Powered by Deep Web Technologies
Note: This page contains sample records for the topic "industrial residential bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Pacific Rim Summit on Industrial Biotechnology & Bioenergy |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Rim Summit on Industrial Biotechnology & Bioenergy Pacific Rim Summit on Industrial Biotechnology & Bioenergy December 8, 2013 8:00AM EST to December 11, 2013 5:00PM EST...

2

Pacific Rim Summit on Industrial Biotechnology & Bioenergy |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Rim Summit on Industrial Biotechnology & Bioenergy Pacific Rim Summit on Industrial Biotechnology & Bioenergy December 8, 2013 12:00PM EST to December 11, 2013 12:00PM EST...

3

Residential Commercial Industrial Year  

Gasoline and Diesel Fuel Update (EIA)

4 4 Residential Commercial Industrial Year and State Volume (million cubic feet) Consumers Volume (million cubic feet) Consumers Volume (million cubic feet) Consumers 2000 Total ................... 4,996,179 59,252,728 3,182,469 5,010,817 8,142,240 220,251 2001 Total ................... 4,771,340 60,286,364 3,022,712 4,996,446 7,344,219 217,026 2002 Total ................... 4,888,816 61,107,254 3,144,169 5,064,384 7,507,180 205,915 2003 Total ................... R 5,079,351 R 61,871,450 R 3,179,493 R 5,152,177 R 7,150,396 R 205,514 2004 Total ................... 4,884,521 62,469,142 3,141,653 5,135,985 7,250,634 212,191 Alabama ...................... 43,842 806,175 26,418 65,040 169,135 2,800 Alaska.......................... 18,200 104,360 18,373 13,999 46,580 10 Arizona ........................

4

Industrial Relations : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Overview The effective translation of BESC research results into applications testing and potential deployment is an implicit part of reaching DOE's bioenergy goals. The BESC member institutions recognize that a common strategy is important to the success of BESC. To promote the commercialization of new technologies, our plan is to: Maintain a single portal for information about available technologies. This web site will feature inventions and commercial opportunities in additoin to the information content related to the research program Provide a single point of contact for the licensing of new BESC inventions on behalf of our team (contact: Renae Speck) Provide opportunity for research institutions and private companies to become "BESC Affiliates"

5

Contact Information - Industrial : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

BESC Industry Contact Information BESC Industry Contact Information To learn more about BESC's industry program please contact Renae Speck, Director of Technology Transfer and Partnerships for BESC, (865-576-4680), Renae Speck). Renae Speck Renae Speck, PhD spends fifty percent of her time as a Senior Commercialization Manager in the Office of Technology Transfer in the Partnership Directorate and fifty percent of her time as the Manager of Technology Transfer and Partnerships for the BioEnergy Science Center. As a Senior Commercialization Manager, Renae is responsible for portfolio management and commercialization of intellectual property created by researchers and staff in the Biological and Environmental Sciences Divisions as well as any intellectual property created by Oak Ridge National Laboratory staff that is funded by the BioEnergy Science Center

6

Bioenergy  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioenergy Bioenergy Bioenergy Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Babetta Marrone Biofuels Program Manager Email Rebecca McDonald Bioscience Communications Email Srinivas Iyer Bioscience Group Leader Email Richard Sayre Senior Scientist Email "Research into alternative forms of energy, of which biofuels is a key component, is one of the major national security imperatives of this century. Energy security is vital to our future national security and the efficient functioning of our market economy." -LANL Director Charles McMillan Los Alamos developing next-generation of biofuels from renewable resources Read caption + Los Alamos scientists used genetic engineering to develop magnetic algae,

7

Bioenergy  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioenergy Bioenergy Los Alamos developing next-generation of biofuels from renewable resources Read caption + Los Alamos scientists used genetic engineering to develop magnetic algae, thus making it much easier to harvest for biofuel production. Harvesting algae accounts for approximately 15-20 percent of the total cost of biofuel production-magnetic algae can reduce such costs by more than 90%. Overview of Research and Highlights The next-generation of biofuels are being developed at Los Alamos. Made from renewable resources, biofuels could yield reduced carbon dioxide emissions. Los Alamos scientists are * working to bring cellulosic ethanol (made from the inedible parts of plants, instead of corn) and algae-based fuels to the marketplace in ways that make them economically competitive with fossil fuels and prevent a strain on valuable food

8

Residential Building Industry Consulting Services | Open Energy Information  

Open Energy Info (EERE)

Residential Building Industry Consulting Services Residential Building Industry Consulting Services Jump to: navigation, search Name Residential Building Industry Consulting Services Place New York, NY Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Residential Building Industry Consulting Services is a company located in New York, NY. References Retrieved from "http://en.openei.org/w/index.php?title=Residential_Building_Industry_Consulting_Services&oldid=381757" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages

9

Salem Electric - Residential, Commercial, and Industrial Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salem Electric - Residential, Commercial, and Industrial Efficiency Salem Electric - Residential, Commercial, and Industrial Efficiency Rebate Program Salem Electric - Residential, Commercial, and Industrial Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Multi-Family Residential Nonprofit Residential State Government Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Ventilation Manufacturing Heating & Cooling Commercial Heating & Cooling Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Maximum Rebate ENERGY Star Light Fixtures: Not to exceed 50% of the fixture cost Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Refrigerators: $60 Freezers: $60 Clothes Washers: $60

10

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network (OSTI)

Efficiency Scenario (non-residential sector only) AssumesIndia: Industry and Non Residential Sectors Jayant Sathaye,and support. The Non Residential sector analysis benefited

Sathaye, Jayant

2011-01-01T23:59:59.000Z

11

Bioenergy KDF  

NLE Websites -- All DOE Office Websites (Extended Search)

Navigation Navigation Home Sign-In Contact Us Register Search this site: Search Connect: Bioenergy Library Map Tools & Apps Overview The Bioenergy KDF supports the development of a sustainable bioenergy industry by providing access to a variety of data sets, publications, and collaboration and mapping tools that support bioenergy research, analysis, and decision making. In the KDF, users can search for information, contribute data, and use the tools and map interface to synthesize, analyze, and visualize information in a spatially integrated manner. Read more and watch a short walkthrough video lease note: The KDF works best in the Google Chrome or Mozilla Firefox browsers. What Would You Like to Do? CONTRIBUTE DATA Fill out the contribute form to add data sets and other types of

12

Small-Scale Bioenergy Alternatives for Industry, Farm, and Institutions : A User`s Perspective.  

DOE Green Energy (OSTI)

This report presents research on biomass as an energy source. Topics include: bioenergy development and application; bioenergy combustion technology; and bioenergy from agricultural, forest, and urban resources. There are a total of 57 individual reports included. Individual reports are processed separately for the databases.

Folk, Richard [ed.] [Idaho Univ., Moscow, ID (United States). Dept. of Forest Products

1991-12-31T23:59:59.000Z

13

Image Gallery : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

GO About Research Resources Education Industry Redefining the Frontiers of Bioenergy Research Publications BESC Wiki (internal only) BESC Knowledgbase Biofacts BioEnergy Science...

14

National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet)  

DOE Green Energy (OSTI)

This technical highlight describes NREL research to develop a publicly available database of energy retrofit measures containing performance characteristics and cost estimates for nearly 3,000 measures. Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost-effective retrofit measures to improve the energy efficiency of residential buildings. The database provides a single, consistent source of current data for DOE and private-sector energy audit and simulation software tools and the retrofit industry. The database will reduce risk for residential retrofit industry stakeholders by providing a central, publicly vetted source of up-to-date information.

Not Available

2012-01-01T23:59:59.000Z

15

U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry  

SciTech Connect

The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence in having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small-diameter trees were considered. The 2005 BTS did not attempt to include any wood that would normally be used for higher-valued products (e.g., pulpwood) that could potentially shift to bioenergy applications. This would have required a separate economic analysis, which was not part of the 2005 BTS. The agriculture resources in the 2005 BTS included grains used for biofuels production; crop residues derived primarily from corn, wheat, and small grains; and animal manures and other residues. The cropland resource analysis also included estimates of perennial energy crops (e.g., herbaceous grasses, such as switchgrass, woody crops like hybrid poplar, as well as willow grown under short rotations and more intensive management than conventional plantation forests). Woody crops were included under cropland resources because it was assumed that they would be grown on a combination of cropland and pasture rather than forestland. In the 2005 BTS, current resource availability was estimated at 278 million dry tons annually from forestlands and slightly more than 194 million dry tons annually from croplands. These annual quantities increase to about 370 million dry tons from forestlands and to nearly 1 billion dry tons from croplands under scenario conditions of high-yield growth and large-scale plantings of perennial grasses and woody tree crops. This high-yield scenario reflects a mid-century timescale ({approx}2040-2050). Under conditions of lower-yield growth, estimated resource potential was projected to be about 320 and 580 million dry tons for forest and cropland biomass, respectively. As noted earlier, the 2005 BTS emphasized the primary resources (agricultural and forestry residues and energy crops) because they represent nearly 80% of the long-term resource potential. Since publication of the BTS in April 2005, there have been some rather dramatic changes in energy markets. In fact, just prior to the actual publication of the BTS, world oil prices started to increase as a result of a burgeoning worldwide demand and concerns about long-term supplies. By the end of the summer, oil pri

Downing, Mark [ORNL; Eaton, Laurence M [ORNL; Graham, Robin Lambert [ORNL; Langholtz, Matthew H [ORNL; Perlack, Robert D [ORNL; Turhollow Jr, Anthony F [ORNL; Stokes, Bryce [Navarro Research & Engineering; Brandt, Craig C [ORNL

2011-08-01T23:59:59.000Z

16

Genes to Gasoline : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

GO About Research Resources Education Industry Redefining the Frontiers of Bioenergy Research Publications BESC Wiki (internal only) BESC Knowledgbase Biofacts BioEnergy Science...

17

DOE Hydrogen Analysis Repository: Biomass Supply for Bioenergy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Supply for Bioenergy and Bioproducts Project Summary Full Title: Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton...

18

Factors for Bioenergy Market Development  

DOE Green Energy (OSTI)

Focusing on the development of the whole bioenergy market rather than isolated projects, this paper contributes to the identification of barriers and drivers behind bioenergy technology implementation. It presents a framework for the assessment of the potentials for bioenergy market growth to be used by decision makers in administration and industry. The conclusions are based on case studies of operating bioenergy markets in Austria, US and Sweden. Six important factors for bioenergy market growth have been identified: (1) Integration with other business, e.g. for biomass procurement, (2) Scale effects of bioenergy market, (3) Competition on bioenergy market, (4) Competition with other business, (5) National policy, (6) Local policy and local opinion. Different applications of the framework are discussed.

Roos, A.; Hektor, B.; Graham, R.L.; Rakos, C.

1998-10-04T23:59:59.000Z

19

EERE: Bioenergy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

biorefinery in the distance and an airplane flying overhead Photo of tractor harvesting biomass feedstock Photo of a traditional three stone open fire Bioenergy uses materials...

20

Pacific Northwest and Alaska Regional Bioenergy Program : Five Year Report, 1985-1990.  

DOE Green Energy (OSTI)

This five-year report describes activities of the Pacific Northwest and Alaska Regional Bioenergy Program between 1985 and 1990. Begun in 1979, this Regional Bioenergy Program became the model for the nation's four other regional bioenergy programs in 1983. Within the time span of this report, the Pacific Northwest and Alaska Regional Bioenergy Program has undertaken a number of applied research and technology projects, and supported and guided the work of its five participating state energy programs. During this period, the Regional Bioenergy Program has brought together public- and private-sector organizations to promote the use of local biomass and municipal-waste energy resources and technologies. This report claims information on the mission, goals and accomplishments of the Regional Bioenergy Program. It describes the biomass projects conducted by the individual states of the region, and summarizes the results of the programs technical studies. Publications from both the state and regional projects are listed. The report goes on to consider future efforts of the Regional Bioenergy Program under its challenging assignment. Research activities include: forest residue estimates; Landsat biomass mapping; woody biomass plantations; industrial wood-fuel market; residential space heating with wood; materials recovery of residues; co-firing wood chips with coal; biomass fuel characterization; wood-boosted geothermal power plants; wood gasification; municipal solid wastes to energy; woodstove study; slash burning; forest depletion; and technology transfer. 9 figs., 6 tabs.

Pacific Northwest and Alaska Bioenergy Program (U.S.)

1991-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial residential bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Pacific Northwest and Alaska Regional Bioenergy Program : Five Year Report, 1985-1990.  

SciTech Connect

This five-year report describes activities of the Pacific Northwest and Alaska Regional Bioenergy Program between 1985 and 1990. Begun in 1979, this Regional Bioenergy Program became the model for the nation's four other regional bioenergy programs in 1983. Within the time span of this report, the Pacific Northwest and Alaska Regional Bioenergy Program has undertaken a number of applied research and technology projects, and supported and guided the work of its five participating state energy programs. During this period, the Regional Bioenergy Program has brought together public- and private-sector organizations to promote the use of local biomass and municipal-waste energy resources and technologies. This report claims information on the mission, goals and accomplishments of the Regional Bioenergy Program. It describes the biomass projects conducted by the individual states of the region, and summarizes the results of the programs technical studies. Publications from both the state and regional projects are listed. The report goes on to consider future efforts of the Regional Bioenergy Program under its challenging assignment. Research activities include: forest residue estimates; Landsat biomass mapping; woody biomass plantations; industrial wood-fuel market; residential space heating with wood; materials recovery of residues; co-firing wood chips with coal; biomass fuel characterization; wood-boosted geothermal power plants; wood gasification; municipal solid wastes to energy; woodstove study; slash burning; forest depletion; and technology transfer. 9 figs., 6 tabs.

Pacific Northwest and Alaska Bioenergy Program (U.S.)

1991-02-01T23:59:59.000Z

22

National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost- effective retrofit measures to improve the energy efficiency of residential buildings. This database: * Provides information in a standardized format. * Improves the technical consistency and accuracy of the results of software programs. * Enables experts and stakeholders to view the retrofit information and provide comments to improve data

23

Bioenergy News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bioenergy News Bioenergy News Bioenergy News RSS August 30, 2011 USDA, Departments of Energy and Navy Seek Input from Industry to Advance Biofuels for Military and Commercial Transportation WASHINGTON, Aug. August 10, 2011 Department of Energy Releases New 'Billion-Ton' Study Highlighting Opportunities for Growth in Bioenergy Resources Washington, D.C. - The U.S. Department of Energy today released a report - 2011 U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry - detailing U.S. biomass feedstock potential nationwide. The report examines the nation's capacity to produce a billion dry tons of biomass resources annually for energy uses without impacting other vital U.S. June 10, 2011 Department of Energy Announces up to $36 Million to Support the Development

24

Strategies for Low Carbon Growth In India: Industry and Non Residential  

NLE Websites -- All DOE Office Websites (Extended Search)

Strategies for Low Carbon Growth In India: Industry and Non Residential Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors Title Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors Publication Type Report Refereed Designation Unknown LBNL Report Number LBNL-4557E Year of Publication 2011 Authors Sathaye, Jayant A., Stephane Rue de la du Can, Maithili Iyer, Michael A. McNeil, Klaas Jan Kramer, Joyashree Roy, Moumita Roy, and Shreya Roy Chowdhury Date Published 5/2011 Publisher LBNL Keywords Buildings Energy Efficiency, CO2 Accounting Methodology, CO2 mitigation, Demand Side Management, energy efficiency, greenhouse gas (ghg), india, industrial energy efficiency, industrial sector, Low Carbon Growth, Low Growth, Non Residential Abstract This report analyzed the potential for increasing energy efficiency and reducing greenhouse gas emissions (GHGs) in the non-residential building and the industrial sectors in India. The first two sections describe the research and analyses supporting the establishment of baseline energy consumption using a bottom up approach for the non residential sector and for the industry sector respectively. The third section covers the explanation of a modeling framework where GHG emissions are projected according to a baseline scenario and alternative scenarios that account for the implementation of cleaner technology.

25

Our Partners : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

GO About Research Resources Education Industry Redefining the Frontiers of Bioenergy Research About Current Openings Our Partners People Who's Who Research Biomass Formation...

26

BESC Research : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

GO About Research Resources Education Industry Redefining the Frontiers of Bioenergy Research Biomass Formation Deconstruction and Conversion Enabling Technologies BESC Research...

27

Bioenergy Technologies Office: Research and Development  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Office are focused on addressing technical barriers, providing engineering solutions, and developing the scientific and engineering underpinnings of a bioenergy industry. Near- to...

28

Bioenergy Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference http://energy.gov/eere/articles/lab-your-gas-tank-4-bioenergy-testing-facilities-are-making-difference bioenergy-testing-facilities-are-making-difference" class="title-link">From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference

29

Sustainable use of California biomass resources can help meet state and national bioenergy targets  

E-Print Network (OSTI)

fuel resources. Bio- mass Bioenergy 27:613 20. Parker N,Strategic assessment of bioenergy development in the west:as Feedstock for a Bioenergy and Bioprod- ucts Industry: The

Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

2009-01-01T23:59:59.000Z

30

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

Science Conference Proceedings (OSTI)

This report analyzed the potential for increasing energy efficiency and reducing greenhouse gas emissions (GHGs) in the non-residential building and the industrial sectors in India. The first two sections describe the research and analysis supporting the establishment of baseline energy consumption using a bottom up approach for the non residential sector and for the industry sector respectively. The third section covers the explanation of a modeling framework where GHG emissions are projected according to a baseline scenario and alternative scenarios that account for the implementation of cleaner technology.

Sathaye, Jayant; de la Rue du Can, Stephane; Iyer, Maithili; McNeil, Michael; Kramer, Klaas Jan; Roy, Joyashree; Roy, Moumita; Chowdhury, Shreya Roy

2011-04-15T23:59:59.000Z

31

Bioenergy in Transition  

Science Conference Proceedings (OSTI)

Biomass is a versatile, abundant, and renewable energy resource used widely throughout the world. It is perhaps the most common energy resource in developing countries, used primarily for cooking and heating. While industrialized and newly developing nations have turned to fossil fuels to support economic growth, some are returning to biomass as a means of preserving their depleting natural resources, reducing dependence on imported fossil fuels, strengthening agricultural industries, or reducing environmental pollution. A number of technological advancements, particularly in converting biomass into electricity or alcohol transporation fuels, have triggered this reassessment of biomass as a significant energy resource. The writers report on research and development taking place worldwide, with a focus on work being done in Hawaii. They also assess the technical and economic feasibility of adapting bioenergy technology elsewhere, with particular attention directed at the potential of alcohol fuels for transporation applications and the need to develop bioenergy crops as a precursor to expanded alcohol fuel use and renewable electricity generation.

Overend, R. P.; Kinoshita, C. M.; Antal, M. J.

1996-12-01T23:59:59.000Z

32

Bioenergy in transition  

Science Conference Proceedings (OSTI)

Biomass is a versatile, abundant, and renewable energy resource used widely throughout the world. It is perhaps the most common energy resource in developing countries, used primarily for cooking and heating. While industrialized and newly developing nations have turned to fossil fuels to support economic growth, some are returning to biomass as a means of preserving their depleting natural resources, reducing dependence on imported fossil fuels, strengthening agricultural industries, or reducing environmental pollution. A number of technological advancements, particularly in converting biomass into electricity or alcohol transportation fuels, have triggered this reassessment of biomass as a significant energy resource. The writers report on research and development taking place worldwide, with a focus on work being done in Hawaii. They also assess the technical and economic feasibility of adapting bioenergy technology elsewhere, with particular attention directed at the potential of alcohol fuels for transportation applications and the need to develop bioenergy crops as a precursor to expanded alcohol fuel use and renewable electricity generation.

Overend, R.P. [National Renewable Energy Lab., Golden, CO (United States); Kinoshita, C.M.; Antal, M.J. Jr. [Univ. of Hawaii, Honolulu, HI (United States). Hawaii Natural Energy Inst.

1996-12-01T23:59:59.000Z

33

BioEnergy Science Center Media Room  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioenergy Research Centers DOE Bioenergy Research Centers Great Lakes Bioenergy Research Center (GLBRC) Joint BioEnergy Institute (JBEI)...

34

Explore Bioenergy Technology Careers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bioenergy Technology Careers Bioenergy Technology Careers Explore Bioenergy Technology Careers About Bioenergy Technologies Office Energy from abundant, renewable, domestic biomass can reduce U.S. dependence on oil, lower impacts on climate, and stimulate jobs and economic growth. Photo of a woman tending to plants in a lab. What jobs are available? Feedstocks Farmers Seasonal workers Tree farm workers Mechanical engineers Harvesting equipment mechanics Equipment production workers Chemical engineers Chemical application specialists Chemical production workers Biochemists Aquaculture technicians Agricultural engineers Genetic engineers and scientists Storage facility operators Conversion Microbiologists Clean room technicians Industrial engineers Chemical & mechanical engineers Plant operators

35

Bioenergy | Open Energy Information  

Open Energy Info (EERE)

Bioenergy Jump to: navigation, search Dictionary.png Bioenergy: Energy produced from organic materials from plants or animals. Other definitions:Wikipedia Reegle 1 This article...

36

Pulse combustion: Commercial, industrial, and residential applications. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the evolution of pulse combustion, the types of pulse combustion burners and their applications, and selected fuels utilized. Topics include fuel combustion efficiency, energy conversion and utilization technologies, modeling of chemical kinetics, and dynamics and thermal characteristics of pulse combustors. Pulse combustion systems for water heaters, gas furnaces, industrial and residential boilers, commercial cooking equipment, and space heating devices are presented. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-10-01T23:59:59.000Z

37

Fuel consumption: Industrial, residential, and general studies. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning fuel consumption in industrial and residential sectors. General studies of fuel supply, demand, policy, forecasts, and consumption models are presented. Citations examine fuel information and forecasting systems, fuel production, international economic and energy activities, heating oils, and pollution control. Fuel consumption in the transportation sector is covered in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-08-01T23:59:59.000Z

38

National Residential Efficiency Measures Database Reduces Risk for Home Retrofit Industry (Fact Sheet), NREL Highlights, Research & Development  

SciTech Connect

A new database of residential building measures and estimated costs helps the U.S. building industry determine the most cost-effective means of improving efficiency of existing homes.

Not Available

2011-05-01T23:59:59.000Z

39

NREL: Biomass Research - National Bioenergy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

National Bioenergy Center National Bioenergy Center The National Bioenergy Center (NBC) was established in October 2000 to support the science and technology goals of the U.S. Department of Energy (DOE) Bioenergy Technologies Office. Headquartered at NREL, this virtual center unifies DOE's efforts to advance technology for producing renewable transportation fuels from biomass. A primary goal is to demonstrate the production of cost-competitive cellulosic ethanol by 2012. Collaborating with industrial, academic, and other governmental research, development, and commercialization efforts is central to achieving this goal. Mission The National Bioenergy Center's mission is to foster capability to catalyze the replacement of petroleum with transportation fuels from biomass by delivering innovative, cost-effective biofuels solutions.

40

Biocatalysis and Bioenergy  

Science Conference Proceedings (OSTI)

An up-to-date overview of diverse findings and accomplishments in biocatalysis and bioenergy. Biocatalysis and Bioenergy Biofuels and Bioproducts and Biodiesel Hardback Books Biofuels - Bioproducts John Wiley and Sons An up-to-date overview of div

Note: This page contains sample records for the topic "industrial residential bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Regional comparisons of on-site solar potential in the residential and industrial sectors  

SciTech Connect

Regional and sub-regional differences in the potential development of decentralized solar technologies are studied. Two sectors of the economy were selected for intensive analysis: the residential and industrial sectors. In both investigations, the sequence of analysis follows the same general steps: (1) selection of appropriate prototypes within each land-use sector disaggregated by census region; (2) characterization of the end-use energy demand of each prototype in order to match an appropriate decentralized solar technology to the energy demand; (3) assessment of the energy conservation potential within each prototype limited by land use patterns, technology efficiency, and variation in solar insolation; and (4) evaluation of the regional and sub-regional differences in the land use implications of decentralized energy supply technologies that result from the combination of energy demand, energy supply potential, and the subsequent addition of increasingly more restrictive policies to increase the percent contribution of on-site solar energy. Results are presented and discussed. It is concluded that determining regional variations in solar energy contribution for both the residential and industrial sectors appears to be more dependent upon a characterization of existing demand and conservation potential than regional variations in solar insolation. Local governmental decisions influencing developing land use patterns can significantly promote solar energy use and reduce reliance on non-renewable energy sources. These decisions include such measures as solar access protection through controls on vegetation and on building height and density in the residential sector, and district heating systems and industrial co-location in the manufacturing sector. (WHK)

Gatzke, A.E.; Skewes-Cox, A.O.

1980-10-01T23:59:59.000Z

42

Bioenergy Technologies Office: Sustainability  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overview Financial Opportunities Publications Contact Us Sustainability The Bioenergy Technologies Office's activities are guided by a commitment to environmental, economic,...

43

Solarvest BioEnergy | Open Energy Information  

Open Energy Info (EERE)

Solarvest BioEnergy Jump to: navigation, search Name Solarvest BioEnergy Place Bloomington, Indiana Zip 3057 Sector Bioenergy, Hydro, Hydrogen, Solar Product Solarvest BioEnergy's...

44

Making the Most of Financed Energy Projects The energy engineers in the Residential, Commercial, and Industrial  

E-Print Network (OSTI)

Making the Most of Financed Energy Projects The energy engineers in the Residential, Commercial Oak Ridge National Laboratory Energy and Transportation Science Division Residential, Commercial

45

Bioenergy Technologies FY14 Budget At-a-Glance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BIOENERGY TECHNOLOGIES AT-A-GLANCE Bioenergy Technologies supports targeted research, development, demonstration, and deployment (RDD&D) activities to progress sustainable, nationwide production of advanced biofuels that will displace a share of petroleum-derived fuels, mitigate climate change, create American jobs, and increase U.S. energy security. What We Do Bioenergy Technologies employs an integrated, cross- cutting RDD&D strategy to develop commercially viable biomass utilization technologies. The office makes strategic investments in the following areas:  Feedstock Infrastructure advances a sustainable, secure, reliable, and affordable biomass feedstock supply for the U.S. bioenergy industry.  Conversion R&D identifies and develops viable

46

Feasibility Studies on Selected Bioenergy Concepts Producing Electricity, Heat, and Liquid Fuel  

E-Print Network (OSTI)

The IEA Bioenergy Techno-Economic Analysis Activity reported here, had the following objectives: . To assist companies working with technologies and products related to bioenergy . To promote bioenergy technologies, processes and applications, . To built and maintain a network for R&D organisations and industry.

Yrj Solantausta; Tiina Koljonen; Erich Podesser; David Beckman; Ralph Overend

1999-01-01T23:59:59.000Z

47

Smithfield Bioenergy | Open Energy Information  

Open Energy Info (EERE)

Smithfield Bioenergy Jump to: navigation, search Name Smithfield Bioenergy Place Smithfield, Virginia Zip 23430 Product Biodiesel producer based in Virgina References Smithfield...

48

Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply  

SciTech Connect

The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries--biorefineries--making a variety of fuels, chemicals, and other products. As part of this effort, the Biomass R&D Technical Advisory Committee, a panel established by the Congress to guide the future direction of federally funded biomass R&D, envisioned a 30 percent replacement of the current U.S. petroleum consumption with biofuels by 2030. Biomass--all plant and plant-derived materials including animal manure, not just starch, sugar, oil crops already used for food and energy--has great potential to provide renewable energy for America's future. Biomass recently surpassed hydropower as the largest domestic source of renewable energy and currently provides over 3 percent of the total energy consumption in the United States. In addition to the many benefits common to renewable energy, biomass is particularly attractive because it is the only current renewable source of liquid transportation fuel. This, of course, makes it invaluable in reducing oil imports--one of our most pressing energy needs. A key question, however, is how large a role could biomass play in responding to the nation's energy demands. Assuming that economic and financial policies and advances in conversion technologies make biomass fuels and products more economically viable, could the biorefinery industry be large enough to have a significant impact on energy supply and oil imports? Any and all contributions are certainly needed, but would the biomass potential be sufficiently large to justify the necessary capital replacements in the fuels and automobile sectors? The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country's present petroleum consumption--the goal set by the Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

Perlack, R.D.

2005-12-15T23:59:59.000Z

49

Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries--biorefineries--making a variety of fuels, chemicals, and other products. As part of this effort, the Biomass R&D Technical Advisory Committee, a panel established by the Congress to guide the future direction of federally funded biomass R&D, envisioned a 30 percent replacement of the current U.S. petroleum consumption with biofuels by 2030. Biomass--all plant and plant-derived materials including animal manure, not just starch, sugar, oil crops already used for food and energy--has great potential to provide renewable energy for America's future. Biomass recently surpassed hydropower as the largest domestic source of renewable energy and currently provides over 3 percent of the total energy consumption in the United States. In addition to the many benefits common to renewable energy, biomass is particularly attractive because it is the only current renewable source of liquid transportation fuel. This, of course, makes it invaluable in reducing oil imports--one of our most pressing energy needs. A key question, however, is how large a role could biomass play in responding to the nation's energy demands. Assuming that economic and financial policies and advances in conversion technologies make biomass fuels and products more economically viable, could the biorefinery industry be large enough to have a significant impact on energy supply and oil imports? Any and all contributions are certainly needed, but would the biomass potential be sufficiently large to justify the necessary capital replacements in the fuels and automobile sectors? The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country's present petroleum consumption--the goal set by the Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

Perlack, R.D.

