National Library of Energy BETA

Sample records for industrial residential bioenergy

  1. Pacific Rim Summit on Industrial Biotechnology & Bioenergy

    Broader source: Energy.gov [DOE]

    The ninth annual Pacific Rim Summit on Industrial Biotechnology and Bioenergy will be held from December 7Ė9, 2014, in San Diego, California, at the Westin Gaslamp Quarter. Bringing together representatives from various countries all around the Pacific Rim, this event will focus on the growth of the industrial biotechnology and bioenergy sectors in North America and the Asia-Pacific region. Glenn Doyle, BETO's Deployment & Demonstration Technology Manager, will be moderating and speaking at a session on entitled "Utilizing Strategic Partnerships to Grow Your Business" on December 9.

  2. Bioenergy

    SciTech Connect (OSTI)

    2014-11-20

    Scientists and engineers at Idaho National Laboratory are working with partners throughout the bioenergy industry in preprocessing and characterization to ensure optimum feedstock quality. This elite team understands that addressing feedstock variability is a critical component in the biofuel production process.

  3. Bioenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioenergy Bioenergy Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Babetta...

  4. Bioenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits & InspectionsBeryllium andSampler As AnEl biodiésel esBioenergy

  5. Production of bioenergy and biochemicals from industrial and

    E-Print Network [OSTI]

    Angenent, Lars T.

    and agricultural wastewater, includ- ing methanogenic anaerobic digestion, biological hydro- gen production material in industrial and agricultural wastewater Methanogenic anaerobic digestion of organic material

  6. National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    This technical highlight describes NREL research to develop a publicly available database of energy retrofit measures containing performance characteristics and cost estimates for nearly 3,000 measures. Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost-effective retrofit measures to improve the energy efficiency of residential buildings. The database provides a single, consistent source of current data for DOE and private-sector energy audit and simulation software tools and the retrofit industry. The database will reduce risk for residential retrofit industry stakeholders by providing a central, publicly vetted source of up-to-date information.

  7. ITP Industrial Distributed Energy: CHP and Bioenergy for Landfills...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    z Black Liquor z Blast Furnace Gas z Coalbed Methane z Coke Oven Gas z Crop Residues z Food Processing Waste z Industrial VOC's z Landfill Gas z Municipal Solid Waste z...

  8. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  9. Small-Scale Bioenergy Alternatives for Industry, Farm, and Institutions : A User`s Perspective.

    SciTech Connect (OSTI)

    Folk, Richard

    1991-12-31

    This report presents research on biomass as an energy source. Topics include: bioenergy development and application; bioenergy combustion technology; and bioenergy from agricultural, forest, and urban resources. There are a total of 57 individual reports included. Individual reports are processed separately for the databases.

  10. Cutting Residential, Commercial, and Industrial Energy Use: Tools and Incentives that Work

    Broader source: Energy.gov [DOE]

    This presentation, presented July 8, 2010, covered energy efficiency potential, examined specific energy efficiency opportunities in residential, commercial, industrial facilities, identified market barriers, and more.

  11. Bioenergy: America's Energy Future

    ScienceCinema (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-08-12

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  12. Bioenergy: America's Energy Future

    SciTech Connect (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-07-31

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  13. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    SciTech Connect (OSTI)

    Downing, Mark; Eaton, Laurence M; Graham, Robin Lambert; Langholtz, Matthew H; Perlack, Robert D; Turhollow Jr, Anthony F; Stokes, Bryce; Brandt, Craig C

    2011-08-01

    The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence in having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small-diameter trees were considered. The 2005 BTS did not attempt to include any wood that would normally be used for higher-valued products (e.g., pulpwood) that could potentially shift to bioenergy applications. This would have required a separate economic analysis, which was not part of the 2005 BTS. The agriculture resources in the 2005 BTS included grains used for biofuels production; crop residues derived primarily from corn, wheat, and small grains; and animal manures and other residues. The cropland resource analysis also included estimates of perennial energy crops (e.g., herbaceous grasses, such as switchgrass, woody crops like hybrid poplar, as well as willow grown under short rotations and more intensive management than conventional plantation forests). Woody crops were included under cropland resources because it was assumed that they would be grown on a combination of cropland and pasture rather than forestland. In the 2005 BTS, current resource availability was estimated at 278 million dry tons annually from forestlands and slightly more than 194 million dry tons annually from croplands. These annual quantities increase to about 370 million dry tons from forestlands and to nearly 1 billion dry tons from croplands under scenario conditions of high-yield growth and large-scale plantings of perennial grasses and woody tree crops. This high-yield scenario reflects a mid-century timescale ({approx}2040-2050). Under conditions of lower-yield growth, estimated resource potential was projected to be about 320 and 580 million dry tons for forest and cropland biomass, respectively. As noted earlier, the 2005 BTS emphasized the primary resources (agricultural and forestry residues and energy crops) because they represent nearly 80% of the long-term resource potential. Since publication of the BTS in April 2005, there have been some rather dramatic changes in energy markets. In fact, just prior to the actual publication of the BTS, world oil prices started to increase as a result of a burgeoning worldwide demand and concerns about long-term supplies. By the end of the summer, oil pri

  14. Part 2: Perspectives on the Bioenergy Industry: Issue Reports "There are lots of uncertainties and competition."

    E-Print Network [OSTI]

    with phytoremediation and bioremediation processes; ∑ Document methods to increase water use efficiency for bioenergy of this report. 2.1 Land and water resources College of Tropical Agriculture and Human Resources (CTAHR University of Hawaii #12;12 2.1 Water and Land Resources EXECUTIVE SUMMARY Project Background Based on Act

  15. Making the Most of Financed Energy Projects The energy engineers in the Residential, Commercial, and Industrial

    E-Print Network [OSTI]

    Making the Most of Financed Energy Projects The energy engineers in the Residential, Commercial, and Industrial Energy Efficiency Group are experts in the technical, financial, and contractual aspects of ESPCs, and Industrial Energy Efficiency Group (865) 574-1013 kelleyjs@ornl.gov 9/08 r1 ORNL helps organizations

  16. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    SciTech Connect (OSTI)

    Sathaye, Jayant; de la Rue du Can, Stephane; Iyer, Maithili; McNeil, Michael; Kramer, Klaas Jan; Roy, Joyashree; Roy, Moumita; Chowdhury, Shreya Roy

    2011-04-15

    This report analyzed the potential for increasing energy efficiency and reducing greenhouse gas emissions (GHGs) in the non-residential building and the industrial sectors in India. The first two sections describe the research and analysis supporting the establishment of baseline energy consumption using a bottom up approach for the non residential sector and for the industry sector respectively. The third section covers the explanation of a modeling framework where GHG emissions are projected according to a baseline scenario and alternative scenarios that account for the implementation of cleaner technology.

  17. Residential Building Industry Consulting Services | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy RFPsLtdEnergyResidential Building

  18. Pulse combustion: Commercial, industrial, and residential applications. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    The bibliography contains citations concerning the evolution of pulse combustion, the types of pulse combustion burners and their applications, and selected fuels utilized. Topics include fuel combustion efficiency, energy conversion and utilization technologies, modeling of chemical kinetics, and dynamics and thermal characteristics of pulse combustors. Pulse combustion systems for water heaters, gas furnaces, industrial and residential boilers, commercial cooking equipment, and space heating devices are presented. (Contains 250 citations and includes a subject term index and title list.)

  19. Characterization of the bacterial metagenome in an industrial algae bioenergy production system

    SciTech Connect (OSTI)

    Huang, Shi; Fulbright, Scott P; Zeng, Xiaowei; Yates, Tracy; Wardle, Greg; Chisholm, Stephen T; Xu, Jian; Lammers, Peter

    2011-03-16

    Cultivation of oleaginous microalgae for fuel generally requires growth of the intended species to the maximum extent supported by available light. The presence of undesired competitors, pathogens and grazers in cultivation systems will create competition for nitrate, phosphate, sulfate, iron and other micronutrients in the growth medium and potentially decrease microalgal triglyceride production by limiting microalgal health or cell density. Pathogenic bacteria may also directly impact the metabolism or survival of individual microalgal cells. Conversely, symbiotic bacteria that enhance microalgal growth may also be present in the system. Finally, the use of agricultural and municipal wastes as nutrient inputs for microalgal production systems may lead to the introduction and proliferation of human pathogens or interfere with the growth of bacteria with beneficial effects on system performance. These considerations underscore the need to understand bacterial community dynamics in microalgal production systems in order to assess microbiome effects on microalgal productivity and pathogen risks. Here we focus on the bacterial component of microalgal production systems and describe a pipeline for metagenomic characterization of bacterial diversity in industrial cultures of an oleaginous alga, Nannochloropsis salina. Environmental DNA was isolated from 12 marine algal cultures grown at Solix Biofuels, a region of the 16S rRNA gene was amplified by PCR, and 16S amplicons were sequenced using a 454 automated pyrosequencer. The approximately 70,000 sequences that passed quality control clustered into 53,950 unique sequences. The majority of sequences belonged to thirteen phyla. At the genus level, sequences from all samples represented 169 different genera. About 52.94% of all sequences could not be identified at the genus level and were classified at the next highest possible resolution level. Of all sequences, 79.92% corresponded to 169 genera and 70 other taxa. We apply a principal component analysis across the initial sample set to draw correlations between sample variables and changes in microbiome populations.

  20. Making the Most of Financed Energy Projects The energy engineers in the Residential, Commercial, and Industrial Energy

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    3/20/09 Making the Most of Financed Energy Projects The energy engineers in the Residential, Commercial, and Industrial Energy Efficiency Group are experts in the technical, financial, and contractual, Commercial, and Industrial Energy Efficiency Group kelleyjs@ornl.gov ORNL helps organizations with training

  1. ISSUANCE 2015-06-25: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Residential and Commercial Water Heaters; Correction

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Residential and Commercial Water Heaters; Correction

  2. Argonne National Laboratory Scientists Study Benefits of Bioenergy Crop Integration

    Broader source: Energy.gov [DOE]

    Scientists at Argonne National Laboratory (ANL), funded by the U.S. Department of Energyís Bioenergy Technologies Office (BETO), are studying multifunctional landscapes and how they can benefit farmers, the environment, and the bioenergy industry nationwide. Their study, ďMultifunctional landscapes: Site characterization and field-scale design to incorporate biomass production into an agricultural system,Ē is set to be published in September 2015 in the journal, Biomass and Bioenergy.

  3. Bioenergy 2015 Press Room

    Broader source: Energy.gov [DOE]

    This U.S. Department of Energy Bioenergy 2015 online press room provides contacts, information, and resources to members of the media who cover Bioenergy 2015 conference-related news.

  4. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    Paper Industry .2005. Statistics of the Indian Paper Industry: Directoryof Indian Paper Industry. Volume II. Saharanpur, India.

  5. Hawaii Bioenergy Master Plan Bioenergy Technology

    E-Print Network [OSTI]

    technology assessment was conducted as part of the Hawaii Bioenergy Master Plan mandated by Act 253 collected in preparing this task and include: 1. The State should continue a bioenergy technology assessment-oil production X Y Charcoal production X X Y Bio-oil production for fuels X X Y Combustion X Y Renewable diesel

  6. Growing and Sustaining Communities with Bioenergy- Text-Alt Version

    Broader source: Energy.gov [DOE]

    From Vero Beach, Florida, to Hugoton, Kansas, to Emmetsburg, Iowa, cellulosic ethanol biorefineries have had major impacts on communities and their residents. In other areas, bioenergy has significant potential to transform current and establish new industry. This short video illustrates how biorefineries and other bioenergy developments can benefit citizens, businesses, and whole communities, helping Americaís rural economies grow and thrive.

  7. Updated 2-11-06 Research to Advance Grass Bioenergy

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    produced grass pellets at 2.8% ash content. Most clean wood products will have an ash content below 1 the grass bioenergy industry. Current Status Grass pellet bioenergy appears to be an economically and environmentally appropriate system for generating some local energy in rural America. A grass pellet system should

  8. Agave Transcriptomes and microbiomes for bioenergy research

    E-Print Network [OSTI]

    Gross, Stephen

    2013-01-01

    other bioenergy feedstocks Dataset Viridiplantae 46% densityof Agave species as a bioenergy feedstocks. density Abstract

  9. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    Pulp and Paper Industry .in the U.S. Pulp and Paper Industry. Paper accepted forfor Indian Pulp and Paper Industry. Environews Archives,

  10. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproduct...

    Broader source: Energy.gov (indexed) [DOE]

    2005 report, "Biomass as a Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply" billiontonupdate.pdf More Documents &...

  11. Sustainable Forest Bioenergy Initiative

    SciTech Connect (OSTI)

    Breger, Dwayne; Rizzo, Rob

    2011-09-20

    In the stateís Electricity Restructuring Act of 1998, the Commonwealth of Massachusetts recognized the opportunity and strategic benefits to diversifying its electric generation capacity with renewable energy. Through this legislation, the Commonwealth established one of the nationís first Renewable Energy Portfolio Standard (RPS) programs, mandating the increasing use of renewable resources in its energy mix. Bioenergy, meeting low emissions and advanced technology standards, was recognized as an eligible renewable energy technology. Stimulated by the stateís RPS program, several project development groups have been looking seriously at building large woody biomass generation units in western Massachusetts to utilize the woody biomass resource. As a direct result of this development, numerous stakeholders have raised concerns and have prompted the state to take a leadership position in pursuing a science based analysis of biomass impacts on forest and carbon emissions, and proceed through a rulemaking process to establish prudent policy to support biomass development which can contribute to the stateís carbon reduction commitments and maintain safeguards for forest sustainability. The Massachusetts Sustainable Forest Bioenergy Initiative (SFBI) was funded by the Department of Energy and started by the Department of Energy Resources before these contentious biomass issues were fully raised in the state, and continued throughout the substantive periods of this policy development. Thereby, while SFBI maintained its focus on the initially proposed Scope of Work, some aspects of this scope were expanded or realigned to meet the needs for groundbreaking research and policy development being advanced by DOER. SFBI provided DOER and the Commonwealth with a foundation of state specific information on biomass technology and the biomass industry and markets, the most comprehensive biomass fuel supply assessment for the region, the economic development impact associated with biomass usage, an understanding of forest management trends including harvesting and fuel processing methods, and the carbon profile of utilizing forest based woody biomass for the emerging biomass markets. Each of the tasks and subtasks have provided an increased level of understanding to support new directives, policies and adaptation of existing regulations within Massachusetts. The project has provided the essential information to allow state policymakers and regulators to address emerging markets, while ensuring forest sustainability and understanding the complex science on CO2 accounting and impacts as a result of biomass harvesting for power generation. The public at large and electricity ratepayers in Massachusetts will all benefit from the information garnered through this project. This is a result of the stateís interest to provide financial incentives to only biomass projects that demonstrate an acceptable carbon profile, an efficient use of the constrained supply of fuel, and the harvest of biomass to ensure forest sustainability. The goals of the Massachusetts Sustainable Forest Bioenergy Initiative as proposed in 2006 were identified as: increase the diversity of the Massachusetts energy mix through biomass; promote economic development in the rural economy through forest industry job creation; help fulfill the stateís energy and climate commitments under the Renewable Energy Portfolio Standard and Climate Protection Plan; assist the development of a biomass fuel supply infrastructure to support energy project demands; provide education and outreach to the public on the benefits and impacts of bioenergy; improve the theory and practice of sustainable forestry in the Commonwealth. Completed project activities summarized below will demonstrate the effectiveness of the project in meeting the above goals. In addition, as discussed above, Massachusetts DOER needed to make some modifications to its work plan and objectives during the term of this project due to changing public policy demands brought forth in the course of the public discours

  12. Bioenergy 2015 Press Kit

    Broader source: Energy.gov [DOE]

    This U.S. Department of Energy Bioenergy 2015 Press Kit provides contacts and resources to media who cover conference-related news.

  13. Track Bioenergy Legislation with New Web Tool | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with New Web Tool February 27, 2014 - 5:59pm Addthis The Bioenergy KDF Legislative Library aims to help the public, industry, and decision makers quickly and easily find...

  14. Seizing our Bioenergy Opportunities in a Changing Energy Landscape

    Office of Energy Efficiency and Renewable Energy (EERE)

    At the Bioenergy Technologies Office, weíre working with public and private partners to develop an industry of advanced biofuels and bioproducts from non-food biomass sources that is commercially...

  15. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2004-10-31

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  16. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2005-04-30

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  17. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2005-01-31

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  18. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2004-07-28

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  19. Biomass Basics: The Facts About Bioenergy

    SciTech Connect (OSTI)

    2015-04-01

    Biomass Basics: The Facts About Bioenergy. This document provides general information about bioenergy and its creation and potential uses.

  20. Bioenergy & Clean Cities

    Broader source: Energy.gov [DOE]

    DOE's Bioenergy Technologies Office†and the†Clean Cities program regularly conduct a joint Web conference for state energy office representatives and Clean Cities coordinators. The Web conferences...

  1. Bioenergy 2015 Confirmed Speakers

    Office of Energy Efficiency and Renewable Energy (EERE)

    A list of confirmed speakers for Bioenergy 2015: Opportunities in a Changing Energy Landscape, which will be held on June 23Ė24, 2015, at the Walter E. Washington Convention Center in Washington, D.C.

  2. Our Commitment to Bioenergy Sustainability

    Broader source: Energy.gov [DOE]

    To enhance the benefits of bioenergy while mitigating concerns, the Biomass Program combines advanced analysis with applied research to understand and address the potential environmental impacts of bioenergy production.

  3. NREL SBV Pilot Bioenergy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conversion technologies, biomass process and sustainability analysis, and feedstock logistics. Capabilities The NREL National Bioenergy Center develops, refines, and validates...

  4. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    example the use of the bio-energy contained in food and pulpindustry uses bio- mass for much of its energy needs (See

  5. Feedstock Logistics Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. Holdings include datasets, models, and maps. [from https://www.bioenergykdf.net/content/about

  6. Feedstock Production Datasets from the Bioenergy Knowledge Discovery Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about] Holdings include datasets, models, and maps and the collections are growing due to both DOE contributions and data uploads from individuals.

  7. Biofuel Distribution Datasets from the Bioenergy Knowledge Discovery Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about] Holdings include datasets, models, and maps and the collections are growing due to both DOE contributions and individuals' data uploads.

  8. Biofuel Production Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

    Holdings include datasets, models, and maps and the collections arel growing due to both DOE contributions and data uploads from individuals.

  9. International Energy Agency Bioenergy 2015

    Broader source: Energy.gov [DOE]

    This year, Sweden is hosting the International Energy Agency Bioenergy Task 38 conference on climate change effects of biomass and bioenergy systems, bringing together several international experts with an interest in bioenergy for the two-day program. The aim of the conference is to provide cutting-edge knowledge about the climate effects of converting wood products into bioenergy , as well as methods to analyze these effects. Feedstocks and Algae Program Manager Alison Goss Eng will be representing the U.S. Department of Energyís Bioenergy Technologies Office at the meeting.

  10. Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM

    E-Print Network [OSTI]

    Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM The Texas AgriLife Research Center for the biofuels industry. This program recognizes that the ideal combination of traits required for an economically and energetically sustainable biofuels industry does not yet exist in a single plant spe- cies

  11. International Market Opportunities in Bioenergy: Leveraging U.S. Government Resources

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 3CóFostering Technology Adoption III: International Market Opportunities in Bioenergy International Market Opportunities in Bioenergy: Leveraging U.S. Government Resources Cora Dickson, Senior International Trade Specialist, Office of Energy and Environmental Industries, International Trade Administration, U.S. Department of Commerce

  12. Bioenergy 2015 Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy 2015 Agenda Bioenergy 2015 Agenda Working agenda for Bioenergy 2015: Opportunities in a Changing Energy Landscape. The conference will be held on June 23-24, 2015, at the...

  13. Energy Department Announces $5 Million for Residential Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Million for Residential Building Energy Efficiency Research and University-Industry Partnerships Energy Department Announces 5 Million for Residential Building Energy Efficiency...

  14. Bioenergy 2015 Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda Bioenergy 2015 Agenda Below is an agenda overview of the Bioenergy 2015 schedule of events. A more detailed agenda with session descriptions and speakers (as they become...

  15. Growing America's Energy Future: Bioenergy Technologies Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    made possible by 50 million in cost-shared DOE funding. Bioenergy Successes 2014 BIOENERGY TECHNOLOGIES OFFICE Completed Feedstock Logistics Projects Demonstrate...

  16. Engineering Cellulase Enzymes for Bioenergy

    E-Print Network [OSTI]

    Atreya, Meera Elizabeth

    2015-01-01

    25. Becker, D. et al. Engineering of a glycosidase Family 7Engineering Cellulase Enzymes for Bioenergy By MeeraSummer 2015 Abstract Engineering Cellulase Enzymes for

  17. Sustainable Bioenergy and the RSB

    Broader source: Energy.gov [DOE]

    Plenary V: Biofuels and Sustainability: Acknowledging Challenges and Confronting MisconceptionsSustainable Bioenergy and the RSBBarbara Bramble, Senior Director for International Wildlife...

  18. Biofuel and Bioenergy implementation scenarios

    E-Print Network [OSTI]

    Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies #12;Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies By Andrť of this project are to provide structured and clear data on the availability and performance of biofuels

  19. Our Commitment to Bioenergy Sustainability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Our Commitment to Bioenergy Sustainability Our Commitment to Bioenergy Sustainability To enhance the benefits of bioenergy while mitigating concerns, the Biomass Program combines...

  20. Webtrends Archives by Fiscal Year ó Bioenergy

    Office of Energy Efficiency and Renewable Energy (EERE)

    From the EERE Web Statistics Archive: Bioenergy Technologies Office, Webtrends archives by fiscal year.

