) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Power and Light - Solar Rebate Program (Florida) Florida Power and Light - Solar Rebate Program (Florida) Florida Power and Light - Solar Rebate Program (Florida) < Back Eligibility Agricultural Commercial Industrial Institutional Low-Income Residential Multi-Family Residential Nonprofit Residential Schools Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Florida Program Type Utility Rebate Program Rebate Amount Solar Water Heater (Residential): $1,000/system Solar Water Heater (Business): $30/1,000 BTUh per day Solar PV (Residential): $2/DC Watt Solar PV (Commercial): $2/DC Watt (Up to 10kW), $1.50/DC Watt (10kW - 25kW), $1/DC Watt (25kW or larger) Provider Customer Service Note:The Florida Power and Light (FPL) 2013 solar PV rebate program is fully subscribed and the limited "standby list" is full. Customers on the

288

The solar industries` FY 1998 appropriations recommendations for the US Department of Energy  

SciTech Connect

This article details the Solar Industry recommendations for solar energy expenditures by the US DOE. Major solar energy categories with specific monetary recommendations are presented in detailed tables: solar building technology research; photovoltaic systems; solar thermal electric and process heat; miscellaneous programs.

Barnett, A.; Sklar, S.

1997-06-01T23:59:59.000Z

289

Break-Even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities  

SciTech Connect

This paper examines the break-even cost for residential rooftop solar water heating (SWH) technology, defined as the point where the cost of the energy saved with a SWH system equals the cost of a conventional heating fuel purchased from the grid (either electricity or natural gas). We examine the break-even cost for the largest 1,000 electric and natural gas utilities serving residential customers in the United States as of 2008. Currently, the break-even cost of SWH in the United States varies by more than a factor of five for both electricity and natural gas, despite a much smaller variation in the amount of energy saved by the systems (a factor of approximately one and a half). The break-even price for natural gas is lower than that for electricity due to a lower fuel cost. We also consider the relationship between SWH price and solar fraction and examine the key drivers behind break-even costs. Overall, the key drivers of the break-even cost of SWH are a combination of fuel price, local incentives, and technical factors including the solar resource location, system size, and hot water draw.

Cassard, H.; Denholm, P.; Ong, S.

2011-02-01T23:59:59.000Z

290

List of Solar Water Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Solar Water Heat Incentives Solar Water Heat Incentives Jump to: navigation, search The following contains the list of 920 Solar Water Heat Incentives. CSV (rows 1-500) CSV (rows 501-920) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - GEOSmart Financing Program (Arizona) Utility Loan Program Arizona Residential Solar Water Heat Photovoltaics No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas

291

A degree-day method for residential heating load calculations specifically incorporating the utilization of solar gains  

DOE Green Energy (OSTI)

A simple and well known method of estimating residential heating loads is the variable base degree-day method, in which the steady-state heat loss rate (UA) is multiplied by the degree-days based from the balance temperature of the structure. The balance temperature is a function of the UA as well as the average rate of internal heat gains, reflecting the displacement of the heating requirements by these gains. Currently, the heat gains from solar energy are lumped with those from appliances to estimate an average rate over the day. This ignores the effects of the timing of the gains from solar energy, which are more highly concentrated during daytime hours, hence more frequently exceeding the required space heat and less utilizable than the gains from appliances. Simulations or specialized passive solar energy calculation methods have previously been required to account for this effect. This paper presents curves of the fraction of the absorbed solar energy utilized for displacement of space heat, developed by comparing heating loads calculated using a variable base degree-day method (ignoring solar gains) to heating loads from a large number of detailed DOE-2 simulations. The difference in the loads predicted by the two methods can be interpreted as the utilized solar gains. The solar utilization decreases as the thermal integrity increases, as expected, and the solar utilizations are similar across climates. They can be used to estimate the utilized fraction of the absorbed solar energy and, with the load predicted by the variable base degree-day calculation, form a modified degree-day method that closely reproduces the loads predicted by the DOE-2 simulation model and is simple enough for hand calculations. 6 refs., 6 figs., 2 tabs.

Lucas, R.G.; Pratt, R.G.

1990-09-01T23:59:59.000Z

292

Solar Energy Education. Industrial arts: teacher's guide. Field test edition. [Includes glossary  

SciTech Connect

An instructional aid is presented which integrates the subject of solar energy into the classroom study of industrial arts. This guide for teachers was produced in addition to the student activities book for industrial arts by the USDOE Solar Energy Education. A glossary of solar energy terms is included. (BCS)

1981-05-01T23:59:59.000Z

293

Solar Energy Education. Industrial arts: teacher's guide. Field test edition. [Includes glossary  

DOE Green Energy (OSTI)

An instructional aid is presented which integrates the subject of solar energy into the classroom study of industrial arts. This guide for teachers was produced in addition to the student activities book for industrial arts by the USDOE Solar Energy Education. A glossary of solar energy terms is included. (BCS)

Not Available

1981-05-01T23:59:59.000Z

294

Application analysis of solar total energy systems to the residential sector. Volume II, energy requirements. Final report  

DOE Green Energy (OSTI)

This project analyzed the application of solar total energy systems to appropriate segments of the residential sector and determined their market penetration potential. This volume covers the work done on energy requirements definition and includes the following: (1) identification of the single-family and multi-family market segments; (2) regionalization of the United States; (3) electrical and thermal load requirements, including time-dependent profiles; (4) effect of conservation measures on energy requirements; and (5) verification of simulated load data with real data.

Not Available

1979-07-01T23:59:59.000Z

295

Estimating solar access of typical residential rooftops: A case study in San Jose, CA  

E-Print Network (OSTI)

loss (loss of incident solar power/area) at any given hourlosses (loss of incident solar power/area) were calculatedreduces the aggregate solar power incident on the planes at

Levinson, Ronnen M

2008-01-01T23:59:59.000Z

296

Estimating solar access of typical residential rooftops: A case study in San Jose, CA  

E-Print Network (OSTI)

Data Center (NREL MIDC) Solar Position and Intensity (J.A. and Beckman, W. A.. 2006. Solar Engineering of ThermalOF ROOFING PLANES (%) IN SOLAR ACCESS VIOLATION BY MONTH AND

Levinson, Ronnen M

2008-01-01T23:59:59.000Z

297

Application analysis of solar total energy systems to the residential sector. Volume IV, market penetration. Final report  

DOE Green Energy (OSTI)

This volume first describes the residential consumption of energy in each of the 11 STES regions by fuel type and end-use category. The current and projected costs and availability of fossil fuels and electricity for the STES regions are reported. Projections are made concerning residential building construction and the potential market for residential STES. The effects of STES ownership options, institutional constraints, and possible government actions on market penetration potential were considered. Capital costs for two types of STES were determined, those based on organic Rankine cycle (ORC) heat engines and those based on flat plate, water-cooled photovoltaic arrays. Both types of systems utilized parabolic trough collectors. The capital cost differential between conventional and STE systems was calculated on an incremental cost per dwelling unit for comparison with projected fuel savings in the market penetration analysis. The market penetration analysis was planned in two phases, a preliminary analysis of each of the geographical regions for each of the STE systems considered; and a final, more precise analysis of those regions and systems showing promise of significant market penetration. However, the preliminary analysis revealed no geographical regions in which any of the STES considered promised to be competitive with conventional energy systems using utility services at the prices projected for future energy supplies in the residential market. Because no promising situations were found, the analysis was directed toward an examination of the parameters involved in an effort to identify those factors which make a residential STES less attractive than similar systems in the commercial and industrial areas. Results are reported. (WHK)

Not Available

1979-07-01T23:59:59.000Z

298

Reducing indoor residential exposures to outdoor pollutants  

E-Print Network (OSTI)

combustion in motor vehicles, electricity generation and industrial processes, as well as residential fireplaces and wood

Sherman, Max H.; Matson, Nance E.

2003-01-01T23:59:59.000Z

299

An economic analysis of grid-connected residential solar photovoltaic power systems  

E-Print Network (OSTI)

The question of the utility grid-connected residential market for photovoltaics is examined from a user-ownership perspective. The price is calculated at which the user would be economically indifferent between

Carpenter, Paul R.

300

New Hampshire Electric Co-Op- Residential Solar Photovoltaic Incentive Program  

Energy.gov (U.S. Department of Energy (DOE))

New Hampshire Electric Co-op (NHEC) is offering rebates for residential, grid-tied photovoltaic (PV) systems up to one megawatt (MW) in capacity. The rebate is equal to 20% of the installed cost of...

Note: This page contains sample records for the topic "industrial residential solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Choosing a Residential Window  

NLE Websites -- All DOE Office Websites (Extended Search)

Choosing a Residential Window LBNLs Windows and Daylighting Group provides technical support to government and industry efforts to help consumers and builders choose...

302

Licensing arrangements and the development of the solar energy industry  

SciTech Connect

The process by which technology and information related to technology are transferred within industry is explored. Property rights in technology are part of the broader field of intellectual property. The general contours of legal protection for knowledge are explored. The four basic forms of intellectual property - patents, trade secrets (or know-how), trademarks, and copyrights - are covered in varying degrees of depth, depending on their relative applicability to the development of the solar industry. Once this background has been established, the legal aspects of licensing are examined. A license is a legal arrangement whereby a party (licensor) who controls the right to use an idea, invention, etc. shares the right to use the particular intellectual property with someone else (licensee). The advantages and disadvantages of licensing are described from the point of view of potential licensees and licensors. Barriers to licensing are discussed.

Green, M.

1979-06-01T23:59:59.000Z

303

DTE Energy - Solar Currents Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DTE Energy - Solar Currents Program DTE Energy - Solar Currents Program DTE Energy - Solar Currents Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Program Info Start Date 2009 State Michigan Program Type Utility Rebate Program Rebate Amount Residential Rebate: $0.20/W Residential Production Incentive: $0.03/kWh Non-Residential Rebate: $0.13/W Non-Residential Production Incentive: $0.02/kWh Provider DTE Energy '''''Although the program web site above links to the residential section of DTE Energy's web page, the program itself is not limited to residential customers. Other customers that meet the program requirements are also eligible to participate.

304

Solar Industry At Work: Video Interview with Alta Devices' Laila Mattos |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Industry At Work: Video Interview with Alta Devices' Laila Solar Industry At Work: Video Interview with Alta Devices' Laila Mattos Solar Industry At Work: Video Interview with Alta Devices' Laila Mattos June 6, 2012 - 12:07pm Addthis Laila Mattos talks about her work life at Alta Devices -- a solar company based in Silicon Valley. | Video by Hantz Leger. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs What is this video about? Laila Mattos, a technology manager at Alta Devices, talks about her experiences working at a "disruptive" solar company. Our Solar Industry At Work Series shares the personal success of America's solar workforce - from finance experts, to scientists, to engineers. You can learn more about the series here. "Great solar won't go anywhere unless its low cost."

305

SOLERAS - Summary technical report on SOLERAS Industrial Solar Thermal Applications Project  

Science Conference Proceedings (OSTI)

This document reports the advances in solar industrial applications made by SOLERAS, a joint United States-Saudi Arabian solar energy research and development program. The industrial application chosen was the freeze desalination of seawater powered by mid-temperature (385/degree/C) solar collectors. This innovative process will compete with other downscaled desalination processes for small communities in developing countries. Using solar energy to power this installation demonstrates the ability of solar energy to fuel any industrial application that requires mid-temperature energy. 13 refs., 11 figs.

Zimmerman, J.C.

1987-10-01T23:59:59.000Z

306

Identification of Business Opportunities within the solar industry for Saudi Arabian Companies.  

E-Print Network (OSTI)

?? This master thesis report presents a prefeasibility analysis for a Saudi Company to enter the solar industry.Section one of this report illustrates the value (more)

Retana Herrera, Julio

2013-01-01T23:59:59.000Z

307

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network (OSTI)

9 Table 4. International Estimates of Energy Consumption in16 Table 10. Industrial energy consumption, India in 2003-25. India Specific energy consumption, including feedstock (

Sathaye, Jayant

2011-01-01T23:59:59.000Z

308

Technology assessment of solar energy systems: residential use of fuelwood in the Pacific Northwest  

DOE Green Energy (OSTI)

The evidence of impacts associated with the use of fuelwood for residential space heating in the region including the states of Washington, Oregon, and Idaho is identified and evaluated. The use of fuelwood for space heating was projected into the future, and then the potential size of the impacts that had been identified and estimated was evaluated. These projections are provided in five year increments beginning in 1980 and proceeding to the year 2000. Policy options are suggested which may mitigate the adverse impacts identified, while preserving the positive effect of reducing residential demand for energy derived from nonrenewable sources.

Petty, P.N.; Hopp, W.J.

1981-08-01T23:59:59.000Z

309

Georgia Power- Residential Solar and Heat Pump Water Heater Rebate (Georgia)  

Energy.gov (U.S. Department of Energy (DOE))

Georgia Power customers may be eligible for rebates up to $250 each toward the installation costs of a 50 gallon or greater solar water heater or heat pump water heater. The solar water heater or...

310

Design, construction, and testing of a residential solar heating and cooling system  

DOE Green Energy (OSTI)

The NSF/CSU Solar House I solar heating and cooling system became operational on 1 July 1974. During the first months of operation the emphasis was placed on adjustment, ''tuning,'' and fault correction in the solar collection and the solar/fuel/cooling subsystems. Following this initial check out period, analysis and testing of the system utilizing a full year of data were accomplished. This report discusses the results of this analysis of the full year of operation. (WDM)

Ward, D.S.; Loef, G.O.G.

1976-06-01T23:59:59.000Z

311

The Department of Energy`s Solar Industrial Program: 1995 review  

DOE Green Energy (OSTI)

During 1995, the Department of Energy`s Solar Industrial (SI) Program worked to bring the benefits of solar energy to America`s industrial sector. Scientists and engineers within the program continued the basic research, applied engineering, and economic analyses that have been at the heart of the Program`s success since its inception in 1989. In 1995, all three of the SI Program`s primary areas of research and development--solar detoxification, advanced solar processes, and solar process heat--succeeded in increasing the contribution made by renewable and energy-efficient technologies to American industry`s sustainable energy future. The Solar Detoxification Program develops solar-based pollution control technologies for destroying hazardous environmental contaminants. The Advanced Solar Processes Program investigates industrial uses of highly concentrated solar energy. The Solar Process Heat Program conducts the investigations and analyses that help energy planners determine when solar heating technologies--like those that produce industrial-scale quantities of hot water, hot air, and steam--can be applied cost effectively. The remainder of this report highlights the research and development conducted within in each of these subprograms during 1995.