2005-12-15T23:59:59.000Z

50

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Apartment building exterior and interior Apartment building exterior and interior Residential Buildings EETD's research in residential buildings addresses problems associated with whole-building integration involving modeling, measurement, design, and operation. Areas of research include the movement of air and associated penalties involving distribution of pollutants, energy and fresh air. Contacts Max Sherman MHSherman@lbl.gov (510) 486-4022 Iain Walker ISWalker@lbl.gov (510) 486-4692 Links Residential Building Systems Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations

51

Assessment of New Motor Technologies and their Applications: Evaluation of an advanced circulator pump for residential, commercial and industrial applications  

Science Conference Proceedings (OSTI)

Electric pumps are the workhorses behind several industrial processes that help transfer liquids, gases and slurries from one location to another. From simple water pumping systems to sophisticated oil refineries, electric pumps are used in many different areas. Electric pumps are also used in various capacities in the commercial and residential sectors from hot water circulation systems to pool pumps. This technical update provides an assessment of a new circulator pump technology that uses ...

2013-12-04T23:59:59.000Z

52

Perpetual and low-cost power meter for monitoring residential and industrial appliances  

Science Conference Proceedings (OSTI)

The recent research efforts in smart grids and residential power management are oriented to monitor pervasively the power consumption of appliances in domestic and non-domestic buildings. Knowing the status of a residential grid is fundamental to keep ... Keywords: active ORing, energy harvesting, energy measuring, smart metering, wireless sensor networks

Danilo Porcarelli, Domenico Balsamo, Davide Brunelli, Giacomo Paci

2013-03-01T23:59:59.000Z

53

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

DOE Green Energy (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

Kathryn Baskin

2002-07-31T23:59:59.000Z

54

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

DOE Green Energy (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

Kathryn Baskin

2003-01-15T23:59:59.000Z

55

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

DOE Green Energy (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

Kathryn Baskin

2002-04-30T23:59:59.000Z

56

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

DOE Green Energy (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

Kathryn Baskin

2002-11-01T23:59:59.000Z

57

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

DOE Green Energy (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

Kathryn Baskin

2003-04-15T23:59:59.000Z

58

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

SciTech Connect

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

Kathryn Baskin

2003-01-15T23:59:59.000Z

59

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

SciTech Connect

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

Kathryn Baskin

2003-10-31T23:59:59.000Z

60

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

SciTech Connect

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

Kathryn Baskin

2003-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "industrial residential bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

DOE Green Energy (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

Kathryn Baskin

2004-04-30T23:59:59.000Z

62

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

DOE Green Energy (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

Kathryn Baskin

2003-10-31T23:59:59.000Z

63

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

DOE Green Energy (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

Kathryn Baskin

2005-01-31T23:59:59.000Z

64

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

DOE Green Energy (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

Kathryn Baskin

2004-10-31T23:59:59.000Z

65

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

DOE Green Energy (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

Kathryn Baskin

2005-04-30T23:59:59.000Z

66

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

DOE Green Energy (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

Kathryn Baskin

2004-07-28T23:59:59.000Z

67

Online Toolkit Fosters Bioenergy Innovation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Toolkit Fosters Bioenergy Innovation Toolkit Fosters Bioenergy Innovation Online Toolkit Fosters Bioenergy Innovation January 21, 2011 - 2:27pm Addthis Learn more about the Bioenergy Knowledge Discovery Framework, an online data sharing and mapping toolkit. Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy What will the project do? The $241 million loan guarantee for Diamond Green Diesel, funding which will support the construction of a facility that will nearly triple the amount of renewable diesel produced domestically. The online data sharing and mapping toolkit provides the extensive data, analysis, and visualization tools to monitor the bioenergy industry. Yesterday, Secretary Chu announced a $241 million loan guarantee for Diamond Green Diesel, funding which will support the construction of a

68

EERE: Sustainable Transportation - Bioenergy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ponds used for large-scale algae biomass production. Vehicles Bioenergy Hydrogen and Fuel Cells Photo of a commercial airplane in the sky. The U.S. Department of Energy (DOE)...

69

Bioenergy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation » Bioenergy Transportation » Bioenergy Bioenergy EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Image of a passenger airplane flying, with blue sky above and clouds below. The U.S. Department of Energy (DOE) funds research, development, and demonstration to help develop sustainable and cost-competitive biofuels, bioproducts, and biopower. For biofuels, DOE has lowered the cost of non-food-based ethanol by more than $6 per gallon since 2001, and it is now

70

Bioenergy Assessment Toolkit  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioenergy Assessment Toolkit Bioenergy Assessment Toolkit Anelia Milbrandt and Caroline Uriarte Produced under direction of the United States Agency for International Development by the National Renewable Energy Laboratory (NREL) under Interagency Agreement AEG-P-00-00003-00; Work for Others Agreement number 3010543; Task Numbers WFE2.1012, WFE2.1013, and WFE2.1014. Technical Report NREL/TP-6A20-56456 October 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov Bioenergy Assessment Toolkit Anelia Milbrandt and Caroline Uriarte

71

FACT SHEET: BIOENERGY WORKING GROUP  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2010 , 2010 1 FACT SHEET: BIOENERGY WORKING GROUP At the Clean Energy Ministerial in Washington, D.C. on July 19 th and 20 th , ministers launched a Bioenergy Working Group, which will advance the deployment of bioenergy technologies by implementing recommendations of the Technology Action Plan on Bioenergy Technologies that was released by the Major Economies Forum Global Partnership in December 2009. The Working Group will work in close cooperation with the Global Bioenergy Partnership (GBEP), which is co-chaired by Brazil and Italy. Initial key activities of the Working Group include: 1. Global Bioenergy Atlas: The Working Group will combine and build upon existing databases of sustainably-developed bioenergy potential around the globe and make it available in an open web-

72

Reducing indoor residential exposures to outdoor pollutants  

E-Print Network (OSTI)

combustion in motor vehicles, electricity generation and industrial processes, as well as residential fireplaces and wood

Sherman, Max H.; Matson, Nance E.

2003-01-01T23:59:59.000Z

73

U.S. Bioenergy Statistics | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Bioenergy Statistics U.S. Bioenergy Statistics Agriculture Community Menu DATA APPS EVENTS DEVELOPER STATISTICS COLLABORATE ABOUT Agriculture You are here Data.gov » Communities » Agriculture » Data U.S. Bioenergy Statistics Dataset Summary Description The U.S. Bioenergy Statistics are a source of information on biofuels intended to present a picture of the renewable energy industry and its relationship to agriculture. Where appropriate, data are presented in both a calendar year and the relevant marketing year timeframe to increase utility to feedstock-oriented users. The statistics highlight the factors that influence the demand for agricultural feedstocks for biofuels production; for instance, numerous tables emphasize the relationship between energy and commodity markets.

74

DOE Bioenergy Center Special Issue. The Bioenergy Sciences Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioenergy Bioenergy Center Special Issue. The Bioenergy Sciences Center (BESC) Richard A. Dixon Published online: 22 October 2009 # Springer Science + Business Media, LLC. 2009 Keywords Bioenergy centers . United States Department of Energy . Biomass recalcitrance . High-throughput screening . Plant transformation This issue of BioEnergy Research is the first of three special issues to feature work from the US Department of Energy (DOE) Bioenergy Centers. In June 2006, the DOE's Genomes to Life Program published a report, entitled "Breaking the biological barriers to cellulosic ethanol: a joint research agenda," that outlined research areas requir- ing significant investment in order to meet the target of making cellulosic ethanol cost-competitive by 2012. Words were converted to action in June 2007 when Energy Secretary Samuel W. Bodman announced the establishment of

75

Choosing a Residential Window  

NLE Websites -- All DOE Office Websites (Extended Search)

Choosing a Residential Window LBNLs Windows and Daylighting Group provides technical support to government and industry efforts to help consumers and builders choose...

76

Agave Transcriptomes and microbiomes for bioenergy research  

E-Print Network (OSTI)

as a biofuel feedstock. GCB Bioenergy 3, 6878, (2011). [2]in Agave tequilana. GCB Bioenergy 3, 2536, (2011). [4]and microbiomes for bioenergy research Stephen Gross 1,2 ,

Gross, Stephen

2013-01-01T23:59:59.000Z

77

Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM  

E-Print Network (OSTI)

Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM The Texas AgriLife Research Center for the biofuels industry. This program recognizes that the ideal combination of traits required for an economically and energetically sustainable biofuels industry does not yet exist in a single plant spe- cies

78

Bioenergy Technologies Office: Integrated Biorefineries  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

transportation fuels, chemicals, and heat and power. Biofuels Infrastructure moves the fuel from a biorefining plant to the pump. Bioenergy is used to power today's vehicles. A...

79

Center for BioEnergy Sustainability (CBES) Summary of the April 2010 Forum  

E-Print Network (OSTI)

Center for BioEnergy Sustainability (CBES) Summary of the April 2010 Forum The Global Sustainable on behalf of the organizing committeei of the Global Sustainable Bioenergy (GSB) Project and Dr. Lee R, Lynd and industrial revolutions. Today, a sustainability revolution is needed because society is changing from

80

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network (OSTI)

9 Table 4. International Estimates of Energy Consumption in16 Table 10. Industrial energy consumption, India in 2003-25. India Specific energy consumption, including feedstock (

Sathaye, Jayant

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial residential bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Biosciences Division: Endurance Bioenergy Reactor(tm)  

NLE Websites -- All DOE Office Websites (Extended Search)

Endurance Bioenergy Reactor(tm) DOE Logo Search BIO ... Search Argonne Home > BIO home > Endurance Bioenergy Reactor(tm) BIO Home Page About BIO News Releases Research Publications...

82

Great Lakes Bioenergy Research Center Technologies Available ...  

Great Lakes Bioenergy Research Center Technologies Available for Licensing Established by the Department of Energy (DOE) in 2007, the Great Lakes Bioenergy Research ...

83

Argonne National Laboratory Launches Bioenergy Assessment Tools...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Argonne National Laboratory Launches Bioenergy Assessment Tools Argonne National Laboratory Launches Bioenergy Assessment Tools September 30, 2013 - 4:00pm Addthis A researcher...

84

Fundamental & Applied Bioenergy | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

a new generation of efficient bioenergy strategies that will reduce U.S. dependence on foreign oil and help curb carbon emissions. Fundamental and applied bioenergy research at...

85

EERE: Bioenergy Technologies Office Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioenergy Technologies Office Search Bioenergy Technologies Office Search Search Help Bioenergy Technologies Office HOME ABOUT THE PROGRAM RESEARCH & DEVELOPMENT FINANCIAL OPPORTUNITIES INFORMATION RESOURCES NEWS EVENTS EERE » Bioenergy Technologies Office Site Map Printable Version Share this resource Send a link to EERE: Bioenergy Technologies Office Home Page to someone by E-mail Share EERE: Bioenergy Technologies Office Home Page on Facebook Tweet about EERE: Bioenergy Technologies Office Home Page on Twitter Bookmark EERE: Bioenergy Technologies Office Home Page on Google Bookmark EERE: Bioenergy Technologies Office Home Page on Delicious Rank EERE: Bioenergy Technologies Office Home Page on Digg Find More places to share EERE: Bioenergy Technologies Office Home Page on AddThis.com... Biomass is a clean, renewable energy source that can help to significantly

86

Industry-wide information systems standardization as collective action: the case of the U.S. residential mortgage industry  

Science Conference Proceedings (OSTI)

Vertical information systems (VIS) standards are technical specifications designed to promote coordination among the organizations within (or across) vertical industry sectors. Examples include the bar code, electronic data interchange (EDI) standards, ... Keywords: collective action, governance, heterogeneity of resources and interests, institutional support, intellectual property rights, public goods theory, technical design issues, vertical IS standards and standardization

M. Lynne Markus; Charles W. Steinfield; Rolf T. Wigand; Gabe Minton

2006-08-01T23:59:59.000Z

87

A new database of residential building measures and estimated costs helps the U.S. building industry determine the most  

E-Print Network (OSTI)

A new database of residential building measures and estimated costs helps the U.S. building at the National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures with using various measures to improve the efficiency of residential buildings. This database offers

88

Biofuel and Bioenergy implementation scenarios  

E-Print Network (OSTI)

Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies #12;Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies By André of this project are to provide structured and clear data on the availability and performance of biofuels

89

National Bioenergy Center Biochemical Platform Integration Project  

DOE Green Energy (OSTI)

April through June 2008 update on activities of the National Bioenergy Center's Biochemical Platform Integration Project.

Not Available

2008-07-01T23:59:59.000Z

90

Business plan model for bio-energy companies  

Science Conference Proceedings (OSTI)

A solid business plan is an important tool for managing any business. It forms up the foundation of the business as well as discusses how important challenges should be solved. Rather often also third parties like financing institutions are interested ... Keywords: bio-energy, business plan, industrial experiences, planning

Pasi Ojala

2011-02-01T23:59:59.000Z

91

A Water Conservation Scenario for the Residential and Industrial Sectors in California: Potential Saveings of Water and Related Energy  

E-Print Network (OSTI)

A WATER CONSERVATION SCENARIO FOR THE RESIDENTIAL ANDWater 'consumption, water conservation. City of Sacramento.Daniel Stockton. Water conservation. Contra Costa County

Benenson, P.

2010-01-01T23:59:59.000Z

92

A Bioenergy Ecosystem - ORNL Review Vol. 44, No. 3, 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Magazine Search Magazine Go Features Next Article Previous Article Comments Home Clyde Thurman A Bioenergy Ecosystem BESC partnerships translate R&D into biofuels Paul Gilna, director of the BioEnergy Science Center at ORNL, is a man on a mission. In fact his entire organization is working under a Department of Energy mandate to focus the world's leading scientific minds and resources on revolutionizing bioenergy production. When the center was created in 2007, this innovative partnership of national laboratories, a private research foundation, universities and industries set out to break down the barriers to developing viable and affordable biofuel alternatives to petroleum-based fuels from plants that do not compete with food crops, such as switchgrass or poplar trees. Four years into a five-year mission, they

93

Bioscience: Bioenergy, Biosecurity, and Health  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioscience: Bioenergy, Biosecurity, and Health Bioscience: Bioenergy, Biosecurity, and Health /science-innovation/_assets/images/icon-science.jpg Bioscience: Bioenergy, Biosecurity, and Health Los Alamos scientists are developing science and technology to improve pathogen detection, create better therapeutics, and anticipate-even prevent-epidemics and pandemics. Bioenergy» Environmental Microbiology» Proteins» Biosecurity and Health» Genomics and Systems Biology» Algal vats Read caption + Los Alamos scientists used genetic engineering to develop magnetic algae, thus making it much easier to harvest for biofuel production. Harvesting algae accounts for approximately 15-20 percent of the total cost of biofuel production-magnetic algae can reduce such costs by more than 90%. Overview Charlie McMillan, Director of Los Alamos National Laboratory

94

Definition: Bioenergy | Open Energy Information  

Open Energy Info (EERE)

Bioenergy Bioenergy Energy produced from organic materials from plants or animals.[1][2] View on Wikipedia Wikipedia Definition Bioenergy is renewable energy made available from materials derived from biological sources. Biomass is any organic material which has stored sunlight in the form of chemical energy. As a fuel it may include wood, wood waste, straw, manure, sugarcane, and many other byproducts from a variety of agricultural processes. By 2010, there was 35GW of globally installed bioenergy capacity for electricity generation, of which 7GW was in the United States. In its most narrow sense it is a synonym to biofuel, which is fuel derived from biological sources. In its broader sense it includes biomass, the biological material used as a biofuel, as well as the

95

JGI - DOE Bioenergy Research Centers  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Bioenergy Research Centers DOE Bioenergy Research Centers DOE JGI performs sequencing on behalf of the U.S. Department of Energy Bioenergy Research Centers. The Centers are intended to accelerate basic research in the development of cellulosic ethanol and other biofuels, advancing the federal initiative that seeks to reduce U.S. gasoline consumption by 20% within 10 years through increased efficiency and diversification of clean energy sources. The three Centers are located in geographically distinct areas and use different plants both for laboratory research and for improving feedstock crops. DOE BioEnergy Science Center led by DOE's Oak Ridge National Laboratory in Oak Ridge, Tennessee. This center will focus on the resistance of plant fiber to breakdown into sugars and is studying the potential energy crops

96

Alterra Bioenergy | Open Energy Information  

Open Energy Info (EERE)

Alterra has developed a 56.85mLpa (15m gallon) capacity, multifeedstock biodiesel production facility in Georgia. References Alterra Bioenergy1 LinkedIn Connections CrunchBase...

97

Stakeholder Database from the Center for Bioenergy Sustainability (Learn who the experts are)  

DOE Data Explorer (OSTI)

The Center for BioEnergy Sustainability (CBES) is a leading resource for dealing with the environmental impacts and the ultimate sustainability of biomass production for conversion to biofuels and bio-based products. Its purpose is to use science and analysis to understand the sustainability (environmental, economic, and social) of current and potential future bioenergy production and distribution; to identify approaches to enhance bioenergy sustainability; and to serve as an independent source of the highest quality data and analysis for bioenergy stakeholders and decision makers. ... On the operational level, CBES is a focal point and business-development vehicle for ORNLs capabilities related to bioenergy sustainability and socioeconomic analyses. As such, it complements the BioEnergy Science Center (BESC), also located at ORNL, which focuses on the problem of converting lignocellulosic biomass into reactive intermediaries necessary for the cellulosic biofuel industry. Together, these centers provide a strong integrating mechanism and business-development tool for ORNL's science and technology portfolio in bioenergy [taken and edited from http://web.ornl.gov/sci/ees/cbes/. The Stakeholder Database allows you to find experts in bioenergy by their particular type of expertise, their affiliations or locations, their specific research areas or research approaches, etc.

98

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standards West Virginia Agricultural Commercial Industrial Residential Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative...

99

Sustainable Future for Bioenergy To meet the mandated national bioenergy goals, the evolving  

E-Print Network (OSTI)

Sustainable Future for Bioenergy To meet the mandated national bioenergy goals, the evolving region. While bioenergy demand and end use may be FRQFHQWUDWHG LQ KLJKO\\ SRSXODWHG DUHDV LWV SURGXFWLRQ Mapping the future of bioenergy with Geographic Information Systems (GIS) and other cutting edge data

100

Geospatial Science and Technology for Bioenergy Modeling the Sustainability of the National Bioenergy Infrastructure  

E-Print Network (OSTI)

source was the report Sustainable Bioenergy created for the International Seminar on Sustainable Energy

Note: This page contains sample records for the topic "industrial residential bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Residential Loan Fund | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Residential Loan Fund Residential Loan Fund < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Bioenergy Solar Maximum Rebate $20,000 Program Info Funding Source System Benefits Charge (SBC) Start Date 11/10/2009 (current offering) State New York Program Type State Loan Program Rebate Amount Varies Provider New York State Energy Research and Development Authority '''''The New York State Energy Research and Development Authority (NYSERDA) has extended the Participation Agreements of the Assisted Home Performance

102

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Renewable Energy Systems Connecticut Agricultural Commercial Industrial Multi-Family Residential Residential Bioenergy Commercial Heating & Cooling Manufacturing Buying &...

103

Fact Sheets : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact Sheets DOE Mission Focus: BioFuels US Department of Energy's Genomic Science Program DOE BioEnergy Science Center - fact sheet - 2011 DOE BioEnergy Science Center - fact sheet...

104

Teacher Tools : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools for the Teacher The BioEnergy Science Center is committed to communicating research on bioenergy with the education community and to promote understanding of the science by...

105

Bioenergy Technology Ltd | Open Energy Information  

Open Energy Info (EERE)

Bioenergy Technology Ltd Jump to: navigation, search Name Bioenergy Technology Ltd Place East Sussex, United Kingdom Zip TN22 5RU Sector Biomass Product Firm dedicated to the use...

106

Learning From the Implementation of Residential Optional Time of Use Pricing in the U.S. Electricity Industry.  

E-Print Network (OSTI)

??Residential time-of-use (TOU) rates have been in practice in the U.S. since the 1970s. However, for institutional, political, and regulatory reasons, only a very small (more)

Li, Xibao

2003-01-01T23:59:59.000Z

107

Abellon Bioenergy | Open Energy Information  

Open Energy Info (EERE)

Abellon Bioenergy Abellon Bioenergy Jump to: navigation, search Name Abellon Bioenergy Place Ahmedabad, Gujarat, India Zip 380054 Sector Renewable Energy Product Ahmedabad-based start-up project developer having interest in renewable energy. Coordinates 26.93077°, 80.66416° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.93077,"lon":80.66416,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

108

Bioenergy News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bioenergy News Bioenergy News Bioenergy News RSS August 1, 2013 Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions, Technological Breakthroughs During remarks at the Energy Department's Biomass 2013 annual conference, Secretary Moniz highlighted the important role biofuels play in the Administration's Climate Action Plan. July 31, 2013 Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale Groundbreaking Project Deploys Technology Developed Through Early Energy Department R&D Investments July 1, 2013 Energy Department Announces Investment to Accelerate Next Generation Biofuels Following last week's rollout of President Obama's plan to cut carbon pollution, the Energy Department today announced four research and development projects to bring next generation biofuels on line faster and

109

Residential Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Performance: guidelines, analysis and measurements of window and skylight performance Windows in residential buildings consume approximately 2% of all the energy used...

110

U.S. Residential Housing Weather Adjusted Site Energy Consumption ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency > Residential Housing Energy Intensities > Table 1b Glossary U.S. Residential Housing Weather Adjusted ...

111

Alterra Bioenergy LLC | Open Energy Information  

Open Energy Info (EERE)

Alterra Bioenergy LLC Alterra Bioenergy LLC Jump to: navigation, search Name Alterra Bioenergy LLC Place Macon, Georgia Sector Biofuels Product Manufacturer and distributor of biofuels. References Alterra Bioenergy LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Alterra Bioenergy LLC is a company located in Macon, Georgia . References ↑ "Alterra Bioenergy LLC" Retrieved from "http://en.openei.org/w/index.php?title=Alterra_Bioenergy_LLC&oldid=342070" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

112

Fundamental & Applied Bioenergy | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioenergy Bioenergy SHARE Fundamental and Applied Bioenergy Steven Brown (left) and Shihui Yang have developed a microbial strain with an improved ability to convert wood products to biofuel as part of research within the DOE BioEnergy Science Center.Source: ORNL News article ORNL researchers are investigating the biological mechanisms underlying production of biofuels so that those mechanisms can be improved and used to develop a new generation of efficient bioenergy strategies that will reduce U.S. dependence on foreign oil and help curb carbon emissions. Fundamental and applied bioenergy research at ORNL includes studies conducted within the BioEnergy Science Center and the following research areas: Bioconversion Science and Technology Plant-Microbe Interfaces

113

Biofuel Enduse Datasets from the Bioenergy Knowledge Discovery Framework (KDF)  

DOE Data Explorer (OSTI)

The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

Holdings include datasets, models, and maps. This is a very new resource, but the collections will grow due to both DOE contributions and individuals data uploads. Currently the Biofuel Enduse collection includes 133 items. Most of these are categorized as literature, but 36 are listed as datasets and ten as models.

114

Review of Sorghum Production Practices: Applications for Bioenergy  

SciTech Connect

Sorghum has great potential as an annual energy crop. While primarily grown for its grain, sorghum can also be grown for animal feed and sugar. Sorghum is morphologically diverse, with grain sorghum being of relatively short stature and grown for grain, while forage and sweet sorghums are tall and grown primarily for their biomass. Under water-limited conditions sorghum is reliably more productive than corn. While a relatively minor crop in the United States (about 2% of planted cropland), sorghum is important in Africa and parts of Asia. While sorghum is a relatively efficient user of water, it biomass potential is limited by available moisture. The following exhaustive literature review of sorghum production practices was developed by researchers at Oak Ridge National Laboratory to document the current state of knowledge regarding sorghum production and, based on this, suggest areas of research needed to develop sorghum as a commercial bioenergy feedstock. This work began as part of the China Biofuels Project sponsored by the DOE Energy Efficiency and Renewable Energy Program to communicate technical information regarding bioenergy feedstocks to government and industry partners in China, but will be utilized in a variety of programs in which evaluation of sorghum for bioenergy is needed. This report can also be used as a basis for data (yield, water use, etc.) for US and international bioenergy feedstock supply modeling efforts.

Turhollow Jr, Anthony F [ORNL; Webb, Erin [ORNL; Downing, Mark [ORNL

2010-06-01T23:59:59.000Z

115

implementing bioenergy applied research & development  

E-Print Network (OSTI)

1 A Northern Centre for Renewable Energy implementing bioenergy applied research & development plant measures to become carbon neutral and operate on renewable energy. UNBC is uniquely positioned for Climate Solutions, and UNBC. The Green University Centre will be a model of energy efficiency

Northern British Columbia, University of

116

Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial 8,870,422 44.3% Commercial 3,158,244 15.8% Electric Utilities 2,732,496 13.7% Residential 5,241,414 26.2% Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." T e x a s L o u i s i a n a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Industrial Billion Cubic Meters T e x a s C a l i f o r n i a F l o r i d a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Electric Utilities Billion Cubic Meters N e w Y o r k C a l i f o r n i a I l l i n o i s A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Commercial Billion Cubic Meters I l l i n o i s C a l i f o r n i a N e w Y o r k A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Residential Billion Cubic Meters 11. Natural Gas Delivered to Consumers in the United States, 1996 Figure Volumes in Million Cubic Feet Energy Information Administration

117

Burnt Offerings from the Bioenergy Industry  

E-Print Network (OSTI)

? If so, are there any risks associated with this approach? Biochar is a charcoal-based material of purported benefits of biochar usage in soils is long, but are these claims justified when biochar is used in Canadian soils? Are there any environmental risks associated with biochar usage? This talk will summarize

Northern British Columbia, University of

118

City of Austin - Commercial and Residential Green Building Requirements |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » City of Austin - Commercial and Residential Green Building Requirements City of Austin - Commercial and Residential Green Building Requirements < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Buying & Making Electricity Water Heating Water Heating Wind Program Info State Texas Program Type Building Energy Code Provider Austin Energy '''''Note: The requirements listed below are current only up to the date of last review (see the top of this page). The City of Austin may also make additional requirements depending on the circumstances of a given project.

119

USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop Production and Spur Economic Impact USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop Production and Spur Economic Impact August 11, 2011 - 3:55pm Addthis WASHINGTON, DC -- The U.S. Departments of Energy and Agriculture have awarded 10 grants totaling $12.2 million to spur research into improving the efficiency and cost-effectiveness of growing biofuel and bioenergy crops. The investments are part of a broader effort by the Obama administration to develop domestic renewable energy and advanced biofuels, providing a more secure future for America's energy needs and creating new opportunities for the American farming industry. "Biofuels, along with other advanced vehicle technologies, hold the

120

Feedstock Logistics Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)  

DOE Data Explorer (OSTI)

The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

Holdings include datasets, models, and maps. This is a very new resource, but the collections will grow due to both DOE contributions and individuals data uploads. Currently the Feedstock Logistics collection includes 38 items or links, of which eight are datasets.

Note: This page contains sample records for the topic "industrial residential bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop Production and Spur Economic Impact USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop Production and Spur Economic Impact August 11, 2011 - 3:55pm Addthis WASHINGTON, DC -- The U.S. Departments of Energy and Agriculture have awarded 10 grants totaling $12.2 million to spur research into improving the efficiency and cost-effectiveness of growing biofuel and bioenergy crops. The investments are part of a broader effort by the Obama administration to develop domestic renewable energy and advanced biofuels, providing a more secure future for America's energy needs and creating new opportunities for the American farming industry. "Biofuels, along with other advanced vehicle technologies, hold the

122

Nutrient use efficiency in bioenergy cropping systems: Critical research questions  

E-Print Network (OSTI)

x giganteus. Biomass Bioenergy 12:21-24. Christian, D.G. ,for-biofuels systems. Biomass Bioenergy Gentry, L.E. , F.E.cynosuroides. Biomass Bioenergy 12:419-428. Brejda, J.J.

Brouder, Sylvie; Volenec, Jeffrey J; Turco, Ronald; Smith, Douglas R; Ejeta, Gebisa

2009-01-01T23:59:59.000Z

123

Bioenergy Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blog Blog Bioenergy Blog RSS December 16, 2013 The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference The Energy Department is working to cut the cost of biofuel production by supporting advanced development and demonstration facilities throughout the country that enable researchers to fully examine their efforts on a large scale without having to maintain an expensive pilot plant. November 6, 2013 National Renewable Energy Laboratory researcher Lee Elliott collects samples of algae at a creek in Golden, Colorado. | Photo by Dennis Schroeder, National Renewable Energy Laboratory

124

Bioenergy Toolkit | Open Energy Information  

Open Energy Info (EERE)

Bioenergy Toolkit Bioenergy Toolkit Jump to: navigation, search Stage 3 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country 2.3. Assess public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other economic and resource data as needed for LEDS development

125

Terranova Bioenergy LLC | Open Energy Information  

Open Energy Info (EERE)

search Name Terranova Bioenergy LLC Place Larkspur, California Zip 94939 Sector Biofuels Product California-based project developer and consultant in the field of biofuels....