  1. Stakeholder Database from the Center for Bioenergy Sustainability (Learn who the experts are)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Center for BioEnergy Sustainability (CBES) is a leading resource for dealing with the environmental impacts and the ultimate sustainability of biomass production for conversion to biofuels and bio-based products. Its purpose is to use science and analysis to understand the sustainability (environmental, economic, and social) of current and potential future bioenergy production and distribution; to identify approaches to enhance bioenergy sustainability; and to serve as an independent source of the highest quality data and analysis for bioenergy stakeholders and decision makers. ... On the operational level, CBES is a focal point and business-development vehicle for ORNLís capabilities related to bioenergy sustainability and socioeconomic analyses. As such, it complements the BioEnergy Science Center (BESC), also located at ORNL, which focuses on the problem of converting lignocellulosic biomass into reactive intermediaries necessary for the cellulosic biofuel industry. Together, these centers provide a strong integrating mechanism and business-development tool for ORNL's science and technology portfolio in bioenergy [taken and edited from http://web.ornl.gov/sci/ees/cbes/. The Stakeholder Database allows you to find experts in bioenergy by their particular type of expertise, their affiliations or locations, their specific research areas or research approaches, etc.

  2. Bioenergy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac Biomass Facility Jump to: navigation,Bioenergy Jump to:

  3. Bioenergy Success Stories

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETO Quiz -TechnologiesRubricToolkit61 Bioenergy

  4. Our Commitment to Bioenergy Sustainability

    SciTech Connect (OSTI)

    2011-07-01

    This fact sheet describes how the Biomass Program and its partners combine advanced analysis with applied research to understand and address the potential environmental, economic, and social impacts of bioenergy production.

  5. Bioenergy 2015 Call for Posters

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energyís Bioenergy Technologies Office (BETO) invites students, researchers, public and private organizations, and members of the general public to submit abstracts that BETO will review and consider for inclusion in the poster session at BETOís eighth annual conference, Bioenergy 2015: Opportunities in a Changing Energy Landscape. The conference will be held June 23Ė24, 2015, at the Walter E. Washington Convention Center in Washington, D.C.

  6. Dynamic analysis of policy drivers for bioenergy commodity markets

    SciTech Connect (OSTI)

    Robert F. Jeffers; Jacob J. Jacobson; Erin M. Searcy

    2001-01-01

    Biomass is increasingly being considered as a feedstock to provide a clean and renewable source of energy in the form of both liquid fuels and electric power. In the United States, the biofuels and biopower industries are regulated by different policies and have different drivers which impact the maximum price the industries are willing to pay for biomass. This article describes a dynamic computer simulation model that analyzes future behavior of bioenergy feedstock markets given policy and technical options. The model simulates the long-term dynamics of these markets by treating advanced biomass feedstocks as a commodity and projecting the total demand of each industry as well as the market price over time. The model is used for an analysis of the United States bioenergy feedstock market that projects supply, demand, and market price given three independent buyers: domestic biopower, domestic biofuels, and foreign exports. With base-case assumptions, the biofuels industry is able to dominate the market and meet the federal Renewable Fuel Standard (RFS) targets for advanced biofuels. Further analyses suggest that United States bioenergy studies should include estimates of export demand in their projections, and that GHG-limiting policy would partially shield both industries from exporter dominance.

  7. Residential Buildings Integration | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    the Latest in Energy Efficient Building Technology. Learn More The Building Technologies Office (BTO) collaborates with the residential building industry to improve the...

  8. Bioenergy with Carbon Capture and Sequestration Workshop

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energyís (DOEís) Office of Fossil Energy (FE) and Bioenergy Technologies Office (BETO) co-hosted the Bioenergy with Carbon Capture and Sequestration (BECCS) Workshop on...

  9. The Future of Bioenergy Feedstock Production

    Office of Environmental Management (EM)

    2 Bioenergy Technologies Office background Feedstock assessment, production and logistics Biomass yield improvements Sustainable feedstock production Future...

  10. Bioenergy Knowledge Discovery Framework (KDF) Fact Sheet

    SciTech Connect (OSTI)

    2013-07-29

    The Bioenergy Knowledge Discovery Framework (KDF) is an online collaboration and geospatial analysis tool that allows researchers, policymakers, and investors to explore and engage the latest bioenergy research. This publication describes how the KDF harnesses Web 2.0 and social networking technologies to build a collective knowledge system that facilitates collaborative production, integration, and analysis of bioenergy-related information.

  11. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    Planta- tion Products and Paper Industry Council, Paper Industry, Confederationof European Paper Industries, Brussels, March 2001. CESP,

  12. Biofuel Enduse Datasets from the Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

    Holdings include datasets, models, and maps. This is a very new resource, but the collections will grow due to both DOE contributions and individuals∆ data uploads. Currently the Biofuel Enduse collection includes 133 items. Most of these are categorized as literature, but 36 are listed as datasets and ten as models.

  13. Review of Sorghum Production Practices: Applications for Bioenergy

    SciTech Connect (OSTI)

    Turhollow Jr, Anthony F; Webb, Erin; Downing, Mark

    2010-06-01

    Sorghum has great potential as an annual energy crop. While primarily grown for its grain, sorghum can also be grown for animal feed and sugar. Sorghum is morphologically diverse, with grain sorghum being of relatively short stature and grown for grain, while forage and sweet sorghums are tall and grown primarily for their biomass. Under water-limited conditions sorghum is reliably more productive than corn. While a relatively minor crop in the United States (about 2% of planted cropland), sorghum is important in Africa and parts of Asia. While sorghum is a relatively efficient user of water, it biomass potential is limited by available moisture. The following exhaustive literature review of sorghum production practices was developed by researchers at Oak Ridge National Laboratory to document the current state of knowledge regarding sorghum production and, based on this, suggest areas of research needed to develop sorghum as a commercial bioenergy feedstock. This work began as part of the China Biofuels Project sponsored by the DOE Energy Efficiency and Renewable Energy Program to communicate technical information regarding bioenergy feedstocks to government and industry partners in China, but will be utilized in a variety of programs in which evaluation of sorghum for bioenergy is needed. This report can also be used as a basis for data (yield, water use, etc.) for US and international bioenergy feedstock supply modeling efforts.

  14. Trade-offs of different land and bioenergy policies on the path to achieving climate targets.

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Wise, Marshall A.; Kyle, G. Page; Patel, Pralit L.; Clarke, Leon E.; Edmonds, James A.

    2014-04-16

    Many papers have shown that bioenergy and land-use are potentially important elements in a strategy to limit anthropogenic climate change. But, significant expansion of bioenergy production can have a large terrestrial footprint. In this paper, we test the implications for land use, the global energy system, carbon cycle, and carbon prices of meeting a specific climate target, using a single fossil fuel and industrial sector policy instrumentóthe carbon tax, but with five alternative bioenergy and land-use policy architectures. We find that the policies we examined have differing effects on the different segments of the economy. Comprehensive land policies can reduce land-use change emissions, increasing allowable emissions in the energy system, but have implications for the cost of food. Bioenergy taxes and constraints, on the other hand, have little effect on food prices, but can result in increased carbon and energy prices.

  15. Bioenergy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential54 Cost ofNews &

  16. Bioenergy 2015: Attendee Networking Tool

    Broader source: Energy.gov [DOE]

    For the Bioenergy 2015 Conference, this tool offers a concise listing of participants' background, areas of expertise, areas of need, and business contact information. Users can sort the information by clicking on the arrows in the header rows. Users can also filter by keywords by typing them into the search field in order to find individuals with skill sets complementary to their own.

  17. NREL National Bioenergy Center Overview

    SciTech Connect (OSTI)

    Foust, Thomas; Pienkos, Phil; Sluiter, Justin; Magrini, Kim; McMillan, Jim

    2014-07-28

    The demand for clean, sustainable, secure energy is growing... and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is answering the call. NREL's National Bioenergy Center is pioneering biofuels research and development and accelerating the pace these technologies move into the marketplace.

  18. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    for the European Pulp and Paper Industry, Confederation ofin food and pulp and paper industry wastes, turbines tocement, and pulp and paper industries and in the control of

  19. National Residential Efficiency Measures Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most cost-effective retrofit measures for improving energy efficiency of existing homes. Software developers who require residential retrofit performance and cost data for applications that evaluate residential efficiency measures are the primary audience for this database. In addition, home performance contractors and manufacturers of residential materials and equipment may find this information useful. The database offers the following types of retrofit measures: 1) Appliances, 2) Domestic Hot Water, 3) Enclosure, 4) Heating, Ventilating, and Air Conditioning (HVAC), 5) Lighting, 6) Miscellaneous.

  20. About the Bioenergy Technologies Office: Growing America's Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    You are here Home About the Bioenergy Technologies Office: Growing America's Energy Future About the Bioenergy Technologies Office: Growing America's Energy Future The U.S....

  1. ORNL researchers contribute to major UN bioenergy and sustainability...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORNL researchers contribute to major bioenergy and sustainability report ORNL researchers Keith Kline and Virginia Dale contributed to a major United Nations report on bioenergy...

  2. Bioenergy Technologies Office: Association of Fish and Wildlife...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting Bioenergy Technologies Office: Association of Fish and Wildlife...

  3. Bibliography, Bioenergy Technologies Office Multi-Year Program...

    Broader source: Energy.gov (indexed) [DOE]

    M. (2013). "Status of Advanced Biofuels Demonstration Facilities in 2012: A Report to IEA Bioenergy Task 39," http:demoplants.bioenergy2020.eufilesDemoplantsReportFinal.pd...

  4. Office of the Biomass Program Educational Opportunities in Bioenergy...

    Broader source: Energy.gov (indexed) [DOE]

    Biomass Program at the Educational Opportunities in Bioenergy webinar. obpeducationalopportunitieswebinar.pdf More Documents & Publications Webinar: Using the New Bioenergy KDF...

  5. Engineering The recent interest in bioenergy has motivated a closer

    E-Print Network [OSTI]

    Chemical Engineering The recent interest in bioenergy has motivated a closer look at microorganisms could facilitate other important biotransformations related to bioenergy applications. Our laboratory

  6. Achieving Water-Sustainable Bioenergy Production | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Breakout Session 3-A: Growing a Water-Smart Bioeconomy Achieving Water-Sustainable Bioenergy Production May Wu, Principal Environmental System Analyst in the...

  7. Bioenergy Technologies Office Releases Symbiosis Biofeedstock...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    this information to inform future commercial production of microbial mutualistic microbes, and identifying issues specific to utilizing mutualists in bioenergy crop...

  8. Bioenergy Technologies Office Program Management Review

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office will be hosting its biennial Program Management Peer Review on June 25, 2015 at the Walter E. Washington Convention Center.

  9. Bioenergy Knowledge Discovery Framework Recognized at National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    50 papers with wide-ranging topics in the field of geospatial information systems. The paper explains how the Bioenergy Knowledge Discovery Framework (KDF) is bringing together...

  10. International Market Opportunities in Bioenergy: Leveraging U...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Biomass 2014: Breakout Speaker Biographies Bioenergy Technologies Office Overview U.S. and Brazil Bilateral Collaboration on Biofuels...

  11. ABENGOA BIOENERGY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3 Racetracks25 AMOSystem forAAPGABENGOA BIOENERGY ABENGOA

  12. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    pp. IEA, 2006b: Industrial motor systems energy efficiency:industrial energy efficiency. Presented at Energy Efficiency in Motorenergy-efficient electric motors and motor-systems. These include: (1) industrial

  13. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    and waste management that take place within industrialpolicies Waste management policies can reduce industrialWaste management policies.56 7.10 Co-benefits of industrial

  14. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    R.R. ,et al. , 2004: Eco-industrial park initiatives in theCHP plant) form an eco-industrial park that serves as an ex-

  15. Invasive plant species as potential bioenergy producers and carbon contributors.

    SciTech Connect (OSTI)

    Young, S.; Gopalakrishnan, G.; Keshwani, D.

    2011-03-01

    Current cellulosic bioenergy sources in the United States are being investigated in an effort to reduce dependence on foreign oil and the associated risks to national security and climate change (Koh and Ghazoul 2008; Demirbas 2007; Berndes et al. 2003). Multiple sources of renewable plant-based material have been identified and include agricultural and forestry residues, municipal solid waste, industrial waste, and specifically grown bioenergy crops (Demirbas et al. 2009; Gronowska et al. 2009). These sources are most commonly converted to energy through direct burning, conversion to gas, or conversion to ethanol. Annual crops, such as corn (Zea Mays L.) and sorghum grain, can be converted to ethanol through fermentation, while soybean and canola are transformed into fatty acid methyl esters (biodiesel) by reaction with an alcohol (Demirbas 2007). Perennial grasses are one of the more viable sources for bioenergy due to their continuous growth habit, noncrop status, and multiple use products (Lewandowski el al. 2003). In addition, a few perennial grass species have very high water and nutrient use efficiencies producing large quantities of biomass on an annual basis (Dohleman et al. 2009; Grantz and Vu 2009).

  16. Bioenergy with Carbon Capture and Sequestration Workshop

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy (FE) and the Bioenergy Technologies Office (BETO) in the Office of Energy Efficiency and Renewable Energy (EERE) at the U.S. Department of Energy (DOE) is hosting a Bioenergy with Carbon Capture and Sequestration (BECCS) Workshop on Monday, May 18, 2015 in Washington, DC.

  17. Social Aspects of Bioenergy Sustainability Workshop Report

    SciTech Connect (OSTI)

    Luchner, Sarah; Johnson, Kristen; Lindauer, Alicia; McKinnon, Taryn; Broad, Max

    2013-05-30

    The Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office held a workshop on ďSocial Aspects of BioenergyĒ on April 24, 2012, in Washington, D.C., and convened a webinar on this topic on May 8, 2012. The findings and recommendations from the workshop and webinar are compiled in this report.

  18. Hawaii Bioenergy Master Plan Stakeholder Comment

    E-Print Network [OSTI]

    Hawaii Bioenergy Master Plan Volume III Stakeholder Comment Prepared for State of Hawaii Department of Business, Economic Development and Tourism By University of Hawaii Hawaii Natural Energy Institute School of Ocean Earth Sciences and Technology December 2009 #12;i Hawaii Bioenergy Master Plan Volume III

  19. Land-Use Change and Bioenergy

    SciTech Connect (OSTI)

    None

    2011-07-01

    This publication describes the Biomass Programís efforts to examine the intersection of land-use change and bioenergy production. It describes legislation requiring land-use change assessments, key data and modeling challenges, and the research needs to better assess and understand the impact of bioenergy policy on land-use decisions.

  20. BETO Announces Bioenergy Technologies Incubator FOA

    Broader source: Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy (EERE) has released a new $10 million funding opportunity announcement (FOA) to support innovative technologies and solutions that could help achieve bioenergy development goals, but are not significantly represented in the Bioenergy Technology Office's (BETO√'s) existing multi-year program plans or current research and development portfolio.

  1. Biomass for Bioenergy: an overview of

    E-Print Network [OSTI]

    Pennycook, Steve

    Biomass for Bioenergy: an overview of research at ORNL Environmental Science Division Climate. Kline (presenter) Virginia Dale, Laurence Eaton, Matt Langholtz, and others, ORNL #12;Biomass&TChemical and molecular science Plasma and fusion energy science Biomass #12;Lighter weight vehicles Bioenergy research

  2. International Conference on Wood-based Bioenergy LIGNA+Hannover, Germany, 17-18 May 2007

    E-Print Network [OSTI]

    1985 1990 1995 2000 2005 2010 2015 2020 Year Amount(inmillioncubicmetresWRME) Recovered paper Net pulp fossil fuel prices ∑ Energy security ∑ Policies to reduce climate change ∑ Wood industries' wood needs consumption, e.g. China ≠ Nuclear safety #12;International Conference on Wood-based Bioenergy LIGNA

  3. Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and

    E-Print Network [OSTI]

    Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and Hawaii's Labor Market associated with biofuels in Hawai'i. In particular, it discusses how a potential biofuels industry might policy makers and leaders consider how best to support biofuels. One major labor market question

  4. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    cement and pulp and paper industries in China, and in thePulp and Paper Industry, Confederation of European Paper Industries, Brussels, March 2001. CESP, 2004: Chinaípulp and paper industries (GOI, 2005). There are 39.8 million SMEs in China,

  5. Hawaii Bioenergy Master Plan Potential Environmental Impacts of

    E-Print Network [OSTI]

    Hawaii Bioenergy Master Plan Potential Environmental Impacts of Bioenergy Development in Hawaii of the potential environmental impacts associated with bioenergy development in Hawaii was conducted as part of the Hawaii Bioenergy Master Plan mandated by Act 253 of the Hawaii State Legislature in 2007. This effort

  6. Technologies and Policies to Improve Energy Efficiency in Industry

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01

    CO2 Emissions (MtCO2) Transport Residential Buildings Commercial Buildings Agriculture Agriculture Commercial Buildings Residential Buildings Transport Industry Source:

  7. Developing Switchgrass as a Bioenergy Crop

    SciTech Connect (OSTI)

    Bouton, J.; Bransby, D.; Conger, B.; McLaughlin, S.; Ocumpaugh, W.; Parrish, D.; Taliaferro, C.; Vogel, K.; Wullschleger, S.

    1998-11-08

    The utilization of energy crops produced on American farms as a source of renewable fuels is a concept with great relevance to current ecological and economic issues at both national and global scales. Development of a significant national capacity to utilize perennial forage crops, such as switchgrass (Panicum virgatum, L.) as biofuels could benefit our agricultural economy by providing an important new source of income for farmers. In addition energy production from perennial cropping systems, which are compatible with conventional fining practices, would help reduce degradation of agricultural soils, lower national dependence on foreign oil supplies, and reduce emissions of greenhouse gases and toxic pollutants to the atmosphere (McLaughlin 1998). Interestingly, on-farm energy production is a very old concept, extending back to 19th century America when both transpofiation and work on the farm were powered by approximately 27 million draft animals and fueled by 34 million hectares of grasslands (Vogel 1996). Today a new form of energy production is envisioned for some of this same acreage. The method of energy production is exactly the same - solar energy captured in photosynthesis, but the subsequent modes of energy conversion are vastly different, leading to the production of electricity, transportation fuels, and chemicals from the renewable feedstocks. While energy prices in the United States are among the cheapest in the world, the issues of high dependency on imported oil, the uncertainties of maintaining stable supplies of imported oil from finite reserves, and the environmental costs associated with mining, processing, and combusting fossil fuels have been important drivers in the search for cleaner burning fuels that can be produced and renewed from the landscape. At present biomass and bioenergy combine provide only about 4% of the total primary energy used in the U.S. (Overend 1997). By contrast, imported oil accounts for approximately 44% of the foreign trade deficit in the U.S. and about 45% of the total annual U.S. oil consumption of 34 quads (1 quad = 1015 Btu, Lynd et al. 1991). The 22 quads of oil consumed by transportation represents approximately 25% of all energy use in the US and excedes total oil imports to the US by about 50%. This oil has environmental and social costs, which go well beyond the purchase price of around $15 per barrel. Renewable energy from biomass has the potential to reduce dependency on fossil fhels, though not to totally replace them. Realizing this potential will require the simultaneous development of high yielding biomass production systems and bioconversion technologies that efficiently convert biomass energy into the forms of energy and chemicals usable by industry. The endpoint criterion for success is economic gain for both agricultural and industrial sectors at reduced environmental cost and reduced political risk. This paper reviews progress made in a program of research aimed at evaluating and developing a perennial forage crop, switchgrass as a regional bioenergy crop. We will highlight here aspects of research progress that most closely relate to the issues that will determine when and how extensively switchgrass is used in commercial bioenergy production.

  8. CEE Bioenergie | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossenceBrunswick, Maine:IAEAT JumpCEE Bioenergie Jump to:

  9. Alterra Bioenergy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to: navigation, search Name: Alliance'Novel'Bioenergy Jump

  10. Sustainable Bioenergy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With Livermore NationalSurprisingSustainabilitySustainable Bioenergy

  11. Bioenergy Toolkit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac Biomass Facility Jump to: navigation, searchBioenergy

  12. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    specified in the ĎEnergy Technology Listí during the yearenergy consumers in the chemical industry, and list examples of technology

  13. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    disposal routes, several countries have set incen- tives to promote the use of various wastes in industrial processes in direct

  14. Guidelines for residential commissioning

    SciTech Connect (OSTI)

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2003-01-31

    Currently, houses do not perform optimally or even as many codes and forecasts predict, largely because they are field assembled and there is no consistent process to identify problems or to correct them. Residential commissioning is a solution to this problem. This guide is the culmination of a 30-month project that began in September 1999. The ultimate objective of the project is to increase the number of houses that undergo commissioning, which will improve the quality, comfort, and safety of homes for California citizens. The project goal is to lay the groundwork for a residential commissioning industry in California focused on end-use energy and non-energy issues. As such, we intend this guide to be a beginning and not an end. Our intent is that the guide will lead to the programmatic integration of commissioning with other building industry processes, which in turn will provide more value to a single site visit for people such as home energy auditors and raters, home inspectors, and building performance contractors. Project work to support the development of this guide includes: a literature review and annotated bibliography, which facilitates access to 469 documents related to residential commissioning published over the past 20 years (Wray et al. 2000), an analysis of the potential benefits one can realistically expect from commissioning new and existing California houses (Matson et al. 2002), and an assessment of 107 diagnostic tools for evaluating residential commissioning metrics (Wray et al. 2002). In this guide, we describe the issues that non-experts should consider in developing a commissioning program to achieve the benefits we have identified. We do this by providing specific recommendations about: how to structure the commissioning process, which diagnostics to use, and how to use them to commission new and existing houses. Using examples, we also demonstrate the potential benefits of applying the recommended whole-house commissioning approach to such houses.