NONE

1996-04-01T23:59:59.000Z

312

Phase-one experiment test plan solar photovoltaic/thermal residential experiment  

DOE Green Energy (OSTI)

Objectives, rationale, and method of a one-year experiment using a residential photovoltaic/thermal power system are presented. Data will be both archived and processed to investigate: (1) series heat pump system performance, and (2) electric utility impacts. A parallel heat pump system will be investigated in a subsequent experiment.

Kern, E.C. Jr.

1979-03-15T23:59:59.000Z

313

Financing Non-Residential Photovoltaic Projects: Options and Implications  

E-Print Network (OSTI)

Solar Larger Projects, Similar Financing Strategies Although this report focuses primarily on non-residential rooftop

Bolinger, Mark

2009-01-01T23:59:59.000Z

314

Industry-wide information systems standardization as collective action: the case of the U.S. residential mortgage industry  

Science Conference Proceedings (OSTI)

Vertical information systems (VIS) standards are technical specifications designed to promote coordination among the organizations within (or across) vertical industry sectors. Examples include the bar code, electronic data interchange (EDI) standards, ... Keywords: collective action, governance, heterogeneity of resources and interests, institutional support, intellectual property rights, public goods theory, technical design issues, vertical IS standards and standardization

M. Lynne Markus; Charles W. Steinfield; Rolf T. Wigand; Gabe Minton

2006-08-01T23:59:59.000Z

315

Solar Contractor Licensing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Contractor Licensing Solar Contractor Licensing Solar Contractor Licensing < Back Eligibility Installer/Contractor Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Program Info State Florida Program Type Solar/Wind Contractor Licensing Provider Florida Solar Energy Industries Association Until 1994, Florida offered limited specialty licenses for residential solar hot water and pool heating, as well a general solar contractor's license. These specialty licenses have not been issued since that time, although people holding these licenses may renew them. The new solar contractor license defines a broader scope of work. With the new license, solar contractors have the authority to install, maintain and

316

A new database of residential building measures and estimated costs helps the U.S. building industry determine the most  

E-Print Network (OSTI)

A new database of residential building measures and estimated costs helps the U.S. building at the National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures with using various measures to improve the efficiency of residential buildings. This database offers

317

The Trade-off between Solar Reflectance and Above-Sheathing Ventilation for Metal Roofs on Residential and Commercial Buildings  

Science Conference Proceedings (OSTI)

An alternative to white and cool-color roofs that meets prescriptive requirements for steep-slope (residential and non-residential) and low-slope (non-residential) roofing has been documented. Roofs fitted with an inclined air space above the sheathing (herein termed above-sheathing ventilation, or ASV), performed as well as if not better than high-reflectance, high-emittance roofs fastened directly to the deck. Field measurements demonstrated the benefit of roofs designed with ASV. A computer tool was benchmarked against the field data. Testing and benchmarks were conducted at roofs inclined at 18.34 ; the roof span from soffit to ridge was 18.7 ft (5.7 m). The tool was then exercised to compute the solar reflectance needed by a roof equipped with ASV to exhibit the same annual cooling load as that for a direct-to-deck cool-color roof. A painted metal roof with an air space height of 0.75 in. (0.019 m) and spanning 18.7 ft (5.7 m) up the roof incline of 18.34 needed only a 0.10 solar reflectance to exhibit the same annual cooling load as a direct-to-deck cool-color metal roof (solar reflectance of 0.25). This held for all eight ASHRAE climate zones complying with ASHRAE 90.1 (2007a). A dark heat-absorbing roof fitted with 1.5 in. (0.038 m) air space spanning 18.7 ft (5.7 m) and inclined at 18.34 was shown to have a seasonal cooling load equivalent to that of a conventional direct-to-deck cool-color metal roof. Computations for retrofit application based on ASHRAE 90.1 (1980) showed that ASV air spaces of either 0.75 or 1.5 in. (0.019 and 0.038 m) would permit black roofs to have annual cooling loads equivalent to the direct-to-deck cool roof. Results are encouraging, and a parametric study of roof slope and ASV aspect ratio is needed for developing guidelines applicable to all steep- and low-slope roof applications.

Desjarlais, Andre Omer [ORNL] [ORNL; Kriner, Scott [Metal Construction Association, Glenview, IL] [Metal Construction Association, Glenview, IL; Miller, William A [ORNL] [ORNL

2013-01-01T23:59:59.000Z

318

Shaking Up the Residential PV Market: Implications of Recent Changes to the ITC  

E-Print Network (OSTI)

E NERGY Shaking Up the Residential PV Market: Implicationsthe Revised Residential Credit ..ITC (capped at $2,000) for residential solar systems. Both

Bolinger, Mark

2008-01-01T23:59:59.000Z

319

Packaged residential active-solar space-conditioning system. Appendix E. System performance monitoring. Final subcontract report  

Science Conference Proceedings (OSTI)

This report documents the testing of four solar space heating systems that had cost and performance characteristics equalling or exceeding competing conventional heating systems. Design concepts for these systems were solicited from the solar industry and field tested by Vitro Corporation. The designers of the four prototype systems were: Calmac Manufacturing Corporation, Contemporary Systems, Inc., Honeywell Inc., and Trident Energy Systems. Vitro Corporation reports the results of field test performance for the four packaged space heating systems. Their review presents the primary performance factors for all systems, comparing them to the best National Solar Data Network (NSDN) space heating systems. Performance factors evaluated and reported on were: collection subsystem efficiency, collector array operational efficiency, percentage of incident solar delivered to loads, collector coefficients of performance, system coefficients of performance, percent collected solar to load, and solar energy to loads/ft/sup 2/ collector/day. The data indicate that these packaged space heating systems compare well with the most recent National Solar Data Network systems.

Not Available

1986-05-01T23:59:59.000Z

320

What do homeowners think. [National study of the residential solar consumer  

SciTech Connect

During October and November of 1980, The Gallup Organization, Inc., conducted personal interviews with a national probability sample of 2,023 homeowners for the Solar Energy Research Institute (SERI). The results tell what owners of year-round housing think about solar energy and what factors may motivate them to use solar in their homes. Descriptive findings for a few key questions in the survey, together with brief interpretative comments by SERI are included. (JMT)

1981-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial residential solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

El Paso Electric Company - Solar PV Pilot Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

El Paso Electric Company - Solar PV Pilot Program El Paso Electric Company - Solar PV Pilot Program El Paso Electric Company - Solar PV Pilot Program < Back Eligibility Commercial Construction Fed. Government Industrial Installer/Contractor Local Government Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $7,500 Non-Residential: $50,000 Per Customer with Multiple Projects: 25% of 2013 incentive budget Per Service Provider with Multiple Projects: 50% of 2013 incentive budget in each category Program Info Start Date March 2010 State Texas Program Type Utility Rebate Program Rebate Amount Residential: $0.75/W DC Non-Residential: $1.00/W DC Provider El Paso Electric Solar PV Pilot Program '''''El Paso Electric's 2013 Solar PV Rebate program will reopen at 12:00

322

State-of-the-art of solar control systems in industrial process heat applications  

DOE Green Energy (OSTI)

The state-of-the-art of solar control systems is addressed pertinent to industrial process heat applications. Solar system configurations currently being used or proposed are presented; parameters and functions deemed essential in solar system controls are identified; operating deficiencies are described; and possible future improvements are discussed.

Su, W. S.; Castle, J. N.

1979-07-01T23:59:59.000Z

323

Design, construction, and testing of a residential solar heating and cooling system  

SciTech Connect

The NSF/CSU Solar House I solar heating and cooling system became operational on 1 July 1974. During the first months of operation the emphasis was placed on adjustment, ''tuning,'' and fault correction in the solar collection and the solar/fuel/cooling subsystems. Following this initial check out period, analysis and testing of the system utilizing a full year of data were accomplished. This report discusses the results of this analysis of the full year of operation. (WDM)

Ward, D.S.; Loef, G.O.G.

1976-06-01T23:59:59.000Z

324

Using Calibrated Simulation to Quantify The energy Savings From Residential Passive Solar Design in Canada.  

E-Print Network (OSTI)

??Energy savings from passive solar design applied to a typical Canadian house were quantified using calibrated whole building energy simulation. A detailed energy simulation model (more)

Zirnhelt, Hayes E.

2013-01-01T23:59:59.000Z

325

SunShot Incubator Spurs Solar Industry Innovation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spurs Solar Industry Innovation Spurs Solar Industry Innovation SunShot Incubator Spurs Solar Industry Innovation November 18, 2011 - 11:15am Addthis As much as half of the price of solar energy, represented in red above graph, is made up of non-hardware costs. | Data source: Goodrich et al 2011. | Image courtesy of the Energy Department's SunShot Initiative. As much as half of the price of solar energy, represented in red above graph, is made up of non-hardware costs. | Data source: Goodrich et al 2011. | Image courtesy of the Energy Department's SunShot Initiative. Minh Le Minh Le Program Manager, Solar Program What does this project do? The SunShot Initiative is investing approximately $7 million over 18 months in a new Incubator Program for Soft Cost Reduction. The price for solar modules is now nearly $1 per watt and continues to

326

SunShot Incubator Spurs Solar Industry Innovation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SunShot Incubator Spurs Solar Industry Innovation SunShot Incubator Spurs Solar Industry Innovation SunShot Incubator Spurs Solar Industry Innovation November 18, 2011 - 11:15am Addthis As much as half of the price of solar energy, represented in red above graph, is made up of non-hardware costs. | Data source: Goodrich et al 2011. | Image courtesy of the Energy Department's SunShot Initiative. As much as half of the price of solar energy, represented in red above graph, is made up of non-hardware costs. | Data source: Goodrich et al 2011. | Image courtesy of the Energy Department's SunShot Initiative. Minh Le Minh Le Program Manager, Solar Program What does this project do? The SunShot Initiative is investing approximately $7 million over 18 months in a new Incubator Program for Soft Cost Reduction. The price for solar modules is now nearly $1 per watt and continues to

327

DOE Solar Decathlon: Building Industry Day Workshop Summaries  

NLE Websites -- All DOE Office Websites (Extended Search)

Behind Solar LED This workshop provided an introduction to solar LED (light-emitting diode) lighting technology and addressed current and potential applications in...

328

Solar energy and multi-storey residential buildings Larry Hughes and Tylor Wood  

E-Print Network (OSTI)

Factsheet on Summer Heat Gain and Winter Heat Loss In the summer we often feel warm in buildings and in the winter we may feel cold. This may be due to heating from solar gain and heat loss during the winter (see that you stay cool or warm. You can: · Draw blinds to stop solar gain and winter losses · You can wear

Hughes, Larry

329

JEA - Solar Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Incentive Program JEA - Solar Incentive Program Eligibility Commercial Residential Schools Savings For Heating & Cooling Solar Water Heating Maximum Rebate Residential: 800...

330

AEP Texas Central Company - SMART Source Solar PV Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Central Company - SMART Source Solar PV Rebate Program Central Company - SMART Source Solar PV Rebate Program AEP Texas Central Company - SMART Source Solar PV Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $15,000 Non-residential: $31,2500 Program Info Start Date 08/01/2009 State Texas Program Type Utility Rebate Program Rebate Amount Residential: $1.50/W DC Non-residential: $1.25/W DC Provider Smart Source PV Program American Electric Power Texas Central Company (AEP-TCC) offers rebates to customers that install photovoltaic (PV) systems on homes or other buildings. Customers of all rate classes are eligible to participate in the

331

Solar and Wind Easements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar and Wind Easements Solar and Wind Easements Solar and Wind Easements < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Wind Program Info State Montana Program Type Solar/Wind Access Policy Provider Montana Department of Environmental Quality Montana's solar and wind easement provisions allow property owners to create solar and wind easements for the purpose of protecting and maintaining proper access to sunlight and wind. Solar easements should be negotiated with neighboring property owners. Montana's solar easement law was enacted in 1979; the wind easement law was originally enacted in 1983.

332

AEP Texas North Company - SMART Source Solar PV Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North Company - SMART Source Solar PV Rebate Program North Company - SMART Source Solar PV Rebate Program AEP Texas North Company - SMART Source Solar PV Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $15,000 Non-residential: $30,000 Program Info Start Date 08/01/2009 State Texas Program Type Utility Rebate Program Rebate Amount Residential: $1.50/watt DC Non-residential: $1.20/watt DC Provider Smart Source PV Program American Electric Power Texas North Company (AEP-TNC) offers rebates to customers that install photovoltaic (PV) systems on homes or other buildings. Customers of all rate classes (e.g., residential, commercial)

333

City of Palo Alto Utilities - Solar Water Heating Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heating Program Solar Water Heating Program City of Palo Alto Utilities - Solar Water Heating Program < Back Eligibility Commercial Industrial Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Single-family residential gas-displacing systems: $2,719 Single-family residential electricity or propane-displacing systems: $1,834 Commercial/Industrial/Multi-family: $100,000 One contractor can have no more than $150,000 in incentive reservations at any given time. Program Info State California Program Type Utility Rebate Program Rebate Amount Single-family residential gas-displacing systems: $18.59 per therm displaced Single-family residential electricity or propane-displacing systems: $$0.54 per kWh displaced Multi-family and commercial gas-displacing systems: $14.53 per therm

334

A Water Conservation Scenario for the Residential and Industrial Sectors in California: Potential Saveings of Water and Related Energy  

E-Print Network (OSTI)

A WATER CONSERVATION SCENARIO FOR THE RESIDENTIAL ANDWater 'consumption, water conservation. City of Sacramento.Daniel Stockton. Water conservation. Contra Costa County

Benenson, P.