126

About BESC : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

About BESC The BioEnergy Science Center (BESC) is a multi-institutional (18 partner), multidisciplinary research (biological, chemical, physical and computational sciences,...

127

Resources : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources Publications BESC Knowledgebase Biofacts BESC BioEnergy Science Center Fact Sheets BESC Press Releases Videos Audio e-Magazine Images Our Research BESC Wiki (internal...

128

Bioenergy Geradora de Energia | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name Bioenergy - Geradora de Energia Place Sao Paulo, Sao Paulo, Brazil Zip 1456010 Sector Wind energy Product Brazil based wind project developer. References...

129

Guofu Bioenergy Science Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Guofu Bioenergy Science Technology Co Ltd Jump to: navigation, search Name Guofu Bioenergy Science & Technology Co Ltd Place Beijing Municipality, China Zip 100101 Sector Biomass...

130

BioEnergy Science Center (BESC) | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

& Resources News and Awards Supporting Organizations Redefining The Frontiers of Bioenergy Home | Science & Discovery | Clean Energy | Facilities and Centers | BioEnergy...

131

Guangxi Funan Bioenergy Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Guangxi Funan Bioenergy Co Ltd Jump to: navigation, search Name Guangxi Funan Bioenergy Co Ltd Place Guangxi Autonomous Region, China Sector Biomass Product Guangxi-based biomass...

132

Idaho National Laboratory Bioenergy Program | Open Energy Information  

Open Energy Info (EERE)

Data Page Edit with form History Share this page on Facebook icon Twitter icon Idaho National Laboratory Bioenergy Program Jump to: navigation, search Logo: Bioenergy...

133

Carbon Offsets for Forestry and Bioenergy: Researching Opportunities...  

Open Energy Info (EERE)

Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural Communities Jump to: navigation, search Name Carbon Offsets for Forestry and Bioenergy:...

134

eMagazine : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioenergy Research Centers - An overview of the Science The Science Behind Cheaper Biofuels a Bioenergy Ecosystem - BESC partnerships translate R&D into biofuels High-Speed...

135

Average Residential Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

136

Average Residential Price  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

137

Philadelphia Gas Works - Residential and Commercial Construction Incentives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia Gas Works - Residential and Commercial Construction Philadelphia Gas Works - Residential and Commercial Construction Incentives Program (Pennsylvania) Philadelphia Gas Works - Residential and Commercial Construction Incentives Program (Pennsylvania) < Back Eligibility Commercial Industrial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Maximum Rebate Residential: $750 Commercial: $60,000 Program Info Start Date 9/1/2012 Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount '''Residential''' Residential Construction: $750 '''Commercial/Industrial''' 10% to 20% to 30% above code, $40/MMBtu first-year savings Philadelphia Gas Works (PGW) provides incentives to developers, home

138

Residential Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Residential Residential Buildings Residential buildings-such as single family homes, townhomes, condominiums, and apartment buildings-are all covered by the Residential Energy Consumption Survey (RECS). See the RECS home page for further information. However, buildings that offer multiple accomodations such as hotels, motels, inns, dormitories, fraternities, sororities, convents, monasteries, and nursing homes, residential care facilities are considered commercial buildings and are categorized in the CBECS as lodging. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/residential.html

139

Invasive plant species as potential bioenergy producers and carbon contributors.  

Science Conference Proceedings (OSTI)

Current cellulosic bioenergy sources in the United States are being investigated in an effort to reduce dependence on foreign oil and the associated risks to national security and climate change (Koh and Ghazoul 2008; Demirbas 2007; Berndes et al. 2003). Multiple sources of renewable plant-based material have been identified and include agricultural and forestry residues, municipal solid waste, industrial waste, and specifically grown bioenergy crops (Demirbas et al. 2009; Gronowska et al. 2009). These sources are most commonly converted to energy through direct burning, conversion to gas, or conversion to ethanol. Annual crops, such as corn (Zea Mays L.) and sorghum grain, can be converted to ethanol through fermentation, while soybean and canola are transformed into fatty acid methyl esters (biodiesel) by reaction with an alcohol (Demirbas 2007). Perennial grasses are one of the more viable sources for bioenergy due to their continuous growth habit, noncrop status, and multiple use products (Lewandowski el al. 2003). In addition, a few perennial grass species have very high water and nutrient use efficiencies producing large quantities of biomass on an annual basis (Dohleman et al. 2009; Grantz and Vu 2009).

Young, S.; Gopalakrishnan, G.; Keshwani, D. (Energy Systems); (Univ. of Nebraska)

2011-03-01T23:59:59.000Z

140

U.S. Residential Housing Primary Energy Consumption  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency > Residential Housing Energy Intensities > Table 1c Glossary U.S. Resident ...

Note: This page contains sample records for the topic "industrial residential bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

U.S. Residential Buildings Weather-Adjusted Primary Consumption  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities > Table 8c Glossary U.S. Residential Buildings ...

142

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bioenergy Biofuels Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Wind Hawaii Energy Feed-in Tariff Hawaii Commercial Industrial Residential Bioenergy Buying & Making...

143

EIA'S Natural Gas Residential Programs by State  

U.S. Energy Information Administration (EIA)

This site provides an overview of the status of natural gas industry restructuring in each state, focusing on the residential customer class.

144

U.S. Residential Housing Primary  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities >Table 7c Glossary U.S. Residential Housing Primary Page Last Revised: July 2009

145

Bioenergy KDF | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Bioenergy KDF Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Bioenergy KDF Agency/Company /Organization: US Department of Energy Office of Biomass Program Partner: Oak Ridge National Laboratory Sector: Energy Focus Area: Renewable Energy, Biomass Phase: Bring the Right People Together Topics: Background analysis, Resource assessment Resource Type: Maps, Presentation, Publications, Technical report, Software/modeling tools User Interface: Website Website: bioenergykdf.net Web Application Link: bioenergykdf.net Cost: Free OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Coordinates: 36.00941332491°, -84.270080532879° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.00941332491,"lon":-84.270080532879,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

146

Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute  

E-Print Network (OSTI)

Fuels: The Joint BioEnergy Institute Harvey W. Blanch ,,,, * Joint BioEnergy Institute, Department of Chemicalbiomass monomers. The Joint BioEnergy Institute (JBEI) is a

Blanch, Harvey

2010-01-01T23:59:59.000Z

147

Switchgrass for Forage and Bioenergy: II. Effects of P and K fertilization  

E-Print Network (OSTI)

systems. Biomass and Bioenergy 30:198-206. Fixen, PE. 2007.and persistence under bioenergy harvest systems in thebiomass yields for bioenergy purposes have typically been

Guretzky, John A; Kering, Maru K; Biermacher, Jon T; Cook, Billy J

2009-01-01T23:59:59.000Z

148

Developing Switchgrass as a Bioenergy Crop  

DOE Green Energy (OSTI)

The utilization of energy crops produced on American farms as a source of renewable fuels is a concept with great relevance to current ecological and economic issues at both national and global scales. Development of a significant national capacity to utilize perennial forage crops, such as switchgrass (Panicum virgatum, L.) as biofuels could benefit our agricultural economy by providing an important new source of income for farmers. In addition energy production from perennial cropping systems, which are compatible with conventional fining practices, would help reduce degradation of agricultural soils, lower national dependence on foreign oil supplies, and reduce emissions of greenhouse gases and toxic pollutants to the atmosphere (McLaughlin 1998). Interestingly, on-farm energy production is a very old concept, extending back to 19th century America when both transpofiation and work on the farm were powered by approximately 27 million draft animals and fueled by 34 million hectares of grasslands (Vogel 1996). Today a new form of energy production is envisioned for some of this same acreage. The method of energy production is exactly the same - solar energy captured in photosynthesis, but the subsequent modes of energy conversion are vastly different, leading to the production of electricity, transportation fuels, and chemicals from the renewable feedstocks. While energy prices in the United States are among the cheapest in the world, the issues of high dependency on imported oil, the uncertainties of maintaining stable supplies of imported oil from finite reserves, and the environmental costs associated with mining, processing, and combusting fossil fuels have been important drivers in the search for cleaner burning fuels that can be produced and renewed from the landscape. At present biomass and bioenergy combine provide only about 4% of the total primary energy used in the U.S. (Overend 1997). By contrast, imported oil accounts for approximately 44% of the foreign trade deficit in the U.S. and about 45% of the total annual U.S. oil consumption of 34 quads (1 quad = 1015 Btu, Lynd et al. 1991). The 22 quads of oil consumed by transportation represents approximately 25% of all energy use in the US and excedes total oil imports to the US by about 50%. This oil has environmental and social costs, which go well beyond the purchase price of around $15 per barrel. Renewable energy from biomass has the potential to reduce dependency on fossil fhels, though not to totally replace them. Realizing this potential will require the simultaneous development of high yielding biomass production systems and bioconversion technologies that efficiently convert biomass energy into the forms of energy and chemicals usable by industry. The endpoint criterion for success is economic gain for both agricultural and industrial sectors at reduced environmental cost and reduced political risk. This paper reviews progress made in a program of research aimed at evaluating and developing a perennial forage crop, switchgrass as a regional bioenergy crop. We will highlight here aspects of research progress that most closely relate to the issues that will determine when and how extensively switchgrass is used in commercial bioenergy production.

Bouton, J.; Bransby, D.; Conger, B.; McLaughlin, S.; Ocumpaugh, W.; Parrish, D.; Taliaferro, C.; Vogel, K.; Wullschleger, S.

1998-11-08T23:59:59.000Z

149

Industry  

E-Print Network (OSTI)

from refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processes

Bernstein, Lenny

2008-01-01T23:59:59.000Z

150

Regional Residential  

Gasoline and Diesel Fuel Update (EIA)

upward pressure from crude oil markets, magnified by a regional shortfall of heating oil supplies, residential prices rose rapidly to peak February 7. The problem was...

151

State Bioenergy Primer: Information and Resources for States on Issues, Opportunities, and Options for Advancing Bioenergy  

NLE Websites -- All DOE Office Websites (Extended Search)

State State Bioenergy Primer information and resources for States on issues, opportunities, and options for Advancing Bioenergy U.S. EnvironmEntal ProtEction agEncy and national rEnEwablE EnErgy laboratory SEPtEmbEr 15, 2009 TABle of ConTenTS Acknowledgements ________________________________________________________________ iv Key Acronyms and Abbreviations ______________________________________________________ v executive Summary ___________________________________________________ 1 introduction _________________________________________________________ 3 1.1 How the Primer Is Organized ____________________________________________________ 5 1.2 References ____________________________________________________________________ 5 What is Bioenergy? ____________________________________________________

152

Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and  

E-Print Network (OSTI)

Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and Hawaii's Labor Market associated with biofuels in Hawai'i. In particular, it discusses how a potential biofuels industry might policy makers and leaders consider how best to support biofuels. One major labor market question

153

Sustainable use of California biomass resources can help meet state and national bioenergy targets  

E-Print Network (OSTI)

the energy supply. The sustainable use of biomass can reduceBiomass as Feedstock for a Bioenergy and Bioprod- ucts Industry: The Technical Feasibility of a Billion-Ton Annual Supply.supply, renewabil- ity of this resource, sustainability of production and utilization practices, feasibility of advanced technologies for converting biomass

Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

2009-01-01T23:59:59.000Z

154

Commercial and Industrial Renewable Energy Grants | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Grants Renewable Energy Grants Commercial and Industrial Renewable Energy Grants < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Home Weatherization Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Maximum Rebate No maximum Program Info Funding Source RPS alternative compliance payments State New Hampshire Program Type State Grant Program Rebate Amount Minimum $100,000 Provider New Hampshire Public Utilities Commission '''''Note: The deadline for the most-recent round of funding under this program, which offered a total of $1.8 million in grants, was June 7, 2013.

155

Bioenergy  

NLE Websites -- All DOE Office Websites (Extended Search)

Harvesting algae accounts for approximately 15-20 percent of the total cost of biofuel production-magnetic algae can reduce such costs by more than 90%. Overview of Research and...

156

Bioenergy Pumps New Life into Pulp and Paper Mills | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bioenergy Pumps New Life into Pulp and Paper Mills Bioenergy Pumps New Life into Pulp and Paper Mills Bioenergy Pumps New Life into Pulp and Paper Mills December 13, 2011 - 4:12pm Addthis Old Town Fuel and Fiber, a former pulp mill, converts a portion of the wood chips used to make pulp to biofuels. | Energy Department photo. Old Town Fuel and Fiber, a former pulp mill, converts a portion of the wood chips used to make pulp to biofuels. | Energy Department photo. Neil Rossmeissl General Engineer What does this project do? Breathes new life into shuttered factories and mills. Saves and creates jobs. Despite Americans' voracious appetite for paper products -- a staggering 700 pounds per person annually -- America's pulp and paper industry has been struggling as of late due to competition from countries where

157

Bioenergy Pumps New Life into Pulp and Paper Mills | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bioenergy Pumps New Life into Pulp and Paper Mills Bioenergy Pumps New Life into Pulp and Paper Mills Bioenergy Pumps New Life into Pulp and Paper Mills December 13, 2011 - 4:12pm Addthis Old Town Fuel and Fiber, a former pulp mill, converts a portion of the wood chips used to make pulp to biofuels. | Energy Department photo. Old Town Fuel and Fiber, a former pulp mill, converts a portion of the wood chips used to make pulp to biofuels. | Energy Department photo. Neil Rossmeissl General Engineer What does this project do? Breathes new life into shuttered factories and mills. Saves and creates jobs. Despite Americans' voracious appetite for paper products -- a staggering 700 pounds per person annually -- America's pulp and paper industry has been struggling as of late due to competition from countries where

158

Video : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

The Future of Bioenergy Spring 2009 Seminars and Speakers These presentations use "MediaSite" which allows a two-screen view of both the speaker and the slides. This format...

159

Video : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Video Seeing Energy Solutions In Fields The Jason Project The Future of Bioenergy - Spring 2009 Seminars and Speakers HowStuffWorks Show: Episode 3: Cellulose Energy HowStuffWorks...

160

Students & Kids : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Our Earth needs Your Help The Department of Energy BioEnergy Science Center (BESC) created this web site to give you the tools and resources to start making a difference. Learn...

Note: This page contains sample records for the topic "industrial residential bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Residential Alternative Energy System Tax Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Alternative Energy System Tax Credit Residential Alternative Energy System Tax Credit Residential Alternative Energy System Tax Credit < Back Eligibility Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Home Weatherization Water Water Heating Wind Maximum Rebate $500 per individual taxpayer; up to $1,000 per household Program Info Start Date 1/1/2002 Expiration Date none State Montana Program Type Personal Tax Credit Rebate Amount 100% Provider Montana Department of Environmental Quality Residential taxpayers who install an energy system using a recognized non-fossil form of energy on their home after December 31, 2001 are eligible for a tax credit equal to the amount of the cost of the system and

162

2012 Bioenergy Action Plan Prepared by the Bioenergy Interagency Working Group  

E-Print Network (OSTI)

's diverse biomass resources for conversion to "low-carbon" biofuels, biogas, and renewable electricity; 2, biomass, biogas, biomethane, biorefinery, biogenic, Bioenergy Action Plan, renewable; biomass residues and biogas. Current bioenergy production in California includes: 33 biomass plants that generate a combined

163

Industry  

E-Print Network (OSTI)

oxide emission reductions in industry in the EU. Europeanissues: Annual survey of industries. Central StatisticalDesiccated coconut industry of Sri- Lankas opportunities

Bernstein, Lenny

2008-01-01T23:59:59.000Z

164

G K Bioenergy Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

G K Bioenergy Pvt Ltd Jump to: navigation, search Name G.K.Bioenergy Pvt. Ltd. Place Namakkal District, India Zip 637 109 Sector Biomass Product Tamil Nadu-based biomass project...

165

Fact Sheet: Bioenergy Working Group | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bioenergy Working Group Fact Sheet: Bioenergy Working Group A fact sheet detailling the group launched at the Clean Energy Ministerial in Washington, D.C. on July 19th and 20th,...

166

Hestia BioEnergy LLC | Open Energy Information  

Open Energy Info (EERE)

Hestia BioEnergy LLC Jump to: navigation, search Name Hestia BioEnergy LLC Place New York, New York Zip 11378 Sector Biomass Product Hestia builds, operates and owns biomass...

167

C3 BioEnergy | Open Energy Information  

Open Energy Info (EERE)

Product C3 BioEnergy is an early-stage biofuels technology company. Plans to make propane, propylene, and hydrogen from renewable biomass resources. References C3 BioEnergy1...

168

BioEnergy of America | Open Energy Information  

Open Energy Info (EERE)

BioEnergy of America Jump to: navigation, search Name BioEnergy of America Place Edison, New Jersey Zip 8817 Product Defunct New Jersey biodiesel project developer & owner. Company...

169

Greenhouse Gas Emission Reduction in the ENERGY STAR Commercial, Industrial and Residential Sectors. An Example of How the Refinery Industry is Capitalizing on ENERGY STAR  

E-Print Network (OSTI)

In the past 10 years ENERGY STAR has developed a track record as a certification mark to hang buildings performance hat on. By implementing upgrade strategies and pursuing operations and maintenance issues simultaneously, ENERGY STAR has led the nation and many states to pursue greenhouse gas reduction initiatives using energy efficiency as a model program. In developing these partnerships with industry, states and local government, what has occurred is a variety of program approaches that works to accomplish strategically a reduction in emissions. Through its development, ENERGY STAR has become an integral player with many Green Buildings Program to help them carry the energy efficiency banner to higher levels of cooperation. What is occurring today is that more and more local programs are looking to green buildings as an approach to reducing problems they face in air pollution, water pollution, solid waste, needed infrastructure and better of resources needs and the growth of expensive utility infrastructures. EPA - Region 6's ENERGY STAR and Green Building Program assistance has led to some unique solutions and the beginning workups for the integrated expansion of effort to support State Implementation Plans in new innovative voluntary approaches to transform certain markets, similarly to those of energy efficient products. This presentation will be an overview of activity that is being spearheaded in Texas in the DFW and Houston metro areas in ENERGY STAR and Green Buildings. The voluntary programs impacts are reducing energy consumption, creating markets for renewables, reducing air polluting chemicals and reducing greenhouse gas emissions using verifiable approaches.

Patrick, K.

2008-01-01T23:59:59.000Z

170

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy Production Tax Credit (Corporate) Maryland Agricultural Commercial Industrial Residential Utility Bioenergy Buying & Making Electricity Water Solar Wind Maryland...

171

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biogas and Biomass to Energy Grant Program Illinois Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Bioenergy...

172

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dakota Agricultural Commercial Industrial Residential Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen &...

173

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(RIREF) Rhode Island Commercial Industrial Institutional Residential Utility Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Heating...

174

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Systems Exemption Oregon Commercial Industrial Residential Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Heating...

175

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Energy Fund Ohio Commercial Industrial Institutional Residential Utility Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel...

176

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Missouri River Energy Services Net Metering North Dakota Commercial Industrial Residential Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity...

177

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Production Tax Credit (Personal) Iowa Agricultural Commercial Industrial Institutional Residential Rural Electric Cooperative Schools Bioenergy Alternative Fuel...

178

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interconnection Guidelines Nebraska Agricultural Commercial Industrial Residential Bioenergy Buying & Making Electricity Solar Home Weatherization Water Wind Nebraska Energy Office...

179

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternate Energy Revolving Loan Program Iowa Commercial Industrial Residential Utility Bioenergy Water Buying & Making Electricity Solar Heating & Cooling Commercial Heating &...

180

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Industrial Residential Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Wind Solar Louisiana Public Service...

Note: This page contains sample records for the topic "industrial residential bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering New York Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Bioenergy Commercial Heating...

182

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering New Mexico Commercial Industrial Residential Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel...

183

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interconnection Guidelines Wyoming Commercial Industrial Residential Bioenergy Water Buying & Making Electricity Solar Wind Wyoming Public Service Commission Net Metering Wyoming...

184

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Electrical Generating Equipment Indiana Commercial Industrial Residential Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Indiana Department...

185

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Government Industrial Local Government Nonprofit Residential Schools State Government Bioenergy Buying & Making Electricity Water Solar Wind Virginia State Corporation Commission...

186

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interconnection Standards Texas Commercial Industrial Residential Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles...

187

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Valley Electric Association - Net Metering Nevada Agricultural Commercial Industrial Residential Bioenergy Buying & Making Electricity Solar Home Weatherization Water Wind Valley...

188

Fulcrum Bioenergy Inc | Open Energy Information  

Open Energy Info (EERE)

Fulcrum Bioenergy Inc Fulcrum Bioenergy Inc Jump to: navigation, search Name Fulcrum Bioenergy, Inc. Place Pleasanton, California Zip 94588 Sector Bioenergy, Renewable Energy Product Fulcrum BioEnergy is a waste-to-fuels company that focuses on the development of clean, environmentally responsible facilities for the conversion of municipal solid waste and other waste products to ethanol and other renewable transportation fuels. Coordinates 28.967394°, -98.478862° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.967394,"lon":-98.478862,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

189

Tersus BioEnergy | Open Energy Information  

Open Energy Info (EERE)

Tersus BioEnergy Tersus BioEnergy Jump to: navigation, search Name Tersus BioEnergy Place London, Greater London, United Kingdom Zip W1J 5PT Sector Bioenergy, Biomass Product Subsidiary of Tersus Energy. Tersus BioEnergy invests in companies developing biofuel and biomass and waste technologies. Typical investment size USD 500,000-USD 5m Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

190

Nishant Bioenergy P Ltd | Open Energy Information  

Open Energy Info (EERE)

Nishant Bioenergy P Ltd Nishant Bioenergy P Ltd Jump to: navigation, search Logo: Nishant Bioenergy P Ltd Name Nishant Bioenergy P Ltd Address Sector 18-D, Chandigarh Place Chandigarh Zip 160018 Sector Bioenergy Product Biomass Fuel Pellet and Biomass Pellet Fired Cook Stove for institutional use Stock Symbol Stove Earth Stove Year founded 1999 Number of employees 1-10 Company Type For Profit Phone number 09815609301 Website http://www.nishantbioenergy.co Coordinates 30.7347851°, 76.7884713° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.7347851,"lon":76.7884713,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

191

Average Residential Price  

Gasoline and Diesel Fuel Update (EIA)

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

192

Average Residential Price  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

193

IEA Bioenergy task 40 Country report for the Netherlands  

E-Print Network (OSTI)

pellets, wood chips, agri residues & pellets, bone meal,et cetera) 135 2.3 435 6.45 853 12.6 Liquids Wood combustion for heat production Wood residues 0 7 CHP digestion plants Manure, wet organic waste combustion Wood for industrial and residential heat Co-firing biomass in coal and gas power plants Organic

194

Bioenergy market competition for biomass: A system dynamics review of current policies  

SciTech Connect

There is growing interest in the United States and abroad to increase the use of biomass as an energy source due to environmental and energy security benefits. In the United States, the biofuel and biopower industries are regulated by different policies and different agencies and have different drivers, which impact the maximum price the industries are willing to pay for biomass. This article describes a dynamic computer simulation model that analyzes future behavior of bioenergy feedstock markets based on varying policy and technical options. The model simulates the long-term dynamics of these markets by treating advanced biomass feedstocks as a commodity and projecting the total demand of each industry, as well as the market price over time. The model is used for an analysis of the United States bioenergy feedstock market that projects supply, demand, and market price given three independent buyers: domestic biopower, domestic biofuels, and foreign exports. With base-case assumptions, the biofuels industry is able to dominate the market and meet the federal Renewable Fuel Standard (RFS) targets for advanced biofuels. Further analyses suggest that United States bioenergy studies should include estimates of export demand for biomass in their projections, and that GHG-limiting policy would partially shield both industries from export dominance.

Jacob J. Jacobson; Robert Jeffers

2013-07-01T23:59:59.000Z

195

Our Partners : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Bringing the best and the brightest together. Bringing the best and the brightest together. The mission of the Department of Energy BioEnergy Science Center is to revolutionize how Bioenergy is processed within five years. To reach this goal, we have assembled a world-class team of some of the world's leading experts and facilities. We are working together to develop alternative fuel solutions that are a viable and affordable option to petroleum-based fuels. To accomplish this mission, The BioEnergy Science Center is backed by more than $80 million in investments from state and private-sector sources. This includes $30 million toward research and equipment and a $40 million, 250,000 gallons-a-year switchgrass-to-ethanol demonstration facility. View the INTERACTIVE MAP to learn more about the specific contributions we

196

Argonne National Laboratory Launches Bioenergy Assessment Tools |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Argonne National Laboratory Launches Bioenergy Assessment Tools Argonne National Laboratory Launches Bioenergy Assessment Tools Argonne National Laboratory Launches Bioenergy Assessment Tools September 30, 2013 - 4:00pm Addthis A researcher loads a biomass sample into spinning ring cup. Argonne National Laboratory has launched two online tools that assess the resource consumption and greenhouse gas emissions associated with biofuel production. | Photo courtesy of National Renewable Energy Laboratory A researcher loads a biomass sample into spinning ring cup. Argonne National Laboratory has launched two online tools that assess the resource consumption and greenhouse gas emissions associated with biofuel production. | Photo courtesy of National Renewable Energy Laboratory Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable

197

Kent BioEnergy | Open Energy Information  

Open Energy Info (EERE)

Kent BioEnergy Kent BioEnergy Jump to: navigation, search Name Kent BioEnergy Address 11125 Flintkote Avenue Place San Diego, California Zip 92121 Sector Biofuels Product Technologies that use algae in biofuel production, water pollution remediation, CO2 absorption, etc Website http://www.kentbioenergy.com/ Coordinates 32.904312°, -117.231255° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.904312,"lon":-117.231255,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

198

Northeast Kansas Bioenergy LLC | Open Energy Information  

Open Energy Info (EERE)

Kansas Bioenergy LLC Kansas Bioenergy LLC Jump to: navigation, search Name Northeast Kansas Bioenergy LLC Place Hiawatha, Kansas Zip 66434 Product Developing and integrated Bioethanol / Biodiesel refinery near Hiawatha, Kansas Coordinates 39.853465°, -95.527144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.853465,"lon":-95.527144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

199

State Bioenergy Primer: Information and Resources for States on Issues, Opportunities, and Options for Advancing Bioenergy  

SciTech Connect

One renewable energy option that states frequently consider to meet their clean energy goals is the use of biomass resources to develop bioenergy. Bioenergy includes bioheat, biopower, biofuels, and bioproducts. This document provides an overview of biomass feedstocks, basic information about biomass conversion technologies, and a discussion of benefits and challenges of bioenergy options. The Primer includes a step-wise framework, resources, and tools for determining the availability of feedstocks, assessing potential markets for biomass, and identifying opportunities for action at the state level. Each chapter contains a list of selected resources and tools that states can use to explore topics in further detail.

Byrnett, D. S.; Mulholland, D.; Zinsmeister, E.; Doris, E.; Milbrandt, A.; Robichaud. R.; Stanley, R.; Vimmerstedt, L.

2009-09-01T23:59:59.000Z

200

Industry  

E-Print Network (OSTI)

the paper, glass or ceramics industry) making it difficulttechnology in the ceramic manufacturing industry. industries: iron and steel, non-ferrous metals, chemicals (including fertilisers), petroleum refining, minerals (cement, lime, glass and ceramics) and

Bernstein, Lenny

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial residential bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Industry  

E-Print Network (OSTI)

in the iron and steel industry: a global model. Energy, 30,report of the world steel industry 2005. International Irontrends in the iron and steel industry. Energy Policy, 30,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

202

Constraints to bio-energy development  

DOE Green Energy (OSTI)

The energy crisis has prompted research and development of renewable, domestic, cost-effective and publicly acceptable energy alternatives. Among these are the bioconversion technologies. To date bio-energy research has been directed toward the mechanics of the conversion processes and technical assessment of the environmental impacts. However, there are other obstacles to overcome before biomass can be converted to more useful forms of energy that fit existing need. Barriers to bio-energy resource application in the US are identified. In addition, examples from several agricultural regions serve to illustrate site-specific resource problems.

Parsons, V.B.