  15. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    of its electricity requirements in the USA (US DOE, 2002)USA, where motor-driven systems account for 63% of industrial electricity

  16. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    increased use of biomass and energy efficiency improvements,Moreira, J. , 2006: Global biomass energy potential. Journal1971Ė2004 Notes 1) Biomass energy included 2) Industrial

  17. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    of Industrial Electrical Switchgear and Control Gear in the6 from use in electrical switchgear and magnesium processinggas insulated electrical switchgear, during the production

  18. BioEnergy Blog | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. for their Winning Bioenergy Infographic A team of five freshmen from Williamsburg High School for Architecture and Design in Brooklyn, New York-designed an infographic on the...

  19. GCAM Bioenergy and Land Use Modeling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leon Clarke. 2013. "Can radiative forcing be limited to 2.6 Wm-2 without negative emissions from bioenergy and CO2 capture and storage?" Climatic Change. Special Issue on...

  20. BIOENERGI ER BLEVET MODERNE 4DECEMBER 2003

    E-Print Network [OSTI]

    at bruge biomasse til energi. Opfyring med brśnde og opvarmning med halmfyr eller biogas er kendte, biogas og bioethanol. Bioenergi er den eneste vedvarende energikilde, der findes i fast, flydende og

  1. Fundamental & Applied Bioenergy | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have developed a microbial strain with an improved ability to convert wood products to biofuel as part of research within the DOE BioEnergy Science Center.Source: ORNL News article...

  2. Sorghum bioenergy genotypes, genes and pathways†

    E-Print Network [OSTI]

    Plews, Ian Kenneth

    2009-05-15

    and this plant is a potentially important bioenergy crop for Texas. The diversity of the twelve high biomass sorghum genotypes was analyzed using 50 simple sequence repeats (SSR) markers with genome coverage. The accumulation of biomass during sorghum development...

  3. Bioenergy in Energy Transformation and Climate Management

    SciTech Connect (OSTI)

    Rose, Steven K.; Kriegler, Elmar; Bibas, Ruben; Calvin, Katherine V.; Popp, Alexander; van Vuuren, Detlef; Weyant, John

    2014-04-01

    Unlike fossil fuels, biomass is a renewable resource that can sequester carbon during growth, be converted to energy, and then re-grown. Biomass is also a flexible fuel that can service many end-uses. This paper explores the importance of bioenergy to potential future energy transformation and climate change management. Using a model comparison of fifteen models, we characterize and analyze future dependence on, and the value of, bioenergy in achieving potential long-run climate objectivesóreducing radiative forcing to 3.7 and 2.8 W/m2 in 2100 (approximately 550 and 450 ppm carbon dioxide equivalent atmospheric concentrations). Model scenarios project, by 2050, bioenergy growth of 2 to 10% per annum reaching 5 to 35 percent of global primary energy, and by 2100, bioenergy becoming 15 to 50 percent of global primary energy. Non-OECD regions are projected to be the dominant suppliers of biomass, as well as consumers, with up to 35 percent of regional electricity from biopower by 2050, and up to 70 percent of regional liquid fuels from biofuels by 2050. Bioenergy is found to be valuable to many models with significant implications for mitigation costs and world consumption. The availability of bioenergy, in particular biomass with carbon dioxide capture and storage (BECCS), notably affects the cost-effective global emissions trajectory for climate management by accommodating prolonged near-term use of fossil fuels. We also find that models cost-effectively trade-off land carbon and nitrous oxide emissions for the long-run climate change management benefits of bioenergy. Overall, further evaluation of the viability of global large-scale bioenergy is merited.

  4. Bioenergy market competition for biomass: A system dynamics review of current policies

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Robert Jeffers

    2013-07-01

    There is growing interest in the United States and abroad to increase the use of biomass as an energy source due to environmental and energy security benefits. In the United States, the biofuel and biopower industries are regulated by different policies and different agencies and have different drivers, which impact the maximum price the industries are willing to pay for biomass. This article describes a dynamic computer simulation model that analyzes future behavior of bioenergy feedstock markets based on varying policy and technical options. The model simulates the long-term dynamics of these markets by treating advanced biomass feedstocks as a commodity and projecting the total demand of each industry, as well as the market price over time. The model is used for an analysis of the United States bioenergy feedstock market that projects supply, demand, and market price given three independent buyers: domestic biopower, domestic biofuels, and foreign exports. With base-case assumptions, the biofuels industry is able to dominate the market and meet the federal Renewable Fuel Standard (RFS) targets for advanced biofuels. Further analyses suggest that United States bioenergy studies should include estimates of export demand for biomass in their projections, and that GHG-limiting policy would partially shield both industries from export dominance.

  5. Residential Energy Efficiency Messaging | Department of Energy

    Office of Environmental Management (EM)

    Residential Energy Efficiency Messaging Residential Energy Efficiency Messaging Better Buildings Residential Network Peer Exchange Call Series: Residential Energy Efficiency...

  6. Solarnorth '81 by Tymura Solardesigns: diverse residential, commercial and industrial projects at and above the 48th parallel in Ontario, Canada

    SciTech Connect (OSTI)

    Tymura, E.J.

    1981-01-01

    Solar Energy Heating Applications are On the Rise in and above the Northwestern City of Thunder Bay, on the northern shore of Lake Superior. Unique in their diversifications, the architectural commissions range from pure passive residential design thru hybrid systems; residential Greenhouse-Solarium active swimming pool and commercial hotel pool to inexpensive hybrid system for Canada's First Commercial Solar Lumber Drying Kiln; as well as combined earth sheltered with solar system design for a dormitory complex and shopping center. By May 1981, 7 buildings designed by Tymura Solardesigns in the Thunder Bay area will have been subjected to the Extreme Canadian climate (10,500/sup 0/F degree days, yearly temperature maximums from -41/sup 0/F to 90/sup 0/F, and solar fractions vary from 50% to 75%, with economic payback periods ranging between 7 and 10 years.

  7. Bioenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Read caption + Los Alamos scientists used genetic engineering to develop magnetic algae, thus making it much easier to harvest for biofuel production. Harvesting algae...

  8. Bioenergy

    Broader source: Energy.gov [DOE]

    Learn how the Energy Department is working to sustainably transform the nation's abundant renewable resources into biomass energy.

  9. Bioenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura|Bilayer Graphene GetsBiodiesel - SSC

  10. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    options for combined heat and power in Canada. Office ofpolicies to promote combined heat and power in US industry.conversions, such as combined heat and power and coke ovens,

  11. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    iron and steel production. IEA Greenhouse Gas R&D Programme,tempera- ture range. IEA/Caddet, Sittard, The Netherlands.industry. Cheltenham, UK, IEA Greenhouse Gas R&D Programme,

  12. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    developing countries, like India, adoption of efficient electricitydeveloping countries the sugar in- dustry uses bagasse and the edible oils industry uses byproduct wastes to generate steam and/or electricity (

  13. Bioenergy 2015: Opportunities in a Changing Energy Landscape

    Broader source: Energy.gov [DOE]

    On June 23Ė24, 2015, the U.S. Department of Energy's (DOEís) Bioenergy Technologies Office (BETO) will host its eighth annual conferenceóBioenergy 2015: Opportunities in a Changing Energy Landscape...

  14. Preparing the Next Generation of Bioenergy Leaders | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preparing the Next Generation of Bioenergy Leaders Preparing the Next Generation of Bioenergy Leaders March 31, 2015 - 5:12pm Addthis Dr. Valerie Sarisky-Reed Dr. Valerie...

  15. Bioenergy 2015: Opportunities in a Changing Energy Landscape

    Broader source: Energy.gov [DOE]

    On June 23Ė24, 2015, the U.S. Department of Energy's (DOEís) Bioenergy Technologies Office (BETO) will host its eighth annual conferenceóBioenergy 2015: Opportunities in a Changing Energy Landscape.

  16. Special issue: bioenergy Don-Hee Park Sang Yup Lee

    E-Print Network [OSTI]

    . As the field of bioenergy is rapidly moving forward with rather traditional bioethanol and biodiesel to more

  17. IEA Bioenergy task 40 Country report for the Netherlands

    E-Print Network [OSTI]

    1 IEA Bioenergy task 40 ≠ Country report for the Netherlands Update 2006 Martin Junginger Marc de-energy trade #12;IEA Bioenergy task 40 Country report for the Netherlands ≠update 2006 i IEA Bioenergy Task 40.Junginger@chem.uu.nl, A.Faaij@chem.uu.nl Report NWS-E-2006-XX ISBN 90-73958-96-2 September 2006 #12;IEA Bioenergy task 40

  18. Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Upgrading More Documents & Publications Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway Pathways for Algal Biofuels Bioenergy Technologies Office...

  19. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  20. Hawaii Bioenergy Master Plan Land and Water Resources

    E-Print Network [OSTI]

    with phytoremediation and bioremediation processes; ∑ Document methods to increase water use efficiency for bioenergyHawaii Bioenergy Master Plan Land and Water Resources Submitted to Hawaii Natural Energy Institute of any bioenergy crops in Hawaii is the availability of the land and water necessary to produce

  1. Bird Communities and Biomass Yields in Potential Bioenergy Grasslands

    E-Print Network [OSTI]

    Turner, Monica G.

    richness and the density of total birds and SGCNs, suggesting that grassland bioenergy fields may be moreBird Communities and Biomass Yields in Potential Bioenergy Grasslands Peter J. Blank1 *, David W, Wisconsin, United States of America Abstract Demand for bioenergy is increasing, but the ecological

  2. Promoting Sustainable Bioenergy Production and Trade Issue Paper No. 17

    E-Print Network [OSTI]

    Promoting Sustainable Bioenergy Production and Trade Issue Paper No. 17 June 2009 l ICTSD Programme and Development University of Reading EU Support for Biofuels and Bioenergy, Environmental Sustainability Criteria School of Agriculture, Policy and Development University of Reading EU Support for Biofuels and Bioenergy

  3. Center for BioEnergy Sustainability http://www.ornl.gov/cbes/ Bioenergy, Sustainability, and Land-Use Change Report

    E-Print Network [OSTI]

    Pennycook, Steve

    designs. Renewable & Sustainable Energy Review. ORNL Presentations: February 2-4 ≠ Esther Parish "Sustainability, Ecosystem Services, and Bioenergy Development across the Americas" Project. February 27 ≠ UpdateCenter for BioEnergy Sustainability http://www.ornl.gov/cbes/ 1 Bioenergy, Sustainability, and Land

  4. State Bioenergy Primer: Information and Resources for States on Issues, Opportunities, and Options for Advancing Bioenergy

    SciTech Connect (OSTI)

    Byrnett, D. S.; Mulholland, D.; Zinsmeister, E.; Doris, E.; Milbrandt, A.; Robichaud. R.; Stanley, R.; Vimmerstedt, L.

    2009-09-01

    One renewable energy option that states frequently consider to meet their clean energy goals is the use of biomass resources to develop bioenergy. Bioenergy includes bioheat, biopower, biofuels, and bioproducts. This document provides an overview of biomass feedstocks, basic information about biomass conversion technologies, and a discussion of benefits and challenges of bioenergy options. The Primer includes a step-wise framework, resources, and tools for determining the availability of feedstocks, assessing potential markets for biomass, and identifying opportunities for action at the state level. Each chapter contains a list of selected resources and tools that states can use to explore topics in further detail.

  5. LANL capabilities towards bioenergy and biofuels programs

    SciTech Connect (OSTI)

    Olivares, Jose A; Park, Min S; Unkefer, Clifford J; Bradbury, Andrew M; Waldo, Geoffrey S

    2009-01-01

    LANL invented technology for increasing growth and productivity of photosysnthetic organisms, including algae and higher plants. The technology has been extensively tested at the greenhouse and field scale for crop plants. Initial bioreactor testing of its efficacy on algal growth has shown promising results. It increases algal growth rates even under optimwn nutrient supply and careful pH control with CO{sub 2} continuously available. The technology uses a small organic molecule, applied to the plant surfaces or added to the algal growth medium. CO{sub 2} concentration is necessary to optimize algal production in either ponds or reactors. LANL has successfully designed, built and demonstrated an effective, efficient technology using DOE funding. Such a system would be very valuable for capitalizing on local inexpensive sources of CO{sub 2} for algal production operations. Furthermore, our protein engineering team has a concept to produce highly stable carbonic anhydyrase (CA) enzyme, which could be very useful to assure maximum utilization of the CO{sub 2} supply. Stable CA could be used either imnlobilized on solid supports or engineered into the algal strain. The current technologies for harvesting the algae and obtaining the lipids do not meet the needs for rapid, low cost separations for high volumes of material. LANL has obtained proof of concept for the high volume flowing stream concentration of algae, algal lysis and separation of the lipid, protein and water fractions, using acoustic platforms. This capability is targeted toward developing biosynthetics, chiral syntheses, high throughput protein expression and purification, organic chemistry, recognition ligands, and stable isotopes geared toward Bioenergy applications. Areas of expertise include stable isotope chemistry, biomaterials, polymers, biopolymers, organocatalysis, advanced characterization methods, and chemistry of model compounds. The ultimate realization of the ability to design and synthesize materials that mimic or are inspired by natural systems will lead to entirely new applications in the bioenergy areas. In addition, there are new developments in this capability that involve development of catalytic methods for the production of carbon chains from the most abundant carbohydrate on the planet, glucose. These carbon chains will be useful in the production of high density fuels which defined characteristics. In addition, these methods/capabilities will be used to generate feedstocks for industrial processes. LANL is the second largest partner institution of the Department of Energy's Joint Genome Institute (DOE-JGI), and specializes in high throughput genome finishing and analysis in support of DOE missions in energy, bioremediation and carbon sequestration. This group is comprised of molecular biology labs and computational staff who together focus on the high-throughput DNA sequencing of whole microbial genomes, computational finishing and bioinformatics. The applications team focuses on the use of new sequencing technologies to address questions in environmental science. In addition to supporting the DOE mission, this group supports the Nation's national security mission by sequencing critical pathogens and near neighbors in support of relevent application areas.

  6. Could energy intensive industries be powered by carbonfree electricity?

    E-Print Network [OSTI]

    MacKay, David J.C.

    requirements. Keywords: power per unit area; wind; nuclear; bioenergy 1. Overview Industry accounts for roughly of countries in 2005, and on the horizontal axis their population densities.) So, I will focus on per

  7. Geospatial Science and Technology for Bioenergy Modeling the Sustainability of the National Bioenergy Infrastructure

    E-Print Network [OSTI]

    Geospatial Science and Technology for Bioenergy Modeling the Sustainability of the National sensing, and geospatial data services. With High Performance Computing (HPC), global geospatial data: ∑ Feasibility of sustainably producing biofuels ∑ Reliability of biofuel production and distribution ∑ Security

  8. Bioenergy Science Center KnowledgeBase

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Syed, M. H.; Karpinets, T. V.; Parang, M.; Leuze, M. R.; Park, B. H.; Hyatt, D.; Brown, S. D.; Moulton, S. Galloway, M.D.; Uberbacher, E. C.

    The challenge of converting cellulosic biomass to sugars is the dominant obstacle to cost effective production of biofuels in s capable of significant enough quantities to displace U. S. consumption of fossil transportation fuels. The BioEnergy Science Center (BESC) tackles this challenge of biomass recalcitrance by closely linking (1) plant research to make cell walls easier to deconstruct, and (2) microbial research to develop multi-talented biocatalysts tailor-made to produce biofuels in a single step. [from the 2011 BESC factsheet] The BioEnergy Science Center (BESC) is a multi-institutional, multidisciplinary research (biological, chemical, physical and computational sciences, mathematics and engineering) organization focused on the fundamental understanding and elimination of biomass recalcitrance. The BESC Knowledgebase and its associated tools is a discovery platform for bioenergy research. It consists of a collection of metadata, data, and computational tools for data analysis, integration, comparison and visualization for plants and microbes in the center.The BESC Knowledgebase (KB) and BESC Laboratory Information Management System (LIMS) enable bioenergy researchers to perform systemic research. [http://bobcat.ornl.gov/besc/index.jsp

  9. Hawaii Bioenergy Master Plan Prepared for

    E-Print Network [OSTI]

    Hawaii Bioenergy Master Plan Volume I Prepared for State of Hawaii Department of Business, Economic Development and Tourism By University of Hawaii Hawaii Natural Energy Institute School of Ocean Earth Sciences and Environmental Management, University of Hawaii Denise Antolini, Professor, William S Richardson School of Law

  10. Hawaii Bioenergy Master Plan Economic Impacts

    E-Print Network [OSTI]

    Hawaii Bioenergy Master Plan Economic Impacts Prepared for The Hawaii Natural Energy Institute By Makena Coffman Department of Urban & Regional Planning University of Hawaii at Manoa December 2009 #12;i, a macroeconomic model of Hawaii's economy, representing macro and sector-level inter-linkages, has been created

  11. Hawaii Bioenergy Master Plan Issue Reports

    E-Print Network [OSTI]

    and bioremediation processes; ∑ Document methods to increase water use efficiency for bioenergy production including of Ocean Earth Sciences and Technology December 2009 #12;TABLE OF CONTENTS 2.1 Land and water resources Land and Water Resources Submitted to Hawaii Natural Energy Institute School of Ocean and Earth Science

  12. Bioenergy Upcoming Events | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Bioenergy with Carbon Capture and Sequestration Workshop 8:00AM to 4:00PM EDT 24 25 26 27 28 29 30...

  13. NETWORK OF EXCELLENCE The CAP & Bioenergy

    E-Print Network [OSTI]

    , Germany, and the UK. #12;BIOENERGY NETWORK OF EXCELLENCE This presentation ∑ To provide insights residues, waste streams and energy crops. Heat, electricity and biofuels for transport. ∑ Suggests in Europe ≠ Reduce dependence on imported food ≠ Introduce a degree of price stability for consumers

  14. Tackling Optimization Challenges in Industrial Load Control and Full-Duplex Radios

    E-Print Network [OSTI]

    Gholian, Armen

    2015-01-01

    xii List of Tables Industrial vs. residential loadII Optimal Industrial Load Control in Smart Grid 3and Related Work 4 Basic Industrial Load Control: A Case

  15. Residential Energy Audits†

    E-Print Network [OSTI]

    Brown, W.

    1985-01-01

    A series of events coupled with the last five years experience performing Residential Conservation Service (RCS) audits have resulted in renewed efforts by utilities to evaluate the role of residential energy audits. There are utilities where...

  16. Leasing Residential PV Systems

    SciTech Connect (OSTI)

    Rutberg, Michael; Bouza, Antonio

    2013-11-01

    The article discusses the adoption, consequences and current market status of the leasing of residential photovoltaic systems. It addresses attributed energy savings and market potential of residential system leasing.

  17. Housing and Residential Life

    E-Print Network [OSTI]

    Fernandez, Eduardo

    1 Housing and Residential Life Guidebook 2014-2015 LivingCampus #12;2 fau.edu/housing Welcome! The Housing & Residential Life staff is excited that you've moved home! Florida Atlantic University residence halls and apartments are your home for the 2014-2015 school year. The Housing & Residential Life staff

  18. EA-1892: Direct Final Rule Energy Conservation Standards for Residential Furnaces and Residential Central Air Conditioners & Heat Pumps

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to adopt energy conservation standards for various consumer products and certain commercial and industrial equipment, including residential furnaces and residential air conditioners and heat pumps, as required by the Energy Policy and Conservation Act, as amended (42 U.S.C. 6291 et seq.)

  19. Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Whole Algae Hydrothermal Liquefaction Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction Whole algae hydrothermal liquefaction is one of...

  20. Bioprocessing of Microalgae for Bioenergy and Recombinant Protein Production†

    E-Print Network [OSTI]

    Garzon Sanabria, Andrea J

    2013-07-31

    This dissertation investigates harvesting of marine microalgae for bioenergy and production of two recombinant proteins for therapeutic applications in Chlamydomonas reinhardtii. The first study describes harvesting of ...

  1. Sandia Energy - "Bionic" Liquids from Lignin: Joint BioEnergy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from Lignin: Joint BioEnergy Institute Results Pave the Way for Closed-Loop Biofuel Refineries Home Renewable Energy Energy Transportation Energy Biofuels Facilities Partnership...

  2. CHP and Bioenergy for Landfills and Wastewater Treatment Plants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores...

  3. Roadmap for Bioenergy and Biobased Products in the United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 Roadmap for Bioenergy and Biobased Products in the United States Biomass Research and Development Technical Advisory Committee Biomass Research and Development Initiative October...

  4. Bioenergy Technologies Office: Association of Fish and Wildlife...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy Bioenergy Technologies Office Association of Fish & Wildlife Agencies Agricultural Conservation Committee Meeting March 29, 2013 Kristen Johnson...

  5. Bioenergy Technologies Office: Association of Fish and Wildlife...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural...

  6. BioenergizeME Office Hours Webinar: Integrating Bioenergy into...

    Office of Environmental Management (EM)

    classroom environment. Bioenergy has applications across multiple science and engineering disciplines and also provides opportunities for real-world learning. The webinar is...

  7. Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fast Pyrolysis and Hydroprocessing Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and Hydroprocessing In fast pyrolysis and hydrotreating, biomass is rapidly heated in...

  8. ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues...

    Energy Savers [EERE]

    objectives for the integration of advanced logistical systems and focused bioenergy harvesting technologies that supply crop residues and energy crops in a large bale format....

  9. 2015 Project Peer Review International SustainabilityandIEA Bioenergy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    20. Bioenergy Economics and Policies 21. Biomass Resources, Energy Access and Poverty Reduction http:bioenfapesp.orgscopebioenergyindex.phpproject-overview BETO Labs...

  10. In Search of Spatial Opportunities for Sustainable Bioenergy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search of Spatial Opportunities for Sustainable Bioenergy Production Apr 17 2014 03:30 PM - 04:30 PM Yetta Jager, National Institute for Mathematical and Biological Syntheses ,...

  11. Thailand-Key Results and Policy Recommendations for Future Bioenergy...

    Open Energy Info (EERE)

    Thailand-Key Results and Policy Recommendations for Future Bioenergy Development Jump to: navigation, search Name Thailand-Key Results and Policy Recommendations for Future...