2010-01-01T23:59:59.000Z

335

Solar Rights | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State Government Savings Category Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Program Info State Louisiana Program Type Solar/Wind Access Policy In June 2010, Louisiana enacted solar rights legislation (HB 751) that prohibits certain entities from unreasonably restricting a property owner from installing a solar collector. Solar collectors are generally defined to include photovoltaics (PV), solar water heating, and any other system or device that uses sunlight as an energy source. While this law generally guarantees a property owner's right to install solar collectors, there are

336

SMUD - Non-Residential PV Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-Residential PV Incentive Program Non-Residential PV Incentive Program SMUD - Non-Residential PV Incentive Program < Back Eligibility Commercial Industrial Nonprofit Savings Category Solar Buying & Making Electricity Maximum Rebate $650,000 for up-front incentives at current $0.65/W incentive level. Program Info State California Program Type Utility Rebate Program Rebate Amount Expected Performance Based Incentive (for systems up to 1 MW): 0.65/watt AC; incentive adjusted based on expected performance Performance Based Incentive: 0.10/kWh for 5 years or 0.06/kWh for 10 years Incentives are decreased for systems > 1 MW Provider Sacramento Municipal Utility District SMUD offers cash incentives to commercial, industrial, and non-profit customers who install solar photovoltaic (PV) systems. Customers have the

337

Urban and Industrial Sites Reinvestment Tax Credit Program (Connecticut) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Industrial Sites Reinvestment Tax Credit Program and Industrial Sites Reinvestment Tax Credit Program (Connecticut) Urban and Industrial Sites Reinvestment Tax Credit Program (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program Type Corporate Tax Incentive Provider Department of Economic and Community Development

338

Two case studies of the application of solar energy for industrial process heat  

DOE Green Energy (OSTI)

Case studies of industrial process heat (IPH) have been performed by the Solar Energy Research Institute (SERI) on selected plants in metal processing, oil production, beverage container manufacturing, commercial laundering, paint (resin manufacturing), and food industries. For each plant, the application of solar energy to processes requiring hot water, hot air, or steam was examined, after energy conservation measures were included. A life-cycle economic analysis was performed for the solar system compared to the conventional energy system. The studies of the oil production facility (oil/water separation process) indicate that it could economically employ a solar hot water system immediately. The studies of solar energy applied to the beverage container process (solar air preheat system with partial recycle of oven exhaust gases) indicate a 7.5-yr payback period, based on a solar system installation in 1985.

Hooker, D. W.; West, R. E.

1979-10-01T23:59:59.000Z

339

List of Solar Thermal Electric Incentives | Open Energy Information  

Open Energy Info (EERE)

Electric Incentives Electric Incentives Jump to: navigation, search The following contains the list of 548 Solar Thermal Electric Incentives. CSV (rows 1-500) CSV (rows 501-548) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Net Metering (Arizona) Net Metering Arizona Commercial Industrial Residential Nonprofit Schools Local Government State Government Fed. Government Agricultural Institutional Solar Thermal Electric Photovoltaics Wind energy Biomass No Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional

340

The Solarize Guidebook: A community guide to collective purchasing of residential PV systems (Book), SunShot, U.S. Department of Energy (DOE)  

NLE Websites -- All DOE Office Websites (Extended Search)

SOLARIZE GUIDEBOOK: SOLARIZE GUIDEBOOK: A community guide to collective purchasing of residential PV systems 1 ACKNOWLEDGEMENTS This guide is an updated version of the original The Solarize Guidebook, published in February 2011 (see www.nrel.gov/docs/fy11osti/50440.pdf), which was developed for the National Renewable Energy Laboratory and the City of Portland. The original Solarize campaigns were initiated and replicated by Portland's Neighborhood Coalition network with help from the Energy Trust of Oregon, City of Portland, and Solar Oregon. AUTHORS Linda Irvine, Alexandra Sawyer and Jennifer Grove, Northwest Sustainable Energy for Economic Development (Northwest SEED). Northwest SEED is solely responsible for errors and omissions. CONTRIBUTORS Lee Rahr, Portland Bureau of Planning and Sustainability

Note: This page contains sample records for the topic "industrial residential solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Evaluation of high performance evacuated tubular collectors in a residential heating and cooling system: Colorado State University Solar House I. Report for October 1, 1976--September 30, 1977  

DOE Green Energy (OSTI)

CSU Solar House I is configured with a prototype Corning evacuated tubular collector and a new Arkla lithium bromide water chiller designed for solar operation. Data have been collected for this configuration since January 1977. Prior to that time and since mid-1974, Solar House I has operated with a flat-plate collector and a previous Arkla LiBr air conditioner modified to operate in the lower solar temperature ranges. Project objectives were to develop an operating and control system for the new configuration and to compare the performance of the new residential solar heating, cooling, and hot water system with performance of the previous system. Many problems were encountered in the evolution of the operating and control systems due to the different operating characteristics of evacuated tubular collectors, such as their rapid thermal response and the possibility of much higher temperatures as compared to a flat-plate collector.

Duff, W.S.; Conway, T.M.; Loef, G.O.G.; Meredith, D.B.; Pratt, R.B.

1978-03-01T23:59:59.000Z

342

Residential Renewable Energy Tax Credit | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Tax Credit Residential Renewable Energy Tax Credit < Back Eligibility Residential Savings Category Solar Water Heat Photovoltaics Wind Fuel Cells Geothermal Heat...

343

Pennsylvania Sunshine Solar Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pennsylvania Sunshine Solar Rebate Program Pennsylvania Sunshine Solar Rebate Program Pennsylvania Sunshine Solar Rebate Program < Back Eligibility Agricultural Commercial Industrial Low-Income Residential Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Water Heating Maximum Rebate Residential PV: lesser of $7,500 or 35% of installed costs Commercial PV: lesser of $52,500 or 35% of installed costs Residential Battery Backup (1-10 kW only): $140/kW (maximum of 400 amp-hrs/kW) Solar Thermal: $5,000 for residential, $50,000 for commercial Program Info Funding Source Pennsylvania Energy Independence Fund (state bonds) Start Date 05/18/2009 (date of program opening); 09/01/2010 (battery back addition) Expiration Date 12/31/2013 State Pennsylvania

344

Design, development and testing of a solar-powered multi-family residential-size prototype turbocompressor heat pump  

DOE Green Energy (OSTI)

An experimental program was conducted to further define, improve and demonstrate the performance characteristics and operational features of an existing 18-ton solar-powered prototype heat pump. The prototype heat pump is nominally sized for multi-family residential applications and provides both space heating and cooling. It incorporates a turbocompressor specially designed to operate at peak temperatures consistent with medium concentration collectors. The major efforts in this program phase included modification and improvement of the instrumentation sensors, the laboratory simulation equipment and selected heat pump components. After implementing these modifications, performance testing was conducted for a total operating time of approximately 250 hours. Experimental test results compared favorably with performance data calculated using the UTRC computer prediction program for the same boundary conditions. A series of tests was conducted continuously over a 12-h period to simulate operation (in the cooling mode) of the prototype heat pump under conditions typical of an actual installation. The test demonstrated that the heat pump could match the cooling load profile of a multi-family residential building. During the system performance testing, sufficient data were taken to identify the performance of each of the major components (e.g. turbine, compressor, heat exchangers, R11 pump). Component performance is compared with that calculated using the UTRC computer predict program and with data supplied by their manufacturers. The performance capabilities of the prototype heat pump system have been documented and recommendations are made for further design improvements which could be included in a MOD-2 configuration. The MOD-2 configuration would incorporate features that would improve system performance, reduce capital cost and most importantly improve system reliability.

Not Available

1982-10-01T23:59:59.000Z

345

Solar Energy Education. Industrial arts: student activities. Field test edition  

DOE Green Energy (OSTI)

In this teaching manual several activities are presented to introduce students to information on solar energy through classroom instruction. Wind power is also included. Instructions for constructing demonstration models for passive solar systems, photovoltaic cells, solar collectors and water heaters, and a bicycle wheel wind turbine are provided. (BCS)

Not Available

1981-02-01T23:59:59.000Z

346

A survey of thin-film solar photovoltaic industry & technologies  

E-Print Network (OSTI)

A new type of solar cell technology using so-called thin-film solar photovoltaic material has the potential to make a great impact on our lives. Because it uses very little or no silicon at all, thin- film (TF) solar ...

Grama, Sorin

2007-01-01T23:59:59.000Z

347

Residential passive solar systems: regional sensitivity to system performance costs, and alternative prices  

DOE Green Energy (OSTI)

The economic potential of two passive space heating configurations are analyzed. These are a masonry thermal storage wall (Trombe) and a direct gain system - both with night insulation. A standard tract home design for each of the two passive systems is being used throughout the analysis to allow interregional comparisons. The economic performance of these two systems is evaluated on a regional basis (223 locations) throughout the United States. For each of the two conventional energy types considered (electricity and natural gas), sensitivity analysis is conducted to determine the impact of alternative fuel price escalation rates and solar costs upon feasibility of the two solar systems. Cost goals for solar system prices are established under one set of future fuel prices and stated economic conditions. (MOW)

Kirschner, C.; Ben-David, S.; Roach, F.

1979-01-01T23:59:59.000Z

348

List of Solar Space Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Space Heat Incentives Space Heat Incentives Jump to: navigation, search The following contains the list of 499 Solar Space Heat Incentives. CSV (rows 1 - 499) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat

349

Shallow solar ponds for industrial process heat: the ERDA--SOHIO project  

DOE Green Energy (OSTI)

The solar energy group at LLL has developed shallow solar ponds to supply cost-competitive solar heated water for industrial use. A prototype system has been built and put into operation at the site of the Sohio Petroleum Company's new uranium mine and milling complex near Grants, New Mexico. When operational, a projected full-size system is expected to furnish approximately half of the 10/sup 5/ GJ (approximately 10/sup 5/ MBtu) annual site process heat requirement. A description of the physical features of shallow solar ponds is presented along with a method for analyzing pond performance. An economic analysis of the projected Sohio solar system is provided.

Dickinson, W.C.; Clark, A.V.; Iantuono, A.

1976-06-17T23:59:59.000Z

350

Shallow solar ponds for industrial process heat: the ERDA--SOHIO project  

DOE Green Energy (OSTI)

The solar energy group at LLL has developed shallow solar ponds to supply cost-competitive solar heated water for industrial use. A prototype system has been built and put into operation at the site of the Sohio Petroleum Company's new uranium mine and milling complex near Grants, New Mexico. When operational, a projected full-size system is expected to furnish approximately half of the 10/sup 5/ GJ annual site process heat requirement. A description of the physical features of shallow solar ponds is presented along with a method for analyzing pond performance. An economic analysis of the projected Sohio solar system is provided.

Dickinson, W.C.; Clark, A.F.; Iantuono, A.

1976-06-17T23:59:59.000Z

351

Human Impact on Direct and Diffuse Solar Radiation during the Industrial Era  

Science Conference Proceedings (OSTI)

In this study the direct and diffuse solar radiation changes are estimated, and they contribute to the understanding of the observed global dimming and the more recent global brightening during the industrial era. Using a multistream radiative ...

Maria M. Kvalevg; Gunnar Myhre

2007-10-01T23:59:59.000Z

352

Recent National Solar Thermal Test Facility activities, in partnership with industry  

DOE Green Energy (OSTI)

The National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories in Albuquerque, New Mexico, USA conducts testing of solar thermal components and systems, funded primarily by the US Department of Energy. Activities are conducted in support of Central Receiver Technology, Distributed Receiver Technology and Design Assistance projects. All activities are performed in support of various cost-shared government/industry joint ventures and, on a design assistance basis, in support of a number of other industry partners.

Ghanbari, C.; Cameron, C.P.; Ralph, M.E.; Pacheco, J.E.; Rawlinson, K.S. [Sandia National Labs., Albuquerque, NM (United States); Evans, L.R. [Ewing Technical Design, Albuquerque, NM (United States)

1994-10-01T23:59:59.000Z

353

Industrial Development (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Indiana) (Indiana) Industrial Development (Indiana) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Start Date 1981 State Indiana Program Type Corporate Tax Incentive Enterprise Zone Provider Indiana Economic Development Corporation An economically distressed county can apply for designation as a community

354

Technological collaboration patterns in solar cell industry based on patent inventors and assignees analysis  

Science Conference Proceedings (OSTI)

This study examines technological collaboration in the solar cell industry using the information of patent assignees and inventors as defined by the United States Patent and Trademark Office. Three different collaborative types, namely local (same city), ... Keywords: Assignee, Collaboration, Inventor, PV system, Patent analysis, Solar cell

Xiao-Ping Lei; Zhi-Yun Zhao; Xu Zhang; Dar-Zen Chen; Mu-Hsuan Huang; Jia Zheng; Run-Sheng Liu; Jing Zhang; Yun-Hua Zhao

2013-08-01T23:59:59.000Z

355

Advanced phase change materials and systems for solar passive heating and cooling of residential buildings  

SciTech Connect

During the last three years under the sponsorship of the DOE Solar Passive Division, the University of Dayton Research Institute (UDRI) has investigated four phase change material (PCM) systems for utility in thermal energy storage for solar passive heating and cooling applications. From this research on the basis of cost, performance, containment, and environmental acceptability, we have selected as our current and most promising series of candidate phase change materials, C-15 to C-24 linear crystalline alkyl hydrocarbons. The major part of the research during this contract period was directed toward the following three objectives. Find, test, and develop low-cost effective phase change materials (PCM) that melt and freeze sharply in the comfort temperature range of 73--77{degree}F for use in solar passive heating and cooling of buildings. Define practical materials and processes for fire retarding plasterboard/PCM building products. Develop cost-effective methods for incorporating PCM into building construction materials (concrete, plasterboard, etc.) which will lead to the commercial manufacture and sale of PCM-containing products resulting in significant energy conservation.

Salyer, I.O.; Sircar, A.K.; Dantiki, S.

1988-01-01T23:59:59.000Z

356

Commonwealth Solar II Rebates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Commonwealth Solar II Rebates Commonwealth Solar II Rebates < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Low-Income Residential Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $4,250; Commercial: $2,250 (per host customer) Program Info Funding Source Massachusetts Clean Energy Center (MassCEC) Start Date 01/11/2013 State Massachusetts Program Type State Rebate Program Rebate Amount Residential: $0.40 (base) - $0.85/W DC (varies by rebate adders) Commercial: $0.40 (base) - $0.45/W DC (varies by rebate adders) Provider Massachusetts Clean Energy Center Block 15 is open at the same incentive levels as previous blocks. This

357

NRELs Optical Furnace Technology Sparks Solar Industry Interest  

NREL Principal Engineer Bhushan Sopori has fired up an optical furnace he developed to efficiently fabricate solar cells. Credit: Ray David, NREL

358

Breakthrough Furnace Can Cut Solar Industry Costs (Fact Sheet)  

SciTech Connect

A game-changing Optical Cavity Furnace (OCF), developed by NREL, uses optics to heat and purify solar cells at unmatched precision, while also boosting the cells' efficiency.