1980-01-01T23:59:59.000Z

203

LANL capabilities towards bioenergy and biofuels programs  

SciTech Connect

LANL invented technology for increasing growth and productivity of photosysnthetic organisms, including algae and higher plants. The technology has been extensively tested at the greenhouse and field scale for crop plants. Initial bioreactor testing of its efficacy on algal growth has shown promising results. It increases algal growth rates even under optimwn nutrient supply and careful pH control with CO{sub 2} continuously available. The technology uses a small organic molecule, applied to the plant surfaces or added to the algal growth medium. CO{sub 2} concentration is necessary to optimize algal production in either ponds or reactors. LANL has successfully designed, built and demonstrated an effective, efficient technology using DOE funding. Such a system would be very valuable for capitalizing on local inexpensive sources of CO{sub 2} for algal production operations. Furthermore, our protein engineering team has a concept to produce highly stable carbonic anhydyrase (CA) enzyme, which could be very useful to assure maximum utilization of the CO{sub 2} supply. Stable CA could be used either imnlobilized on solid supports or engineered into the algal strain. The current technologies for harvesting the algae and obtaining the lipids do not meet the needs for rapid, low cost separations for high volumes of material. LANL has obtained proof of concept for the high volume flowing stream concentration of algae, algal lysis and separation of the lipid, protein and water fractions, using acoustic platforms. This capability is targeted toward developing biosynthetics, chiral syntheses, high throughput protein expression and purification, organic chemistry, recognition ligands, and stable isotopes geared toward Bioenergy applications. Areas of expertise include stable isotope chemistry, biomaterials, polymers, biopolymers, organocatalysis, advanced characterization methods, and chemistry of model compounds. The ultimate realization of the ability to design and synthesize materials that mimic or are inspired by natural systems will lead to entirely new applications in the bioenergy areas. In addition, there are new developments in this capability that involve development of catalytic methods for the production of carbon chains from the most abundant carbohydrate on the planet, glucose. These carbon chains will be useful in the production of high density fuels which defined characteristics. In addition, these methods/capabilities will be used to generate feedstocks for industrial processes. LANL is the second largest partner institution of the Department of Energy's Joint Genome Institute (DOE-JGI), and specializes in high throughput genome finishing and analysis in support of DOE missions in energy, bioremediation and carbon sequestration. This group is comprised of molecular biology labs and computational staff who together focus on the high-throughput DNA sequencing of whole microbial genomes, computational finishing and bioinformatics. The applications team focuses on the use of new sequencing technologies to address questions in environmental science. In addition to supporting the DOE mission, this group supports the Nation's national security mission by sequencing critical pathogens and near neighbors in support of relevent application areas.

Olivares, Jose A [Los Alamos National Laboratory; Park, Min S [Los Alamos National Laboratory; Unkefer, Clifford J [Los Alamos National Laboratory; Bradbury, Andrew M [Los Alamos National Laboratory; Waldo, Geoffrey S [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

204

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior and interior of apartment building Exterior and interior of apartment building Residential Buildings The study of ventilation in residential buildings is aimed at understanding the role that air leakage, infiltration, mechanical ventilation, natural ventilation and building use have on providing acceptable indoor air quality so that energy and related costs can be minimized without negatively impacting indoor air quality. Risks to human health and safety caused by inappropriate changes to ventilation and air tightness can be a major barrier to achieving high performance buildings and must be considered.This research area focuses primarily on residential and other small buildings where the interaction of the envelope is important and energy costs are dominated by space conditioning energy rather than air

205

Property Tax Exemption for Residential Renewable Energy Equipment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property Tax Exemption for Residential Renewable Energy Equipment Property Tax Exemption for Residential Renewable Energy Equipment Property Tax Exemption for Residential Renewable Energy Equipment < Back Eligibility Residential Savings Category Bioenergy Solar Buying & Making Electricity Home Weatherization Water Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info State Colorado Program Type Property Tax Incentive Rebate Amount 100% exemption for renewable energy system property Most locally assessed renewable energy property meet the criteria to be classified as personal property under § 39-1-102 (11), C.R.S. For Colorado property taxation purposes, solar energy facilities property used to produce two (2) megawatts or less of AC electricity and wind energy facilities property used to produce two (2) megawatts or less of AC

206

Residential Alternative Energy Tax Deduction | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Alternative Energy Tax Deduction Residential Alternative Energy Tax Deduction Residential Alternative Energy Tax Deduction < Back Eligibility Residential Savings Category Bioenergy Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Wind Maximum Rebate 5,000 per year; 20,000 total deduction Program Info State Idaho Program Type Personal Deduction Rebate Amount 40% in the first year; 20% per year for next three years Provider Idaho Tax Commission This statute allows taxpayers an income tax deduction of 40% of the cost of a solar, wind, geothermal, and certain biomass energy devices used for heating or electricity generation. Taxpayers can apply this 40% deduction in the year in which the system is installed and can also deduct 20% of the

207

Residential Energy Efficiency Tax Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Tax Credit Residential Energy Efficiency Tax Credit Residential Energy Efficiency Tax Credit < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Heat Pumps Insulation Appliances & Electronics Water Heating Bioenergy Maximum Rebate For purchases made in 2011, 2012, and 2013: Aggregate amount of credit is limited to $500. Taxpayer is ineligible for this tax credit if this credit has already been claimed by the taxpayer in an amount of $500 in any previous year. For purchases made in 2009 or 2010: Aggregate amount of credit for all technologies placed in service in 2009 and 2010 combined is limited to

208

Residential Wood Heating Fuel Exemption (New York) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wood Heating Fuel Exemption (New York) Wood Heating Fuel Exemption (New York) Residential Wood Heating Fuel Exemption (New York) < Back Eligibility Multi-Family Residential Residential Savings Category Bioenergy Maximum Rebate None Program Info State New York Program Type Sales Tax Incentive Rebate Amount 100% exemption Provider New York State Department of Taxation and Finance New York exempts retail sales of wood used for residential heating purposes from the state sales tax. The law also permits local governments (municipalities and counties) to grant an exemption from local sales taxes. If a city with a population of 1 million or more chooses to grant the local exemption, it must enact a specific resolution that appears in the state law. Local sales tax rates in New York range from 1.5% to more than 4% in

209

Residential Energy Efficiency Stakeholder Meeting - Spring 2012 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Stakeholder Meeting - Spring 2012 Residential Energy Efficiency Stakeholder Meeting - Spring 2012 Residential Energy Efficiency Stakeholder Meeting - Spring 2012 The U.S. Department of Energy (DOE) Building America program held the second annual Residential Energy Efficiency Stakeholder Meeting on February 29-March 2, 2012, in Austin, Texas. At this meeting, hundreds of building industry professionals came together to share their perspective on the most current innovation projects in the residential buildings sector. This meeting provided an opportunity for researchers and industry stakeholders to showcase and discuss the latest in cutting-edge, energy-efficient residential building technologies and practices. The meeting also included working sessions from each Standing Technical Committee (STC), which outlined work that will best assist in overcoming

210

Guidelines for residential commissioning  

E-Print Network (OSTI)

Potential Benefits of Commissioning California Homes.Delp. 2000. Residential Commissioning: A Review of Relatedfor Evaluating Residential Commissioning Metrics Lawrence

Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

2003-01-01T23:59:59.000Z

211

EIA Electric Industry Data Collection  

U.S. Energy Information Administration (EIA)

Steam Production EIA Electric Industry Data Collection Residential Industrial ... Monthly data on cost and quality of fuels delivered to cost-of-service plants

212

DOE Provides $30 Million to Jump Start Bioenergy Research Centers |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30 Million to Jump Start Bioenergy Research Centers 30 Million to Jump Start Bioenergy Research Centers DOE Provides $30 Million to Jump Start Bioenergy Research Centers October 1, 2007 - 2:49pm Addthis DOE Bioenergy Research Center Investment Tops $400 Million WASHINGTON, DC-The U.S. Department of Energy (DOE) today announced it has invested nearly $30 million in end-of-fiscal-year (2007) funds to accelerate the start-up of its three new Bioenergy Research Centers, bringing total DOE Bioenergy Research Center investment to over $400 million. The three DOE Bioenergy Research Centers-located in Oak Ridge, Tennessee; Madison, Wisconsin; and near Berkeley, California-selected by DOE this June, bring together multidisciplinary teams of leading scientists to advance research needed to make cellulosic ethanol and other biofuels

213

Bioenergy and Food Security Criteria and Indicators (BEFSCI) Website | Open  

Open Energy Info (EERE)

Bioenergy and Food Security Criteria and Indicators (BEFSCI) Website Bioenergy and Food Security Criteria and Indicators (BEFSCI) Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Bioenergy and Food Security Criteria and Indicators (BEFSCI) Website Focus Area: Other Biofuels Topics: Training Material Website: www.fao.org/bioenergy/foodsecurity/befsci/en/ Equivalent URI: cleanenergysolutions.org/content/bioenergy-and-food-security-criteria- Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This website-created by the Bioenergy and food Security project of the Food and Agriculture Organization of the United Nations (FAO)-provides policymakers and practitioners a set of criteria, indicators, good practices, and policy options for sustainable bioenergy production to

214

Bioenergy Research Centers U.S. Department of Energy Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioenergy Research Centers Bioenergy Research Centers U.S. Department of Energy Office of Science U.S. Department of Energy Office of Science Suggested citation: U.S. DOE. 2010. U.S. Department of Energy's Bioen- ergy Research Centers: An Overview of the Science, DOE/SC-0127. Office of Biological and Environmental Research within the DOE Office of Science (genomicscience.energy.gov/centers/brcbrochure.pdf). Sources for cover images: Joint BioEnergy Institute photo by Jona- than Remis, Lawrence Berkeley National Laboratory. BioEnergy Sci- ence Center photo by Seokwon Jung and Arthur Ragauskas, Georgia Institute of Technology. Great Lakes Bioenergy Research Center photo by Kurt Stepnitz, Michigan State University. Websites for DOE Bioenergy Research Centers DOE Joint BioEnergy Institute

215

Videos from the DOE BioEnergy Science Center (BESC): Redefining the Frontiers of Bioenergy  

DOE Data Explorer (OSTI)

Bioenergy is energy derived from biomass. Biofuel is formed from biomass, and can be used to power greener vehicles and herald more efficient energy production. The Energy Independence and Security Act (EISA) set a renewable fuel standard of 36 billion gallons of biofuel processed annually by 2022, with 16 billion gallons coming from cellulosic feedstock such as switchgrass and poplar. To reach this goal, the Department of Energy (DOE) set up three Bioenergy Research Centers in September 2007. The BioEnergy Science Center (BESC) is researching methods to easily break down cell walls of switchgrass and poplar to form biofuel, as well as researching enzymes and microbes that will do the breaking down of the plant material. By modifying the genome of the biomass, BESC can form a more populous, easily broken down feedstock that will grow easily and be available for use. By modifying the genome of the microbes, the process of breaking down the biomass into biofuel will be expedited and simplified at the same time [Copied with editing from http://bioenergycenter.org/what-is-bioenergy/]. BESC presentation videos include: Bioenergy Conversion and the BioEnergy Science Center: An Introduction to the Challenges in Making Cellulosic Biofuels Lignin Biosynthesis and Its Manipulation for the Development of Dedicated Bioenergy Crops Microbial Cellulose Utilization: Fundamentals and Biotechnology The Clostridium Thermocellum Cellulosome: A Molecular Machine for Cellulose Degradation Biobutanol from Biomass Applied Photosynthesis: Putting Photosystem I to Work Plant Genome Structure and Evolution as Tools for the Improvement of Biomass Crops \tCool C4 Photosynthesis. Miscanthus -- A Means to Achieve Large Sustainable Supplies of Bioenergy Feedstock without Impacts on Food Production Second Generation Pentose Utilizing Yeast Strains Biomass to Hydrogen Gas at 100 Degrees Celsius Light Harvesting for Algal Biofuels. The Center also provides a photo gallery, fact sheets, and other media-rich information.

216

Biofuel Production Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)  

DOE Data Explorer (OSTI)

The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

Holdings include datasets, models, and maps. This is a very new resource, but the collections will grow due to both DOE contributions and individuals data uploads. Currently the Biofuel Production collection includes 100 items. Most of these are categorized as literature, but six datasets and 16 models are listed.

217

Genomics:GTL Bioenergy Research Centers White Paper  

DOE Green Energy (OSTI)

In his Advanced Energy Initiative announced in January 2006, President George W. Bush committed the nation to new efforts to develop alternative sources of energy to replace imported oil and fossil fuels. Developing cost-effective and energy-efficient methods of producing renewable alternative fuels such as cellulosic ethanol from biomass and solar-derived biofuels will require transformational breakthroughs in science and technology. Incremental improvements in current bioenergy production methods will not suffice. The Genomics:GTL Bioenergy Research Centers will be dedicated to fundamental research on microbe and plant systems with the goal of developing knowledge that will advance biotechnology-based strategies for biofuels production. The aim is to spur substantial progress toward cost-effective production of biologically based renewable energy sources. This document describes the rationale for the establishment of the centers and their objectives in light of the U.S. Department of Energy's mission and goals. Developing energy-efficient and cost-effective methods of producing alternative fuels such as cellulosic ethanol from biomass will require transformational breakthroughs in science and technology. Incremental improvements in current bioenergy-production methods will not suffice. The focus on microbes (for cellular mechanisms) and plants (for source biomass) fundamentally exploits capabilities well known to exist in the microbial world. Thus 'proof of concept' is not required, but considerable basic research into these capabilities remains an urgent priority. Several developments have converged in recent years to suggest that systems biology research into microbes and plants promises solutions that will overcome critical roadblocks on the path to cost-effective, large-scale production of cellulosic ethanol and other renewable energy from biomass. The ability to rapidly sequence the DNA of any organism is a critical part of these new capabilities, but it is only a first step. Other advances include the growing number of high-throughput techniques for protein production and characterization; a range of new instrumentation for observing proteins and other cell constituents; the rapid growth of commercially available reagents for protein production; a new generation of high-intensity light sources that provide precision imaging on the nanoscale and allow observation of molecular interactions in ultrafast time intervals; major advances in computational capability; and the continually increasing numbers of these instruments and technologies within the national laboratory infrastructure, at universities, and in private industry. All these developments expand our ability to elucidate mechanisms present in living cells, but much more remains to be done. The Centers are designed to accomplish GTL program objectives more rapidly, more effectively, and at reduced cost by concentrating appropriate technologies and scientific expertise, from genome sequence to an integrated systems understanding of the pathways and internal structures of microbes and plants most relevant to developing bioenergy compounds. The Centers will seek to understand the principles underlying the structural and functional design of selected microbial, plant, and molecular systems. This will be accomplished by building technological pathways linking the genome-determined components in an organism with bioenergy-relevant cellular systems that can be characterized sufficiently to generate realistic options for biofuel development. In addition, especially in addressing what are believed to be nearer-term approaches to renewable energy (e.g., producing cellulosic ethanol cost-effectively and energy-efficiently), the Center research team must understand in depth the current industrial-level roadblocks and bottlenecks (see section, GTL's Vision for Biological Energy Alternatives, below). For the Centers, and indeed the entire BER effort, to be successful, Center research must be integrated with individual investigator research, and coordination of activities,

Mansfield, Betty Kay [ORNL; Alton, Anita Jean [ORNL; Andrews, Shirley H [ORNL; Bownas, Jennifer Lynn [ORNL; Casey, Denise [ORNL; Martin, Sheryl A [ORNL; Mills, Marissa [ORNL; Nylander, Kim [ORNL; Wyrick, Judy M [ORNL; Drell, Dr. Daniel [Office of Science, Department of Energy; Weatherwax, Sharlene [U.S. Department of Energy; Carruthers, Julie [U.S. Department of Energy

2006-08-01T23:59:59.000Z

218

Genomics:GTL Bioenergy Research Centers White Paper  

SciTech Connect

In his Advanced Energy Initiative announced in January 2006, President George W. Bush committed the nation to new efforts to develop alternative sources of energy to replace imported oil and fossil fuels. Developing cost-effective and energy-efficient methods of producing renewable alternative fuels such as cellulosic ethanol from biomass and solar-derived biofuels will require transformational breakthroughs in science and technology. Incremental improvements in current bioenergy production methods will not suffice. The Genomics:GTL Bioenergy Research Centers will be dedicated to fundamental research on microbe and plant systems with the goal of developing knowledge that will advance biotechnology-based strategies for biofuels production. The aim is to spur substantial progress toward cost-effective production of biologically based renewable energy sources. This document describes the rationale for the establishment of the centers and their objectives in light of the U.S. Department of Energy's mission and goals. Developing energy-efficient and cost-effective methods of producing alternative fuels such as cellulosic ethanol from biomass will require transformational breakthroughs in science and technology. Incremental improvements in current bioenergy-production methods will not suffice. The focus on microbes (for cellular mechanisms) and plants (for source biomass) fundamentally exploits capabilities well known to exist in the microbial world. Thus 'proof of concept' is not required, but considerable basic research into these capabilities remains an urgent priority. Several developments have converged in recent years to suggest that systems biology research into microbes and plants promises solutions that will overcome critical roadblocks on the path to cost-effective, large-scale production of cellulosic ethanol and other renewable energy from biomass. The ability to rapidly sequence the DNA of any organism is a critical part of these new capabilities, but it is only a first step. Other advances include the growing number of high-throughput techniques for protein production and characterization; a range of new instrumentation for observing proteins and other cell constituents; the rapid growth of commercially available reagents for protein production; a new generation of high-intensity light sources that provide precision imaging on the nanoscale and allow observation of molecular interactions in ultrafast time intervals; major advances in computational capability; and the continually increasing numbers of these instruments and technologies within the national laboratory infrastructure, at universities, and in private industry. All these developments expand our ability to elucidate mechanisms present in living cells, but much more remains to be done. The Centers are designed to accomplish GTL program objectives more rapidly, more effectively, and at reduced cost by concentrating appropriate technologies and scientific expertise, from genome sequence to an integrated systems understanding of the pathways and internal structures of microbes and plants most relevant to developing bioenergy compounds. The Centers will seek to understand the principles underlying the structural and functional design of selected microbial, plant, and molecular systems. This will be accomplished by building technological pathways linking the genome-determined components in an organism with bioenergy-relevant cellular systems that can be characterized sufficiently to generate realistic options for biofuel development. In addition, especially in addressing what are believed to be nearer-term approaches to renewable energy (e.g., producing cellulosic ethanol cost-effectively and energy-efficiently), the Center research team must understand in depth the current industrial-level roadblocks and bottlenecks (see section, GTL's Vision for Biological Energy Alternatives, below). For the Centers, and indeed the entire BER effort, to be successful, Center research must be integrated with individual investigator research, and coordina

Mansfield, Betty Kay [ORNL; Alton, Anita Jean [ORNL; Andrews, Shirley H [ORNL; Bownas, Jennifer Lynn [ORNL; Casey, Denise [ORNL; Martin, Sheryl A [ORNL; Mills, Marissa [ORNL; Nylander, Kim [ORNL; Wyrick, Judy M [ORNL; Drell, Dr. Daniel [Office of Science, Department of Energy; Weatherwax, Sharlene [U.S. Department of Energy; Carruthers, Julie [U.S. Department of Energy

2006-08-01T23:59:59.000Z

219

Developing bioenergy fuels: Biopower fact sheet  

DOE Green Energy (OSTI)

Successful development of biomass crops requires unique cooperation between researchers and members of the energy, agriculture, forestry, and environmental communities. DOE's Bioenergy Feedstock Development Program provides a mechanism to integrate the efforts of this diverse group. The federal government must continue to share risks (costs of growing, harvesting, storing, and supplying energy crops) for early adopters of energy crop technology and biomass energy producers.

Shepherd, P.

2000-06-02T23:59:59.000Z

220

Bioenergy Science Center KnowledgeBase  

DOE Data Explorer (OSTI)

The challenge of converting cellulosic biomass to sugars is the dominant obstacle to cost effective production of biofuels in s capable of significant enough quantities to displace U. S. consumption of fossil transportation fuels. The BioEnergy Science Center (BESC) tackles this challenge of biomass recalcitrance by closely linking (1) plant research to make cell walls easier to deconstruct, and (2) microbial research to develop multi-talented biocatalysts tailor-made to produce biofuels in a single step. [from the 2011 BESC factsheet] The BioEnergy Science Center (BESC) is a multi-institutional, multidisciplinary research (biological, chemical, physical and computational sciences, mathematics and engineering) organization focused on the fundamental understanding and elimination of biomass recalcitrance. The BESC Knowledgebase and its associated tools is a discovery platform for bioenergy research. It consists of a collection of metadata, data, and computational tools for data analysis, integration, comparison and visualization for plants and microbes in the center.The BESC Knowledgebase (KB) and BESC Laboratory Information Management System (LIMS) enable bioenergy researchers to perform systemic research. [http://bobcat.ornl.gov/besc/index.jsp

Syed, M. H.; Karpinets, T. V.; Parang, M.; Leuze, M. R.; Park, B. H.; Hyatt, D.; Brown, S. D.; Moulton, S. Galloway, M.D.; Uberbacher, E. C.

Note: This page contains sample records for the topic "industrial residential bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Watershed Perspective on Bioenergy Sustainability Participant Summary  

E-Print Network (OSTI)

encompasses research projects at all points along the bioenergy supply chains. As an ecosystem ecologist who and developing supply chain models of cellulosic ethanol production. hilliardmr@ornl.gov Ice, George NCASI 541 of biomass/biofuels in forests, looking at nutrient cyclinc and effects on soil and water. mbadams

222

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Renewable Energy Systems Connecticut Agricultural Commercial Industrial Multi-Family Residential Residential Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water...

223

Industry  

E-Print Network (OSTI)

and power in US industry. Energy Policy, 29, pp. 1243-1254.Paris. IEA, 2004: Energy Policies of IEA Countries: Finlandand steel industry. Energy Policy, 30, pp. 827-838. Kim, Y.

Bernstein, Lenny

2008-01-01T23:59:59.000Z

224

Essays on Economic and Environmental Analysis of Taiwanese Bioenergy Production on Set-Aside Land  

E-Print Network (OSTI)

Domestic production of bioenergy by utilizing set-aside land in Taiwan can reduce Taiwans reliance on expensive and politically insecure foreign fossil fuels while also reducing the combustion of fossil fuels, which emit substantial amounts of greenhouse gases. After joining the World Trade Organization, Taiwans agricultural sector idled about one-third of the national cropland, hereafter called set-aside land. This potentially provides the land base for Taiwan to develop a bioenergy industry. This dissertation examines Taiwans potential for bioenergy production using feedstocks grown on set-aside land and discusses the consequent effects on Taiwans energy security plus benefits and greenhouse gas (GHG) emissions. The Taiwan Agricultural Sector Model (TASM) was used to simulate different agricultural policies related to bioenergy production. To do this simulation the TASM model was extended to include additional bioenergy production possibilities and GHG accounting. We find that Taiwans bioenergy production portfolio depends on prices of ethanol, electricity and GHG. When GHG prices go up, ethanol production decreases and electricity production increases because of the relatively stronger GHG offset power of biopower. Results from this pyrolysis study are then incorporated into the TASM model. Biochar from pyrolysis can be used in two ways: burn it or use it as a soil amendment. Considering both of these different uses of biochar, we examine bioenergy production and GHG offset to see to what extent Taiwan gets energy security benefits from the pyrolysis technology and how it contributes to climate change mitigation. Furthermore, by examining ethanol, electricity and pyrolysis together in the same framework, we are able to see how they affect each other under different GHG prices, coal prices and ethanol prices. Results show that ethanol is driven out by pyrolysis-based electricity when GHG price is high. We also find that when biochar is hauled back to the rice fields, GHG emission reduction is higher than that when biochar is burned for electricity; however, national electricity production is consequently higher when biochar is burned.

Kung, Chih-Chun

2010-12-01T23:59:59.000Z

225

The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance  

E-Print Network (OSTI)

010-9086-2 The Joint BioEnergy Institute (JBEI): DevelopingThe mission of the Joint BioEnergy Institute is to advanceJ. D. Keasling Joint BioEnergy Institute, 5885 Hollis St. ,

Scheller, Henrik Vibe; Singh, Seema; Blanch, Harvey; Keasling, Jay D.

2010-01-01T23:59:59.000Z

226

Switchgrass for Forage and Bioenergy: I. Effects of Nitrogen Rate and Harvest System  

E-Print Network (OSTI)

biofuel systems. Biomass and Bioenergy 30:198-206. Muir JP,systems. Biomass and Bioenergy 19: 281-286. Sanderson MA,whether for forage or bioenergy) is defining how crop

Kering, Maru K; Biermacher, Jon T; Cook, Billy J; Guretzky, John A

2009-01-01T23:59:59.000Z

227

High-solids enrichment of thermophilic microbial communities and their enzymes on bioenergy feedstocks  

E-Print Network (OSTI)

and their enzymes on bioenergy feedstocks Amitha P. ReddyVanderGheynst 1,2* Joint BioEnergy Institute, Emeryville, CA2009. The water footprint of bioenergy. Proceedings of the

Reddy, A. P.

2012-01-01T23:59:59.000Z

228

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and...

229

Advanced Bioenergy LLC | Open Energy Information  

Open Energy Info (EERE)

Bioenergy LLC Bioenergy LLC Place Minneapolis, Minnesota Zip 55305 Product Developer of the 378.5m litre pa bioethanol plant in Fairmount. Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

230

Joining : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Inventions Inventions The effective translation of BESC research results into applications testing and potential deployment is an implicit part of reaching DOE's bioenergy goals. The BESC member institutions recognize that a common strategy is important to the success of BESC. To promote the commercialization of new technologies, our plan is to: Maintain a single portal for information about available technologies. This web site features inventions and commercial opportunities in addition to the information content related to the research program Provide a single point of contact for the licensing of new BESC inventions on behalf of our team (contact speckrr@ornl.gov) Periodically Host a "BioEnergy Nexus" venture forum Provide opportunity for research institutions and private companies

231

Bioenergy Assessment Toolkit | Open Energy Information  

Open Energy Info (EERE)

Bioenergy Assessment Toolkit Bioenergy Assessment Toolkit Jump to: navigation, search Stage 3 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country 2.3. Assess public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other economic and resource data as needed for LEDS development

232

BioEnergy Solutions BES | Open Energy Information  

Open Energy Info (EERE)

California Zip 93309 Product Bakersfield-based firm installing and operating biogas plants for farmers and food producers. References BioEnergy Solutions (BES)1...

233

Thailand-Key Results and Policy Recommendations for Future Bioenergy...  

Open Energy Info (EERE)

013 Country Thailand UN Region South-Eastern Asia References Thailand-Key Results and Policy Recommendations for Future Bioenergy Development1 Abstract "The Government of...

234

Department of Energy Offers Abengoa Bioenergy a Conditional Commitment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Abengoa Bioenergy project is expected to convert approximately 300,000 tons of corn stover (stalks and leaves) into approximately 23 million gallons of ethanol per year...

235

Focus Area 1 - Biomass Formation and Modification : BioEnergy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Formation and Modification BESC biomass formation and modification research involves working directly with two potential bioenergy crops (switchgrass and Populus) to develop...

236

USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to spur research into improving the efficiency and cost-effectiveness of growing biofuel and bioenergy crops. The investments are part of a broader effort by the Obama...

237

Table Commercial Industrial Vehicle Fuel Electric Power  

U.S. Energy Information Administration (EIA)

State Residential Commercial Industrial Vehicle Fuel Electric Power ... Form EIA?886, Annual Survey of Alternative Fueled Vehicles; ...

238

DOE and USDA Announce More than $10 Million in Bioenergy Plant...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

USDA and DOE Partnership Seeks to Develop Better Plants for Bioenergy USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop Production and Spur Economic Impact...