  12. CHP and Bioenergy Systems for Landfills and Wastewater Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the following CHP technologies: Reciprocating Engine, Microturbine, Combustion Turbines, Stirling Engine, and Fuel Cell. CHP and Bioenergy Systems for Landfills and Wastewater...

  13. American Recovery and Reinvestment Act of 2009: Bioenergy Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    The Bioenergy Technologies Office rewarded about 178 million in American Recovery and Reinvestment Act of 2009 funds; the projects accelerate advanced biofuels RD&D, speed the...

  14. Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Pathways for Algal Biofuels Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway Bioenergy Technologies Office Conversion R&D Pathway: Whole...

  15. EIS-0407: Abengoa Biomass Bioenergy Project near Hugoton, Stevens...

    Broader source: Energy.gov (indexed) [DOE]

    6, 2011 EIS-0407: Record of Decision Issuance of a Loan Guarantee to Abengoa Bioenergy Biomass of Kansas, LLC for the Abengoa Biorefinery Project Near Hugoton, Stevens County,...

  16. Reducing the negative human-health impacts of bioenergy crop...

    Office of Scientific and Technical Information (OSTI)

    Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection Citation Details In-Document Search Title: Reducing the negative...

  17. Guide for Benchmarking Residential Energy Efficiency Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guide for Benchmarking Residential Energy Efficiency Program Progress Guide for Benchmarking Residential Energy Efficiency Program Progress Guide for Benchmarking Residential...

  18. Presentation: Better Buildings Residential Program Solution Center...

    Office of Environmental Management (EM)

    Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential...

  19. Webinar: Landscape Design for Sustainable Bioenergy Systems

    Broader source: Energy.gov [DOE]

    The Energy Departmentís Bioenergy Technologies Office will present a live informational webcast on the Landscape Design for Sustainable Bioenergy Systems Funding Opportunity (DE-FOA-0001179) on November 3, 2014, 1:30 p.m.Ė3:00 p.m. Eastern Standard Time. This FOA seeks interdisciplinary projects that apply landscape design approaches to integrate cellulosic feedstock production into existing agricultural and forestry systems while maintaining or enhancing environmental and socio-economic sustainability including ecosystem services and food, feed, and fiber production. For the purposes of this FOA, cellulosic feedstock production refers to dedicated annual and perennial energy crops, use of agricultural and forestry residues, or a combination of these options.

  20. Bioenergy Technologies Office Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, IncBio Centers Announcement atof EnergyBioenergy

  1. The New Horizons of Bioenergy

    ScienceCinema (OSTI)

    None

    2013-04-19

    At the Office of Energy Efficiency and Renewable Energy's "Biomass 2011" conference, Argonne researcher Seth Snyder spoke with DOE Biomass Program head, Paul Bryan. In this conversation, Snyder explains the process of biochemical conversion, and talks about Argonne's patented resin wafer technology. The resin wafer electrodeionization technology may help significantly reduce the cost of producing clean energy and of the chemicals and water used in industry. The separations technology can also process biomass-based feedstocks into biofuels and chemicals.

  2. Ris Energy Report 2 Bioenergy resources: an introduction

    E-Print Network [OSTI]

    3 RisÝ Energy Report 2 Bioenergy resources: an introduction Bioenergy is energy of biological, but its real technical and economic potential is much lower. The WEC Survey of Energy Resources (WEC 2001 and renewable origin, normally in the form of purpose-grown energy crops or by-products from agriculture

  3. 20 PLANET EARTH Autumn 2014 Bioenergy the name alone

    E-Print Network [OSTI]

    Brierley, Andrew

    speaking. But everything has a carbon footprint and some biofuels might not be so great if their carbon that the carbon footprint of bioenergy may be worse than some fossil fuels. But the truth is we didn't know that many of the assessments Called to account ≠ bioenergy's carbon footprint #12;PLANET EARTH Autumn 2014

  4. Bioenergy 2015: Opportunities in a Changing Energy Landscape

    Broader source: Energy.gov [DOE]

    On June 23Ė24, 2015, the U.S. Department of Energy's (DOEís) Bioenergy Technologies Office (BETO) will host its eighth annual conferenceóBioenergy 2015: Opportunities in a Changing Energy Landscape. Co-hosted with the Clean Energy Research and Education Foundation (CEREF), this year's conference will focus on opportunities and challenges in our current highly dynamic energy ecosystem.

  5. Biomechanics of Bioenergy Sorghum [Sorghum Bicolor (L.) moench]†

    E-Print Network [OSTI]

    Gomez, Francisco Ernesto

    2015-08-12

    is considered as one of the highest priorities for a bioenergy sorghum breeding program. In this study, a three-point bending (3PBT) test was used to quantify the biomechanical properties of bioenergy sorghum with different lodging ratings. The 3PBT was able...

  6. Special issue: current status of bioenergy research Don-Hee Park Sang Yup Lee

    E-Print Network [OSTI]

    processes are presented. As the field of bioenergy is rapidly growing from traditional forms of bioethanol

  7. CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities

    Broader source: Energy.gov [DOE]

    Overview of market opportunities for CHP and bioenergy for landfills and wastewater treatment plants

  8. A Virtual Visit to Bioenergy Research at the National Laboratories

    Office of Energy Efficiency and Renewable Energy (EERE)

    For National Bioenergy Day on October 22, bioenergy facilities across the country are holding open houses to increase public awareness of bioenergy and its role in the clean energy landscape. By the same token, the Bioenergy Technologies Office (BETO) is offering this virtual open house of its national laboratoriesóthe facilities at the core of BETOís research and development. If you want to know how Energy Department bioenergy funding is making an impact, be sure to take a look at our national labsó47% of BETO funding this past year went to the national laboratories. Of that funding, about half went to the National Renewable Energy Laboratory. Pacific Northwest National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory also received a large share.

  9. Kenergy- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Kenergy is an electric cooperative that serves 51,000 households and commercial customers in 14 western Kentucky counties. Currently, Kenergy offers three rebate programs for residential customers...

  10. Essays on residential desegregation

    E-Print Network [OSTI]

    Wong, Maisy

    2008-01-01

    Many ethnically diverse countries have policies that encourage integration across ethnic groups. This dissertation investigates the impact and welfare implications of a residential desegregation policy in Singapore, the ...

  11. Residential Absorption Water Heater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Absorption Water Heater 2014 Building Technologies Office Peer Review Kyle Gluesenkamp, gluesenkampk@ornl.gov Oak Ridge National Laboratory Project Summary Timeline:...

  12. U.S. Department of Energy's Bioenergy Research Centers An Overview of the Science

    SciTech Connect (OSTI)

    2010-07-01

    Alternative fuels from renewable cellulosic biomass - plant stalks, trunks, stems, and leaves - are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced.' Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain - the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 30 years. The DOE Genomic Science program is advancing a new generation of research focused on achieving whole-systems understanding of biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. For more information on the Genomic Science program, see p. 26. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs are providing the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use (see sidebar, Bridging the Gap from Fundamental Biology to Industrial Innovation for Bioenergy, p. 6). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations - the Southeast, the Midwest, and the West Coast - with partners across the nation (see U.S. map, DOE Bioenergy Research Centers and Partners, on back cover). DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California; DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; and the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC). Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies, and nonprofit organizations.

  13. Residential Building Audits and Retrofits

    Broader source: Energy.gov [DOE]

    This presentation covers local, regional, and national efforts to promote energy efficiency in residential buildings, programmatic elements of residential building audit and retrofit programs, and resources that you can access to address residential retrofit issues.

  14. Could energy intensive industries be powered by carbon-free electricity?

    E-Print Network [OSTI]

    MacKay, David J.C.

    requirements. Keywords: power per unit area; wind; nuclear; bioenergy 1. Overview Industry accounts for roughly of countries in 2005, and on the horizontal axis their population densities.) So, I will focus on per

  15. ITP Industrial Distributed Energy: CHP and Bioenergy Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    30 kW microturbines work together to produce 1.3 MW of total power - Largest microturbine power plant to run strictly on landfill gas CHP Systems for Landfills and WWTP November...

  16. EASTBIO DTP Research Training Bioenergy & Industrial Biotechnology Priority Area

    E-Print Network [OSTI]

    Spoel, Steven

    . Logan, `Exoelectrogenic bacteria that power'microbial fuel cells', Microbiology 7 (May 2009), 375 optimization Suggested papers: Papers by Tom Ward and some of his own work. This includes bioconjugation

  17. Biomass as Feedstock for a Bioenergy and Bioproducts Industry...

    Broader source: Energy.gov (indexed) [DOE]

    land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30% or more of the country's present petroleum consumption....

  18. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETO QuizResults in FirstJuneBiomass Resource

  19. Bioenergy Deployment Consortium (BDC) 2014 Fall Symposium

    Broader source: Energy.gov [DOE]

    The 2014 BDC Fall Symposium will be held on October 21Ė22, 2014 in Fort Myers, Florida. The event will include a tour of the Algenol facility on Wednesday morning. The symposium will have panels for progress reports from current cellulosic bio-product companies, updates on government policy from several agencies, scale-up strategies,and lessons learned. POET-DSM will provide the after dinner success story. Neil Rossmeissl, Program Manager, Algal Program, Bioenergy Technologies Office, will be delivering the keynote address on expanding the bioeconomy.

  20. Advanced Bioenergy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendoMassachusetts: Energy ResourcesAdiBioenergy LLC Jump

  1. Orchid Bioenergy Group Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon:OGEProjects/DefinitionsOrchid Bioenergy Group Ltd Jump

  2. Alterra Bioenergy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5All HomeAlphakatResources | OpenBioenergy LLC Jump to:

  3. Kent BioEnergy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItronKanosh TownKenetech/Wintech Wind FarmKent BioEnergy

  4. Bioenergy Technologies Office Overview | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUSEnergy||slideshow explains the work of the Bioenergy

  5. Bioenergy Technologies Office Solicitations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETO QuizResults in First Algae Surfboard |Bioenergy

  6. Residential Furnace Blower Performance

    E-Print Network [OSTI]

    LBNL 61467 Residential Furnace Blower Performance I.S. Walker Environmental Energy Technologies combinations of blowers and residential furnaces were tested for air moving performance. The laboratory test and peak demand reductions in this study are based on replacing a Permanent Split Capacitor (PSC) blower

  7. Interactions among bioenergy feedstock choices, landscape dynamics, and land use

    SciTech Connect (OSTI)

    Dale, Virginia H [ORNL; Kline, Keith L [ORNL; Wright, Lynn L [ORNL; Perlack, Robert D [ORNL; Downing, Mark [ORNL; Graham, Robin Lambert [ORNL

    2011-01-01

    Landscape implications of bioenergy feedstock choices are significant and depend on land-use practices and their environmental impacts. Although land-use changes and carbon emissions associated with bioenergy feedstock production are dynamic and complicated, lignocellulosic feedstocks may offer opportunities that enhance sustainability when compared to other transportation fuel alternatives. For bioenergy sustainability, major drivers and concerns revolve around energy security, food production, land productivity, soil carbon and erosion, greenhouse gas emissions, biodiversity, air quality, and water quantity and quality. The many implications of bioenergy feedstock choices require several indicators at multiple scales to provide a more complete accounting of effects. Ultimately, the long-term sustainability of bioenergy feedstock resources (as well as food supplies) throughout the world depends on land-use practices and landscape dynamics. Land-management decisions often invoke trade-offs among potential environmental effects and social and economic factors as well as future opportunities for resource use. The hypothesis being addressed in this paper is that sustainability of bioenergy feedstock production can be achieved via appropriately designed crop residue and perennial lignocellulosic systems. We find that decision makers need scientific advancements and adequate data that both provide quantitative and qualitative measures of the effects of bioenergy feedstock choices at different spatial and temporal scales and allow fair comparisons among available options for renewable liquid fuels.

  8. A Bioenergy Ecosystem - ORNL Review Vol. 44, No. 3, 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the fabric of the project," Gilna says. "Ceres focuses on the development of biomass feedstocks, ArborGen develops wood-based biomass, and Mascoma is a multifaceted bioenergy...

  9. Bioenergy Technologies Office Multi-Year Program Plan: May 2013...

    Office of Environmental Management (EM)

    Technologies Office Multi-Year Program Plan: May 2013 Update Bioenergy Technologies Office Multi-Year Program Plan: May 2013 Update This is the May 2013 Update to the Multi-Year...

  10. Bioenergy Technologies Office Multi-Year Program Plan: November...

    Energy Savers [EERE]

    November 2014 Update Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the...

  11. Earth sheltered industrial/utility park. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-04-01

    A proposed industrial park in Cumberland, Wisconsin is discussed. Planners identified 4 land use elements for the site. A concept feasibility study for the earth-covered industrial park, an analysis of energy flows within the Cumberland community, and a resource and technology assessment of biomass feedstocks for a possible community scale bioenergy facility are discussed. (MCW)

  12. Assessing the potential of bioenergy. Final report, October 1, 1997--September 30, 1998

    SciTech Connect (OSTI)

    Kirschner, J.; Badin, J.

    1998-12-31

    As electricity restructuring proceeds, traditional concepts of how energy is produced, transported, and utilized are likely to change dramatically. Marketplace, policy, and regulatory changes will shape both the domestic and global energy industry, improving opportunities for clean, low-cost energy, competitively priced fuels, and environmentally responsible power systems. Many of these benefits may be obtained by commercial deployment of advanced biomass power conversion technologies. The United BioEnergy Commercialization Association represents the US biomass power industry. Its membership includes investor-owned and public utilities, independent power producers, state and regional bioenergy, equipment manufacturers, and biomass energy developers. To carry out its mission, UBECA has been carrying out the following activities: production of informational and educational materials on biomass energy and distribution of such materials at public forums; technical and market analyses of biomass energy fuels, conversion technologies, and market issues; monitoring of issues affecting the biomass energy community; and facilitating cooperation among members to leverage the funds available for biomass commercialization activities.

  13. TES for Residential Settings

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Bouza, Antonio

    2013-07-31

    The article discusses thermal energy storage approaches for residential buildings. This article addresses both brick bank storage and phase change material technologies. The energy savings and market potential of these thermal energy storage methods are reviewed as well.

  14. Residential Wind Power

    E-Print Network [OSTI]

    Willis, Gary

    2011-12-16

    This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

  15. Entity State Ownership Residential Commercial Industrial Transportation

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969Central RegionReportingElectricity GlossaryNaturalRevenue for

  16. State Residential Commercial Industrial Transportation Total

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand7,Year Jan Feb MarDecadeState

  17. Residential Energy Efficiency Customer Service Best Practices...

    Energy Savers [EERE]

    Residential Energy Efficiency Customer Service Best Practices Residential Energy Efficiency Customer Service Best Practices Better Buildings Residential Network Peer Exchange Call...

  18. Functional Genomics of Drought Tolerance in Bioenergy Crops

    SciTech Connect (OSTI)

    Yin, Hengfu [ORNL; Chen, Rick [ORNL; Yang, Jun [ORNL; Weston, David [ORNL; Chen, Jay [ORNL; Muchero, Wellington [ORNL; Ye, Ning [ORNL; Tschaplinski, Timothy J [ORNL; Wullschleger, Stan D [ORNL; Cheng, Zong-Ming [ORNL; Tuskan, Gerald A [ORNL; Yang, Xiaohan [ORNL

    2014-01-01

    With the predicted trends in climate change, drought will increasingly impose a grand challenge to biomass production. Most of the bioenergy crops have some degree of drought susceptibility with low water-use efficiency (WUE). It is imperative to improve drought tolerance and WUE in bioenergy crops for sustainable biomass production in arid and semi-arid regions with minimal water input. Genetics and functional genomics can play a critical role in generating knowledge to inform and aid genetic improvement of drought tolerance in bioenergy crops. The molecular aspect of drought response has been extensively investigated in model plants like Arabidopsis, yet our understanding of the molecular mechanisms underlying drought tolerance in bioenergy crops are limited. Crops exhibit various responses to drought stress depending on species and genotype. A rational strategy for studying drought tolerance in bioenergy crops is to translate the knowledge from model plants and pinpoint the unique features associated with individual species and genotypes. In this review, we summarize the general knowledge about drought responsive pathways in plants, with a focus on the identification of commonality and specialty in drought responsive mechanisms among different species and/or genotypes. We describe the genomic resources developed for bioenergy crops and discuss genetic and epigenetic regulation of drought responses. We also examine comparative and evolutionary genomics to leverage the ever-increasing genomics resources and provide new insights beyond what has been known from studies on individual species. Finally, we outline future exploration of drought tolerance using the emerging new technologies.

  19. Ris Energy Report 2 Bioenergy conversion

    E-Print Network [OSTI]

    in Northern Europe is wood chips and pellets in domestic boilers in the residential sector. Modern boilers or electric energy. The burning of wood and other solid biomass is the old- est energy technology used by man-fire cooking stove has an efficiency of 10 to 15%, whereas a modern wood fired boiler utilises 85

  20. Bioenergy Feedstock Development Program Status Report

    SciTech Connect (OSTI)

    Kszos, L.A.

    2001-02-09

    The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energy crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.

  1. Bioenergy Demand in a Market Driven Forest Economy (U.S. South...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Demand in a Market Driven Forest Economy (U.S. South) Bioenergy Demand in a Market Driven Forest Economy (U.S. South) Breakout Session 1A: Biomass Feedstocks for the...

  2. IEA-Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas and Landfill Gas

    E-Print Network [OSTI]

    EFP-06 IEA- Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas-Bioenergy, Task 37- Energy from Biogas and Landfill Gas", via samarbejde, informationsudveksling, fślles analyser og international forskningssamarbejde. Det Internationale Energi Agentur ( IEA) er organiseret i en

  3. Agronomy Journal Volume 103, Issue 2 2011 509 Native Perennial Grassland Species for Bioenergy

    E-Print Network [OSTI]

    Thomas, David D.

    generation" bio-energy crops (Sanderson and Adler, 2008; Sarath et al., 2008). The most extensively studied

  4. Research questions How could the conversion of marginal agricultural lands to bioenergy switchgrass

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    .R. and Schemske, D.W. 2010. Perennial biomass feedstocks enhance avian diversity. GCB Bioenergy 1080:1-12. Samson

  5. Building America Webinar: National Residential Efficiency Measures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Residential Efficiency Measures Database Unveiled Building America Webinar: National Residential Efficiency Measures Database Unveiled This webinar presented an overview...

  6. 2015 Bioenergy Summer Bridge Fellowship Applica;on Please type or print all informa0on

    E-Print Network [OSTI]

    Tullos, Desiree

    2015 Bioenergy Summer Bridge Fellowship Applica;on Please type or print all community; ∑ Why you want to be a Bioenergy Summer Bridge student and what you will become a role model for future Bioenergy Summer Bridge students. Le=er B

  7. The Pennsylvania State University www.BioEnergyBridge.psu.edu 1 BioEnergy Bridge

    E-Print Network [OSTI]

    Lee, Dongwon

    © The Pennsylvania State University www.BioEnergyBridge.psu.edu 1 Penn State BioEnergy# trichard@psu.edu rtw103@psu.edu www.bioenergy.psu.edu Biomass Energy Center #12;© The Pennsylvania State ∑ The BioEnergy BridgeTM will address the full spectrum of challenges to our national priority of reducing

  8. Agronomic Suitability of Bioenergy Crops in Mississippi

    SciTech Connect (OSTI)

    Lemus, Rocky; Baldwin, Brian; Lang, David

    2011-10-01

    In Mississippi, some questions need to be answered about bioenergy crops: how much suitable land is available? How much material can that land produce? Which production systems work best in which scenarios? What levels of inputs will be required for productivity and longterm sustainability? How will the crops reach the market? What kinds of infrastructure will be necessary to make that happen? This publication helps answer these questions: √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę Which areas in the state are best for bioenergy crop production? √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę How much could these areas produce sustainably? √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę How can bioenergy crops impact carbon sequestration and carbon credits? √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę How will these crops affect fertilizer use and water quality? √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬

  9. Residential Wood Heating Fuel Exemption

    Broader source: Energy.gov [DOE]

    The New York Department of Taxation and Finance publishes a variety of sales tax reports detailing local tax rates and exemptions, including those for residential energy services. The residential...

  10. U.S, Department of Energy's Bioenergy Research Centers An Overview of the Science

    SciTech Connect (OSTI)

    2009-07-01

    Alternative fuels from renewable cellulosic biomass--plant stalks, trunks, stems, and leaves--are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced'. In the United States, the Energy Independence and Security Act (EISA) of 2007 is an important driver for the sustainable development of renewable biofuels. As part of EISA, the Renewable Fuel Standard mandates that 36 billion gallons of biofuels are to be produced annually by 2022, of which 16 billion gallons are expected to come from cellulosic feedstocks. Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain--the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 25 years. The DOE Genomic Science Program is advancing a new generation of research focused on achieving whole-systems understanding for biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. New interdisciplinary research communities are emerging, as are knowledgebases and scientific and computational resources critical to advancing large-scale, genome-based biology. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs will provide the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use. The scientific rationale for these centers and for other fundamental genomic research critical to the biofuel industry was established at a DOE workshop involving members of the research community (see sidebar, Biofuel Research Plan, below). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations--the Southeast, the Midwest, and the West Coast--with partners across the nation. DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC); and DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California. Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies,

  11. Chapter 9, Land and Bioenergy in Scientific Committee on Problems of the Environment (SCOPE), Bioenergy & Sustainability: bridging the gaps.