Not Available

2013-08-01T23:59:59.000Z

359

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Building Residential Building Activities to someone by E-mail Share Building Technologies Office: Residential Building Activities on Facebook Tweet about Building Technologies Office: Residential Building Activities on Twitter Bookmark Building Technologies Office: Residential Building Activities on Google Bookmark Building Technologies Office: Residential Building Activities on Delicious Rank Building Technologies Office: Residential Building Activities on Digg Find More places to share Building Technologies Office: Residential Building Activities on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

360

Learning From the Implementation of Residential Optional Time of Use Pricing in the U.S. Electricity Industry.  

E-Print Network (OSTI)

??Residential time-of-use (TOU) rates have been in practice in the U.S. since the 1970s. However, for institutional, political, and regulatory reasons, only a very small (more)

Li, Xibao

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial residential solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Performance of residential solar heating and cooling system with flat-plate and evacuated tubular collectors: CSU Solar House I  

SciTech Connect

Measurements in Solar House I at Colorado State University have provided comparison data on space heating, water heating, and cooling by systems in which flat-plate collectors and evacuated tube collectors were used. Data were procured on 47 days during operation of the flat-plate collector and on 112 days when the house was heated or cooled by the evacuated tube collector system. It was concluded that the system comprising an evacuated tubular collector, lithium bromide absorption water chiller, and associated equipment is highly effective in providing solar heating and cooling to a small building, that it can supply up to twice the space heating and several times the cooling obtainable from an equal occupied area of good quality flat-plate collectors, and that a greater fraction of the domestic hot water can be obtained by supplying its heat from main storage. The cost-effectiveness of the system, in comparison with one employing a good flat-plate collector, can be determined when commercial pricing data are made available.

Duff, W.S.; Conway, T.M.; Loef, G.O.G.; Meredith, D.B.; Pratt, R.B.

1978-01-01T23:59:59.000Z

362

Innovation and production in the global solar photovoltaic industry  

Science Conference Proceedings (OSTI)

The global development of solar photovoltaic power is seen as a potentially major technology in the pursuit of alternative energy sources. Given its evolutionary nature, in terms of both technology and the market, there is some discernible divergence ... Keywords: Innovation, Patent, Production, Solar photovoltaic (PV) market

Show-Ling Jang; Li-Ju Chen; Jennifer H. Chen; Yu-Chieh Chiu

2013-03-01T23:59:59.000Z

363

Design approaches for solar industrial process-heat systems: nontracking and line-focus collector technologies  

DOE Green Energy (OSTI)

The design methodology for solar industrial process heat systems is described, and an overview is given of the use of solar energy in industry. A way to determine whether solar energy makes sense for a particular application is described. The basic system configurations used to supply hot water or steam are discussed, and computer-generated graphs are supplied that allow the user to select a collector type. Detailed energy calculations are provided, including the effects of thermal losses and storage. The selection of subsystem components is described, and control systems, installation and start-up details, economics, and safety and environmental issues are explained. (LEW)

Kutscher, C.F.; Davenport, R.L.; Dougherty, D.A.; Gee, R.C.; Masterson, P.M.; May, E.K.

1982-08-01T23:59:59.000Z

364

Marin Solar | Open Energy Information  

Open Energy Info (EERE)

Marin Solar Jump to: navigation, search Name Marin Solar Place San Rafael, California Zip 94901 Sector Solar Product Marin Solar is a residential installer of photovoltaic systems....

365

Carlson Solar | Open Energy Information  

Open Energy Info (EERE)

Carlson Solar Jump to: navigation, search Name Carlson Solar Place California Sector Solar Product Carlson Solar is an installer of residential and small-scale commercial...

366

CPS Energy - Solar PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CPS Energy - Solar PV Rebate Program CPS Energy - Solar PV Rebate Program CPS Energy - Solar PV Rebate Program < Back Eligibility Commercial Industrial Institutional Multi-Family Residential Nonprofit Residential Schools Savings Category Solar Buying & Making Electricity Maximum Rebate $25,000 for Residential $80,000 for Schools and Commercial using local installer $100,000 for Commercial not using local installer Program Info Expiration Date STEP extends through 2020, annual program year expiration dates may apply State Texas Program Type Utility Rebate Program Rebate Amount Schools (public and private): $2.00/W for first 25 kW; $1.30/W for any additional capacity Residential using local installer: $1.60/W for first 25 kW Residential not using local installer:$1.30/W for first 25 kW Commercial using local installer: $1.60/W for first 25 kW; $1.30/W for any

367

Solar process designs being readied in 4 industries. [Canning, textiles, concrete, and laundry  

SciTech Connect

As the Oct. 31 deadline for an initial design review approaches, the four participants in the Energy Research and Development Administration's (ERDA) industrial process hot water program are putting the final touches to plans for solar systems that will supplement conventional energy sources in the textile, food processing, concrete block and cleaning industries. Participating in the project are AAI Corp., Baltimore, which designed a solar hot water system for the concrete block curing operation of York Building Products Co., Harrisburg, Pa.; Acurex Corp., Mountain View, Calif., which designed a solar hot water system for a can washing line at the Campbell Soup Co. plant in Sacramento, Calif.; General Electric Co., Philadelphia, which designed a solar hot water system for Riegel Textile Corp., La France, S.C.; and Jacobs Engineering Co., Pasadena, Calif., which designed a solar hot water and steam system for commercial laundry use at American Linen Supply in El Centro., Calif. (MCW)

Edwards, P.L.

1976-10-11T23:59:59.000Z

368

Solar Photovoltaic Economic Development: Building and Growing a Local PV Industry, August 2011 (Book)  

DOE Green Energy (OSTI)

The U.S. photovoltaic (PV) industry is forecast to grow, and it represents an opportunity for economic development and job creation in communities throughout the United States. This report helps U.S. cities evaluate economic opportunities in the PV industry. It serves as a guide for local economic development offices in evaluating their community?s competitiveness in the solar PV industry, assessing the viability of solar PV development goals, and developing strategies for recruiting and retaining PV companies to their areas.

Not Available

2011-08-01T23:59:59.000Z

369

List of Solar Thermal Process Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Process Heat Incentives Process Heat Incentives Jump to: navigation, search The following contains the list of 204 Solar Thermal Process Heat Incentives. CSV (rows 1 - 204) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat

370

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Energy Sources Renewables Solar Solar July 12, 2013 Austin Energy - Value of Solar Residential Rate (Texas) Austin...

371

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar, Wind, and Energy Efficiency Easements and Rights Laws Colorado's solar access laws, which date back to 1979, prohibit any residential covenants that restrict solar access....

372

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

plan. October 16, 2013 Residential Solar and Wind Energy Systems Tax Credit Arizona's Solar Energy Credit is available to individual taxpayers who install a solar or wind...

373

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consumers Power, Inc. - Solar Energy System Rebate Consumers Power, Inc. (CPI) offers rebates to its residential customers who install solar water heating systems or solar...

374

Performance of residential solar heating and cooling system with flat-plate and evacuated tubular collectors: CSU Solar House I  

DOE Green Energy (OSTI)

Measurements in Solar House I at Colorado State University have provided comparison data on space heating, water heating, and cooling by systems in which flat-plate collectors and evacuated tube collectors were used. Data were procured on 47 days during operation of the flat-plate collector and on 112 days when the house was heated or cooled by the evacuated tube collector system. It was concluded that the system comprising an evacuated tubular collector, lithium bromide absorption water chiller, and associated equipment is highly effective in providing space heating and cooling to a small building, that it can supply up to twice the space heating and several times the cooling obtainable from an equal occupied area of good quality flat-plate collectors, and that a greater fraction of the domestic hot water can be obtained by supplying its heat from main storage. The cost-effectiveness of the system, in comparison with one employing a good flat-plate collector, can be determined when commercial pricing data are made available. A summary of monthly and annual energy use for space heating, domestic hot water (DHW) heating, and space cooling is presented. The collector performance is presented. The first two months of data were obtained with the system employing flat-plate collectors, whereas heating and cooling during the following nine months were supplied by the evacuated tube collector system.

Duff, W.S.; Conway, T.M.; Loef, G.O.G.; Meredith, D.B.; Pratt, R.B.

1978-01-01T23:59:59.000Z

375

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

providing a sales and use tax exemption for sales of electricity from qualifying solar energy and residential wind energy equipment to residential customers. In order to...

376

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Cooperative will provide rebates for residential and commercial photovoltaic (PV) and wind systems. Rebates for solar water heating are available only for residential...

377

Residential Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Performance: guidelines, analysis and measurements of window and skylight performance Windows in residential buildings consume approximately 2% of all the energy used...

378

U.S. Residential Housing Weather Adjusted Site Energy Consumption ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency > Residential Housing Energy Intensities > Table 1b Glossary U.S. Residential Housing Weather Adjusted ...

379

TrendSetter Solar Products Inc aka Trendsetter Industries formerly Six  

Open Energy Info (EERE)

TrendSetter Solar Products Inc aka Trendsetter Industries formerly Six TrendSetter Solar Products Inc aka Trendsetter Industries formerly Six River Solar Jump to: navigation, search Name TrendSetter Solar Products Inc (aka Trendsetter Industries, formerly Six River Solar) Place Fairhaven, California Zip 95564 Sector Solar Product Manufacturer of solar hot water heating and storage systems. Coordinates 41.63548°, -70.903856° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.63548,"lon":-70.903856,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

380

Application analysis of solar total energy systems to the residential sector. Volume III, conceptual design. Final report  

DOE Green Energy (OSTI)

The objective of the work described in this volume was to conceptualize suitable designs for solar total energy systems for the following residential market segments: single-family detached homes, single-family attached units (townhouses), low-rise apartments, and high-rise apartments. Conceptual designs for the total energy systems are based on parabolic trough collectors in conjunction with a 100 kWe organic Rankine cycle heat engine or a flat-plate, water-cooled photovoltaic array. The ORC-based systems are designed to operate as either independent (stand alone) systems that burn fossil fuel for backup electricity or as systems that purchase electricity from a utility grid for electrical backup. The ORC designs are classified as (1) a high temperature system designed to operate at 600/sup 0/F and (2) a low temperature system designed to operate at 300/sup 0/F. The 600/sup 0/F ORC system that purchases grid electricity as backup utilizes the thermal tracking principle and the 300/sup 0/F ORC system tracks the combined thermal and electrical loads. Reject heat from the condenser supplies thermal energy for heating and cooling. All of the ORC systems utilize fossil fuel boilers to supply backup thermal energy to both the primary (electrical generating) cycle and the secondary (thermal) cycle. Space heating is supplied by a central hot water (hydronic) system and a central absorption chiller supplies the space cooling loads. A central hot water system supplies domestic hot water. The photovoltaic system uses a central electrical vapor compression air conditioning system for space cooling, with space heating and domestic hot water provided by reject heat from the water-cooled array. All of the systems incorporate low temperature thermal storage (based on water as the storage medium) and lead--acid battery storage for electricity; in addition, the 600/sup 0/F ORC system uses a therminol-rock high temperature storage for the primary cycle. (WHK)

Not Available

1979-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial residential solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Evaluation of the Corning and Philips evacuated tubular collectors in a residential solar heating and cooling system. Final report, 1 May 1976--1 December 1976  

DOE Green Energy (OSTI)

The Solar Energy Applications Laboratory of Colorado State University has completed the design, construction, and installation of a complete set of evacuated tubular collectors on a test bed behind Solar House I. The collectors, the Corning evacuated tube collector (December 16, 1976 to December 31, 1977) and the Philips evacuated tube collector (January 16, 1978 to January 31, 1979) are being used sequentially to operate the heating and cooling system of Solar House I. Data are being collected over an entire heating and cooling season and analyses are being performed on these data to provide an evaluation of the two new collectors and comparison with the present conventional collector as part of a residential heating and cooling system that is otherwise identical in every way. This project is significant for several reasons. First, the two high performance collectors operate in conjunction with an advanced ARKLA lithium bromide water chiller. This cooling unit is designed specifically for operation with solar energy systems. For comparative purposes the advanced ARKLA unit will be available for use with the existing conventional flat-plate collector. In addition, comparisons of operating data are being made with Solar Houses II and III, adjacent to Solar House I. Solar Houses II and III have the same thermal load characteristics as Solar House I, but have different solar heating and cooling systems. House II has an air heating collector and pebble-bed storage. House III has an evacuated tube solar collector, and is also coupled with an advanced absorption water chiller unit. The comparative analysis under the same load conditions, provides an exceptional opportunity in evaluating the relative merits of the new collector systems.

Duff, W.S.

1977-03-01T23:59:59.000Z

382

Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial 8,870,422 44.3% Commercial 3,158,244 15.8% Electric Utilities 2,732,496 13.7% Residential 5,241,414 26.2% Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." T e x a s L o u i s i a n a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Industrial Billion Cubic Meters T e x a s C a l i f o r n i a F l o r i d a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Electric Utilities Billion Cubic Meters N e w Y o r k C a l i f o r n i a I l l i n o i s A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Commercial Billion Cubic Meters I l l i n o i s C a l i f o r n i a N e w Y o r k A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Residential Billion Cubic Meters 11. Natural Gas Delivered to Consumers in the United States, 1996 Figure Volumes in Million Cubic Feet Energy Information Administration

383

Solar Permitting Law (Oregon) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Oregon Program Type SolarWind Permitting...

384

Snohomish County PUD No 1 - Solar Express Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebate Program Rebate Program Snohomish County PUD No 1 - Solar Express Rebate Program < Back Eligibility Commercial Industrial Local Government Multi-Family Residential Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate Residential PV: $2,500 Commercial PV: $10,000 Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount PV: $500/kW-DC SWH: $500/system Provider Snohomish County PUD In March 2009, Snohomish County PUD introduced the Solar Express Program. This program provides rebates to support residential and commercial installations of solar photovoltaics (PV) and solar water heating (SWH). The program also provides loans to support residential installations. This rebate program provides $500 per kilowatt (kW) of installed PV, up to

385

Bates solar industrial process-steam application: preliminary design review  

SciTech Connect

The design is analyzed for a parabolic trough solar process heat system for a cardboard corrugation fabrication facility in Texas. The program is briefly reviewed, including an analysis of the plant and process. The performance modeling for the system is discussed, and the solar system structural design, collector subsystem, heat transport and distribution subsystem are analyzed. The selection of the heat transfer fluid, and ullage and fluid maintenance are discussed, and the master control system and data acquisition system are described. Testing of environmental degradation of materials is briefly discussed. A brief preliminary cost analysis is included. (LEW)

Not Available

1980-01-07T23:59:59.000Z

386

Approximating the Seismic Amplification Effects Experienced by Solar Towers Mounted on the Rooftops of Low-Rise Industrial Buildings.  