239

Selecting Metrics for Sustainable Bioenergy Feedstocks  

SciTech Connect

Key decisions about land-use practices and dynamics in biofuel systems affect the long-term sustainability of biofuels. Choices about what crops are grown and how are they planted, fertilized, and harvested determine the effects of biofuels on native plant diversity, competition with food crops, and water and air quality. Those decisions also affect economic viability since the distance that biofuels must be transported has a large effect on the market cost of biofuels. The components of a landscape approach include environmental and socioeconomic conditions and the bioenergy features [type of fuel, plants species, management practices (e.g., fertilizer and pesticide applications), type and location of production facilities] and ecological and biogeochemical feedbacks. Significantly, while water (availability and quality) emerges as one of the most limiting factors to sustainability of bioenergy feedstocks, the linkage between water and bioenergy choices for land use and management on medium and large scales is poorly quantified. Metrics that quantify environmental and socioeconomic changes in land use and landscape dynamics provide a way to measure and communicate the influence of alternative bioenergy choices on water quality and other components of the environment. Cultivation of switchgrass could have both positive and negative environmental effects, depending on where it is planted and what vegetation it replaces. Among the most important environmental effects are changes in the flow regimes of streams (peak storm flows, base flows during the growing season) and changes in stream water quality (sediment, nutrients, and pesticides). Unfortunately, there have been few controlled studies that provide sufficient data to evaluate the hydrological and water quality impacts of conversion to switchgrass. In particular, there is a need for experimental studies that use the small watershed approach to evaluate the effects of growing a perennial plant as a biomass crop. Small watershed studies have been used for several decades to identify effects of vegetation type, disturbance, and land use and agriculture practices on hydrology and water quality. An ideal experimental design to determine the effects of conversion to switchgrass on surface water hydrology and quality would involve (1) small catchment (5-20 ha) drained by a perennial or ephemeral stream, (2) crop treatments including conversion from row crops to switchgrass; pasture to switchgrass (other likely scenarios); controls (no change in vegetation), (3) treatments to compare different levels of fertilization and pesticide application, (4) riparian treatments to compare riparian buffers with alternative cover types, and a treatment with no buffer, and (5) 3-4 replicates of each treatment or BACI (before-after, control-intervention) design for unreplicated treatments (ideally with several years of measurements prior to the imposition of treatments for BACI design). Hydrologic measurements would include soil moisture patterns with depth and over time; nitrogen and phosphorus chemistry; soil solution chemistry - major anions and cations, inorganic and organic forms of carbon, nitrogen and phosphorus; precipitation amount and chemical deposition; stream discharge; and streamwater chemistry. These water quality metrics would need to be put into context of the other environmental and social conditions that are altered by growth of bioenergy feedstocks. These conditions include farm profits and yield of food and fuel, carbon storage and release, and a variety of ecosystem services such as enhanced biodiversity and pollinator services. Innovations in landscape design for bioenergy feedstocks take into account environmental and socioeconomic dynamics and consequences with consideration of alternative bioenergy regimes and policies. The ideal design would be scale-sensitive so that economic, social, and environmental constraints can be measured via metrics applicable at relevant scales. To develop a landscape design, land managers must consider (1) what are the environmental im

Dale, Virginia H [ORNL; Kline, Keith L [ORNL; Mulholland, Patrick J [ORNL; Downing, Mark [ORNL; Graham, Robin Lambert [ORNL; Wright, Lynn L [ORNL

2009-01-01T23:59:59.000Z

240

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

An Exploration of Innovation and An Exploration of Innovation and Energy Efficiency in an Appliance Industry Prepared by Margaret Taylor, K. Sydny Fujita, Larry Dale, and James McMahon For the European Council for an Energy Efficient Economy March 29, 2012 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL - 5689E An Exploration of Innovation and Energy Efficiency in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and direction of technological change of product industries; the factors that underlie the outcomes of innovation in these industries; and the ways the innovation system might respond to any given intervention. The report provides an overview of the dynamics of energy efficiency policy and innovation in the appliance

Note: This page contains sample records for the topic "industrial residential bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Industry  

E-Print Network (OSTI)

milling industry: An ENERGY STAR Guide for Energy and Plantcement mak- ing - An ENERGY STAR Guide for Energy and Plantre- fineries - An ENERGY STAR Guide for Energy and Plant

Bernstein, Lenny

2008-01-01T23:59:59.000Z

242

Industry  

Science Conference Proceedings (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

243

Study on the Feasibility of Bioenergy Development in China  

Science Conference Proceedings (OSTI)

To develop bioenergy characterized with environment friendliness and renew ability is inevitable to undergo, in order to solve the problem of fossil energy shortage, to respond to such disastrous consequence as greenhouse effect and acrid rain on the ... Keywords: fossil energy, energy crisis, renewable energy, bioenergy

Shen Xilin

2011-11-01T23:59:59.000Z

244

13September 2011 Lignocellulosic Biofuels from New Bioenergy Crops  

E-Print Network (OSTI)

13September 2011 2010 Lignocellulosic Biofuels from New Bioenergy Crops Federal Initiative- tonnage bioenergy crop on a commercial scale and convert it into an advanced biofuel (gasoline) in a pilot the biofuels production goals of the United States while helping to alleviate constraints on food and feed

245

Frontline BioEnergy LLC | Open Energy Information  

Open Energy Info (EERE)

Frontline BioEnergy LLC Frontline BioEnergy LLC Jump to: navigation, search Name Frontline BioEnergy LLC Place Ames, Iowa Zip 50010 Sector Bioenergy, Biomass Product Frontline BioEnergy Inc develops and installs gasification systems and individual equipment to convert biomass into valuable products. Coordinates 30.053389°, -94.742269° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.053389,"lon":-94.742269,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

246

Sustainable Bioenergy: A Framework for Decision Makers | Open Energy  

Open Energy Info (EERE)

Sustainable Bioenergy: A Framework for Decision Makers Sustainable Bioenergy: A Framework for Decision Makers Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Sustainable Bioenergy: A Framework for Decision Makers Agency/Company /Organization: Food and Agriculture Organization of the United Nations Sector: Energy, Land Focus Area: Renewable Energy, Biomass Topics: Implementation, Policies/deployment programs Resource Type: Guide/manual, Lessons learned/best practices Website: esa.un.org/un-energy/pdf/susdev.Biofuels.FAO.pdf References: Sustainable Bioenergy: A Framework for Decision Makers[1] "In this publication, UN-Energy seeks to structure an approach to the current discussion on bioenergy, it is the contribution of the UN system to the issues that need further attention, analysis and valuation, so that

247

Center for BioEnergy Sustainability | Open Energy Information  

Open Energy Info (EERE)

Sustainability Sustainability Jump to: navigation, search Logo: Center for BioEnergy Sustainability Name Center for BioEnergy Sustainability Agency/Company /Organization Oak Ridge National Laboratory Sector Energy Focus Area Biomass Topics Resource assessment Resource Type Dataset, Maps Website http://www.ornl.gov/sci/besd/c References Center for BioEnergy Sustainability[1] Abstract The Center for BioEnergy Sustainability, or CBES, is a Center at Oak Ridge National Laboratory with a focus on dealing with the environmental impacts and the ultimate sustainability of biomass production for conversion to biofuels and bio-based products. The Center for BioEnergy Sustainability, or CBES, is a Center at Oak Ridge National Laboratory with a focus on "dealing with the environmental impacts

248

Indicators to support environmental sustainability of bioenergy systems  

SciTech Connect

Indicators are needed to assess environmental sustainability of bioenergy systems. Effective indicators will help in the quantification of benefits and costs of bioenergy options and resource uses. We identify 19 measurable indicators for soil quality, water quality and quantity, greenhouse gases, biodiversity, air quality, and productivity, building on existing knowledge and on national and international programs that are seeking ways to assess sustainable bioenergy. Together, this suite of indicators is hypothesized to reflect major environmental effects of diverse feedstocks, management practices, and post-production processes. The importance of each indicator is identified. Future research relating to this indicator suite is discussed, including field testing, target establishment, and application to particular bioenergy systems. Coupled with such efforts, we envision that this indicator suite can serve as a basis for the practical evaluation of environmental sustainability in a variety of bioenergy systems.

Dale, Virginia H [ORNL; Baskaran, Latha Malar [ORNL; Downing, Mark [ORNL; Eaton, Laurence M [ORNL; McBride, Allen [ORNL; Efroymson, Rebecca Ann [ORNL; Garten Jr, Charles T [ORNL; Kline, Keith L [ORNL; Jager, Yetta [ORNL; Mulholland, Patrick J [ORNL; Parish, Esther S [ORNL; Schweizer, Peter E [ORNL; Storey, John Morse [ORNL

2011-01-01T23:59:59.000Z

249

Department of Energy Offers Abengoa Bioenergy a Conditional Commitment for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Abengoa Bioenergy a Conditional Abengoa Bioenergy a Conditional Commitment for a $133.9 Million Loan Guarantee Department of Energy Offers Abengoa Bioenergy a Conditional Commitment for a $133.9 Million Loan Guarantee August 19, 2011 - 11:15am Addthis Groundbreaking Cellulosic Ethanol Project Expected to Create Over 300 Jobs and Build Nation's Capacity for Cellulosic Ethanol Production Washington D.C. - U.S. Energy Secretary Steven Chu today announced the offer of a conditional commitment for a $133.9 million loan guarantee to Abengoa Bioenergy Biomass of Kansas LLC (ABBK) to support the development of a commercial-scale cellulosic ethanol plant. ABBK's parent company and project sponsor, Abengoa Bioenergy US Holding, Inc., estimates the project will create approximately 300 construction jobs and 65 permanent

250

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

251

Summary of the July 2009 Forum Center for BioEnergy Sustainability (CEBS)  

E-Print Network (OSTI)

Summary of the July 2009 Forum Center for BioEnergy Sustainability (CEBS) "BioEnergy ­ Climate the study fire a strong candidate for research possibilities. The "BioEnergy ­ Climate Coupling;bioenergy development on the earths climate. Some of the fundamental processes were illustrated through

252

ii The upfront carbon debt of bioenergy Contents Executive Summary........................................................................................................2  

E-Print Network (OSTI)

2 Bioenergy in the climate policy framework................................................................6 2.1 Reporting and accounting systems..................................................................6

Prepared Giuliana Zanchi; Naomi Pena; Neil Bird

2010-01-01T23:59:59.000Z

253

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #20, July-September 2008  

SciTech Connect

July to September, 2008 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D. J.

2008-12-01T23:59:59.000Z

254

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #22, January - March 2009  

Science Conference Proceedings (OSTI)

January to March, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Not Available

2009-04-01T23:59:59.000Z

255

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #23, April-June 2009  

DOE Green Energy (OSTI)

April to June, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2009-08-01T23:59:59.000Z

256

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #24, July-September 2009  

DOE Green Energy (OSTI)

July to September, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2009-10-01T23:59:59.000Z

257

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #25, October - December 2009  

DOE Green Energy (OSTI)

October to December, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2010-01-01T23:59:59.000Z

258

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #15, April - June 2007  

DOE Green Energy (OSTI)

July quarterly update for the National Bioenergy Center's Biochemical Processing Platform Integration Project.

Schell, D.

2007-07-01T23:59:59.000Z

259

Improving the Energy Efficiency of Residential Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings Residential Buildings Improving the Energy Efficiency of Residential Buildings Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology. Learn More Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology. Learn More The Building Technologies Office (BTO) collaborates with the residential building industry to improve the energy efficiency of both new and existing homes. By developing, demonstrating, and deploying cost-effective solutions, BTO strives to reduce energy consumption across the residential building sector by at least 50%. Research and Development Conduct research that focuses on engineering solutions to design, test, and

260

Orange and Rockland Utilities (Gas) - Residential Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orange and Rockland Utilities (Gas) - Residential Efficiency Orange and Rockland Utilities (Gas) - Residential Efficiency Program Orange and Rockland Utilities (Gas) - Residential Efficiency Program < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Construction Water Heating Program Info State New York Program Type Utility Rebate Program Rebate Amount Furnace: $140 - $420 Water Boiler: $350 or $700 Steam Boiler: $350 Boiler Reset Control: $70 Indirect Water Heater: $210 Programmable Thermostat: $18 Duct and Air Sealing: up to $420 Provider Orange and Rockland Utilities, Inc. Orange and Rockland Utilities provides rebates for residential customers

Note: This page contains sample records for the topic "industrial residential bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

262

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

263

Bioenergy Sustainability at the Regional Scale  

Science Conference Proceedings (OSTI)

To meet national goals for biofuels production, there are going to be large increases in acreage planted to dedicated biofuels crops. These acreages may be in perennial grasses, annual crops, short rotation woody crops, or other types of vegetation and may involve use of existing cropland, marginal lands, abandoned lands or conversion of forest land. The establishment of bioenergy crops will affect ecological processes and their interactions and thus have an influence on ecosystem services provided by the lands on which these crops are grown. The regional-scale effects of bioenergy choices on ecosystem services need special attention because they often have been neglected yet can affect the ecological, social and economic aspects of sustainability. A regional-scale perspective provides the opportunity to make more informed choices about crop selection and management, particularly with regard to water quality and quantity issues, and also about other aspects of ecological, social, and economic sustainability. We give special attention to cellulosic feedstocks because of the opportunities they provide. Adopting an adaptive management approach for biofuels feedstock production planning will be possible to a certain extent if there is adequate monitoring data on the effects of changes in land use. Effects on water resources are used as an example and existing understanding of water resource effects are analyzed in detail. Current results indicate that there may be water quality improvements coupled with some decreases in available water for downstream uses.

Kline, Keith L [ORNL; Dale, Virginia H [ORNL; Mulholland, Patrick J [ORNL; Lowrance, Richard [USDA-ARS Southeast Watershed Research Laboratory, Tifton, Georgia; Robertson, G. Phillip [W.K. Kellogg Biological Station and Great Lakes Bioenergy Research

2010-11-01T23:59:59.000Z

264

Sorghum bioenergy genotypes, genes and pathways  

E-Print Network (OSTI)

Sorghum (Sorghum bicolor [L.] Moench) is the fifth most economically important cereal grown worldwide and is a source of food, feed, fiber and fuel. Sorghum, a C4 grass and a close relative to sugarcane, is adapted to hot, dry adverse environments and this plant is a potentially important bioenergy crop for Texas. The diversity of the twelve high biomass sorghum genotypes was analyzed using 50 simple sequence repeats (SSR) markers with genome coverage. The accumulation of biomass during sorghum development was studied in BTx623, an elite grain sorghum genotype. Genetic similarity analysis showed that the twelve high biomass genotypes were quite diverse and different from most current grain sorghum genotypes. The ratio of leaf/stem biomass accumulation was higher early in the vegetative phase during rapid canopy development and lower later in this phase when stem growth rate increased. This resulted in an increasing ratio of stem to leaf dry weight during development. Numerous cellulose sythase genes have been putatively identified in the sorghum genome. The relative level of Ces5 RNA in leaves decreased during vegetative phase of development by ~32 fold. There was no change in the relative abundance of Ces5 RNA in stems. Also there was no change in the relative abundance of Ces3 RNA in either stem or leaves during the vegetative stage. The knowledge gained in this study may contribute to the development of sorghum bioenergy hybrids that accumulate more biomass and that are modified in composition to make them more amenable to biofuels production.

Plews, Ian Kenneth

2007-12-01T23:59:59.000Z

265

Biomass Supply for a Bioenergy and Bioproducts Industry  

E-Print Network (OSTI)

for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This report is being disseminated by the Department of Energy. As such, the document was prepared in compliance with Section 515 of the Treasury and General Government Appropriations Act for Fiscal Year 2001

A Study Sponsored

2011-01-01T23:59:59.000Z

266

Interactions among bioenergy feedstock choices, landscape dynamics, and land use  

SciTech Connect

Landscape implications of bioenergy feedstock choices are significant and depend on land-use practices and their environmental impacts. Although land-use changes and carbon emissions associated with bioenergy feedstock production are dynamic and complicated, lignocellulosic feedstocks may offer opportunities that enhance sustainability when compared to other transportation fuel alternatives. For bioenergy sustainability, major drivers and concerns revolve around energy security, food production, land productivity, soil carbon and erosion, greenhouse gas emissions, biodiversity, air quality, and water quantity and quality. The many implications of bioenergy feedstock choices require several indicators at multiple scales to provide a more complete accounting of effects. Ultimately, the long-term sustainability of bioenergy feedstock resources (as well as food supplies) throughout the world depends on land-use practices and landscape dynamics. Land-management decisions often invoke trade-offs among potential environmental effects and social and economic factors as well as future opportunities for resource use. The hypothesis being addressed in this paper is that sustainability of bioenergy feedstock production can be achieved via appropriately designed crop residue and perennial lignocellulosic systems. We find that decision makers need scientific advancements and adequate data that both provide quantitative and qualitative measures of the effects of bioenergy feedstock choices at different spatial and temporal scales and allow fair comparisons among available options for renewable liquid fuels.

Dale, Virginia H [ORNL; Kline, Keith L [ORNL; Wright, Lynn L [ORNL; Perlack, Robert D [ORNL; Downing, Mark [ORNL; Graham, Robin Lambert [ORNL

2011-01-01T23:59:59.000Z

267

Residential | OpenEI  

Open Energy Info (EERE)

Residential Residential Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (7 months ago) Date Updated July 02nd, 2013 (5 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

268

Residential Solar Sales Tax Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Solar Sales Tax Exemption Residential Solar Sales Tax Exemption Residential Solar Sales Tax Exemption < Back Eligibility Commercial General Public/Consumer Industrial Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Program Info Start Date 09/01/2005 State New York Program Type Sales Tax Incentive Rebate Amount 100% exemption from state sales tax Provider New York State Department of Taxation and Finance New York enacted legislation in July 2005 exempting the sale and installation of residential solar-energy systems from the state's sales and compensating use taxes. The exemption was extended to non-residential solar systems in August 2012 (S.B. 3203), effective beginning January 1, 2013.

269

Burbank Water and Power - Residential and Commercial Solar Support Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Burbank Water and Power - Residential and Commercial Solar Support Burbank Water and Power - Residential and Commercial Solar Support Program Burbank Water and Power - Residential and Commercial Solar Support Program < Back Eligibility Commercial Industrial Low-Income Residential Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate Maximum payment of 400,000 per year for performance-based incentives Program Info Start Date 1/1/2010 Expiration Date 12/31/2016 State California Program Type Utility Rebate Program Rebate Amount PV rebates will be awarded via lottery on August 12, 2013 Residential PV: $1.28/W CEC-AC Commercial PV (less than 30 kW): $0.97/W CEC-AC Commercial PV (30 kW or larger): ineligible at this time Solar Water Heaters (residential domestic hot water only; not pools):

270

Press Releases: BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Press Releases Press Releases Chu presents energy research, development vision to senators U.S. Energy Secretary Steven Chu testified at a U.S. Senate Energy and Natural Resources Committee hearing March 5. During his testimony, Chu presented his vision for energy research and development at the... Source: Checkbiotech (Trade), March 11, 2009 Keywords Matched: Oak Ridge National Country: Switzerland Region: SourceType: News Laboratory: ORNL Feed Source: Meltwater Chu presents energy research, development vision to senators: An example, Chu said, is the current biofuels research underway at the three BioEnergy Research Centers located at the Oak Ridge National Laboratory in Oak Ridge, Tenn.; the University of Wisconsin in Madison; and Lawrence Berkeley National Laboratory. March 10, 2009

271

Bioenergy Feedstock Development Program Status Report  

DOE Green Energy (OSTI)

The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energy crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.

Kszos, L.A.

2001-02-09T23:59:59.000Z

272

Center for BioEnergy Sustainability (CBES) http://www.ornl.gov/sci/besd/cbes/ Bioenergy Sustainability and Land-Use Change Report  

E-Print Network (OSTI)

Center for BioEnergy Sustainability (CBES) http://www.ornl.gov/sci/besd/cbes/ 1 Bioenergy Sustainability and Land-Use Change Report Oak Ridge National Laboratory October 2010 Invited Talks and Presentations: October 17-20: Keith Kline gave a presentation on the Global Sustainable Bioenergy Project

273

Center for BioEnergy Sustainability (CBES) http://www.ornl.gov/cbes/ Bioenergy Sustainability and Land-Use Change Report  

E-Print Network (OSTI)

Center for BioEnergy Sustainability (CBES) http://www.ornl.gov/cbes/ 1 Bioenergy Sustainability Dale and Gregg Marland (ORNL) contributed to Chapter 4 on Grand Challenges in Energy Sustainability Torre Ugarte, D., in review. "Collaborators welcome: Global Sustainable Bioenergy Project (GSB

274

Center for BioEnergy Sustainability Achievements and Activities October 1, 2009 September 30, 2010 Center for BioEnergy Sustainability  

E-Print Network (OSTI)

Center for BioEnergy Sustainability ­ Achievements and Activities ­ October 1, 2009 ­ September 30, 2010 1 Center for BioEnergy Sustainability Oak Ridge National Laboratory (ORNL) Accomplishments on Bioenergy Sustainability" was held February 3-4, 2010, at ORNL. http

275

Center for BioEnergy Sustainability (CBES) http://www.ornl.gov/cbes/ Bioenergy Sustainability and Land-Use Change Report  

E-Print Network (OSTI)

Center for BioEnergy Sustainability (CBES) http://www.ornl.gov/cbes/ 1 Bioenergy Sustainability Storey. 2011. Indicators to support environmental sustainability of bioenergy systems. Ecological KL, et al. Global Agro-ecosystem Model System for Analysis of Sustainable Biofuel Production Under

276

Center for BioEnergy Sustainability (CBES) http://www.ornl.gov/cbes/ Bioenergy Sustainability and Land-Use Change Report  

E-Print Network (OSTI)

Center for BioEnergy Sustainability (CBES) http://www.ornl.gov/cbes/ 1 Bioenergy Sustainability and Gregg Marland (ORNL) contributed to Chapter 4 on Grand Challenges in Energy Sustainability. Kline K, E Sustainable Bioenergy Project (GSB). GLP NEWS No. 7 (7-8). The article reviews recent collaborations among

277

Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for  

Open Energy Info (EERE)

Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural Communities Jump to: navigation, search Name Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural Communities Agency/Company /Organization Overseas Development Institute Sector Energy, Land Focus Area Renewable Energy, Biomass, Forestry Topics Policies/deployment programs, Background analysis Resource Type Publications Website http://www.odi.org.uk/resource Country Uganda, India Eastern Africa, Southern Asia References Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural Communities[1] Summary "This report presents findings from a research study in Uganda and India looking at the opportunities that carbon offset projects offer for poor

278

Energy Department Selects Three Bioenergy Research Centers for $375 Million  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Three Bioenergy Research Centers for $375 Three Bioenergy Research Centers for $375 Million in Federal Funding Energy Department Selects Three Bioenergy Research Centers for $375 Million in Federal Funding June 26, 2007 - 2:08pm Addthis Basic Genomics Research Furthers President Bush's Plan to Reduce Gasoline Usage 20 Percent in Ten Year WASHINGTON, DC - U. S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that DOE will invest up to $375 million in three new Bioenergy Research Centers that will be located in Oak Ridge, Tennessee; Madison, Wisconsin; and near Berkeley, California. The Centers are intended to accelerate basic research in the development of cellulosic ethanol and other biofuels, advancing President Bush's Twenty in Ten Initiative, which seeks to reduce U.S. gasoline consumption by 20 percent

279

Thailand-Key Results and Policy Recommendations for Future Bioenergy  

Open Energy Info (EERE)

and Policy Recommendations for Future Bioenergy and Policy Recommendations for Future Bioenergy Development Jump to: navigation, search Name Thailand-Key Results and Policy Recommendations for Future Bioenergy Development Agency/Company /Organization Food and Agriculture Organization of the United Nations Sector Land Focus Area Biomass, Agriculture Topics Co-benefits assessment, Policies/deployment programs, Background analysis Resource Type Lessons learned/best practices Website http://www.fao.org/docrep/013/ Country Thailand UN Region South-Eastern Asia References Thailand-Key Results and Policy Recommendations for Future Bioenergy Development[1] Abstract "The Government of Thailand, through its Alternative Energy Development Plan, has set a target to increase biofuel production to five billion

280

10 Questions for a Bioenergy Expert: Melinda Hamilton | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bioenergy Expert: Melinda Hamilton Bioenergy Expert: Melinda Hamilton 10 Questions for a Bioenergy Expert: Melinda Hamilton February 15, 2011 - 4:43pm Addthis Melinda Hamilton | Photo courtesy of the Idaho National Laboratory Melinda Hamilton | Photo courtesy of the Idaho National Laboratory Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Meet Melinda Hamilton - she's a bioenergy expert and the Director of Education Programs at Idaho National Laboratory. She recently took some time to share what she's doing to help ramp-up U.S. competitiveness in science and technology, why Jane Goodall led her to a career in science and what can happen in a lab if you don't start with a good plan. Q: What sparked your interest to pursue a career in science? Melinda Hamilton: The answer is kind of corny, but the truth is when I was

Note: This page contains sample records for the topic "industrial residential bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Residential Wood Residential wood combustion (RWC) is  

E-Print Network (OSTI)

Residential Wood Combustion Residential wood combustion (RWC) is increasing in Europe because PM2.5. Furthermore, other combustion- related sources of OA in Europe may need to be reassessed. Will it affect global OA emission estimates? Combustion of biofuels is globally one of the major OA sources

282

Assessing the potential of bioenergy. Final report, October 1, 1997--September 30, 1998  

DOE Green Energy (OSTI)

As electricity restructuring proceeds, traditional concepts of how energy is produced, transported, and utilized are likely to change dramatically. Marketplace, policy, and regulatory changes will shape both the domestic and global energy industry, improving opportunities for clean, low-cost energy, competitively priced fuels, and environmentally responsible power systems. Many of these benefits may be obtained by commercial deployment of advanced biomass power conversion technologies. The United BioEnergy Commercialization Association represents the US biomass power industry. Its membership includes investor-owned and public utilities, independent power producers, state and regional bioenergy, equipment manufacturers, and biomass energy developers. To carry out its mission, UBECA has been carrying out the following activities: production of informational and educational materials on biomass energy and distribution of such materials at public forums; technical and market analyses of biomass energy fuels, conversion technologies, and market issues; monitoring of issues affecting the biomass energy community; and facilitating cooperation among members to leverage the funds available for biomass commercialization activities.

Kirschner, J.; Badin, J.

1998-12-31T23:59:59.000Z

283

Burlington Electric Department - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Burlington Electric Department - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For Appliances &...

284

Columbia Rural Electric Association - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Columbia Rural Electric Association - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For Home...

285

Ozarks Electric Cooperative - Residential Energy Efficiency Loan...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ozarks Electric Cooperative - Residential Energy Efficiency Loan Program Ozarks Electric Cooperative - Residential Energy Efficiency Loan Program Eligibility Residential Savings...

286

Kootenai Electric Cooperative - Residential Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kootenai Electric Cooperative - Residential Efficiency Rebate Program Kootenai Electric Cooperative - Residential Efficiency Rebate Program Eligibility Residential Savings For Home...

287

Southwest Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Electric Cooperative - Residential Energy Efficiency Rebate Program Southwest Electric Cooperative - Residential Energy Efficiency Rebate Program Eligibility Residential...

288

Kirkwood Electric - Residential Energy Efficiency Rebate Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kirkwood Electric - Residential Energy Efficiency Rebate Program Kirkwood Electric - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For Heating &...

289

Central Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Programs Central Electric Cooperative - Residential Energy Efficiency Rebate Programs Eligibility Construction Residential Savings For Other...

290

Cherokee Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cherokee Electric Cooperative - Residential Energy Efficiency Loan Programs Cherokee Electric Cooperative - Residential Energy Efficiency Loan Programs Eligibility Residential...

291

Marietta Power & Water - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marietta Power & Water - Residential Energy Efficiency Rebate Program Marietta Power & Water - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For...

292

SRP - Residential Energy Efficiency Rebate Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SRP - Residential Energy Efficiency Rebate Program SRP - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For Home Weatherization Commercial...

293

Barron Electric Cooperative - Residential Energy Resource Conservation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Resource Conservation Loan Program Barron Electric Cooperative - Residential Energy Resource Conservation Loan Program Eligibility Residential Savings For Home...

294

Cedar Falls Utilities - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Cedar Falls Utilities - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For Heating & Cooling Commercial...

295

TOPIC Brief BUILDING TECHNOLOGIES PROGRAM Lighting: Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting: Residential and Commercial Requirements TOPIC BRIEF 1 Lighting: Residential and Commercial Requirements Residential Lighting Requirements The 2009 International Energy...

296

Minnesota Valley Electric Cooperative -Residential Energy Resource...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Resource Conservation Loan Program Minnesota Valley Electric Cooperative -Residential Energy Resource Conservation Loan Program Eligibility Residential Savings...

297

Lake Region Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Region Electric Cooperative - Residential Energy Efficiency Rebate Program Lake Region Electric Cooperative - Residential Energy Efficiency Rebate Program Eligibility Residential...

298

Bioenergy crop models: Descriptions, data requirements and future challenges  

SciTech Connect

Field studies that address the production of lignocellulosic biomass as a source of renewable energy provide critical data for the development of bioenergy crop models. A literature survey revealed that 14 models have been used for simulating bioenergy crops including herbaceous and woody bioenergy crops, and for crassulacean acid metabolism (CAM) crops. These models simulate field-scale production of biomass for switchgrass (ALMANAC, EPIC, and Agro-BGC), miscanthus (MISCANFOR, MISCANMOD, and WIMOVAC), sugarcane (APSIM, AUSCANE, and CANEGRO), and poplar and willow (SECRETS and 3PG). Two models are adaptations of dynamic global vegetation models and simulate biomass yields of miscanthus and sugarcane at regional scales (Agro-IBIS and LPJmL). Although it lacks the complexity of other bioenergy crop models, the environmental productivity index (EPI) is the only model used to estimate biomass production of CAM (Agave and Opuntia) plants. Except for the EPI model, all models include representations of leaf area dynamics, phenology, radiation interception and utilization, biomass production, and partitioning of biomass to roots and shoots. A few models simulate soil water, nutrient, and carbon cycle dynamics, making them especially useful for assessing the environmental consequences (e.g., erosion and nutrient losses) associated with the large-scale deployment of bioenergy crops. The rapid increase in use of models for energy crop simulation is encouraging; however, detailed information on the influence of climate, soils, and crop management practices on biomass production is scarce. Thus considerable work remains regarding the parameterization and validation of process-based models for bioenergy crops; generation and distribution of high-quality field data for model development and validation; and implementation of an integrated framework for efficient, high-resolution simulations of biomass production for use in planning sustainable bioenergy systems.

Nair, S. Surendran [University of Tennessee, Knoxville (UTK); Kang, Shujiang [ORNL; Zhang, Xuesong [Pacific Northwest National Laboratory (PNNL); Miguez, Fernando [Iowa State University; Izaurralde, Dr. R. Cesar [Pacific Northwest National Laboratory (PNNL); Post, Wilfred M [ORNL; Dietze, Michael [University of Illinois, Urbana-Champaign; Lynd, L. [Dartmouth College; Wullschleger, Stan D [ORNL

2012-01-01T23:59:59.000Z

299

PPL Electric Utilities - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program PPL Electric Utilities - Residential Energy Efficiency Rebate Program Eligibility Multi-Family Residential Residential Savings For Home...

300

Distillate Fuel Oil Sales for Residential Use  

Annual Energy Outlook 2012 (EIA)

End Use Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate...

Note: This page contains sample records for the topic "industrial residential bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Atmos Energy (Gas) - Residential Efficiency Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atmos Energy (Gas) - Residential Efficiency Program Atmos Energy (Gas) - Residential Efficiency Program Eligibility Low-Income Residential Residential Savings For Heating & Cooling...