    SciTech Connect (OSTI)

    Woods J, Lynd LR; Laser, M; Batistella M, De Castro D; Kline, Keith L; Faaij, Andre

    2015-01-01

    In this chapter we address the questions of whether and how enough biomass could be produced to make a material contribution to global energy supply on a scale and timeline that is consistent with prominent low carbon energy scenarios. We assess whether bioenergy provision necessarily conflicts with priority ecosystem services including food security for the world s poor and vulnerable populations. In order to evaluate the potential land demand for bioenergy, we developed a set of three illustrative scenarios using specified growth rates for each bioenergy sub-sector. In these illustrative scenarios, bioenergy (traditional and modern) increases from 62 EJ/yr in 2010 to 100, 150 and 200 EJ/yr in 2050. Traditional bioenergy grows slowly, increasing by between 0.75% and 1% per year, from 40 EJ/yr in 2010 to 50 or 60 EJ/ yr in 2050, continuing as the dominant form of bioenergy until at least 2020. Across the three scenarios, total land demand is estimated to increase by between 52 and 200 Mha which can be compared with a range of potential land availability estimates from the literature of between 240 million hectares to over 1 billion hectares. Biomass feedstocks arise from combinations of residues and wastes, energy cropping and increased efficiency in supply chains for energy, food and materials. In addition, biomass has the unique capability of providing solid, liquid and gaseous forms of modern energy carriers that can be transformed into analogues to existing fuels. Because photosynthesis fixes carbon dioxide from the atmosphere, biomass supply chains can be configured to store at least some of the fixed carbon in forms or ways that it will not be reemitted to the atmosphere for considerable periods of time, so-called negative emissions pathways. These attributes provide opportunities for bioenergy policies to promote longterm and sustainable options for the supply of energy for the foreseeable future.

  12. Residential Retrofit Design Guide Overview

    Office of Energy Efficiency and Renewable Energy (EERE)

    This webinar covered the Residential Retrofit Program Design Guide and its elements, including assess, plan, implement, and evaluate.

  13. Factors contributing to carbon fluxes from bioenergy harvests in the U.S. Northeast: an analysis using

    E-Print Network [OSTI]

    Keeton, William S.

    of fossil fuels for energy production (`bioenergy' such as combusting woodchips or pellets for electricity

  14. IEA Bioenergy Task 42 on Biorefineries: Co-production of fuels, chemicals, power and materials from biomass

    E-Print Network [OSTI]

    : national bioenergy production, non-energetic biomass use, bioenergy related policy goals, national oil1 IEA Bioenergy Task 42 on Biorefineries: Co-production of fuels, chemicals, power and materials developed by the members of IEA Bioenergy Task 42 on Biorefinery: Co-production of Fuels, Chemicals, Power

  15. Electricity savings potentials in the residential sector of Bahrain

    SciTech Connect (OSTI)

    Akbari, H.; Morsy, M.G.; Al-Baharna, N.S.

    1996-08-01

    Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to the peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.

  16. STORM WATER Residential

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    STORM WATER QUALITY HOTLINE UCSC Residential Car Washing http THAT MAY CAUSE ENVIRONMENTAL HARM TO THE STORM WATER QUALITY HOTLINE: (831) 459-2553. LIKE US ON FACEBOOK AT UCSC STORM WATER MANAGEMENT PROGRAM! DID YOU KNOW? PRACTICAL SOLUTIONS > USE A COMMERCIAL CAR WASH

  17. Residential Mechanical Precooling

    SciTech Connect (OSTI)

    German, a.; Hoeschele, M.

    2014-12-01

    This research conducted by the Alliance for Residential Building Innovation team evaluated mechanical air conditioner pre-cooling strategies in homes throughout the United States. EnergyPlus modeling evaluated two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes.

  18. Berkeley Program Offers New Option for Financing Residential PV Systems

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01

    Vehicle for Residential PV Installations: Opportunities andfor Financing Residential PV Systems Mark Bolinger, Lawrencefor residential photovoltaic (PV) systems. Though financing

  19. Application and Design of Residential Building Energy Saving in Cold Climates†

    E-Print Network [OSTI]

    Li, Z.; Li, D.; Mei, S.; Zhang, G.; Liu, J.

    2006-01-01

    Climate is the one of main considerations for residential building design since the green and energy saving building has become the trend in the building industry. China is actively popularizing high energy-effective and environment harmonious...

  20. Variable-Speed, Low-Cost Motor for Residential HVAC Systems ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC Systems Variable-Speed, Low-Cost Motor for Residential HVAC Systems Lower-Cost, Variable-Speed Electric Motor Improves Energy Efficiency In 2011, the U.S. industrial,...

  1. Residential Retrofit Program Design Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide. Residential Retrofit Program Design Guide More...

  2. Environmental Life Cycle Comparison of Algae to Other Bioenergy

    E-Print Network [OSTI]

    Clarens, Andres

    Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks A N D R E S F . C L A R December 6, 2009. Accepted December 15, 2009. Algae are an attractive source of biomass energy since. In spite of these advantages, algae cultivation has not yet been compared with conventional crops from

  3. HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Bioenergy Research

    E-Print Network [OSTI]

    Starch Fiber Oil Hydrolysis Transesterification Combustion Gasification Pyrolysis Ethanol Biodiesel Production - CTAHR Gasification & Contaminant Removal - HNEI Technology Assessment Fuel Fit for Purpose, banagrass, Eucalyptus, and Leucaena. Biomass and Bioenergy. 33 pp. 247-254. Chillingworth, M. and S.Q. Turn

  4. Evaluating ecosystem processes in willow short rotation coppice bioenergy plantations

    E-Print Network [OSTI]

    and alternative land-uses: arable and set-aside (agricultural land taken out of production). We deployed litter cultivation of biomass for biofuels (trans- port fuels) and bioenergy (heat and power) has pro- voked much of the northern hemisphere, how- ever, a small, but growing proportion of biomass crops consist of tree species

  5. HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Bioenergy Research

    E-Print Network [OSTI]

    HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Bioenergy Research Hawaii Natural Energy Institute Briefing for Rear Admiral Matthew Klunder Chief of Naval Research Hawaii Natural Energy Institute University of Hawaii September 7, 2012 #12;Corn Sweet Sorghum Sugarcane Guinea Grass Banagrass Eucalyptus

  6. Bioenergy in a Multifunctional Landscape- Text-Alt Version

    Broader source: Energy.gov [DOE]

    How can our landscapes be managed most effectively to produce crops for food, feed, and bioenergy, while also protecting our water resources by preventing the loss of nutrients from the soil? Dr. Cristina Negri and her team at the U.S. Department of Energyís Argonne National Laboratory are tackling this question at an agricultural research site located in Fairbury, Illinois.

  7. Bioenergy Technologies Office Releases Symbiosis Biofeedstock Conference Summary Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Bioenergy Technologies Office (BETO) hosted the two-day Symbiosis Biofeedstock ConferenceĚ at Cornell University in Ithaca, New York, on June 20-??21, 2013. The conference brought together diverse members of the public, private, and academic sectors to explore the challenges and opportunities associated with expanding the commercial use of microbial-based products to increase biofeedstock production.

  8. MAGLUE: Measurement and Analysis of bioenergy greenhouse gases: Integrating GHGs

    E-Print Network [OSTI]

    sensors Temp and Rh probe Quantum sensor Rain gauge Wind monitor Soil meta-bar coding and meta by the Energy Technologies Institute (ETI). The Consortium are partners are: ∑ Centre for Ecology and Hydrology and their impact on the UK energy system Integrating GHGs into LCAs and the UK Bioenergy Value Chain Modelling

  9. Review of Bioenergy Research A report for BBSRC Strategy Board

    E-Print Network [OSTI]

    Edinburgh, University of

    as part of a multi-faceted low-carbon solution for the UK's future energy supply. There are powerful, longReview of Bioenergy Research A report for BBSRC Strategy Board March 2006 [© BBSRC, 2006] 1 #12 Summary ________________________________________________________ 4 CHAPTER 1: DRIVERS FOR RENEWABLE ENERGY

  10. Bioenergy Technologies Office Multi-Year Program Plan: July 2014

    SciTech Connect (OSTI)

    none,

    2014-07-09

    This is the May 2014 Update to the Bioenergy Technologies Office Multi-Year Program Plan, which sets forth the goals and structure of the Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation.

  11. Bioenergy and land-use competition in Northeast Brazil

    E-Print Network [OSTI]

    Bioenergy and land-use competition in Northeast Brazil Christian Azar Department of Physical of Brazil on "good" versus "bad" lands is investigated. It is shown that the value of the higher yields) lands. The focus of the analysis is on the Northeast of Brazil (NE), where the prospects for dedicated

  12. Bioenergy to Biodiversity: Downscaling scenarios of land use change†

    E-Print Network [OSTI]

    MacKenzie, Ian

    2009-11-26

    Bioenergy crops are a key component of Scotlandís strategy to meet 2050 carbon emissions targets. The introduction of these crops could have large scale impacts on the biodiversity of lowland farmland. These impacts depend on the change in land use...

  13. Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 1: Part 1, Electricity supply sector; Part 2, Residential and commercial buildings sector; Part 3, Industrial sector

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    DOE encourages you to report your achievements in reducing greenhouse gas emissions and sequestering carbon under this program. Global climate change is increasingly being recognized as a threat that individuals and organizations can take action against. If you are among those taking action, reporting your projects may lead to recognition for you, motivation for others, and synergistic learning for the global community. This report discusses the reporting process for the voluntary detailed guidance in the sectoral supporting documents for electricity supply, residential and commercial buildings, industry, transportation, forestry, and agriculture. You may have reportable projects in several sectors; you may report them separately or capture and report the total effects on an entity-wide report.

  14. Center for BioEnergy Sustainability http://www.ornl.gov/cbes/ Bioenergy, Sustainability, and Land-Use Change Report

    E-Print Network [OSTI]

    Pennycook, Steve

    versus coal. March 23-27 ≠ Several ORNL researchers participated in the Department of Energy's BioEnergy Technologies Office (BETO) 2015 Project Peer Review in Alexandria, Virginia. The following presentations were Durability Relationships for Improved Low-Cost Clean Cookstoves by Tim Theiss Increasing Biofuel Deployment

  15. Opportunities and barriers for sustainable international bioenergy trade and strategies to overcome them -A report prepared by IEA Bioenergy Task 40

    E-Print Network [OSTI]

    them - A report prepared by IEA Bioenergy Task 40 1 Opportunities and barriers for sustainable Ryckmans, Martijn Wagener, Arnaldo Walter, Jeremy Woods. For more information of IEA Bioenergy Task 40 recommends to the IEA, UNCTAD, WTO and national trade organisation to include (new) biomass types

  16. UES (Electric)- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    UniSource Energy Services (UES) offers rebates to its residential customers who have certain energy efficient equipment installed by participating contractors. The rebate is provided directly to...

  17. Efficient Residential Water Heaters Webinar

    Broader source: Energy.gov [DOE]

    A webinar by Jerone Gagliano, director of Energy Engineering Performance Systems Development, about residential water heating technology and how to choose the right water heater.

  18. Nebraska's Cattle Feeding Industry: Size, Structure and Related Industries

    E-Print Network [OSTI]

    Farritor, Shane

    growing production of distillers grains and other feed byproducts from bio-energy produc- tion plants

  19. SRP- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    SRP's Residential Energy Efficiency Rebate Program is designed to encourage residential SRP customers to utilize energy efficient appliances and measures at home. Rebates and discounts are...

  20. Solar Now! Residential Brochure | Department of Energy

    Energy Savers [EERE]

    Information Resources Solar Now Residential Brochure Solar Now Residential Brochure Four Oregon organizations have teamed up to help Oregon homeowners learn about and install...

  1. Guide for Benchmarking Residential Energy Efficiency Program...

    Broader source: Energy.gov (indexed) [DOE]

    Guide for Benchmarking Residential Energy Efficiency Program Progress as part of the DOE Better Buildings Program. Guide for Benchmarking Residential Energy Efficiency Program...

  2. Does Mixing Make Residential Ventilation More Effective?

    E-Print Network [OSTI]

    Sherman, Max

    2011-01-01

    Does Mixing Make Residential Ventilation More Effective? Maxmanufacturer, or otherwise, does not necessarily constitutethe University of California. Does Mixing Make Residential

  3. National Residential Efficiency Measures Database - Building...

    Energy Savers [EERE]

    National Residential Efficiency Measures Database - Building America Top Innovation National Residential Efficiency Measures Database - Building America Top Innovation Image of a...

  4. Residential Energy Efficiency Research Planning Meeting Summary...

    Energy Savers [EERE]

    Residential Energy Efficiency Research Planning Meeting Summary Report Residential Energy Efficiency Research Planning Meeting Summary Report This report summarizes key findings...

  5. Building America Residential Energy Efficiency Technical Update...

    Broader source: Energy.gov (indexed) [DOE]

    Update meeting in August 2011, held in Denver, Colorado. 2011 Residential Energy Efficiency Technical Update Meeting More Documents & Publications 2011 Residential Energy...

  6. Laboratory Performance Testing of Residential Window Mounted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Performance Testing of Residential Window Mounted Air Conditioners Laboratory Performance Testing of Residential Window Mounted Air Conditioners This presentation was...

  7. El Paso Electric Company- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    EPE offers incentives to residential customers in its New Mexico service territory that purchase and install high efficiency equipment for residential use. Eligible equipment includes air...

  8. Residential Water Heaters Webinar

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From: v2.7| DepartmentMultifamily Residential Low Income<

  9. Residential | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy RFPsLtdEnergyResidential

  10. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014 Residential propane price

  11. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014 Residential propane price1,

  12. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014 Residential propane

  13. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014 Residential propane4, 2015

  14. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014 Residential propane4, 2015

  15. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014 Residential propane4,

  16. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014 Residential

  17. Webinar: Using the New Bioenergy KDF for Data Discovery and Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    other advanced biofuels such as hydrocarbon fuels (renewable gasoline, diesel, jet fuel), algae-derived biofuels, and biobutanol. The Bioenergy Technologies Office forms...

  18. Garnering the Industrial Sector: A Comparison of Cutting Edge Industrial DSM Programs†

    E-Print Network [OSTI]

    Kyricopoulos, P. F.; Wikler, G. A.; Faruqui, A.; Wood, B. G.

    1995-01-01

    The industrial sector has posed a daunting DSM challenge to utilities throughout North America, even to those with successful and creative residential and commercial DSM programs. Most utilities have had great difficulty ...

  19. Ecological objectives can be achieved with wood-derived bioenergy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dale, Virginia H.; Kline, Keith L.; Marland, Gregg; Miner, Reid A.

    2015-08-01

    Renewable, biomass-based energy options can reduce the climate impacts of fossil fuels. However, calculating the effects of wood-derived bioenergy on greenhouse gases (GHGs), and thus on climate, is complicated (Miner et al. 2015). To clarify concerns and options about bioenergy, in November 2014, the US Environmental Protection Agency (EPA) produced a second draft of its Framework for Assessing Biogenic CO2 Emissions fromStationary Sources (http://1.usa.gov/1dikgHq), which considers the latest scientific information and input from stakeholders. In addition, the EPA is expected to make decisions soon about the use of woody biomass under the Clean Power Plan, which sets targets for carbonmore†Ľpollution from power plants.ę†less

  20. Bioenergy Feedstock Library and Least-Cost Formulation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy|Make Fuels and ChemicalsEnergyBioenergy

  1. Bioenergy Technologies Office FY 2015 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy|Make Fuels andfor itsEnergyandBioenergy

  2. U.S. DEPARTMENT OF ENERGY BIOENERGY TECHNOLOGIES OFFICE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsStateof Energy| Department ofAttacks2 FEE0000156BIOENERGY

  3. Bioenergy Technologies FY14 Budget At-a-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, IncBio Centers Announcement at theproduce∆ą BIOENERGY

  4. Bioenergy Technologies Office Fiscal Year 2014 Annual Report | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, IncBio Centers Announcement atof Energy Bioenergy

  5. Building America Technology Solutions for New and Existing Homes: Optimizing Hydronic System Performance in Residential Applications (Fact Sheet)

    Broader source: Energy.gov [DOE]

    In this project, researchers from the Consortium for Advanced Residential Buildings team worked with industry partners to develop hydronic system designs that would address performance issues and result in higher overall system efficiencies and improved response times.

  6. Advancing Residential Energy Retrofits

    SciTech Connect (OSTI)

    Jackson, Roderick K [ORNL; Boudreaux, Philip R [ORNL; Kim, Eyu-Jin [Southface Energy Institute; Roberts, Sydney [Southface Energy Institute

    2012-01-01

    To advance the market penetration of residential retrofits, Oak Ridge National Laboratory (ORNL) and Southface Energy Institute (Southface) partnered to provide technical assistance on nine home energy retrofits in metropolitan Atlanta with simulated source energy savings of 30% to 50%. Retrofit measures included duct sealing, air infiltration reductions, attic sealing and roofline insulation, crawlspace sealing, HVAC and water heating equipment replacement, and lighting and appliance upgrades. This paper will present a summary of these measures and their associated impacts on important home performance metrics, such as air infiltration and duct leakage. The average estimated source energy savings for the homes is 33%, and the actual heating season average savings is 32%. Additionally, a case study describing expected and realized energy savings of completed retrofit measures of one of the homes is described in this paper.

  7. Calculation of Nox Emissions Reductions from Energy Efficient Residential Building Construction in Texas†

    E-Print Network [OSTI]

    Haberl, J.; Culp, C.; Gilman, D.; Baltazar-Cervantes, J. C.; Yazdani, B.; Fitzpatrick, T.; Muns, S.; Verdict, M.

    2004-01-01

    severe sanctions if attainment is not reached by 2007. This paper provides an overview of the procedures that have been developed and used to calculate the electricity savings and NOx reductions from code-compliant residential construction in non...,000 ft2 single-family residence. ESL Code Traceable DOE-2 Simulation (Residential, Commercial, Industrial, Renewables) County-wide Electricity Use (w/ and w/o code) E-GRID Database Model For ERCOT, SERC, SPP, and WSCC Regions 1999 Building...

  8. Ris Energy Report 2 Bioenergy is energy of biological and renewable origin,

    E-Print Network [OSTI]

    of bioenergy in the industrialised coun- tries, on the other hand, varies from 4% in the USA to 20% in Finland; ∑ electricity supply; and ∑ heating. In the transport sector, biodiesel produced from veg- etable oils could. For electricity production, the use of bioenergy crops is an effective way to mitigate the greenhouse effect

  9. How ambitious can we be in contributing to the world's energy needs with bioenergy,

    E-Print Network [OSTI]

    How ambitious can we be in contributing to the world's energy needs with bioenergy, wind, solar on Sustainable Energies, Technical University of Denmark, 14 ≠ 15 January 2009 #12;Editor: Henrik Bindslev Title: How ambitious can we be in contributing to the world's energy needs with bioenergy, wind, solar

  10. Using Pyrolysis to Convert Unused Urban Biotic Material into Bioenergy and Biochar

    E-Print Network [OSTI]

    Wolberg, George

    Using Pyrolysis to Convert Unused Urban Biotic Material into Bioenergy and Biochar Objective of pyrolysis (low-temperature anaerobic burning) that will generate bio-energy as well as biochar for enriching-explored technology is pyrolysis. Pyrolysis is a low temperature, anaerobic process that avoids incineration

  11. RESEARCH Open Access Short and long-term carbon balance of bioenergy

    E-Print Network [OSTI]

    by offsetting fossil fuel electricity generation emissions, and potentially by avoided pyrogenic emissions dueRESEARCH Open Access Short and long-term carbon balance of bioenergy electricity production fueled bioenergy electricity production are offset by avoided fossil fuel electricity emissions. The carbon benefit

  12. Bio-energy Logistics Network Design Under Price-based Supply and Yield Uncertainty†

    E-Print Network [OSTI]

    Memisoglu, Gokhan

    2014-12-10

    In this dissertation, we study the design and planning of bio-energy supply chain networks. This dissertation consists of 3 studies that focus on different aspects of bio-energy supply chain systems. In the first study, we consider planning...

  13. Water and energy footprints of bioenergy crop production on marginal lands

    E-Print Network [OSTI]

    Chen, Jiquan

    of Zoology, Michigan State University, East Lansing, MI 48824, USA Abstract Water and energy demandsWater and energy footprints of bioenergy crop production on marginal lands A . K . B H A R D WA J and S . K . H A M I LT O N *w} *Great Lakes Bioenergy Research Center, Michigan State University, East

  14. Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar

    E-Print Network [OSTI]

    2007-01-01

    Biomass and Bioenergy 31 (2007) 646≠655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

  15. Residential Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

  16. CONSULTANT REPORT 2009 CALIFORNIA RESIDENTIAL

    E-Print Network [OSTI]

    . Data collection was completed in early 2010. The study yielded energy consumption estimates for 27 statistical methods to combine survey data, household energy consumption data and weather information Commission, conditional demand analysis, CDA, unit energy consumption, UEC, residential, appliance

  17. RESIDENTIAL VENTILATION AND ENERGY CHARACTERISTICS*

    E-Print Network [OSTI]

    best available data, the energy liability as- sociated with providing the current levels of ventilationRESIDENTIAL VENTILATION AND ENERGY CHARACTERISTICS* Max Sherman Nance Matson Energy Performance of Buildings Group Energy and Environment Division Lawrence Berkeley Laboratory University of California

  18. What Explains Manhattan's Declining Share of Residential Construction?

    E-Print Network [OSTI]

    DAVIDOFF, THOMAS

    2007-01-01

    Share of Residential Construction? Thomas Davido? ? June 20,market. Residential construction in Manhattan has fallento total US residential construction over the last 45 years.

  19. Investigation of residential central air conditioning load shapes in NEMS

    E-Print Network [OSTI]

    Hamachi LaCommare, Kristina; Marnay, Chris; Gumerman, Etan; Chan, Peter; Rosenquist, Greg; Osborn, Julie

    2002-01-01

    of Residential Central Air Conditioning Load Shapes in NEMSof Residential Central Air Conditioning Load Shapes in NEMSof Residential Central Air Conditioning Load Shapes in NEMS

  20. Fort Collins Utilities - Residential and Small Commercial Appliance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential and Small Commercial Appliance Rebate Program Fort Collins Utilities - Residential and Small Commercial Appliance Rebate Program < Back Eligibility Residential Savings...