E-Print Network (OSTI)

?? This thesis investigates the acceleration amplification experienced by solar towers mounted on the rooftops of low-rise industrial buildings during a seismic event. Specifically, this (more)

Balla, Peter Luiz

2013-01-01T23:59:59.000Z

387

ORNL, Industry Collaboration Puts Spotlight on Solar T DOING BUSINESS WITH ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Collaboration Industry Collaboration Puts Spotlight on Solar T DOING BUSINESS WITH ORNL PREPARING FOR THE FUTURE The ORNL Partnerships Directorate seeks to foster economic development and the growth of business and industry by mak- ing available the most innovative equipment, the latest technol- ogy, and the expertise of ORNL researchers to technology-based companies and research universities throughout the nation. F our manu- facturers of solar energy components are working with Oak Ridge National Labo- ratory to address some of their biggest challenges. Through individual cooperative research and development agreements (CRADAs), the companies hope to advance solar cell materials and processing technologies. The $880,000 effort is funded by the American Recovery and Reinvestment

388

Shenzhen Prosunpro PengSangPu Solar Industrial Products Corporation | Open  

Open Energy Info (EERE)

Prosunpro PengSangPu Solar Industrial Products Corporation Prosunpro PengSangPu Solar Industrial Products Corporation Jump to: navigation, search Name Shenzhen Prosunpro/ PengSangPu Solar Industrial Products Corporation Place Shenzhen, Guangdong Province, China Zip 518055 Sector Solar Product Shenzhen Prosunpro makes and installs flat panel solar passive energy collectors and engineers central solar hot water systems. Coordinates 22.546789°, 114.112556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.546789,"lon":114.112556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

389

Experimental and analytical systems studies of a combined thermal-photovoltaic residential solar system. Technical status report No. 5, April 1-May 31, 1980  

DOE Green Energy (OSTI)

The Photovoltaic-Thermal research program schedule is diagrammed. Specifications are given for the combined concentrator Thermal-Photovoltaic Collector Array. The specifications are such as to make the array compatible with a test facility being constructed. Preliminary system checks, manual operation tests, and computer operation tests are described for evaluating the performance of a cooling load simulator. A paper entitled Transient Effects on the Performance of a Residential Solar Absorption Chiller is appended which is concerned with the transient performance of a 3-ton lithium-bromide/water absorption chiller. (LEW)

Not Available

1980-01-01T23:59:59.000Z

390

Economic feasibility of solar-thermal industrial applications and selected case studies  

DOE Green Energy (OSTI)

The economic feasibility is assessed of utilizing solar energy to augment an existing fossil fuel system to generate industrial process heat. Several case studies in the textile and food processing industries in the southern United States were analyzed. Sensitivity analyses were performed, and comparisons illustrating the effects of the Economic Recovery Tax Act of 1981 were made. The economic desirability of the proposed solar systems varied with the type of system selected, location of the facility, state tax credits, and type of fuel displaced. For those systems presently not economical, the projected time to economic feasibility was ascertained.

Montelione, A.; Boyd, D.; Branz, M.

1981-12-01T23:59:59.000Z

391

Industrial applications of solar energy. First quarterly progress report  

SciTech Connect

Industrial energy usage in the United States and the Southwest was surveyed to determine which industries were most energy intensive. This resulted in the selection of six major groups: (1) Chemicals and Allied Products - SIC 28, (2) Primary Metals - SIC 33, (3) Petroleum and Coal Products - SIC 29, (4) Paper and Allied Products - SIC 26, (5) Stone, Clay, and Glass Products - SIC 32, and (6) Food and Kindred Products - SIC 20. These groupings account for approximately 80% of the total industrial energy usage, both nationwide and with the Southwest. These major groups were then pursued through their subdivisions to determine more specifically the largest energy users and their locations within the Southwest, allowing the final industry selection. Approximately 300 representatives of the selected industries were contacted to determine their specific energy requirments as well as architecturally related energy parameters. Climaic and seismic data is also being collected for the areas encompassing the selected regions. Figures of Merit are being defined and their applicability to total energy systems tested. Subsystem definition work was initiated.

Rogan, J.E.

1976-01-01T23:59:59.000Z

392

Guidelines for Solar and Wind Local Ordinances (Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guidelines for Solar and Wind Local Ordinances (Virginia) Guidelines for Solar and Wind Local Ordinances (Virginia) Guidelines for Solar and Wind Local Ordinances (Virginia) < Back Eligibility Agricultural Commercial Fed. Government General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal Utility Nonprofit Residential Rural Electric Cooperative Schools State Government Tribal Government Utility Savings Category Solar Buying & Making Electricity Wind Program Info State Virginia Program Type Solar/Wind Permitting Standards In March 2011, the Virginia legislature enacted broad guidelines for local ordinances for solar and wind. The law states that any local ordinance related to the siting of solar or wind energy facilities must:

393

City and County of Denver - Solar Panel Permitting (Colorado) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Panel Permitting (Colorado) Solar Panel Permitting (Colorado) City and County of Denver - Solar Panel Permitting (Colorado) < Back Eligibility Commercial Construction General Public/Consumer Industrial Low-Income Residential Multi-Family Residential Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Colorado Program Type Solar/Wind Permitting Standards Provider Department of Development Services Construction, Electrical, Plumbing and Zoning Permits* are required for Photovoltaic (PV) systems installed in the city of Denver. Denver provides same day permit review for most solar panel projects. More complex engineering projects may still be required to go through the Plan Review process. To obtain Zoning Permits for flush mounted solar panels, applicants must

394

Operational, aesthetic, and construction process performance for innovative passive and active solar building components for residential buildings  

E-Print Network (OSTI)

A system-based framework creates the ability to integrate operational, aesthetic, and construction process performance. The framework can be used to evaluate innovations within residential construction. By reducing the ...

Settlemyre, Kevin (Kevin Franklin), 1971-

2000-01-01T23:59:59.000Z

395

City of Portland - Streamlined Building Permits for Residential...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon City of Portland - Streamlined Building Permits for Residential Solar Systems (Oregon) SolarWind Permitting Standards...

396

City of Portland - Streamlined Building Permits for Residential...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Residential Savings For Solar Buying & Making Electricity Heating & Cooling Water Heating Program Information Oregon Program Type SolarWind Permitting Standards The...

397

Florida Solar Energy Center (Building America Partnership for...  

Open Energy Info (EERE)

for Improved Residential Construction Jump to: navigation, search Name Florida Solar Energy Center (Building America Partnership for Improved Residential Construction...

398

Reading Municipal Light Department - Residential Renewable Energy...  

Open Energy Info (EERE)

Summary Reading Municipal Light Department (RMLD) offers rebates of 1.00watt for solar photovoltaic and small wind installations for residential customers. A 0.25watt...

399

Preliminary energy sector assessments of Jamaica. Volume III: renewable energy. Part I: solar energy - commercial and industrial  

SciTech Connect

This study concerns commercial and industrial solar applications, specifically solar water heating and solar air cooling. The study finds that solar domestic water heating and boiler make-up water preheating are technically feasible and, depending on the displaced energy source (electrical or various fuel types), economically justified; and that solar hot water installations could displace the equivalent of 189,842 barrels of fuel oil per year. However, solar cooling requires high performance collectors not currently manufactured in Jamaica, and feasibility studies indicate that solar cooling in the near term is not economically justified.

1980-01-01T23:59:59.000Z

400

Solar and Wind Equipment Certification | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar and Wind Equipment Certification Solar and Wind Equipment Certification Solar and Wind Equipment Certification < Back Eligibility Commercial Construction Industrial Installer/Contractor Residential Savings Category Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heating Buying & Making Electricity Water Heating Wind Program Info State Arizona Program Type Equipment Certification Provider Arizona Solar Energy Industries Association Collectors, heat exchangers and storage units of solar energy systems -- and the installation of these systems -- sold or installed in Arizona must have a warranty of at least two years. The remaining components of the system and their installation must have a warranty of at least one year.

Note: This page contains sample records for the topic "industrial residential solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Solar feasibility study for site-specific industrial-process-heat applications. Final report  

DOE Green Energy (OSTI)

This study addresses the technical feasibility of solar energy in industrial process heat (IPH) applications in Mid-America. The study was one of two contracted efforts covering the MASEC 12-state region comprised of: Illinois, Michigan, North Dakota, Indiana, Minnesota, Ohio, Iowa, Missouri, South Dakota, Kansas, Nebraska, Wisconsin. The results of our study are encouraging to the potential future role of solar energy in supplying process heat to a varied range of industries and applications. We identified and developed Case Study documentation of twenty feasible solar IPH applications covering eight major SIC groups within the Mid-American region. The geographical distribution of these applications for the existing range of solar insolation levels are shown and the characteristics of the applications are summarized. The results of the study include process identification, analysis of process heat requirements, selection of preliminary solar system characteristics, and estimation of system performance and cost. These are included in each of the 20 Case Studies. The body of the report is divided into two primary discussion sections dealing with the Study Methodology employed in the effort and the Follow-On Potential of the identified applications with regard to possible demonstration projects. The 20 applications are rated with respect to their relative overall viability and procedures are discussed for possible demonstration project embarkment. Also, a possible extension of this present feasibility study for late-comer industrial firms expressing interest appears worthy of consideration.

Murray, O.L.

1980-03-18T23:59:59.000Z

402

Akeena Solar Inc | Open Energy Information  

Open Energy Info (EERE)

Akeena Solar Inc Jump to: navigation, search Name Akeena Solar Inc Place Los Gatos, California Zip CA 95032 Sector Solar Product Residential and commercial solar electric system...

403

Summary of some feasibility studies for site-specific solar industrial process heat  

DOE Green Energy (OSTI)

Some feasibility studies for several different site specific solar industrial process heat applications are summarized. The followng applications are examined. Leather Tanning; Concrete Production: Lumber and Paper Processing; Milk Processing; Molding, Curing or Drying; Automobile Manufacture; and Food Processing and Preparation. For each application, site and process data, system design, and performance and cost estimates are summarized.

Not Available

404

Design considerations for solar industrial process heat systems: nontracking and line focus collector technologies  

DOE Green Energy (OSTI)

Items are listed that should be considered in each aspect of the design of a solar industrial process heat system. The collector technologies covered are flat-plate, evacuated tube, and line focus. Qualitative design considerations are stressed rather than specific design recommendations. (LEW)

Kutscher, C.F. (ed.)

1981-03-01T23:59:59.000Z

405

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Activities Building Activities The Department of Energy (DOE) is leading several different activities to develop, demonstrate, and deploy cost-effective solutions to reduce energy consumption across the residential building sector by at least 50%. The U.S. DOE Solar Decathlon is a biennial contest which challenges college teams to design and build energy efficient houses powered by the sun. Each team competes in 10 contests designed to gauge the performance, livability and affordability of their house. The Building America program develops market-ready energy solutions that improve the efficiency of new and existing homes while increasing comfort, safety, and durability. Guidelines for Home Energy Professionals foster the growth of a high quality residential energy upgrade industry and a skilled and credentialed workforce.

406

An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California  

E-Print Network (OSTI)

Market Value of Residential Solar PV. Journal of SustainableConclusions The market for solar PV is expanding rapidly ingrid-connected solar photovoltaic (PV) energy systems were

Hoen, Ben

2011-01-01T23:59:59.000Z

407

Comparison of conventional and solar-water-heating products and industries report  

DOE Green Energy (OSTI)

President Carter established a goal that would require installation of at least one million solar water heaters by 1985 and 20 million water-heating systems by the year 2000. The goals established require that the solar industry be sufficiently mature to provide cost-effective, reliable designs in the immediate future. The objective of this study was to provide the Department of Energy with quantified data that can be used to assess and redirect, if necessary, the program plans to assure compliance with the President's goals. Results deal with the product, the industry, the market, and the consumer. All issues are examined in the framework of the conventional-hot-water industry. Based on the results of this solar hot water assessment study, there is documented proof that the solar industry is blessed with over 20 good solar hot water systems. A total of eight generic types are currently being produced, but a majority of the systems being sold are included in only five generic types. The good systems are well-packaged for quality, performance and installation ease. These leading systems are sized and designed to fit the requirements of the consumer in every respect. This delivery end also suffers from a lack of understanding of the best methods for selling the product. At the supplier end, there are problems also, including: some design deficiencies, improper materials selection and, occasionally, the improper selection of components and subsystems. These, in total, are not serious problems in the better systems and will be resolved as this industry matures.

Noreen, D; LeChevalier, R; Choi, M; Morehouse, J

1980-07-11T23:59:59.000Z

408

Khmer Solar | Open Energy Information  

Open Energy Info (EERE)

Sector Solar, Wind energy Product Specializes in solar and wind systems for off-grid residential and small commercial facilities. References Khmer Solar1 LinkedIn...

409

ISI Solar | Open Energy Information  

Open Energy Info (EERE)

City, New York Zip 10956 Sector Solar Product US-based company that designs and installs solar power systems for residential and commercial clients. References ISI Solar1...

410

Pages that link to "ET Solar Group Formerly CNS Solar Industry...  

Open Energy Info (EERE)

from "http:en.openei.orgwikiSpecial:WhatLinksHereETSolarGroupFormerlyCNSSolarIndustry" Special pages About us Disclaimers Energy blogs Developer services OpenEI...