302

Benton PUD - Residential Energy Efficiency Rebate Programs |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Programs Benton PUD - Residential Energy Efficiency Rebate Programs Eligibility Multi-Family Residential Residential Savings For Appliances &...

303

Building Technologies Office: Residential Energy Efficiency Stakeholder  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Stakeholder Meeting - Spring 2012 Energy Efficiency Stakeholder Meeting - Spring 2012 The U.S. Department of Energy (DOE) Building America program held the second annual Residential Energy Efficiency Stakeholder Meeting on February 29-March 2, 2012, in Austin, Texas. At this meeting, hundreds of building industry professionals came together to share their perspective on the most current innovation projects in the residential buildings sector. This meeting provided an opportunity for researchers and industry stakeholders to showcase and discuss the latest in cutting-edge, energy-efficient residential building technologies and practices. The meeting also included working sessions from each Standing Technical Committee (STC), which outlined work that will best assist in overcoming technical challenges and delivering Building America research results to the market. Learn more about the STCs and the research planning process.

304

U.S. Residential Housing Weather-Adjusted Site Energy Intensity  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities >Table 6b U.S. Residential Housing Weather-Adjusted Site Energy Intensity

305

BioEnergy Science Center reaches 500th publication | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

News Feature BioEnergy Science Center reaches 500th publication A book, part of the Wiley Series in Renewable Resources, that was co-written and edited by BioEnergy Science Center...

306

Entity State Code Class of Ownership Residential Commercial...  

U.S. Energy Information Administration (EIA) Indexed Site

Code Class of Ownership Residential Commercial Industrial Transportation All Sectors DTE Energy Services AL Non-Utility - - 458,868 - 458,868 Riceland Foods Inc. AR Non-Utility -...

307

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Residential Buildings to someone by E-mail Share Building Technologies Office: Residential Buildings on Facebook Tweet about Building Technologies Office: Residential Buildings on Twitter Bookmark Building Technologies Office: Residential Buildings on Google Bookmark Building Technologies Office: Residential Buildings on Delicious Rank Building Technologies Office: Residential Buildings on Digg Find More places to share Building Technologies Office: Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat. Lighten Energy Loads with System Design. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program

308

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update No.5, October-December 2004  

DOE Green Energy (OSTI)

Fifth issue of a quarterly reporting to stakeholders on progress on the National Bioenergy Center Sugar Platform Integration Project.

Not Available

2005-02-01T23:59:59.000Z

309

National Bioenergy Center Sugar Platform Integration Project Quarterly Update: April/June 2004, No.3  

DOE Green Energy (OSTI)

Third issue of a quarterly reporting to stakeholders on progress on the National Bioenergy Center Sugar Platform Integration Project.

Not Available

2004-07-01T23:59:59.000Z

310

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update No.6, January-March 2005  

DOE Green Energy (OSTI)

Sixth issue of a quarterly reporting to stakeholders on progress on the National Bioenergy Center Sugar Platform Integration Project

Not Available

2005-04-01T23:59:59.000Z

311

Biomass Program Outreach and Communication The Bioenergy Feedstock Information Network (BFIN)  

E-Print Network (OSTI)

after earmarks for bioenergy R&D by the Department of Energy has declined yearly for the last several

312

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update, January/March 2004, No.2  

DOE Green Energy (OSTI)

Second issue of a quarterly reporting to stakeholders on progress on the National Bioenergy Center Sugar Platform Integration Project.

Not Available

2004-05-01T23:59:59.000Z

313

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #13, October-December 2006  

DOE Green Energy (OSTI)

Volume 13 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Biochemical Processing Integration Task.

Schell, D. J.

2007-01-01T23:59:59.000Z

314

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #7, April-June 2005  

DOE Green Energy (OSTI)

Volume 7 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

Not Available

2005-07-01T23:59:59.000Z

315

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update, Issue No.1, October-December 2003  

DOE Green Energy (OSTI)

First issue of a quarterly reporting to stakeholders on progress on the National Bioenergy Center Sugar Platform Integration Project.

Not Available

2004-03-01T23:59:59.000Z

316

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update, July/September 2004, No.4  

DOE Green Energy (OSTI)

Fourth issue of a quarterly reporting to stakeholders on progress on the National Bioenergy Center Sugar Platform Integration Project

Not Available

2004-10-01T23:59:59.000Z

317

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #11, April-June 2006  

DOE Green Energy (OSTI)

Volume 11 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

Schell, D.

2006-07-01T23:59:59.000Z

318

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #8, July-September 2005  

Science Conference Proceedings (OSTI)

Volume 8 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

Schell, D.

2005-10-01T23:59:59.000Z

319

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #21, October - December 2008  

SciTech Connect

October to December, 2008 edition of the National Bioenergy Center?s Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2009-01-01T23:59:59.000Z

320

National Bioenergy Center Biochemical Platform Process Integration Project: Quarterly Update #18, January-March 2008  

DOE Green Energy (OSTI)

January-March, 2008 edition of the quarterly update for the National Bioenergy Center's Biochemical Platform Integration Project.

Schell, D.

2008-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial residential bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #9, October-December 2005  

DOE Green Energy (OSTI)

Volume 9 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

Schell, D. J.

2006-01-01T23:59:59.000Z

322

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #10, January-March 2006  

DOE Green Energy (OSTI)

Volume 10 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

Not Available

2006-04-01T23:59:59.000Z

323

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #14, January - March 2007  

DOE Green Energy (OSTI)

Volume 14 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Biochemical Processing Integration Task.

Schell, D.

2007-04-01T23:59:59.000Z

324

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #12, July-September 2006  

DOE Green Energy (OSTI)

Volume 12 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

Schell, D.

2006-10-01T23:59:59.000Z

325

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #24, July-September 2009  

SciTech Connect

July to September, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2009-10-01T23:59:59.000Z

326

EA-1892: Direct Final Rule Energy Conservation Standards for Residential  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

92: Direct Final Rule Energy Conservation Standards for 92: Direct Final Rule Energy Conservation Standards for Residential Furnaces and Residential Central Air Conditioners & Heat Pumps EA-1892: Direct Final Rule Energy Conservation Standards for Residential Furnaces and Residential Central Air Conditioners & Heat Pumps Summary This EA evaluates the environmental impacts of a proposal to adopt energy conservation standards for various consumer products and certain commercial and industrial equipment, including residential furnaces and residential air conditioners and heat pumps, as required by the Energy Policy and Conservation Act, as amended (42 U.S.C. 6291 et seq.). Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download June 27, 2011 EA-1892: Draft Environmental Assessment

327

Residential and Commercial Briefings 2000: Characteristics of the Retail Marketplace  

Science Conference Proceedings (OSTI)

This industry report examines changes in the competitive electricity market throughout the year 2000, and how these changes affect residential and commercial customers. The following issues are discussed: o Characteristics of the residential and commercial markets: current and future energy use data by market and fuel type o Industry restructuring, deregulation, and its energy suppliers: deregulation issues by state and energy supplier activity within those states o Corporate moves, mergers, and business...

2002-02-07T23:59:59.000Z

328

The Center for BioEnergy Sustainability (CBES) at Oak Ridge National Laboratory (ORNL)  

E-Print Network (OSTI)

The Center for BioEnergy Sustainability (CBES) at Oak Ridge National Laboratory (ORNL) is pleased agent-based models to understand the impact of NIPF owner preferences and bioenergy policies on forested, and will be collaborating with Virginia Dale on landscape-scale computer modeling of forest- based bioenergy production

329

A Study on the Bioenergy Crop Production Function of Land Use in China  

Science Conference Proceedings (OSTI)

Based on the analysis of the bioenergy crop production function of land use, combined with the current situation of Chinese land use, this paper analyzes and discusses the cultivation of energy plants and the bioenergy crop production function of land ... Keywords: Land use, Bioenergy crop production function, farmers income

Zhang Kun; Duan Jiannan; Yang Jun; Li Ping

2011-03-01T23:59:59.000Z

330

A Watershed Perspective on Bioenergy Sustainability: A Workshop to be held at Oak Ridge National Laboratory  

E-Print Network (OSTI)

A Watershed Perspective on Bioenergy Sustainability: A Workshop to be held at Oak Ridge National-scale perspective of cellulosic bioenergy feedstock sustainability will be held at Oak Ridge National Laboratory bioenergy feedstock production (particularly hydrology and water quality). Overall goals for the workshop

331

Summary of the October 2009 Forum Center for BioEnergy Sustainability (CEBS)  

E-Print Network (OSTI)

Summary of the October 2009 Forum Center for BioEnergy Sustainability (CEBS) "Social Dimensions of Sustainable Bioenergy Development" Amy Wolfe introduced Kathleen Halvorsen from Michigan Technological forest landowners, sustainability, and bioenergy. In the social-science landscape, there are has three

332

II. Biofuels & Bioenergy Harnessing the metabolic power of microbes and the renewable carbon resevoir of  

E-Print Network (OSTI)

II. Biofuels & Bioenergy Harnessing the metabolic power of microbes and the renewable carbon, and artistic elements in building the Biotech Expo poster entries. Online Resources on Biofuels & Bioenergy of Agriculture: Bioenergy & Biofuels http://riley.nal.usda.gov/nal_display/index.php?info_center=8&tax_level=3

Hammock, Bruce D.

333

OpenEI - Residential  

Open Energy Info (EERE)

Commercial and Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the United States http://en.openei.org/datasets/node/961 This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols).  This dataset also includes the residential/">Residential Energy Consumption Survey (RECS) for statistical references of building types

334

Residential Price - Marketers  

U.S. Energy Information Administration (EIA)

Average Price of Natural Gas Delivered to Residential and Commercial Consumers by Local Distribution and Marketers in Selected States (Dollars per Thousand Cubic Feet ...

335

Essays on residential desegregation  

E-Print Network (OSTI)

Many ethnically diverse countries have policies that encourage integration across ethnic groups. This dissertation investigates the impact and welfare implications of a residential desegregation policy in Singapore, the ...

Wong, Maisy

2008-01-01T23:59:59.000Z

336

Borgford BioEnergy LLC | Open Energy Information  

Open Energy Info (EERE)

Borgford BioEnergy LLC Borgford BioEnergy LLC Jump to: navigation, search Name Borgford BioEnergy LLC Place Colville, Washington State Zip 99114 Sector Biomass Product Washington-based developer of biomass-to-energy projects. Coordinates 48.54657°, -117.904754° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.54657,"lon":-117.904754,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

337

USDA and DOE Fund Genomics Projects For Bioenergy Fuels Research |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fund Genomics Projects For Bioenergy Fuels Research Fund Genomics Projects For Bioenergy Fuels Research USDA and DOE Fund Genomics Projects For Bioenergy Fuels Research August 9, 2006 - 8:43am Addthis WASHINGTON, DC - Aug. 9, 2006 - Energy Secretary Samuel Bodman and Agriculture Secretary Mike Johanns today announced that the Department of Agriculture and the Department of Energy (DOE) have jointly awarded nine grants totaling $5.7 million for biobased fuels research that will accelerate the development of alternative fuel resources. Bodman commented, "These research projects build upon DOE's strategic investments in genomics, to accelerate scientific discovery and promote the development of alternative energy sources vital to America's energy and economic security." "To be a reliable renewable energy source, farmers and ranchers will need

338

UNEP-Bioenergy Decision Support Tool | Open Energy Information  

Open Energy Info (EERE)

UNEP-Bioenergy Decision Support Tool UNEP-Bioenergy Decision Support Tool Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: UNEP-Bioenergy Decision Support Tool Agency/Company /Organization: United Nations Environment Programme (UNEP) Partner: Food and Agriculture Organization of the United Nations Sector: Land Focus Area: Renewable Energy, Biomass, - Biofuels, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Landfill Gas, People and Policy Topics: Co-benefits assessment, - Energy Access, - Energy Security, - Environmental and Biodiversity, - Health, Implementation, Market analysis, Policies/deployment programs Resource Type: Guide/manual, Publications

339

Kai BioEnergy Corporation | Open Energy Information  

Open Energy Info (EERE)

Kai BioEnergy Corporation Kai BioEnergy Corporation Jump to: navigation, search Name Kai BioEnergy Corporation Place Del Mar, California Zip 92014 Sector Biofuels Product Developing technologies to produce biodiesel from algae Website http://www.kaibioenergy.com/ Coordinates 32.964294°, -117.265191° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.964294,"lon":-117.265191,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

340

Anhui Yineng Bioenergy Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Yineng Bioenergy Co Ltd Yineng Bioenergy Co Ltd Jump to: navigation, search Name Anhui Yineng Bioenergy Co Ltd Place Hefei, Anhui Province, China Product A Chinese bio-oil equipment manufacturer Coordinates 31.86141°, 117.27562° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.86141,"lon":117.27562,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "industrial residential bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic  

Open Energy Info (EERE)

Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Sources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Sources Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Climate Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, - Landfill Gas, - Waste to Energy, Greenhouse Gas Phase: Evaluate Options Resource Type: Publications, Guide/manual User Interface: Website Website: www.epa.gov/climatechange/emissions/biogenic_emissions.html Cost: Free References: EPA, 40 CFR Part 60[1] Tailoring Rule[2] Biogenic Emissions[3] The 'EPA Climate Change - Green House Gas Emissions - Carbon Dioxide

342

BESC Affiliate Program : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Affiliate Program Affiliate Program The BioEnergy Science Center has among its goals the effective, coordinated commercialization of appropriate technologies through formation of start-up ventures as well as licensing to corporate entities pursuing biofuels development. The effective translation of BESC research results into applications testing and potential deployment is an implicit part of reaching DOE's bioenergy goals. Toward this end, we are offering companies and universities the opportunity to become BESC Affiliates and receive the following benefits: An invitation to participate in all bio-energy related training, summer courses, symposia, and seminars hosted by or connected with BESC Notification of all publications resulting from BESC sponsored research, as well as timely information about BESC news

343

Facility will focus on bioenergy, global food security  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility will focus on bioenergy, global food security Facility will focus on bioenergy, global food security Facility will focus on bioenergy, global food security The New Mexico Consortium expects to complete the 27,000 square foot laboratory and office facility next spring. May 22, 2012 Aerial view of Los Alamos National Laboratory Aerial view of Los Alamos National Laboratory. Contact Kevin Roark Communications Office (505) 665-9202 Email Los Alamos, N.M., May 22, 2012 - U.S. Senator Tom Udall (D-NM) spoke at the groundbreaking ceremony marking the start of construction on the New Mexico Consortium's (NMC) biological research facility last Friday afternoon. Senator Udall noted New Mexico's novel and extensive contributions to our nation's renewable energy efforts and congratulated LANL, the NMC, and Richard Sayre on their commitment to advancing the nations goals for energy

344

Carbon Green BioEnergy LLC | Open Energy Information  

Open Energy Info (EERE)

BioEnergy LLC BioEnergy LLC Jump to: navigation, search Name Carbon Green BioEnergy LLC Place Chicago, Illinois Zip 60603 Sector Efficiency Product Chicago-based company dedicated to optimising biofuel production through management, energy efficiency, and operational improvements. Coordinates 41.88415°, -87.632409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.88415,"lon":-87.632409,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

345

National Fuel - Large Non-Residential Conservation Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Fuel - Large Non-Residential Conservation Program National Fuel - Large Non-Residential Conservation Program National Fuel - Large Non-Residential Conservation Program < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Manufacturing Appliances & Electronics Water Heating Maximum Rebate Commercial Custom Rebates: $200,000 Industrial Custom Rebates: $5,000,000 Program Info State New York Program Type Utility Rebate Program Rebate Amount Custom Rebates: $15/Mcf x the gas savings or 50% of the total project cost Unit Heater: $1000 Hot Air Furnace: $500 Low Intensity Infrared Heating: $500 Programmable Thermostat: $25

346

Testing share & load growth in competitive residential gas markets  

SciTech Connect

The residential market stands as the next frontier for natural gas unbundling. In California, Illinois, Maryland, Massachusetts, New Jersey, New York, Ohio, Pennsylvania and elsewhere, states have introduced pilot programs and other unbundling efforts to target residential gas consumers. These efforts are hardly surprising. The residential market, presently dominated by the regulated local distribution companies, appears lucrative. In 1995, the residential sector of the U.S. natural gas industry consumed 4,736 trillion Btu of natural gas or 32 percent of all natural gas delivered by LDCs in that year. U.S. residential consumers accounted for $28.7 billion or 59 percent of the gas utility industry`s total revenues. Nevertheless, despite all the enthusiasm industry representatives have recently expressed in trade publications and public forums, the creation of a competitive residential market may prove a very slow process. Marketers appear cautious in taking the responsibility of serving residential consumers, and for very good reasons. Gaining a sizable portion of this market requires substantial investment in mass marketing, development of name recognition, acquisition of appropriate technology and employment of skillful personnel. Moreover, residential customers do not behave rationally in a {open_quotes}neoclassical{close_quotes} economic sense. They react not only to a price but to several qualitative factors that have yet to be studied by LDCs and marketers. This article offers results from creating a software program and model that answer two basic questions: (1) What share of the residential natural gas market can be realistically captured by non-regulated suppliers? (2) Will residential unbundling increase total throughput for gas utilities? If so, by how much?

Lonshteyn, A. [Boston Gas Company, MA (United States)

1998-02-15T23:59:59.000Z

347

U.S, Department of Energy's Bioenergy Research Centers An Overview of the Science  

SciTech Connect

Alternative fuels from renewable cellulosic biomass--plant stalks, trunks, stems, and leaves--are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced'. In the United States, the Energy Independence and Security Act (EISA) of 2007 is an important driver for the sustainable development of renewable biofuels. As part of EISA, the Renewable Fuel Standard mandates that 36 billion gallons of biofuels are to be produced annually by 2022, of which 16 billion gallons are expected to come from cellulosic feedstocks. Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain--the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 25 years. The DOE Genomic Science Program is advancing a new generation of research focused on achieving whole-systems understanding for biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. New interdisciplinary research communities are emerging, as are knowledgebases and scientific and computational resources critical to advancing large-scale, genome-based biology. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs will provide the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use. The scientific rationale for these centers and for other fundamental genomic research critical to the biofuel industry was established at a DOE workshop involving members of the research community (see sidebar, Biofuel Research Plan, below). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations--the Southeast, the Midwest, and the West Coast--with partners across the nation. DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC); and DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California. Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies,

None

2009-07-01T23:59:59.000Z

348

U.S, Department of Energy's Bioenergy Research Centers An Overview of the Science  

Science Conference Proceedings (OSTI)

Alternative fuels from renewable cellulosic biomass--plant stalks, trunks, stems, and leaves--are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced'. In the United States, the Energy Independence and Security Act (EISA) of 2007 is an important driver for the sustainable development of renewable biofuels. As part of EISA, the Renewable Fuel Standard mandates that 36 billion gallons of biofuels are to be produced annually by 2022, of which 16 billion gallons are expected to come from cellulosic feedstocks. Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain--the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 25 years. The DOE Genomic Science Program is advancing a new generation of research focused on achieving whole-systems understanding for biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. New interdisciplinary research communities are emerging, as are knowledgebases and scientific and computational resources critical to advancing large-scale, genome-based biology. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs will provide the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use. The scientific rationale for these centers and for other fundamental genomic research critical to the biofuel industry was established at a DOE workshop involving members of the research community (see sidebar, Biofuel Research Plan, below). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations--the Southeast, the Midwest, and the West Coast--with partners across the nation. DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC); and DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California. Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies,

None

2009-07-01T23:59:59.000Z

349

High-solids enrichment of thermophilic microbial communities and their enzymes on bioenergy feedstocks  

SciTech Connect

Thermophilic microbial communities that are active in a high-solids environment offer great potential for the discovery of industrially relevant enzymes that efficiently deconstruct bioenergy feedstocks. In this study, finished green waste compost was used as an inoculum source to enrich microbial communities and associated enzymes that hydrolyze cellulose and hemicellulose during thermophilic high-solids fermentation of the bioenergy feedstocks switchgrass and corn stover. Methods involving the disruption of enzyme and plant cell wall polysaccharide interactions were developed to recover xylanase and endoglucanase activity from deconstructed solids. Xylanase and endoglucanase activity increased by more than a factor of 5, upon four successive enrichments on switchgrass. Overall, the changes for switchgrass were more pronounced than for corn stover; solids reduction between the first and second enrichments increased by a factor of four for switchgrass while solids reduction remained relatively constant for corn stover. Amplicon pyrosequencing analysis of small-subunit ribosomal RNA genes recovered from enriched samples indicated rapid changes in the microbial communities between the first and second enrichment with the simplified communities achieved by the third enrichment. The results demonstrate a successful approach for enrichment of unique microbial communities and enzymes active in a thermophilic high-solids environment.

Reddy, A. P.; Allgaier, M.; Singer, S.W.; Hazen, T.C.; Simmons, B.A.; Hugenholtz, P.; VanderGheynst, J.S.

2011-04-01T23:59:59.000Z

350

Los Alamos National Laboratory: Bioscience Division: Bioenergy &  

NLE Websites -- All DOE Office Websites (Extended Search)

Cliff Unkefer Cliff Unkefer Deputy Group Leader Kathy Elsberry Group Office Administrator Janet Friedman Group Office 505 667 0075 B Div People Scientists in B-8 Develop Strategies for Bioenergy, Bioremediation and Climate Change Research As part of the Bioscience mission to address issues in environmental stewardship, this group focuses on discovering the molecular principles that underpin biological diversity, specificity, response and function. This is achieved through research in environmental microbiology, microbial genomics, metabolomics, systematics and phylogeny and can be applied to the advancement of bioenergy technologies and bioremediation as well as to our understanding of carbon cycling. B-8 Teams Chemical Conversion Metabolomics Environmental Microbiology

351

National Bioenergy Center: Laying the Foundation for Biorefineries  

DOE Green Energy (OSTI)

A fact sheet explaining the National Bioenergy Center and its programs to stakeholders and visitors: An inclusive center without walls applying resources of the U.S. Department of Energy Laboratory System to advance technology for producing fuels, chemicals, materials, and power from biomass. National Bioenergy Center expertise, capabilities, facilities, and technologies can be made available to you through cooperative research and development agreements, work-for-others agreements, licenses, and other collaborative business arrangements. Please contact us about the research and development work you want to do.

Not Available

2005-08-01T23:59:59.000Z

352

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities >Table 7a Glossary U.S. Residential Housing Primary Page Last Revised: July 2009

353

Energy Perspectives: Industrial and transportation sectors ...  

U.S. Energy Information Administration (EIA)

Since 2008, energy use in the transportation, residential, and commercial sectors stayed relatively constant or fell slightly. Industrial consumption grew in 2010 and ...

354

Home > Households, Buildings & Industry > Energy Efficiency ...  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Residential Buildings Energy Intensities > Table 4 Total Square Feet of U.S. Housing Units

355

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities > Table 5c Glossary U.S. Residential Housing Site Page Last Revised: July 2009

356

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities >Table 7b Glossary U.S. Residential Housing Primary Energy Intensity

357

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities > Table 8b Glossary U.S. Residential Buildings Primary Energy Intensity

358

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering Nebraska Agricultural Commercial Industrial Residential Bioenergy Buying & Making Electricity Water Solar Home Weatherization Wind Nebraska Energy Office Solar and...

359

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Brenham - Net Metering Texas Agricultural Commercial General PublicConsumer Industrial Institutional Nonprofit Residential Schools State Government Bioenergy Wind Buying &...

360

Research : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Research 2011 Biotechnology Industry Organization Annual Convention Plenary Session Basic Biomass info Biofuels: Bringing Biological Solutions to Energy Challenges How Cellulosic...

Note: This page contains sample records for the topic "industrial residential bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

RESIDENTIAL ENERGY CONSUMPTION SURVEY 1997 CONSUMPTION AND ...  

U.S. Energy Information Administration (EIA)

Residential Sector energy Intensities for 1978-1997 using data from EIA Residential Energy Consumption Survey.

362

Better Buildings Residential Program Solution Center Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

Danielle Sass Byrnett Better Buildings Residential Building Technologies Office Program Solution Center Demonstration Outline * Goals, History, Content Sources * Tour: Organization - Program Components - Handbooks * Tour: Navigation Options * Tour: Examples * Next Steps * Questions & Feedback 2 eere.energy.gov Overview 3 eere.energy.gov Purpose: Support Residential Energy Efficiency Upgrade Programs & Partners * Provide an easily accessed repository for key lessons, resources, and knowledge collected from the experience of past programs. * Help programs and their partners plan, implement, manage, and evaluate better * Help stakeholders leapfrog past missteps en route to a larger and more successful industry. 4 eere.energy.gov Intended Audiences

363

Residential conservation service program support. Final report  

SciTech Connect

Five tasks conducted by the Mid-American Solar Energy Center to research and prepare information for various constituents of the Residential Conservation Program are described. The tasks are: preparing cost data on renewable program (specifically solar) measure; designing and publishing a consumer agency guide to advise consumers of preventive and corrective actions to take when contracting for home improvements; providing a report on financing residential energy improvements; designing solar industry information releases, specifically on solar water heaters; and preparing a brochure, Your Place in the Sun - Solar Options Available to Homeowners. (MCW)

Not Available

1981-09-01T23:59:59.000Z

364

Residential Humidity Control Strategies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Humidity Control Strategies Residential Humidity Control Strategies Armin Rudd Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas 2 Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas Humidity control goals  Comfort, and Indoor Air Quality  Control indoor humidity year-around, just like we do temperature  Durability and customer satisfaction  Reduce builder risk and warranty/service costs 2 3 Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas Humidity control challenges 1. In humid cooling climates, there will always be times of the year when there is little sensible cooling load to create thermostat demand but humidity remains high * Cooling systems that modify fan speed and temperature set point based on humidity can help but are still limited

365

U.S. Department of Energy's Bioenergy Research Centers An Overview of the Science  

SciTech Connect

Alternative fuels from renewable cellulosic biomass - plant stalks, trunks, stems, and leaves - are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced.' Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain - the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 30 years. The DOE Genomic Science program is advancing a new generation of research focused on achieving whole-systems understanding of biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. For more information on the Genomic Science program, see p. 26. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs are providing the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use (see sidebar, Bridging the Gap from Fundamental Biology to Industrial Innovation for Bioenergy, p. 6). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations - the Southeast, the Midwest, and the West Coast - with partners across the nation (see U.S. map, DOE Bioenergy Research Centers and Partners, on back cover). DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California; DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; and the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC). Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies, and nonprofit organizations.

2010-07-01T23:59:59.000Z

366

Challenges for Plant Nutrition Management from the Fertilizer Industry's Viewpoint  

E-Print Network (OSTI)

fish and meat products. Bioenergy requirements will alsofood, fibre, feed and bioenergy. Pressure on agricultural

Maene, Luc M; Olegario, Angela B

2009-01-01T23:59:59.000Z

367

Bioenergy in India: Barriers and Policy Options | Open Energy Information  

Open Energy Info (EERE)

Bioenergy in India: Barriers and Policy Options Bioenergy in India: Barriers and Policy Options Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Bioenergy in India: Barriers and Policy Options Agency/Company /Organization: UNEP-Risoe Centre Sector: Energy Focus Area: Renewable Energy, Biomass, - Biofuels Topics: Implementation, Market analysis, Pathways analysis, Background analysis Resource Type: Publications, Lessons learned/best practices, Case studies/examples Website: tech-action.org/Perspectives/BioenergyIndia.pdf Country: India Cost: Free UN Region: Southern Asia Coordinates: 20.593684°, 78.96288° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":20.593684,"lon":78.96288,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

368

Hawaii Bioenergy Master Plan Potential Environmental Impacts of  

E-Print Network (OSTI)

market conditions. This analysis will give transparency to the potential indirect and direct greenhouse gas (GHG) emissions and energy self-sufficiency offered to Hawaii by bioenergy development been developed based on stakeholder input and information collected in the preparation of this study. 1

369

Canada Biomass-Bioenergy Report May 31, 2006  

E-Print Network (OSTI)

Canada Biomass-Bioenergy Report May 31, 2006 Doug Bradley President Climate Change Solutions;2 Table of Contents 1. Policy Setting 2. Biomass Volumes 2.1. Woody Biomass 2.1.1. Annual Residue Production 2.1.2. Pulp Chips 2.1.3. Existing Hog Fuel Piles 2.1.4. Forest Floor Biomass 2.2. Agricultural

370

Lignocellulosic Biofuels from New Bioenergy Crops Federal Initiative Accomplishments  

E-Print Network (OSTI)

Lignocellulosic Biofuels from New Bioenergy Crops Federal Initiative Accomplishments 2009 Lead lignocellulosic "drop-in" biofuels. "Drop-in" means they are compatible with the existing petroleum refining and distribution infrastructure. With this project Texas can become a leader in biofuels production

371

Bioenergy and land-use competition in Northeast Brazil  

E-Print Network (OSTI)

Bioenergy and land-use competition in Northeast Brazil Christian Azar Department of Physical of Brazil on "good" versus "bad" lands is investigated. It is shown that the value of the higher yields) lands. The focus of the analysis is on the Northeast of Brazil (NE), where the prospects for dedicated

372

How can land-use modelling tools inform bioenergy policies?  