  1. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01

    2007). Coping with Residential Electricity Demand in India'sResidential Electricity Demand in China ĖCan EfficiencyBoom of Electricity Demand in the residential sector in the

  2. Residential water use and landscape vegetation dynamics in Los Angeles

    E-Print Network [OSTI]

    Mini, Caroline

    2013-01-01

    Reidy, K. (2008). Residential Water Demand Management:Estimation of residential water demand: a state-of-the-art2009, Determinants of residential water demand in Germany,

  3. PowerChoice Residential Customer Response to TOU Rates

    E-Print Network [OSTI]

    Peters, Jane S.

    2010-01-01

    New Evidence on Residential Demand Response. Ē May 11.past studies on residential demand response have examinedpast studies on residential demand response have examined

  4. Residential Retrofit Program Design Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide This Residential Retrofit Program Design Guide focuses on the key elements and design...

  5. Tracking the Sun VIII: The Installed Price of Residential and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tracking the Sun VIII: The Installed Price of Residential and Non-Residential Photovoltaic Systems in the United States Tracking the Sun VIII: The Installed Price of Residential...

  6. Practical Diagnostics for Evaluating Residential Commissioning Metrics

    SciTech Connect (OSTI)

    Wray, Craig; Walker, Iain; Siegel, Jeff; Sherman, Max

    2002-06-11

    In this report, we identify and describe 24 practical diagnostics that are ready now to evaluate residential commissioning metrics, and that we expect to include in the commissioning guide. Our discussion in the main body of this report is limited to existing diagnostics in areas of particular concern with significant interactions: envelope and HVAC systems. These areas include insulation quality, windows, airtightness, envelope moisture, fan and duct system airflows, duct leakage, cooling equipment charge, and combustion appliance backdrafting with spillage. Appendix C describes the 83 other diagnostics that we have examined in the course of this project, but that are not ready or are inappropriate for residential commissioning. Combined with Appendix B, Table 1 in the main body of the report summarizes the advantages and disadvantages of all 107 diagnostics. We first describe what residential commissioning is, its characteristic elements, and how one might structure its process. Our intent in this discussion is to formulate and clarify these issues, but is largely preliminary because such a practice does not yet exist. Subsequent sections of the report describe metrics one can use in residential commissioning, along with the consolidated set of 24 practical diagnostics that the building industry can use now to evaluate them. Where possible, we also discuss the accuracy and usability of diagnostics, based on recent laboratory work and field studies by LBNL staff and others in more than 100 houses. These studies concentrate on evaluating diagnostics in the following four areas: the DeltaQ duct leakage test, air-handler airflow tests, supply and return grille airflow tests, and refrigerant charge tests. Appendix A describes those efforts in detail. In addition, where possible, we identify the costs to purchase diagnostic equipment and the amount of time required to conduct the diagnostics. Table 1 summarizes these data. Individual equipment costs for the 24 practical diagnostics range from a few hundred dollars to many thousands of dollars. The higher costs are associated with infrared thermography and state-of-the-art automated diagnostic systems. Most tests can be performed in one hour or less, using equipment priced toward the lower end of the cost spectrum.

  7. Residential Transactive Control Demonstration

    SciTech Connect (OSTI)

    Widergren, Steven E.; Fuller, Jason C.; Marinovici, Maria C.; Somani, Abhishek

    2014-02-19

    Arguably the most exciting aspect of the smart grid vision is the full participation of end-use resources with all forms of generation and energy storage in the reliable and efficient operation of an electric power system. Engaging all of these resources in a collaborative manner that respects the objectives of each resource, is sensitive to the system and local constraints of electricity flow, and scales to the large number of devices and systems participating is a grand challenge. Distributed decision-making system approaches have been presented and experimentation is underway. This paper reports on the preliminary findings of a residential demand response demonstration that uses the bidding transactions of supply and end-use air conditioning resources communicating with a real-time, 5 minute market to balance the various needs of the participants on a distribution feeder. The nature of the demonstration, the value streams being explored, and the operational scenarios implemented to characterize the system response are summarized along with preliminary findings.

  8. UNEP-Bioenergy Decision Support Tool | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: EnergyU.S. EPA Region 10 Jump3 -LowUNEP-Bioenergy

  9. Golbal Economic and Environmental Impacts of Increased Bioenergy Production

    SciTech Connect (OSTI)

    Wallace Tyner

    2012-05-30

    The project had three main objectives: to build and incorporate an explicit biomass energy sector within the GTAP analytical framework and data base; to provide an analysis of the impact of renewable fuel standards and other policies in the U.S. and E.U, as well as alternative biofuel policies in other parts of the world, on changes in production, prices, consumption, trade and poverty; and to evaluate environmental impacts of alternative policies for bioenergy development. Progress and outputs related to each objective are reported.

  10. Guangxi Funan Bioenergy Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,Solar JumpInformationGrowindFunan Bioenergy Co Ltd Jump

  11. Guofu Bioenergy Science Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,SolarFERC HydroelectricGuofu Bioenergy Science Technology Co

  12. Anhui Yineng Bioenergy Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to: navigation, searchAmmonixMassachusetts:Yineng Bioenergy

  13. Track Bioenergy Legislation with New Web Tool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternational Affairs,Department ofARPA-E Top 10 ThingsTrack Bioenergy Legislation

  14. Chongqing Dianfeng Bioenergy Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR JumpMaine:WestTexas:Chittenango, NewDianfeng Bioenergy Power Co

  15. Bioenergy Technologies Office Judges Washington State University Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUSEnergy|| Department-AnnualBIOENERGY

  16. Fact Sheet: Bioenergy Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14, 20111,FY 2007TrafficDepartmentin 2014FactBioenergy

  17. Bioenergy Technologies Office FY 2016 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETO Quiz -TechnologiesRubricToolkit61BIOENERGY

  18. Goal Practice & Experience: Status Quo and Future for Industrial Scale Biomass Energy Development in China

    Broader source: Energy.gov [DOE]

    Breakout Session 3DóFostering Technology Adoption III: International Market Opportunities in Bioenergy Goal Practice & Experience : Status Quo and Future for Industrial Scale Biomass Energy Development in China Huiyong Zhuang, Research Professor, National Energy Research Center of Liquid Biofuel, National Bio Energy Co., Ltd.

  19. Better Buildings Residential Network Reporting and Benefits Template

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Reporting and Benefits Template, from the U.S. Department of Energy Better Buildings Residential Network.

  20. Better Buildings Residential Network Reporting and Benefits FAQ

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Reporting and Benefits FAQ, from the U.S. Department of Energy Better Buildings Residential Network.

  1. Questions Asked during the Financing Residential Energy Efficiency...

    Energy Savers [EERE]

    Energy Efficiency with Carbon Offsets Transcript Financing Residential Energy Efficiency with Carbon Offsets SERC Photovoltaics for Residential Buildings Webinar Transcript...

  2. Residential Energy Efficiency Solutions: From Innovation to Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Energy Efficiency Solutions: From Innovation to Market Transformation Conference, July 2012 Residential Energy Efficiency Solutions: From Innovation to Market...

  3. Better Buildings Residential Network Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manager, Energy Smart Colorado Madeline Priest, Residential Programs Associate, Connecticut Green Bank (Clean Energy Finance and Investment Authority) - Residential Network...

  4. Empire District Electric- Commercial & Industrial Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    The Empire District Electric Company offers a Commercial/Industrial Prescriptive Rebate Program to its non-residential customers in Arkansas who purchase certain high-efficiency equipment for...

  5. Piedmont Natural Gas- Residential Equipment Efficiency Program

    Broader source: Energy.gov [DOE]

    Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 201-Residential Service Rate or 221-Residential Service...

  6. Edmond Electric- Residential Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Edmond Electric offers rebates to residential customers who install energy-efficient heat pumps. This program applies to installations in both new and existing residential homes and complexes. Air...

  7. Residential Load Management Program and Pilot†

    E-Print Network [OSTI]

    Haverlah, D.; Riordon, K.

    1994-01-01

    In 1986 LCRA embarked on residential load management to control peak summer loads. At that time, LCRA was considered a summer peaking utility, and residential air conditioning and water heating systems were selected for control. The program...

  8. Energy Efficiency Program for Residential Products: Energy Conservation Standards for Residential Dishwashers, Reopening of the Comment Period

    Broader source: Energy.gov [DOE]

    Energy Efficiency Program for Residential Products: Energy Conservation Standards for Residential Dishwashers, Reopening of the Comment Period

  9. Residential Retrofit Program Design Guide Overview Transcript...

    Energy Savers [EERE]

    Overview Sustainable Energy Resources for Consumers Webinar on Residential Geothermal Heat Pump Retrofit Transcript Weatherization & Intergovernmental Programs Office Home...

  10. A Landscape Design for Bioenergy Cropping Options Need for a Landscape Design

    E-Print Network [OSTI]

    . Several technological pathways connect the various biomass sources to diverse forms of bioenergy (fuels this approach addresses the questions of biofuel selection and deployment. These objectives are being addressed

  11. Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ex-Situ Catalytic Fast Pyrolysis Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic Fast Pyrolysis In ex-situ catalytic fast pyrolysis, biomass is heated with catalysts...

  12. Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In-Situ Catalytic Fast Pyrolysis Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic Fast Pyrolysis The in-situ catalytic fast pyrolysis pathway involves rapidly heating...

  13. GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks

    Broader source: Energy.gov [DOE]

    Breakout Session 2DóBuilding Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks Michael Wang, Senior Scientist, Energy Systems, Argonne National Laboratory

  14. BIOENERGY/BIOFUELS/BIOCHEMICALS Chromatographic determination of 1, 4-b-xylooligosaccharides

    E-Print Network [OSTI]

    California at Riverside, University of

    BIOENERGY/BIOFUELS/BIOCHEMICALS Chromatographic determination of 1, 4-b For the majority of lignocellulosic feedstocks for produc- tion of bioethanol and other biofuels, heteroxylans activity [22] or further hydrolyzed into fermentable sugars as platform molecules for biofuels [23

  15. Bioenergy Demand in a Market Driven Forest Economy (U.S. South)

    Broader source: Energy.gov [DOE]

    Breakout Session 1A: Biomass Feedstocks for the Bioeconomy Bioenergy Demand in a Market Driven Forest Economy (U.S. South) Robert C. Abt, Professor of Natural Resource Economics and Management, North Carolina State University

  16. Residential Fire Safety Policies Introduction

    E-Print Network [OSTI]

    Johnson Jr.,, Ray

    Residential Fire Safety Policies Introduction University Housing and Campus Code Compliance and Fire Safety at the City University of New York at Queens College in compliance with the Higher Education Opportunity Act (HEOA) have developed an annual fire safety report. This document summarizes

  17. System design and dynamic signature identification for intelligent energy management in residential buildings.

    E-Print Network [OSTI]

    Jang, Jaehwi

    2008-01-01

    for Intelligent Energy Management in Residential Buildingsfor Intelligent Energy Management in Residential Buildingsthat can provide autonomous energy management to residential

  18. Energy Consumption Characteristics of Light Manufacturing Facilities in The Northern Plains: A Study of Detailed Data from 10 Industrial Energy Audits Conducted in 1993†

    E-Print Network [OSTI]

    Twedt, M.; Bassett, K.

    1994-01-01

    Extensive research has been done on residential and commercial applications of existing technologies for energy conservation. This study specifically examines industrial facilities for energy consumption profiles and ...

  19. Advancing sustainable bioenergy: Evolving stakeholder interests and the relevance of research

    SciTech Connect (OSTI)

    Johnson, Timothy L [U.S. Environmental Protection Agency, Raleigh, North Carolina; Bielicki, Dr Jeffrey M [University of Minnesota; Dodder, Rebecca [U.S. Environmental Protection Agency; Hilliard, Michael R [ORNL; Kaplan, Ozge [U.S. Environmental Protection Agency; Miller, C. Andy [U.S. Environmental Protection Agency

    2013-01-01

    The sustainability of future bioenergy production rests on more than continual improvements in its environmental, economic, and social impacts. The emergence of new biomass feedstocks, an expanding array of conversion pathways, and expected increases in overall bioenergy production are connecting diverse technical, social, and policy communities. These stakeholder groups have different and potentially conflicting values and cultures, and therefore different goals and decision making processes. Our aim is to discuss the implications of this diversity for bioenergy researchers. The paper begins with a discussion of bioenergy stakeholder groups and their varied interests, and illustrates how this diversity complicates efforts to define and promote sustainable bioenergy production. We then discuss what this diversity means for research practice. Researchers, we note, should be aware of stakeholder values, information needs, and the factors affecting stakeholder decision making if the knowledge they generate is to reach its widest potential use. We point out how stakeholder participation in research can increase the relevance of its products, and argue that stakeholder values should inform research questions and the choice of analytical assumptions. Finally, we make the case that additional natural science and technical research alone will not advance sustainable bioenergy production, and that important research gaps relate to understanding stakeholder decision making and the need, from a broader social science perspective, to develop processes to identify and accommodate different value systems. While sustainability requires more than improved scientific and technical understanding, the need to understand stakeholder values and manage diversity presents important research opportunities.

  20. Environmental and economic evaluation of bioenergy in Ontario, Canada

    SciTech Connect (OSTI)

    Yimin Zhang; Shiva Habibi; Heather L. MacLean [University of Toronto, Toronto, ON (Canada)

    2007-08-15

    We examined life cycle environmental and economic implications of two near-term scenarios for converting cellulosic biomass to energy, generating electricity from cofiring biomass in existing coal power plants, and producing ethanol from biomass in stand-alone facilities in Ontario, Canada. The study inventories near-term biomass supply in the province, quantifies environmental metrics associated with the use of agricultural residues for producing electricity and ethanol, determines the incremental costs of switching from fossil fuels to biomass, and compares the cost-effectiveness of greenhouse gas (GHG) and air pollutant emissions abatement achieved through the use of the bioenergy. Implementing a biomass cofiring rate of 10% in existing coal-fired power plants would reduce annual GHG emissions by 2.3 million metric tons (t) of CO{sub 2} equivalent (7% of the province's coal power plant emissions). The substitution of gasoline with ethanol/gasoline blends would reduce annual provincial light-duty vehicle fleet emissions between 1.3 and 2.5 million t of CO{sub 2} equivalent (3.5-7% of fleet emissions). If biomass sources other than agricultural residues were used, additional emissions reductions could be realized. At current crude oil prices ($70/barrel) and levels of technology development of the bioenergy alternatives, the biomass electricity cofiring scenario analyzed is more cost-effective for mitigating GHG emissions ($22/t of CO{sub 2} equivalent for a 10% cofiring rate) than the stand-alone ethanol production scenario ($92/t of CO{sub 2} equivalent). 67 refs., 5 figs., 7 tabs.

  1. Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection

    E-Print Network [OSTI]

    Porter, WC; Rosenstiel, TN; Guenther, A; Lamarque, J-F; Barsanti, K

    2015-01-01

    of future total biomass energy production potentials arean attractive option for biomass-based energy production incharacteristics and energy balance Biomass Bioenergy 33 635Ė

  2. Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection

    E-Print Network [OSTI]

    Porter, WC; Rosenstiel, TN; Guenther, A; Lamarque, J-F; Barsanti, K

    2015-01-01

    bioenergy crops such as eucalyptus, giant reed, anduse of crops such as poplar, eucalyptus, and switchgrass asemitters such as eucalyptus. The com- bined health bene?ts

  3. Hawaii Bioenergy Master Plan State, County, and Federal

    E-Print Network [OSTI]

    ...............................................................................................................44 2.7.11 Bioethanol and the Ethanol Industry Today

  4. Residential Energy Simulation and Scheduling: A Case Study Approach Jagannathan Venkatesh, Baris Aksanli, Tajana Simuni Rosing

    E-Print Network [OSTI]

    Simunic, Tajana

    or by providing energy information to consumers. Industrial innovations are focused on energy efficiency, green energy, residential energy management, smart scheduling I. INTRODUCTION Building energy in the hands of users. [3] presents automated energy efficiency improvement in homes that are partially powered

  5. Residential Retrofit Program Design Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct.7, 2015VerizonResidentialRebateTaxfor theRenewable

  6. Measured Performance of Residential Dehumidifiers Under Cyclic Operation

    SciTech Connect (OSTI)

    Winkler, J.; Christensen, D.; Tomerlin, J.

    2014-01-01

    Residential construction practices are progressing toward higher levels of energy efficiency. A proven strategy to save energy is to simultaneously increase building insulation levels and reduce outdoor air infiltration. Tight homes require intentional mechanical ventilation to ensure healthy indoor air. Overall, this strategy results in a shift in the mix of latent and sensible space conditioning loads, requiring proportionally more moisture to be removed compared to standard homes. There is currently not sufficient information available at a wide enough range of operating points to design dehumidification systems for high performance homes in hot-humid climates. The only industry information available on dehumidifier moisture removal and energy consumption are performance ratings conducted at a single test condition, which does not provide a full representation of dehumidifier operation under real-world conditions. Winkler et al. (2011) developed steady state performance maps to predict dehumidifier performance at a variety of indoor conditions. However, installed heating, ventilating, and air-conditioning (HVAC) equipment rarely operates at steady state. Part load performance testing of residential dehumidifiers is not mandated by current test standards. Therefore, we tested the part load performance of four residential dehumidifiers in the National Renewable Energy Laboratory's (NREL) Advanced HVAC Systems Laboratory . The part load efficiency of each dehumidifier was measured under 13 cycling scenarios, and combined with NREL field data to develop part load fraction (PLF) performance curves under realistic cycling scenarios.

  7. Evaluation of evolving residential electricity tariffs

    SciTech Connect (OSTI)

    Lai, Judy; DeForest, Nicholas; Kiliccote, Sila; Stadler, Michael; Marnay, Chris; Donadee, Jon

    2011-05-15

    Residential customers in California's Pacific Gas and Electric (PG&E) territory have seen several electricity rate structure changes in the past decade. This poster: examines the history of the residential pricing structure and key milestones; summarizes and analyzes the usage between 2006 and 2009 for different baseline/climate areas; discusses the residential electricity Smart Meter roll out; and compares sample bills for customers in two climates under the current pricing structure and also the future time of use (TOU) structure.

  8. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the National Pollutant Discharge Elimination System....

  9. National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry

    SciTech Connect (OSTI)

    David Roberts

    2012-01-01

    This technical highlight describes NREL research to develop a publicly available database of energy retrofit measures containing performance characteristics and cost estimates for nearly 3,000 measures.

  10. Better Buildings Residential Network Workforce/ Business Partners...

    Energy Savers [EERE]

    and Resources Call Slides and Discussion Summary August 14, 2014 Agenda Call Logistics and Introductions Residential Network and Peer Exchange Call Overview ...

  11. Clallam County PUD- Residential Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Clallam County PUD offers a variety of rebates for residential customers for energy efficiency improvements. Eligible measures and incentives include window upgrades, insulation, air and duct...

  12. Central Hudson Gas & Electric (Electric) - Residential Energy...

    Broader source: Energy.gov (indexed) [DOE]

    residential electric customers who upgrade heating, cooling or ventilation systems with specific types of energy efficient equipment. These rebates include efficient central air...

  13. Arkansas Oklahoma Gas (AOG) Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Arkansas Oklahoma Gas (AOG) provides financial incentives to its residential and small commercial customers for both existing and new construction homes and small business whose primary fuel for...

  14. Better Buildings Residential Network Program Sustainability Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Network Program Sustainability Peer Exchange Call: Operating as a Prime Contractor Call Slides and Discussion Summary Agenda - Operating as a Prime Contractor * Call...

  15. EWEB- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Eugene Water and Electric Board (EWEB) provides cash incentives to help residential customers increase the energy efficiency of homes through several different rebate programs. Rebates are provided...

  16. Fact Sheet: Better Buildings Residential Network | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Residential Network, increasing the number of American Homes that are energy efficient. BBRN Fact Sheet More Documents & Publications Fact Sheet - Better...

  17. Charlottesville Gas- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Charlottesville Gas offers rebates to residential customers for purchasing and installing specified energy efficient equipment. Rebates and utility bill credits of up to $100 are available for...

  18. RESIDENTIAL THERMOSTATS: COMFORT CONTROLS IN CALIFORNIA HOMES

    E-Print Network [OSTI]

    Meier, Alan K.

    2008-01-01

    for Residential Winter and Summer Air Conditioning.Air Conditioning Contractors of America. Washington, DC.refrigerating and Air-conditioning Engineers, Atlanta, GA.

  19. Florida Public Utilities- Residential HVAC Rebate Program

    Broader source: Energy.gov [DOE]

    Florida Public Utilities offers rebates to electric residential customers who improve the efficiency of homes. Central air conditioners and heat pumps which meet program requirements are eligible...

  20. East Central Electric Cooperative- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    East Central Electric Cooperative offers rebates to residential customers to install energy-efficient ground source heat pumps, electric water heaters, and appliances. To qualify for the rebate...

  1. CPS Energy- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    CPS Energy offers a variety of rebates for energy efficiency related improvements to residential homes, including: appliances, HVAC equipment, insulation, and equipment recycling.. Rebate...

  2. Clark Energy - Residential Energy Efficiency Rebate Programs...

    Broader source: Energy.gov (indexed) [DOE]

    Touchstone Energy Home with Air-SourceGeothermal Heat Pump: 250 - 750 Summary Clark Energy offers a free energy audit to provide residential customers with suggestions on ways...

  3. Consumers Energy (Gas)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Residential Income Qualified Energy Efficiency Program is working with existing Michigan Weatherization Assistance Program delivery to support weatherization providers with more funding for...

  4. Santee Cooper- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Santee Cooper, through its Reduce The Use program, provides rebates to residential customers for the purchase and installation of energy efficient equipment and measures. Rebates are available on...