411

Photovoltaics for residential applications  

DOE Green Energy (OSTI)

Information is given about the parts of a residential photovoltaic system and considerations relevant to photovoltaic power use in homes that are also tied to utility lines. In addition, factors are discussed that influence implementation, including legal and environmental factors such as solar access and building codes, insurance, utility buyback, and system longevity. (LEW)

Not Available

1984-02-01T23:59:59.000Z

412

Santa Cruz County - Solar Access Protection | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cruz County - Solar Access Protection Cruz County - Solar Access Protection Santa Cruz County - Solar Access Protection < Back Eligibility Commercial Industrial Residential Program Info State California Program Type Solar/Wind Access Policy Provider County of Santa Cruz Although the California Solar Rights Act of 1978 requires local governments to plan for future passive or natural heating or cooling opportunities in new residential construction, and the California Shade Control Act protects solar systems from shading by vegetation, current state and local laws do not protect installed solar energy systems from shading caused by structures. The County of Santa Cruz has developed a process for registering solar energy systems to provide additional protection to solar energy system owners. The County's Building Regulations Code requires that any obstructions of

413

Application of solar energy to industrial drying of soybeans: Phase III, performance evaluation. Final report  

DOE Green Energy (OSTI)

A 15-month performance evaluation was conducted on a solar system designed and constructed to augment the industrial drying of soybeans at the Gold Kist, Inc., extraction plant in Decatur, Alabama. The plant employs three oil-fired, continuous-flow dryers of 3,000 bu/hr each. The solar system consists of 672 Solaron air collectors that temper the airflow into the existing dryers. Since the requirement for energy exceeds the peak solar system capacity, no storage is provided. The interface with the existing facility is simply accomplished by three ducts that release the solar heated air directly adjacent to the dryer air intakes, and no mechanical coupling is needed. The solar system was operated for 1,752 hr on 290 days during the 15-month period without a single failure sufficient to cause shutdown. No interference with normal plant operations was experienced. Maintenance of the solar system, consisting of service to the air handling unit, cleaning of collector glazing, and minor duct repair, totaled $1,564. System utilization was only 46.3%. This was primarily due to daytime routine maintenance performed on the conventional drying and processing equipment. The solar fraction was not large enough to justify maintenance shift changes. An average collector efficiency of 26.2% was experienced. Contamination caused by the local plant environment reduced the average collector efficiency by 9.3 percentage points. A prototype of an automatic cleaning system was constructed and tested.

Hall, B.R.

1979-10-31T23:59:59.000Z

414

Solar Easements and Local Option Solar Rights Laws | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Easements and Local Option Solar Rights Laws Solar Easements and Local Option Solar Rights Laws Solar Easements and Local Option Solar Rights Laws < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Program Info State New York Program Type Solar/Wind Access Policy New York's real property laws allow for the creation of solar easements. Like those in many other states, these are voluntary contracts which must be entered into in order to ensure uninterrupted solar access for solar energy devices. Solar easement agreements are required at a minimum to contain information describing the easement location and orientation to

415

Economic status and prospects of solar thermal industrial heat  

DOE Green Energy (OSTI)

This paper provides estimates of the levelized energy cost (LEC) of a mid-temperature parabolic trough system for three different development scenarios. A current technology case is developed that is representative of recent designs and costs for commercial systems, and is developed using data from a recent system installed in Tehachapi, California. The second scenario looks at design enhancements to the currenttechnology case as a way to increase annual energy output and decrease costs. The third scenario uses the annual energy output of the enhanced design, but allows for cost reductions that would be possible in higher volume production than currently exist. A simulation model was used to estimate the annual energy output from the system, and the results were combined with cost data in an economic analysis model. The study indicates that R D improvements in the current trough system show promise of reducing the (LEC) by about 40%. At higher production rates, the LEC of the solar system with R D improvements could potentially be reduced by over 50%.

Williams, T.A.; Hale, M.J.

1992-12-01T23:59:59.000Z

416

Economic status and prospects of solar thermal industrial heat  

DOE Green Energy (OSTI)

This paper provides estimates of the levelized energy cost (LEC) of a mid-temperature parabolic trough system for three different development scenarios. A current technology case is developed that is representative of recent designs and costs for commercial systems, and is developed using data from a recent system installed in Tehachapi, California. The second scenario looks at design enhancements to the currenttechnology case as a way to increase annual energy output and decrease costs. The third scenario uses the annual energy output of the enhanced design, but allows for cost reductions that would be possible in higher volume production than currently exist. A simulation model was used to estimate the annual energy output from the system, and the results were combined with cost data in an economic analysis model. The study indicates that R&D improvements in the current trough system show promise of reducing the (LEC) by about 40%. At higher production rates, the LEC of the solar system with R&D improvements could potentially be reduced by over 50%.

Williams, T.A.; Hale, M.J.

1992-12-01T23:59:59.000Z

417

Average Residential Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

418

Average Residential Price  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

419

Philadelphia Gas Works - Residential and Commercial Construction Incentives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia Gas Works - Residential and Commercial Construction Philadelphia Gas Works - Residential and Commercial Construction Incentives Program (Pennsylvania) Philadelphia Gas Works - Residential and Commercial Construction Incentives Program (Pennsylvania) < Back Eligibility Commercial Industrial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Maximum Rebate Residential: $750 Commercial: $60,000 Program Info Start Date 9/1/2012 Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount '''Residential''' Residential Construction: $750 '''Commercial/Industrial''' 10% to 20% to 30% above code, $40/MMBtu first-year savings Philadelphia Gas Works (PGW) provides incentives to developers, home

420

Assessment of industry views on international business prospects for solar thermal technology  

DOE Green Energy (OSTI)

This report contains a review of solar thermal industry viewpoints on their prospects for developing international business. The report documents the industry's current involvement in foreign markets, view of foreign competition in overseas applications, and view of federal R and D and policy requirements to strengthen international business prospects. The report is based on discussions with equipment manufacturers and system integrators who have a product or service with potential international demand. Interviews with manufacturers and system integrators were conducted by using a standard format for interview questions. The use of a standard format for questions provided a basis for aggregating similar views expressed by US companies concerning overseas business prospects. A special effort was made to gather responses from the entire solar thermal industry, including manufacturers of line-focus, point-focus, and central receiver systems. General, technical, economic, institutional, and financial findings are provided in this summary. In addition, Pacific Northwest Laboratory (PNL) recommendations are provided (based upon advice from the Solar Thermal Review Panel) for activities to improve US solar thermal business prospects overseas.

Easterling, J.C.

1984-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial residential solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

Solar Photovoltaic Industry: Looking Through the Storm.Solar Photovoltaic Industry: Looking Through the Storm.

Price, S.

2010-01-01T23:59:59.000Z

422

Current performance and potential improvements in solar thermal industrial heat  

DOE Green Energy (OSTI)

A representive current state-of-the-art system using parabolic trough technology was developed using data from a system recently installed in Tehachapi, California. A simulation model was used to estimate the annual energy output from the system at three different insolation locations. Based on discussions with industry personnel and within NREL, we identified a number of technology improvements that offer the potential for increasing the energy performance and reducing the energy-cost of the baseline system. The technology improvements modeled included an evacuated-tube receiver, an antireflective coating on the receiver tube, an improved absorber material, a cleaner reflecting surface, a reflecting surface that can withstand contact cleaning, and two silver reflectors. The properties associated with the improvements were incorporated into the model simulation at the three insolation locations to determine if there were any performance gains. The results showed that there was a potential for a more am 50% improvement in the annual energy delivered by a 2677 m[sup 2] system incorporating a combination of the enumerated technology improvements. We discuss the commercial and technological status of each design improvement and present performance predictions for the trough-design improvements.

Hale, M.J.; Williams, T.; Barker, G.

1992-12-01T23:59:59.000Z

423

Current performance and potential improvements in solar thermal industrial heat  

DOE Green Energy (OSTI)

A representive current state-of-the-art system using parabolic trough technology was developed using data from a system recently installed in Tehachapi, California. A simulation model was used to estimate the annual energy output from the system at three different insolation locations. Based on discussions with industry personnel and within NREL, we identified a number of technology improvements that offer the potential for increasing the energy performance and reducing the energy-cost of the baseline system. The technology improvements modeled included an evacuated-tube receiver, an antireflective coating on the receiver tube, an improved absorber material, a cleaner reflecting surface, a reflecting surface that can withstand contact cleaning, and two silver reflectors. The properties associated with the improvements were incorporated into the model simulation at the three insolation locations to determine if there were any performance gains. The results showed that there was a potential for a more am 50% improvement in the annual energy delivered by a 2677 m{sup 2} system incorporating a combination of the enumerated technology improvements. We discuss the commercial and technological status of each design improvement and present performance predictions for the trough-design improvements.

Hale, M.J.; Williams, T.; Barker, G.

1992-12-01T23:59:59.000Z

424

Residential Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Residential Residential Buildings Residential buildings-such as single family homes, townhomes, condominiums, and apartment buildings-are all covered by the Residential Energy Consumption Survey (RECS). See the RECS home page for further information. However, buildings that offer multiple accomodations such as hotels, motels, inns, dormitories, fraternities, sororities, convents, monasteries, and nursing homes, residential care facilities are considered commercial buildings and are categorized in the CBECS as lodging. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/residential.html

425

Statistical analysis of solar irradiation in a distributed microgrid.  

E-Print Network (OSTI)

??In recent decades, solar power has become increasingly more efficient and wide-spread in its use, particularly in residential applications. To allow residential solar power to (more)

Harper, James Patrick

2010-01-01T23:59:59.000Z

426

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network (OSTI)

William A. , Solar Heating Buildings: A Brief Survey, 19by active solar heating of residential buildings. A secondincluding the solar-thermal heating of buildings, and

Authors, Various

2010-01-01T23:59:59.000Z

427

Financial barriers to the use of solar-industrial-process heat  

SciTech Connect

Industry concerns about solar process heat, attitudes toward investment in solar process heat, and decision processes and factors are reported. Four cases were selected from among 30 potential solar process heat installations that had been carried through the design stage, and case was analyzed using discounted cash flow to determine what internal rate of return would be earned under current tax laws over 10 years. No case showed any significant rate of return from capital invested in the solar installation. Several possible changes in the cost of solar equipment, its tax treatment or methods of financing were tested through computer simulation. A heavy load of extra tax incentives can improve the return on an investment, but such action is not recommended because they are not found to induce adoption of solar process heat, and if they were effective, capital may be drawn away from applications such as conservation were the potential to improve the nation's energy dilemma is greater. Tax shelter financing through limited partnership may be available. (LEW)

1981-03-01T23:59:59.000Z

428

Solar hot water demonstration project at Red Star Industrial Laundry, Fresno, California  

SciTech Connect

The Final Report of the Solar Hot Water System located at the Red Star Industrial Laundry, 3333 Sabre Avenue, Fresno, California, is presented. The system was designed as an integrated wastewater heat recovery and solar preheating system to supply a part of the hot water requirements. It was estimated that the natural gas demand for hot water heating could be reduced by 56 percent (44 percent heat reclamation and 12 percent solar). The system consists of a 16,500 gallon tube-and-shell wastewater heat recovery subsystem combined with a pass-through 6,528 square foot flat plate Ying Manufacturing Company Model SP4120 solar collector subsystem, a 12,500 gallon fiber glass water storage tank subsystem, pumps, heat exchangers, controls, and associated plumbing. The design output of the solar subsystem is approximately 2.6 x 10/sup 9/ Btu/year. Auxiliary energy is provided by a gas fired low pressure boiler servicing a 4,000 gallon service tank. This project is part of the US Department of Energy's Solar Demonstration Program with DOE sharing $184,841 of the $260,693 construction cost. The system was turned on in July 1977, and acceptance tests completed in September 1977. The demonstration period for this project ends September 2, 1982.

1980-07-01T23:59:59.000Z

429

Application of solar energy to industrial drying or dehydration processes. Final report  

DOE Green Energy (OSTI)

The application of a solar energy system to the Lawrence, Kansas alfalfa dehydration plant, owned by the Western Alfalfa Corporation, is an attractive opportunity to demonstrate the feasibility of using solar energy to supply industrial process heat. The work undertaken for this project is reviewed. The design parameters of the dehydrator, including the energy consumed by the plant, the airflow requirements of the dehydrator, and the interface between the dehydrator and the solar array are discussed. The design of the collector array, the selection of solar collectors, the calculation of collector areas for the array, and the simulations of the system performance are addressed. Discussions of the detailed engineering drawings and specifications of the array construction, duct work, air handling equipment, system controls, and data monitoring, and acquisition systems are presented. The results of the contractors' bids based on these drawings and specifications are given. An economic analysis of the solar system using the Lawrence Livermore Laboratory format is presented. Finally, the impact of the solar system on the process energy requirements and on the operation of the plant are discussed. (WHK)

Not Available

1977-03-17T23:59:59.000Z

430

U.S. Residential Housing Primary Energy Consumption  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency > Residential Housing Energy Intensities > Table 1c Glossary U.S. Resident ...

431

U.S. Residential Buildings Weather-Adjusted Primary Consumption  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities > Table 8c Glossary U.S. Residential Buildings ...

432

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar? The Sacramento Municipal Utility District is looking for approximately 70 homeowners with residential solar willing to monitor their energy use. October 25, 2010 Park...

433

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Development Services (BDS) developed an electronic permitting process for residential solar energy system installations. With this streamlined, expedited process, solar...

434

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Systems In May 2007, Maryland established a property tax exemption for residential solar energy systems. Under this law solar energy devices "installed to heat or cool a...

435

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Established by ''The Energy Policy Act of 2005'', the federal tax credit for residential energy property initially applied to solar-electric systems, solar water heating systems...

436

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clark Public Utilities - Solar Energy Equipment Loan Clark Public Utilities offers financing available to its customers for the purchase and installation of residential solar...

437

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Solar Virginia allows any county, city or town to exempt or partially exempt solar energy equipment or recycling equipment from local property taxes. Residential,...

438

Analysis of the economic potential of solar thermal energy to provide industrial process heat. Final report, Volume I. [In-depth analysis of 78 industries  

SciTech Connect

The process heat data base assembled as the result of this survey includes specific process applications from 78 four-digit Standard Industrial Classification (SIC) groups. These applications account for the consumption of 9.81 quadrillion Btu in 1974, about 59 percent of the 16.6 quadrillion Btu estimated to have been used for all process heat in 1974. About 7/sup 1///sub 2/ percent of industrial process heat is used below 212/sup 0/F (100/sup 0/C), and 28 percent below 550/sup 0/F (288/sup 0/C). In this study, the quantitative assessment of the potential of solar thermal energy systems to provide industrial process heat indicates that solar energy has a maximum potential to provide 0.6 quadrillion Btu per year in 1985, and 7.3 quadrillion Btu per year in 2000, in economic competition with the projected costs of conventional fossil fuels for applications having a maximum required temperature of 550/sup 0/ (288/sup 0/C). A wide variety of collector types were compared for performance and cost characteristics. Performance calculations were carried out for a baseline solar system providing hot water in representative cities in six geographical regions within the U.S. Specific industries that should have significant potential for solar process heat for a variety of reasons include food, textiles, chemicals, and primary metals. Lumber and wood products, and paper and allied products also appear to have significant potential. However, good potential applications for solar process heat can be found across the board throughout industry. Finally, an assessment of nontechnical issues that may influence the use of solar process heat in industry showed that the most important issues are the establishment of solar rights, standardization and certification for solar components and systems, and resolution of certain labor-related issues. (Volume 1 of 3 volumes.)