E-Print Network (OSTI)

generation biofuels are the follow-up of 2nd generation biofuels, from the same raw material up to H2, renewable, biofuels and biorefinery. Bioenergy is the chemical energy contained in organic materials production. Biofuels are biomass materials directly used as solid fuel or converted into liquid or gaseous

DeLucia, Evan H.

373

Join BESC : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

as a group depending on the industry's needs. Many of these resources can be used for biofuel applications as well as non-biofuel applications. If more information is needed...

374

Bioenergy crop models: Descriptions, data requirements and future challenges  

SciTech Connect

Field studies that address the production of lignocellulosic biomass as a potential source of renewable energy are making available critical information for the development, validation, and use of bioenergy crop models. A literature survey revealed that 14 models have been developed and validated for herbaceous and woody bioenergy crops, and for Crassulacean acid metabolism (CAM) crops adapted to arid lands. These models simulate field-scale production of biomass for switchgrass (ALMANAC, EPIC, and Agro-BGC), miscanthus (MISCANFOR, MISCANMOD, and WIMOVAC), sugarcane (APSIM, AUSCANE, and CANEGRO), and poplar and willow (SECRETS and 3PG). Two models are adaptations of dynamic global vegetation models and simulate biomass yields of miscanthus and sugarcane as plant function types at regional scales (Agro-IBIS and LPJmL). A model of biomass production in CAM plants has been developed (EPI), but lacks the sophistication of the other models. Except for CAM plants, all the models include representations of leaf area dynamics, radiation interception and utilization, biomass production, and partitioning of biomass to roots and shoots. A few of the models are capable of simulating soil water, nutrient, and carbon cycle processes, making them especially useful for assessing environmental consequences (e.g., erosion and nutrient losses) associated with the field-scale deployment of bioenergy crops. Similar to other process-based models, simulations are challenged by computing and data management issues and an integrated framework for model testing and inter-comparison is needed. Considerable work remains concerning the development of models for unconventional bioenergy crops like CAM plants, generation and distribution of high-quality field data for model development and validation, and development of an integrated framework for efficient execution of large-scale simulations for use in planning regional to global sustainable bioenergy production systems.

Surendran Nair, Sujith; Kang, Shujiang; Zhang, Xuesong; Miguez, Fernando; Izaurralde, Roberto C.; Post, W. M.; Dietze, Michael; Lynd, Lee R.; Wullschleger, Stan D.

2012-03-15T23:59:59.000Z

375

Adjusted Distillate Fuel Oil Sales for Residential Use  

U.S. Energy Information Administration (EIA) Indexed Site

End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2 Distillate Industrial - No. 2 Fuel Oil Industrial - Low Sulfur Diesel Industrial - High Sulfur Diesel Industrial - No. 4 Fuel Oil Industrial - Residual Fuel Oil Industrial - Kerosene Farm - Distillate Fuel Oil Farm - Diesel Farm - Other Distillate Farm - Kerosene Electric Power - Distillate Fuel Oil Electric Power - Residual Fuel Oil Oil Company Use - Distillate Fuel Oil Oil Company Use - Residual Fuel Oil Total Transportation - Distillate Fuel Oil Total Transportation - Residual Fuel Oil Railroad Use - Distillate Fuel Oil Vessel Bunkering - Distillate Fuel Oil Vessel Bunkering - Residual Fuel Oil On-Highway - No. 2 Diesel Military - Distillate Fuel Oil Military - Diesel Military - Other Distillate Military - Residual Fuel Oil Off-Highway - Distillate Fuel Oil Off-Highway - Distillate F.O., Construction Off-Highway - Distillate F.O., Non-Construction All Other - Distillate Fuel Oil All Other - Residual Fuel Oil All Other - Kerosene Period:

376

Center For BioEnergy Sustainability Achievements and Activities February September 30, 2009 Center for BioEnergy Sustainability  

E-Print Network (OSTI)

-Use Change and Bioenergy, in Vonore, Tennessee. The workshop was sponsored by the U.S. Department of Energy. DPE/SC-0114, U.S. Department of Energy Office of Science and U.S. Department of Agriculture (http://genomicsgtl.energy workshop, ORNL/CBES-001, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

377

State Residential Commercial Industrial Transportation Total  

U.S. Energy Information Administration (EIA) Indexed Site

6,203,726 6,203,726 842,773 34,164 5 7,080,668 Connecticut 1,454,651 150,435 4,647 2 1,609,735 Maine 703,770 89,048 2,780 0 795,598 Massachusetts 2,699,141 389,272 21,145 2 3,109,560 New Hampshire 601,697 104,978 3,444 0 710,119 Rhode Island 435,448 57,824 1,927 1 495,200 Vermont 309,019 51,216 221 0 360,456 Middle Atlantic 15,727,423 2,215,961 45,836 26 17,989,246 New Jersey 3,455,302 489,943 12,729 6 3,957,980 New York 7,010,740 1,038,268 8,144 6 8,057,158 Pennsylvania 5,261,381 687,750 24,963 14 5,974,108 East North Central 19,583,335 2,410,841 61,815 7 22,055,998 Illinois 5,098,647 590,142 6,042 3 5,694,834 Indiana 2,755,595 344,453 18,525 1 3,118,574 Michigan 4,250,620 521,091 13,074 1 4,784,786 Ohio 4,869,305 613,259 19,602 2 5,502,168 Wisconsin 2,609,168 341,896 4,572 0 2,955,636 West North Central 9,096,181 1,375,967 113,836 2 10,585,986 Iowa 1,334,596

378

Entity State Ownership Residential Commercial Industrial Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

. 1 Constellation Solar Arizona LLC AZ Non_Utility . . 1 . 1 FRV SI Transport Solar LP AZ Non_Utility . 1 . . 1 MFP Co III, LLC AZ Non_Utility . 1 . . 1 RV CSU Power II LLC AZ Non_Utility . 1 . . 1 Scottsdate Solar Holdings LLC AZ Non_Utility . 1 . . 1 SunE M5C Holdings LLC AZ Non_Utility . . 1 . 1 Alliance Star Energy LLC CA Non_Utility . 1 . . 1 Applied Energy Inc CA Non_Utility . . 1 . 1 Bloom Energy 2009 PPA CA Non_Utility . 1 . . 1 Bloom Energy 2009 PPA CA Non_Utility . 1 . . 1 Bloom Energy 2009 PPA CA Non_Utility . 1 . . 1 Bloom Energy 2009 PPA CA Non_Utility . 1 . . 1 CPKelco U S Inc CA Non_Utility . . 1 . 1 Calpine Corp-Agnews CA Non_Utility . 1 . . 1 Cardinal Cogen Inc CA Non_Utility . 1 . . 1 City of Madera CA WWTP CA Non_Utility . . 1 . 1 DPC Juniper, LLC CA Non_Utility . . 1 . 1 DPC Juniper, LLC CA Non_Utility . . 1 . 1 Energy Alchemy TA Vernalis, LLC CA Non_Utility . . 1 . 1 Enfinity NorCal 1 FAA LLC

379

State Residential Commercial Industrial Transportation Total  

U.S. Energy Information Administration (EIA) Indexed Site

47,208 44,864 27,818 566 120,456 Connecticut 12,758 12,976 3,566 193 29,492 Maine 4,481 4,053 3,027 0 11,561 Massachusetts 20,313 17,723 16,927 350 55,313 New Hampshire 4,439 4,478...

380

Entity State Ownership Residential Commercial Industrial Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Pacific Gas & Electric Co Pacific Gas & Electric Co CA Investor Owned 38,657 306,699 232,366 2,843 580,565 San Diego Gas & Electric Co CA Investor Owned 1,019 62,400 84,143 0 147,563 Southern California Edison Co CA Investor Owned 6,706 456,007 69,193 . 531,906 Connecticut Light & Power Co CT Investor Owned 362,262 514,043 100,262 6,681 983,248 United Illuminating Co CT Investor Owned 145,914 170,830 33,167 0 349,911 Potomac Electric Power Co DC Investor Owned 9,594 280,753 2,929 9,856 303,132 Delmarva Power DE Investor Owned 5,937 37,312 9,617 . 52,867 Ameren Illinois Company IL Investor Owned 97,751 188,211 50,163 . 336,125 Commonwealth Edison Co IL Investor Owned 293,240 468,785 345,822 6,443 1,114,290 MidAmerican Energy Co IL Investor Owned . 39 . . 39 Fitchburg Gas & Elec Light Co MA Investor Owned 3,595 5,856 10,690 0 20,141 Massachusetts Electric Co

Note: This page contains sample records for the topic "industrial residential bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Entity State Ownership Residential Commercial Industrial Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

,735 ,735 . 1,735 Constellation Solar Arizona LLC AZ Non_Utility . . 798 . 798 FRV SI Transport Solar LP AZ Non_Utility . 243 . . 243 MFP Co III, LLC AZ Non_Utility . 603 . . 603 RV CSU Power II LLC AZ Non_Utility . 436 . . 436 Scottsdate Solar Holdings LLC AZ Non_Utility . 49 . . 49 SunE M5C Holdings LLC AZ Non_Utility . . 212 . 212 Alliance Star Energy LLC CA Non_Utility . 266 . . 266 Applied Energy Inc CA Non_Utility . . 935 . 935 Bloom Energy 2009 PPA CA Non_Utility . 183 . . 183 Bloom Energy 2009 PPA CA Non_Utility . 382 . . 382 Bloom Energy 2009 PPA CA Non_Utility . 583 . . 583 Bloom Energy 2009 PPA CA Non_Utility . 771 . . 771 CPKelco U S Inc CA Non_Utility . . 4 . 4 Calpine Corp-Agnews CA Non_Utility . 47 . . 47 Cardinal Cogen Inc CA Non_Utility . 15,846 . . 15,846 City of Madera CA WWTP CA Non_Utility . . 310 . 310 DPC Juniper, LLC CA Non_Utility . . 21 . 21 DPC Juniper, LLC

382

State Residential Commercial Industrial Transportation Total  

U.S. Energy Information Administration (EIA) Indexed Site

7,418,025 7,418,025 6,137,400 3,292,222 37,797 16,885,445 Connecticut 2,212,594 1,901,294 451,910 18,680 4,584,478 Maine 656,822 467,228 241,624 0 1,365,674 Massachusetts 3,029,292 2,453,106 2,127,180 17,162 7,626,740 New Hampshire 713,388 598,371 231,041 0 1,542,800 Rhode Island 449,604 431,952 98,597 1,956 982,109 Vermont 356,325 285,449 141,870 0 783,644 Middle Atlantic 20,195,110 20,394,745 5,206,284 488,944 46,285,082 New Jersey 4,523,770 4,898,822 816,326 28,067 10,266,984 New York 8,929,713 11,445,525 917,700 390,271 21,683,209 Pennsylvania 6,741,627 4,050,398 3,472,258 70,607 14,334,889 East North Central 22,729,904 17,336,145 13,164,140 38,855 53,269,044 Illinois 5,335,088 4,058,476 2,625,085 33,992 12,052,640 Indiana 3,469,890 2,195,779 3,053,069 1,940 8,720,678 Michigan 4,871,034 4,211,356 2,427,143 556 11,510,089 Ohio 6,148,489

383

National Residential Efficiency Measures Database | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Residential Efficiency Measures Database National Residential Efficiency Measures Database This photo shows a man in a white hazardous materials suit blowing insulation inside of an attic. He is wearing a headlamp on his head and the beam shines in the general direction of the insulation tube he is holding. Home improvement can be expensive. The good news is that many energy efficiency improvements quickly pay for themselves in energy savings. Having accurate and consistent performance and cost data for energy efficiency measures enables researchers and the building industry to determine the most cost-effective means of improving existing homes all across the nation. The National Residential Efficiency Measures Database is a centralized resource of residential building retrofit measures and associated estimated

384

Residential | Open Energy Information  

Open Energy Info (EERE)

Residential Residential Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report . Market Trends In the AEO2011 Reference case, residential energy use per capita declines by 17.0 percent from 2009 to 2035 (Figure 58). Delivered energy use stays relatively constant while population grows by 26.7 percent during the period. Growth in the number of homes and in average square footage leads to increased demand for energy services, which is offset in part by efficiency gains in space heating, water heating, and lighting equipment. Population shifts to warmer and drier climates also reduce energy demand for space heating.[1] Issues in Focus In 2009, the residential and commercial buildings sectors used 19.6 quadrillion Btu of delivered energy, or 21 percent of total U.S. energy

385

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" (UEC) by appliance (in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type

386

Residential Energy Disclosure (Hawaii)  

Energy.gov (U.S. Department of Energy (DOE))

A residential property owner is required to disclose electricity costs for the most recent three-month period in which the property was occupied as a condition of selling it. No proof or copies of...

387

Residential propane prices increase  

Gasoline and Diesel Fuel Update (EIA)

from last week to 2.62 per gallon; up 37.4 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The retail price...

388

Residential propane prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

from last week to 2.57 per gallon; up 32.2 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The retail price...

389

Residential propane prices increase  

Gasoline and Diesel Fuel Update (EIA)

a week ago to 2.76 per gallon. That's up 51.2 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices...

390

Residential propane prices increase  

Gasoline and Diesel Fuel Update (EIA)

a week ago to 2.71 per gallon. That's up 46.9 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices...

391

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2012-12-19T23:59:59.000Z

392

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2013-11-05T23:59:59.000Z

393

Residential Gateways and Controllers  

Science Conference Proceedings (OSTI)

Energy companies are exploring two-way residential communications to help reduce the cost of providing standard energy-related services, such as itemized billing or demand reduction, as well as to provide nontraditional services, such as diagnostic services and e-mail. This report covers the key to development of these services -- residential gateways and controllers. The report was prepared with both technical and financial energy company managers in mind, for use as a reference tool and strategic plann...

1999-08-31T23:59:59.000Z

394

Center for BioEnergy Sustainability (CBES) http://www.ornl.gov/sci/besd/cbes/ Bioenergy Sustainability and Land-Use Change Report  

E-Print Network (OSTI)

Center for BioEnergy Sustainability (CBES) http://www.ornl.gov/sci/besd/cbes/ 1 Bioenergy Sustainability and Land-Use Change Report Oak Ridge National Laboratory December 2010 Publication: Dale, VH, R and Environmental Change, pages 52-55, published by the Institute for a Secure and Sustainable Environment

395

Reading Municipal Light Department - Residential ENERGY STAR...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential ENERGY STAR Appliance Rebate Program Reading Municipal Light Department - Residential ENERGY STAR Appliance Rebate Program Eligibility Residential Savings For Heating &...

396

Chicopee Electric Light - Residential Solar Rebate Program |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chicopee Electric Light - Residential Solar Rebate Program Chicopee Electric Light - Residential Solar Rebate Program Eligibility Residential Savings For Solar Buying & Making...

397

Lane Electric Cooperative - Residential Energy Efficiency Loan...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Loan Programs Lane Electric Cooperative - Residential Energy Efficiency Loan Programs Eligibility Multi-Family Residential Residential Savings For Home...

398

Membership Criteria: Better Buildings Residential network  

NLE Websites -- All DOE Office Websites (Extended Search)

Criteria BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.govbbrn Better Buildings Residential Network (BBRN) members must be supportive of residential...

399

Residential Mobility and Latino Political Mobilization  

E-Print Network (OSTI)

Brians, Craig Leonard. 1997. Residential Mobility, VoterHighton, Benjamin. 2000. "Residential Mobility, Community2003. Language Choice, Residential Stability and Voting

Ramirez, Ricardo

2005-01-01T23:59:59.000Z

400

RESIDENTIAL THERMOSTATS: COMFORT CONTROLS IN CALIFORNIA HOMES  

E-Print Network (OSTI)

Report on Applicability of Residential Ventilation StandardsCharacterization of Residential New Construction PracticesJ - Load Calculation for Residential Winter and Summer Air

Meier, Alan K.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial residential bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Evaluation of evolving residential electricity tariffs  

E-Print Network (OSTI)

Evaluation of evolving residential electricity tariffs JudyEvaluation of evolving residential electricity tariffs Judyjdonadee@andrew.cmu.edu Abstract Residential customers in

Lai, Judy

2011-01-01T23:59:59.000Z

402

Landholders, Residential Land Conversion, and Market Signals  

E-Print Network (OSTI)

465 Margulis: Landholders, Residential Land Conversion, and1983. An Analysis of Residential Developer Location FactorsHow Regulation Affects New Residential Development. New

Margulis, Harry L.

2006-01-01T23:59:59.000Z

403

Infiltration in ASHRAE's Residential Ventilation Standards  

E-Print Network (OSTI)

Related to Residential Ventilation Requirements. Rudd, A. 2005. Review of Residential Ventilationand Matson N.E. , Residential Ventilation and Energy

Sherman, Max

2008-01-01T23:59:59.000Z

404

Duke Energy - Non-Residential Energy Efficiency Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Non-Residential Energy Efficiency Rebate Program - Non-Residential Energy Efficiency Rebate Program Duke Energy - Non-Residential Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Construction Commercial Weatherization Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Home Weatherization Windows, Doors, & Skylights Maximum Rebate Commercial Incentives: 50,000 per fiscal year, per facility for all eligible technologies combined Custom Incentives: 50% of incremental cost Most Prescriptive Incentives: 50% of equipment cost Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount Fluorescent Lighting and Reduced Wattage: $3-$50/fixture

405

Residential gas appliance market needs assessment. Final Topical report, April 1994  

SciTech Connect

The Gas research Institute (GRI) commissioned SRI International (SRI) to assess the R D needs of the residential gas appliance industry. The objectives in the project were to: Identify and rank the residential gas appliance industry's R D needs as perceived by industry groups (appliance manufacturers, major components and materials suppliers, and distributors/dealers/retailers); Select those needs that an industry-wide R D program (as opposed to individual company efforts) can best meet; and, Assemble a database characterizing the residential gas appliance market and the factors driving demand.

Wachter, G.T.; Gutman, P.V.

1994-04-01T23:59:59.000Z

406

Energy Department Announces Five-Year Renewal of Funding for Bioenergy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Announces Five-Year Renewal of Funding for Energy Department Announces Five-Year Renewal of Funding for Bioenergy Research Centers Energy Department Announces Five-Year Renewal of Funding for Bioenergy Research Centers April 4, 2013 - 1:48pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - The U.S. Department of Energy today announced it would fund its three Bioenergy Research Centers for an additional five-year period, subject to continued congressional appropriations. The three Centers -including the BioEnergy Research Center (BESC) led by Oak Ridge National Laboratory, the Great Lakes Bioenergy Research Center (GLBRC) led by the University of Wisconsin-Madison in partnership with Michigan State University, and the Joint BioEnergy Institute (JBEI) led by Lawrence Berkeley National Laboratory-were established by the Department's

407

Energy Department Announces Five-Year Renewal of Funding for Bioenergy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Five-Year Renewal of Funding for Five-Year Renewal of Funding for Bioenergy Research Centers Energy Department Announces Five-Year Renewal of Funding for Bioenergy Research Centers April 4, 2013 - 1:48pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - The U.S. Department of Energy today announced it would fund its three Bioenergy Research Centers for an additional five-year period, subject to continued congressional appropriations. The three Centers -including the BioEnergy Research Center (BESC) led by Oak Ridge National Laboratory, the Great Lakes Bioenergy Research Center (GLBRC) led by the University of Wisconsin-Madison in partnership with Michigan State University, and the Joint BioEnergy Institute (JBEI) led by Lawrence Berkeley National Laboratory-were established by the Department's

408

Great Lakes Bioenergy Research Center's Video Channel on Vimeo  

DOE Data Explorer (OSTI)

The Great Lakes Bioenergy Research Center (GLBRC) is one of three bioenergy science centers funded by the Office of Biological and Environmental Research in the Office of Science. The centers pursue research supporting high-risk, high-return biological solutions for bioenergy applications. GLBRC's mission is to perform basic research that generates technology to convert cellulosic biomass to ethanol and other advanced biofuels. The Vimeo channel for GLBRC has 22 videos as of May 2012.

409

BioEnergy International LLC | Open Energy Information  

Open Energy Info (EERE)

BioEnergy International LLC BioEnergy International LLC Address 1 Pinehill Drive Place Quincy, Massachusetts Zip 02169 Sector Biofuels Product Development and commercialization of next generation biorefineries Website http://www.bioenergyllc.com/ Coordinates 42.228468°, -71.027593° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.228468,"lon":-71.027593,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

Bioenergy plants in the United States and China  

NLE Websites -- All DOE Office Websites (Extended Search)

181 (2011) 621- 622 Contents lists available at SciVerse ScienceDirect Plant Science j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / p l a n t s c i Editorial Bioenergy plants in the United States and China The emerging bio-economies of the US and China hinge on the development of dedicated bioenergy feedstocks that will increase the production of next-generation biofuels and bioproducts. While biofuels might have less eventual importance than bioproducts, transportation needs for both countries require increasingly more biofuels to be produced in the coming decades. The US Renewable Fuels Standard mandate 136 billion litres of biofuels by 2022. Nearly 80 billion litres are required to be "advanced biofuels," generally regarded as fuels from non-corn and soybean feedstocks. Because

411

Comparison of Arabinoxylan Structure in Bioenergy and Model Grasses  

NLE Websites -- All DOE Office Websites (Extended Search)

Arabinoxylan Arabinoxylan Structure in Bioenergy and Model Grasses Ameya R. Kulkarni, 1 Sivakumar Pattathil, 1 Michael G. Hahn, 1,2 William S. York, 1,3 and Malcolm A. O'Neill 1 1 Complex Carbohydrate Research Center and US Department of Energy BioEnergy Science Center, 2 Department of Plant Biology, and 3 Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA Abstract Heteroxylans were solubilized from the alcohol-insoluble residue of switchgrass, rice, Brachypodium, Miscanthus, foxtail millet, and poplar with 1 M KOH. A combination of enzymatic, chemical, nu- clear magnetic resonance (NMR), mass spectroscopic, and immu- nological techniques indicated that grass arabinoxylans have comparable structures and contain no discernible amount of the reducing end sequence present in dicot glucuronoxylan. Our data suggest that rice, Brachypodium, and foxtail

412

About Residential | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings » About Residential Residential Buildings » About Residential About Residential The Building Technologies Office (BTO) collaborates with home builders, energy professionals, state and local governments, utilities, product manufacturers, educators, and researchers to improve the energy efficiency of both new and existing homes. Residential Sector Activities Include: Demonstrating to builders and remodelers how to build and renovate for high performance through best practice guides and case studies and continuing to developing innovative whole-house energy efficiency solutions through Building America research projects. We also provide guidelines and tools for researchers conducting building related research projects. Promoting a trusted, whole-house process for upgrading existing homes with

413

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #16, July-September 2007  

DOE Green Energy (OSTI)

This quarterly update contains information on the National Bioenergy Center Biochemical Platform Integration Project, R&D progress and related activities.

Schell, D.

2007-10-01T23:59:59.000Z

414

IMproved Assessment of the Greenhouse gas balance of bioeNErgy pathways (IMAGINE)  

E-Print Network (OSTI)

IMproved Assessment of the Greenhouse gas balance of bioeNErgy pathways (IMAGINE) Evaluation. Abstract The potential greenhouse gas (GHG) savings resulting from the displacement of fossil energy

415

National Bioenergy Center Biochemical Platform Process Integration Project: Quarterly Update #18, January-March 2008  

SciTech Connect

January-March, 2008 edition of the quarterly update for the National Bioenergy Center's Biochemical Platform Integration Project.

Schell, D.

2008-04-01T23:59:59.000Z

416

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #12, July-September 2006  

SciTech Connect

Volume 12 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

Schell, D.

2006-10-01T23:59:59.000Z

417

Jasper County REMC - Residential Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jasper County REMC - Residential Residential Energy Efficiency Jasper County REMC - Residential Residential Energy Efficiency Rebate Program Jasper County REMC - Residential Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Refrigerator Recycling: $35 Heat Pump Water Heater: $400 Air-Source Heat Pumps: $250 - $1,500/unit (Power Moves rebate), $200 (REMC Bill Credit) Dual Fuel Heat Pumps: $1,500/unit Geothermal Heat Pumps: $1,500/unit (Power Moves rebate), $500 (REMC Bill Credit) Provider Jasper County REMC Jasper County REMC, in conjunction with Wabash Valley Power Association's Power Moves programs, offers a range of rebates to its residential

418

Residential Building Code Compliance  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Residential Building Code Compliance: Recent Findings and Implications Energy use in residential buildings in the U.S. is significant-about 20% of primary energy use. While several approaches reduce energy use such as appliance standards and utility programs, enforcing state building energy codes is one of the most promising. However, one of the challenges is to understand the rate of compliance within the building community. Utility companies typically use these codes as the baseline for providing incentives to builders participating in utility-sponsored residential new construction (RNC) programs. However, because builders may construct homes that fail to meet energy codes, energy use in the actual baseline is higher than would be expected if all buildings complied with the code. Also,

419

Progress in Residential Retrofit  

NLE Websites -- All DOE Office Websites (Extended Search)

The Cutting Edge: Progress in Residential Retrofit The Cutting Edge: Progress in Residential Retrofit A geographic representation of saturations of ceiling fans based on data from the RASSes. White areas indicate a lack of data for that region. Many utilities survey their customers to learn more about the buildings and the occupants in their service areas. These surveys-usually called "residential appliance saturation surveys," or RASSes-ask for the number and types of appliances present, the number of people living in the home, and sometimes personal information. The RASSes are also used to collect information about the presence of conservation measures such as wall and ceiling insulation, weatherstripping, multipane windows, and water flow restrictors. Building Energy Analysis Group researchers Alan Meier and Brian Pon gathered RASSes

420

Building Technologies Residential Survey  

SciTech Connect

Introduction A telephone survey of 1,025 residential occupants was administered in late October for the Building Technologies Program (BT) to gather information on residential occupant attitudes, behaviors, knowledge, and perceptions. The next section, Survey Results, provides an overview of the responses, with major implications and caveats. Additional information is provided in three appendices as follows: - Appendix A -- Summary Response: Provides summary tabular data for the 13 questions that, with subparts, comprise a total of 25 questions. - Appendix B -- Benchmark Data: Provides a benchmark by six categories to the 2001 Residential Energy Consumption Survey administered by EIA. These were ownership, heating fuel, geographic location, race, household size and income. - Appendix C -- Background on Survey Method: Provides the reader with an understanding of the survey process and interpretation of the results.

Secrest, Thomas J.

2005-11-07T23:59:59.000Z

Note: This page contains sample records for the topic "industrial residential bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Residential/commercial market for energy technologies  

SciTech Connect

The residential/commercial market sector, particularly as it relates to energy technologies, is described. Buildings account for about 25% of the total energy consumed in the US. Market response to energy technologies is influenced by several considerations. Some considerations discussed are: industry characteristics; market sectors; energy-consumption characeristics; industry forecasts; and market influences. Market acceptance may be slow or nonexistent, the technology may have little impact on energy consumption, and redesign or modification may be necessary to overcome belatedly perceived market barriers. 7 figures, 20 tables.

Glesk, M.M.

1979-08-01T23:59:59.000Z

422

Residential Buildings Integration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

423

Residential Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

424

Measuring Residential Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Residential Ventilation Measuring Residential Ventilation System Airflows: Part 2 - Field Evaluation of Airflow Meter Devices and System Flow Verification J. Chris Stratton, Iain S. Walker, Craig P. Wray Environmental Energy Technologies Division October 2012 LBNL-5982E 2 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any

425

Firelands Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Firelands Electric Cooperative - Residential Energy Efficiency Rebate Program Firelands Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility...

426

South Alabama Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Alabama Electric Cooperative - Residential Energy Efficiency Loan Program South Alabama Electric Cooperative - Residential Energy Efficiency Loan Program Eligibility...

427

Central Alabama Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Central Alabama Electric Cooperative - Residential Energy Efficiency Rebate Program Central Alabama Electric Cooperative - Residential Energy Efficiency Rebate Program Eligibility...

428

Cookeville Electric Department - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cookeville Electric Department - Residential Energy Efficiency Rebate Program Cookeville Electric Department - Residential Energy Efficiency Rebate Program Eligibility Commercial...

429

Lane Electric Cooperative - Residential and Commercial Weatherization...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Commercial Weatherization Grant Program Lane Electric Cooperative - Residential and Commercial Weatherization Grant Program Eligibility Commercial Low-Income Residential...

430

Lane Electric Cooperative - Residential Efficiency Rebate Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Rebate Program Lane Electric Cooperative - Residential Efficiency Rebate Program Eligibility Residential Savings For Appliances & Electronics Home Weatherization...

431

Austin Energy - Residential Energy Efficiency Rebate Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebate Program Austin Energy - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For Home Weatherization Commercial Weatherization Heating & Cooling...

432

Meeting Residential Ventilation Standards Through Dynamic Control...  

NLE Websites -- All DOE Office Websites (Extended Search)

Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems Title Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation...

433

Maximizing Information from Residential Measurements of Volatile...  

NLE Websites -- All DOE Office Websites (Extended Search)

Maximizing Information from Residential Measurements of Volatile Organic Compounds Title Maximizing Information from Residential Measurements of Volatile Organic Compounds...

434

American Municipal Power (Public Electric Utilities) - Residential...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Municipal Power (Public Electric Utilities) - Residential Efficiency Smart Program (Ohio) American Municipal Power (Public Electric Utilities) - Residential Efficiency...