  5. MassSAVE (Gas)- Residential Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    MassSAVE, through Gas Networks, organizes residential conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These utilities...

  6. Lumbee River EMC- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Lumbee River EMC (LREMC) offers rebates to its residential customers who purchase and install qualified energy efficient products or services. Rebates are available for water heaters, refrigerator...

  7. (Electric and Gas) Residential New Construction Program

    Broader source: Energy.gov [DOE]

    The Energize CT offers a program designed to encourage the construction of energy efficient homes. The Residential New Construction Program offers incentives targeted at increasing energy...

  8. Building America Residential Energy Efficiency Stakeholders Meeting...

    Energy Savers [EERE]

    Energy Efficiency Stakeholders Meeting: March 2011 Building America Residential Energy Efficiency Stakeholders Meeting: March 2011 On this page, you may link to the summary report...

  9. Building America Residential Energy Efficiency Research Planning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Planning Meeting: October 2011 Building America Residential Energy Efficiency Research Planning Meeting: October 2011 On this page, you may link to the summary report and...

  10. Building America Residential Buildings Energy Efficiency Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link to the summary report and...

  11. MEASURING RADON SOURCE MAGNITUDE IN RESIDENTIAL BUILDINGS

    E-Print Network [OSTI]

    Nazaroff, W.W.

    2010-01-01

    Alpha Scintillation for Radon," Rev. Scl Instrum. 28, 680-H.F. , "Alpha Scintillation Radon Counting," in Workshop on1981, Study of Residential Radon A Survey Levels, Geomet

  12. Waseca Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Develops innovative products and services to help them deliver value to customers. With help from SMMPA, Waseca Utilities provides incentives for residential and commercial customers to improve t...

  13. Pennsylvania Residential Energy Code Field Study

    Broader source: Energy.gov [DOE]

    Lead Performer: Performance Systems Development Ė Philadelphia, PADOE Total Funding: $690,844Cost Share: $172,711Project Term: 2014 Ė 2017Funding Opportunity: Strategies to Increase Residential...

  14. Better Buildings Residential Network Marketing & Outreach Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    less than 2% to 65% Ecolibrium3's Duluth Energy Efficiency Program DOE Better Buildings Residential Program Solution Center Ecolibrium3's Duluth Energy Efficiency Program...

  15. Farmers RECC- Residential Insulation Rebate Program

    Broader source: Energy.gov [DOE]

    The Farmers Rural Electric Cooperative (RECC) Button-Up Program provides free energy audits and rebates for insulation upgrades to its residential customers. Farmers RECC's energy advisor will...

  16. Creative Financing Approaches for Residential Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Programs Call Slides and Discussion Summary June 25, 2015 Agenda Call Logistics and Introductions Residential Network and Peer Exchange Call Overview ...

  17. Better Buildings Residential Network Orientation Webinar Call...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Orientation Webinar Call Slides and Summary September 11, 2014 Agenda Call Logistics and Introductions Opening Polls Better Buildings Residential Network Presentation...

  18. Better Buildings Residential Network (BBRN) Orientation Call...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (BBRN) Orientation Call Slides and Summary March 27, 2014 Agenda Call Logistics and Introductions Opening Polls Better Buildings Residential Network Presentation ...

  19. Better Buildings Residential Network | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Residential Network What's Happening on Home Energy Pros?* Explore the Third Edition of Peer Exchange Call Lessons Learned Join the conversation on Home Energy Pros,...

  20. Covered Product Category: Residential Central Air Conditioners...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    acquisition guidance for residential central air conditioners (CACs), which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that...

  1. Shark Tank: Residential Energy Efficiency Edition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Exchange Call Series: Shark Tank: Residential Energy Efficiency Edition Call Slides and Discussion Summary June 11, 2015 Agenda Introduction and Better Buildings...

  2. Idaho Power- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Idaho Power offers a variety of incentives for the installation of heating and cooling systems for residential customers living in both Oregon and Idaho.†

  3. Columbia Water & Light- Residential HVAC Rebates

    Broader source: Energy.gov [DOE]

    Columbia Water & Light (CWL) provides residential customers with rebates on energy efficient HVAC equipment. Customers should submit the mechanical permit from a Protective Inspection, a copy...

  4. Better Buildings Residential Network Financing & Revenue Peer...

    Energy Savers [EERE]

    House - the deeper the retrofit, the lower the rate * Enhanced with ARRA funds in Philadelphia market * Secured Loans to 120% LTV via Power Saver * Efficiency Maine * Residential...

  5. National Residential Efficiency Measures Database Webinar Slides...

    Energy Savers [EERE]

    binar20100324openpvquniby.pdf Solar Energy - Capturing and Using Power and Heat from the Sun Building America Webinar: National Residential Efficiency Measures Database Unveiled...

  6. Austin Energy- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Austin Energy offers incentives to its residential customers to encourage the use of energy efficient equipment and measures. Rebates are available for qualified HVAC equipment and weatherization...

  7. Redding Electric - Residential and Commercial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    required - Commercial Duct RepairReplacement: 500 Lighting: 5,000 Geothermal Heat Pumps: 5,000 (Residential), contact REU for Commercial Program Info Sector Name...

  8. Salem Electric - Residential, Commercial, and Industrial Efficiency Rebate

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummaryDIST OFMEAG, Dalton2 Supplement AnalysisSAFETYProgram

  9. Energy Data Sourcebook for the U.S. Residential Sector

    E-Print Network [OSTI]

    Wenzel, T.P.

    2010-01-01

    and R. Hagemann. 1978. Residential Demand for Electricity,Braithwait. 1979. The Residential Demand for Electricity byA. Werth. 1981. "Short-Run Residential Demand for Fuels: A

  10. Do Photovoltaic Energy Systems Effect Residential Selling Prices? Results from a California Statewide Investigation.

    E-Print Network [OSTI]

    Hoen, Ben

    2012-01-01

    PHOTOVOLTAIC ENERGY SYSTEMS AFFECT RESIDENTIAL SELLING PRICES?PHOTOVOLTAIC ENERGY SYSTEMS AFFECT RESIDENTIAL SELLING PRICES?

  11. IEA Bioenergy Task 40Sustainable International Bioenergy Trade:Securing Supply and Demand Country Report 2014óUnited States

    SciTech Connect (OSTI)

    Hess, J. Richard; Lamers, Patrick; Roni, Mohammad S.; Jacobson, Jacob J.; Heath, Brendi

    2015-01-01

    Logistical barrier are tied to feedstock harvesting, collection, storage and distribution. Current crop harvesting machinery is unable to selectively harvest preferred components of cellulosic biomass while maintaining acceptable levels of soil carbon and minimizing erosion. Actively managing biomass variability imposes additional functional requirements on biomass harvesting equipment. A physiological variation in biomass arises from differences in genetics, degree of crop maturity, geographical location, climatic events, and harvest methods. This variability presents significant cost and performance risks for bioenergy systems. Currently, processing standards and specifications for cellulosic feedstocks are not as well-developed as for mature commodities. Biomass that is stored with high moisture content or exposed to moisture during storage is susceptible to spoilage, rotting, spontaneous combustion, and odor problems. Appropriate storage methods and strategies are needed to better define storage requirements to preserve the volume and quality of harvested biomass over time and maintain its conversion yield. Raw herbaceous biomass is costly to collect, handle, and transport because of its low density and fibrous nature. Existing conventional, bale-based handling equipment and facilities cannot cost-effectively deliver and store high volumes of biomass, even with improved handling techniques. Current handling and transportation systems designed for moving woodchips can be inefficient for bioenergy processes due to the costs and challenges of transporting, storing, and drying high-moisture biomass. The infrastructure for feedstock logistics has not been defined for the potential variety of locations, climates, feedstocks, storage methods, processing alternatives, etc., which will occur at a national scale. When setting up biomass fuel supply chains, for large-scale biomass systems, logistics are a pivotal part in the system. Various studies have shown that long-distance international transport by ship is feasible in terms of energy use and transportation costs, but availability of suitable vessels and meteorological conditions (e.g., winter time in Scandinavia and Russia) need to be considered. However, local transportation by truck (both in biomass exporting and importing countries) may be a high-cost factor, which can influence the overall energy balance and total biomass costs.

  12. You Are My Sunshine: Integrating Residential Solar and Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    You Are My Sunshine: Integrating Residential Solar and Energy Efficiency (301) You Are My Sunshine: Integrating Residential Solar and Energy Efficiency (301) October 15...

  13. Duke Energy (Electric)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Smart $averģ program offers incentives for residential customers to increase residential energy efficiency. Incentives are provided for qualifying heating and cooling equipment installation and...

  14. El Paso Electric Company- Residential Efficiency Program (New Mexico)

    Broader source: Energy.gov [DOE]

    EPE offers incentives to residential customers in its New Mexico service territory that purchase and install high efficiency equipment for residential use. Eligible equipment includes air...

  15. Residential Energy Consumption Survey Results: Total Energy Consumptio...

    Open Energy Info (EERE)

    Residential Energy Consumption Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005) The Residential Energy Consumption Survey (RECS) is a national survey...

  16. Financing Residential Energy Efficiency with Carbon Offsets Transcript...

    Energy Savers [EERE]

    Financing Residential Energy Efficiency with Carbon Offsets Transcript Financing Residential Energy Efficiency with Carbon Offsets Transcript This document contains the transcript...

  17. Guide to Benchmarking Residential Program Progress - CALL FOR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Raise your hand Submit text questions 2 Better Buildings Residential Network Better Buildings Residential Network: Connects energy efficiency programs and partners to share...

  18. Better Buildings Residential Network All-Member Peer Exchange...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Residential Network Member Reporting and Benefits Overview Jonathan Cohen DOE Better Buildings Residential Network Benefits of Reporting IMPACT: Sharing the...

  19. BPM Motors in Residential Gas Furnaces: What are the Savings?

    E-Print Network [OSTI]

    Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

    2006-01-01

    Evaluation of Residential Furnace Blower Performance.Infinity 80 Variable Speed Furnace. August. Farmington,Standards for Residential Furnaces and Boilers; Proposed

  20. Focus Series: Maine - Residential Direct Install Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Better Buildings Neighborhood Program Focus Series: Maine - Residential Direct Install Program: Residential Air Sealing Program Drives Maine Home Energy Savings Through the Roof....

  1. New England Gas Company - Residential and Commercial Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    England Gas Company - Residential and Commercial Energy Efficiency Rebate Programs New England Gas Company - Residential and Commercial Energy Efficiency Rebate Programs < Back...

  2. Philadelphia Gas Works- Residential and Small Business Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    Philadelphia Gas Works' (PGW) Residential Heating Equipment rebates are available to all PGW residential or small business customers installing high efficiency boilers and furnaces, and programma...

  3. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01

    with Residential Electricity Demand in India's Future - How2008). The Boom of Electricity Demand in the residential2005). Forecasting Electricity Demand in Developing

  4. Building America Research Teams: Spotlight on Alliance for Residential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alliance for Residential Building Innovation (ARBI) and Building America Research Alliance (BARA) Building America Research Teams: Spotlight on Alliance for Residential Building...

  5. Inspiring and Building the Next Generation of Residential Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inspiring and Building the Next Generation of Residential Energy Professionals Inspiring and Building the Next Generation of Residential Energy Professionals April 29, 2014 -...

  6. 2011 Residential Energy Efficiency Technical Update Meeting Summary...

    Energy Savers [EERE]

    2011 Residential Energy Efficiency Technical Update Meeting Summary Report: Denver, Colorado - August 9-11, 2011 2011 Residential Energy Efficiency Technical Update Meeting Summary...

  7. Summary of Gaps and Barriers for Implementing Residential Building...

    Energy Savers [EERE]

    Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies...

  8. EIA Energy Efficiency-Residential Sector Energy Intensities,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Sector Energy Intensities RESIDENTIAL SECTOR ENERGY INTENSITIES: 1978-2005 Released Date: August 2004 Page Last Modified:June 2009 These tables provide estimates of...

  9. Clean Energy Finance Guide for Residential and Commercial Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Finance Guide for Residential and Commercial Building Improvements - Chapter 6 Clean Energy Finance Guide for Residential and Commercial Building Improvements - Chapter 6 Clean...

  10. Regional Variation in Residential Heat Pump Water Heater Performance...

    Energy Savers [EERE]

    Regional Variation in Residential Heat Pump Water Heater Performance in the United States Regional Variation in Residential Heat Pump Water Heater Performance in the United States...

  11. Residential Cold Climate Heat Pump with Variable-Speed Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Cold Climate Heat Pump with Variable-Speed Technology Residential Cold Climate Heat Pump with Variable-Speed Technology Purdue prototype system Purdue prototype system...

  12. Keeping It Simple from the Customer's Perspective - Residential...

    Energy Savers [EERE]

    Keeping It Simple from the Customer's Perspective - Residential Program Design Keeping It Simple from the Customer's Perspective - Residential Program Design Provides information...

  13. DOE Webinar ? Residential Geothermal Heat Pump Retrofits (Presentatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Webinar Residential Geothermal Heat Pump Retrofits (Presentation) DOE Webinar Residential Geothermal Heat Pump Retrofits (Presentation) Presented at the U.S. Department...

  14. The U.S. Dry-Mill Ethanol Industry: Biobased Products and Bioenergy Initiative Success Stories

    SciTech Connect (OSTI)

    2009-10-28

    This fact sheet provides an overview of the history of ethanol production in the United States and describes innovations in dry-mill ethanol production.

  15. U.S. Billion-Ton Update. Biomass Supply for a Bioenergy and Bioproducts Industry

    SciTech Connect (OSTI)

    none,

    2011-08-01

    This report is an update to the 2005 Billion-Ton Study that addresses shotcomings and questions that arose from the original report..

  16. Value of Distributed Preprocessing of Biomass Feedstocks to a Bioenergy Industry

    SciTech Connect (OSTI)

    Christopher T Wright

    2006-07-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system and the front-end of a biorefinery. Its purpose is to chop, grind, or otherwise format the biomass into a suitable feedstock for conversion to ethanol and other bioproducts. Many variables such as equipment cost and efficiency, and feedstock moisture content, particle size, bulk density, compressibility, and flowability affect the location and implementation of this unit operation. Previous conceptual designs show this operation to be located at the front-end of the biorefinery. However, data are presented that show distributed preprocessing at the field-side or in a fixed preprocessing facility can provide significant cost benefits by producing a higher value feedstock with improved handling, transporting, and merchandising potential. In addition, data supporting the preferential deconstruction of feedstock materials due to their bio-composite structure identifies the potential for significant improvements in equipment efficiencies and compositional quality upgrades. Theses data are collected from full-scale low and high capacity hammermill grinders with various screen sizes. Multiple feedstock varieties with a range of moisture values were used in the preprocessing tests. The comparative values of the different grinding configurations, feedstock varieties, and moisture levels are assessed through post-grinding analysis of the different particle fractions separated with a medium-scale forage particle separator and a Rototap separator. The results show that distributed preprocessing produces a material that has bulk flowable properties and fractionation benefits that can improve the ease of transporting, handling and conveying the material to the biorefinery and improve the biochemical and thermochemical conversion processes.

  17. Educated and Equipped: Jump-Start Your Career in the Bioenergy Industry |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25,EV Everywhere|MuscleEnergy

  18. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsStateof Energy| Department ofAttacks2 DOE HydrogenBiomass

  19. Chapter 17: Residential Behavior Protocol

    SciTech Connect (OSTI)

    Stewart, J.; Todd, A.

    2015-01-01

    Residential behavior-based (BB) programs use strategies grounded in the behavioral social sciences to influence household energy use. Strategies may include providing households with real-time or delayed feedback about their energy use; supplying energy-efficiency education and tips; rewarding households for reducing their energy use; comparing households to their peers; and establishing games, tournaments, and competitions. BB programs often target multiple energy end uses and encourage energy savings, demand savings, or both. Savings from BB programs are usually a small percentage of energy use, typically less than 5%.

  20. Kerosene Sales for Residential Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential Consumers (Number of33 2,297 809 245 155 422,41405,136

  1. Residential propane price is unchanged

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014 Residential propane price

  2. Bioenergy `96: Partnerships to develop and apply biomass technologies. Volume I and II

    SciTech Connect (OSTI)

    1996-12-31

    The conference proceedings consist of two volumes of papers detailing numerous issues related to biomass energy production and use. An author and keyword index are provided in the proceedings. A total of 143 papers were selected for the database. Papers were selected from the following areas from Volume 1: feedstock production, harvest, storage, and delivery; the DOE biomass power program; technical, economic, and policy barriers and incentives; new developments in biomass combustion; advancements in biomass gasification; liquid fuels production and use; and case studies of bioenergy projects. From Volume 2, subtopics selected included: bioenergy systems for distributed generation; assessment and use of biomass wastes; non-technical barriers to bioenergy implementation; improving commercial viability through integrated systems; and anaerobic digestion.

  3. Residential Building Stockg Assessment (RBSA)for

    E-Print Network [OSTI]

    9/4/2013 1 Residential Building Stockg Assessment (RBSA)for Multi-Family Housing Tom Eckman Objectives Characterize Residential Sector Building Stock ≠ Single Family (Four-plex and below) l if il ( i representation Characterize Buildings ≠ Detailed On Site Energy Audit, including lighting survey ≠ Basic

  4. Ozone Reductions using Residential Building Envelopes

    E-Print Network [OSTI]

    for Energy Efficiency and Renewable Energy, Building Technologies Program, of the U.S. Department of Energy Residential Building Envelopes Prepared For: California Energy Commission Public Interest Energy ResearchOzone Reductions using Residential Building Envelopes I.S. Walker, M.H. Sherman and W.W. Nazaroff

  5. A slightly modified version is to be published as: Sawyer, S, Wigand, R. and Crowston, K. (2014) "Digital Assemblages: Evidence and Theorizing from a Study of Residential Real Estate," New Technology, Work, and Employment, in press.

    E-Print Network [OSTI]

    Crowston, Kevin

    2014-01-01

    ) "Digital Assemblages: Evidence and Theorizing from a Study of Residential Real Estate," New Technology OF THE U.S. RESIDENTIAL REAL ESTATE INDUSTRY 1 Steve Sawyer School of Information Studies Syracuse-00178, the National Center for Real Estate Research, the Office of the Dean of the School of Information Studies

  6. Pacific Northwest and Alaska Bioenergy Program Year Book; 1992-1993 Yearbook with 1994 Activities.

    SciTech Connect (OSTI)

    Pacific Northwest and Alaska Bioenergy Program; United States. Bonneville Power Administration.

    1994-04-01

    The U.S. Department of Energy administers five Regional Bioenergy Programs to encourage regionally specific application of biomass and municipal waste-to-energy technologies to local needs, opportunities and potentials. The Pacific Northwest and Alaska region has taken up a number of applied research and technology projects, and supported and guided its five participating state energy programs. This report describes the Pacific Northwest and Alaska Regional Bioenergy Program, and related projects of the state energy agencies, and summarizes the results of technical studies. It also considers future efforts of this regional program to meet its challenging assignment.

  7. Residential ventilation standards scoping study

    SciTech Connect (OSTI)

    McKone, Thomas E.; Sherman, Max H.

    2003-10-01

    The goals of this scoping study are to identify research needed to develop improved ventilation standards for California's Title 24 Building Energy Efficiency Standards. The 2008 Title 24 Standards are the primary target for the outcome of this research, but this scoping study is not limited to that timeframe. We prepared this scoping study to provide the California Energy Commission with broad and flexible options for developing a research plan to advance the standards. This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the ventilation needs of California residences, determining the bases for setting residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and corresponding levels of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  8. American Recovery and Reinvestment Act of 2009: Bioenergy Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    advanced biofuels industry with the capacity to meet federal Renewable Fuel Standard volumetric requirements for all advanced biofuels, which increase 1 Congress originally...

  9. Appendix D: 2012 Cellulosic Ethanol Success, Bioenergy Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    produce cellulosic ethanol at commercial-scale costs that are competitive with gasoline production at 110barrel of crude oil. Many industry partners are also demonstrating...

  10. Don't Worry Be Happy, The Music Man's Approach to Selling Industrial Energy Management†

    E-Print Network [OSTI]

    Gilbert, S. M.

    1989-01-01

    with its load characteristics. Most are conducting residential programs designed to shape load, and many have commercial programs with the same intent. However, utilities are finding more and more that their greatest opportunities are in the industrial...

  11. Don't Worry...Be Happy- The Music Man's Approach to Selling Industrial Energy Management†

    E-Print Network [OSTI]

    Gilbert, S. M.

    1989-01-01

    with its load characteristics. Most are conducting residential programs designed to shape load, and many have commercial programs with the same intent. However, utilities are finding more and more that their greatest opportunities are in the industrial...

  12. Can Free Entry Be Inefficient? Fixed Commissions and Social Waste in the Real Estate Industry

    E-Print Network [OSTI]

    Hsieh, Chang-Tai T; Moretti, Enrico

    2002-01-01

    Commission. The Residential Real Estate Brokerage Industry.r m C o m p e t i t i o n i n Real Estate Commission Rates"The Journal of Real Estate Research 3 (1989) Hopkins, T o

  13. Industrial Heat Pumps- A Reexamination in Light of Current Energy Trends†

    E-Print Network [OSTI]

    Lewis, N.; Simon, M.; Terry, S.; Leach, J.

    2009-01-01

    Heat pumps have been used for nearly one hundred years mostly providing heating and cooling for homes and residential settings. However, industrial heat pumps are also used and may be driven by waste heat streams from the manufacturing facility...

  14. Residential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100National Laboratory Researchers create enormous20152015

  15. Residential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultiday Production of SOAResearchers BorrowHistorical Resourcesdefault

  16. Urban Wood-Based Bio-Energy Systems in Seattle

    SciTech Connect (OSTI)

    Stan Gent, Seattle Steam Company

    2010-10-25

    Seattle Steam Company provides thermal energy service (steam) to the majority of buildings and facilities in downtown Seattle, including major hospitals (Swedish and Virginia Mason) and The Northwest (Level I) Regional Trauma Center. Seattle Steam has been heating downtown businesses for 117 years, with an average length of service to its customers of 40 years. In 2008 and 2009 Seattle Steam developed a biomass-fueled renewable energy (bio-energy) system to replace one of its gas-fired boilers that will reduce greenhouse gases, pollutants and the amount of waste sent to landfills. This work in this sub-project included several distinct tasks associated with the biomass project development as follows: a. Engineering and Architecture: Engineering focused on development of system control strategies, development of manuals for start up and commissioning. b. Training: The project developer will train its current operating staff to operate equipment and facilities. c. Flue Gas Clean-Up Equipment Concept Design: The concept development of acid gas emissions control system strategies associated with the supply wood to the project. d. Fuel Supply Management Plan: Development of plans and specifications for the supply of wood. It will include potential fuel sampling analysis and development of contracts for delivery and management of fuel suppliers and handlers. e. Integrated Fuel Management System Development: Seattle Steam requires a biomass Fuel Management System to track and manage the delivery, testing, processing and invoicing of delivered fuel. This application will be web-based and accessed from a password-protected URL, restricting data access and privileges by user-level.

  17. Energy Efficiency & On-Bill Financing for Samll Business & Residential

    Office of Energy Efficiency and Renewable Energy (EERE)

    Details on Connecticut Energy Efficiency Fund and its benefits to small businesses and residential customers.

  18. Industrial Relations

    E-Print Network [OSTI]

    Ulman, Lloyd

    1987-01-01

    S. Tannenbaum. Madison: Industrial 1955. The Rise of the N ai a Working Paper 8733 INDUSTRIAL RELATIONS L l o y d UlmanEconomic Theory and Doctrine INDUSTRIAL RELATIONS Two great

  19. Residential solar home resale analysis

    SciTech Connect (OSTI)

    Noll, S.A.

    1980-01-01

    One of the determinants of the market acceptance of solar technologies in the residential housing sector is the value placed upon the solar property at the time of resale. The resale factor is shown to be an important economic parameter when net benefits of the solar design are considered over a typical ownership cycle rather than the life cycle of the system. Although a study of solar resale in Davis, Ca, indicates that those particular homes have been appreciating in value faster than nonsolar market comparables, no study has been made that would confirm this conclusion for markets in other geograhical locations with supporting tests of statistical significance. The data to undertake such an analysis is available through numerous local sources; however, case by case data collection is prohibitively expensive. A recommended alternative approach is to make use of real estate market data firms who compile large data bases and provide multi-variate statistical analysis packages.

  20. Industrial Engineering Industrial Advisory Board

    E-Print Network [OSTI]

    Gelfond, Michael

    Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

  1. Presentation 2.1: Review of global bioenergy scenarios Jack N. Saddler

    E-Print Network [OSTI]

    ;#12;Forest Products Biotechnology at UBC Review of global bioenergy scenarios W.E. Mabee, J.N. Saddler Forest Forest Products Biotechnology at UBC Oil Prices and World Events $0 $10 $20 $30 $40 $50 $60 $70 $80 1997 Dec 2002 - Feb 2003 Iraq War 20 Mar 2003 > (US$/barrel West Texas Crude Oil) Hurricane Katrina 29 Aug

  2. Climate implications of algae-based bioenergy systems Andres Clarens, PhD

    E-Print Network [OSTI]

    Walter, M.Todd

    Climate implications of algae-based bioenergy systems Andres Clarens, PhD Assistant Professor Civil of algae and other nonconventional feedstocks, are being developed. This talk will explore several systems priorities. This is an especially challenging problem for algae-based biofuels because production pathways

  3. Essays on Economic and Environmental Analysis of Taiwanese Bioenergy Production on Set-Aside Land†

    E-Print Network [OSTI]

    Kung, Chih-Chun

    2012-02-14

    . This dissertation examines Taiwanís potential for bioenergy production using feedstocks grown on set-aside land and discusses the consequent effects on Taiwanís energy security plus benefits and greenhouse gas (GHG) emissions. The Taiwan Agricultural Sector Model...

  4. Integrated Photo-Bioelectrochemical System for Contaminants Removal and Bioenergy Production

    E-Print Network [OSTI]

    Berges, John A.

    photobioelectrochemical (IPB) system was developed by installing a microbial fuel cell (MFC) inside an algal bioreactor fuel cells (MFCs)3 with algal bioreactors4 for wastewater treatment and bioenergy production. MFCs. An analysis of the attached and suspended microbes in the cathode revealed diverse bacterial taxa typical

  5. BIOENERGY AND BIOFUELS Performance of a pilot-scale continuous flow microbial

    E-Print Network [OSTI]

    a maximum of 7.4 A/m3 by the planned end of the test (after 100 days). Gas production reached a maximum of 0.19Ī0.04 L/L/day, although most of the product gas was converted to methane (86Ī6%). In order to increase performance. Keywords Biohydrogen . Biomethane . Bioelectricity. Microbial electrolysis cell . Bioenergy

  6. BioEnergy Landscape: From Photosynthesis to Fossil Fuels to Advanced Biofuels

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    BioEnergy Landscape: From Photosynthesis to Fossil Fuels to Advanced Biofuels - Fundamentals for substitution of fossil fuels since they are natural extensions of fossil fuels, and the existing energy in transportation to replace fossil fuels. Energy is the cause for all processes across all space and time scales

  7. Extension Bulletin E-3164 New January 2012 Biodiversity Services and Bioenergy Landscapes

    E-Print Network [OSTI]

    Isaacs, Rufus

    . For example, the U.S. Energy Independence and Security Act sets the goal of producing 46 billion gallons Bioenergy Research Center, Michigan State University b Kellogg Biological Station (KBS) Land and Water of fertilizer and pesticides1, which have polluted some ground and surface waters (http://water

  8. National Bioenergy Center - Biochemical Platform Integration Project: Quarterly Update, Winter 2010

    SciTech Connect (OSTI)

    Schell, D.

    2011-02-01

    Winter 2011 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: 33rd Symposium on Biotechnology for Fuels and Chemicals program topic areas; results from reactive membrane extraction of inhibitors from dilute-acid pretreated corn stover; list of 2010 task publications.

  9. Integrated Photo-Bioelectrochemical System for Contaminants Removal and Bioenergy Production

    E-Print Network [OSTI]

    photobioelectrochemical (IPB) system was developed by installing a microbial fuel cell (MFC) inside an algal bioreactor fuel cells (MFCs)3 with algal bioreactors4 for wastewater treatment and bioenergy production. MFCs energy recovery from waste. To address this challenge, the key research tasks include optimizing a more

  10. Forest Products Supply Chain --Availability of Woody Biomass in Indiana for Bioenergy Production

    E-Print Network [OSTI]

    Cooperative Development Center has recently sponsored a study in wood residue for wood pellet production or wood waste biomass ∑ Map Indiana's wood waste for each potential bioenergy supply chain ∑ Develop break-even analyses for transportation logistics of wood waste biomass Isaac S. Slaven Abstract: The purpose

  11. National Bioenergy Center, Biochemical Platform Integration Project: Quarterly Update, Summer 2011 (Newsletter)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    Summer 2011 issue of the National Bioenergy Center Biochemical Platform Integration Project quarterly update. Issue topics: evaluating new analytical techniques for measuring soluble sugars in the liquid portion of biomass hydrolysates, and measurement of the fraction of insoluble solids in biomass slurries.

  12. Bioenergy crop greenhouse gas mitigation potential under a range of management practices

    E-Print Network [OSTI]

    DeLucia, Evan H.

    Bioenergy crop greenhouse gas mitigation potential under a range of management practices T A R A W on marginal lands annually without displacing food and to contribute to greenhouse gas (GHG) reduction an important renewable energy source for replacement of fossil fuels, but is of questionable greenhouse gas

  13. Reducing effluent discharge and recovering bioenergy in an osmotic microbial fuel cell treating domestic wastewater

    E-Print Network [OSTI]

    of application, but they are energy-intensive because of high hydraulic pressures, and membrane fouling remains osmosis into an MFC for simultaneous wastewater treatment, bioenergy recovery, and water extractionMFC achieved water flux of 1.06≠1.49 LMH and reduced wastewater effluent by 24.3≠72.2% depending on hydraulic

  14. Bioenergy Technologies Office Multi-Year Program Plan: March 2015 Update

    SciTech Connect (OSTI)

    none,

    2015-03-01

    This is the March 2015 Update to the Multi-Year Program Plan, which sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the RDD&D activities the Office will focus on over the next four years.

  15. Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update

    SciTech Connect (OSTI)

    2014-11-01

    This is the November 2014 Update to the Multi-Year Program Plan, which sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the RDD&D activities the Office will focus on over the next four years.

  16. Biomass Program Outreach and Communication The Bioenergy Feedstock Information Network (BFIN)

    E-Print Network [OSTI]

    + Biomass Program Outreach and Communication The Bioenergy Feedstock Information Network (BFIN) About ten years ago ORNL launched BFIN providing a gateway to a wealth of biomass feedstock information by ORNL. Regional partnership workshops The Regional Biomass Energy Feedstock Partnership is comprised

  17. Impacts of land use change due to biofuel crops on carbon balance, bioenergy production, and agricultural

    E-Print Network [OSTI]

    Zhuang, Qianlai

    Impacts of land use change due to biofuel crops on carbon balance, bioenergy production that biofuel crops have much higher net pri- mary production (NPP) than soybean and wheat crops. When food). Global biofuel production has increased dramatically in the last decade, especially in United States

  18. BIOENERGY AND BIOFUELS Domestic wastewater treatment using multi-electrode continuous

    E-Print Network [OSTI]

    BIOENERGY AND BIOFUELS Domestic wastewater treatment using multi-electrode continuous flow MFCs density was 148Ī8 mA/m2 (1,000 ), the maximum power density was 120 mW/m2 , and the overall COD removal % change in the COD concentration across the reactor (influent versus effluent) and the current density

  19. BIOENERGY AND BIOFUELS A multi-electrode continuous flow microbial fuel cell

    E-Print Network [OSTI]

    BIOENERGY AND BIOFUELS A multi-electrode continuous flow microbial fuel cell with separator this separator with the cathode. The maximum power density was 975 mW/m2 , with an overall chemical oxygen demand densities, the recovery of elec- trons as current [coulombic efficiency (CE)], and energy recovery while

  20. BIOENERGY AND BIOFUELS Anodic biofilms in microbial fuel cells harbor low numbers

    E-Print Network [OSTI]

    BIOENERGY AND BIOFUELS Anodic biofilms in microbial fuel cells harbor low numbers of higher a higher-power density (17.4 mW/m2 ) than the mixed culture, although voltage generation was variable. Our; Kiely et al. 2010; Parameswaran et al. 2009a, b). In general, power densities for acetic acid

  1. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    SciTech Connect (OSTI)

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the BLM evaluates economic performance of the engineered system, as well as determining energy consumption and green house gas performance of the design. This paper presents a BLM case study delivering corn stover to produce cellulosic ethanol. The case study utilizes the BLM to model the performance of several feedstock supply system designs. The case study also explores the impact of temporal variations in climate conditions to test the sensitivity of the engineering designs. Results from the case study show that under certain conditions corn stover can be delivered to the cellulosic ethanol biorefinery for $35/dry ton.

  2. Turkish residential real estate investment analysis

    E-Print Network [OSTI]

    Ciller, Berk (Berk U.)

    2007-01-01

    This paper examines the investment potential for Turkish Residential Real Estate Market, focusing mainly on Istanbul. With a stable economy since 2002, dynamic population, geo-political location and the potential accession ...

  3. Addressing endogeneity in residential location models

    E-Print Network [OSTI]

    Guevara-Cue, CristiŠn Angelo

    2005-01-01

    Some empirical residential location choice models have reported dwelling-unit price estimated parameters that are small, not statistically significant, or even positive. This would imply that households are non-sensitive ...

  4. Spatial and Temporal Dynamics: Residential Development Process†

    E-Print Network [OSTI]

    Park, Joung Im

    2012-02-14

    A lack of empirical evidence to understand neighborhood and residential development processes within neighborhoods has challenged urban plannersí ability to influence the course of future land development. The main objectives of this study were...

  5. Residential photovoltaic worth : a summary assessment

    E-Print Network [OSTI]

    Dinwoodie, Thomas L.

    1982-01-01

    Two critical perspectives have been addressed by the analyses of residential photovoltaic worth. For the researcher and designer have been established allowable costs. For the homeowner and institutional decision-makers ...

  6. Laboratory Evaluation of Residential Furnace Blower Performance

    E-Print Network [OSTI]

    Walker, Iain S.; Lutz, Jim D.

    2005-01-01

    Electricity Use by New Furnaces: A Wisconsin Field Study,of Airflow in Residential Furnaces. , LBNL-53947 CMHC. 1993.B. 2002. The Impact of ECM furnace motors on natural gas use

  7. Energy Intensity Indicators: Residential Source Energy Consumption

    Broader source: Energy.gov [DOE]

    Figure R1 below reports as index numbers over the period 1970 through 2011: 1) the number of U.S. households, 2) the average size of those housing units, 3) residential source energy consumption, 4...

  8. EWEB- Residential Solar Water Heating Loan Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Eugene Water & Electric Board (EWEB) offers residential customers a loan and cash discount program called, "The Bright Way To Heat Water." The program is designed to promote the installation of...

  9. Chicopee Electric Light- Residential Solar Rebate Program

    Broader source: Energy.gov [DOE]

    Chicopee Electric Light offers rebates to residential customers who install solar photovoltaic (PV) systems on their homes. Customer rebates are $0.50 per watt for a maximum of $2,500 per...

  10. CPS Energy- New Residential Construction Incentives

    Broader source: Energy.gov [DOE]

    CPS Energy offers incentives for new residential construction that is at least 15% more efficient than required by the [http://dsireusa.org/incentives/incentive.cfm?Incentive_Code=TX29R&re=1...

  11. Lumbee River EMC- Residential Weatherization Loan Program

    Broader source: Energy.gov [DOE]

    Lumbee River Electric Membership Corporation (LREMC) offers low interest loans to help residential members increase the energy efficiency of homes. Loans up to $17,000 are available for the...

  12. Lakeland Electric- Residential Conservation Rebate Program

    Broader source: Energy.gov [DOE]

    Lakeland Electric offers a conservation program for residential customers to save energy in homes. Rebates are available for Heat Pumps, HVAC tune-ups, attic insulation upgrades, and Energy Star...

  13. Piedmont Natural Gas- Residential Equipment Efficiency Program

    Broader source: Energy.gov [DOE]

    Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 101-Residential Service rate are eligible for these...

  14. Idaho Falls Power- Residential Weatherization Loan Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Residential customers with permanently installed electric heat who receive service from the City of Idaho Falls, are eligible for 0% weatherization loans. City Energy Service will conduct an energy...

  15. Residential Composting Intern Position Position Details

    E-Print Network [OSTI]

    Royer, Dana

    Residential Composting Intern Position Position Details The dining composting intern positions during Orientation week to set up the composting programs and stay through Senior Week to finish composting program. The interns will report to Sustainability Coordinator Jen Kleindienst. Requirements

  16. Covered Product Category: Residential Electric Resistance Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with capacities of 20 to 120 gallons and maximum energy input of 12 kW. Residential heat pump and gas storage water heaters are covered by ENERGY STAR. Boilers, swimming pool...

  17. Kirkwood Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kirkwood Electric offers rebates to its residential customers who install energy-efficient heat pumps and electric hot water heaters in their new and existing homes. Customers will be given a...

  18. Commonwealth Solar Hot Water Residential Program

    Broader source: Energy.gov [DOE]

    Since February 2011, the Massachusetts Clean Energy Center (MassCEC) has provided rebates for the installation of residential solar hot water systems through the Commonwealth Solar Hot Water Prog...

  19. Monmouth Power & Light- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Monmouth Power & Light offers a wide range of energy efficiency rebates that encourage residential customers to save energy in their homes. To qualify for these incentives electricity must be...

  20. Groton Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Groton Utilities offers a variety of rebates to residential customers for the purchase and installation of energy efficient equipment. Rebates are available for CFLs, HVAC, HVAC controls, and heat...

  1. Modeling of Residential Attics with Radiant Barriers†

    E-Print Network [OSTI]

    Wilkes, K. E.

    1988-01-01

    This paper gives a summary of the efforts at ORNL in modeling residential attics with radiant barriers. Analytical models based on a system of macroscopic heat balances have been developed. Separate models have been developed for horizontal radiant...

  2. Design for Energy Efficiency in Residential Buildings†

    E-Print Network [OSTI]

    Song, M.; Zhang, Y.; Yang, G.

    2006-01-01

    This paper presents the thermal design and heating design of an energy saving residential building in Beijing where the owners lived until 2004. Results show the advantages and disadvantages of a household-based heating mode by natural gas. Based...

  3. Residential Small Renewable Energy Rebate Program

    Broader source: Energy.gov [DOE]

    The rebate is equal to $0.75 per watt of nominal generation capacity per residential owner of an eligible facility, up to $3,750 or 50% of system costs, whichever is less. Photovoltaic (PV)...

  4. Cowlitz County PUD- Residential Weatherization Plus Program

    Broader source: Energy.gov [DOE]

    Cowlitz County PUD offers an incentive to residential customers who weatherize their homes. Eligible residences can be either site-built or manufactured homes, but must have a permanently installed...

  5. A Simplified Residential Base-Case Model†

    E-Print Network [OSTI]

    Do, S. L.; Choi, J. H.; Haberl, J. S.

    2013-01-01

    This study was for the DOE-2.1e program to develop a simplified residential ASHP house model in Houston, Texas. The house characteristics were based on the standard reference design and requirements as defined in Chapter ...

  6. Section Three, Bioenergy Technologies Office Multi-Year Program...

    Broader source: Energy.gov (indexed) [DOE]

    promising targets for follow-on industrial-scale demonstration and deployment. The RDD&D pipeline is shown diagrammatically in Figure 3-1. Figure 3-1: The RDD&D pipeline Office...

  7. Water and Waste Water Tariffs for New Residential Construction in California

    E-Print Network [OSTI]

    Fisher, Diane; Lutz, James

    2006-01-01

    for New Residential Construction in California D.C. FisherTariffs for New Residential Construction in California 1.in new residential construction in California. These

  8. Economics of residential gas furnaces and water heaters in United States new construction market

    E-Print Network [OSTI]

    Lekov, Alex B.

    2010-01-01

    for residential gas furnaces in the U.S. In the proceedingsconsumption of residential furnaces and boilers in U.S.consumer products: Residential furnaces and boilers. Energy

  9. Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01

    average residential electricity consumption by end-use inaverage residential electricity consumption by end-use inU.S. residential electricity consumption for 2010 for 32

  10. Public goods and private interests: Understanding non-residential demand for green power

    E-Print Network [OSTI]

    Wiser, Ryan H.; Fowlie, Meredith; Holt, Edward A.

    2001-01-01

    Understanding Non-Residential Demand for Green PowerUnderstanding Non-Residential Demand for Green Power Vining,Understanding Non-Residential Demand for Green Power Kasius,

  11. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    software. Methodology Residential energy demand is shaped bydrivers of energy and demand in residential buildings arethe residential buildings sector, the level of energy demand

  12. Unobservables in Consumer Choice: Residential Energy and the Demand for Comfort

    E-Print Network [OSTI]

    Quigley, John M.; Rubinfeld, Daniel L.

    1987-01-01

    and the Derived Demand for Residential Energy," Randhave examined the demand for residential energy viewingconsidered the derived demand for residential energy as an

  13. California DREAMing: the design of residential demand responsive technology with people in mind

    E-Print Network [OSTI]

    Peffer, Therese E.

    2009-01-01

    majority of existing residential demand response programs inas evidence that residential demand response can ďempowerthat facilitates residential demand response in order to

  14. Residential Customer Response to Real-time Pricing: The Anaheim Critical Peak Pricing Experiment

    E-Print Network [OSTI]

    Wolak, Frank A.

    2007-01-01

    load in California. Residential demand is approximately 30%12% reduction in statewide residential demand on a statewidefor residential customers with an aggregate peak demand that

  15. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    of growth in residential energy demand in China will requirein Table 1. Residential energy demand is shaped by a varietydrivers of energy and demand in residential buildings are

  16. Pollutant Emission Factors from Residential Natural Gas Appliances: A Literature Review

    E-Print Network [OSTI]

    Traynor, G.W.

    2011-01-01

    distributions from residential natural gas appliances. CH 4ng/J) distribution from residential natural gas appliances.from Residential Natural Gas Appliances: A Literature Review

  17. The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2013-01-01

    from Residential Photovoltaic Systems NaÔm R. Darghouth,FROM RESIDENTIAL PHOTOVOLTAIC SYSTEMS NaÔm R. DarghouthABSTRACT Residential photovoltaic (PV) systems in the US are

  18. Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven Heat Pump for the Residential Sector - Fact Sheet, 2013 Residential Multi-Function Gas Heat Pump: Efficient...

  19. Residential market transformation: National and regional indicators

    SciTech Connect (OSTI)

    Van Wie McGrory, Laura L.; McNamara, Maureen; Suozzo, Margaret

    2000-06-01

    A variety of programs are underway to address market barriers to the adoption of energy-efficient residential technologies and practices. Most are administered by utilities, states, or regions that rely on the Energy Star as a consistent platform for program marketing and messaging. This paper reviews regional and national market transformation activities for three key residential end-uses -- air conditioning, clothes washing, and lighting -- characterizing current and ongoing programs; reporting on progress; identifying market indicators; and discussing implications.

  20. Residential Energy Tax Credit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct.7, 2015VerizonResidentialRebateTax Credit Residential