1977-02-07T23:59:59.000Z

439

Solar production of industrial process steam for the Lone Star Brewery. Conceptual design report  

DOE Green Energy (OSTI)

The project conceptual design activities are divided into six parts: Industrial Plant, Conceptual System Design, Collector Selection, Heat Transfer Fluid Selection, Site Fabrication, and Engineered Equipment. Included is an overview of the solar steam system and a brief discussion on the environmental impact of the project as well as the safety considerations of the system design. The effect of the solar system on the environment is negligible, and the safety analysis of the system indicates the considerations to be taken to minimize any potential safety hazard due to contamination of the food product or to fire. Both of these potential hazards are discussed in detail. Both the question of product contamination and the question of potential fire hazards will be presented to the industrial partner's safety committee so that the selection of the heat transfer fluid meets with their approval.

Deffenbaugh, D.M.

1978-12-29T23:59:59.000Z

440

Solar production of industrial process steam at the Home Cleaning and Laundry Co. Final technical report  

SciTech Connect

This report presents the results of the operation and performance evaluation period at the Home Laundry Solar Industrial Process Heat Project at Pasadena, California. The installation comprises 6496 ft/sup 2/ (603.5 m/sup 2/) of linear parabolic trough concentrating collectors supplying solar thermal energy for use in laundry and dry cleaning processes. The design phase began in September 1977, and an acceptance test was conducted during the week of April 12, 1982. The plant has been in operation since May 1982, with the 12-month Phase III (operational) period starting in October 1982. The objective of the operational evaluation experiment was to maximize energy delivery to the industrial participant while characterizing system performance. Data were acquired for monthly documentation of system performance, maintenance requirements, and operating costs.

1984-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial residential solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Residential Buildings Integration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

442

Residential Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

443

EIA'S Natural Gas Residential Programs by State  

U.S. Energy Information Administration (EIA)

This site provides an overview of the status of natural gas industry restructuring in each state, focusing on the residential customer class.

444

U.S. Residential Housing Primary  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities >Table 7c Glossary U.S. Residential Housing Primary Page Last Revised: July 2009

445

Solar Easements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Easements Solar Easements Solar Easements < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential State Government Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Program Info State Kansas Program Type Solar/Wind Access Policy Provider Kansas Corporation Commission Kansas' solar easement provisions do not create an automatic right to sunlight. Rather, they allow parties to voluntarily enter into solar easement contracts for the purpose of ensuring adequate exposure of a solar energy system. An easement must be expressed in writing and recorded with the register of deeds for that county. Source http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=KS01R

446

Non-Hardware (SoftŽ) Cost-Reduction Roadmap for Residential and Small Commercial Solar Photovoltaics, 2013…2020  

NLE Websites -- All DOE Office Websites (Extended Search)

Non-Hardware ("Soft") Cost- Non-Hardware ("Soft") Cost- Reduction Roadmap for Residential and Small Commercial Solar Photovoltaics, 2013-2020 Kristen Ardani 1 , Dan Seif 2 , Robert Margolis 1 , Jesse Morris 2 , Carolyn Davidson 1 , Sarah Truitt 1 , and Roy Torbert 2 1 National Renewable Energy Laboratory 2 Rocky Mountain Institute NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC. This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Technical Report NREL/TP-7A40-59155 August 2013 Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov

447

InterTechnology Corporation proposed systems level plan for solar heating and cooling commercial buildings. National Solar Demonstration Program. Executive summary  

DOE Green Energy (OSTI)

The goals of the National Solar Heating and Cooling Demonstration Program for non-residential buildings are embodied in the following: (1) Demonstrate the ultimate economic and technical feasibility of solar heating and combined heating and cooling. (2) Stimulate industry to produce and market solar equipment. (3) Stimulate a commercial market for solar systems. The systems level plan is designed to address the above stated goals as they relate to the building community associated with the commercial sector of the economy. (WDM)

None

1976-05-01T23:59:59.000Z

448

Industry  

E-Print Network (OSTI)

from refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processes

Bernstein, Lenny

2008-01-01T23:59:59.000Z

449

Solar Thermal Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Incentive Program Thermal Incentive Program Solar Thermal Incentive Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Residential: $4,000 per site/meter Non-residential: $25,000 per site/meter Incentive also capped at 80% of calculated existing thermal load Program Info Funding Source RPS surcharge Start Date 12/10/2010 Expiration Date 12/31/2015 State New York Program Type State Rebate Program Rebate Amount $1.50 per kWh displaced annually, for displacement of up to 80% of calculated existing thermal load Provider New York State Energy Research and Development Authority The New York State Energy Research and Development Authority (NYSERDA)

450

Regional Residential  

Gasoline and Diesel Fuel Update (EIA)

upward pressure from crude oil markets, magnified by a regional shortfall of heating oil supplies, residential prices rose rapidly to peak February 7. The problem was...

451

Commercial Solar Thermal Incentive Program (Connecticut) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Thermal Incentive Program (Connecticut) Solar Thermal Incentive Program (Connecticut) Commercial Solar Thermal Incentive Program (Connecticut) < Back Eligibility Commercial Industrial Institutional Local Government Low-Income Residential Multi-Family Residential Nonprofit Schools Tribal Government Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $150,000 Program Info Funding Source Public Benefits Fund Start Date 03/15/2013 State Connecticut Program Type State Grant Program Provider Clean Energy Finance and Investment Authority '''''Note: This program is not currently accepting applications. Check the program web site for information regarding future financing programs. ''''' The Clean Energy Finance and Investment Authority is offering grants and loans to non-residential entities for solar hot water installations. Only

452

Minnesota Power - Solar-Thermal Water Heating Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota Power - Solar-Thermal Water Heating Rebate Program Minnesota Power - Solar-Thermal Water Heating Rebate Program Minnesota Power - Solar-Thermal Water Heating Rebate Program < Back Eligibility Commercial Industrial Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Single-family unit: $2,000 Two- to three-family units: $4,000 Multi-family units (four or more): $10,000 Businesses: $25,000 Program Info Start Date 03/2010 Expiration Date 12/31/2013 State Minnesota Program Type Utility Rebate Program Rebate Amount 25% of costs Provider Minnesota Power Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings; $10,000 for buildings

453

Glendale Water and Power - Solar Solutions Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Solutions Program Solar Solutions Program Glendale Water and Power - Solar Solutions Program < Back Eligibility Commercial Industrial Low-Income Residential Multi-Family Residential Nonprofit Residential Savings Category Solar Buying & Making Electricity Maximum Rebate 50% of the gross installed system cost Payment will not exceed $100,000 per customer per fiscal year Program Info State California Program Type Utility Rebate Program Rebate Amount Program is on hold Provider Glendale Water and Power '''''Note: This program is currently closed. Contact the utility for more information or to be put on a wait list for when the program is reopened. ''''' The Solar Solutions program provides all customer groups with an incentive to install photovoltaic (PV) systems on their homes and buildings. Rebate

454

Solar energy system performance evaluation: Aratex Services, Inc. , Industrial Laundry, Fresno, California, November 1977--May 1978  

SciTech Connect

An operational summary of how the solar energy system installed at ARATEX Services Inc., an industrial laundry located in Fresno, California, performed during the report period is provided. This analysis is made by evaluation of measured system performance and by comparison of measured climatic data with long term average climatic conditions. Performance of major subsystems is also presented to illustrate their operation. Included are: a brief system description, review of actual system performance during the report period, analysis of performance based on evaluation of meteorological load and operational conditions, and an overall discussion of results. Monthly values of average daily insolation and average ambient temperature measured at the ARATEX site are presented. Also presented are the long-term, average monthly values for these climatic parameters. The ARATEX system collected an average of 67 million Btu of solar energy per month. The available solar radiation was 75 percent of the long term average. The use of both a solar energy and heat recovery system at ARATEX has combined to reduce the total load of a system without heat recovery by approximately 45 percent. The solar energy system alone contributed 16 percent of the total hot water load at the site. Damage to the Lexan covers on fourteen of the total 140 collectors was reported. This damage is believed to have been caused by winds.

1978-07-01T23:59:59.000Z

455

STATEMENT OF CONSIDERATIONS REQUEST BY SHELL SOLAR INDUSTRIES, LP FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INDUSTRIES, LP FOR AN ADVANCE INDUSTRIES, LP FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER NREL SUBCONTRACT NO. ZDJ-2-30630-16 UNDER DOE CONTRACT NO. DE-AC36-98GO10337; W(A)-03-010; CH-1136 As set out in the attached waiver petition and in subsequent discussions with DOE, Shell Solar Industries, LP (SSI) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above-identified cooperative agreement by its employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible to retain title to inventions pursuant to P.L. 96-517, as amended, and National Laboratories. Referring to item 2 of SSl's waiver petition, the purpose of the subcontract encompasses the development of thin-film module processing and cell and module reliability.

456

Illinois Solar Energy Association - Renewable Energy Credit Aggregation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Illinois Solar Energy Association - Renewable Energy Credit Illinois Solar Energy Association - Renewable Energy Credit Aggregation Program Illinois Solar Energy Association - Renewable Energy Credit Aggregation Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Maximum Rebate $105/MWh) Program Info Start Date 01/01/2010 State Illinois Program Type Performance-Based Incentive Rebate Amount $105/MWh '''''RECAP is not currently accepting applications. The most recent solicitation closed April 30th, 2013. Check the program web site for information regarding future solicitations. ''''' The Illinois Solar Energy Association offers the Renewable Energy Credit Aggregation Program (RECAP) to Illinois solar photovoltaic (PV) system

457

Non-Hardware ("Soft") Cost-Reduction Roadmap for Residential and Small Commercial Solar Photovoltaics, 2013-2020  

SciTech Connect

The objective of this analysis is to roadmap the cost reductions and innovations necessary to achieve the U.S. Department of Energy (DOE) SunShot Initiative's total soft-cost targets by 2020. The roadmap focuses on advances in four soft-cost areas: (1) customer acquisition; (2) permitting, inspection, and interconnection (PII); (3) installation labor; and (4) financing. Financing cost reductions are in terms of the weighted average cost of capital (WACC) for financing PV system installations, with real-percent targets of 3.0% (residential) and 3.4% (commercial).

Ardani, K.; Seif, D.; Margolis, R.; Morris, J.; Davidson, C.; Truitt, S.; Torbert, R.

2013-08-01T23:59:59.000Z

458

Description of the University of Texas at Arlington Solar Energy Research Facility photovoltaic/thermal residential system  

DOE Green Energy (OSTI)

The addition of a photovoltaic array to a solar-heated single-family residence at the University of Texas at Arlington permits the study of combined photovoltaic/thermal system operation. Equipment and construction details are presented.

Darkazalli, G.

1979-03-16T23:59:59.000Z

459

Toward a National Plan for the Accelerated Commercialization of Solar Energy: residential/commercial buildings market sector workbook  

Science Conference Proceedings (OSTI)

This workbook contains preliminary data and assumptions used during the preparation of inputs to a National Plan for the Accelerated Commercialization of Solar Energy (NPAC). The workbook indicates the market potential, competitive position, market penetration, and technological characteristics of solar technologies for this market sector over the next twenty years. The workbook also presents projections of the mix of solar technologies by US Census Regions. In some cases, data have been aggregated to the national level. Emphasis of the workbook is on a mid-price fuel scenario, Option II, that meets about a 20% solar goal by the year 2000. The energy demand for the mid-price scenario is projected at 115 quads in the year 2000. The workbook, prepared in April 1979, represents government policies and programs anticipated at that time.

Taul, Jr., J. W.; de Jong, D. L.

1980-01-01T23:59:59.000Z

460

Solar production of industrial process steam for the Lone Star Brewery. Final report  

DOE Green Energy (OSTI)

This report outlines the detailed design and system analysis of a solar industrial process steam system for the Lone Star Brewery. The industrial plant has an average natural gas usage of 12.7 MMcf per month. The majority of this energy goes to producing process steam of 125 psi and 353/sup 0/F at about 50,000 lb/h, with this load dropping to about 6000 lb/h on the weekends. The maximum steam production of the solar energy system is about 1700 lb/h. The climatic conditions at the industrial site give 50% of the possible amount of sunshine during the winter months and more than 70% during the summer months. The long-term yearly average daily total radiation on a horizontal surface is 1574 Btu/day-ft/sup 2/, the long-term yearly average daytime ambient temperature is 72/sup 0/F, and the percentage of clear day insolation received on the average day of the year is 62%. The solar steam system will consist of 9450 ft/sup 2/ of Solar Kinetics T-700 collectors arranged in fifteen 90-ft long rows through which 67.5 gpm of Therminol T-55 is pumped. This hot Therminol then transfers the heat collected to a Patterson-Kelley Series 380 unfired steam boiler. The solar-produced steam is then metered to the industrial process via a standard check valve. The thermal performance of this system is projected to produce about 3 million lbs of steam during an average weather year, which is approximately 3 billion Btu's. As with any prototype system, this steam system cannot be justified for purely economic reasons. It is estimated, however, that if the cost of the collectors can be reduced to a mass production level of $3 per lb then this type of system would be cost effective in about six years with the current government incentives and a fuel escalation rate of 10%. This period can be shortened by a combination of an increased investment tax credit and an accelerated depreciation.

Deffenbaugh, D.M.; Watkins, P.V.; Hugg, S.B.; Kulesz, J.J.; Decker, H.E.; Powell, R.C.

1979-06-29T23:59:59.000Z

Note: This page contains sample records for the topic "industrial residential solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Solar Easement and the Solar Shade Control Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Easement and the Solar Shade Control Act Easement and the Solar Shade Control Act Solar Easement and the Solar Shade Control Act < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Program Info State California Program Type Solar/Wind Access Policy California's solar access laws appear in the state's Civil, Government, Health and Safety, and Public Resources Codes. California's Civil Code (801.5) ensures that neighbors may voluntarily sign solar easements to ensure that proper sunlight is available to those who operate solar energy systems. California's Government Code (65850.5) provides that subdivisions may include solar easements applicable to all plots within the

462

Solar and Wind Easements and Rights Laws and Local Option Solar Rights Law  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Solar and Wind Easements and Rights Laws and Local Option Solar Rights Law Solar and Wind Easements and Rights Laws and Local Option Solar Rights Law < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Wind Program Info State Oregon Program Type Solar/Wind Access Policy Oregon has several laws that protect access to solar and wind resources and the use of solar energy systems. Oregon's solar access laws date back to 1979 and state that no person conveying or contracting to convey a property title can include provisions that prohibit the use of solar energy systems

463

Standard Solar Inc | Open Energy Information  

Open Energy Info (EERE)

Place Gaithersburg, Maryland Zip 20877 Sector Solar Product A Maryland-based installer of solar equipment for the residential and commercial sector. References Standard Solar...