435

Southern Pine Electric Power Association - Residential Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southern Pine Electric Power Association - Residential Energy Efficiency Rebate Program Southern Pine Electric Power Association - Residential Energy Efficiency Rebate Program <...

436

Energy Smart - Residential Energy Efficiency Rebate Program ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart - Residential Energy Efficiency Rebate Program (20 Municipalities) Energy Smart - Residential Energy Efficiency Rebate Program (20 Municipalities) < Back Eligibility...

437

Ozark Border Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ozark Border Electric Cooperative - Residential Energy Efficiency Rebate Program Ozark Border Electric Cooperative - Residential Energy Efficiency Rebate Program Eligibility...

438

Central New Mexico Electric Cooperative - Residential Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Mexico Electric Cooperative - Residential Energy Efficiency Rebate Program Central New Mexico Electric Cooperative - Residential Energy Efficiency Rebate Program Eligibility...

439

Natural Gas Industrial Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

440

Images / Graphics : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Images / Graphics Images / Graphics Cellulosic Biofuel Production Steps and Biological Research Challenges Cellulosic Biofuel Production Steps and Biological Research Challenges This figure depicts some key processing steps in an artistâ€(tm)s conception of a future large-scale facility for transforming cellulosic biomass (plant fibers) into biofuels. Three areas where focused biological research can lead to much lower costs and increased productivity include developing crops dedicated to biofuel production (see step 1), engineering enzymes that deconstruct cellulosic biomass (see steps 2 and 3), and engineering microbes and developing new microbial enzyme systems for industrial-scale conversion of biomass sugars into ethanol and other biofuels or bioproducts (see step 4). Biological research challenges

Note: This page contains sample records for the topic "industrial residential bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

History of Residential Grounding  

Science Conference Proceedings (OSTI)

This report describes the development of residential electrical service grounding practices in the United States. The report focuses on the history of the National Electrical Code (NEC), which prescribes standards for wiring practices in residences, including grounding of the building electrical service.

2002-09-19T23:59:59.000Z

442

Photovoltaics for residential applications  

DOE Green Energy (OSTI)

Information is given about the parts of a residential photovoltaic system and considerations relevant to photovoltaic power use in homes that are also tied to utility lines. In addition, factors are discussed that influence implementation, including legal and environmental factors such as solar access and building codes, insurance, utility buyback, and system longevity. (LEW)

Not Available

1984-02-01T23:59:59.000Z

443

To achieve food and energy security, sustainable bioenergy has become an important goal for many countries. The use  

E-Print Network (OSTI)

significant impacts on food or feed production. Calculating tradeoffs between the economics of redesigned for residential, industrial and commercial activities and infrastructure. Social and economic forces influence how in greenhouse gas emissions resulting from indirect land-use change. Some researchers (Campbell et al., 2008

Kaper, Hans G.

444

Bioenergy Sustainability at the Regional Scale2 In press with Ecology and Society as an Insight Article5  

E-Print Network (OSTI)

1 Bioenergy Sustainability at the Regional Scale2 3 4 In press with Ecology and Society Mulholland1 , G. Philip Robertson3 8 9 10 1 Center for Bioenergy Sustainability, Environmental Sciences by the UT-Battelle, LLC, for DOE under contract DE-AC05-00OR22725.32 33 #12;Bioenergy Sustainability

445

A spreadsheet-based model for teaching the agronomic, economic, and environmental aspects of bioenergy cropping systems  

Science Conference Proceedings (OSTI)

In order to assess and compare the economic and environmental sustainability of newly emerging bioenergy cropping systems, students need a comprehensive computer-based tool for cataloging attributes of various proposed bioenergy feedstock crops. We have ... Keywords: Bioenergy, Biofuel crop, Teaching model

Kurt D. Thelen; Juan Gao; John Hoben; Leilei Qian; Christopher Saffron; Katherine Withers

2012-07-01T23:59:59.000Z

446

Forest Products Supply Chain --Availability of Woody Biomass in Indiana for Bioenergy Production  

E-Print Network (OSTI)

Forest Products Supply Chain -- Availability of Woody Biomass in Indiana for Bioenergy Production or wood waste biomass · Map Indiana's wood waste for each potential bioenergy supply chain · Develop break-even analyses for transportation logistics of wood waste biomass Isaac S. Slaven Abstract: The purpose

447

An integrated model for assessment of sustainable agricultural residue removal limits for bioenergy systems  

Science Conference Proceedings (OSTI)

Agricultural residues have been identified as a significant potential resource for bioenergy production, but serious questions remain about the sustainability of harvesting residues. Agricultural residues play an important role in limiting soil erosion ... Keywords: Agricultural residues, Bioenergy, Model integration, Soil erosion, Soil organic carbon

D. J. Muth, Jr.; K. M. Bryden

2013-01-01T23:59:59.000Z

448

Ris Energy Report 2 Bioenergy is energy of biological and renewable origin,  

E-Print Network (OSTI)

of bioenergy resources are fuel wood, bagasse, organic waste, biogas and bioethanol. Bioenergy is the only in biomass conversion, combined with signifi- cant changes in energy markets, have stimulated this trend should continue to develop gasification and fuel cell conversion systems based on biomass. Conversion

449

Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar  

E-Print Network (OSTI)

Biomass and Bioenergy 31 (2007) 646­655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

450

PECO Energy (Electric) - Non-Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PECO Energy (Electric) - Non-Residential Energy Efficiency Rebate PECO Energy (Electric) - Non-Residential Energy Efficiency Rebate Program (Pennsylvania) PECO Energy (Electric) - Non-Residential Energy Efficiency Rebate Program (Pennsylvania) < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Program Info Expiration Date 5/31/2013 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Unitary and Split Air Conditioning Systems and Air Source Heat Pumps: $25-$45/ton Chillers: $10-$40/ton Ground Source Heat Pumps: $40/ton Hotel Occupancy Sensors: $20-$40 Energy Management Control System: $0.10/sq. ft. or $0.21/sq. ft.

451

National Residential Efficiency Measures Database | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » National Residential Efficiency Measures Database Jump to: navigation, search Tool Name National Residential Efficiency Measures Database Tool Author National Renewable Energy Laboratory Regional Focus National Focus Area Building Energy Efficiency Implementation Phase Evaluate Effectiveness and Revise as Needed Type CommunityEnergyToolType Modeling Tool Cost Free User Interface Website, Other Website http://www.nrel.gov/ap/retrofits/index.cfm Tool Users The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry.

452

NREL: National Residential Efficiency Measures Database Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

National Residential Efficiency Measures Database National Renewable Energy Laboratory National Residential Efficiency Measures Database National Renewable Energy Laboratory The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most cost-effective retrofit measures for improving energy efficiency of existing homes. Learn more about the database. By accessing the database, the user agrees to the terms and conditions of use. View Data Now Supporting Resources The following resources provide more information about the data and allow you to download the data. Data dictionary XML file download Simulation Protocols Glossary

453

LADWP - Non-Residential Custom Performance Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-Residential Custom Performance Program Non-Residential Custom Performance Program LADWP - Non-Residential Custom Performance Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Appliances & Electronics Commercial Lighting Lighting Program Info State California Program Type Utility Rebate Program Rebate Amount Lighting: $ 0.05 per kWh saved Air-Conditioning and Refrigeration (AC&R): $ 0.14 per kWh saved Other Equipment: $ 0.08 per kWh saved Wet Cleaning: $4,000 per cleaner Provider Los Angeles Department of Water and Power Los Angeles Department of Water and Power offers incentives to non-residential customers for the installation of energy saving measures,

454

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Activities Building Activities The Department of Energy (DOE) is leading several different activities to develop, demonstrate, and deploy cost-effective solutions to reduce energy consumption across the residential building sector by at least 50%. The U.S. DOE Solar Decathlon is a biennial contest which challenges college teams to design and build energy efficient houses powered by the sun. Each team competes in 10 contests designed to gauge the performance, livability and affordability of their house. The Building America program develops market-ready energy solutions that improve the efficiency of new and existing homes while increasing comfort, safety, and durability. Guidelines for Home Energy Professionals foster the growth of a high quality residential energy upgrade industry and a skilled and credentialed workforce.

455

Electricity savings potentials in the residential sector of Bahrain  

SciTech Connect

Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to the peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.

Akbari, H. [Lawrence Berkeley National Lab., CA (United States); Morsy, M.G.; Al-Baharna, N.S. [Univ. of Bahrain, Manama (Bahrain)

1996-08-01T23:59:59.000Z

456

Evaluating environmental consequences of producing herbaceous crops for bioenergy  

SciTech Connect

The environmental costs and benefits of producing bioenergy crops can be measured both in kterms of the relative effects on soil, water, and wildlife habitat quality of replacing alternate cropping systems with the designated bioenergy system, and in terms of the quality and amount of energy that is produced per unit of energy expended. While many forms of herbaceous and woody energy crops will likely contribute to future biofuels systems, The Dept. of Energy`s Biofuels Feedstock Development Program (BFDP), has chosen to focus its primary herbaceous crops research emphasis on a perennial grass species, switchgrass (Panicum virgatum), as a bioenergy candidate. This choice was based on its high yields, high nutrient use efficiency, and wide geographic distribution, and also on its poistive environmental attributes. The latter include its positive effects on soil quality and stabiity, its cover value for wildlife, and the lower inputs of enerty, water, and agrochemicals required per unit of energy produced. A comparison of the energy budgets for corn, which is the primary current source of bioethanol, and switchgrass reveals that the efficiency of energy production for a perennial grass system can exceed that for an energy intensive annual row crop by as much as 15 times. In additions reductions in CO{sub 2} emission, tied to the energetic efficiency of producing transportation fuels, are very efficient with grasses. Calculated carbon sequestration rates may exceed those of annual crops by as much as 20--30 times, due in part to carbon storage in the soil. These differences have major implications for both the rate and efficiency with which fossil energy sources can be replaced with cleaner burning biofuels.

McLaughlin, S.B.

1995-12-31T23:59:59.000Z

457

Golbal Economic and Environmental Impacts of Increased Bioenergy Production  

DOE Green Energy (OSTI)

The project had three main objectives: to build and incorporate an explicit biomass energy sector within the GTAP analytical framework and data base; to provide an analysis of the impact of renewable fuel standards and other policies in the U.S. and E.U, as well as alternative biofuel policies in other parts of the world, on changes in production, prices, consumption, trade and poverty; and to evaluate environmental impacts of alternative policies for bioenergy development. Progress and outputs related to each objective are reported.

Wallace Tyner

2012-05-30T23:59:59.000Z

458

Atmos Energy - Residential Natural Gas and Weatherization Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atmos Energy - Residential Natural Gas and Weatherization Efficiency Program Atmos Energy - Residential Natural Gas and Weatherization Efficiency Program Eligibility Residential...

459

CenterPoint Energy (Gas) - Residential Efficiency Rebates (Oklahoma...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Efficiency Rebates (Oklahoma) CenterPoint Energy (Gas) - Residential Efficiency Rebates (Oklahoma) Eligibility Residential Savings For Heating & Cooling Commercial...

460

Central Georgia EMC - Residential Energy Efficiency Rebate Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Central Georgia EMC - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For Home Weatherization Commercial...

Note: This page contains sample records for the topic "industrial residential bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

MidAmerican Energy (Electric) - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric) - Residential Energy Efficiency Rebate Programs MidAmerican Energy (Electric) - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings...

462

NREL Bioprocessing Pilot Plant: Available for Industrial Use  

SciTech Connect

Microbial bioprocessing can produce a myriad of valuable products. If you are an industry needing small- or large-scale trials to test or advance a bioprocessing technology, National Bioenergy Center (NBC) facilities at the National Renewable Energy Laboratory (NREL) in Golden, Colorado, may allow you to use world-class systems and expertise without the expense of building your own pilot plant.

2003-10-01T23:59:59.000Z

463

Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

This chart highlights residential heating oil prices for the current and This chart highlights residential heating oil prices for the current and past heating season. As you can see, prices have started the heating season, about 40 to 50 cents per gallon higher than last year at this time. The data presented are from EIA's State Heating Oil and Propane Program. We normally collect and publish this data twice a month, but given the low stocks and high prices, we started tracking the prices weekly. These data will also be used to determine the price trigger mechanism for the Northeast Heating Oil Reserve. The data are published at a State and regional level on our web site. The slide is to give you some perspective of what is happening in these markets, since you probably will get a number of calls from local residents about their heating fuels bills

464

Residential Energy Audits  

E-Print Network (OSTI)

A series of events coupled with the last five years experience performing Residential Conservation Service (RCS) audits have resulted in renewed efforts by utilities to evaluate the role of residential energy audits. There are utilities where the RCS program is considered very successful; however, the majority of utilities have found that the costs far exceed the benefits. Typically, the response rates are low (less than 1% per year for Texas utilities), the audits primarily reach upper income persons, and consumers only implement the low-cost recommendations. The Texas PUC is on record as being opposed to the RCS as well as the Commercial and Apartment Conservation Service (CACS) and now requires Energy Efficiency Plans with detailed cost and savings information on utility end user programs.

Brown, W.

1985-01-01T23:59:59.000Z

465

OG&E - Residential Energy Efficiency Program | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OG&E - Residential Energy Efficiency Program OG&E - Residential Energy Efficiency Program Eligibility Low-Income Residential Residential Savings For Heating & Cooling Commercial...

466

Residential Programmable Communicating Thermostats  

Science Conference Proceedings (OSTI)

Residential programmable communicating thermostats (PCTs) enable demand response and offer a convenient energy management option for the consumer. PCTs allow customers to program and control temperature set-points remotely, primarily through the Internet. Additionally, some of these thermostats can be remotely controlled by utilities or third parties to curtail heating and cooling loads during periods of peak electricity demand. This Technology Brief, prepared for the Energy Efficiency Initiative, presen...

2007-12-05T23:59:59.000Z

467

Detailed residential electric determination  

DOE Green Energy (OSTI)

Data on residential loads has been collected from four residences in real time. The data, measured at 5-second intervals for 53 days of continuous operation, were statistically characterized. An algorithm was developed and incorporated into the modeling code SOLCEL. Performance simulations with SOLCEL using these data as well as previous data collected over longer time intervals indicate that no significant errors in system value are introduced through the use of long-term average data.

Not Available

1984-06-01T23:59:59.000Z

468

Residential Energy Display Devices  

Science Conference Proceedings (OSTI)

Residential energy display devices provide direct feedback to consumers about their electricity use and cost, direct feedback that potentially can help customers manage electricity consumption. EPRI tested five different stand-alone display devices in its Energy Efficiency and Demand Response Living Laboratory to assess whether devices functioned according to manufacturer specifications. In addition to providing results of these tests, this Technology Brief describes how display devices operate, summariz...

2008-06-20T23:59:59.000Z

469

SMUD - Non-Residential PV Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-Residential PV Incentive Program Non-Residential PV Incentive Program SMUD - Non-Residential PV Incentive Program < Back Eligibility Commercial Industrial Nonprofit Savings Category Solar Buying & Making Electricity Maximum Rebate $650,000 for up-front incentives at current $0.65/W incentive level. Program Info State California Program Type Utility Rebate Program Rebate Amount Expected Performance Based Incentive (for systems up to 1 MW): 0.65/watt AC; incentive adjusted based on expected performance Performance Based Incentive: 0.10/kWh for 5 years or 0.06/kWh for 10 years Incentives are decreased for systems > 1 MW Provider Sacramento Municipal Utility District SMUD offers cash incentives to commercial, industrial, and non-profit customers who install solar photovoltaic (PV) systems. Customers have the

470

Natural Gas Compressor for Residential Use ---- Inventor Robert Cutler |  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Compressor for Residential Use ---- Inventor Robert Cutler Natural Gas Compressor for Residential Use ---- Inventor Robert Cutler This invention disclosure describes a system for gas compression to ultra-high pressures, which is required in many industrial and automotive processes. Gas compression, to pressures above about 100 psig, generally requires cooling to remove heat of compression and may require many stages of compression for efficient operation. Also most piston-type compressors require lubrication between the piston and cylinder, and lubricant may be entrained in the compressed gas, thereby requiring efficient oil removal means downstream of the compressor. This invention describes a system that addresses these requirements in a cost effective system suitable for residential and light industrial applications.

471

Building Technologies Office: About Residential Building Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

About Residential About Residential Building Programs to someone by E-mail Share Building Technologies Office: About Residential Building Programs on Facebook Tweet about Building Technologies Office: About Residential Building Programs on Twitter Bookmark Building Technologies Office: About Residential Building Programs on Google Bookmark Building Technologies Office: About Residential Building Programs on Delicious Rank Building Technologies Office: About Residential Building Programs on Digg Find More places to share Building Technologies Office: About Residential Building Programs on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat.

472

Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 1: Part 1, Electricity supply sector; Part 2, Residential and commercial buildings sector; Part 3, Industrial sector  

Science Conference Proceedings (OSTI)

DOE encourages you to report your achievements in reducing greenhouse gas emissions and sequestering carbon under this program. Global climate change is increasingly being recognized as a threat that individuals and organizations can take action against. If you are among those taking action, reporting your projects may lead to recognition for you, motivation for others, and synergistic learning for the global community. This report discusses the reporting process for the voluntary detailed guidance in the sectoral supporting documents for electricity supply, residential and commercial buildings, industry, transportation, forestry, and agriculture. You may have reportable projects in several sectors; you may report them separately or capture and report the total effects on an entity-wide report.

Not Available

1994-10-01T23:59:59.000Z

473

RESIDENTIAL ENERGY CONSUMPTION SURVEY 1997  

U.S. Energy Information Administration (EIA)

RESIDENTIAL ENERGY CONSUMPTION SURVEY 1997. OVERVIEW: MOST POPULOUS STATES ... Homes with air-conditioning: 95%... with a central air-conditioning system: 83%

474

Residential ventilation standards scoping study  

E-Print Network (OSTI)

of new residences. The Hawaii Model Energy Code (HMEC) is aHawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Residential Energy Code

McKone, Thomas E.; Sherman, Max H.

2003-01-01T23:59:59.000Z

475

Natural Gas Residential Choice Programs  

U.S. Energy Information Administration (EIA)

Status of Natural Gas Residential Choice Programs by State as of December 2008 (Click on a State or its abbreviation for more information about that ...

476

2001 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA)

Residential Energy Consumption Survey ... Office of Management and Budget, Washington, DC 20503. Form EIA-457A (2001) Form Approval: OMB No. 1905-0092 ...

477

Residential Price - Local Distribution Companies  

U.S. Energy Information Administration (EIA)

Average Price of Natural Gas Delivered to Residential and Commercial Consumers by Local Distribution and Marketers in Selected States (Dollars per ...

478

Hazardous and Industrial Waste (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous and Industrial Waste (Minnesota) Hazardous and Industrial Waste (Minnesota) Hazardous and Industrial Waste (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting This section describes standards that must be met by facilities generating and processing hazardous and industrial waste, as well as required permits for the construction and operation of such a facility. The statute also

479

Evaluation of evolving residential electricity tariffs  

E-Print Network (OSTI)

evolving residential electricity tariffs Judy Lai, Nicholasevolving residential electricity tariffs Judy Lai Seniortariffs and explanation of baseline Until the middle of 2001, PG&E employed a two-tiered pricing structure for residential electricity

Lai, Judy

2011-01-01T23:59:59.000Z

480

Property For Homeowners- Residential  

E-Print Network (OSTI)

Targets improvements on certain types of property that will save energy when compared to the property which they replaced. Provides for a uniform credit of 30 percent of the cost of qualifying improvements. Cap for all tax years is now $1,500, three times the prior legislation provided. Temporarily can rely on existing manufacturer certifications or appropriate Energy Star labels for purchasing qualified products. For Homeowners- Expanded Energy Efficient Property Tax Credit for Residences Residential energy efficient property credit has expanded to include more alternate energy equipment.

Tom Sheaffer; Stakeholder Liaison; New Clean Renewable Energy Bonds

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial residential bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

ASHRAE and residential ventilation  

SciTech Connect

In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the logical place to provide leadership. This leadership has been demonstrated most recently by the publication of the first nationally recognized standard on ventilation in homes, ASHRAE Standard 62.2-2003, which builds on work that has been part of ASHRAE for many years and will presumably continue. Homeowners and occupants, which includes virtually all of us, will benefit from the application of Standard 62.2 and use of the top ten list. This activity is exactly the kind of benefit to society that the founders of ASHRAE envisioned and is consistent with ASHRAE's mission and vision. ASHRAE members should be proud of their Society for taking leadership in residential ventilation.

Sherman, Max H.

2003-10-01T23:59:59.000Z

482

Accounting for Carbon Dioxide Emissions from Bioenergy Systems  

DOE Green Energy (OSTI)

Researchers have recently argued that there is a 'critical climate accounting error' and that we should say 'goodbye to carbon neutral' for bioenergy. Many other analysts have published opionions on the same topic, and the US Environmental Protection Agency posted a specific call for information. The currently burning questions for carbon accounting is how to deal with bioenergy. The questions arises because, unlike for fossil fuels, burning of biomass fuels represents part of a cycle in which combustion releases back to the atmosphere carbon that was earlier removed from the atmosphere by growing plants. In a sustainable system, plants will again remove the carbon dioxide (CO{sub 2}) from the atmosphere. Conceptually, it is clear that there are no net emissions of the greenhouse gas CO{sub 2} if biomass is harvested and combusted at the same rate that biomass grows and removes CO{sub 2} from the atmosphere. The problem lies in the fact that growth and combustion do not occur at the same time or in the same place, and our accounting system boundaries - spatial and temporal - frequently do not provide full and balanced accounting. When the first comprehensive guidelines for estimating national greenhouse gas emissions and sinks were put together by the Organization for Economic Cooperation and Development, they noted that it has been argued that CO{sub 2} emissions resulting from bioenergy consumption should not be included in a country's official emission inventory because there are no net emissions if the biomass is produced sustainably, and if the biomass is not produced sustainably, the loss of carbon will be captured as part of the accounting for emissions from land-use change. In the same philosophical vein, the Kyoto Protocol provides that emissions or sinks of CO{sub 2} from land-use change and forestry activities be measured as the 'verifiable changes in carbon stocks'. From these has grown the convention that emissions from biomass fuels are generally not counted as part of emissions inventories, and biomass energy is sometimes referred to as being 'carbon neutral.' But what happens when a forest is harvested for fuel but takes 60 years to regrow or when biomass is harvested in a country that is not party to an international accord but is burned in a country that is party to an international accord? Biomass energy is only truly 'carbon neutral' if we get the system boundaries right. They need to make sure that the accounting methodology is compatible with our needs and realities in management and policy.

Marland, Gregg [ORNL

2010-12-01T23:59:59.000Z

483

Short-Rotation Crops for Bioenergy: Proceedings of IEA, Bioenergy, Task 17 Meeting in Auburn, Alabama, USA, September 6-9, 1999  

DOE Green Energy (OSTI)

These proceedings are the results of the third meeting of Task 17 (Short-Rotation Crops for Bioenergy) within the framework of International Energy Agency (IEA), Bioenergy. (Minutes from the meeting can be seen at page 91.) The meeting was held in Auburn, Alabama, USA, September 6--9, 1999. The meeting was held soon after President Clinton of the United States signed Executive Order No.13134: DEVELOPING AND PROMOTING BIOBASED PRODUCTS AND BIOENERGY on August 12, 1999. Executive orders in the US are official documents, through which the President of the US manages the operation of the Federal Government. This order outlines the administration's goal of tripling the use of biomass products and bioenergy in the US by the year 2010. During the time of this meeting, it was also known from sources in Europe that the European Union (EU) commission was working on draft instructions to its member countries on how to increase the use of renewable energy from six to twelve percent in Europe within 10 years. The objectives of Task 17 support the goals of member countries for bioenergy production and use. These objectives are as follows: to stimulate the full-scale implementation of energy crops in the participating countries; to strengthen the contacts and co-operation between participating countries, scientists, biomass producers, machine developers, entrepreneurs, and end users to select the most urgent research and development areas and suggest projects of co-operation; to inform Ex-Co- members; and to deliver proceedings from the meetings.

Wright, L.L.

2001-01-30T23:59:59.000Z

484

Residential Energy Consumption Survey:  

Gasoline and Diesel Fuel Update (EIA)

E/EIA-0262/2 E/EIA-0262/2 Residential Energy Consumption Survey: 1978-1980 Consumption and Expenditures Part II: Regional Data May 1981 U.S. Department of Energy Energy Information Administration Assistant Administrator for Program Development Office of the Consumption Data System Residential and Commercial Data Systems Division -T8-aa * N uojssaooy 'SOS^-m (£03) ao£ 5925 'uofSfAfQ s^onpojj aa^ndmoo - aojAaag T BU T3gN am rcoj? aig^IT^^ '(adBx Q-naugBH) TOO/T8-JQ/30Q 30^703 OQ ' d jo :moaj ajqBfT^A^ 3J^ sjaodaa aAoqe aqa jo 's-TZTOO-eoo-Tgo 'ON ^ois odo 'g^zo-via/aoQ 'TBST Sujpjjng rXaAang uojidmnsuoo XSaaug sSu-ppjprig ON ^oo^s OdO '^/ZOZO-Via/aOQ *086T aunr '6L6I ?sn§ny og aunf ' jo suja^Bd uoj^dmnsuoo :XaAjng uo^^dmnsuoQ XSaaug OS '9$ '6-ieTOO- 00-T90 OdD 'S/ZOZO-Via/aOa C

485

Detroit Public Lighting Department - Residential Energy Wise...  

Open Energy Info (EERE)

Multi-Family Residential, Residential Eligible Technologies Ceiling Fan, Lighting, LED Lighting Active Incentive Yes Implementing Sector Utility Energy Category Energy...

486

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Building Residential Building Activities to someone by E-mail Share Building Technologies Office: Residential Building Activities on Facebook Tweet about Building Technologies Office: Residential Building Activities on Twitter Bookmark Building Technologies Office: Residential Building Activities on Google Bookmark Building Technologies Office: Residential Building Activities on Delicious Rank Building Technologies Office: Residential Building Activities on Digg Find More places to share Building Technologies Office: Residential Building Activities on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

487

Better Buildings Neighborhood Program: Better Buildings Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Residential Network to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network on Facebook Tweet about Better Buildings...

488

Energy Efficiency Report: Chapter 3: Residential Sector  

U.S. Energy Information Administration (EIA)

3. The Residential Sector Introduction. More than 90 million single-family, multifamily, and mobile home households encompass the residential sector.

489

CONTAM Libraries - Appendix C2: Miscellaneous Residential ...  

Science Conference Proceedings (OSTI)

... item, C2. CPEN_RAV, Residential, HVAC ceiling penetration, typical value, ELA4, 5 cm 2 /item, C2. CPEN_RMN, Residential, ...

490

Peak Electricity Impacts of Residential Water Use  

NLE Websites -- All DOE Office Websites (Extended Search)

Peak Electricity Impacts of Residential Water Use Title Peak Electricity Impacts of Residential Water Use Publication Type Report LBNL Report Number LBNL-5736E Year of Publication...

491

Cedarburg Light & Water Utility - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cedarburg Light & Water Utility - Residential Energy Efficiency Rebate Program Cedarburg Light & Water Utility - Residential Energy Efficiency Rebate Program Eligibility Low-Income...

492

Performance Criteria for Residential Zero Energy Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Criteria for Residential Zero Energy Windows Title Performance Criteria for Residential Zero Energy Windows Publication Type Conference Paper LBNL Report Number...

493

RESIDENTIAL WEATHERIZATION SPECIFICATIONS August 30, 2011  

E-Print Network (OSTI)

RESIDENTIAL WEATHERIZATION SPECIFICATIONS August 30, 2011 Index to Sections Section Page I. GENERAL............................................................................................35 #12;1 I. GENERAL SPECIFICATIONS 1. These specifications apply to existing residential (retro

494

Residential Code Development | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Code Development Subscribe to updates To receive news and updates about code development activities subscribe to the BECP Mailing List. The model residential building...

495

Residential Commissioning: A Review of Related Literature  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Commissioning: A Review of Related Literature Title Residential Commissioning: A Review of Related Literature Publication Type Report LBNL Report Number LBNL-44535 Year...

496

NREL: Energy Systems Integration - Residential and Commercial...  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential and Commercial Integration Energy systems integration R&D at the small-scale, residential and commercial integration level encompasses diverse technologies such as...

497

Residential Sector Demand Module 1995, Model Documentation  

Reports and Publications (EIA)

This updated version of the NEMS Residential Module Documentation includes changesmade to the residential module for the production of the Annual Energy Outlook 1995.

John H. Cymbalsky

1995-03-01T23:59:59.000Z

498

Minnesota Energy Resources (Gas) - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agencies You are here Home Savings Minnesota Energy Resources (Gas) - Residential Energy Efficiency Rebate Program Minnesota Energy Resources (Gas) - Residential Energy...

499

Avista Utilities (Electric) - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

residential customers to save energy in eligible homes. Offers apply to residential homeowners in Idaho who heat homes primarily with Avista electricity Incentives vary depending...

500

National Grid (Electric) - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Programs (Upstate New York) National Grid (Electric) - Residential Energy Efficiency Rebate Programs (Upstate New York) Eligibility Installer...