464

Rocky Mountain Power - Solar Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - Solar Incentive Program Rocky Mountain Power - Solar Incentive Program Rocky Mountain Power - Solar Incentive Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $5,000 Small Non-Residential (up to 25 kW): $25,000 Large Non-Residential (greater than 25 kW, up to 1,000 kW): $800,000 Program Info Funding Source Rate-payer funds Start Date 9/1/2007 Expiration Date 12/31/2017 State Utah Program Type Utility Rebate Program Rebate Amount Program Year 2012/2013 (application period is closed): Residential: $1.25/W-AC Small Non-Residential (up to 25 kW): $1.00/W-AC Large Non-Residential (greater than 25 kW, up to 1,000 kW): $0.80/W-AC '''''Note: Applications for 2013 were accepted during a two-week period

465

Comparative performance of two types of evacuated tube solar collectors in a residential heating and cooling system. The progress report  

DOE Green Energy (OSTI)

Two types of evacuated tube solar collectors have been operated in space heating, cooling and domestic hot water heating systems in Colorado State University Solar House I. An experimental collector from Corning Glass Works supplied heat to the system from January 1977 through February 1978, and an experimental collector from Philips Research Laboratory, Aachen, which is currently in use, has been operating since August 1978. A flat absorber plate inside a single-walled glass tube is used in the Corning design, whereas heat is conducted through a single glass wall to an external heat exchanger plate in the Philips collector. In comparison with conventional flat-plate collectors, both types show reduced heat losses and improved efficiency. For space heating and hot water supply in winter, the solar delivery efficiency of the Corning collector ranged from 49% to 60% of the incident solar energy. The portion of the space heating and domestic hot water load carried by solar energy through fall and winter ranged from 50% to 74%, with a four-month contribution of 61% of the total requirements. Data on the Philips collector are currently being analyzed.

Conway, T.M.; Duff, W.S.; Lof, G.O.G.; Pratt, R.G.

1979-01-01T23:59:59.000Z

466

Value of Solar Tariff | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Nonprofit Residential State Government Savings For Solar Buying & Making Electricity Program Information Start Date 2014 Minnesota Program Type Performance-Based...

467

Industry  

E-Print Network (OSTI)

oxide emission reductions in industry in the EU. Europeanissues: Annual survey of industries. Central StatisticalDesiccated coconut industry of Sri- Lankas opportunities

Bernstein, Lenny

2008-01-01T23:59:59.000Z

468

City of Eugene - Solar Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Eugene - Solar Standards < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity...

469

Exploiting renewable energy resources for residential applications in coastal areas  

Science Conference Proceedings (OSTI)

The electricity needs of a township or village situated in a coastal area can be satisfied partially by installing proposed residential electricity generating unit and solar heat extractor in houses. The rest of the electricity demands of the residential ... Keywords: PV panel, renewable energy, solar heater, solar tracker, wind mill

A. Cellatoglu; K. Balasubramanian

2010-02-01T23:59:59.000Z

470

Solar Easements and Rights Laws | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Easements and Rights Laws Solar Easements and Rights Laws Solar Easements and Rights Laws < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Program Info State New Mexico Program Type Solar/Wind Access Policy Provider New Mexico Energy, Minerals and Natural Resources Department New Mexico's Solar Rights and Solar Recordation Acts (both contained in NMSA § 47-3) allow property owners to create solar easements for the purpose of protecting and maintaining proper access to sunlight. The Solar Rights Act established the right to use solar energy as a property right. The solar right prevents neighboring property owners from constructing new

471

Solar Renewable Energy Certificates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Renewable Energy Certificates Solar Renewable Energy Certificates Solar Renewable Energy Certificates < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Maximum Rebate $500/MWh (the Solar Alternative Compliance Payment, or SACP) or $0.50/kWh Program Info Start Date 01/01/2006 State District of Columbia Program Type Performance-Based Incentive Rebate Amount Varies based on market conditions. As of December 2012 the market price for D.C.-sourced SRECs was approximately $310/MWh ($0.31/kWh) although some individual trades have taken place at substantially lower and higher

472

National Energy Act statutes and solar energy  

DOE Green Energy (OSTI)

The National Energy Act of 1978 contains many provisions that will significantly affect solar technology commercialization and solar energy users. Four of the five statutes that comprise the National Energy Act deserve close attention. The National Energy Conservation Policy Act will promote residential solar installations. The Energy Tax Act will accelerate both residential and commercial solar system applications. The Public Utilities Regulatory Policies Act promotes efficient use of utility resources as well as decentralized power production. And, the Power Plan and Industrial Fuel Use Act places severe restrictions on future burning of petroleum and natural gas, which should lead some operators to build or convert to solar energy systems. Each of the preceding acts are considered in separate sections of this report. Federal regulations issued pursuant to the various provisions are also identified and discussed, and some of the problems with the provisions and regulations are noted.

Howard, J.

1980-02-01T23:59:59.000Z

473

Photovoltaic and solar-thermal technologies in residential building codes, tackling building code requirements to overcome the impediments to applying new technologies  

SciTech Connect

This report describes the building code requirements and impediments to applying photovoltaic (PV) and solar-thermal technologies in residential buildings (one- or two-family dwellings). It reviews six modern model building codes that represent the codes to be adopted by most locations in the coming years: International Residential Code, First Draft (IRC), International Energy Conservation Code (IECC), International Mechanical Code (IMC), International Plumbing Code (IPC), International Fuel Gas Code (IFGC), and National Electrical Code (NEC). The IRC may become the basis for many of the building codes in the United States after it is released in 2000, and it references the other codes that will also likely become applicable at that time. These codes are reviewed as they apply to photovoltaic systems in buildings and building-integrated photovoltaic systems and to active-solar domestic hot-water and space-heating systems. The first discussion is on general code issues that impact the s e technologies-for example, solar access and sustainability. Then, secondly, the discussion investigates the relationship of the technologies to the codes, providing examples, while keeping two major issues in mind: How do the codes treat these technologies as building components? and Do the IECC and other codes allow reasonable credit for the energy impacts of the technologies? The codes can impact the implementation of the above technologies in several ways: (1) The technology is not mentioned in the codes. It may be an obstacle to implementing the technology, and the solution is to develop appropriate explicit sections or language in the codes. (2) The technology is discussed by the codes, but the language is confusing or ambiguous. The solution is to clarify the language. (3) The technology is discussed in the codes, but the discussion is spread over several sections or different codes. Practitioners may not easily find all of the relevant material that should be considered. The so lution is to put all relevant information in one section or to more clearly reference relevant sections. (4) The technology is prohibited by the code. Examples of this situation were not found. However, energy credit for some technologies cannot be achieved with the requirements of these codes. Finally, four types of future action are recommended to make the codes reviewed in this report more accommodating to renewable energy technologies: (1) Include suggested language additions and changes in the codes; (2) Create new code sections that place all of the requirements for a technology in one section of an appropriate code; (3) Apply existing standards, as appropriate, to innovative renewable energy and energy conservation technologies; and (4) Develop new standards, as necessary, to ease code compliance. A synergy may be possible in developing suitable code language changes for both photovoltaic and solar hot-water systems. The installation of rooftop photovoltaic panels and solar hot- water collectors involves many overlapping issues. Roof loading, weather tightness, mounting systems, roof penetrations, and similar concerns are identical for both technologies. If such work can be coordinated, organizations supporting both technologies could work together to implement the appropriate revisions and additions to the codes.

Wortman, D.; Echo-Hawk, L. [authors] and Wiechman, J.; Hayter, S.; Gwinner, D. [eds.

1999-10-04T23:59:59.000Z

474

NREL: Concentrating Solar Power Research - News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Below are news stories related to NREL Concentrating Solar Power research. Subscribe to the RSS feed RSS . Learn about RSS. November 5, 2013 Solar Working Group Releases Standard Contracts A working group representing solar industry stakeholders has developed standard contracts that should help lower transaction costs and make it easier to access low-cost financing for residential and commercial solar power projects. October 24, 2013 NREL Researcher Honored with Hispanic STEM Award A national organization devoted to getting more Hispanics into the fields of science, technology, engineering, and math (STEM), has honored a scientist at the Energy Department's National Renewable Energy Laboratory (NREL) with its annual Outstanding Technical Achievement Award.

475

EWEB - Solar Electric Program (Rebate) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EWEB - Solar Electric Program (Rebate) EWEB - Solar Electric Program (Rebate) EWEB - Solar Electric Program (Rebate) < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential net-metered systems: $6,000; Commercial net-metered systems: 20,000 Program Info Start Date 1/25/2008 State Oregon Program Type Utility Rebate Program Rebate Amount Residential net-metered systems: $1.70/W-AC; Commercial net-metered systems: 1.00/W-AC Provider Eugene Water and Electric Board '''''Note: EWEB is no longer accepting applications for 2012 incentives. Information regarding 2013 incentives will be available in late December 2012 on the program web site. '''''

476

Review: Solar Revolution: The Economic Transformation of the Global Energy Industry by Travis Bradford  

E-Print Network (OSTI)

are renewable as well. Solar energy, one such resource, isThe Inevitability of Solar Energy," contains one chapter inenergy system, introduces solar energy with its merits and

Mirza, Umar Karim

2007-01-01T23:59:59.000Z

477

The Impact of City-level Permitting Processes on Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Impact of City-level Permitting Processes on Residential Photovoltaic Installation Prices and Development Times: An Empirical Analysis of Solar Systems in California Cities...

478

City of Portland - Streamlined Building Permits for Residential...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon City of Portland - Streamlined Building Permits for Residential Solar Systems (Oregon) This is the approved revision of...

479

Financing Non-Residential Photovoltaic Projects: Options and...  

NLE Websites -- All DOE Office Websites (Extended Search)

...33 Table 3. Non-Residential Incentive Schedule for California Solar Initiative...34 Table 4. Base-Case Results for Taxable Site Hosts...

480

City of Portland - Streamlined Building Permits for Residential...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Savings For Solar Buying & Making Electricity Heating & Cooling Water Heating Program Information Oregon Program Type Green Building Incentive The City of Portland's...

Note: This page contains sample records for the topic "industrial residential solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

A first-generation prototype dynamic residential window  

E-Print Network (OSTI)

Prototype Dynamic Residential Window Christian Kohler, HowdyGoudey, and Dariush Arasteh Windows and Daylighting Grouphighly efficient dynamic window that maximizes solar heat

Kohler, Christian; Goudey, Howdy; Arasteh, Dariush

2004-01-01T23:59:59.000Z

482

Greenhouse Gas Emission Reduction in the ENERGY STAR Commercial, Industrial and Residential Sectors. An Example of How the Refinery Industry is Capitalizing on ENERGY STAR  

E-Print Network (OSTI)

In the past 10 years ENERGY STAR has developed a track record as a certification mark to hang buildings performance hat on. By implementing upgrade strategies and pursuing operations and maintenance issues simultaneously, ENERGY STAR has led the nation and many states to pursue greenhouse gas reduction initiatives using energy efficiency as a model program. In developing these partnerships with industry, states and local government, what has occurred is a variety of program approaches that works to accomplish strategically a reduction in emissions. Through its development, ENERGY STAR has become an integral player with many Green Buildings Program to help them carry the energy efficiency banner to higher levels of cooperation. What is occurring today is that more and more local programs are looking to green buildings as an approach to reducing problems they face in air pollution, water pollution, solid waste, needed infrastructure and better of resources needs and the growth of expensive utility infrastructures. EPA - Region 6's ENERGY STAR and Green Building Program assistance has led to some unique solutions and the beginning workups for the integrated expansion of effort to support State Implementation Plans in new innovative voluntary approaches to transform certain markets, similarly to those of energy efficient products. This presentation will be an overview of activity that is being spearheaded in Texas in the DFW and Houston metro areas in ENERGY STAR and Green Buildings. The voluntary programs impacts are reducing energy consumption, creating markets for renewables, reducing air polluting chemicals and reducing greenhouse gas emissions using verifiable approaches.

Patrick, K.

2008-01-01T23:59:59.000Z

483

Columbia Water & Light- Solar Rebates  

Energy.gov (U.S. Department of Energy (DOE))

Columbia Water & Light (CWL) offers rebates to its commercial and residential customers for the purchase of solar water heaters and solar photovoltaic systems. These rebates are available for...

484

3S Industries AG Formerly 3S Swiss Solar Systems AG | Open Energy  

Open Energy Info (EERE)

AG Formerly 3S Swiss Solar Systems AG AG Formerly 3S Swiss Solar Systems AG Jump to: navigation, search Name 3S Industries AG (Formerly 3S Swiss Solar Systems AG) Place Bern, Switzerland Zip CH-3006 Product Swiss-based manufacturer of manual and semi-automatic PV module production lines; provides turnkey integration service for PV and BIPV. Coordinates 46.948432°, 7.440461° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.948432,"lon":7.440461,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

485

Average Residential Price  

Gasoline and Diesel Fuel Update (EIA)

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

486

Average Residential Price  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

487

1980 Active-Solar Installations Survey  

SciTech Connect

The survey covers active solar installations made during and prior to calendar year 1980. As the first survey of active solar installations in the United States, the objective was to establish a national baseline information system that could provide current data on residential and commercial active solar installations as well as a listing of firms involved in the active solar industry, including installers. Potential respondents were identified from regional lists of solar equipment dealers and installers compiled by each Regional Solar Energy Center (RSEC). The RSEC lists were computerized and combined into a mailing list of 5466 company names and addresses. An additional 1619 referrals, were provided by survey respondents from the RSEC list. However, because of resource constraints, 981 of these referrals were not included in the survey. To substantiate that the results of this survey represent accurate statistics on the number of active solar installations in the United States, a comparison was made to the Solar Collector Manufacturing Survey installations. (PSB)

1982-10-01T23:59:59.000Z

488

List of Solar Pool Heating Incentives | Open Energy Information  

Open Energy Info (EERE)

Heating Incentives Heating Incentives Jump to: navigation, search The following contains the list of 118 Solar Pool Heating Incentives. CSV (rows 1 - 118) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat <