Powered by Deep Web Technologies
Note: This page contains sample records for the topic "industrial process technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Boost Process Heating Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program Process Heating Assessment and Survey Tool (PHAST) can help industrial plants indentify opportunities to save energy.

Not Available

2008-12-01T23:59:59.000Z

2

Diverse Applications of Pinch Technology Within the Process Industries  

E-Print Network (OSTI)

design and retrofit processes. The technology offers a new approach to process integration based on the applic?tion of the pinch principle. Early applications were mostly in the petrochemical and bulk chemical industries. In this paper we report... mostly confined to petrochemical or bulk chemical plants. The technology has now been proven in many more successful projects and this paper describes some of the latest results which demonstrate the applicability of pinch technology in a wide range...

Spriggs, H. D.; Ashton, G.

3

New Membrane Technology Boosts Efficiency in Industrial Gas Processes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Membrane Technology and Membrane Technology and Research, Inc. (MTR), based in Menlo Park, CA, is a privately- owned developer, manufacturer, and supplier of customized membrane process solutions. Currently, the company's principal membrane products are * VaporSep® systems to remove organic vapors from air and nitrogen * NitroSep TM and fuel gas conditioning systems for natural gas treatment * Hydrogen recovery systems for refinery and other applications MTR's current R&D is extending use of membranes to carbon sequestration and biofuels separations. www.mtrinc.com New Membrane Technology Boosts Efficiency in Industrial Gas Processes Challenge Membrane technology was first commercialized in the 1960s and 1970s for well-known applications such as water filtration

4

New Membrane Technology Boosts Efficiency in Industrial Gas Processes  

Office of Energy Efficiency and Renewable Energy (EERE)

Fact sheet from Membrane Technology and Research, Inc. about its pilot-scale industrial membrane system that was funded by the SBIR program.

5

Commentary on industrial processes  

Science Journals Connector (OSTI)

...crucial for an industrial process, namely: catalyst activity...of catalysis to industrial processes. The papers, however, do...at the heart of successful commercialization of catalytic science and technology...addressed in any industrial process, namely: activity-the...

2005-01-01T23:59:59.000Z

6

The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry  

SciTech Connect

For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-05-01T23:59:59.000Z

7

The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry  

E-Print Network (OSTI)

technologies Conventional ammonia-based refrigeration systems Production growth through 2020 1%/year Specific energy consumption of base technologies (delivered) 0.008 kWh/lb. (electricity) Regional weighted average fossil fuel intensity of electricity... consumption and improve productivity by increasing the energy efficiency of industrial processes and systems. Therefore, the adoption of such technologies is important because they enable manufacturing plants to become both more competitive and productive...

Lung, R. B.; Masanet, E.; McKane, A.

2006-01-01T23:59:59.000Z

8

Electrotechnologies in Process Industries  

E-Print Network (OSTI)

Processes Motor drives are mainly used in prime movers (pumps, fans, compressors, etc.) and in materials processing and handling (grinders, conveyors, etc.). EPRI develops and promotes technologies such as industrial heat pumps, freeze concentra tion... the need to disseminate the results of its research and development so that they can be applied broadly across the industrial sector. Specific technology transfer activities in process industries include: o Conferences and workshops o Tech...

Amarnath, K. R.

9

Window industry technology roadmap  

SciTech Connect

Technology roadmap describing technology vision, barriers, and RD and D goals and strategies compiled by window industry stakeholders and government agencies.

Brandegee

2000-04-27T23:59:59.000Z

10

Technology roadmap development process (TRDP) in the medical electronic device industry  

Science Journals Connector (OSTI)

Technology intelligence using techniques such as data mining or patent analyses is not a new concept in the management of technology. Nevertheless, there is a lack of useful, user-friendly techniques that incorporate quantitative data and expert judgements in technology forecasting, especially if the application targets the medical electronic device industry. This study aims to develop a new model that integrates quantitative data from a variety of sources and expert judgements to develop a technology roadmap for emerging technologies.

Tugrul U. Daim; Fredy A. Gomez; Hilary Martin; Nasir Sheikh

2013-01-01T23:59:59.000Z

11

ITP Mining: Mining Industry of the Future Mineral Processing Technology Roadmap  

Energy.gov (U.S. Department of Energy (DOE))

In June 1998, the Chairman of the National Mining Association and the Secretary of energy entered into a Compact to pursue a collaborative technology research partnership, the Mining Industry of the Future.

12

Advanced Membrane Separation Technologies for Energy Recovery from Industrial Process Streams  

SciTech Connect

Recovery of energy from relatively low-temperature waste streams is a goal that has not been achieved on any large scale. Heat exchangers do not operate efficiently with low-temperature streams and thus require such large heat exchanger surface areas that they are not practical. Condensing economizers offer one option for heat recovery from such streams, but they have not been widely implemented by industry. A promising alternative to these heat exchangers and economizers is a prototype ceramic membrane system using transport membrane technology for separation of water vapor and recovery of heat. This system was successfully tested by the Gas Technology Institute (GTI) on a natural gas fired boiler where the flue gas is relatively clean and free of contaminants. However, since the tubes of the prototype system were constructed of aluminum oxide, the brittle nature of the tubes limited the robustness of the system and even limited the length of tubes that could be used. In order to improve the robustness of the membrane tubes and make the system more suitable for industrial applications, this project was initiated with the objective of developing a system with materials that would permit the system to function successfully on a larger scale and in contaminated and potentially corrosive industrial environments. This required identifying likely industrial environments and the hazards associated with those environments. Based on the hazardous components in these environments, candidate metallic materials were identified that are expected to have sufficient strength, thermal conductivity and corrosion resistance to permit production of longer tubes that could function in the industrial environments identified. Tests were conducted to determine the corrosion resistance of these candidate alloys, and the feasibility of forming these materials into porous substrates was assessed. Once the most promising metallic materials were identified, the ability to form an alumina membrane layer on the surface of the metallic tubes was evaluated. Evaluation of this new style of membrane tube involved exposure to SO{sub 2} containing gases as well as to materials with a potential for fouling. Once the choice of substrate and membrane materials and design were confirmed, about 150 tubes were fabricated and assembled into three modules. These modules were mounted on an industrial size boiler and their performance carefully monitored during a limited testing period. The positive results of this performance test confirm the feasibility of utilizing such a system for recovery of heat and water from industrial waste streams. The improved module design along with use of long metallic substrate tubes with a ceramic membrane on the outer surface resulted in the successful, limited scale demonstration of the Transport Membrane Condenser (TMC) technology in the GTI test facility. This test showed this technology can successfully recover a significant amount of heat and water from gaseous waste streams. However, before industry will make the investment to install a full scale TMC, a full scale system will need to be constructed, installed and successfully operated at a few industrial sites. Companies were identified that had an interest in serving as a host site for a demonstration system.

Keiser, J.R.; Wang, D. (Gas Technology Institute); Bischoff, B.; Ciora (Media and Process Technology); Radhakrishnan, B.; Gorti, S.B.

2013-01-14T23:59:59.000Z

13

Research Projects in Industrial Technology.  

SciTech Connect

The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

United States. Bonneville Power Administration. Industrial Technology Section.

1990-06-01T23:59:59.000Z

14

Walk-through survey report: control technology for fermentation processes at Novo Biochemical Industries, Inc. , Franklinton, North Carolina  

SciTech Connect

A walkthrough survey of control technology for fermentation processes at Novo Biochemical Industries, Incorporated (SIC-2869), Franklinton, North Carolina was conducted in June, 1983. The company produced two industrial enzymes, alpha-amylase and amyl glucosidase, from microbial strains of Bacillus and Aspergillus. Engineering controls included enclosure of the production process and local exhaust ventilation of all bag dumping stations. Employee contact with the production process was minimal except for equipment maintenance and manual broth sample extraction. The majority of the large scale processes were computer controlled or monitored. All employees were required to maintain a clean work environment. The company used a computerized preventive-maintenance program. Routine industrial hygiene monitoring for active aerosilized liquid enzymes was conducted. The company had a relatively complete medical and biological monitoring program. Appropriate personal-protective equipment was required in all departments of the facility. The company employed a standardized procedure for entering a deep tank reactor vessel. The author concludes that the company employs state of the art technology and provides a work environment that minimizes potential exposure to microorganisms, process chemical intermediates, and biological products. An indepth survey of the facility is recommended.

Martinez, K.F.

1983-09-01T23:59:59.000Z

15

Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels  

SciTech Connect

This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a path forward to utilize both fossil and alternative liquid fuels in the same combustion system. In particular, experiments show that straight VO can be cleanly combusted without the need for chemical processing or preheating steps, which can result in significant economic and environmental benefits. Next, low-emission combustion of glycerol/methane was achieved by utilizing FB injector to yield fine droplets of highly viscous glycerol. Heat released from methane combustion further improves glycerol pre-vaporization and thus its clean combustion. Methane addition results in an intensified reaction zone with locally high temperatures near the injector exit. Reduction in methane flow rate elongates the reaction zone, which leads to higher CO emissions and lower NOx emissions. Similarly, higher air to liquid (ALR) mass ratio improves atomization and fuel pre-vaporization and shifts the flame closer to the injector exit. In spite of these internal variations, all fuel mixes of glycerol with methane produced similar CO and NOx emissions at the combustor exit. Results show that FB concept provides low emissions with the flexibility to utilize gaseous and highly viscous liquid fuels, straight VO and glycerol, without preheating or preprocessing the fuels. Following these initial experiments in quartz combustor, we demonstrated that glycerol combustion can be stably sustained in a metal combustor. Phase Doppler Particle Analyzer (PDPA) measurements in glycerol/methane flames resulted in flow-weighted Sauter Mean Diameter (SMD) of 35 to 40 ?m, depending upon the methane percentage. This study verified that lab-scale dual-fuel burner using FB injector can successfully atomize and combust glycerol and presumably other highly viscous liquid fuels at relatively low HRR (<10 kW). For industrial applications, a scaled-up glycerol burner design thus seemed feasible.

Agrawal, Ajay; Taylor, Robert

2013-09-30T23:59:59.000Z

16

Development and Field Trial of Dimpled-Tube Technology for Chemical Industry Process Heaters  

SciTech Connect

Most approaches to increasing heat transfer rates in the convection sections of gas-fired process heaters involve the incorporation of fins, baffles, turbulizers, etc. to increase either the heat transfer surface area or turbulence or both. Although these approaches are effective in increasing the heat transfer rates, this increase is invariably accompanied by an associated increase in convection section pressure drop as well as, for heaters firing ‘dirty’ fuel mixtures, increased fouling of the tubes – both of which are highly undesirable. GTI has identified an approach that will increase heat transfer rates without a significant increase in pressure drop or fouling rate. Compared to other types of heat transfer enhancement approaches, the proposed dimpled tube approach achieves very high heat transfer rates at the lowest pressure drops. Incorporating this approach into convection sections of chemical industry fired process heaters may increase energy efficiency by 3-5%. The energy efficiency increase will allow reducing firing rates to provide the required heating duty while reducing the emissions of CO2 and NOx.

Yaroslav Chudnovsky; Aleksandr Kozlov

2006-10-12T23:59:59.000Z

17

Industrial process surveillance system  

DOE Patents (OSTI)

A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

1998-06-09T23:59:59.000Z

18

Improved Technology Transfer Processes for the U.S. Upstream Petroleum Industry  

SciTech Connect

This report covers PTTC's technical progress during the 1st half of FY99, and illustrates its increasing impact on the independent oil and gas producing industry.

Rowell, Deborah; Cole, E. Lance

2003-01-24T23:59:59.000Z

19

Advanced Mechanical Heat Pump Technologies for Industrial Applications  

E-Print Network (OSTI)

, advanced chemical and mechanical heat pump technologies are being developed for industrial application. Determining which technologies are appropriate for particular industrial applications and then developing those technologies is a stepped process which...

Mills, J. I.; Chappell, R. N.

20

The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry  

E-Print Network (OSTI)

at realistic annual penetration rates. The total energy usean available market portion penetration rate of 10% per yearper year market penetration rate for emerging technologies

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial process technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry  

E-Print Network (OSTI)

z = specific primary energy consumption of RF dryer (Btu/and specific primary energy consumption (240 Btu/lb. ) of RFenergy consumption of base technologies in 2020 (primary)

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-01-01T23:59:59.000Z

22

High Technology and Industrial Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Semiconductor clean room Semiconductor clean room High Technology and Industrial Systems EETD's research on high technology buildings and industrial systems is aimed at reducing energy consumed by the industrial sector in manufacturing facilities, including high technology industries such as data centers, cleanrooms in the such industries as electronics and pharmaceutical manufacturing, and laboratories, improving the competitiveness of U.S. industry. Contacts William Tschudi WFTschudi@lbl.gov (510) 495-2417 Aimee McKane ATMcKane@lbl.gov (518) 782-7002 Links High-Performance Buildings for High-Tech Industries Industrial Energy Analysis Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

23

ITP Mining: Mining Industry Roadmap for Crosscutting Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ccroadmap.pdf More Documents & Publications ITP Mining: Exploration and Mining Technology Roadmap ITP Mining: Mining Industry of the Future Mineral Processing Technology...

24

ITP Mining: Mining Industry of the Future Mineral Processing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the Future Mineral Processing Technology Roadmap ITP Mining: Mining Industry of the Future Mineral Processing Technology Roadmap mptroadmap.pdf More Documents & Publications ITP...

25

Effective Transfer of Industrial Energy Conservation Technologies  

E-Print Network (OSTI)

. Various avenues exist for transferring energy conservation technologies to industry. Briefing documents, presentations at trade meetings and con ferences, or simple diffusion by word-of-mouth are a few methods. However, when left to chance, tech... of 444 ESL-IE-83-04-68 Proceedings from the Fifth Industrial Energy Technology Conference Volume II, Houston, TX, April 17-20, 1983 TABLE 1. Current Energy Impacts of Foam Processing of Textiles BROADWOVENS AND KNITS User Site (a) Average Production...

Clement, M.; Vallario, R. W.

1983-01-01T23:59:59.000Z

26

Steel Industry Technology Roadmap  

Energy.gov (U.S. Department of Energy (DOE))

Introduction; Process Improvement; Iron Unit Recycling; Environment; Product Development; Notes; Glossary

27

Solar Industrial Process Heat Production  

Science Journals Connector (OSTI)

An overview of state of the art in producing industrial process heat via solar energy is presented. End-use matching methodology for assessing solar industrial process heat application potential is described f...

E. Özil

1987-01-01T23:59:59.000Z

28

Industrial heat pumps in Germany -potentials, technological development  

E-Print Network (OSTI)

1 Industrial heat pumps in Germany - potentials, technological development and application examples of Energy (IER) Universität Stuttgart ACHEMA 2012 Application of industrial heat pumps Improving energy-efficiency of industrial processes 13. Juni 2012 #12;ACHEMA 2012 - Industrial heat pumps 21st June 2012 Types of Heat Pumps

Oak Ridge National Laboratory

29

Photovoltaic industry manufacturing technology. Final report  

SciTech Connect

This report contains the results of the Photovoltaic (PV) Industry Manufacturing Technology Assessment performed by the Automation and Robotics Research Institute (ARRI) of the University of Texas at Arlington for the National Renewable Energy laboratory. ARRI surveyed eleven companies to determine their state-of-manufacturing in the areas of engineering design, operations management, manufacturing technology, equipment maintenance, quality management, and plant conditions. Interviews with company personnel and plant tours at each of the facilities were conducted and the information compiled. The report is divided into two main segments. The first part of the report presents how the industry as a whole conforms to ``World Class`` manufacturing practices. Conclusions are drawn from the results of a survey as to the areas that the PV industry can improve on to become more competitive in the industry and World Class. Appendix A contains the questions asked in the survey, a brief description of the benefits to performing this task and the aggregate response to the questions. Each company participating in the assessment process received the results of their own facility to compare against the industry as a whole. The second part of the report outlines opportunities that exist on the shop floor for improving Process Equipment and Automation Strategies. Appendix B contains the survey that was used to assess each of the manufacturing processes.

Vanecek, D.; Diver, M.; Fernandez, R. [Automation and Robotics Research Inst., Fort Worth, TX (United States)

1998-08-01T23:59:59.000Z

30

1 Industrial Electron Accelerators type ILU for Industrial Technologies  

E-Print Network (OSTI)

1 Industrial Electron Accelerators type ILU for Industrial Technologies The present work describes industrial electron accelerators of the ILU family. Their main parameters, design, principle of action the pulse linear accelerators type ILU are developed and supplied to the industry. The ILU machines

31

Window Industry Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

Industry Technology Roadmap Industry Technology Roadmap Jump to: navigation, search Logo: Window Industry Technology Roadmap Name Window Industry Technology Roadmap Agency/Company /Organization United States Department of Energy Sector Energy Focus Area Energy Efficiency, Buildings Topics Technology characterizations Resource Type Guide/manual Website http://www.nrel.gov/docs/fy01o References Window Industry Technology Roadmap[1] Abstract The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. Overview "The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. It serves as a resource for government to

32

What is the Industrial Technologies Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Together with our industry partners, we strive to: Together with our industry partners, we strive to: * Accelerate adoption of the many energy-efficient technologies and practices available today * Conduct vigorous technology innovation to radically improve future energy diversity, resource efficiency, and carbon mitigation * Promote a corporate culture of energy efficiency and carbon management What Is the Industrial Technologies Program ? The Industrial Technologies Program (ITP) is the lead federal agency responsible for improving energy efficiency in the largest energy-using sector of the country. Industrial Sector National Initiative Goal: Drive a 25% reduction in industrial energy intensity by 2017. Standards Training Information Assessments * Website * Information Center * Tip Sheets * Case studies * Webcasts * Emerging

33

Clean Technology Sustainable Industries Organization | Open Energy  

Open Energy Info (EERE)

Sustainable Industries Organization Sustainable Industries Organization Jump to: navigation, search Name Clean Technology & Sustainable Industries Organization Place Royal Oak, Michigan Zip 48073 Product A non-profit membership industry organization formed to advance the global development and deployment of clean and sustainable technologies References Clean Technology & Sustainable Industries Organization[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Clean Technology & Sustainable Industries Organization is a company located in Royal Oak, Michigan . References ↑ "Clean Technology & Sustainable Industries Organization" Retrieved from "http://en.openei.org/w/index.php?title=Clean_Technology_Sustainable_Industries_Organization&oldid=343669"

34

Enforcement Letter, Amer Industrial Technologies - April 13, 2010 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amer Industrial Technologies - April 13, 2010 Amer Industrial Technologies - April 13, 2010 Enforcement Letter, Amer Industrial Technologies - April 13, 2010 April 13, 2010 Enforcement Letter issued to Amer Industrial Technologies related to Weld Deficiencies at the Salt Waste Processing Facility at the Savannah River Site, April 13, 2010 This letter refers to the Office of Health, Safety and Security's Office of Enforcement's investigation into the facts and circumstances associated with quality assurance deficiencies in safety significant drain pipe fabricated by Amer Industrial Technologies, Inc. (AIT) as a supplier to Parsons Infrastructure & Technology Group, Inc. (Parsons) for the Salt Waste Processing Facility (SWPF) construction project at the Department of Energy (DOE) Savanuah River Site. The contract between Parsons and AIT was

35

On-line near infrared spectroscopy as a Process Analytical Technology (PAT) tool to control an industrial seeded API crystallization  

Science Journals Connector (OSTI)

Abstract The final step of an active pharmaceutical ingredient (API) manufacturing synthesis process consists of a crystallization during which the API and residual solvent contents have to be quantified precisely in order to reach a predefined seeding point. A feasibility study was conducted to demonstrate the suitability of on-line NIR spectroscopy to control this step in line with new version of the European Medicines Agency (EMA) guideline [1]. A quantitative method was developed at laboratory scale using statistical design of experiments (DOE) and multivariate data analysis such as principal component analysis (PCA) and partial least squares (PLS) regression. NIR models were built to quantify the API in the range of 9–12% (w/w) and to quantify the residual methanol in the range of 0–3% (w/w). To improve the predictive ability of the models, the development procedure encompassed: outliers elimination, optimum model rank definition, spectral range and spectral pre-treatment selection. Conventional criteria such as, number of PLS factors, R2, root mean square errors of calibration, cross-validation and prediction (RMSEC, RMSECV, RMSEP) enabled the selection of three model candidates. These models were tested in the industrial pilot plant during three technical campaigns. Results of the most suitable models were evaluated against to the chromatographic reference methods. Maximum relative bias of 2.88% was obtained about API target content. Absolute bias of 0.01 and 0.02% (w/w) respectively were achieved at methanol content levels of 0.10 and 0.13% (w/w). The repeatability was assessed as sufficient for the on-line monitoring of the 2 analytes. The present feasibility study confirmed the possibility to use on-line NIR spectroscopy as a PAT tool to monitor in real-time both the API and the residual methanol contents, in order to control the seeding of an API crystallization at industrial scale. Furthermore, the successful scale-up of the method proved its capability to be implemented in the manufacturing plant with the launch of the new API process.

C. Schaefer; C. Lecomte; D. Clicq; A. Merschaert; E. Norrant; F. Fotiadu

2013-01-01T23:59:59.000Z

36

Advanced (AI-Based) Nonlinear Controllers for Industrial Processes -  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced (AI-Based) Nonlinear Controllers for Industrial Processes Advanced (AI-Based) Nonlinear Controllers for Industrial Processes Capabilities Nuclear Systems Technologies Nuclear Criticality Safety Research Reactor Analysis Decontamination and Decommissioning Systems/Process Monitoring, Diagnostics and Control Overview Process Monitoring & Signal Validation Diagnostic & Advisory Systems Advanced (AI-based) Nonlinear Controllers for Industrial Processes Artificial intelligence Other Capabilities Work with Argonne Contact us For Employees Site Map Help Systems/Process Monitoring, Diagnostics and Control Advanced (AI-Based) Nonlinear Controllers for Industrial Processes Bookmark and Share Advanced (AI-Based) Nonlinear Controllers for Industrial Processes The overall objective of this research is to explore and demonstrate the

37

Bidirectional Technology Transfer: Sabbaticals in Industry  

E-Print Network (OSTI)

Bidirectional Technology Transfer: Sabbaticals in Industry Mark D. Hill University of Wisconsin---not just technology transfer---through a ten­month sabbatical in an industrial product group. I advocate product group. The next sections discuss technology transfer, my recent sabbatical, and conclude

Hill, Mark D.

38

ITP Aluminum: Aluminum Industry Technology Roadmap  

Energy.gov (U.S. Department of Energy (DOE))

In 2002, the industry created this updated Aluminum Industry Technology Roadmap to define the specific research and development priorities, performance targets, and milestones required to achieve the set vision.

39

Joint Capability Technology Demonstration (JCTD) Industry Day...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Capability Technology Demonstration Industry Day Presentations Partnering with Utilities for Energy Efficiency & Security 2010 Smart Grid Peer Review Day Two Morning Presentations...

40

Industry Partnerships | BNL Technology Commercialization and Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Industry Licensing The Office of Technology Commercialization and Partnerships (TCP) grants licenses for BNL-developed intellectual property to existing and start-up companies that are technically and financially capable of turning early-stage technology into commercial products. Nonexclusive and exclusive licenses are granted. TCP is committed to negotiating fair and reasonable license agreements that are beneficial to both parties. Search available technologies | See DOE Tech Transfer Working Group Licensing Guide (PDF) Sponsored Research BNL has many ways of collaborating with industry on emerging technologies that are geared toward bringing new technologies to the marketplace. Learn more | See Guide to Partnering with DOE's National Laboratories (PDF)

Note: This page contains sample records for the topic "industrial process technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Industrial Conservation Technology Energy Savings Monitoring System  

E-Print Network (OSTI)

steps using t~o i i ! The pape!r concludes with a summary of the system benefits to government and industry. BACKGROUND AND PURPOSE OF THE IMPACT SCOREBOARD SYSTEM FIGURE 1 During the past four years, Argonne National TECHNOLOGY PROCESS FLOW...* *Regions where teetu,ology i.pact is significant Reference 1 The most recent work was sponsored by Argonne National Laboratory and the Department of Energy under contract ANL 39-109-38-5079. I I I I , I I I I I I 819 ESL-IE-80...

Crowell, J. J.; Phipps, H. R., Jr.

1980-01-01T23:59:59.000Z

42

Buried waste integrated demonstration technology integration process  

SciTech Connect

A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE`s Office of Technology Development (OTD).

Ferguson, J.S.; Ferguson, J.E.

1992-04-01T23:59:59.000Z

43

Buried waste integrated demonstration technology integration process  

SciTech Connect

A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD).

Ferguson, J.S.; Ferguson, J.E.

1992-04-01T23:59:59.000Z

44

Proceedings of the 2009 Industrial Engineering Research Conference Technology Assessment for an Inventory Management Process in a  

E-Print Network (OSTI)

, short shelf lives, and a large number of stock keeping units (SKUs). The processes used to track for an Inventory Management Process in a Hospital Unit Angelica Burbano, Behlul Saka, Ronald Rardin, Manuel process in a hospital unit. In particular we will refer to implantable devices within a catheterization

Rossetti, Manuel D.

45

The future steelmaking industry and its technologies  

SciTech Connect

The objective of this report is to develop a vision of the future steelmaking industry including its general characteristics and technologies. In addition, the technical obstacles and research and development opportunities for commercialization of these technologies are identified. The report is being prepared by the Sloan Steel Industry Competitiveness Study with extensive input from the industry. Industry input has been through AISI (American Iron and Steel Institute), SMA (Steel Manufacturers Association) and contacts with individual company executives and technical leaders. The report identifies the major industry drivers which will influence technological developments in the industry for the next 5--25 years. Initially, the role of past drivers in shaping the current industry was examined to help understand the future developments. Whereas this report concentrates on future technologies other major factors such as national and international competition, human resource management and capital concerns are examined to determine their influence on the future industry. The future industry vision does not specify specific technologies but rather their general characteristics. Finally, the technical obstacles and the corresponding research and development required for commercialization are detailed.

Fruehan, R.J.; Paxton, H.W.; Giarratani, F.; Lave, L. [Carnegie-Mellon Univ., Pittsburgh, PA (United States)]|[Pittsburgh Univ., PA (United States)

1995-01-01T23:59:59.000Z

46

Process Analytical Technology in biopharmaceutical manufacturing  

E-Print Network (OSTI)

Process Analytical Technology (PAT) became a well-defined concept within the pharmaceutical industry as a result of a major initiative by the FDA called "Pharmaceutical cGMPs for the 21st Century: A Risk-Based Approach." ...

Cosby, Samuel T. (Samuel Thomas)

2013-01-01T23:59:59.000Z

47

Design of Industrial Process Refrigeration Systems  

E-Print Network (OSTI)

DESIGN OF INDUSTRIAL PROCESS REfRIGERATION SYSTEMS W.O. WITHERELL AOVENTg Technolog1st Un10n Carb1de Corporat1on South Charleston, West V1rg~n1a ABSTRACT ~hen considering electric driven refrigeration compressors, proper integration... to several canple~ processes that ut iii ze refr igerat ion systems. In IOClSt cases the design of a cOOlllex refrigeration system in isolation (i.e., without considering process integration) generallv results in non-ptilTUll refrigeration levels...

Witherell, W. D.

48

Industries & Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(AMO) emphasizes innovative technologies to increase manufacturing agility and open new markets. AMO also maintains a range of projects, analyses, protocols, and strategies to...

49

Gamma Industry Processing Alliance Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NATIONAL NATIONAL STAKEHOLDERS TRANSPORTATION FORUM WHO IS GIPA? * Alliance made up of 15 companies from the Medical Device Manufacturers, Cobalt source , manufacturers and one industrial processing company Represents all the major gamma processing * Represents all the major gamma processing facilities within the US to the regulatory bodies such as the USNRC. * Member of International Irradiation Association (iiA) WHO IS GIPA? An alliance created to advocate the development of An alliance created to advocate the development of responsible regulations that enhance the safe and secure management of Cobalt-60 sources and related irradiation processing facilities related irradiation processing facilities. APRIL 15, 2010 PRESENTATION TITLE WORLD SUPPLIERS OF COBALT 60 COBALT 60 * Nordion Inc

50

SPIDERS Joint Capability Technology Demonstration Industry Day...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Demonstration Industry Day May 2, 2014 - 1:15pm Addthis An image of a patch with a spider on it. The Smart Power Infrastructure Demonstration for Energy...

51

EERE SBIR Case Study: Sonic Energy Improves Industrial Separation and Mixing Processes  

Energy.gov (U.S. Department of Energy (DOE))

Advanced membrane separation technologies offered improvements over conventional processes, but were not being adopted in industrial operations.

52

Smart grid technologies and applications for the industrial sector  

Science Journals Connector (OSTI)

Smart grids have become a topic of intensive research, development, and deployment across the world over the last few years. The engagement of consumer sectors—residential, commercial, and industrial—is widely acknowledged as crucial for the projected benefits of smart grids to be realized. Although the industrial sector has traditionally been involved in managing power use with what today would be considered smart grid technologies, these applications have mostly been one-of-a-kind, requiring substantial customization. Our objective in this article is to motivate greater interest in smart grid applications in industry. We provide an overview of smart grids and of electricity use in the industrial sector. Several smart grid technologies are outlined, and automated demand response is discussed in some detail. Case studies from aluminum processing, cement manufacturing, food processing, industrial cooling, and utility plants are reviewed. Future directions in interoperable standards, advances in automated demand response, energy use optimization, and more dynamic markets are discussed.

Tariq Samad; Sila Kiliccote

2012-01-01T23:59:59.000Z

53

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 2: ITP Emerging Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

127 DOE Industrial Technologies Program 127 DOE Industrial Technologies Program Appendix 2: ITP Emerging Technologies Aluminum ............................................................................................................................................................................ 130 u Direct Chill Casting Model ................................................................................................................................................................130 Chemicals............................................................................................................................................................................ 130

54

Technology Transfer: Success Stories: Industry-Lab Research Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry-Lab Collaboration Industry-Lab Collaboration Below are some of Berkeley Lab's collaborative research projects performed with industry. Companies Technologies Applied Materials, Inc. Particle -Free Wafer Processing Boeing, StatOil Hydro Techno Economic Model for Commercial Cellulosic Biorefineries Capintec, Inc. Compact Scintillation Camera for Medical Imaging Catalytica, Inc. Optimized Catalysts For The Cracking of Heavier Petroleum Feedstocks Chiron Corporation High Throughput Assay for Screening Novel Anti-Cancer Compounds CVC-Commonwealth Scientific Corp. Advanced Hard Carbon Plasma Deposition System with Application to the Magnetic Storage Industry E.I. du Pont de Nemours & Company Catalytic Conversion of Chloro-Fluorocarbons over Palladium-Carbon Catalysts Empire Magnetics, Inc.

55

Industrial Process Heating - Technology Assessment  

Office of Environmental Management (EM)

and Reheating Hardening; annealing; tempering; forging; rolling 930-2160F 270 TBtu Coking Ironmaking and other metal production 710-2010F 120 TBtu Drying Water and organic...

56

Building Technologies Office: Regulatory Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Processes to Regulatory Processes to someone by E-mail Share Building Technologies Office: Regulatory Processes on Facebook Tweet about Building Technologies Office: Regulatory Processes on Twitter Bookmark Building Technologies Office: Regulatory Processes on Google Bookmark Building Technologies Office: Regulatory Processes on Delicious Rank Building Technologies Office: Regulatory Processes on Digg Find More places to share Building Technologies Office: Regulatory Processes on AddThis.com... About History & Impacts Statutory Authorities & Rules Regulatory Processes Plans & Schedules Reports & Publications Standards & Test Procedures Implementation, Certification & Enforcement Rulemakings & Notices Further Guidance ENERGY STAR® Popular Links Success Stories

57

Industrial Solar Technology Corp | Open Energy Information  

Open Energy Info (EERE)

Industrial Solar Technology Corp Industrial Solar Technology Corp Jump to: navigation, search Name Industrial Solar Technology Corp Place Golden, Colorado Zip CO 80403-1 Product IST designs, manufactures, installs and operates large scale parabolic trough collector systems. Coordinates 32.729747°, -95.562678° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.729747,"lon":-95.562678,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

58

Iron and steel industry process model  

SciTech Connect

The iron and steel industry process model depicts expected energy-consumption characteristics of the iron and steel industry and ancillary industries for the next 25 years by means of a process model of the major steps in steelmaking, from ore mining and scrap recycling to the final finishing of carbon, alloy, and stainless steel into steel products such as structural steel, slabs, plates, tubes, and bars. Two plant types are modeled: fully integrated mills and mini-mills. User-determined inputs into the model are as follows: projected energy and materials prices; projected costs of capacity expansion and replacement; energy-conserving options, both operating modes and investments; the internal rate of return required on investment; and projected demand for finished steel. Nominal input choices in the model for the inputs listed above are as follows: National Academy of Sciences Committee on Nuclear and Alternative Energy Systems Demand Panel nominal energy-price projections for oil, gas, distillates, residuals, and electricity and 1975 actual prices for materials; actual 1975 costs; new technologies added; 15% after taxes; and 1975 actual demand with 1.5%/y growth. The model reproduces the base-year (1975) actual performance of the industry; then, given the above nominal input choices, it projects modes of operation and capacity expansion that minimize the cost of meeting the given final demands for each of 5 years, each year being the midpoint of a 5-year interval. The output of the model includes the following: total energy use and intensity (Btu/ton) by type, by process, and by time period; energy conservation options chosen; utilization rates for existing capacity; capital-investment decisions for capacity expansion.

Sparrow, F.T.; Pilati, D.; Dougherty, T.; McBreen, E.; Juang, L.L.

1980-01-01T23:59:59.000Z

59

Technology Transfer: For Industry:SBIR Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

For Industry Licensing Overview Frequently Asked Questions Partnering with Berkeley Lab Available Technologies See Also Licensed Technologies Start-up Companies Licensing Interest Form Receive New Tech Alerts Partner Smart with Berkeley Lab (Downloadable Copy, 1.4MB, PDF) Berkeley Lab Economic Impact Report Technology Transfer Opportunities (TTOs) for SBIR and STTR Programs FY2014 Phase 1 Release 1 Selected topic and subtopics contained in this page are designated as Technology Transfer Opportunities (TTOs) from Berkeley Lab. 10. BASIC ENERGY SCIENCES (Phase I $225,000 / Phase II: $1,500,000): Contact: Shanshan Li, Shanshanli@lbl.gov, 510-486-5366 For a description of the technology, publications (if available) and latest patent status, click on the TTO tracking number link.

60

Gamma Industry Processing Alliance Overview | Department of Energy  

Office of Environmental Management (EM)

Gamma Industry Processing Alliance Overview Gamma Industry Processing Alliance Overview Gamma Industry Processing Alliance Overview More Documents & Publications 2011 NTSF Meeting...

Note: This page contains sample records for the topic "industrial process technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Second law analysis of industrial processes  

Science Journals Connector (OSTI)

An extensive industrial energy data base has been developed at the four-digit and sub four-digit Standard Industrial Classification (SIC) level. The information includes typical process configurations (processes), energy and material flow rates, and temperatures for up to 25 separate unit operations in over 100 industrial processes. These processes represent the top 60 energy industries in the United States, and account for 75% of the industrial manufacturing energy consumption in this country. A thermodynamic availability analysis is presently being constructed using this data base to investigate industrial energy utilization. An approach has been developed to determine thermodynamic losses and second law analyses for the industrial processes and for the more than 50 generic classes of unit operations. Applications using this data base enable systematic investigations to be performed on most energy intensive industrial processes, and allow the overall effectiveness of industrial energy utilization to be gauged. Illustrative examples of this methodology and preliminary results for specific industrial processes will be presented in this paper. The application of thermodynamic availability and second law analysis will be assessed in both unit operations and in larger industrial sectors.

Bruce A. Hedman; Harry L. Brown; Bernard B. Hamel

1980-01-01T23:59:59.000Z

62

Energy Recovery in Industrial Distillation Processes  

E-Print Network (OSTI)

ENERGY RECOVERY IN INDUSTRIAL DISTILLATION PROCESSES Duane B. Paul General Electric Company Fitchburg, Massachusetts ABSTRACT Overhead separati on processes whi ch present attracti ve Distillation processes are energy intensive Condenser...

Paul, D. B.

1983-01-01T23:59:59.000Z

63

Industrial Technology Research Institute | Open Energy Information  

Open Energy Info (EERE)

Technology Research Institute Technology Research Institute Jump to: navigation, search Logo: Industrial Technology Research Institute Name Industrial Technology Research Institute Address Rm. 112, Bldg. 24, 195, Sec. 4, Chung Hsing Rd., Place Chutung, Hsinchu Zip 31040 Country Taiwan Sector Marine and Hydrokinetic Company Type Non Profit Technology Point absorber Project ITRI WEC Phone number +886-3-5918579 Website http://www.itri.org.tw Coordinates 24.776467696266°, 121.04182720184° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.776467696266,"lon":121.04182720184,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

64

Transfer of security technology from Sandia to industry  

SciTech Connect

The National Competitiveness Technology Transfer Act of 1989 made technology transfer a mission for the national laboratories. The intent is to maximize the benefit from public monies and to improve the economic position of US industry in the world marketplace. A key instrument created by this legislation is the Cooperative Research and Development Agreement (CRADA) between a private company and a government-owned contractor-operated R D lab. Under these provisions, the national laboratories can negotiate directly with industry, grant title to intellectual property developed in a CRADA, and withhold publication of commercially-valuable information developed in a CRADA for up to five years. Sandia National Laboratories is very proactive in the transfer of technology developed as the DOE lead laboratory for physical security R D and from work for other government agencies. Specific security-related products have frequently evolved from government user needs into initial concepts followed by research and development into field prototypes which finally have a system design package appropriate for transfer to industry. In the past year several meetings announced in the Commerce Business Daily (CBD) were held with industry to present specific systems and to initiate discussions toward establishing a GRADA and/or granting a product license. Several examples and updates will be presented to illustrate this new process for security technology transfer from Sandia to industry. 2 refs.

Williams, J.D.; Matter, J.C.

1991-01-01T23:59:59.000Z

65

Electrified Separation Processes in Industry  

E-Print Network (OSTI)

For any separation procedure in the chemical industry, a certain amount of reversible work in the form of free energy is required, as dictated by the second law of thermodynamics. Classical techniques for effecting liquid-phase separations...

Appleby, A. J.

1983-01-01T23:59:59.000Z

66

Improve Chilled Water System Performance, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program Chilled Water System Analysis Tool (CWSAT) can help optimize the performance of of industrial chilled water systems.

Not Available

2008-12-01T23:59:59.000Z

67

DOE and Industry Showcase New Control Systems Security Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Development Energy Delivery Systems Cybersecurity Control Systems Security News Archive DOE and Industry Showcase New Control Systems Security Technologies at...

68

A technology roadmap for the U.S. aluminum industry  

Science Journals Connector (OSTI)

By partnering with the OIT, the aluminum industry has taken an important step in planning the technology needs of their industry for the next ... in defining its long-term goals and the technology requirements to...

H. S. Kenchington; J. L. Eisenhauer; J. A. S. Green

1997-08-01T23:59:59.000Z

69

SPIDERS Joint Capability Technology Demonstration Industry Day Presentations  

Energy.gov (U.S. Department of Energy (DOE))

Presentations from the SPIDERS Joint Capability Technology Demonstration Industry Day, which occurred on April 22, 2014, at Fort Carson, Colorado.

70

Waste Processing Annual Technology Development Report 2007 |...  

Office of Environmental Management (EM)

Waste Processing Annual Technology Development Report 2007 Waste Processing Annual Technology Development Report 2007 Waste Processing Annual Technology Development Report 2007...

71

Technology Selection Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Energy Efficiency Emerging Technologies Current Research Portfolio Behavior Based...

72

The process of technology commercialization.  

E-Print Network (OSTI)

?? This thesis investigates, describes and understands the extensive process of technology commercialization. What stages there are, important aspects and implications. It is structured as… (more)

Holmgren, Annie

2007-01-01T23:59:59.000Z

73

Software Tools and Training Program: For the Efficient Design and Operation of Industrial Processes  

E-Print Network (OSTI)

-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 3 Three Scientific Laboratories Across Canada ? Oil sands & heavy oil Devon ? Buildings & communities ? Industrial processes ? Clean electricity ? Bioenergy ? Renewables...

Soucy, E.

2014-01-01T23:59:59.000Z

74

Technology Roadmap for the Japanese Opto-Electronics Industry  

Science Journals Connector (OSTI)

A technology roadmap for the opto-electronics industry for the ... estimation, we present a system and element technology roadmap for public and business optical-communications network technology Finally, it is e...

Michiharu Nakamura

1999-01-01T23:59:59.000Z

75

Industrial Activities at DOE: Efficiency, Manufacturing, Process...  

Energy Savers (EERE)

Process, and Materials R&D Overview of industrial activities at DOE by Joe Cresko, EERE Advanced Manufacturing Office, at the EERE QC Workshop held December 9-10, 2013, at the...

76

Thermal Conversion Process (TCP) Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Changing World Technologies' Changing World Technologies' Thermal Conversion Process Commercial Demonstration Plant DOE/EA 1506 Weld County, Colorado December 2004 U.S. DEPARTMENT OF ENERGY GOLDEN FIELD OFFICE 1617 Cole Boulevard Golden, Colorado 80401 Thermal Conversion Process (TCP) Technology Commercial Demonstration - Weld County, CO TABLE OF CONTENTS Environmental Assessment Thermal Conversion Process (TCP) Technology Commercial Demonstration Project Weld County, Colorado SUMMARY............................................................................................................................. S-1 1.0 INTRODUCTION.........................................................................................................1-1 1.1. National Environmental Policy Act and Related Procedures...........................1-1

77

Solar-Assisted Technology Provides Heat for California Industries  

E-Print Network (OSTI)

Solar-Assisted Technology Provides Heat for California Industries Industrial/Agriculture/Water End 2011 The Issue Solar thermal technology focuses the Sun's rays to heat water, and is a promising renewable resource for California's industrial sector. Commercially available solar water heating

78

Execution of rapid prototyping technology - an Indian manufacturing industry's perspective  

Science Journals Connector (OSTI)

Since independence, India has endeavoured to bring economic and social change through science and technology. While India's economic growth in the recent years has been impressive, many challenges remain to be met to create a strong and vibrant innovation eco-system. This requires a culture and value system which supports both basic and applied research and technology development. One of those technologies, rapid prototyping (RP) technology, is the automatic construction of physical objects using additive manufacturing technology. It can be defined as an automated and patternless process which allows solid physical parts to be made directly from computer data in a short time. RP acts as the 'manufacturing middle' to link up the computer-aided design (CAD) process and manufacturing processes. It includes the making of prototypes for design verification and even the making of tooling for production. With the trend towards concurrent engineering and the widespread use of CAD, RP has quickly become a booming business in the past few years. This paper aims to provide a comprehensive overview of the execution of RP technology in India and the critical decision factors in executing RP for the Indian manufacturing industry.

Rajesh Kumar; Rupinder Singh; I.P.S. Ahuja

2013-01-01T23:59:59.000Z

79

Industrial Revolutions: a graduate seminar Seminar in History of Technology  

E-Print Network (OSTI)

Industrial Revolutions: a graduate seminar HSci 8930 Seminar in History of Technology Jennifer K the question: Was there an Industrial Revolution? Historians have been discussing the Industrial Revolution of industrial revolution itself. This reassessment includes renewed attention to the scientific and technical

Janssen, Michel

80

Thompson Technology Industries TTI | Open Energy Information  

Open Energy Info (EERE)

TTI TTI Jump to: navigation, search Name Thompson Technology Industries (TTI) Place Novato, California Zip 94949 Sector Solar Product Designer and manufacturer of solar tracking and roof mounting systems. Coordinates 38.106075°, -122.567889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.106075,"lon":-122.567889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "industrial process technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Review of the Semiconductor Industry and Technology Roadmap  

Science Journals Connector (OSTI)

The semiconductor industry operates in a constant state of deflation. It is vital to our survival and progress in this knowledge era. The industry is extremely competitive and requires ongoing technological advan...

Sameer Kumar; Nicole Krenner

2002-09-01T23:59:59.000Z

82

DOE Fuel Cell Technologies Office Record 14010: Industry Deployed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0: Industry Deployed Fuel Cell Powered Lift Trucks DOE Fuel Cell Technologies Office Record 14010: Industry Deployed Fuel Cell Powered Lift Trucks This program record from the U.S....

83

DOE Fuel Cell Technologies Office Record 14009: Industry Deployed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

09: Industry Deployed Fuel Cell Backup Power (BuP) DOE Fuel Cell Technologies Office Record 14009: Industry Deployed Fuel Cell Backup Power (BuP) This program record from the U.S....

84

Joint Capability Technology Demonstration (JCTD) Industry Day Agenda  

Energy.gov (U.S. Department of Energy (DOE))

Agenda outlines the activities of the 2014 Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) Joint Capability Technology Demonstration (JCTD) Industry Day in Fort Carson, Colorado.

85

Reduce Natural Gas Use in Your Industrial Process Heating Systems...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Use in Your Industrial Process Heating Systems Reduce Natural Gas Use in Your Industrial Process Heating Systems This fact sheet describes ten effective ways to save...

86

Combustion Turbine CHP System for Food Processing Industry -...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Turbine CHP System for Food Processing Industry - Presentation by Frito-Lay North America, June 2011 Combustion Turbine CHP System for Food Processing Industry -...

87

Processing data from scanning gauges on industrial web processes  

Science Journals Connector (OSTI)

This paper considers the processing of data collected by scanning gauges from industrial web processes such as metal rolling, coating, paper making and plastic film extrusion. It describes a method based upon the generalised sampling theorem for reconstructing ... Keywords: Cross-directional control, Gauging, Sampling, Two-dimensional systems, Web processes

Stephen Duncan; Peter Wellstead

2004-03-01T23:59:59.000Z

88

Office of Industry Research and Technology Programs Greetings to Industry  

E-Print Network (OSTI)

vehicles. They have a strong research base and are sup- ported by the U. S. Department of Energy. They have. Cheng, Industrial Engineering. 6 Centers/Laboratories Center Targets Reducing Fuel Consumption

Ginzel, Matthew

89

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network (OSTI)

Renewable Energy. Renewable Energy Policy Project ResearchIndustrial Policy and Renewable Energy Technology.Development of Renewable Energy. Energy Policy, 31, 799-812.

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

90

Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

Not Available

2008-12-01T23:59:59.000Z

91

The Grain Milling Oilseed Processing Industry  

E-Print Network (OSTI)

& 10 Prepared by: Sondra Rademacher ­ Business Service Specialist, Mankato, Mn. Garey Ferguson ­ Business Service Specialist, Fairmont, Mn. Sue Wold ­ Business Services Specialist, Faribault, Mn. David-19 Diamond of Advantage for Grain and Oilseed Processing Industry Attachment A Minnesota's Food Manufacturing

Levinson, David M.

92

Bonneville Power Administration and the Industrial Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects program, which works with industries in a traditional fashion to undertake capital improvement projects. Another is the Trade Ally Driven component, which contains...

93

ITP Metal Casting: Metalcasting Industry Technology Roadmap  

Energy.gov (U.S. Department of Energy (DOE))

Castings are essential building blocks of U. S. industry. More than 90% of all mnaufactured, durable good and 100% of all manufacturing machinery contain castings.

94

Distillation process using microchannel technology  

DOE Patents (OSTI)

The disclosed invention relates to a distillation process for separating two or more components having different volatilities from a liquid mixture containing the components. The process employs microchannel technology for effecting the distillation and is particularly suitable for conducting difficult separations, such as the separation of ethane from ethylene, wherein the individual components are characterized by having volatilities that are very close to one another.

Tonkovich, Anna Lee (Dublin, OH); Simmons, Wayne W. (Dublin, OH); Silva, Laura J. (Dublin, OH); Qiu, Dongming (Carbondale, IL); Perry, Steven T. (Galloway, OH); Yuschak, Thomas (Dublin, OH); Hickey, Thomas P. (Dublin, OH); Arora, Ravi (Dublin, OH); Smith, Amanda (Galloway, OH); Litt, Robert Dwayne (Westerville, OH); Neagle, Paul (Westerville, OH)

2009-11-03T23:59:59.000Z

95

Industries of the Future: Creating a Sustainable Technology Edge  

E-Print Network (OSTI)

INDUSTRIES OF THE FUTURE: Creating A Sustainable Technology Edge Sandra L. Glatt Office of Industrial Technologies Energy Efficiency and Renewable Energy U. S. Department of Energy 55 ESL-IE-00-04-10 Proceedings from the Twenty... and Renewable Energy U.S, Department of Energy Industries of the Future: Creating a Sustainable Technology Edge . cUn' OFwlOd CCooI .. LPG .Eleclric~ CNI!hnIG. AgriclAtll'e Mining A1uminu",J Totll1* kldutb't.1 Conllomption: :W, 111 TrtIlion 8tus...

Glatt, S. L.

96

Online Modeling in the Process Industry for Energy Optimization  

E-Print Network (OSTI)

"This paper discusses how steady state models are being used in the process industry to perform online energy optimization of steam and electrical systems. It presents process demands commonly found in the processing industry in terms of steam...

Alexander, J.

97

Research and development separation technology: The DOE Industrial Energy Conservation Program  

SciTech Connect

This brochure summarizes the Office of Industrial Programs' RandD efforts in the advancement of separation technology. The purpose of this brochure is to provide interested parties with information on federal industrial energy conservation activities in separation technology. The brochure is comprised of the following sections: Separation Technology, summarizes the current state of separation technology and its uses. Potential Energy Savings, discusses the potential for industrial energy conservation through the implementation of advanced separation processes. Office of Industrial Programs' RandD Efforts in Separation Technology Development, describes the separation RandD projects conducted by IP. RandD Data Base, lists contractor, principal investigator, and location of each separation-related RandD effort sponsored by IP.

Not Available

1987-07-01T23:59:59.000Z

98

Department of Energy Lauds Highly Efficient Industrial Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lauds Highly Efficient Industrial Technology Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology November 30, 2007 - 4:45pm Addthis DOE Celebrates One-Year Anniversary of Operation of the Energy Efficient "Super Boiler" WASHINGTON, DC - Representing important technology transfer from Department of Energy (DOE) labs to the marketplace, DOE today announced the successful one-year operation of the first generation "Super Boiler," which can deliver 94 percent thermal efficiency, while producing fewer emissions than conventional boiler technologies. By 2020, this technology could save more than 185 trillion British Thermal Units (Btus) of energy - equivalent to the natural gas consumed by more than two million households. The

99

Department of Energy Lauds Highly Efficient Industrial Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology November 30, 2007 - 4:45pm Addthis DOE Celebrates One-Year Anniversary of Operation of the Energy Efficient "Super Boiler" WASHINGTON, DC - Representing important technology transfer from Department of Energy (DOE) labs to the marketplace, DOE today announced the successful one-year operation of the first generation "Super Boiler," which can deliver 94 percent thermal efficiency, while producing fewer emissions than conventional boiler technologies. By 2020, this technology could save more than 185 trillion British Thermal Units (Btus) of energy - equivalent to the natural gas consumed by more than two million households. The

100

Technology Roadmap Research Program for the Steel Industry  

SciTech Connect

The steel industry's Technology Roadmap Program (TRP) is a collaborative R&D effort jointly sponsored by the steel industry and the United States Department of Energy. The TRP program was designed to develop new technologies to save energy , increase competitiveness, and improve the environment. TRP ran from July, 1997 to December, 2008, with a total program budget of $38 million dollars. During that period 47 R&D projects were performed by 28 unique research organizations; co-funding was provided by DOE and 60 industry partners. The projects benefited all areas of steelmaking and much know-how was developed and transferred to industry. The American Iron and Steel Institute is the owner of all intellectual property developed under TRP and licenses it at commercial rates to all steelmakers. TRP technologies are in widespread use in the steel industry as participants received royalty-free use of intellectual property in return for taking the risk of funding this research.

Joseph R. Vehec

2010-12-30T23:59:59.000Z

Note: This page contains sample records for the topic "industrial process technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

ITP Metal Casting: Metalcasting Industry Technology Roadmap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A partial listing of these projects is provided below. Products and Markets ' Casting Conversions Materials Technology ' Development of Material Data Bases for HPNb and HPNb+...

102

Commercial development of environmental technologies for the automotive industry towards a new model of technological innovation  

Science Journals Connector (OSTI)

Economic importance of environmental issues is increasing, and new technologies are expected to reduce pollution derived both from productive processes and products, with costs that are still unknown. Until now, there is still little knowledge concerning the process of technological innovation in this field. What does exist is outdated due to rapid change in technology. In this paper, we analyse the development of Zinc Air Fuel Cells (ZAFC) and their transfer from research laboratories to large mass production. ZAFC are a new ''environmental technology'', proved to have a commercial value, that can be used for building Zero Emission Vehicles (ZEV). Although ZAFC performances are higher than traditional lead-acid batteries ones, difficulties in funding ZAFC engineering and ''moving'' them from laboratories to production caused some years delay in their diffusion. On the basis of this ''paradigmatic'' case, we argue that existing economic and organisational literature concerning technological innovation is not able to fully explain steps followed in developing environmental technologies. Existing models mainly consider adoption problems as due to market uncertainty, weak appropriability regime, lack of a dominant design, and difficulties in reconfiguring organisational routines. Additionally, the following aspects play a fundamental role in developing environmental technologies, pointing out how technological trajectories depend both on exogenous market conditions and endogenous firm competencies: 1. regulations concerning introduction of ZEV ''create'' market demand and business development for new technologies; they impose constraints that can be met only by segmenting transportation market at each stage of technology development; 2. each stage of technology development requires alternative forms of division and coordination of innovative labour; upstream and downstream industries are involved in new forms of inter-firm relationships, causing a reconfiguration of product architecture and reducing effects of path dependency; 3. product differentiation increases firm capabilities to plan at the same time technology introduction and customer selection, while meeting requirements concerning ''network externalities''; 4. it is necessary to find and/or create alternative funding sources for each research, development and design stage of the new technologies. From this discussion, we will draw some conclusions and issues for further researches concerning government policy and firms' strategies for sustaining the process of technological innovation and transfer.

Woodrow W. Clark II; Emilio Paolucci

2001-01-01T23:59:59.000Z

103

Using federal technology policy to strength the US microelectronics industry  

SciTech Connect

A review of US and Japanese experiences with using microelectronics consortia as a tool for strengthening their respective industries reveals major differences. Japan has established catch-up consortia with focused goals. These consortia have a finite life targeted from the beginning, and emphasis is on work that supports or leads to product and process-improvement-driven commercialization. Japan`s government has played a key role in facilitating the development of consortia and has used consortia promote domestic competition. US consortia, on the other hand, have often emphasized long-range research with considerably less focus than those in Japan. The US consortia have searched for and often made revolutionary technology advancements. However, technology transfer to their members has been difficult. Only SEMATECH has assisted its members with continuous improvements, compressing product cycles, establishing relationships, and strengthening core competencies. The US government has not been a catalyst nor provided leadership in consortia creation and operation. We propose that in order to regain world leadership in areas where US companies lag foreign competition, the US should create industry-wide, horizontal-vertical, catch-up consortia or continue existing consortia in the six areas where the US lags behind Japan -- optoelectronics, displays, memories, materials, packaging, and manufacturing equipment. In addition, we recommend that consortia be established for special government microelectronics and microelectronics research integration and application. We advocate that these consortia be managed by an industry-led Microelectronics Alliance, whose establishment would be coordinated by the Department of Commerce. We further recommend that the Semiconductor Research Corporation, the National Science Foundation Engineering Research Centers, and relevant elements of other federal programs be integrated into this consortia complex.

Gover, J.E.; Gwyn, C.W.

1994-07-01T23:59:59.000Z

104

Towards A Unified HFE Process For The Nuclear Industry  

SciTech Connect

As nuclear power utilities embark on projects to upgrade and modernize power plants, they are likely to discover that traditional engineering methods do not typically make provision for the integration of human considerations. In addition, human factors professionals will find that traditional human performance methods such as function allocation, task analysis, human reliability analysis and human-machine interface design do not scale well to the complexity of a large-scale nuclear power upgrade project. Up-to-date human factors engineering processes, methods, techniques and tools are required to perform these kinds of analyses. This need is recognized widely in industry and an important part of the Department of Energy’s Light Water Reactor Sustainability Program deals with identifying potential impacts of emerging technologies on human performance and the technical bases needed to address them. However, so far no formal initiative has been launched to deal with the lack of integrated processes. Although human factors integration frameworks do exist in industries such as aviation or defense, no formal integrated human factors process exists in the nuclear industry. As a first step towards creating such a process, a “unified human factors engineering process” is proposed as a framework within which engineering organizations, human factors practitioners and regulatory bodies can ensure that human factors requirements are embedded in engineering activities throughout the upgrade project life cycle.

Jacques Hugo

2012-07-01T23:59:59.000Z

105

DOE and Industry Showcase New Control Systems Security Technologies at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Development » Energy Delivery Systems Technology Development » Energy Delivery Systems Cybersecurity » Control Systems Security News Archive » DOE and Industry Showcase New Control Systems Security Technologies at DistribuTECH DOE and Industry Showcase New Control Systems Security Technologies at DistribuTECH DistribuTECH Conference Tuesday-Thursday, March 23-25, 2010 Tampa Convention Center Booth #231 Tampa, FL Join the Department of Energy and its industry partners as they showcase six new products and technologies designed to secure the nation's energy infrastructure from cyber attack on Tuesday through Thursday, March 23-25. Visit Booth #231 at the DistribuTECH 2010 Conference & Exhibition in Tampa, FL, to see first-hand demonstrations of several newly commercialized control systems security products-each developed through a

106

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network (OSTI)

Products Industry Technology Roadmap. Agenda 2020 Technology2011. "The IEA CCS Technology Roadmap: One Year On". Energy1287- Reitzer, R. 2007. Technology Roadmap - Applications of

Kong, Lingbo

2014-01-01T23:59:59.000Z

107

Improve the Energy Efficiency of Fan Systems, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program Fan System Assessment Tool (FSAT) can help quantify energy consumption and savings opportunities in industrial fan systems.

Not Available

2008-12-01T23:59:59.000Z

108

Industry  

SciTech Connect

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

109

Faculty Position in Mechanical Engineering Water Conservation in Industrial Processes  

E-Print Network (OSTI)

Faculty Position in Mechanical Engineering Water Conservation in Industrial Processes University of Kansas The Department of Mechanical Engineering at the University of Kansas is seeking applications in industrial processes. Exceptional candidates with outstanding qualifications could be considered

110

Emerging Opportunities in Industrial Electrification Technologies  

E-Print Network (OSTI)

Safe EI Uncertain 0 Vulnerable Figure 7a - Competitive Position of Natural Gas: Metals Industries 1000 j ! J ~ i - 200 ~ Safe ? Uncertain 0 Vulnerable 800 600 400 Melling F1.Ht. Drying Calcining Firing Appllcallon Figure 7b...-frred systems. Drying, on the other hand, is considered a relatively vulnerable or uncertain market, with significant competition from both coal-fired steam-heated dryers and such electrotechnologies as infrared and dielectric heating. Gas use for calcining...

Schmidt, P. S.

111

End User Functional and Performance Requirements for HTGR Energy Supply to Industrial Processes  

SciTech Connect

This document specifies end user functional and performance requirements to be used in the development of the design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to industrial processes. These requirements were developed from collaboration with industry and HTGR suppliers and from detailed evaluation of integration of the HTGR technology in industrial processes. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a plant design that will serve the broadest range of industrial applications.

L.E. Demick

2010-09-01T23:59:59.000Z

112

DOE Industrial Technologies Program Overview of Nanomanufacturing Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Technologies Program Industrial Technologies Program Overview of Nanomanufacturing Initiative Ron Ott March 26, 2009 Nanotechnology: The purposeful engineering of matter at scales of less than 100 nanometers to achieve size- dependent properties and functions. (Lux Research) Today's Outline * ITP R&D Program * ITP Nanomanufacturing Initiative * Nanomanufacturing Project examples * Questions Industrial Technologies Program (ITP): Mission Improve our nation's energy security, climate, environment, and economic competitiveness by transforming the way U.S. industry uses energy * Consumes more energy than any other sector of the economy (~32 quads) * Responsible for ~1,660 MMTCO 2 /year from energy consumption * Manufacturing makes the highest contribution to U.S. GDP (12%) * Produces nearly 1/4th of world

113

Balancing industry outlooks and technology policy as response  

Science Journals Connector (OSTI)

Technology policy has been blamed for its supply side orientation. In other words, there have always been possibilities that technology policy could be abused to justify new R&D investments in many countries. This does not mean that emphasising the demand side would always bring guaranteed success, which suggests that there should be a fine balance between demand and supply side issues in discussing 'correct' technology policy. With this backdrop, this research, utilising the Korean industry data, tried to perform forecasting of technology change for selected sectors to discuss implications for technology policy, preceded by a literature review on the merits and demerits of demand and supply side policies.

Junmo Kim

2010-01-01T23:59:59.000Z

114

Technological Change, Industry Structure and the Environment  

E-Print Network (OSTI)

applied to the projection of GHG emissions from the energy sector" (p.141). This paper extends the work qualitatively in terms of changes in production scale and resource intensity and their resulting impact technological changes are bound to have important implications for the future state of the environment

Watson, Andrew

115

Computer integrated manufacturing/processing in the HPI. [Hydrocarbon Processing Industry  

SciTech Connect

Hydrocarbon Processing and Systemhouse Inc., developed a comprehensive survey on the status of computer integrated manufacturing/processing (CIM/CIP) targeted specifically to the unique requirements of the hydrocarbon processing industry. These types of surveys and other benchmarking techniques can be invaluable in assisting companies to maximize business benefits from technology investments. The survey was organized into 5 major areas: CIM/CIP planning, management perspective, functional applications, integration and technology infrastructure and trends. The CIM/CIP planning area dealt with the use and type of planning methods to plan, justify implement information technology projects. The management perspective section addressed management priorities, expenditure levels and implementation barriers. The functional application area covered virtually all functional areas of organization and focused on the specific solutions and benefits in each of the functional areas. The integration section addressed the needs and integration status of the organization's functional areas. Finally, the technology infrastructure and trends section dealt with specific technologies in use as well as trends over the next three years. In February 1993, summary areas from preliminary results were presented at the 2nd International Conference on Productivity and Quality in the Hydrocarbon Processing Industry.

Yoshimura, J.S. (Systemhouse Inc., Houston, TX (United States))

1993-05-01T23:59:59.000Z

116

Office of Industrial Technologies: Summary of program results  

SciTech Connect

Working in partnership with industry, the US Department of Energy`s (DOE`s) Office of Industrial Technologies (OIT) is helping reduce industrial energy use, emissions, and waste while boosting productivity. Operating within the Office of Energy Efficiency and Renewable Energy (EE), OIT conducts research, development, demonstration, and technology transfer efforts that are producing substantial, measurable benefits to industry. This document summarizes some of the impacts of OIT`s programs through 1997. OIT tracks energy savings as well as other benefits associated with the successfully commercialized technologies resulting from OIT-supported research partnerships. Specifically, a chart shows current and cumulative energy savings as well as cumulative reductions of various air pollutants including particulates, volatile organic compounds (VOCs), nitrogen oxides (NO{sub x}), sulfur oxides (SO{sub x}), and the greenhouse gas, carbon dioxide (CO{sub 2}). The bulk of the document consists of four appendices. Appendix 1 describes the technologies currently available commercially, along with their applications and benefits; Appendix 2 describes the OIT-supported emerging technologies that are likely to be commercialized within the next year or two; Appendix 3 describes OIT-sponsored technologies used in commercial applications in the past that are no longer tracked; and Appendix 4 describes the methodology used to assess and track OIT-supported technologies.

NONE

1999-01-01T23:59:59.000Z

117

Energy Technology Solutions: Public-Private Partnerships Transforming Industry, November 2010  

Energy.gov (U.S. Department of Energy (DOE))

Public-private partnerships transforming industry and list of commercialized technologies, knowledge-based results, and promising technologies

118

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 1: ITP-Sponsored Technologies Commercially Available  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15 DOE Industrial Technologies Program 15 DOE Industrial Technologies Program Appendix 1: ITP-Sponsored Technologies Commercially Available Aluminum ........................................................................................................................................... 19 u Aluminum Reclaimer for Foundry Applications .................................................................................................................................. 20 u Isothermal Melting................................................................................................................................................................................ 21 Chemicals........................................................................................................................................... 23

119

Advanced Laser-Based Sensors for Industrial Process Control  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Laser-Based Sensors for Industrial Process Control Increased Efficiency and Reduced Emissions Using Advanced Laser-Based Sensors for Process Control Monitoring in Electric Arc...

120

STATEMENT OF CONSIDERATIONS REQUEST BY CHEMICAL INDUSTRY ENVIRONMENTAL TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CHEMICAL INDUSTRY ENVIRONMENTAL TECHNOLOGY CHEMICAL INDUSTRY ENVIRONMENTAL TECHNOLOGY PROJECTS, LLC (CIETP) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC02-97CH10895; W(A)-97-032; CH-0935 The Petitioner, CIETP, has requested a waiver of domestic and foreign patent rights for all subject inventions arising under the above referenced cooperative agreement and subcontracts entered thereunder. The cooperative agreement is entitled, "DOE/CIETP Vision 2020." Both the DOE and the Petitioner support programs which offer clean, energy efficient, and environmentally sound technologies. This cooperative agreement is a partnership based on these similar missions and strategies to facilitate collaborative effort within the chemical industry which will benefit the

Note: This page contains sample records for the topic "industrial process technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Recovery and Recycling of Industrial Wastewater by Hybrid Processes  

Science Journals Connector (OSTI)

Modern industries demand large quantities of water at purity levels that are unprecedented in industrial applications. Unless water usage is changed, these processes will not be sustainable. The key solution to r...

Farhang Shadman

2013-01-01T23:59:59.000Z

122

Reduce Natural Gas Use in Your Industrial Process Heating Systems  

SciTech Connect

This DOE Industrial Program fact sheet describes ten effective ways to save energy and money in industrial process heating systems by making some changes in equipment, operations, and maintenance.

Not Available

2007-09-01T23:59:59.000Z

123

A Review of Energy Use and Energy Efficiency Technologies for the Textile Industry  

E-Print Network (OSTI)

s Office of Industrial Technology and Oak Ridge NationalGunnar Hovstadius of ITT Fluid Technology Corporation. 2002.of Demonstrated Energy Technologies (CADDET), Sittard, the

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

124

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network (OSTI)

Biomass Gasification Technologies for Fuels, Chemicals andEnergy, National Energy Technology Laboratory. CO ? Solution01GO10621. Industrial Technologies Progarm (ITP). 2006e.

Kong, Lingbo

2014-01-01T23:59:59.000Z

125

Diffusion-Welded Microchannel Heat Exchanger for Industrial Processes  

SciTech Connect

The goal of next generation reactors is to increase energy ef?ciency in the production of electricity and provide high-temperature heat for industrial processes. The ef?cient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process. The need for ef?ciency, compactness, and safety challenge the boundaries of existing heat exchanger technology. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more ef?cient industrial processes. Modern compact heat exchangers can provide high compactness, a measure of the ratio of surface area-to-volume of a heat exchange. The microchannel heat exchanger studied here is a plate-type, robust heat exchanger that combines compactness, low pressure drop, high effectiveness, and the ability to operate with a very large pressure differential between hot and cold sides. The plates are etched and thereafter joined by diffusion welding, resulting in extremely strong all-metal heat exchanger cores. After bonding, any number of core blocks can be welded together to provide the required ?ow capacity. This study explores the microchannel heat exchanger and draws conclusions about diffusion welding/bonding for joining heat exchanger plates, with both experimental and computational modeling, along with existing challenges and gaps. Also, presented is a thermal design method for determining overall design speci?cations for a microchannel printed circuit heat exchanger for both supercritical (24 MPa) and subcritical (17 MPa) Rankine power cycles.

Piyush Sabharwall; Denis E. Clark; Michael V. Glazoff; Michael G. McKellar; Ronald E. Mizia

2013-03-01T23:59:59.000Z

126

Superior Process Technology Inc | Open Energy Information  

Open Energy Info (EERE)

Process Technology Inc Process Technology Inc Jump to: navigation, search Name Superior Process Technology Inc Place Minneapolis, Minnesota Zip 55424 Sector Services Product Biodiesel production plant equipment, engineering and design services. References Superior Process Technology Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Superior Process Technology Inc is a company located in Minneapolis, Minnesota . References ↑ "Superior Process Technology Inc" Retrieved from "http://en.openei.org/w/index.php?title=Superior_Process_Technology_Inc&oldid=351889" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages

127

Clean Technology & Sustainable Industries Organization | Open Energy  

Open Energy Info (EERE)

Technology & Sustainable Industries Organization Technology & Sustainable Industries Organization Jump to: navigation, search Logo: Clean Technology & Sustainable Industries Organization Name Clean Technology & Sustainable Industries Organization Address 4255 Coolidge Hwy Place Royal Oak, Michigan Zip 48073 Number of employees 1-10 Year founded 2007 Phone number 512.692.7267 Website http://www.ct-si.org/ Coordinates 42.5261046°, -83.1842756° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5261046,"lon":-83.1842756,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

128

Waste Heat Management Options for Improving Industrial Process...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of waste heat streams, and options for recovery including Combined Heat and Power. Waste Heat Management Options for Improving Industrial Process Heating Systems...

129

Process Energy Audit for Large Industries  

E-Print Network (OSTI)

be the identification of DSM technologies. Once the DSM technologies are identified, the audi tor would verify whether those technologies and equipment are commercially viable and proven in the market. Task 13 - Obtain Vendor Data Respective DSM technology... and equipment vendors would be contacted to obtain technical details on the equipment which is likely to be recommended. Task 14 - Obtain Quotation/Proposal Prices for selected DSM equipment will be obtained from respective vendors. Task 15 - Calculate...

Chari, S.

130

Scale in technology and learning-by-doing in the windmill industry  

Science Journals Connector (OSTI)

This paper examines the remarkable development of technology and the fast learning-by-doing in the windmill industry since it emerged in the beginning of the 1980s. Based on time series of prices of windmills, a dynamic cost function for producing windmills is tested. The estimations verified that learning-by-doing in the Danish windmill industry has contributed significantly to improve the cost efficiency of the producers. The technological development has been stimulated both by process and product innovations as the capacity of the individual mills has increased. The learning effect created by early subsidies from the government has consolidated the competitive advantages of the windmill cluster in Denmark and preserved the first mover advantages at the world market. The article concludes that the industry probably will enter into a matured phase in the future with more modest technological growth.

Erik Strojer Madsen; Camilla Jensen; Jorgen Drud Hansen

2003-01-01T23:59:59.000Z

131

Session 4 Industrial Needs, Commercialization, and Process Economics  

Science Journals Connector (OSTI)

Presentations at the “Commercialization” and “Process Economics” section of the 19th Symposium were ... spectrum of biomass conversion, from “conceptual” processes through to the most advanced piloted technology....

Patrick Foody; J. Rus Miller

1998-01-01T23:59:59.000Z

132

Energy Technical Assistance: Industrial Processes Program  

E-Print Network (OSTI)

The Energy Technical Assistance Division of Texas Engineering Extension Service (TEEX) has implemented an energy conservation program to assist small industry in using energy more efficiently. This full time service, an outgrowth of the Texas A...

McClure, J. D.

1980-01-01T23:59:59.000Z

133

Innovative Process and Materials Technologies | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

110 trillion Btu per year. Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets (Massachusetts Institute of Technology (MIT) - Cambridge, MA) A...

134

Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications  

SciTech Connect

This report is a summary of analyses performed by the NGNP project to determine whether it is technically and economically feasible to integrate high temperature gas cooled reactor (HTGR) technology into industrial processes. To avoid an overly optimistic environmental and economic baseline for comparing nuclear integrated and conventional processes, a conservative approach was used for the assumptions and calculations.

Lee Nelson

2011-09-01T23:59:59.000Z

135

Improve Motor System Efficiency with MotorMaster+, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program MotorMaster+ software tool aids industrial plants with finding energy-efficient motor replacement options and managing motor systems.

Not Available

2008-12-01T23:59:59.000Z

136

Clean technology in food processing  

Science Journals Connector (OSTI)

...agriculture. Life-cycle assessment (LCA) provides one way of taking an integrated...across the total supply chain. The stages in LCA include drawing the system boundary, inventory...agricultural industries. Nevertheless, LCA does provide a way forward to develop a...

1997-01-01T23:59:59.000Z

137

Economics of Concentration Processes in the Food Industry  

E-Print Network (OSTI)

The economics of four concentration processes utilized by the food industry were analyzed. The processes examined are: triple effect evaporation, mechanical vapor recompression evaporation, reverse osmosis, and freeze concentration. The analysis...

Renshaw, T. A.; Sapakie, S. F.; Hanson, M. C.

1983-01-01T23:59:59.000Z

138

Impact of Control System Technologies on Industrial Energy Savings  

E-Print Network (OSTI)

Modify temperature and pressure setpoints to meet requirements while optimizing energy use CHILLER ROOM TB Static Pressure Setpoint Reset Thermostatic Temperature Setpoint ESL-IE-14-05-40 Proceedings of the Thrity-Sixth Industrial Energy Technology... Conference New Orleans, LA. May 20-23, 2014 1. HVAC: Seasonal Temperature Resets I. SETPOINT ADJUSTMENT Low payback, high savings! Image: http://www.ncelectriccooperatives.com/electricity/homeEnergy/thermostats_intro.htm Average Savings: $10,000 per year...

Parikh, P.; Pasmussen, B. P.

2014-01-01T23:59:59.000Z

139

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009  

Office of Energy Efficiency and Renewable Energy (EERE)

Describes the impacts in energy savings and environmental pollution reduction of the Industrial Technologies Program's commercialized and emerging technologies for CY2009.

140

Low NOx firing technology of Mitsubishi Heavy Industries  

SciTech Connect

This paper presents super low NO{sub x} combustion technologies successfully developed by MHI (Mitsubishi Heavy Industries, Ltd.) and its use in practice. PM (Pollution Minimum) burners directly reduce NO{sub x} from the burners themselves and MACT (Mitsubishi Advanced Combustion Technology) system, an in-furnace NO{sub x} removal system, reduces NO{sub x} generated from the main burners within the boiler. These firing systems are applicable to coal, oil, gas and also to other exotic fuels like Orimulsion or CWM (Coal Water Mixture). MRS (Mitsubishi Rotary Separator) mills minimizes unburnt carbon with its reliable ultra-fine grinding of coal and hence contribute to low NO{sub x}. These technologies have been applied in various combinations to 227 boilers for both new installation and retrofit jobs. Large 1,000 MWe oil or gas fired boilers and 700 MWe coal fired boilers have been put into commercial use, and a 1,000 MWe coal fired boiler is under commissioning. The technologies have been applied to small sized boilers for industrial use as well. All the delivered systems have been working both domestic and overseas to the customers` satisfaction.

Kaneko, Shozo; Tokuda, Kimishiro; Sato, Susumu [Mitsubishi Heavy Industries, Yokohama (Japan)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial process technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

ALSO: ISRC Technologies Meet The Challenge RIM Industry Booms  

NLE Websites -- All DOE Office Websites (Extended Search)

SUMMER* 2000 SUMMER* 2000 ALSO: ISRC Technologies Meet The Challenge RIM Industry Booms SMART MACHINES The Robotics Revolution ALSO: Smart Scalpel Detects Cancer Cells Shrinking Prostate Glands Without Surgery SMART MACHINES The Robotics Revolution ALSO: Smart Scalpel Detects Cancer Cells Shrinking Prostate Glands Without Surgery A QUARTERLY RESEARCH & DEVELOPMENT JOURNAL VOLUME 2, NO. 2 S A N D I A T E C H N O L O G Y ON THE COVER: MARV (Miniature Autonomous Robotic Vehicle) is one of the world's smallest autonomous vehicles, containing all necessary power, sensors, computers, and controls on board. MARV is a three-year-old technology measuring one cubic inch in size. (Photo by Randy Montoya) Sandia Technology is a quarterly journal published by Sandia National Laboratories. Sandia is a multiprogram

142

Industrial Process Heat Pumps--Some Unconventional Wisdom  

E-Print Network (OSTI)

INDUSTRIAL PROCESS HEAT PUMPS--SOME UNCONVENTIONAL WISDOM ALAN KARP Project Manager Electric Power Research Institute Palo Alto, California ABSTRACT Recent research on the cost-effective use of industrial process heat pumps challenges... integration insights. BUilding on previously formulated prin ciples of "appropriate placement," a generic metho dology has been developed for examining heat pump ing as an alternative to increased heat integration in any process. PC-based software...

Karp, A.

143

Industrial and Process Efficiency Performance Incentives | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial and Process Efficiency Performance Incentives Industrial and Process Efficiency Performance Incentives Industrial and Process Efficiency Performance Incentives < Back Eligibility Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Heating Appliances & Electronics Commercial Lighting Lighting Maximum Rebate 50% of project cost, up to $5 million per facility per year (electric) or $1 million per facility per year (gas) Program Info Funding Source Energy Efficiency Portfolio Standard (EEPS)/System Benefits Charge (SBC) Expiration Date 12/31/2015 State New York Program Type State Rebate Program Rebate Amount Electric Process and Energy Efficiency: $0.12/kWh (upstate) or $0.16/kWh (downstate) Gas Process and Energy Efficiency: $15/MMBtu (upstate) or $20/MMBtu

144

Waste Heat Recovery from Industrial Process Heating Equipment -  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Heat Recovery from Industrial Process Heating Equipment - Waste Heat Recovery from Industrial Process Heating Equipment - Cross-cutting Research and Development Priorities Speaker(s): Sachin Nimbalkar Date: January 17, 2013 - 11:00am Location: 90-2063 Seminar Host/Point of Contact: Aimee McKane Waste heat is generated from several industrial systems used in manufacturing. The waste heat sources are distributed throughout a plant. The largest source for most industries is exhaust / flue gases or heated air from heating systems. This includes the high temperature gases from burners in process heating, lower temperature gases from heat treat, dryers, and heaters, heat from heat exchangers, cooling liquids and gases etc. The previous studies and direct contact with the industry as well as equipment suppliers have shown that a large amount of waste heat is not

145

Plant Energy Profiler Tool for the Chemicals Industry (ChemPEP Tool), Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program ChemPEP Tool can help chemical plants assess their plant-wide energy consumption.

Not Available

2008-12-01T23:59:59.000Z

146

Building Technologies Office: Regulatory Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Processes Regulatory Processes Beginning with the Energy Policy and Conservation Act of 1975, Congress has enacted a series of laws establishing federal appliance and equipment standards and the Department of Energy's (DOE) authority to develop, amend, and implement standards. To implement these laws, the Appliance and Equipment Standards program manages the regulatory processes described below. Standards Development and Revision Standards for a given product may be mandated by Congress or established by DOE pursuant to statutory authority. Standards established by DOE are developed through a multi-step rulemaking process that includes public participation. Test Procedure Development and Revision Most standards rulemakings are accompanied by a concurrent test procedure rulemaking. Test procedures detail how manufacturers must test their products to certify that they comply with the applicable energy conservation standards. (42 U.S.C. 6293; 6314) DOE also uses the test procedures to determine compliance with the applicable standards. (42 U.S.C. 6295(s))

147

Separation process using microchannel technology  

DOE Patents (OSTI)

The disclosed invention relates to a process and apparatus for separating a first fluid from a fluid mixture comprising the first fluid. The process comprises: (A) flowing the fluid mixture into a microchannel separator in contact with a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the first fluid is sorbed by the sorption medium, removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing first fluid from the sorption medium and removing desorbed first fluid from the microchannel separator. The process and apparatus are suitable for separating nitrogen or methane from a fluid mixture comprising nitrogen and methane. The process and apparatus may be used for rejecting nitrogen in the upgrading of sub-quality methane.

Tonkovich, Anna Lee (Dublin, OH); Perry, Steven T. (Galloway, OH); Arora, Ravi (Dublin, OH); Qiu, Dongming (Bothell, WA); Lamont, Michael Jay (Hilliard, OH); Burwell, Deanna (Cleveland Heights, OH); Dritz, Terence Andrew (Worthington, OH); McDaniel, Jeffrey S. (Columbus, OH); Rogers, Jr.; William A. (Marysville, OH); Silva, Laura J. (Dublin, OH); Weidert, Daniel J. (Lewis Center, OH); Simmons, Wayne W. (Dublin, OH); Chadwell, G. Bradley (Reynoldsburg, OH)

2009-03-24T23:59:59.000Z

148

Optimizing Process Loads in Industrial Cogeneration Energy Systems  

E-Print Network (OSTI)

applied to power generation and industrial cogeneration are extended to solving this trigeneration problem where the optimum dispatch of the final load devices (i.e. compressors, fans, pumps, etc.) are an integral part of the total energy system...-04-29 Proceedings from the Seventeenth Industrial Energy Technology Conference, Houston, TX, April 5-6, 1995 optimum dispatch solutions, and an iterative simultaneous solution of the integrated system is required. The solution dependency arises when the end use...

Ahner, D. J.; Babson, P. E.

149

Waste Processing Annual Technology Development Report 2007  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Processing Processing Annual Technology Development Report 2007 SRNS-STI-2008-00040 United States Department of Energy Waste Processing Annual Technology Development Report 2007 Prepared and edited by S. R. Bush EM Technical Integration Office Savannah River National Laboratory Reviewed by Dr. W. R. Wilmarth, Manager EM Technical Integration Office Savannah River National Laboratory Approved by Dr. S. L. Krahn, Director EM-21 Office of Waste Processing U. S. Department of Energy APPROVED for Release for Unlimited (Release to Public) (Signed 08/13/2008) (Signed 08/13/2008) (Signed 08/13/2008) EM-21 Waste Processing Annual Report for Calendar Year 2007 2/74

150

EUROPEAN TECHNOLOGY PLATFORM ON INDUSTRIAL SAFETY (ETPIS), A VISION TO GAIN SAFETY FOR A SUSTAINABLE INDUSTRY GROWTH  

E-Print Network (OSTI)

Safety (ETPIS). It is a result of a collective work made by research- ers from organisationsEUROPEAN TECHNOLOGY PLATFORM ON INDUSTRIAL SAFETY (ETPIS), A VISION TO GAIN SAFETY that consider industrial safety as a strategic issue for the sustainable growth of the European Industry

Paris-Sud XI, Université de

151

Solar grade silicon: Technology status and industrial trends  

Science Journals Connector (OSTI)

Abstract Crystalline silicon remains (all variants included) the dominant technology to manufacture solar cells. Currently (2012–2013) more than 90% of all solar cells produced are based on this vast group of technologies. The availability, the cost and the quality to the silicon feedstock is therefore a strategic issue of paramount importance for the entire photovoltaic sector. The silicon demand/supply balance has evolved from a situation of shortage with rocketing sales prices, in the years 2005–2008, to currently (2012–2013) an oversupply situation with record low price level for virgin polysilicon. Between these two extreme periods, production capacity has been multiplied by a factor of nearly 10. A better understanding of the prevailing dynamics in the polysilicon/silicon industry is needed in order for all players in the solar cell industry to make proper planning. In light of the past developments as well as the constraints imposed by a sound competition, the present article reviews the market trends for solar grade silicon including capacity, supply, demand and price. Furthermore, the article reviews the competing commercial technologies i.e. Siemens polysilicon, fluidized bed reactor/FBR polysilicon and upgraded metallurgical/UMG silicon and compares them in terms of maturity, improvement potential, product morphology, purity, applications and cost (actual vs. potential).

Gøran Bye; Bruno Ceccaroli

2014-01-01T23:59:59.000Z

152

Technologies and Policies to Improve Energy Efficiency in Industry  

Science Journals Connector (OSTI)

The industrial sector consumes nearly 40% of annual global primary energy use and is responsible for a similar share of global energy?related carbon dioxide ( CO 2 ) emissions. Many studies and actual experience indicate that there is considerable potential to reduce the amount of energy used to manufacture most commodities concurrently reducing CO 2 emissions. With the support of strong policies and programs energy?efficient technologies and measures can be implemented that will reduce global CO 2 emissions. A number of countries including the Netherlands the UK and China have experience implementing aggressive programs to improve energy efficiency and reduce related CO 2 emissions from industry. Even so there is no silver bullet and all options must be pursued if greenhouse gas emissions are to be constrained to the level required to avoid significant negative impacts from global climate change.

Lynn Price

2008-01-01T23:59:59.000Z

153

Portal monitoring technology control process  

SciTech Connect

Portal monitors are an important part of the material protection, control, and accounting (MPC and A) programs in Russia and the US. Although portal monitors are only a part of an integrated MPC and A system, they are an effective means of controlling the unauthorized movement of special nuclear material (SNM). Russian technical experts have gained experience in the use of SNM portal monitors from US experts ad this has allowed them to use the monitors more effectively. Several Russian institutes and companies are designing and manufacturing SNM portal monitors in Russia. Interactions between Russian and US experts have resulted in improvements to the instruments. SNM portal monitor technology has been effectively transferred from the US to Russia and should be a permanent part of the Russian MPC and A Program. Progress in the implementation of the monitors and improvements to how they are used are discussed.

York, R.L.

1998-12-31T23:59:59.000Z

154

Production of Biogas from Wastewaters of Food Processing Industries  

E-Print Network (OSTI)

An Upflow Anaerobic Sludge Blanket Process used in converting biodegradable, soluble, organic pollutants in industrial wastewaters to a directly-burnable biogas composed mainly of methane has been developed, tested, and commercially applied...

Sax, R. I.; Holtz, M.; Pette, K. C.

1980-01-01T23:59:59.000Z

155

Utilization of renewably generated power in the chemical process industry  

Science Journals Connector (OSTI)

The chemical process industry, mainly the production of organic and inorganic ... On the contrary, the dependency of electricity supply in Germany on volatile wind and solar power increases. To use this power eff...

Julia Riese; Marcus Grünewald; Stefan Lier

2014-08-01T23:59:59.000Z

156

Fuzzy Control in Process Industry: The Linguistic Equation Approach  

Science Journals Connector (OSTI)

The process industries face considerable control challenges, especially in the consistent production of high quality products, more efficient use of energy and raw materials, and stable operation on different ...

E. K. Juuso

1999-01-01T23:59:59.000Z

157

Designing Optimal Heat and Power Systems for Industrial Processes  

E-Print Network (OSTI)

Industrial heat and power systems are complex and not fully understood as integrated systems. Within the context of the overall manufacturing process, they represent enormous capital investments and substantially contribute to the total operating...

Rutkowski, M. A.; Witherell, W. D.

158

Methodology to manage process technology innovation  

E-Print Network (OSTI)

The research conducted for this thesis was performed at "Company X", a U.S.-based engineered goods manufacturer. This project focused on the company's Advanced Manufacturing group and its process technology development ...

Schweizer, Daniel

2010-01-01T23:59:59.000Z

159

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 3: Historical ITP Technology Successes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

157 DOE Industrial Technologies Program 157 DOE Industrial Technologies Program Appendix 3: Historical ITP Technology Successes u Absorption Heat Pump/Refrigeration Unit ........................................................................................................................................160 u Advanced Turbine System..................................................................................................................................................................160 u Aerocylinder Replacement for Single-Action Cylinders....................................................................................................................160 u Aluminum Roofing System................................................................................................................................................................160

160

Technology roadmap development process (TRDP) for the service sector: A conceptual framework  

Science Journals Connector (OSTI)

This paper provides a decision making framework for development of technology roadmaps by integrating emerging technology intelligence with established decision making and product development methods. This paper integrates the following methods: technology mining, analytic hierarchy process, and technology roadmapping Specifically the emphasis is pointed towards service industry where research has indicated major differences exist when compared to the manufacturing industries. The framework is detailed in the paper providing a platform for practitioners to adopt for their own decisions to make and for researchers to expand by applying it to different service industries.

Hilary Martin; Tugrul U. Daim

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial process technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Test results, Industrial Solar Technology parabolic trough solar collector  

SciTech Connect

Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)

1995-11-01T23:59:59.000Z

162

Characterization of industrial process waste heat and input heat streams  

SciTech Connect

The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

1984-05-01T23:59:59.000Z

163

Interated Intelligent Industrial Process Sensing and Control: Applied to and Demonstrated on Cupola Furnaces  

SciTech Connect

The final goal of this project was the development of a system that is capable of controlling an industrial process effectively through the integration of information obtained through intelligent sensor fusion and intelligent control technologies. The industry of interest in this project was the metal casting industry as represented by cupola iron-melting furnaces. However, the developed technology is of generic type and hence applicable to several other industries. The system was divided into the following four major interacting components: 1. An object oriented generic architecture to integrate the developed software and hardware components @. Generic algorithms for intelligent signal analysis and sensor and model fusion 3. Development of supervisory structure for integration of intelligent sensor fusion data into the controller 4. Hardware implementation of intelligent signal analysis and fusion algorithms

Mohamed Abdelrahman; roger Haggard; Wagdy Mahmoud; Kevin Moore; Denis Clark; Eric Larsen; Paul King

2003-02-12T23:59:59.000Z

164

Process Integration of Industrial Heat Pumps  

E-Print Network (OSTI)

, COP Carnot T W---i Figure 6. Grand composite curve with electric drive system The COP for a prime heat system assumes the exhaust heat from the driver is used in the process. The COP is then the ratio of total heat delivered (Q4 + QZ.... Nomenclature is as given in Figures 6-8. The electric drive heat pump is the most widely understood system. It has the advantage of simplic ity and requires little disruption of the process. However, an electric drive may upset the utility power/heat...

Priebe, S. J.; Chappell, R. N.

165

Preliminary overview of innovative industrial-materials processes  

SciTech Connect

In evaluating the potential for industrial energy conservation, 45 candidate processes were identified. The chemical and the iron and steel industries presented the most well-developed candidates, whereas those processes identified in the pulp and paper and textiles industries were the most speculative. Examples of the candidate processes identified include direct steelmaking and ore-to-powder systems, which potentially require 30 to 40% less energy, respectively, than conventional steelmaking systems; membrane separations and freeze crystallization, which offer up to 90% reductions in energy use when compared with distillation; the cold processing of cement, which offers a 50% reduction in energy requirements; and the dry forming of paper, which offers a 25% reduction in the energy needed for papermaking. A review of all the industries revealed that the revolutionary alternatives often use similar concepts in avoiding current process inefficiencies. These concepts include using chemical, physical, or biological processes to replace thermally intensive processes; using specific forms of energy to minimize wasteful thermal diffusion; using chemical, biological, or ultrasonic processes to replace physical reduction; combining multiple processing steps into a single reactor; using a dry processing to eliminate energy needed for evaporation; and using sterilization or biotechnology to reduce the need for refrigeration.

Hane, G.J.; Hauser, S.G.; Blahnik, D.E.; Eakin, D.E.; Gurwell, W.E.; Williams, T.A.; Abarcar, R.; Szekely, J.; Ashton, W.B.

1983-09-01T23:59:59.000Z

166

Federal/Industry Development of Energy-Conserving Technologies for the Chemical and Petroleum Refining Industries  

E-Print Network (OSTI)

-btu gasification of coal or petroleum coke in a petroleum refinery can reduce imports to the refinery of scarce natural gas and can provide additional energy supplies through sale of high-btu refinery fuel gas. The potential gain in national energy supplies... through industry-wide application of this technology is on the order of 0.5-1 quad per year. 2. Depending on the sales price which can be ob tained for refinery fuel gas displaced by coke generated MBG, the economics of coke gasification can appear...

Alston, T. G.; Humphrey, J. L.

1981-01-01T23:59:59.000Z

167

Is recycling technology innovation a major driver for technology shift in the automobile industry under an EU context?  

Science Journals Connector (OSTI)

A recent EU directive addresses End-of-Life Vehicles (ELV) as a waste-management problem to be faced on the basis of 'extended producer responsibility' and stipulates minimum reuse and recovery rates for end-of-life vehicles. The task of creating an economically robust recycling infrastructure involves a significant effort to develop systems and procedures that will have to meet requirements established by the ELV directive. In particular, recent innovations in automotive-shredder residue-separation technologies and subsequent materials recycling are a candidate to constitute an alternative strategy to classic component-dismantling procedures. This paper makes use of a systems dynamics model, applied to the Portuguese ELV-processing infrastructure, to evaluate how current practices under different recycling strategies depend on recycled materials markets and on car composition. The main objective is to discuss how far recycling technology innovation can be a major driver for technology shift in the automobile industry.

Jose Amaral; Paulo Ferrao; Catia Rosas

2006-01-01T23:59:59.000Z

168

Inspection effectiveness and risk in process industries  

SciTech Connect

Failures occasionally occur in refinery and petrochemical process equipment due to in-service damage such as internal corrosion, external corrosion, or stress corrosion cracking. Many of these failures should be preventable by detection of the damage prior to failure. However, selection of an inspection method for detection of damage has not always been based upon an evaluation of the required inspection effectiveness. Resources can be wasted by using an inspection method that is incapable of detecting damage, or is so unlikely to detect damage that it may be considered to be ineffective. Another waste of resources is excessive inspection, where the amount of inspection effort is not matched to the benefit. This paper outlines an approach to quantify the effectiveness of the complete inspection method, here defined as all of the elements that determine the mechanical integrity of an equipment item. This paper demonstrates the use of simple statistical tools or experimental techniques for estimating the effectiveness of an inspection method, and using this estimate in a risk evaluation. The approach is used to update the estimated severity of damage in process equipment after an inspection has been performed. The result of the analysis can be used in a risk assessment to estimate the risk associated with equipment failure before and after an inspection, thus providing a powerful tool to realistically set priorities for inspection planning.

Conley, M.J.; Tallin, A.G. [DNV, Houston, TX (United States)

1996-12-01T23:59:59.000Z

169

Assessment of selected conservation measures for high-temperature process industries  

SciTech Connect

Energy conservation projects involving high-temperature processes in various stages of development are assessed to quantify their energy conservation potential; to determine their present status of development; to identify their research and development needs and estimate the associated costs; and to determine the most effective role for the Federal government in developing these technologies. The program analyzed 25 energy conserving processes in the iron and steel, aluminium, copper, magnesium, cement, and glassmaking industries. A preliminary list of other potential energy conservation projects in these industries is also presented in the appendix. (MCW)

Kusik, C.L.; Parameswaran, K.; Nadkarni, R.; O& #x27; Neill, J.K.; Malhotra, S.; Hyde, R.; Kinneberg, D.; Fox, L.; Rossetti, M.

1981-01-01T23:59:59.000Z

170

Shale gas for the petrochemical industry: Incorporation of novel technologies  

Science Journals Connector (OSTI)

Abstract In this work, a new shale gas-based polygeneration system with essentially zero CO2 emissions is proposed that co-produces methanol, dimethyl ether (DME), olefins and power. The thermal and economic analysis of the proposed process is performed to determine the optimum product portfolio regarding current market prices. The optimization results show that production of methanol/DME and power can improve the performance of the olefin production section significantly. Therefore, the proposed plant can link the shale gas industry to the petrochemical sector efficiently and in an environmentally friendly way.

Yaser Khojasteh Salkuyeh; Thomas A. Adams II

2014-01-01T23:59:59.000Z

171

Existing and anticipated technology strategies for reducing greenhouse gas emissions in Korea’s petrochemical and steel industries  

Science Journals Connector (OSTI)

This study examines the existing and anticipated technology strategies for reducing greenhouse gas (GHG) emissions in Korea’s petrochemical and steel industries. The results of the cluster analysis identify three types of technology strategies employed by firms for reducing GHG emissions: “wait-and-see” “in-process-focused”, and “all-round” strategies. The “in-process-focused” strategy was the most widely used strategy, followed by the “all-round” strategy. However, firms in these industries are expected to change their technology strategies to “treatment-reliance”, “inbound-substitution”, and “all-round” strategies in 5–10 years by employing a wider range of technology options to respond more effectively to the issue of GHG emissions. The demand for new energy sources and raw material substitutes is expected to strengthen in the near future as related technologies advance rapidly and become more widely available.

Su-Yol Lee

2013-01-01T23:59:59.000Z

172

The impact of manufacturing offshore on technology development paths in the automotive and optoelectronics industries  

E-Print Network (OSTI)

This dissertation presents a two-case study of the impact of manufacturing offshore on the technology trajectory of the firm and the industry. It looks in particular at the automotive and optoelectronics industries. The ...

Fuchs, Erica R. H. (Erica Renee H.), 1977-

2006-01-01T23:59:59.000Z

173

Defying value-shift : how incumbents regain values in the industry with new technologies  

E-Print Network (OSTI)

Historically, incumbent assembly firms with unquestionable strong positions in such industries as the automobile, consumer electronics, computer and mobile phone industries, have lost power when new technology is introduced; ...

Kuramoto, Yukari

2010-01-01T23:59:59.000Z

174

21-389 Technology and Environmental Deterioration in Pre-Industrial Societies Chapter 21. TECHNOLOGY AND ENVIRONMENTAL  

E-Print Network (OSTI)

21-389 Technology and Environmental Deterioration in Pre-Industrial Societies Chapter 21. TECHNOLOGY AND ENVIRONMENTAL DETERIORATION IN PRE-INDUSTRIAL SOCIETIES One assumption made by most... [is... Robert Heizer 1955 More than one half [of the extent of the Roman Em- pire] is either deserted

Richerson, Peter J.

175

A Global Technology Roadmap on Carbon Capture and Storage in Industry |  

Open Energy Info (EERE)

A Global Technology Roadmap on Carbon Capture and Storage in Industry A Global Technology Roadmap on Carbon Capture and Storage in Industry Jump to: navigation, search Tool Summary LAUNCH TOOL Name: A Global Technology Roadmap on Carbon Capture and Storage in Industry Agency/Company /Organization: United Nations Industrial Development Organization Focus Area: Industry Topics: Pathways analysis, Technology characterizations Resource Type: Publications Website: www.unido.org/index.php?id=1000821 References: A Global Technology Roadmap on Carbon Capture and Storage in Industry[1] CO2 Capture and Storage (CCS) is a key technology option for greenhouse gas (GHG) emissions mitigation. Recent studies suggest that CCS would contribute 19% of the total global mitigation that is needed for halving global GHG emissions by 2050. Overview

176

Maximum Achievable Control Technology for New Industrial Boilers (released in AEO2005)  

Reports and Publications (EIA)

As part of Clean Air Act 90 (CAAA90, the EPA on February 26, 2004, issued a final rulethe National Emission Standards for Hazardous Air Pollutants (NESHAP) to reduce emissions of hazardous air pollutants (HAPs) from industrial, commercial, and institutional boilers and process heaters. The rule requires industrial boilers and process heaters to meet limits on HAP emissions to comply with a Maximum Achievable Control Technology (MACT) floor level of control that is the minimum level such sources must meet to comply with the rule. The major HAPs to be reduced are hydrochloric acid, hydrofluoric acid, arsenic, beryllium, cadmium, and nickel. The EPA predicts that the boiler MACT rule will reduce those HAP emissions from existing sources by about 59,000 tons per year in 2005.

2005-01-01T23:59:59.000Z

177

New Concepts in Hardware and Processes to Conserve Oil and Gas in Industrial Processes  

E-Print Network (OSTI)

Programs of the U.S. Department of Energy, Argonne interacted with 130 industrial companies to help define and evaluate appropriate areas of technology. The initial step was to assemble a master list of technologies that promised to conserve oil and gas...

Humphrey, J. L.

1982-01-01T23:59:59.000Z

178

A Critical Analysis of Technological Innovation and Economic Development in Southern California's Urban Water Reuse And Recycling Industry  

E-Print Network (OSTI)

country also targeted “clean technologies”, such as waters renewable energy and clean technology industries. (ibid,and clean tech. In clean technologies, in which water

Pilip-Florea, Shadrach Jay

2012-01-01T23:59:59.000Z

179

Separation of heavy metals from industrial waste streams by membrane separation technology  

SciTech Connect

Industrial membrane technology is becoming increasingly attractive as a low-cost generic separation technique for volume reduction, recovery, and/or purification of the liquid phase and concentration and/or recovery of the contaminant or solute. It offers outstanding future potential in the reduction and/or recycling of hazardous pollutants from waste streams. Membrane separation technology may include: (1) commercial processes such as electrodialysis, reverse osmosis, nanofiltration, and ultrafiltration and (2) the development of hybrid processes such as liquid membranes, Donnan dialysis, and membrane bioreactor technology. Membrane separation technology as applied to waste treatment/reduction and environmental engineering problems has several advantages over conventional treatment processes. In contrast to distillation and solvent extraction membrane separation is achieved without a phase change and use of expensive solvents. The advantages of this technology are (1) low energy requirements; (2) small volumes of retentate that need to be handled; (3) selective removal of pollutants with the use of complexing agents and biocatalysts or by membrane surface modification; (4) the possibility for achieving zero discharge'' with reuse of product water, binding media and target, compounds; (5) continuous operation; (6) modular design without significant size limitations; (7) discrete membrane barrier to ensure physical separation of contaminants; and (8) minimal labor requirement.

Yichu Huang; Koseoglu, S.S. (Texas A and M Univ. System, College Station, TX (United States). Engineering Biosciences Research Center)

1993-01-01T23:59:59.000Z

180

Lithium bromide chiller technology in gas processing  

SciTech Connect

Lithium Bromide (LiBr) Absorption Chillers have been in use for more than half a century, mainly in the commercial air conditioning industry. The Gas Research Institute and EnMark Natural Gas Company co-funded a field test to determine the viability of this commercial air conditioning technology in the gas industry. In 1991, a 10 MMCFC natural gas conditioning plant was constructed in Sherman, Texas. The plant was designed to use a standard, off-the-shelf chiller from Trane with a modified control scheme to maintain tight operating temperature parameters. The main objective was to obtain a 40 F dewpoint natural gas stream to meet pipeline sales specifications. Various testing performed over the past three years has proven that the chiller can be operated economically and on a continuous basis in an oilfield environment with minimal operation and maintenance costs. This paper will discuss how a LiBr absorption chiller operates, how the conditioning plant performed during testing, and what potential applications are available for LiBr chiller technology.

Huey, M.A.; Leppin, D.

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "industrial process technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

DOE Fuel Cell Technologies Office Record 14009: Industry Deployed Fuel Cell Backup Power (BuP)  

Energy.gov (U.S. Department of Energy (DOE))

This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about fuel cell backup power deployed by industry.

182

AMO Industrial Distributed Energy: Immediate Deployment of Waste Energy Technologies at Multiple Sites  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet overviewing Verso Paper Corp. project that will deploy industrial technologies to recover and reuse water and steam at pulp and paper facilities.

183

DOE Fuel Cell Technologies Office Record 14010: Industry Deployed Fuel Cell Powered Lift Trucks  

Energy.gov (U.S. Department of Energy (DOE))

This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about fuel cell powered lift trucks deployed by industry.

184

" Row: Industry-Specific Technologies within Selected NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Number of Establishments by Usage of Energy-Saving Technologies for Specific Industries, 1998;" 3. Number of Establishments by Usage of Energy-Saving Technologies for Specific Industries, 1998;" " Level: National Data; " " Row: Industry-Specific Technologies within Selected NAICS Codes;" " Column: Usage;" " Unit: Establishment Counts." ,,,,,"RSE" "NAICS"," ",,,,"Row" "Code(a)","Industry-Specific Technology","In Use(b)","Not in Use","Don't Know","Factors" ,,"Total United States" ,"RSE Column Factors:",1.3,0.5,1.5 , 311,"FOOD" ," Infrared Heating",762,13727,2064,1.8 ," Microwave Drying",270,14143,2140,2.5

185

The associate of applied science degree in process technology combines the technical courses needed to become well versed in the  

E-Print Network (OSTI)

PROCESS TECHNOLOGY The associate of applied science degree in process technology combines the technical courses needed to become well versed in the process industry with the academic courses needed the opportunity to gain practical experience and exposure to a wide variety of career options. The process

Ickert-Bond, Steffi

186

Full report: Assessment and opportunity identification of energy efficient pollution prevention technologies and processes  

SciTech Connect

US industry produces about 12 billion tons of waste a year, or two-thirds of the waste generated in the US. The costs of handling and disposing of these wastes are significant, estimated to be between $25 and $43 billion in 1991, and represent an increase of 66% since 1986. US industry also uses about one-third of all energy consumed in the nation, which adds to the environmental burden. Industrial wastes affect the environmental well-being of the nation and, because of their growing costs, the competitive abilities of US industry. As part of a national effort to reduce industrial wastes, the US Congress passed the Energy Policy Act (EPAct, P.L. 102-486). Section 2108, subsections (b) and (c), of EPAct requires the Department of Energy (DOE) to identify opportunities to demonstrate energy efficient pollution prevention technologies and processes; to assess their availability and the energy, environmental, and cost effects of such technologies; and to report the results. Work for this report clearly pointed to two things, that there is insufficient data on wastes and that there is great breadth and diversity in the US industrial sector. This report identifies: information currently available on industrial sector waste streams, opportunities for demonstration of energy efficient pollution prevention technologies in two industries that produce significant amounts of waste--chemicals and petroleum, characteristics of waste reducing and energy saving technologies identifiable in the public literature, and potential barriers to adoption of waste reducing technologies by industry.

Not Available

1994-11-01T23:59:59.000Z

187

The Wool Industries Research Association: New Laboratories for Worsted Processing  

Science Journals Connector (OSTI)

... THE new Worsted Processing Block at Torridon, the Leeds headquarters of the Wool Industries Research Association, was opened by the Right Hon. R. G. Menzies, ... been very active in the Association's affairs since 1929, particularly in the field of scouring and combing, and also in that of finance-an impor tant aspect when new ...

H. LEMON

1961-04-22T23:59:59.000Z

188

A SYSTEMS APPROACH TO MATHEMATICAL MODELING OF INDUSTRIAL PROCESSES  

E-Print Network (OSTI)

/or partial automation of the creative modeling process. Model Generation is a new modeling paradigm designed specifically for rapid modeling of large multi-scale systems in the industrial practice. It proposes model. Keywords: Dynamic and continuous/discrete simulation, computer-aided modeling, symbolic

Linninger, Andreas A.

189

GLOBAL OPTIMIZATION OF ENERGY AND PRODUCTION IN PROCESS INDUSTRIES: A  

E-Print Network (OSTI)

) The task of the auxiliary boiler, together with the recovery boiler, is to produce high-pressure steam (HPS: The process industries exhibit an increasing need for efficient management of all the factors that can reduce (collection and treatment) depart- ment, the auxiliary boiler and the turbogenerator. The water department

Neumaier, Arnold

190

1 INTRODUCTION In industrial mixing processes, as twin screw  

E-Print Network (OSTI)

the domain occupied by the fluid inside a portion of a twin screw extruder or a batch mixer. For a Newtonian-set/Hamilton-Jacobi method. Two flow case studies will be presented in this paper: the flow within a twin-screw extruder1 INTRODUCTION In industrial mixing processes, as twin screw compounding or batch mixing

Paris-Sud XI, Université de

191

Service extraction from operator procedures in process industries  

Science Journals Connector (OSTI)

Procedures are a common knowledge form in process industries such as refineries. A typical refinery captures hundreds of procedures documenting actions that operators must follow. Maintaining the action-knowledge contained in these procedures is important ... Keywords: heuristics, knowledge modules, knowledge representation, service extraction

Jingwen He; Sandeep Purao; Jon Becker; David Strobhar

2011-05-01T23:59:59.000Z

192

Securing major investment in the UK timber processing industry  

E-Print Network (OSTI)

Egger UK Securing major investment in the UK timber processing industry objectives An Austrian, for a £100 million investment. Egger UK supplies 25% of the UK demand for chipboard. Investment in a new. This investment will catalyse active woodland management helping to create and maintain vital habitats for rare

193

Considering the customer : determinants and impact of using technology on industry evolution  

E-Print Network (OSTI)

This dissertation raises two questions: How do customers come to understand and use a technology? What is the influence of customers using a technology on industry evolution and competition? I use two historical cases to ...

Kahl, Steven J. (Steven John)

2007-01-01T23:59:59.000Z

194

South Korean technology policies for the industrial competitiveness between Japan and China  

E-Print Network (OSTI)

(cont.) In addition, this paper will propose new technology policies for Korea in order to secure its position as a leader in the information technology (IT) industry, particularly in the context of its relationships with ...

Lee, Sanghoon, S.M. Massachusetts Institute of Technology, Dept. of Urban Studies and Planning

2006-01-01T23:59:59.000Z

195

Monitoring Industrial Pharmaceutical Crystallization Processes Using Acoustic Emission in Pure and Impure Media.  

E-Print Network (OSTI)

Monitoring Industrial Pharmaceutical Crystallization Processes Using Acoustic Emission in Pure processes was almost never evaluated in the field of industrial pharmaceutical crystallization. Few papers. Introduction The pharmaceutical industry is set against strong requests on behalf of both consumers

Paris-Sud XI, Université de

196

Redesigning Process Cooling Systems in the Plastics Industry  

E-Print Network (OSTI)

REDESIGNING PROCESS COOLING SYSTEMS IN THE PLASTICS INDUSTRY Glen R Anderson - Senior Energy Analyst - etc Group, Inc - Salt Lake City, UT ABSTRACT Lifetime Products grew their plastics division rapidly starting in the mid 1990’s.... During this growth, their support systems were designed with one thing in mind – ensuring adequate capacity. Energy consumption was a much lower priority with their process cooling systems, resulting in inefficient chillers, oversized pumps...

Anderson, G. R.

2006-01-01T23:59:59.000Z

197

Potential Assessment in Mexico for Solar Process Heat Applications in Food and Textile Industries  

Science Journals Connector (OSTI)

Abstract Industrial sector of Mexico is the second energy consumer, approximately 28% of the national consumption, according to the National Balance of Energy. A potential study carried out within the micro and small food and textile industries has established that they are using 68% of the total energy consumption as thermal energy, most supplied by liquefied gas and followed by natural gas and diesel. The processes use water, low and medium pressure steam mainly at temperatures from 60 to 180 °C. In this context, solar concentrators, especially parabolic troughs, could give an important portion of the required thermal energy. The introduction in the country of a strategy change in the use of the energy is a formidable challenge. Beginning in the country with the erection of small parabolic trough plants in such industries could allow a technical and economic advancement of the technology and the benefits could be presented almost immediately. The methodology for the potential assessment for solar process heat applications in food and textile industries was based on statistical information from the National Balance of Energy, the National Directory of Economic Units and together with questionnaires, phone calls, workshops and in some cases personal interviews. According to such considerations, three scenarios were established and will be described within this paper in terms of the potential of the parabolic trough technology applied in the appropriated industries.

C. Ramos; R. Ramirez; J. Beltran

2014-01-01T23:59:59.000Z

198

Installation of Reverse Osmosis Unit Reduces Refinery Energy Consumption: Office of Industrial Technologies (OIT) BestPractices Petroleum Technical Case Study  

SciTech Connect

This case study is the latest in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. The case studies document the activities, savings, and lessons learned on these projects.

U.S. Department of Energy

2001-08-06T23:59:59.000Z

199

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

An Exploration of Innovation and An Exploration of Innovation and Energy Efficiency in an Appliance Industry Prepared by Margaret Taylor, K. Sydny Fujita, Larry Dale, and James McMahon For the European Council for an Energy Efficient Economy March 29, 2012 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL - 5689E An Exploration of Innovation and Energy Efficiency in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and direction of technological change of product industries; the factors that underlie the outcomes of innovation in these industries; and the ways the innovation system might respond to any given intervention. The report provides an overview of the dynamics of energy efficiency policy and innovation in the appliance

200

Demand Response Enabling Technologies and Approaches for Industrial Facilities  

E-Print Network (OSTI)

, there are also huge opportunities for demand response in the industrial sector. This paper describes some of the demand response initiatives that are currently active in New York State, explaining applicability of industrial facilities. Next, we discuss demand...

Epstein, G.; D'Antonio, M.; Schmidt, C.; Seryak, J.; Smith, C.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial process technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network (OSTI)

China’s Largest Industrial Enterprises Through the Top-1000Top-1000 Energy-Consuming Enterprises Program:Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China.

Price, Lynn

2008-01-01T23:59:59.000Z

202

Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 1  

SciTech Connect

In July, 1994, a team of materials specialists from Sandia and U S Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

Zanner, F.J.; Moffatt, W.C.

1995-07-01T23:59:59.000Z

203

Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 2  

SciTech Connect

In July, 1994, a team of materials specialists from Sandia and US. Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US. Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

Zanner, F.J.; Moffatt, W.C.

1995-07-01T23:59:59.000Z

204

Overview of the government/industry workshop on opportunities for new materials in pulp and paper processing  

SciTech Connect

This report presents a synopsis of the presentations made at the two-day workshop conducted in Portland, Oregon, on August 12 and 13, 1993, for the Advanced Industrial Concepts division (AICD) of the US Department of Energy (DOE) Office of Industrial Technologies (OIT) and DOE national laboratory representatives from the pulp and paper industry. The information from the presentations is supplemented by additional statistics, as appropriate. The workshop objectives were (1) to develop a strategy and framework for collaboration between the pulp and paper industries and DOE`s national laboratories, (2) to identify major challenges to pulp and paper industry modernization, and (3) to identify research objectives for DOE national laboratories to improve materials and process technology in pulp and paper mills. Prior to the workshop, participants had the opportunity to tour paper mills and gain familiarity with pulp and paper processing methods. During the workshop, research needs for materials and processing that were identified at earlier AICD workshops were reviewed. Major problems of the pulp and paper industry were addressed, and ways in which DOE national laboratories are interacting with other industries to foster innovation and solve problems were presented. As a result of this and other workshops, a Pulp Paper Mill of the future strategy is being developed to address challenges identified in these proceedings. Continued efforts are expected by AICD to match candidate materials and processes from DOE national laboratories with the technology needs of pulp and paper mills.

Young, J.K.; Fowler, R.A.

1994-05-01T23:59:59.000Z

205

How to use Big Data technologies to optimize operations in Upstream Petroleum Industry  

E-Print Network (OSTI)

How to use Big Data technologies to optimize operations in Upstream Petroleum Industry Abdelkader generated by the Petroleum Industry and particularly its upstream segment? Upstream is no stranger to Big the desired outcomes? Keywords Big Data; Analytics; Upstream Petroleum Industry; Knowledge Management; KM

Paris-Sud XI, Université de

206

How to use Big Data technologies to optimize operations in Upstream Petroleum Industry  

E-Print Network (OSTI)

How to use Big Data technologies to optimize operations in Upstream Petroleum Industry Abdelkader for it to have value. But what about Big Data generated by the Petroleum Industry and particularly its upstream; Analytics; Upstream Petroleum Industry; Knowledge Management; KM; Business Intelligence; BI; Innovation

Boyer, Edmond

207

Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program  

E-Print Network (OSTI)

Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program U.S. Department of Energy Office of Energy Efficiency and Renewable Energy for a comprehensive, physics- based model of dimensional changes and hot tearing. Hot Tear #12;Industrial Technologies

Beckermann, Christoph

208

The Use of Smart Materials Technologies in Radiation Environment and Nuclear Industry  

E-Print Network (OSTI)

1 The Use of Smart Materials Technologies in Radiation Environment and Nuclear Industry Victor ABSTRACT Application of smart materials technology in nuclear industry offer new opportunities a unique challenge to the testing, qualification and use of smart materials. The present study assesses

Giurgiutiu, Victor

209

ITP Industrial Materials: Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet overviewing project that reduces the cost of carbon fiber raw materials and processing technologies

210

Introduction to the Industrial Technologies Program (ITP) Webinar, January 15, 2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jim Quinn Jim Quinn Industrial Technologies Program U.S. Department of Energy Introduction to the Industrial Technologies Program (ITP) Webinar January 15, 2009 2 U.S. Industry and Energy Use R&D Program Technology Delivery Partnerships Energy Management Approach Opportunities Outline 3 Industrial Technologies Program (ITP) Mission Improve national energy security, climate, environment, and economic competitiveness by transforming the way U.S. industry uses energy. 4 Industry: Key to U.S. Economic & Energy Security U.S. manufacturing sector * Consumes more energy than any other economic sector (~32 quads) * Produces about 1,670 MMT CO 2 per year from energy use * Makes highest contribution to GDP (12%) * Produces nearly a quarter of world manufacturing output * Supplies >60% of US exports, worth $50

211

Recent Technological Developments in Industrialized Production of Housing  

Science Journals Connector (OSTI)

...Technology Review" article "Man-Centered Standards for Technology"8 called for the early development of such evaluation standards for the application of technologies...prefabrication of plumbing, electrical, and HVAC services in either utility panels or...

T. Y. Lin; S. D. Stotesbury

1970-01-01T23:59:59.000Z

212

Waste Heat Management Options: Industrial Process Heating Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Management Options Heat Management Options Industrial Process Heating Systems By Dr. Arvind C. Thekdi E-mail: athekdi@e3minc.com E3M, Inc. August 20, 2009 2 Source of Waste Heat in Industries * Steam Generation * Fluid Heating * Calcining * Drying * Heat Treating * Metal Heating * Metal and Non-metal Melting * Smelting, agglomeration etc. * Curing and Forming * Other Heating Waste heat is everywhere! Arvind Thekdi, E3M Inc Arvind Thekdi, E3M Inc 3 Waste Heat Sources from Process Heating Equipment * Hot gases - combustion products - Temperature from 300 deg. F. to 3000 deg.F. * Radiation-Convection heat loss - From temperature source of 500 deg. F. to 2500 deg. F. * Sensible-latent heat in heated product - From temperature 400 deg. F. to 2200 deg. F. * Cooling water or other liquids - Temperature from 100 deg. F. to 180 deg. F.

213

Process Heating Roadmap to Help U.S. Industries Be Competitive  

Energy.gov (U.S. Department of Energy (DOE))

This brief summarizes the development of a comprehensive plan for meeting industrial process heating needs started by the Industrial Heating Equipment Association (IHEA) and DOE in 1999.

214

Technological, economic and financial prospects of carbon dioxide capture in the cement industry  

Science Journals Connector (OSTI)

Abstract Cement is the second largest anthropogenic emission source, contributing approximately 7% of global CO2 emissions. Carbon dioxide capture and storage (CCS) technology is considered by the International Energy Agency (IEA) as an essential technology capable of reducing CO2 emissions in the cement sector by 56% by 2050. The study compares CO2 capture technologies for the cement manufacturing process and analyses the economic and financial issues in deploying CO2 capture in the cement industry. Post-combustion capture with chemical absorption is regarded as a proven technology to capture CO2 from the calcination process. Oxyfuel is less mature but Oxyfuel partial capture—which only recycles O2/CO2 gas in the precalciner—is estimated to be more economic than post-combustion capture. Carbonate looping technologies are not yet commercial, but they have theoretical advantages in terms of energy consumption. In contrast with coal-fired power plants, CO2 capture in the cement industry benefits from a higher concentration of CO2 in the flue gas, but the benefit is offset by higher \\{SOx\\} and \\{NOx\\} levels and the smaller scale of emissions from each plant. Concerning the prospects for financing cement plant CO2 capture, large cement manufacturers on average have a higher ROE (return on equity) and lower debt ratio, thus a higher discount rate should be considered for the cost analysis than in power plants. IEA estimates that the incremental cost for deploying CCS to decarbonise the global cement sector is in the range US$350–840 billion. The cost estimates for deploying state-of-the art post-combustion CO2 capture technologies in cement plants are above $60 to avoid each tonne of CO2 emissions. However, the expectation is that the current market can only provide a minority of financial support for CO2 capture in cement plants. Public financial support and/or CO2 utilisation will be essential to trigger large-scale CCS demonstration projects in the cement industry.

Jia Li; Pradeep Tharakan; Douglas Macdonald; Xi Liang

2013-01-01T23:59:59.000Z

215

Energy Conservation through Solar Energy Assisted Dryer for Plastic Processing Industry  

Science Journals Connector (OSTI)

Abstract Consumption of plastics is directly linked with economic growth of plastic industry of respective country. India's plastics consumption is only about 2% of the world. Despite of proposed growth, higher cost of Energy requirement for processing are obstructing growth of plasticulture. Energy efficiency/conservation measures in plastic processing requires attention to harness alternate energy sources through technological modifications during material processing. This paper depicts practical solution for partial usage of non- conventional energy source; solar energy in conventional plastic process method. About3-5% of total energy required for processing is utilized for drying and precondition of material. Thus attempt is made to use solar energy for drying of Nylon-6 and polypropylene (PP) by designing natural convection based Solar Dryer. Drying of Nylon-6 is found to be in the falling rate period. Nylon-6 took nearly 6 hrs. (1days) to reach 0.15% moisture content value. Effective diffusivity is varied from 4 - 6.5 X 10-9cm2/sec. Temperature rise for PP material is achieved up to 70 °C in the dryer, hence preheating is achieved with same dryer design. Solar dryer can certainly reduce conventional energy consumption during plastic processing at industrial scale. Cost benefit analysis shows that adaptation of solar energy dryer for plastic process industry lead to economic production of plastic goods.

D.H. Kokate; D.M. Kale; V.S. Korpale; Y.H. Shinde; S.V. Panse; S.P. Deshmukh; A.B. Pandit

2014-01-01T23:59:59.000Z

216

TECHNOLOGY VISION 2020: The U.S. Chemical Industry  

Energy.gov (U.S. Department of Energy (DOE))

The chemical industry faces heightened challenges as it enters the 21st century. Five major forces are among those shaping the topography of its business landscape

217

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network (OSTI)

60% of total primary energy consumption, compared to theShare of Total Primary Energy Consumption World US Chinaof industrial primary energy consumption in The Netherlands.

Price, Lynn

2008-01-01T23:59:59.000Z

218

Fuel Cell Technologies Office Record 14010 ? Industry Deployed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

10 (Rev. 1) Date: 08122014 Title: Industry Deployed Fuel Cell Powered Lift Trucks Originators: Pete Devlin, Kristian Kiuru Approved by: Sunita Satyapal and Rick Farmer Date: 08...

219

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 7: Methodology for Technology Tracking and Assessment of Benefits  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

191 DOE Industrial Technologies Program 191 DOE Industrial Technologies Program Appendix 7: Methodology for Technology Tracking and Assessment of Benefits u Technology Tracking............................................................................................................................................ 192 u Methods of Estimating Benefits.............................................................................................................................. 192 u Deriving the ITP Cost/Benefit Curve ...................................................................................................................... 193 Methodology for Technology Tracking and Assessment of Benefits

220

The Impact of Manufacturing Offshore on Technology Development Paths in the Automotive and Optoelectronics Industries  

E-Print Network (OSTI)

The Impact of Manufacturing Offshore on Technology Development Paths in the Automotive Systems and Civil and Environmental Engineering #12;The Impact of Manufacturing Offshore on Technology of the impact of manufacturing offshore on the technology trajectory of the firm and the industry. It looks

de Weck, Olivier L.

Note: This page contains sample records for the topic "industrial process technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

ITP Glass: Glass Industry Technology Roadmap; April 2002  

Energy.gov (U.S. Department of Energy (DOE))

Glass is a unique material that has been produced for thousands of years. The glass industry's products are an integral part of the American economy and everyday life. Glass products are used in food and beverage packaging, lighting, communications, etc.

222

Emerging Technologies for Industrial Demand-Side Management  

E-Print Network (OSTI)

this problem is to move the loads from peak to off-peak periods without changing overall electricity consumption. By using cool storage systems, energy consumption for businesses and industry can be shifted, reducing electricity costs to the consumer...

Neely, J. E.; Kasprowicz, L. M.

223

Fuel Cell Technologies Office Record 14009 ? Industry Deployed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

09 (Rev. 1) Date: 08122014 Title: Industry Deployed Fuel Cell Backup Power (BuP) Originators: Pete Devlin, Kristian Kiuru Approved by: Sunita Satyapal and Rick Farmer Date: 08...

224

The Impact of Control Technology on the Demand Response Potential of California Industrial Refrigerated Facilities Final Report  

E-Print Network (OSTI)

and Automated Demand Response in Industrial RefrigeratedDemand Response .. ..Technology on the Demand Response Potential of California

Scott, Doug

2014-01-01T23:59:59.000Z

225

Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies, June 1999  

Energy.gov (U.S. Department of Energy (DOE))

Assessment of the potential of CHP technologies to reduce carbon emissions in the US chemicals and pulp and paper industries.

226

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IMPACTS IMPACTS Industrial Technologies Program: Summary of Program Results for CY 2009 Boosting the Productivity and Competitiveness of U.S. Industry Foreword Foreword A robust U.S. industrial sector relies on a secure and affordable energy supply. While all Americans are feeling the pinch of volatile energy prices, project financial-constriction impacts on industry are especially acute. Uncertainty over energy prices, emission regulations, and sources of financing not only hurt industrial competitiveness - together they have the potential to push U.S. manufacturing operations offshore, eliminate jobs that are the lifeline for many American

227

Comments About The Impact of Federal Technology Transfer on the Commercialization Process  

Science Journals Connector (OSTI)

Much has been said about technology transfer and little about technology commercialization. My comments will focus on the commercialization of public sector technology by industry.

James P. Wilhelm

1994-01-01T23:59:59.000Z

228

Cogeneration handbook for the food processing industry. [Contains glossary  

SciTech Connect

The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the food processing industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

Eakin, D.E.; Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Fasbender, A.G.; Gorges, H.A.

1984-03-01T23:59:59.000Z

229

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Introduction  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IMPACTS IMPACTS Industrial Technologies Program: Summary of Program Results for CY 2009 Boosting the Productivity and Competitiveness of U.S. Industry Foreword Foreword A robust U.S. industrial sector relies on a secure and affordable energy supply. While all Americans are feeling the pinch of volatile energy prices, project financial-constriction impacts on industry are especially acute. Uncertainty over energy prices, emission regulations, and sources of financing not only hurt industrial competitiveness - together they have the potential to push U.S. manufacturing operations offshore, eliminate jobs that are the lifeline for many American families, and weaken a sector of the economy that serves as the backbone of U.S. gross domestic product. The Industrial Technologies Program (ITP) is actively

230

Recent Advancements in Energy-Saving Technologies for the Metallurgical and Mining Industries  

Science Journals Connector (OSTI)

A large portion of the collected articles are dedicated to address the technological advancements and convention-defying concepts for the iron and steel industry. In the article titled “Methods for Calculating Energy

Cong Wang

2014-09-01T23:59:59.000Z

231

Energy Technology Transfer for Industry Through the Texas Energy Extension Service  

E-Print Network (OSTI)

ENERGY TECHNOLOGY TRANSFER FOR INDUSTRY THROUGH THE TEXAS ENERGY EXTENSION SERVICE Stephen Riter Texas Energy Extension Service. Texas A&M University College Station, Texas ABSTRACT The Texas Energy Extension Service (EES) is one of ten...

Riter, S.

1979-01-01T23:59:59.000Z

232

The impact of angel investors on founders of new ventures in the medical technology industry  

E-Print Network (OSTI)

Founders of new ventures in the medical technology (Medtech) industry require capital to establish, sustain, and grow their companies. Most founders must seek some form of external capital to meet these demands; in Medtech, ...

Braly, Alan R. (Alan Ryan)

2011-01-01T23:59:59.000Z

233

Technologies, markets and challenges for development of the Canadian Oil Sands industry  

E-Print Network (OSTI)

This paper provides an overview of the current status of development of the Canadian oil sands industry, and considers possible paths of further development. We outline the key technology alternatives, critical resource ...

Lacombe, Romain H.

2007-01-01T23:59:59.000Z

234

Technological innovation in industry and the role of the Royal Society  

Science Journals Connector (OSTI)

...in areas of built environment, clean technology...and the built-environment innovators Professor...Council, Natural Environment Research Council...alternatively, a scientist or engineer in industry to work...parental or caring responsibilities and health issues...

2010-01-01T23:59:59.000Z

235

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network (OSTI)

and Renewable Energy, Wind & Hydropower Technologiesand Renewable Energy, Wind & Hydropower Technologies2004. International Wind Energy Development, World Market

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

236

Waste disposal and treatment in the food-processing industry. (Latest citations from the Biobusiness data base). Published Search  

SciTech Connect

The bibliography contains citations concerning waste treatment and disposal in the food processing industry. Methods, equipment, and technology are considered. Specific areas include waste heat recovery, and food industry wastes from meat and seafood processing, dairy and beverage production, and processing of fruits and vegetables. The citations explore conversion of the treated waste to fertilizer, and uses in animal feeds, combustion for energy production, biogas production, and composting. The recovery and recycling of usable chemicals from the food waste is also covered. Food packaging recycling is considered in a related bibliography. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1992-08-01T23:59:59.000Z

237

NORTH CAROLINA 2013-2014 CLEAN TRANSPORTATION TECHNOLOGY INDUSTRY DIRECTORY  

E-Print Network (OSTI)

on following categories to jump to specific section Biodiesel Electric Vehicles Hybrid Electric Vehicles (Light Duty) Plug-In Hybrid Vehicles (Light Duty) Electric Low-Speed Vehicles Ethanol Natural Gas and Propane (CNG/LPG) Heavy Duty Vehicles Diesel Retrofit Technologies Idle Reduction Technologies Motor

238

Direction of CRT waste glass processing: Electronics recycling industry communication  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Given a large flow rate of CRT glass {approx}10% of the panel glass stream will be leaded. Black-Right-Pointing-Pointer The supply of CRT waste glass exceeded demand in 2009. Black-Right-Pointing-Pointer Recyclers should use UV-light to detect lead oxide during the separation process. Black-Right-Pointing-Pointer Recycling market analysis techniques and results are given for CRT glass. Black-Right-Pointing-Pointer Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

Mueller, Julia R., E-mail: mueller.143@osu.edu [Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, OH (United States) and University of Queensland, School of Chemical Engineering (Australia) and Ohio State University, Materials Science and Engineering, OH (United States); Boehm, Michael W. [University of Queensland, School of Chemical Engineering (Australia); Drummond, Charles [Ohio State University, Materials Science and Engineering, OH (United States)

2012-08-15T23:59:59.000Z

239

Development of a process control sensor for the glass industry  

SciTech Connect

This project was initiated to fill a need in the glass industry for a non-contact temperature sensor for glass melts. At present, the glass forming industry (e.g., bottle manufacture) consumes significant amounts of energy. Careful control of temperature at the point the bottle is molded is necessary to prevent the bottle from being rejected as out-of-specification. In general, the entire glass melting and conditioning process is designed to minimize this rejection rate, maximize throughput and thus control energy and production costs. This program focuses on the design, development and testing of an advanced optically based pyrometer for glass melts. The pyrometer operates simultaneously at four wavelengths; through analytical treatment of the signals, internal temperature profiles within the glass melt can be resolved. A novel multiplexer alloys optical signals from a large number of fiber-optic sensors to be collected and resolved by a single detector at a location remote from the process. This results in a significant cost savings on a per measurement point basis. The development program is divided into two phases. Phase 1 involves the construction of a breadboard version on the instrument and its testing on a pilot-scale furnace. In Phase 2, a prototype analyzer will be constructed and tested on a commercial forehearth. This report covers the Phase 1 activities.

Gardner, M.; Candee, A.; Kramlich, J.; Koppang, R.

1991-05-01T23:59:59.000Z

240

Innovative Materials Processing Technologies Ltd IMPT | Open Energy  

Open Energy Info (EERE)

Processing Technologies Ltd IMPT Processing Technologies Ltd IMPT Jump to: navigation, search Name Innovative Materials Processing Technologies Ltd (IMPT) Place United Kingdom Zip NG1 1GF Sector Solar Product UK-based manufacturer of non-vacuum coating systems for fuel cells and solar sectors. References Innovative Materials Processing Technologies Ltd (IMPT)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Innovative Materials Processing Technologies Ltd (IMPT) is a company located in United Kingdom . References ↑ "Innovative Materials Processing Technologies Ltd (IMPT)" Retrieved from "http://en.openei.org/w/index.php?title=Innovative_Materials_Processing_Technologies_Ltd_IMPT&oldid=346972

Note: This page contains sample records for the topic "industrial process technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 6: Method of Calculating Results from DOE's Combined Heat and Power Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

87 DOE Industrial Technologies Program 87 DOE Industrial Technologies Program Appendix 6: Method of Calculating Results from DOE's Combined Heat and Power Activities u CHP Table........................................................................................................................................................................................... 189 Method of Calculating Results from DOE's Combined Heat and Power Activities Industrial Distributed Energy, a cross-cutting activity within the Industrial Technologies Program (ITP), builds on activities conducted by DOE's Office of Industrial Technologies

242

Materials Constraints in the High Temperature Industrial Technologies  

Science Journals Connector (OSTI)

This topic is concerned solely with those aspects of combustion technology where materials are exposed directly to the combustion gas. It will be considered in two parts; first, materials requirements within t...

Dr. B. Meadowcroft; D. Lloyd; K. Joon…

1989-01-01T23:59:59.000Z

243

Thompson Technology Industries Inc TTI | Open Energy Information  

Open Energy Info (EERE)

Industries, Inc. (TTI) Industries, Inc. (TTI) Place Novato, California Zip 94949 Product California-based maker of PV tracking systems, mounting and monitoring systems. Coordinates 38.106075°, -122.567889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.106075,"lon":-122.567889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

244

Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program  

E-Print Network (OSTI)

Technologies Program A Strong Energy Portfolio for a Strong America Energy efficiency and clean, renewableBringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program U.S. Department of Energy Office of Energy Efficiency and Renewable Energy

Beckermann, Christoph

245

Roadmap: Industrial Trades Technology Associate of Technical Study [RE-ATS-ITTN  

E-Print Network (OSTI)

Roadmap: Industrial Trades Technology ­ Associate of Technical Study [RE-ATS-ITTN] Regional College Catalog Year: 2013-2014 Page 1 of 1 | Last Updated: 25-Nov-13/LNHD This roadmap is a recommended semester Technology may be pursued at any Kent State campus Course Subject and Title Credit Hours Min. Grade Major GPA

Khan, Javed I.

246

Comparisons of technological innovation capabilities in the solar photovoltaic industries of Taiwan, China, and Korea  

Science Journals Connector (OSTI)

This paper investigates the technological innovation capabilities of the three Asian latecomers--namely Taiwan, China, and Korea--in the emergent solar photovoltaic industry. For this study, I deploy a new dataset of 75,540 solar photovoltaic patents ... Keywords: Catch-up, Innovation capability, Patent, Photovoltaic (PV), Solar, Technology platform

Ching-Yan Wu

2014-01-01T23:59:59.000Z

247

Industrial clusters and regional innovation based on hydrogen and fuel cell technologies  

E-Print Network (OSTI)

Industrial clusters and regional innovation based on hydrogen and fuel cell technologies-Westphalia (Germany): Fuel Cell and Hydrogen Network in North Rhine-Westphalia Regional authorities develops fully or regions in Europe with a potential to develop clusters based on hydrogen and fuel cell technologies? 3

248

TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING  

SciTech Connect

This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

SAMS TL

2010-07-07T23:59:59.000Z

249

Industrial  

NLE Websites -- All DOE Office Websites (Extended Search)

Products Industrial Institutional Multi-Sector Residential Momentum Savings Regional Efficiency Progress Report Utility Toolkit Energy Smart Industrial - Energy Management...

250

Industry  

E-Print Network (OSTI)

2004). US DOE’s Industrial Assessment Centers (IACs) are anof Energy’s Industrial Assessment Center program in SMEs

Bernstein, Lenny

2008-01-01T23:59:59.000Z

251

Promoting technological capabilities of small and medium-sized enterprises through industry-university cooperation: case study of Taiwan machine tool industry  

Science Journals Connector (OSTI)

Small and medium-sized enterprises (SMEs) play an important role in Taiwan economy. However, the size of these enterprises limits their research resources and research personnel. According to the 1998 Republic of China's indicators of science and technology, a total of 66.7% of the PhD level researchers in Taiwan are found in academia. Out of the many methods that can be used to release the capabilities accumulated within the academic field in order to help and lead Taiwan's industries to perform R&D, especially that within the SMEs, the industry-university cooperation programme was found to be particularly effective. Twenty-six of the 67 industry-university cooperation projects (IUCPjs) funded by the National Science Council have been completed to date. These IUCPjs can be classified into two types. The first type is vertical cooperation which uses academic theories to execute new R&D work and is suitable for product innovation such as that found in the high-tech industries. The second type is horizontal cooperation which is more suitable for mature industries adopted to perform process innovation, improvement, and system integration. This study shows that the second type of IUCPjs possesses the following characteristics. Firstly, they produce more R&D results including transferring the research results to industry and promoting product competitiveness. Secondly, they make SMEs gradually realise the importance of product quality and R&D effort. Thirdly, they tend to look for another opportunity to participate in a new IUCPj within three years of the completion of their first IUCPj. Cases of IUCPjs for Machining Centre and Wire-cut Electrical Discharge Machine Industries are studied. They demonstrate that two different approaches were adopted for promoting R&D activities: (1) IUCPjs for machining centres emphasise their efforts in establishing key components and core competence for individual enterprises; and (2) an IUCPj for wire-cut electrical discharge machine industry is successful by promoting the competitiveness of the whole industry by naturally forming strategic alliances and by diversifying their core technologies.

Wen-Shiow Hsu; Pao-Long Chang

2000-01-01T23:59:59.000Z

252

Safety management in the Dutch oil and gas industry: the effect on the technological regime  

Science Journals Connector (OSTI)

This paper deals with the recent trend in Europe, from the formulation of detailed instructions and specifications with respect to the safety of industrial installations by governments, towards regulation on the level of safety management systems and risk analyses. The development sketched is studied with respect to the offshore oil and gas industry in the Netherlands. The government inspectorate responsible for this industry, the Staatstoezicht op de Mijnen (SodM), has, since the early 1990s, changed its approach from hardware-based inspections to inspection at the level of management systems. To assess the effects of this change in approach on industry practice the concept of ''technological regime'' is employed.

I.R. van de Poel; A.R. Hale; L.H.J. Goossens

2002-01-01T23:59:59.000Z

253

Technological diversity of emerging eco-innovations: a case study of the automobile industry  

Science Journals Connector (OSTI)

The automobile industry is in a remarkable state as not one, but multiple alternative fuel powertrain technologies are challenging the gasoline/diesel fueled internal combustion engine (ICE). This indicates a high level of uncertainty and suggests that the automobile industry might be transitioning past the ICE powertrain as the dominant design. Our research analyzed the technological diversity of alternative fuel vehicles (AFVs) from 1991 to 2011. We collected an unique database of 884 AFVs from the 15 largest auto manufacturers. This data was analyzed on a firm, technological, and industrial level. Results showed an increase in technological diversity over the study period. Although electric vehicles are the technology du jour, auto manufacturers are continuing to develop a variety of AFVs. This indicates that incumbent firms do not know if/which powertrain design will emerge as the dominant technology. Indeed, high heterogeneity in vehicle demand through influences such as government policies could lead to several different types of \\{AFVs\\} competing in distinct markets. In addition to analyzing industrial dynamics in the automobile industry, we also provided policy recommendations for how governments can support the transition toward more sustainable automobile transportation.

William Sierzchula; Sjoerd Bakker; Kees Maat; Bert van Wee

2012-01-01T23:59:59.000Z

254

Advanced Process Heater for the Steel, Aluminum and Chemical Industries of the Future  

SciTech Connect

The Roadmap for Process Heating Technology (March 16, 2001), identified the following priority R&D needs: “Improved performance of high temperature materials; improved methods for stabilizing low emission flames; heating technologies that simultaneously reduce emissions, increase efficiency, and increase heat transfer”. Radiant tubes are used in almost every industry of the future. Examples include Aluminum re-heat furnaces; Steel strip annealing furnaces, Petroleum cracking/ refining furnaces, Metal Casting/Heat Treating in atmosphere and fluidized bed furnaces, Glass lair annealing furnaces, Forest Products infrared paper driers, Chemical heat exchangers and immersion heaters, and the indirect grain driers in the Agriculture Industry. Several common needs among the industries are evident: (1) Energy Reductions, (2) Productivity Improvements, (3) Zero Emissions, and (4) Increased Component Life. The Category I award entitled “Proof of Concept of an Advanced Process Heater (APH) for Steel, Aluminum, and Petroleum Industries of the Future” met the technical feasibility goals of: (1) doubling the heat transfer rates (2) improving thermal efficiencies by 20%, (3) improving temperature uniformity by 100oF (38 oC) and (4) simultaneously reducing NOx and CO2 emissions. The APH addresses EERE’s primary mission of increasing efficiency/reducing fuel usage in energy intensive industries. The primary goal of this project was to design, manufacture and test a commercial APH prototype by integrating three components: (1) Helical Heat Exchanger, (2) Shared Wall Radiant U-tube, and (3) Helical Flame Stabilization Element. To accomplish the above, a near net shape powder ceramic Si-SiC low-cost forming process was used to manufacture the components. The project defined the methods for making an Advanced Process Heater that produced an efficiency between 70% to 80% with temperature uniformities of less than 5oF/ft (9oC/m). Three spin-off products resulted from this project: (1) a low-cost, high-temperature heat exchanger, (2) a new radiant heat transfer system, and (3) a hybrid or integral advanced process heater that incorporates a high surface area ceramic heat exchanger and burner combined with either a metallic or ceramic radiant tube and heat transfer elements.

Thomas D. Briselden

2007-10-31T23:59:59.000Z

255

Technology Transfer of Computational Intelligence for Manufacturing Process Control  

E-Print Network (OSTI)

Technology Transfer of Computational Intelligence for Manufacturing Process Control Alice E. Smith applications is a large and uncertain step. This paper focuses on the technology transfer issues and solutions

Smith, Alice E.

256

Additive Manufacturing Technologies for Enhancing the Development Process of Biodevices  

Science Journals Connector (OSTI)

A new set of manufacturing techniques and technologies has appeared in the ... by the name of “rapid prototyping and manufacturing technologies.” They are usually based on “additive manufacturing processes” and a...

Andrés Díaz Lantada; Pilar Lafont Morgado…

2013-01-01T23:59:59.000Z

257

Load Management - An Industrial Perspective on This Developing Technology  

E-Print Network (OSTI)

Load Management is a rapidly developing technology which can have a significant impact on all electric users, especially large users. It is mandated by P.U.R.P.A. (Public Utility Regulatory Policy Act) and is akin to energy conservation but its...

Delgado, R. M.

1983-01-01T23:59:59.000Z

258

Investigating the Effort of Using Business Process Management Technology  

E-Print Network (OSTI)

-Franck-Ring, 89069 Ulm, Germany Abstract Business Process Management (BPM) technology has become an important aspects and effects of BPM technology and BPM tools. Key words: Process-aware Information System, Workflow (e.g., WS-BPEL, BPMN), and business process manage- ment (BPM) tools (e.g., Tibco Staffware, FLOWer

Ulm, Universität

259

Electrochemical Energy Storage Technologies and the Automotive Industry  

ScienceCinema (OSTI)

The first portion of the lecture will relate global energy challenges to trends in personal transportation. Following this introduction, a short overview of technology associated with lithium ion batteries for traction applications will be provided. Last, I shall present new research results that enable adaptive characterization of lithium ion cells. Experimental and modeling results help to clarify the underlying electrochemistry and system performance. Specifically, through chemical modification of the electrodes, it is possible to place markers within the electrodes that signal the state of charge of a battery through abrupt voltage changes during cell operation, thereby allowing full utilization of the battery in applications. In closing, I shall highlight some promising materials research efforts that are expected to lead to substantially improved battery technology

Mark Verbrugge

2010-01-08T23:59:59.000Z

260

Vehicle Technologies Office Merit Review 2014: Dry Process Electrode Fabrication  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Navitas Systems at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about dry process electrode...

Note: This page contains sample records for the topic "industrial process technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Vehicle Technologies Office Merit Review 2014: Overcoming Processing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office Merit Review 2014: Overcoming Processing Cost Barriers of High-Performance Lithium-Ion Battery Electrodes Vehicle Technologies Office Merit Review 2014: Overcoming...

262

Advanced Reactors Thermal Energy Transport for Process Industries  

SciTech Connect

The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

2014-07-01T23:59:59.000Z

263

Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry: A Systematic Prioritization of Research Needs  

E-Print Network (OSTI)

Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry: A Systematic and Policy Program #12;- 2 - #12;Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry must be developed for capturing CO2 from power plants. Current CO2 capture technology is expensive

264

Industrial high performance crystalline silicon solar cells and modules based on rear surface passivation technology  

Science Journals Connector (OSTI)

Abstract Stimulated by the extreme market conditions, the increase in performance and the reduction of manufacturing costs of standard crystalline silicon solar cells and modules have been quite significant in the last years. This progress was achieved mainly by process and material improvements avoiding additional process complexity. As todays cells are predominantly limited by optical and recombination losses at the rear surface, dielectric rear surface passivation represents an obvious approach to overcome the limitations. In recent years several concepts have been developed to implement dielectric rear side passivation into industrial-scale mass production. In this paper a short review is given about the evolution of dielectric rear side passivation technologies as well as on state-of-the-art cell and module results. Simple and cost effective cell and module designs utilizing standard as well as innovative manufacturing technologies are presented. Furthermore, it is shown that for all major steps multiple process options are available to further reduce the manufacturing costs. Using an optimized emitter and screen-printed metallization on commercially available 156 mm×156 mm p-type Czochralski-grown crystalline silicon wafers best cell efficiencies of 19.9% without dielectric rear surface passivation and 21.0% with dielectric rear surface passivation are demonstrated. Replacing the screen-printed front contacts by electroplated nickel–copper contacts record efficiencies of up to 21.3% are reached. By optimizing the module design and materials to reduce the resistive and optical losses, a peak module power of up to 306 W and 19.5% aperture area efficiency are achieved.

Axel Metz; Dennis Adler; Stefan Bagus; Henry Blanke; Michael Bothar; Eva Brouwer; Stefan Dauwe; Katharina Dressler; Raimund Droessler; Tobias Droste; Markus Fiedler; Yvonne Gassenbauer; Thorsten Grahl; Norman Hermert; Wojtek Kuzminski; Agata Lachowicz; Thomas Lauinger; Norbert Lenck; Mihail Manole; Marcel Martini; Rudi Messmer; Christine Meyer; Jens Moschner; Klaus Ramspeck; Peter Roth; Ruben Schönfelder; Berthold Schum; Jörg Sticksel; Knut Vaas; Michael Volk; Klaus Wangemann

2014-01-01T23:59:59.000Z

265

The Technology Information Environment with Industry (TIE-In): A mechanism for accessing laboratory solutions  

SciTech Connect

The Technology Information Environment with Industry (TIE-In) is a system that helps users obtain laboratory-developed technical solutions without requiring that they duplicate the technical resources (in people, hardware and software) at the national laboratories. TIE-In is based on providing users with controlled access to distributed laboratory resources that are packaged in intelligent user interfaces. These interfaces help users obtain technical solutions without requiring that the user have specialized technical and computer expertise. As a designated DOE Technology Deployment Center/User Facility, industry users can access a broad range of laboratory-developed technologies on a cost-recovery basis. TIE-In will also be used to share laboratory resources with partners in US industry that help the DOE meet future manufacturing needs for the stewardship of our nation`s nuclear weapons stockpile.

Ang, J.A.; Machin, G.D.; Marek, E.L.

1994-12-31T23:59:59.000Z

266

EERE SBIR Case Study: Sonic Energy Improves Industrial Separation and Mixing Processes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resodyn to develop a simple, Resodyn to develop a simple, new technology that improves membrane performance by a factor of 5 to 10 compared to conventional mixing, offering far better separations capability for a wide variety of industries and applications. Resodyn Corporation (Butte, MT) is a small high-technology business whose objective is to develop, manufacture, and sell advanced technologies for high-

267

ITP Mining: Mining Industry of the Future Mineral Processing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and activities in the industry and crossed various mined commodities including copper, uranium, iron ore, coal and others. The workshop participants included individuals from...

268

Investigating late stage biopharmaceutical product loss using novel analytical and process technology  

E-Print Network (OSTI)

The biopharmaceutical industry uses recombinant protein technologies to provide novel therapeutics to patients around the world. These technologies have presented exciting opportunities for breakthrough medical treatments ...

Hunnicutt, Leigh Anne

2008-01-01T23:59:59.000Z

269

Decision support method to apply Additive Manufacturing Technologies for plastic components in the aircraft industry.  

E-Print Network (OSTI)

??Additive Manufacturing Technologies (AMT) are a collection of manufacturing processes driven by CAD data to produce physical models and parts by means of additive techniques.… (more)

Anderson Vicente Borille

2009-01-01T23:59:59.000Z

270

Innovative Technology Improves Upgrading Process for Unconventional Oil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Technology Improves Upgrading Process for Unconventional Innovative Technology Improves Upgrading Process for Unconventional Oil Resources Innovative Technology Improves Upgrading Process for Unconventional Oil Resources April 9, 2013 - 1:57pm Addthis Washington, DC - An innovative oil-upgrading technology that can increase the economics of unconventional petroleum resources has been developed under a U.S. Department of Energy -funded project. The promising technology, developed by Ceramatec of Salt Lake City, Utah, and managed by the Office of Fossil Energy's National Energy Technology Laboratory, has been licensed to Western Hydrogen of Calgary for upgrading bitumen or heavy oil from Canada. A new company, Field Upgrading (Calgary, Alberta), has been formed dedicated to developing and commercializing the technology.

271

Innovative Technology Improves Upgrading Process for Unconventional Oil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Improves Upgrading Process for Unconventional Technology Improves Upgrading Process for Unconventional Oil Resources Innovative Technology Improves Upgrading Process for Unconventional Oil Resources April 9, 2013 - 1:57pm Addthis Washington, DC - An innovative oil-upgrading technology that can increase the economics of unconventional petroleum resources has been developed under a U.S. Department of Energy -funded project. The promising technology, developed by Ceramatec of Salt Lake City, Utah, and managed by the Office of Fossil Energy's National Energy Technology Laboratory, has been licensed to Western Hydrogen of Calgary for upgrading bitumen or heavy oil from Canada. A new company, Field Upgrading (Calgary, Alberta), has been formed dedicated to developing and commercializing the technology. Heavy oil is crude oil that is viscous and requires thermally enhanced oil

272

Energy Efficient Microwave Hybrid Processing of Lime for Cement, Steel, and Glass Industries  

SciTech Connect

In this study, the microwave materials interactions were studied through dielectric property measurements, process modeling, and lab scale microwave hybrid calcination tests. Characterization and analysis were performed to evaluate material reactions and energy usage. Processing parameters for laboratory scale and larger scale calcining experiments were developed for MAT limestone calcination. Early stage equipment design concepts were developed, with a focus on microwave post heating treatment. The retrofitting of existing rotary calcine equipment in the lime industry was assessed and found to be feasible. Ceralink sought to address some of the major barriers to the uptake of MAT identified as the need for (1) team approach with end users, technology partners, and equipment manufacturers, (2) modeling that incorporates kiln materials and variations to the design of industrial microwave equipment. This project has furthered the commercialization effort of MAT by working closely with an industrial lime manufacturer to educate them regarding MAT, identifying equipment manufacturer to supply microwave equipment, and developing a sophisticated MAT modeling with WPI, the university partner. MAT was shown to enhance calcining through lower energy consumption and faster reaction rates compared to conventional processing. Laboratory testing concluded that a 23% reduction in energy was possible for calcining small batches (5kg). Scale-up testing indicated that the energy savings increased as a function of load size and 36% energy savings was demonstrated (22 kg). A sophisticated model was developed which combines simultaneous microwave and conventional heating. Continued development of this modeling software could be used for larger scale calcining simulations, which would be a beneficial low-cost tool for exploring equipment design prior to actual building. Based on these findings, estimates for production scale MAT calcining benefits were calculated, assuming uptake of MAT in the US lime industry. This estimate showed that 7.3 TBTU/year could be saved, with reduction of 270 MMlbs of CO2 emissions, and $29 MM/year in economic savings. Taking into account estimates for MAT implementation in the US cement industry, an additional 39 TBTU/year, 3 Blbs of CO2 and $155 MM/year could be saved. One of the main remaining barriers to commercialization of MAT for the lime and cement industries is the sheer size of production. Through this project, it was realized that a production size MAT rotary calciner was not feasible, and a different approach was adapted. The concept of a microwave post heat section located in the upper portion of the cooler was devised and appears to be a more realistic approach for MAT implementation. Commercialization of this technology will require (1) continued pilot scale calcining demonstrations, (2) involvement of lime kiln companies, and (3) involvement of an industrial microwave equipment provider. An initial design concept for a MAT post-heat treatment section was conceived as a retrofit into the cooler sections of existing lime rotary calciners with a 1.4 year payback. Retrofitting will help spur implementation of this technology, as the capital investment will be minimal for enhancing the efficiency of current rotary lime kilns. Retrofits would likely be attractive to lime manufacturers, as the purchase of a new lime kiln is on the order of a $30 million dollar investment, where as a MAT retrofit is estimated on the order of $1 million. The path for commercialization lies in partnering with existing lime kiln companies, who will be able to implement the microwave post heat sections in existing and new build kilns. A microwave equipment provider has been identified, who would make up part of the continued development and commercialization team.

Fall, Morgana L; Yakovlev, Vadim; Sahi, Catherine; Baranova, Inessa; Bowers, Johnney G; Esquenazi\t, Gibran L

2012-02-10T23:59:59.000Z

273

Monitoring the resin infusion manufacturing process under industrial environment using distributed sensors  

E-Print Network (OSTI)

1 Monitoring the resin infusion manufacturing process under industrial environment using the Liquid Resin Infusion process under industrial environment is proposed. To detect the resin front; Liquid Resin Infusion. #12;2 1. Introduction Recently, Liquid Composite Molding (LCM) processes have been

Boyer, Edmond

274

Technology transfer effectiveness through international joint ventures (IJVs) to their component suppliers: a study of the automotive industry of Pakistan.  

E-Print Network (OSTI)

??This thesis investigates the important topic of technology transfer effectiveness from international joint ventures (IJVs) established in the automotive industry of Pakistan to their local… (more)

Khan, Sardar Zaheer Ahmad

2011-01-01T23:59:59.000Z

275

Advances in steam turbine technology for the power generation industry. PWR-Volume 26  

SciTech Connect

This is a collection of the papers on advances in steam turbine technology for the power generation industry presented at the 1994 International Joint Power Generation Conference. The topics include advances in steam turbine design, application of computational fluid dynamics to turbine aerodynamic design, life extension of fossil and nuclear powered steam turbine generators, solid particle erosion control technologies, and artificial intelligence, monitoring and diagnostics.

Moore, W.G. [ed.

1994-12-31T23:59:59.000Z

276

Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition  

SciTech Connect

This is one in a series of sourcebooks to help manufacturers optimize their industrial systems; this particular sourcebook addresses process heating systems.

Not Available

2008-02-01T23:59:59.000Z

277

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network (OSTI)

ultrafiltration, and reverse osmosis, each indicating asubjected to reverse osmosis filtration, microfiltration,processing industry are reverse osmosis systems and ultra-

Brush, Adrian

2012-01-01T23:59:59.000Z

278

What BPM Technology Can Do for Healthcare Process Support  

E-Print Network (OSTI)

What BPM Technology Can Do for Healthcare Process Support Manfred Reichert Institute of Databases management (BPM) domain, which enable process adaptation, process flexibility, and process evolu- tion. These key features will be illustrated along existing BPM frame- works. Altogether, emerging BPM methods

Ulm, Universität

279

Advanced Industrial Archaeology: A new reverse-engineering process for contextualizing and  

E-Print Network (OSTI)

1 Advanced Industrial Archaeology: A new reverse-engineering process for contextualizing.bernard@irccyn.ec-nantes.fr, michel.cotte@univ-nantes.fr Abstract Since virtual engineering has been introduced inside industries. Keywords reverse-engineering, 3D digitalization, CAD, Advanced Industrial Archaeology, technical heritage 1

Paris-Sud XI, Université de

280

Additive Manufacturing as Integral Part of the Digital Solution Process - An Industrial Short Note  

Science Journals Connector (OSTI)

Within the last years additive manufacturing established itself in the industrial environment as ... technological possibility to reduce time-to-market and manufacturing costs and to take in account even...

Klaus Müller-Lohmeier

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial process technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Waste disposal and treatment in the food-processing industry. March 1985-October 1989 (Citations from the Biobusiness data base). Report for March 1985-October 1989  

SciTech Connect

This bibliography contains citations concerning waste treatment and disposal in the food-processing industry. Methods, equipment, and technology are considered. Specific areas include waste-heat recovery, meat processing, seafood processing, dairy wastes, beverage industry, fruits and vegetables, and other food-industry wastes. Waste utilization includes animal feeds, combustion for energy production, biogas production, conversion to fertilizer, composting, and recovery and recycling of usable chemicals. Food-packaging recycling is considered in a related bibliography. (Contains 169 citations fully indexed and including a title list.)

Not Available

1989-11-01T23:59:59.000Z

282

Industry  

E-Print Network (OSTI)

of environmentally sound technology, SMEs may not have theSMEs. Energy efficiency and other GHG mitiga- tion technologies

Bernstein, Lenny

2008-01-01T23:59:59.000Z

283

Industrial Waster Conference, WEF. San Antonio. 2003. METALS REMOVAL TECHNOLOGIES FOR STORMWATER  

E-Print Network (OSTI)

Industrial Waster Conference, WEF. San Antonio. 2003. 1 METALS REMOVAL TECHNOLOGIES FOR STORMWATER. Additionally determining the range of metal concentrations of the runoff to be treated is crucial to selecting the best media, since the removal efficiencies of the media relative to each other changed with varying

Pitt, Robert E.

284

U.S. Department of Energy's Industrial Technologies Program and Its Impacts  

E-Print Network (OSTI)

.357 0.266 32.4 Advanced Aerodynamic Technologies for Improving Fuel Economy in Ground Vehicles 0.093 0.052 0.001 0.000 0.054 0.014 2....02 Advanced Reciprocating Engine Systems (ARES) - - - - - - - Aerogel-Based Insulation for Industrial Steam Distribution Systems 0...

Weakley, S. A.; Brown, S. A.

2011-01-01T23:59:59.000Z

285

Optimal Gas Turbine Integration to the Process Industries  

Science Journals Connector (OSTI)

Gas turbine integration can also help cut down flue gas emissions as a result of the improved efficiency of a cogeneration system. ... The aeroderivative turbines have higher efficiency than the industrial type, but they are more expensive. ...

Jussi Manninen; X. X. Zhu

1999-09-28T23:59:59.000Z

286

Photopolymer Materials and Processes for Advanced Technologies  

Science Journals Connector (OSTI)

Using this method, the image of an entire layer is projected through a window and onto a thin layer of photopolymer in contact with the stage. ... Figure 7. Model of the Stature of Liberty produced by 3D inkjet imaging (photograph provided by author J.V.C.). ... Indeed, with increasing environmental consciousness and under pressure from various governmental and local regulatory agencies, it is reasonable to project that the future will experience an even greater reliance on photopolymer technology. ...

James V. Crivello; Elsa Reichmanis

2013-09-25T23:59:59.000Z

287

Waste disposal and treatment in the food processing industry. (Latest citations from the Biobusiness database). Published Search  

SciTech Connect

The bibliography contains citations concerning waste treatment and disposal in the food processing industry. Methods, equipment, and technology are considered. References discuss waste heat recovery and examine treatment of wastes resulting from meat and seafood processing, dairy and beverage production, and fruit and vegetable processing. The citations explore conversion of the treated waste to fertilizer and for use in animal feeds, combustion for energy production, biogas production, and composting. The recovery and recycling of usable chemicals from the food waste are also covered. Food packaging recycling is considered in a related bibliography. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-02-01T23:59:59.000Z

288

Waste disposal and treatment in the food processing industry. (Latest citations from the Biobusiness database). Published Search  

SciTech Connect

The bibliography contains citations concerning waste treatment and disposal in the food processing industry. Methods, equipment, and technology are considered. References discuss waste heat recovery and examine treatment of wastes resulting from meat and seafood processing, dairy and beverage production, and fruit and vegetable processing. The citations explore conversion of the treated waste to fertilizer and for use in animal feeds, combustion for energy production, biogas production, and composting. The recovery and recycling of usable chemicals from the food waste are also covered. Food packaging recycling is considered in a related bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1995-12-01T23:59:59.000Z

289

Waste disposal and treatment in the food processing industry. (Latest citations from the Biobusiness database). Published Search  

SciTech Connect

The bibliography contains citations concerning waste treatment and disposal in the food processing industry. Methods, equipment, and technology are considered. References discuss waste heat recovery and examine treatment of wastes resulting from meat and seafood processing, dairy and beverage production, and fruit and vegetable processing. The citations explore conversion of the treated waste to fertilizer and for use in animal feeds, combustion for energy production, biogas production, and composting. The recovery and recycling of usable chemicals from the food waste are also covered. Food packaging recycling is considered in a related bibliography. (Contains 250 citations and includes a subject term index and title list.)

NONE

1995-01-01T23:59:59.000Z

290

An analysis of factors improving technology roadmap credibility: A communications theory assessment of roadmapping processes  

Science Journals Connector (OSTI)

In recent years, many industrial firms have been able to use roadmapping as an effective process methodology for projecting future technology and for coordinating technology planning and strategy. Firms potentially realize a number of benefits in deploying technology roadmapping (TRM) processes. Roadmaps provide information identifying which new technologies will meet firms' future product demands, allowing companies to leverage R&D investments through choosing appropriately out of a range of alternative technologies. Moreover, the roadmapping process serves an important communication tool helping to bring about consensus among roadmap developers, as well as between participants brought in during the development process, who may communicate their understanding of shared corporate goals through the roadmap. However, there are few conceptual accounts or case studies have made the argument that roadmapping processes may be used effectively as communication tools. This paper, therefore, seeks to elaborate a theoretical foundation for identifying the factors that must be considered in setting up a roadmap and for analyzing the effect of these factors on technology roadmap credibility as perceived by its users. Based on the survey results of 120 different R&D units, this empirical study found that firms need to explore further how they can enable frequent interactions between the TRM development team and TRM participants. A high level of interaction will improve the credibility of a TRM, with communication channels selected by the organization also positively affecting TRM credibility.

Jung Hoon Lee; Hyung-il Kim; Robert Phaal

2012-01-01T23:59:59.000Z

291

Leakage Evaluated and Controlled from Industrial Process Pipeline by Optimum Gasket Assembly Stress  

E-Print Network (OSTI)

0 Leakage Evaluated and Controlled from Industrial Process Pipeline by Optimum Gasket Assembly and vehicles), but they have ignore the leakage between pipelines in process industries. When hazardous something to do with false selection of gaskets, inappropriate setting and repair, as well as poor

Chen, Shu-Ching

292

AC 2011-983: USE OF BUZZWORDS IN INDUSTRIAL ENGINEERING Abhijit Gosavi, Missouri University of Science & Technology  

E-Print Network (OSTI)

AC 2011-983: USE OF BUZZWORDS IN INDUSTRIAL ENGINEERING EDUCATION Abhijit Gosavi, Missouri University of Science & Technology Abhijit Gosavi obtained a Ph.D. in industrial engineering from research interests are in simulation-based optimization, production management, and industrial engineering

Gosavi, Abhijit

293

Integrating bibliometrics and roadmapping methods: A case of dye-sensitized solar cell technology-based industry in China  

Science Journals Connector (OSTI)

Abstract Emerging industries are attracting increasing attention as they engage in innovation activities that transgress the boundaries of science and technology. Policy makers and industrial communities use roadmapping methods to predict future industrial growth, but the existing bibliometric/workshop methods have limitations when analyzing the full-lifecycle industrial emergence, including the transitions between science, technology, application, and the mass market. This paper, therefore, proposes a framework that integrates bibliometrics and a technology roadmapping (TRM) workshop approach to strategize and plan the future development of the new, technology-based industry. The dye-sensitized solar cell technology-based industry in China is selected as a case study. In this case, the bibliometrics method is applied to analyze the existing position of science and technology, and TRM workshops are used to strategize the future development from technology to application and marketing. Key events and impact on the development of the new, technology-based industry have been identified. This paper will contribute to the roadmapping and foresight methodology, and will be of interest to solar photovoltaic industry researchers.

Xin Li; Yuan Zhou; Lan Xue; Lucheng Huang

2014-01-01T23:59:59.000Z

294

Process for making unsaturated hydrocarbons using microchannel process technology  

DOE Patents (OSTI)

The disclosed invention relates to a process for converting a feed composition comprising one or more hydrocarbons to a product comprising one or more unsaturated hydrocarbons, the process comprising: flowing the feed composition and steam in contact with each other in a microchannel reactor at a temperature in the range from about 200.degree. C. to about 1200.degree. C. to convert the feed composition to the product, the process being characterized by the absence of catalyst for converting the one or more hydrocarbons to one or more unsaturated hydrocarbons. Hydrogen and/or oxygen may be combined with the feed composition and steam.

Tonkovich, Anna Lee (Dublin, OH); Yuschak, Thomas (Lewis Center, OH); LaPlante, Timothy J. (Columbus, OH); Rankin, Scott (Columbus, OH); Perry, Steven T. (Galloway, OH); Fitzgerald, Sean Patrick (Columbus, OH); Simmons, Wayne W. (Dublin, OH); Mazanec, Terry (Solon, OH) Daymo, Eric (Dublin, OH)

2011-04-12T23:59:59.000Z

295

Image Reconstruction of a Metal Fill Industrial Process Using Genetic Programming Alaa Al-Afeef  

E-Print Network (OSTI)

conveying process [9], water/oil/gas separation process [10], fluidized beds [11] and determining happening inside industrial process [6], which is important to 1) Reduce production costs through enhancing efficiencies and better yields; 2) Develop process efficiently; 3) Simplify process and improve products. A

Fernandez, Thomas

296

Process for separating nitrogen from methane using microchannel process technology  

DOE Patents (OSTI)

The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

Tonkovich, Anna Lee (Marysville, OH); Qiu, Dongming (Dublin, OH); Dritz, Terence Andrew (Worthington, OH); Neagle, Paul (Westerville, OH); Litt, Robert Dwayne (Westerville, OH); Arora, Ravi (Dublin, OH); Lamont, Michael Jay (Hilliard, OH); Pagnotto, Kristina M. (Cincinnati, OH)

2007-07-31T23:59:59.000Z

297

Process Technology and Advanced Concepts: Organic Solar Cells (Fact Sheet)  

SciTech Connect

Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts: Organic Solar Cell that includes scope, core competencies and capabilities, and contact/web information.

Not Available

2011-06-01T23:59:59.000Z

298

Final Technical Report: Intensive Quenching Technology for Heat Treating and Forging Industries  

SciTech Connect

Intensive quenching (IQ) process is an alternative way of hardening (quenching) steel parts through the use of highly agitated water and then still air. It was developed by IQ Technologies, Inc. (IQT) of Akron, Ohio. While conventional quenching is usually performed in environmentally unfriendly oil or water/polymer solutions, the IQ process uses highly agitated environmentally friendly water or low concentration water/mineral salt solutions. The IQ method is characterized by extremely high cooling rates of steel parts. In contrast to conventional quenching, where parts cool down to the quenchant temperature and usually have tensile or neutral residual surface stresses at the end of quenching. The IQ process is interrupted when the part core is still hot and when there are maximum compressive stresses deep into the parts, thereby providing hard, ductile, better wear resistant parts. The project goal was to advance the patented IQ process from feasibility to commercialization in the heat-treating and forging industries to reduce significantly energy consumption and environmental impact, to increase productivity and to enhance economic competitiveness of these industries as well as Steel, Metal Casting and Mining industries. To introduce successfully the IQ technology in the U.S. metal working industry, the project team has completed the following work over the course of this project: A total of 33 manufacturers of steel products provided steel parts for IQ trails. IQT conducted IQ demonstrations for 34 different steel parts. Our customers tested intensively quenched parts in actual field conditions to evaluate the product service life and performance improvement. The data obtained from the field showed the following: Service life (number of holes punched) of cold-work punches (provided by EHT customer and made of S5 shock-resisting steel) was improved by two to eight times. Aluminum extrusion dies provided by GAM and made of hot work H-13 steel outperformed the standard dies by at least 50%. Dies provided by an AST customer, made of plain carbon 1045 steel and used for pellet manufacturing outperformed the standard dies by more than 100%. Concrete crusher liner wear plates provided by an EHT customer and made of 1045 steel, had the same surface hardness as the plates made of more expensive, pre-hardened high alloy HARDOX-500 material supplied by a Swedish company and used currently by the EHT customer. The 1045 material intensively quenched wear plates are currently in the field. Concrete block molding machine wear plates provided by an IQT customer and made of 8620 steel were processed at the AST production IQ system using a 40% reduced carburization cycle. An effective case depth in the intensively quenched wear plates was the same as in the standard, oil quenched parts. Base keys provided by an EHT customer and made of 8620 steel were processed using a 40% reduced carburization cycle. The intensively quenched parts showed the same performance as standard parts. IQT introduced the IQ process in heat treat practices of three commercial heat-treating shops: Akron Steel Treating Co., Summit Heat Treating Co. and Euclid Heat Treating Co. CWRU conducted a material characterization study for a variety of steels to develop a database to support changing/modification of recognized standards for quenching steel parts. IQT conducted a series of IQ workshops, published seven technical papers and participated in ASM Heat Treating Society conference and exposition and in Furnace North America Show. IQT designed and built a fully automated new IQ system installed at the Center for Intensive Quenching. This system includes the following major components: a stand-alone 1,900-gallon IQ water system, a 24'' x 24'' atmosphere pit furnace, and an automated load transfer mechanism. IQT established a ''Center for Intensive Quenching'' at the AST facilities. The 4,000 square feet Center includes the following equipment: High-velocity single part quenching IQ unit developed and built previously under EMTEC CT-65 project. The unit is equipped w

Aronov, Michael A.

2005-12-21T23:59:59.000Z

299

California Food Processing Industry Wastewater Demonstration Project: Phase I Final Report  

SciTech Connect

Wastewater treatment is an energy-intensive process and electricity demand is especially high during the utilities summer peak electricity demand periods. This makes wastewater treatment facilities prime candidates for demand response programs. However, wastewater treatment is often peripheral to food processing operations and its demand response opportunities have often been overlooked. Phase I of this wastewater demonstration project monitored wastewater energy and environmental data at Bell-Carter Foods, Inc., California's largest olive processing plant. For this monitoring activity the project team used Green Energy Management System (GEMS) automated enterprise energy management (EEM) technologies. This report presents results from data collected by GEMS from September 15, 2008 through November 30, 2008, during the olive harvest season. This project established and tested a methodology for (1) gathering baseline energy and environmental data at an industrial food-processing plant and (2) using the data to analyze energy efficiency, demand response, daily peak load management, and environmental management opportunities at the plant. The Phase I goals were to demonstrate the measurement and interrelationship of electricity demand, electricity usage, and water quality metrics and to estimate the associated CO{sub 2} emissions.

Lewis, Glen; Atkinson, Barbara; Rhyne, Ivin

2009-09-09T23:59:59.000Z

300

Gas Turbines Increase the Energy Efficiency of Industrial Processes  

E-Print Network (OSTI)

clean fuel gas for the gas turbine is produced by gasification of coal, are presented. Waste heat from the gasifier and the gas turbine exhaust is converted to high pressure steam for steam turbines. Gas turbines may find application in other industrial...

Banchik, I. N.; Bohannan, W. R.; Stork, K.; McGovern, L. J.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial process technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Ultra-High Efficiency and Low-Emissions Combustion Technology for Manufacturing Industries  

SciTech Connect

The purpose of this research was to develop and test a transformational combustion technology for high temperature furnaces to reduce the energy intensity and carbon footprint of U.S. manufacturing industries such as steel, aluminum, glass, metal casting, and petroleum refining. A new technology based on internal and/or external Flue Gas Recirculation (FGR) along with significant enhancement in flame radiation was developed. It produces "Radiative Flameless Combustion (RFC)" and offers tremendous energy efficiency and pollutant reduction benefits over and above the now popular "flameless combustion." It will reduce the energy intensity (or fuel consumption per unit system output) by more than 50% and double the furnace productivity while significantly reducing pollutants and greenhouse gas emissions (10^3 times reduction in NOx and 10 times reduction in CO & hydrocarbons and 3 times reduction in CO2). Product quality improvements are also expected due to uniform radiation, as well as, reduction in scale/dross formation is expected because of non-oxidative atmosphere. RFC is inexpensive, easy to implement, and it was successfully tested in a laboratory-scale furnace at the University of Michigan during the course of this work. A first-ever theory with gas and particulate radiation was also developed. Numerical programs were also written to design an industrial-scale furnace. Nine papers were published (or are in the process of publication). We believe that this early stage research adequately proves the concept through laboratory experiments, modeling and computational models. All this work is presented in the published papers. Important conclusions of this work are: (1) It was proved through experimental measurements that RFC is not only feasible but a very beneficial technology. (2) Theoretical analysis of RFC was done in (a) spatially uniform strain field and (b) a planar momentum jet where the strain rate is neither prescribed nor uniform. Four important non-dimensional parameters controlling RFC in furnaces were identified. These are: (i) The Boltzmann number; (ii) The Damkohler number, (iii) The dimensionless Arrhenius number, and (iv) The equivalence ratio. Together they define the parameter space where RFC is possible. It was also found that the Damkohler number must be small for RFC to exist and that the Boltzmann number expands the RFC domain. The experimental data obtained during the course of this work agrees well with the predictions made by the theoretical analysis. Interestingly, the equivalence ratio dependence shows that it is easier to establish RFC for rich mixtures than for lean mixtures. This was also experimentally observed. Identifying the parameter space for RFC is necessary for controlling the RFC furnace operation. It is hoped that future work will enable the methodology developed here to be applied to the operation of real furnaces, with consequent improvement in efficiency and pollutant reduction. To reiterate, the new furnace combustion technology developed enables intense radiation from combustion products and has many benefits: (i) Ultra-High Efficiency and Low-Emissions; (ii) Uniform and intense radiation to substantially increase productivity; (iii) Oxygen-free atmosphere to reduce dross/scale formation; (iv) Provides multi-fuel capability; and (v) Enables carbon sequestration if pure oxygen is used for combustion.

Atreya, Arvind

2013-04-15T23:59:59.000Z

302

Supercritical Fluid Extraction Applications in the Process Industries  

E-Print Network (OSTI)

solutions. Other examples of potential applications for SFE technology are the extraction of tar sands and oil shale [17J; separations of biomolecules such as triglycerides, alkaloids, and olefins [18J; extraction of coal liquids [19J; and the isolation...

Lahiere, R. J.; Fair, J. R.; Humphrey, J. L.

303

Industry  

E-Print Network (OSTI)

Information on corn wet milling. Corn Refiners Association corn wet milling industry: An ENERGYas an automotive fuel. Corn wet milling is the most energy-

Bernstein, Lenny

2008-01-01T23:59:59.000Z

304

Industry  

E-Print Network (OSTI)

increased use of biomass and energy efficiency improvements,Moreira, J. , 2006: Global biomass energy potential. Journal1971–2004 Notes 1) Biomass energy included 2) Industrial

Bernstein, Lenny

2008-01-01T23:59:59.000Z

305

Pyrochemical processing of plutonium. Technology review report  

SciTech Connect

Non-aqueous processes are now in routine use for direct conversion of plutonium oxide to metal, molten salt extraction of americium, and purification of impure metals by electrorefining. These processes are carried out at elevated temperatures in either refractory metal crucibles or magnesium-oxide ceramics in batch-mode operation. Direct oxide reduction is performed in units up to 700 gram PuO/sub 2/ batch size with molten calcium metal as the reductant and calcium chloride as the reaction flux. Americium metal is removed from plutonium metal by salt extraction with molten magnesium chloride. Electrorefining is used to isolate impurities from molten plutonium by molten salt ion transport in a controlled potential oxidation-reduction cell. Such cells can purify five or more kilograms of impure metal per 5-day electrorefining cycle. The product metal obtained is typically > 99.9% pure, starting from impure feeds. Metal scrap and crucible skulls are recovered by hydriding of the metallic residues and recovered either as impure metal or oxide feeds.

Coops, M.S.; Knighton, J.B.; Mullins, L.J.

1982-09-08T23:59:59.000Z

306

Technology roadmapping for mature industries: 2010â??2050 global cement product roadmap  

Science Journals Connector (OSTI)

This paper demonstrates the use of a technology roadmap to create a holistic picture of the movement in a mature industry. Not only does it also help the cement manufacturers in mature and emerging markets, but also balances between market pull and technology push at a commercialised scale. The roadmap concept can assist any organisation to address three key strategic questions: where the company aims to go, where the status quo of the company and how the company will achieve its strategic intent goals. Thus, in this research, we illustrate the evolution of cement product from present to 2050 through the existing industrial literature, analysing forces, trends, impacts and developing a global cement product roadmap. The roadmap covers a wide range of cement products.

Tugrul U. Daim; Nuttavut Intarode

2011-01-01T23:59:59.000Z

307

AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report  

SciTech Connect

The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

Petersen, G.; Bair, K.; Ross, J. [eds.

1994-03-01T23:59:59.000Z

308

NETL-Led Laboratory-Industry-Academia Collaboration Is Accelerating Carbon-Capture Technologies  

Energy.gov (U.S. Department of Energy (DOE))

In 2011, the U.S. Department of Energy’s National Energy Technology Laboratory established the Carbon Capture Simulation Initiative to take carbon-capture concepts from the laboratory to the power plant more quickly, at a lower cost, and with reduced risk than would be accomplished following more traditional research and development pathways. Today, the NETL-led CCSI has proven itself to be a model of successful, effective collaboration among government, industry, and academia.

309

Voltage Sag-Related Upsets of Industrial Process Controls in Petroleum and Chemical Industries  

E-Print Network (OSTI)

with PLC controls. The sensitivity of these process controls can stop an essential service motor required for a continuous process such as in a refinery or chemical plant. Typically the controls are sensitive to the common momentary voltage sag caused...

Mansoor, A.; Key, T.; Woinsky, S.

310

A Critical Analysis of Technological Innovation and Economic Development in Southern California's Urban Water Reuse And Recycling Industry  

E-Print Network (OSTI)

patents, notably in water purification technologies (Foley &of water technology: water purification, reclamation andthe heart of the water purification process and the firms

Pilip-Florea, Shadrach Jay

2012-01-01T23:59:59.000Z

311

Independent Validation and Verification of Process Design and Optimization Technology Diagnostic and Control of Natural Gas Fired Furnaces via Flame Image Analysis Technology  

SciTech Connect

The United States Department of Energy, Industrial Technologies Program has invested in emerging Process Design and Optimizations Technologies (PDOT) to encourage the development of new initiatives that might result in energy savings in industrial processes. Gas fired furnaces present a harsh environment, often making accurate determination of correct air/fuel ratios a challenge. Operation with the correct air/fuel ratio and especially with balanced burners in multi-burner combustion equipment can result in improved system efficiency, yielding lower operating costs and reduced emissions. Flame Image Analysis offers a way to improve individual burner performance by identifying and correcting fuel-rich burners. The anticipated benefit of this technology is improved furnace thermal efficiency, and lower NOx emissions. Independent validation and verification (V&V) testing of the FIA technology was performed at Missouri Forge, Inc., in Doniphan, Missouri by Environ International Corporation (V&V contractor) and Enterprise Energy and Research (EE&R), the developer of the technology. The test site was selected by the technology developer and accepted by Environ after a meeting held at Missouri Forge. As stated in the solicitation for the V&V contractor, 'The objective of this activity is to provide independent verification and validation of the performance of this new technology when demonstrated in industrial applications. A primary goal for the V&V process will be to independently evaluate if this technology, when demonstrated in an industrial application, can be utilized to save a significant amount of the operating energy cost. The Seller will also independently evaluate the other benefits of the demonstrated technology that were previously identified by the developer, including those related to product quality, productivity, environmental impact, etc'. A test plan was provided by the technology developer and is included as an appendix to the summary report submitted by Environ (Appendix A). That plan required the V&V contractor to: (1) Establish the as-found furnace operating conditions; (2) Tune the furnace using currently available technology to establish baseline conditions; (3) Tune the furnace using the FIA technology; and (4) Document the improved performance that resulted from application of the FIA technology. It is important to note that the testing was not designed to be a competition or comparison between two different methodologies that could be used for furnace tuning. Rather, the intent was to quantify improvements in furnace performance that could not be achieved with existing technology. Therefore, the measure of success is improvement beyond the furnace efficiency obtainable using existing furnace optimization methods rather than improvement from the as found condition.

Cox, Daryl [ORNL

2009-05-01T23:59:59.000Z

312

Carbon Strategy for the Food Industry FAPC Food Process Engineer  

E-Print Network (OSTI)

. Kerr Food & Agricultural Products Center FOOD TECHNOLOGY FACT SHEET 405-744-6071 · www.fapc.bizAdding Value to Oklahoma f a p c Oklahoma Cooperative Extension Service · Division of Agricultural Sciences issues for food processors: · Green house gas (GHG) · Carbon footprint · Life cycle assessment (LCA

Balasundaram, Balabhaskar "Baski"

313

Industrial Energy Conservation by New Process Design and Efficiency Improvements  

E-Print Network (OSTI)

to an additional 350 trillio Btu (.35 quad). Potential COnventional Energy Proc.'1 Ar Hew Technology TIlC~n logy Product Saving...... Heavy all ART (Kellogg) & Rigid, FCCU tH

Kusik, C. L.; Stickles, R. P.; Machacek, R. F.

1983-01-01T23:59:59.000Z

314

Photovoltaic industry process from 1980 to mid 1986  

SciTech Connect

The objective of this report is to describe PV insustry developments in 1985 and present forecasts for 1986. Information is presented on a regional basis (United States, Europe, Japan, other) to avoid disclosing company confidential data. Information was gleaned from several sources, including a review of technical literature and direct contacts with many PV manufacturers. prior to publishing the regional totals, all numbers were compared with those from other sources published in the United States and those supplied by Japanese industry through their solar energy organization.

Watts, R.L.; Smith, S.A.

1986-08-01T23:59:59.000Z

315

Cogeneration handbook for the chemical process industries. [Contains glossary  

SciTech Connect

The desision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the chemical industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

Fassbender, A.G.; Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Eakin, D.E.; Gorges, H.A.

1984-03-01T23:59:59.000Z

316

Advanced Laser-Based Sensors for Industrial Process Control  

Energy.gov (U.S. Department of Energy (DOE))

Fact Sheet About Increased Efficiency and Reduced Emissions Using Advanced Laser-Based Sensors for Process Control Monitoring in Electric Arc Furnaces

317

Waste Heat Management Options for Improving Industrial Process Heating Systems  

Energy.gov (U.S. Department of Energy (DOE))

This presentation covers typical sources of waste heat from process heating equipment, characteristics of waste heat streams, and options for recovery including Combined Heat and Power.

318

Industrial Steam System Process-Control Schemes | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steam System Process-Control Schemes (July 2003) More Documents & Publications Compressed Air Storage Strategies Save Energy Now in Your Steam Systems CIBO Energy Efficiency...

319

Department of Industrial Engineering Fall 2011 Transmission Component Reverse Engineering and Process Planning  

E-Print Network (OSTI)

PENNSTATE Department of Industrial Engineering Fall 2011 Transmission Component Reverse Engineering to fabricate the parts in the Industrial Engineering Department Factory for Advanced Manufacturing Education of the transmission to reverse engineer and develop process plans for efficient fabrication in a low volume setting

Demirel, Melik C.

320

PROCESS PARAMETERS AND ENERGY USE OF GAS AND ELECTRIC OVENS IN INDUSTRIAL APPLICATIONS  

E-Print Network (OSTI)

PROCESS PARAMETERS AND ENERGY USE OF GAS AND ELECTRIC OVENS IN INDUSTRIAL APPLICATIONS Dr for Energy Efficiency and Renewable Energy Department of Mechanical and Industrial Engineering University of Massachusetts, Amherst, Massachusetts ABSTRACT The study was conducted to evaluate the energy use of natural gas

Massachusetts at Amherst, University of

Note: This page contains sample records for the topic "industrial process technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 5: Method of Calculating Results for the Save Energy Now Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

181 DOE Industrial Technologies Program 181 DOE Industrial Technologies Program Appendix 5: Method of Calculating Results for the Save Energy Now Initiative u Large Plant Assessments .................................................................................................................................................................... 182 u Training .............................................................................................................................................................................................. 183 u Software Tools Distribution................................................................................................................................................................ 183

322

Research on pollution prevention and control technologies in the industry of vanadium extraction from stone coal  

Science Journals Connector (OSTI)

The technology of pollution prevention and control in the industry of vanadium extraction from stone coal acts as a key factor in deciding whether the vanadium can be extracted from stone coal effectively. This paper focuses on analysing related pollutants, including their features, and major problems existing in field of vanadium extraction, as well as investigating the technology used to prevent and control the pollutants in wastewater, gas and slag. In accordance with the current efforts of pollution prevention, it can be concluded that this industry must reduce its resources, energy consumption and pollutant discharge strength, enhance pollution prevention, guarantee ecology safety and human health so that improvement in production capacity, craft and pollution abatement technique can be promoted. Therefore, concrete proposals and expectations on technological control are offered, including building up a real-time monitoring system and a decision support system. This study can help the research and development staff to understand technologies related to reducing the environmental pollution clearly and to achieve sustainable development simultaneously.

Jia Li; Yimin Zhang; Tao Liu

2014-01-01T23:59:59.000Z

323

Document: P1289 Category: Computing Technologies License Status: Available for licensing Texas Industry Cluster: Information and Computer Technology  

E-Print Network (OSTI)

controls · Interactive systems, such as bio-electrical prosthetics interfaces and real-time translationalInventors Document: P1289 Category: Computing Technologies License Status: Available for licensing By rethinking the design of an analog integrator, the system allows for processing of analog signals without

Lightsey, Glenn

324

Industry  

E-Print Network (OSTI)

for im- proving energy efficiency of corn wet milling havefor the corn wet milling industry: An ENERGY STAR Guide forfuel. Corn wet milling is the most energy-intensive food

Bernstein, Lenny

2008-01-01T23:59:59.000Z

325

Industry  

E-Print Network (OSTI)

options for combined heat and power in Canada. Office ofpolicies to promote combined heat and power in US industry.with fuel inputs in combined heat and power plants being

Bernstein, Lenny

2008-01-01T23:59:59.000Z

326

Industry  

E-Print Network (OSTI)

EJ of primary energy, 40% of the global total of 227 EJ. Bytotal energy use by industry and on the fraction of electricity use consumed by motor driven systems was taken as representative of global

Bernstein, Lenny

2008-01-01T23:59:59.000Z

327

Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry  

E-Print Network (OSTI)

E. Worrell. 1998a. “Future Technologies for Energy-Efficientand Control 3.3. Emerging Technologies for Ironmaking UsingAlternative Ironmaking Technologies 3.4.1. COREX® Process

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

328

Integrated Remediation Process for a High Salinity Industrial Soil Sample Contaminated with Heavy Oil and Metals  

Science Journals Connector (OSTI)

A highly saline industrial soil sample contaminated with heavy oils and several heavy metals, was tested for remediation using NRC’s Solvent Extraction Soil Remediation (SESR) process. The sample was provided ...

Abdul Majid; Bryan D. Sparks

2002-01-01T23:59:59.000Z

329

Developing Standard Logic for a Detailed Engineering Project Schedule in the Process Industry  

E-Print Network (OSTI)

Planning Meeting (IPPM) for a standard detailed engineering project in the process industry will be used to develop scheduling logic for use in developing detail engineering project schedules. However, because the IPPM does not clearly distinguish...

Miller-Karns, Kara A.

2009-05-15T23:59:59.000Z

330

Contamination from a Coal Tar Processing Chemical Industry: Investigations and Remedial Actions  

Science Journals Connector (OSTI)

One of the major cases of soil contamination in The Netherlands is presented: the site of a coal tar processing chemical industry and its surroundings. The environmental contamination, with PAH’s in particular, i...

Martien W. F. Yland

1986-01-01T23:59:59.000Z

331

Process Waste Heat Recovery in the Food Industry - A System Analysis  

E-Print Network (OSTI)

An analysis of an industrial waste heat recovery system concept is discussed. For example purposes, a food processing plant operating an ammonia refrigeration system for storage and blast freezing is considered. Heat is withdrawn from...

Lundberg, W. L.; Mutone, G. A.

1983-01-01T23:59:59.000Z

332

Process Parameters and Energy Use of Gas and Electric Ovens in Industrial Applications  

E-Print Network (OSTI)

for industrial applications where electric ovens have predominant use. Tests were performed to obtain the process efficiency and examine cost savings potential in converting electric ovens to natural gas. Preliminary results show that, for the plat studied, cost...

Kosanovic, D.; Ambs, L.

333

A Review of Energy Use and Energy Efficiency Technologies for the Textile Industry  

E-Print Network (OSTI)

of Energy (U.S. DOE) Industrial Assessment Center (IAC), Industrial Assessment Center (IAC) Database.

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

334

Sustaining Industrial Energy Efficiency in Process Cooling in a Potentially Water-Short Future  

E-Print Network (OSTI)

by Energy-Intensive Plants* Source: Anonymous US petrochemical company *Includes refineries and ethylene plants ESL-IE-14-05-18 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Estimated Water Use... Sources Strategy: Education on New(er) Technologies and Approaches • Barriers to Use of Unconventional Water Sources (sea water, brackish water or brine water) – High pipeline costs; Need to address upgrades to metallurgy as well as minimizing...

Ferland, K.

2014-01-01T23:59:59.000Z

335

Process Heating Systems | Department of Energy  

Office of Environmental Management (EM)

Efficiency in Process Heating Systems Roadmap for Process Heating Technology Reduce Natural Gas Use in Your Industrial Process Heating Systems Save Energy Now in Your Process...

336

Service-oriented Technology Roadmap (SoTRM) using patent map for R&D strategy of service industry  

Science Journals Connector (OSTI)

As a consequence of the service economy, R&D of the service industry has become more essential nowadays. Therefore, technology roadmaps are required for selection and concentration of services and related technologies. However, now there are problems and challenging issues as follows. First, there is no objective and systematic method or analysis tool to evaluate emerging technologies for services. Second, current technology roadmaps do not provide technology’s priority oriented to the service side. Therefore, we propose a patent map and a Service-oriented Technology Roadmap using the patent map, i.e. SoTRM. Our patent map is a three-dimensional visualization method and analysis tool based on keywords, which contributes to evaluating emerging technologies for services. It does not only overcome the subjectivity of experts, but it also discovers technologies missed out by experts initially. And SoTRM is a technology roadmap customized for the service industry. Based on four layers of patents, keywords, technologies, and services, the layer of service-oriented technologies provides the order of technologies in a service-oriented aspect. It also gives guidelines to assign roles in R&D to public and private sectors. As a result, we provide an objective and systematic framework required to form a technology roadmap oriented to services for R&D strategy of the service industry. Eventually, it helps decision makers from public and private sectors to select and concentrate on the first things among services and the related technologies in R&D of the service industry, and thereby to find the direction of distributing investment funds into technologies for services.

Jong Hwan Suh; Sang Chan Park

2009-01-01T23:59:59.000Z

337

Crossing the Valley of Death: Policy Options to Advance the Uptake of Energy-Efficient Emerging Technologies in US Industry  

E-Print Network (OSTI)

Plant managers around the world are interested in improving the energy efficiency of their facilities while both growing and modernizing their manufacturing capabilities. Emerging industrial technologies, both at the component-level and system...

Harris, J.; Bostrom, P.; Lung, R. B.

2011-01-01T23:59:59.000Z

338

Bates solar industrial process-steam application: preliminary design review  

SciTech Connect

The design is analyzed for a parabolic trough solar process heat system for a cardboard corrugation fabrication facility in Texas. The program is briefly reviewed, including an analysis of the plant and process. The performance modeling for the system is discussed, and the solar system structural design, collector subsystem, heat transport and distribution subsystem are analyzed. The selection of the heat transfer fluid, and ullage and fluid maintenance are discussed, and the master control system and data acquisition system are described. Testing of environmental degradation of materials is briefly discussed. A brief preliminary cost analysis is included. (LEW)

Not Available

1980-01-07T23:59:59.000Z

339

Natural radionuclide concentrations in processed materials from thai mineral industries  

Science Journals Connector (OSTI)

......Phosphogypsum, a waste produced from...NORM-contaminated waste and equipment...any radiation control guidelines...waterworks treatment facility...by-products and waste produced from...Positioning System. Figure-1...coupled to an integrated signal processor...mineral-processing plants and nearby......

S. Chanyotha; C. Kranrod; N. Chankow; R. Kritsananuwat; P. Sriploy; K. Pangza

2012-11-01T23:59:59.000Z

340

Natural radionuclide concentrations in processed materials from thai mineral industries  

Science Journals Connector (OSTI)

......radioactivity in their everyday life. Human management of NORM for economic purposes, such as mineral ore mining and processing, and fossil...the NORM project. REFERENCES 1 Tadmor J. Radioactivity from coal-fired power plants: a review. J. Environ. Radioact......

S. Chanyotha; C. Kranrod; N. Chankow; R. Kritsananuwat; P. Sriploy; K. Pangza

2012-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial process technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

CHAPTER 12 - Source Data for the Manufacturing, Processing, and Mining Industries  

Science Journals Connector (OSTI)

Publisher Summary This chapter provides an overview of the source data for the manufacturing, processing, and mining industries. The manufacturing sector is divided into a number of sectors for the purposes of input-output and may or may not include intermediate processing industries. In many developing countries, industries processing raw materials are the major part of this section of the economy, and final manufacturing industries may be few in number and type. Whatever method of classification is used, the general remarks on source data that follow is applied. Although both large and small businesses usually exist in manufacturing and processing, each industry is often dominated either by large or small businesses. One of the main sources of data is of tax returns for the larger businesses. No difficulty is experienced in obtaining grouped data processed in the taxation department which, when they reach the national income statistician, is in the form of a balancing account for the aggregate businesses covered. As with other sectors, it is important to obtain details of coverage in terms of the number of firms, physical output, or any other information that indicates what proportion of the industry is covered by these accounts.

CARLEEN O'LOUGHLIN

1971-01-01T23:59:59.000Z

342

Overview of U. S. Department of Energy Program in Industrial Energy Conservation Technology Development  

E-Print Network (OSTI)

but it is important to note that many other prograJs into focus the varied and dispersed Federal activi- of the Department have an impact on industrial I ties related to energy is a major change in our conservation, for instance, fluidized bed combusti... technologies in as short a time and regulations on energy production and use, de- substitute, where possible, abund~ntas possible; (2) i I minimize the energr and the Energy Regulatory Administration, impact most10ss embodied in waste streams of all types...

Massey, R. G.

1980-01-01T23:59:59.000Z

343

Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U U U . . S S . . D D e e p p a a r r t t m m e e n n t t o o f f E E n n e e r r g g y y O O f f f f i i c c e e o o f f E E n n v v i i r r o o n n m m e e n n t t a a l l M M a a n n a a g g e e m m e e n n t t Technology Readiness Assessment (TRA) / Technology Maturation Plan (TMP) Process Guide March 2008 U.S. DOE Office of Environmental Management March 2008 TRA/TMP Process Guide Page 2 of 48 TABLE OF CONTENTS 1.0 INTRODUCTION ...................................................................................................................... 4 1.1 Document Purpose............................................................................................................................ 4 2.0 OVERVIEW OF TECHNOLOGY READINESS ASSESSMENTS AND TECHNOLOGY MATURATION PLANS ............................................................................................................

344

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect

The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

2008-01-01T23:59:59.000Z

345

Coupled Physical/Chemical and Biofiltration Technologies to Reduce Air Emissions from Forest Products Industries  

SciTech Connect

The research is a laboratory and bench-scale investigation of a system to concentrate and destroy volatile organic compounds (VOCs), including hazardous air pollutants, formed from the drying of wood and the manufacture of wood board products (e.g., particle board and oriented strandboard). The approach that was investigated involved concentrating the dilute VOCs (<500 ppmv) with a physical/chemical adsorption unit, followed by the treatment of the concentrated voc stream (2,000 to 2,500 ppmv) with a biofiltration unit. The research program lasted three years, and involved three research organizations. Michigan Technological University was the primary recipient of the financial assistance, the USDA Forest Products Laboratory (FPL) and Mississippi State University (MSU) were subcontractors to MTU. The ultimate objective of this research was to develop a pilot-scale demonstration of the technology with sufficient data to provide for the design of an industrial system. No commercialization activities were included in this project.

Gary D. McGinnis

2001-12-31T23:59:59.000Z

346

Potential for Heat Pumps in the U.S. Process Industries  

E-Print Network (OSTI)

POTENTIAL FOR HEAT PUMPS IN THE U. S. PROCESS INDUSTRIES A.P. ROSSITER, R.V. SEETHARAM AND S.M. RANADE TENSA Services Houston, ABSTRACT Two major criteria for successful heat pump installations in process plants are the "appropriate... placement" and "appropriate sizing" of the heat pump, consistent with the thermodynamics of the process. Failure to fulfil these conditions will result in the heat pump not achieving the anticipated savings and may even cause a net increase in process...

Rossiter, A. P.; Seetharam, R. V.; Ranade, S. M.

347

ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market (May 1999)  

Energy.gov (U.S. Department of Energy (DOE))

Cooperative partnerships between industry and government are encouraging the development and use of innovative technologies that reduce industrial energy use, processing wastes, and production costs.

349

Identification of Process Energy and Pollution Reduction Opportunities at DoD Industrial Facilities  

E-Print Network (OSTI)

IDENTIFICATION OF PROCESS ENERGY AND POLLUTION REDUCTION OPPORTUNITIES AT DOD INDUSTRIAL FACILITIES Mike C. Lin Jeri 1. Northrup Principal Investigator Principal Investigator USACERL USACERL Champaign, IL Champaign, IL ABSTRACT Industrial... Information System (DEIS). DEIS is the infonnation system with which the DoD monitors its supplies and consumption of energy. It is primarily used as an energy management tool, providing infonnation about each fuel used within the DoD, including bulk...

Lin, M. C.; Northrup, J. I.; Smith, E. D.

350

Radiation Preservation of Food, Commercialization Technology and Economics in Radiation Processing  

Science Journals Connector (OSTI)

Radiation Preservation of Food, Commercialization Technology and Economics in Radiation Processing ...

H. F. Kraybill; D. C. Brunton

1960-05-01T23:59:59.000Z

351

The Impact of Federal Technology Transfer on the Commercialization Process  

Science Journals Connector (OSTI)

Some people find the suggestion that federal technology transfer can impact technology commercialization impossible to accept. Federal technology transfer can, and does, impact the overall technology commercialization

Roger A. Lewis

1994-01-01T23:59:59.000Z

352

Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial 8,870,422 44.3% Commercial 3,158,244 15.8% Electric Utilities 2,732,496 13.7% Residential 5,241,414 26.2% Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." T e x a s L o u i s i a n a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Industrial Billion Cubic Meters T e x a s C a l i f o r n i a F l o r i d a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Electric Utilities Billion Cubic Meters N e w Y o r k C a l i f o r n i a I l l i n o i s A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Commercial Billion Cubic Meters I l l i n o i s C a l i f o r n i a N e w Y o r k A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Residential Billion Cubic Meters 11. Natural Gas Delivered to Consumers in the United States, 1996 Figure Volumes in Million Cubic Feet Energy Information Administration

353

Science for Energy Technology: The Industry Perspective (2011 EFRC Summit, panel session)  

ScienceCinema (OSTI)

A distinguished panel of industry leaders discussed how basic science impacts energy technology at the 2011 EFRC Summit. Panel members are Jeffrey Wadworth, President and CEO of Battelle Memorial Institute; David E. Carlson, the Chief Scientist for BP Solar; Yet-Ming Chiang, Professor at MIT and the founder of A123 Systems; and Catherine T. Hunt, the R&D Director of Innovation Sourcing and Sustainable Technologies at the Dow Chemical Company. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss 'Science for our Nation's Energy Future.' In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

Wadsworth, Jeffrey (Battelle Memorial Institute); Carlson, David E. (BP Solar); Chiang, Yet-Ming (MIT and A123 Systems); Hunt, Catherine T. (Dow Chemical)

2012-03-20T23:59:59.000Z

354

Industry  

E-Print Network (OSTI)

2003: The history of waste energy recovery in Germany sinceincreasing recovery of waste energy and process gases, andgeneration or non-energy uses, waste-derived fuels,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

355

e-Symbiosis: technology-enabled support for Industrial Symbiosis targeting Small and Medium Enterprises and innovation  

Science Journals Connector (OSTI)

Abstract The paper introduces a new paradigm for Industrial Symbiosis by pioneering the use of ontology engineering in the field. Semantics are used to model Industrial Symbiosis flows, to model enabling technologies and to systematise the development of a matching service. Combined with a systems engineering approach, semantics further combine tacit knowledge from Industrial Symbiosis experts with explicit knowledge from Industrial Symbiosis participants. The new approach promises systematic venues to discoveries, innovative solutions, and a holistic methodology in the development of Industrial Symbiosis networks. The paradigm has been implemented as a multilingual web service to support Industrial Symbiosis communities and to embrace small and medium enterprises that are currently side-lined from developments. The approach has been tested and validated using real-life data and its functions are demonstrated with illustrative examples.

F. Cecelja; T. Raafat; N. Trokanas; S. Innes; M. Smith; A. Yang; Y. Zorgios; A. Korkofygas; A. Kokossis

2014-01-01T23:59:59.000Z

356

Final Report - ADVANCED LASER-BASED SENSORS FOR INDUSTRIAL PROCESS CONTROL  

SciTech Connect

The objective of this work is to capture the potential of real-time monitoring and overcome the challenges of harsh industrial environments, Los Gatos Research (LGR) is fabricating, deploying, and commercializing advanced laser-based gas sensors for process control monitoring in industrial furnaces (e.g. electric arc furnaces). These sensors can achieve improvements in process control, leading to enhanced productivity, improved product quality, and reduced energy consumption and emissions. The first sensor will utilize both mid-infrared and near-infrared lasers to make rapid in-situ measurements of industrial gases and associated temperatures in the furnace off-gas. The second sensor will make extractive measurements of process gases. During the course of this DOE project, Los Gatos Research (LGR) fabricated, tested, and deployed both in-situ tunable diode laser absorption spectrometry (TDLAS) analyzers and extractive Off-Axis Integrated Cavity Output Spectroscopy (Off-Axis ICOS) analyzers.

Gupta, Manish; Baer, Douglas

2013-09-30T23:59:59.000Z

357

Waste generation process modeling and analysis for fuel reprocessing technologies  

SciTech Connect

Estimates of electric power generation requirements for the next century, even when taking the most conservative tack, indicate that the United States will have to increase its production capacity significantly. If the country determines that nuclear power will not be a significant component of this production capacity, the nuclear industry will have to die, as maintaining a small nuclear component will not be justifiable. However, if nuclear power is to be a significant component, it will probably require some form of reprocessing technology. The once-through fuel cycle is only feasible for a relatively small number of nuclear power plants. If we are maintaining several hundred reactors, the once-through fuel cycle is more expensive and ethically questionable.

Kornreich, D. E. (Drew E.); Koehler, A. C. (Andrew C.); Farman, Richard F.

2002-01-01T23:59:59.000Z

358

INNOVATIVE PROCESS TECHNOLOGIES (IPT) NETL Team Technical Coordinator: David Alman  

NLE Websites -- All DOE Office Websites (Extended Search)

INNOVATIVE PROCESS TECHNOLOGIES (IPT) NETL Team Technical Coordinator: David Alman INNOVATIVE PROCESS TECHNOLOGIES (IPT) NETL Team Technical Coordinator: David Alman Name Title Affiliation Alfonso, Dominic R Physical Scientist NETL Brow n, Thomas D General Engineer NETL Buric, Michael General Engineer NETL Casleton, Kent H Physical Scientist NETL Chorpening, Benjamin Mechanical Engineer NETL Dogan, Omer Materials Research Eng NETL Ferguson, Donald H Mechanical Engineer NETL Gerdemann,Stephen Chemical Engineer NETL Haw k, Jeffrey Materials Research Eng NETL Huckaby, E David Mechanical Engineer NETL Manivannan, Ayyakkannu General Engineer NETL Ochs, Thomas L General Engineer NETL Ohodnicki, Paul General Engineer NETL Oryshchyn, Danylo Mechanical Engineer NETL Shahnam, Mehrdad General Engineer NETL Sidw ell, Todd G Mechanical Engineer NETL Strakey, Peter A Physical Scientist

359

Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications  

SciTech Connect

Air Products is carrying out a scope of work under DOE Award No. DE-FE0012065 “Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications.” The Statement of Project Objectives (SOPO) includes a Task 4f in which a Decision Point shall be reached, necessitating a review of Tasks 2-5 with an emphasis on Task 4f. This Topical Report constitutes the Decision Point Application pertaining to Task 4f. The SOPO under DOE Award No. DE-FE0012065 is aimed at furthering the development of the Ion Transport Membrane (ITM) Oxygen production process toward a demonstration scale facility known as the Oxygen Development Facility (ODF). It is anticipated that the completion of the current SOPO will advance the technology significantly along a pathway towards enabling the design and construction of the ODF. Development progress on several fronts is critical before an ODF project can commence; this Topical Report serves as an early update on the progress in critical development areas. Progress was made under all tasks, including Materials Development, Ceramic Processing Development, Engineering Development, and Performance Testing. Under Task 4f, Air Products carried out a cost and performance study in which several process design and cost parameters were varied and assessed with a process model and budgetary costing exercise. The results show that the major variables include ceramic module reliability, ITM operating temperature, module production yield, and heat addition strategy. High-temperature compact heat exchangers are shown to contribute significant cost benefits, while directly firing into the feed stream to an ITM are even a mild improvement on the high-temperature recuperation approach. Based on the findings to-date, Air Products recommends no changes to the content or emphasis in the current SOPO and recommends its completion prior to another formal assessment of these factors.

Armstrong, Phillip

2014-11-01T23:59:59.000Z

360

Innovative Technology Improves Upgrading Process for Unconventional Oil  

NLE Websites -- All DOE Office Websites (Extended Search)

09, 2013 09, 2013 Innovative Technology Improves Upgrading Process for Unconventional Oil Resources Washington, D.C. - An innovative oil-upgrading technology that can increase the economics of unconventional petroleum resources has been developed under a U.S. Department of Energy -funded project. The promising technology, developed by Ceramatec of Salt Lake City, Utah, and managed by the Office of Fossil Energy's National Energy Technology Laboratory, has been licensed to Western Hydrogen of Calgary for upgrading bitumen or heavy oil from Canada. A new company, Field Upgrading (Calgary, Alberta), has been formed dedicated to developing and commercializing the technology. Heavy oil is crude oil that is viscous and requires thermally enhanced oil recovery methods, such as steam and hot water injection, to reduce its viscosity and enable it to flow. The largest U.S. deposits of heavy oil are in California and on Alaska's North Slope. Estimates for the U.S. heavy oil resource total about 104 billion barrels of oil in place - nearly five times the United States' proved reserves. In addition, although no commercial-scale development of U.S. oil sands or oil shale has yet occurred, both represent another potential future domestic unconventional oil resource.

Note: This page contains sample records for the topic "industrial process technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

National Institute of Standards and Technology - Texas instruments industrial collaboratory testbed.  

SciTech Connect

A portion of the mission of the NIST Manufacturing Engineering Laboratory (MEL) is to improve and advance length metrology in aid of U.S. Industry. This responsibility is found within the Precision Engineering Division (PED). The successful development of a ''Collaborator'' for TelePresence Microscopy provides an important new tool to promote technology transfer in the area of length metrology and measurement technology. NIST and Texas Instruments under the auspices of the National Automated Manufacturing Testbed (NAMT) and in collaboration with the University of Illinois are developing a microscopy collaborator testbed to demonstrate the value of telepresence microscopy within a large distributed manufacturing facility such as Texas Instruments and between organizations such as NET, Texas Instruments and Universities. Telepresence Microscopy is an application of the state-of-the-art Internet based technology to long-distance scientific endeavors. Long distance can refer to across the country or from one site within a company to another. Telepresence is currently being applied to electron microscopy in several locations where unique analytical facilities (such as those at NIST) can be utilized via Internet connection. Potentially this can provide tremendous savings to a company where asset sharing can now be rapidly and effectively accessed or remote unique facilities can be utilized without the requirement of expensive and time consuming travel. This methodology is not limited to electron microscopy, but its power is currently exemplified by its application to that form of microscopy.

Postek, M. T.

1998-10-29T23:59:59.000Z

362

Technology roadmapping: turning hype into a systematic process  

Science Journals Connector (OSTI)

Technology roadmapping is both en vogue and understood in widely differing ways. In our view, two aspects are most characteristic: first, a roadmap is a specific presentation form of data, information and analyses, which is particularly vivid and easy to grasp. Second, if ease of implementation is desired, a roadmap should be the outcome of a social, consensus building process, which connects an expected future (descriptive) with a desired future (normative). A roadmap becomes easy to implement if it has been influenced and accepted in the course of the roadmapping process by those who will be involved in the implementation.

Axel Zweck; Dirk Holtmannspotter

2009-01-01T23:59:59.000Z

363

FY 2009 Progress: Process Monitoring Technology Demonstration at PNNL  

SciTech Connect

Pacific Northwest National Laboratory (PNNL) is developing and demonstrating three technologies designed to assist in the monitoring of reprocessing facilities in near-real time. These technologies include 1) a multi-isotope process monitor (MIP), 2) a spectroscopy-based monitor that uses UV-Vis-NIR (ultraviolet-visible-near infrared) and Raman spectrometers, and 3) an electrochemically modulated separations approach (EMS). The MIP monitor uses gamma spectroscopy and pattern recognition software to identify off-normal conditions in process streams. The UV-Vis-NIR and Raman spectroscopic monitoring continuously measures chemical compositions of the process streams including actinide metal ions (uranium, plutonium, neptunium), selected fission products, and major cold flow sheet chemicals. The EMS approach provides an on-line means for separating and concentrating elements of interest out of complex matrices prior to detection via nondestructive assay by gamma spectroscopy or destructive analysis with mass spectrometry. A general overview of the technologies and ongoing demonstration results are described in this report.

Arrigo, Leah M.; Christensen, Ronald N.; Fraga, Carlos G.; Liezers, Martin; Peper, Shane M.; Thomas, Elizabeth M.; Bryan, Samuel A.; Douglas, Matthew; Laspe, Amy R.; Lines, Amanda M.; Peterson, James M.; Ward, Rebecca M.; Casella, Amanda J.; Duckworth, Douglas C.; Levitskaia, Tatiana G.; Orton, Christopher R.; Schwantes, Jon M.

2009-12-01T23:59:59.000Z

364

Innovation in mature industries : recent impacts of the oil & gas and automobile technological trends on the steel industry  

E-Print Network (OSTI)

In order to survive, the steel industry has undergone traumatic changes in the last years. A thirty years old overcapacity combined with a slow growing market led to a steadily eroding profitability of steel companies, ...

Tivelli, Marco M. (Marco Mario), 1964-

2004-01-01T23:59:59.000Z

365

Carbon emissions reduction potential in the US chemicals and pulp and paper industries by applying CHP technologies  

SciTech Connect

The chemical and the pulp/paper industries combined provide 55% of CHP generation in the US industry. Yet, significant potential for new CHP capacities exists in both industries. From the present steam consumption data, the authors estimate about 50 GW of additional technical potential for CHP in both industries. The reduced carbon emissions will be equivalent to 44% of the present carbon emissions in these industries. They find that most of the carbon emissions reductions can be achieved at negative costs. Depending on the assumptions used in calculations, the economic potential of CHP in these industries can be significantly lower, and carbon emissions mitigation costs can be much higher. Using sensitivity analyses, they determine that the largest effect on the CHP estimate have the assumptions in the costs of CHP technology, in the assumed discount rates, in improvements in efficiency of CHP technologies, and in the CHP equipment depreciation periods. Changes in fuel and electricity prices and the growth in the industries' steam demand have less of an effect. They conclude that the lowest carbon mitigation costs are achieved with the CHP facility is operated by the utility and when industrial company that owns the CHP unit can sell extra electricity and steam to the open wholesale market. Based on the results of the analyses they discuss policy implications.

Khrushch, M.; Worrell, E.; Price, L.; Martin, N.; Einstein, D.

1999-07-01T23:59:59.000Z

366

Lead contamination in soil and groundwater in and around a lead processing industry: a case study  

Science Journals Connector (OSTI)

Environmental pollution is of major concern across the world, which is affected by a variety of contaminants. Lead is one of the major heavy metals used in industrial activity. Unscientific handling and disposal of lead bearing residues or lead waste has led to contamination of the surrounding soil and water environment. A detailed investigation of soil and groundwater was carried out in and around a selected lead processing industry located in a designated industrial area in Bangalore, India. The results of the investigations carried out indicated that there is no groundwater contamination, but lead concentration in top soil is found to exceed the prescribed standard limits at many places within the industrial premises. Considering the site condition and extent of contamination ex-situ remediation can be considered as the feasible remedial option.

A. Ramesh; P.V. Sivapullaiah; H. Lakshmi Kantha; B.S. Nangendra Prakesh

2013-01-01T23:59:59.000Z

367

Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries  

SciTech Connect

The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

Adam Polcyn; Moe Khaleel

2009-01-06T23:59:59.000Z

368

A Review of Energy Use and Energy Efficiency Technologies for the Textile Industry  

E-Print Network (OSTI)

Best practices/case studies - Indian Industries, Energy-efficiencyBest practices/case studies - Indian Industries, Energy-efficiencyBest practices/case studies - Indian Industries, Energy-efficiency

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

369

SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT COLLEGE OF ENGINEERING, ARCHITECTURE AND TECHNOLOGY  

E-Print Network (OSTI)

SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT COLLEGE OF ENGINEERING performance. Candidates must have a Ph.D. in industrial engineering or a related in the industrial engineering and management field. We seek candidates with curricular

Piao, Daqing

370

REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES  

SciTech Connect

The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

2002-02-25T23:59:59.000Z

371

Actinide solution processing at the Rocky Flats Environmental Technology Site  

SciTech Connect

The Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1039, for radioactive solution removal and processing at Rocky Flats Environmental Technology Site, Golden, Colorado. The proposal for solution removal and processing is in response to independent safety assessments and an agreement with the State of Colorado to remove mixed residues at Rocky Flats and reduce the risk of future accidents. Monthly public meetings were held during the scoping and preparation of the EA. The scope of the EA included evaluations of alternative methods and locations of solution processing. A comment period from February 20, 1995 through March 21, 1995 was provided to the public and the State of Colorado to offer written comment on the EA. Comments were received from the State of Colorado and the U.S. Environmental Protection Agency. A response to the agency comments is included in the Final EA.

NONE

1995-04-01T23:59:59.000Z

372

Carbon Dioxide Sequestration Industrial-scale processes are available for separating carbon dioxide from the post-  

E-Print Network (OSTI)

Carbon Dioxide Sequestration Industrial-scale processes are available for separating carbon dioxide dioxide separation and sequestration because the lower cost of carbon dioxide separation from for injection of carbon dioxide into oil or gas-bearing formations. An advantage of sequestration involving

373

Distributed heterogeneous event processing: enhancing scalability and interoperability of CEP in an industrial context  

Science Journals Connector (OSTI)

Although a significant amount of research has investigated the benefits of distributed CEP in terms of scalability and extensibility, there is an ongoing reluctance in deploying distributed CEP in an industrial context. In this paper we present the DHEP ... Keywords: distributed complex event processing, distributed systems, heterogeneous systems and networks

Björn Schilling; Boris Koldehofe; Udo Pletat; Kurt Rothermel

2010-07-01T23:59:59.000Z

374

The application of neural networks with artificial intelligence technique in the modeling of industrial processes  

SciTech Connect

Neural networks are a relatively new artificial intelligence technique that emulates the behavior of biological neural systems in digital software or hardware. These networks can 'learn', automatically, complex relationships among data. This feature makes the technique very useful in modeling processes for which mathematical modeling is difficult or impossible. The work described here outlines some examples of the application of neural networks with artificial intelligence technique in the modeling of industrial processes.

Saini, K. K.; Saini, Sanju [CDLM engg. College Panniwala Mota, Sirsa and Murthal, Sonipat, Haryana (India)

2008-10-07T23:59:59.000Z

375

DOE cost comparison study industrial fluidized bed combustion vs conventional coal technology  

SciTech Connect

This study compares the capital and operating costs of two different industrial boiler technologies, each producing 250,000 lbs steam/hr. These technologies are: Fluidized Bed Combustion (FBC) and Pulverized Coal (PC) combustion used in conjunction with a limestone Flue Gas Desulfurization (FGD) system. Three separate turnkey plant designs have been completed. Two of these plant designs incorporate FBC technology and have been designated FBA-16 and FBV-16. The first FBC design (FBA-16) contains two shop assembled, rail shippable fluid bed boilers capable of producing 125,000 lbs/hr each. The second plant design (FBV-16) utilizes a single 250,000 lbs/hr fluid bed boiler shipped by rail in large sections for field assembly. The third plant design utilizes a conventional pulverized coal (PC) boiler in conjunction with a C-E Air Quality Control System (AQCS) limestone scrubber. Capital costs were generated for the three turnkey plant designs just described. The FBA-16, FBV-16, and Conventional Unit plant designs have associated capital costs of $24.4, $22.8, and $24.7 million, respectively. Comparisons between plant capital cost estimates are valid and informative. The total operational costs, which include contingencies on new product design for the Fluid Bed Units, were found to vary between four and seven percent higher than the Conventional Unit. When contingencies are not included, the operating costs were found to be between one and three percent higher than the Conventional Unit. As can be seen, the operating costs for the bed designs are close enough to be considered similar when considering the nature of the study. The efficiency of the fluid bed plant designs can be increased and required capital equipment reduced by improvements to the plant design with time and more development. Some potential design modifications are outlined.

Myrick, D.T.

1980-01-02T23:59:59.000Z

376

TECHNOLOGY  

Science Journals Connector (OSTI)

Fluidized Carbonization of Lignite Produces Cheap Fuel ... Developed by the Bureau of Mines, this process can utilize the reserves of lignite and subbituminous coal in that area to produce industrial fuel that will compete with natural gas at prevailing prices. ...

1953-05-18T23:59:59.000Z

377

Development Requirements for Advanced Industrial Heat Pumps  

E-Print Network (OSTI)

DOE is attempting to advance the use of heat pumps to save energy in industrial processes. The approach has emphasized developing better heat pump technology and transferring that technology to the private sector. DOE requires that heat pump...

Chappell, R. N.; Priebe, S. J.; Bliem, C. J.; Mills, J. I.

378

Experimental Investigation on Energy Efficiency of Electrical Utilities in Process Industries through Standard Energy Conservation Practices  

Science Journals Connector (OSTI)

Abstract In this research paper energy uses and energy conservation opportunities for process industry is presented. It has been found that process industries consume a substantial amount of energy. Excessive use of energy is usually associated with many process plants in India. The study is based on the realization that enormous potential exists for cost effective improvements in the existing energy using equipments. Through the method of energy audit power rating, operation time, power factor and other important details of all the machines/equipments were collected for the selected industry. The measured data was analysed to find energy conservation opportunity. Energy saving techniques like, energy efficient pumps, stopping of air leakages, air compressor efficiency improvement was considered for energy conservation. Energy saving details was calculated with cost benefit analysis. Energy conservation implementation program was carried out for Centrifugal pumping system, Air compressor system, as per the management consent and requirement in the the selected industry. It has resulted in total saving of 2,29,369 electric units (kWh/year) and annual energy saving of Rs. 13,43,670 with an investment of Rs 2,45,000.

A. Vyas Pareshkumar; V. Bhale Purnanad

2014-01-01T23:59:59.000Z

379

Energy-Efficiency Technologies and Benchmarking the Energy Intensity for the Textile Industry  

E-Print Network (OSTI)

Energy-Efficiency Technologies and Benchmarking the EnergyEnvironmental Energy Technologies Division Lawrence BerkeleyIsfahan University of Technology Mohamad Abdolrazaghi,

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

380

Waste treatment by reverse osmosis and membrane processes: Industrial. November 1976-October 1989 (Citations from the COMPENDEX data base). Report for November 1976-October 1989  

SciTech Connect

This bibliography contains citations concerning the use of membranes to treat industrial waste water. Reverse osmosis, ion exchange, electrodialysis, and ultrafiltration processes are described. Removal of metals, sodium compounds, nitrates, flourides, dyes, and radioactive waste using membranes is examined. Waste-water treatment for chemical, pulp, textile, and steel mills using this technology is included. (This updated bibliography contains 294 citations, 13 of which are new entries to the previous edition.)

Not Available

1989-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial process technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Waste treatment by reverse osmosis and membrane processes: industrial. January 1976-June 1989 (Citations from the COMPENDEX data base). Report for January 1976-June 1989  

SciTech Connect

This bibliography contains citations concerning the use of membranes to treat industrial waste water. Reverse osmosis, ion exchange, electrodialysis, and ultrafiltration processes are described. Removal of metals, sodium compounds, nitrates, flourides, dyes, and radioactive waste using membranes is examined. Waste-water treatment for chemical, pulp, textile, and steel mills using this technology is included. (This updated bibliography contains 281 citations, 35 of which are new entries to the previous edition.)

Not Available

1989-06-01T23:59:59.000Z

382

Waste treatment by reverse osmosis and membrane processes: industrial. January 1976-June 1988 (citations from the Engineering Index data base). Report for January 1976-June 1988  

SciTech Connect

This bibliography contains citations concerning the use of membranes to treat industrial waste water. Reverse osmosis, ion exchange, electrodialysis, and ultrafiltration processes are described. Removal of metals, sodium compounds, nitrates, flourides, dyes, and radioactive waste using membranes is examined. Wastewater treatment for chemical, pulp, textile, and steel mills using this technology is included. (This updated bibliography contains 246 citations, 26 of which are new entries to the previous edition.)

Not Available

1988-06-01T23:59:59.000Z

383

Energy and process substitution in the frozen-food industry: geothermal energy and the retortable pouch  

SciTech Connect

An assessment is made of the possibilities of using geothermal energy and an aseptic retortable pouch in the food processing industry. The focus of the study is on the production of frozen broccoli in the Imperial Valley, California. Background information on the current status of the frozen food industry, the nature of geothermal energy as a potential substitute for conventional fossil fuels, and the engineering details of the retortable pouch process are covered. The analytical methodology by which the energy and process substitution were evaluated is described. A four-way comparison of the economics of the frozen product versus the pouched product and conventional fossil fuels versus geothermal energy was performed. A sensitivity analysis for the energy substitution was made and results are given. Results are summarized. (MCW)

Stern, M.W.; Hanemann, W.M.; Eckhouse, K.

1981-12-01T23:59:59.000Z

384

Minimising emissions and energy wastage by improved industrial processes and integration of renewable energy  

Science Journals Connector (OSTI)

This article provides an introduction to this Special Issue of Journal of Cleaner Production (JCLP), which contains thirteen, carefully selected articles from the 12th Conference, “Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction” – PRES'09. This issue builds upon the multi-year co-operation between the PRES conference planners and the JCLP. The articles cover important subjects of increased efficiency in energy generation and usage and in improvements in industrial process optimisation. The first group of five papers focuses upon recent advances in emissions reduction and the resulting energy penalties. The second group of four papers deals with improving the efficiency and reliability in the utilisation of renewable energy, where hydrogen and biodiesel are the key energy carriers. The final group of three papers focus on process integration challenges of sustainable energy systems and upon the challenges of industrial/societal integration of sustainable energy systems into regional sustainable development planning.

Ji?í Jaromír Klemeš; Petar Sabev Varbanov; Sauro Pierucci; Donald Huisingh

2010-01-01T23:59:59.000Z

385

Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salt Waste Processing Facility Salt Waste Processing Facility Technology Readiness Assessment Report Kurt D. Gerdes Harry D. Harmon Herbert G. Sutter Major C. Thompson John R. Shultz Sahid C. Smith July 13, 2009 Prepared by the U.S. Department of Energy Washington, D.C. SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 ii This page intentionally left blank SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 iii SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 iii Signatures SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 iv This page intentionally left blank SRS Salt Waste Processing Facility

386

Environmental assessment for the Processing and Environmental Technology Laboratory (PETL)  

SciTech Connect

The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Processing and Environmental Technology Laboratory (PETC) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to integrate, consolidate, and enhance the materials science and materials process research and development (R&D) currently in progress at SNL/NM. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI).

NONE

1995-09-01T23:59:59.000Z

387

Efficient Separations and Processing Crosscutting Program. Technology summary  

SciTech Connect

The Efficient Separations and Processing (ESP) Crosscutting Program was created in 1991 to identify, develop, and perfect separations technologies and processes to treat wastes and address environmental problems throughout the DOE Complex. The ESP funds several multi-year tasks that address high-priority waste remediation problems involving high-level, low-level, transuranic, hazardous, and mixed (radioactive and hazardous) wastes. The ESP supports applied research and development (R and D) leading to demonstration or use of these separations technologies by other organizations within DOE-EM. Treating essentially all DOE defense wastes requires separation methods that concentrate the contaminants and/or purify waste streams for release to the environment or for downgrading to a waste form less difficult and expensive to dispose of. Initially, ESP R and D efforts focused on treatment of high-level waste (HLW) from underground storage tanks (USTs) because of the potential for large reductions in disposal costs and hazards. As further separations needs emerge and as waste management and environmental restoration priorities change, the program has evolved to encompass the breadth of waste management and environmental remediation problems.

NONE

1995-06-01T23:59:59.000Z

388

National Industrial Energy Technology Conference, New Orleans, LA, May 11-12, 2005 1 Quantifying Savings From Improved Boiler Operation  

E-Print Network (OSTI)

energy savings from switching to modulation control mode and reducing excess air in natural gas firedNational Industrial Energy Technology Conference, New Orleans, LA, May 11-12, 2005 1 Quantifying/off operation and excess combustion air reduce boiler energy efficiency. This paper presents methods to quantify

Kissock, Kelly

389

Save Energy Now in Your Process Heating Systems  

SciTech Connect

This DOE Industrial Technologies Program fact sheet describes how manufacturing plants can save energy and money by making energy efficiency improvements to their industrial process heating systems.

Not Available

2006-01-01T23:59:59.000Z

390

Low effluent processing in the pulp and paper industry: Electrodialysis for continuous selective chloride removal  

SciTech Connect

Pollution prevention is currently a major focus of the United States pulp and paper industry. Significant process changes are inevitable to implement low effluent processing. The kraft pulping process is prevalent for the production of wood pulp. About 50 million tons of wood pulp are produced annually in the United States alone using the kraft process. Water consumption is currently roughly between 30 and 200 m{sup 3} of water per ton of air dry bleached kraft pulp. In-process recycling of water is now being implemented by many mills to reduce the use of increasingly scarce water resources and to reduce the need for waste-water treatment. Mass balance considerations and industrial experience show that nonprocess elements, which are detrimental to the kraft process, such as chloride and potassium, will quickly build up once water use is significantly reduced. High concentrations of chloride and potassium can cause corrosion and lead to more frequent mill shutdowns due to fouling of heat exchanger surfaces in the kraft recovery furnace. Electrodialysis will monovalent selective anion and cation exchange membranes was explored here to selectively remove chlorine as sodium and potassium chloride from a feed stream with very high ionic strength. Experiments with model solutions and extended tests with the actual pulp mill materials were performed. Very good selectivities and current efficiencies were observed for chloride over sulfate. The outstanding performance of the process with actual mill materials containing organic and inorganic contamination shows great promise for rapid transfer to the pilot scale. This work is an example of the usefulness of membrane separations as a kidney in low effluent industrial processing.

Pfromm, P.H. [Institute of Paper Science and Technology, Atlanta, GA (United States)

1997-12-01T23:59:59.000Z

391

Human-computer interaction requirements for abnormal situation management in industrial processes  

SciTech Connect

Honeywell is leading a multiyear effort to identify the causes of and propose solutions for abnormal situations in industrial processes. The authors define abnormal situations as those that necessitate human intervention because the automated distributed control system (DCS) cannot maintain the plant in an appropriate operating state. These situations are clearly of concern in the process industry because of their impact on revenues, human safety, and the environment. Interactions between the DCS and operating personnel are critical to mitigating abnormal situations in chemical plants. With the collaboration of major petrochemical and oil refining industries, Honeywell conducted on-site evaluations of the operating environments of various types of processes. Through this effort they identified process, equipment, people, and work context factors that contribute to abnormal situations. This paper describes human-computer interaction solution requirements based on the on-site plant evaluations. The results are discussed in terms of improvements to human-computer interactions and user interfaces and enhancements to conventional computer-based DCSs.

Soken, N.; Bullemer, P.; Ramanathan, P.; Reinhart, W. [Honeywell Inc., Minneapolis, MN (United States). Honeywell Technology Center

1995-10-01T23:59:59.000Z

392

DOE cost comparison study: industrial fluidized bed combustion vs conventional coal technology  

SciTech Connect

This study compares the capital and operating costs of two different industrial boiler technologies, each producing 250,000 lbs steam/hr: Fluidized Bed Combustion (FBC) and Pulverized Coal (PC) combustion used in conjunction with a limestone Flue Gas Desulfurization (FGD) system. Three separate turnkey plant designs have been completed. Two of these plant designs incorporate FBC technology and have been designated FBA-16 and FBV-16. The first FBC design (FBA-16) contains two shop assembled, rail-shippable, fluid-bed boilers capable of producing 125,000 lbs/h each. The second plant design (FBV-16) utilizes a single fluid bed boiler shipped by rail in large sections for field assembly. This single unit is capable of producing 250,000 lbs/h. The third plant design utilizes a conventional pulverized coal (PC) boiler used in conjunction with a C-E Air Quaity Control System (AQCS) limestone scrubber. The FBA-16 and FBV-16 fluid bed designs were found to be competitive with the conventional unit. Capital costs were generated for the three turnkey plant designs just described. The FBA-16, FBV-16, and Conventional Unit plant designs have associated capital costs of $24.4, $22.8, and $24.7 million, respectively. A substantial cost reduction can be realized for plant capacities less than 180,000 lbs steam/h by incorporating a single FBA-16 type boiler. The operating costs for the bed designs are close enough to be considered similar when considering the nature of the study. The efficiency of the fluid bed plant designs can be increased and required capital equipment reduced by improvements to the plant design. Some potential design modifications are outlined. Extensive design and background research was prformed to increase the validity and relevance of this report.

Myrick, D.T.

1980-01-02T23:59:59.000Z

393

New process modeling [sic], design, and control strategies for energy efficiency, high product quality, and improved productivity in the process industries. Final project report  

SciTech Connect

This project was concerned with the development of process design and control strategies for improving energy efficiency, product quality, and productivity in the process industries. In particular, (i) the resilient design and control of chemical reactors, and (ii) the operation of complex processing systems, was investigated. Specific topics studied included new process modeling procedures, nonlinear controller designs, and control strategies for multiunit integrated processes. Both fundamental and immediately applicable results were obtained. The new design and operation results from this project were incorporated into computer-aided design software and disseminated to industry. The principles and design procedures have found their way into industrial practice.

Ray, W. Harmon

2002-06-05T23:59:59.000Z

394

An Assessment of the Economic Importance of the San Carlos Island Shrimp Processing Industry to the Lee County Economy  

E-Print Network (OSTI)

An Assessment of the Economic Importance of the San Carlos Island Shrimp Processing Industry processing industry (and the lost economic contribution of each diverted shrimp vessel) to the local economy to the Lee County Economy Chuck Adams, David Mulkey, and Alan Hodges Food and Resource Economics Department

Florida, University of

395

Nanoscale Bulk MOSFET Design and Process Technology for Reduced Variability  

E-Print Network (OSTI)

to the end of the technology roadmap. 4.6 References [1] H.Inc. ) [10] Int’l Technology Roadmap for Semiconductors,Inc. ) [7] Int’l Technology Roadmap for Semiconductors, 2006

Sun, Xin

2010-01-01T23:59:59.000Z

396

Foreign Direct Investment, Intra-organizational Proximity, and Technological Capability: The Case of China's Automobile Industry  

E-Print Network (OSTI)

of China's Automobile Industry by Kyung-Min Nam B.S., Urban Planning and Engineering, Yonsei University Capability: The Case of China's Automobile Industry by Kyung-Min Nam Submitted to the Department of Urban

397

Agricultural Industry Advanced Vehicle Technology: Benchmark Study for Reduction in Petroleum Use  

SciTech Connect

Diesel use on farms in the United States has remained relatively constant since 1985, decreasing slightly in 2009, which may be attributed to price increases and the economic recession. During this time, the United States’ harvested area also has remained relatively constant at roughly 300 million acres. In 2010, farm diesel use was 5.4% of the total United States diesel use. Crops accounting for an estimated 65% of United States farm diesel use include corn, soybean, wheat, hay, and alfalfa, respectively, based on harvested crop area and a recent analysis of estimated fuel use by crop. Diesel use in these cropping systems primarily is from tillage, harvest, and various other operations (e.g., planting and spraying) (Figure 3). Diesel efficiency is markedly variable due to machinery types, conditions of operation (e.g., soil type and moisture), and operator variability. Farm diesel use per acre has slightly decreased in the last two decades and diesel is now estimated to be less than 5% of farm costs per acre. This report will explore current trends in increasing diesel efficiency in the farm sector. The report combines a survey of industry representatives, a review of literature, and data analysis to identify nascent technologies for increasing diesel efficiency

Roger Hoy

2014-09-01T23:59:59.000Z

398

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network (OSTI)

Hoboken, N.J. Industrial Assessment Centers (IAC) (2005).Industrial Assessment Centers Database. Rutgers University,database/. Industrial Assessment Centers (IAC) (2011).

Brush, Adrian

2012-01-01T23:59:59.000Z

399

Microwave processing of cement and concrete materials – towards an industrial reality?  

Science Journals Connector (OSTI)

Abstract Each year a substantial body of literature is published on the use of microwave to process cement and concrete materials. Yet to date, very few if any have lead the realisation of a commercial scale industrial system and is the context under which this review has been undertaken. The state-of the–art is evaluated for opportunities, and the key barriers to the development of new microwave-based processing techniques to enhance production, processing and recycling of cement and concrete materials. Applications reviewed include pyro-processing of cement clinker; accelerated curing, non-destructive testing and evaluation (NDT&E), and end-of-life processing including radionuclide decontamination.

Adam Buttress; Aled Jones; Sam Kingman

2015-01-01T23:59:59.000Z

400

Pressure drop in cyclone separators commonly used in the agricultural processing industry  

E-Print Network (OSTI)

for the degree of NASTER OF SCIENCE August 1984 Major Subject: Agricultural Engineering PRESSURE DROP IN CYCLONE SEPARATORS COMMONLY USED IN THE AGRICULTURAL PROCESSING INDUSTRY A Thesis by FRANCISCO ALEJANDRO GUZMAN Approved as to style and content by...: Calvin B. Parnell, Jr. (Chairman of'Committee) Andrew . McFarland / (Member) Otto R. Kunze (Member) William Murphy (Member) Edward Hi er (Head of Department) August 1984 ABSTRACT Pressure Drop 1n Cyclone Separators Commonly Used...

Guzman, Francisco Alejandro

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "industrial process technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Adjustable Speed Pumping Applications: Industrial Technologies Program (ITP) Pumping Systems Tip Sheet #11  

SciTech Connect

This two-page tip sheet provides practical tips on application of Adjustable Speed Drives in industrial settings.

Not Available

2007-01-01T23:59:59.000Z

402

Promoting emerging energy-efficiency technologies and practices by utilities in a restructured energy industry: A report from California  

SciTech Connect

The potential energy savings from emerging technologies (i.e., those technologies emerging from research and development) represent a significant resource to California and the US This paper describes how California's investor-owned utilities (IOUs) have been promoting emerging technologies over the last three years to increase energy efficiency in the buildings sector. During these years, the IOUs have experienced significant changes in their regulatory environment as part of the restructuring of the energy industry in California. These regulatory changes have impacted the way emerging technologies are treated by the regulatory community and the IOUs. After reviewing these changes, the paper concludes by discussing potential opportunities to improve the market penetration of emerging technologies.

Vine, Edward L.

2000-07-01T23:59:59.000Z

403

ITP Metal Casting: Energy and Environmental Profile of the U.S. Metal casting Industry  

Energy.gov (U.S. Department of Energy (DOE))

The DOE's Office of Industrial Technologies has formed apartnership with the U.S. metalcasting industry to accelerate the development of technoloiges and processes that will improve the industry's energy efficiency and environmental performance.

404

(Development of industrial processes for manufacturing of silicon sampling hadron calorimeters)  

SciTech Connect

The travelers attended meetings in Dubna and in Zelenograd. Discussions in Dubna centered on (1) obtaining information on USSR capabilities in silicon detector manufacture and testing and on (2) strategy regarding the development of an industrial process and the manufacture of a large quantity of silicon detectors for the SSC L* collaboration. The ELMA plant in Zelenograd was inspected, and discussions were held on production process development and on a possible detector supply time line. In addition, J. Walter participated in technical and cost estimate forecast discussions with representatives of Wacker-Chemitronic Factory (Germany) about silicon crystals for possible use in the SSC.

Plasil, F.; Walter, J.

1991-01-04T23:59:59.000Z

405

Technology Development Transition Process: Decision-Making Guide and Checklist  

SciTech Connect

This document supports right-sizing documentation needs with technology development and deployment projects.

Schaeffer, Michael L.; Ace, Mary H.; Martin, Steven W.

2011-03-01T23:59:59.000Z

406

Advanced industrial gas turbine technology readiness demonstration. Quarterly technical progress report No. 12, 1 December 1979-29 February 1980  

SciTech Connect

The component technology base required for improved industrial gas turbine conversion efficiency is discussed. Specific goals are to demonstrate the high-pressure compressor and turbine cooling technologies required to achieve industrial gas turbine efficiencies of 34 to 36% simple cycle and 45 to 48% in combined cycle operation while reducing the number of compressor and turbine parts 80% over state-of-the-art units. The approach involves combining some of the most advanced aircraft turbine cooling and high-pressure compressor technology with the simplicity and ruggedness required of industrial engines to achieve not only improved performance, but also increased durability and low initial cost. The program currently consists of two phases. Phase I, which has been completed, included the conceptual definition of an industrial gas turbine capable of meeting the above goals and the aerothermodynamic designs of compressor and turbine component test rigs. Phase II, which is in progress, consists of component validation testing of the high-pressure compressor and turbine cooling designs which evolved in Phase I. During this quarter, work continued on Phase II, Task III - Compressor Rig Assembly and Test. Assembly of the compressor rig has been completed and final preparation of the rig for transporting to the test facility is in progress.

none,

1980-03-20T23:59:59.000Z

407

Review: Advances in 3D data acquisition and processing for industrial applications  

Science Journals Connector (OSTI)

A critical task of vision-based manufacturing applications is to generate a virtual representation of a physical object from a dataset of point clouds. Its success relies on reliable algorithms and tools. Many effective technologies have been developed ... Keywords: 3D images, Data acquisition, Data processing, Point clouds, Surface reconstruction., Vision-based system

Z. M. Bi; Lihui Wang

2010-10-01T23:59:59.000Z

408

Sustainability assessment of industrial waste treatment processes: The case of automotive shredder residue  

Science Journals Connector (OSTI)

To date numerous environmental, economic and societal indicators have been applied to evaluate and compare the sustainability of products and processes. This study presents a set of ad hoc sustainability indicators suitable for assessing and comparing processes for the treatment of industrial waste streams and for allowing to address efficiently all aspects of sustainability. This set consists of the following indicators: energy intensity, material intensity, water consumption, land use, global warming, human toxicity and treatment cost. The application of these indicators to industrial waste treatment processes is discussed in depth. A distinction is made between direct contributions to sustainability, occurring at the process level itself, and indirect contributions related to the production of auxiliaries and the recovery of end products. The proposed sustainability assessment method is applied to treatment processes for automotive shredder residue (ASR), a complex and heterogeneous waste stream with hazardous characteristics. Although different strategies for recycling and valorization of ASR were developed, with some of them already commercialized, large quantities of ASR are still commonly landfilled. This study concludes that for ASR the most sustainable alternative to the present landfill practice, both in short and long term perspective, consists of recycling combined with energetic valorization of the residual fraction.

Isabel Vermeulen; Chantal Block; Jo Van Caneghem; Wim Dewulf; Subhas K. Sikdar; Carlo Vandecasteele

2012-01-01T23:59:59.000Z

409

Automation in Process Industry: Cure or Curse? How can Training Improve Operator’s Performance  

Science Journals Connector (OSTI)

Abstract Automation in the process industry has seen its implication and implementation since 1960’s. However, during last decades the “trend” of integrating advanced and sophisticated process control techniques like process optimization, soft sensors, MPC, RTO has significantly increased. The reasons that can be attributed to the increase in automation are mainly the implementation cost respect to expected revenues and the wide range of alternatives and suppliers. Unfortunately, the inclusion of automation coupled to either new plants/processes or process retrofitting and revamping neglected often the operator’s characteristics that can be summarized with the human factor term. This paper provides an insight to the extensive use of automation and the associated challenges that an industrial operator faces because of information overload, human machine interface, and automation complexity. The forgotten part, i.e. the human (operator) element, is emphasized with respect to the operations in control room and in the field. The impact of complexity of automation on the nature of operator error is discussed for both normal operating conditions and abnormal situations. A case study reflecting automation failure combined with human error(s) is presented. Finally, a Hierarchal Training Syllabus (HTS) is proposed by using a so called Plant Simulator. The features and relevant benefits of HTS are also outlined.

Salman Nazir; Annette Kluge; Davide Manca

2014-01-01T23:59:59.000Z

410

Assessing the Power Generation Solution by Thermal-chemical Conversion of Meat Processing Industry Waste  

Science Journals Connector (OSTI)

Abstract The paper presents a waste to energy conversion solution using a pyro-air-gasification process applied to biodegradable residues from meat processing industry integrated with small scale thermodynamic cycle for power generation. The solution of air- gasification at atmospheric pressure is based on experimental research and engineering computation developed during the study. The input data, such as: waste chemical composition, low/high heating value and proximate analysis, correspond to real waste products, sampled directly from the industrial processing line. Separate drying as first stage pre-treatment and integrated partial drying inside the reactor was used. The syngas low heating value of about 4.3 MJ/Nm3 is insured by its combustible fraction (H2– 12.2%, CO – 19.2%, CH4 – 1.6%). According to syngas composition the thermodynamic cycle was chosen – Otto gas engine. For a given waste feed-in flow considered in our computation of about 110 kg/h the power output obtained is about 50 kWel. The global energy efficiency of the unit is about 15%. The results offer answers to energy recovery waste disposal for residues with characteristics that are not suitable for classic incineration or limit the energy efficiency of the process making it non-economical (the average humidity of the raw waste is about 42% in mass). The research focused on waste to energy conversion process energy efficiency, waste neutralization and power generation.

Cosmin Marculescu; Florin Alexe

2014-01-01T23:59:59.000Z

411

Technology Innovation Program | Partnerships | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanofermentation System Technology Assistance Program Licensing Staff Search For Technologies Available Technologies Licensing Opportunity Announcements Partnerships Home | Connect with ORNL | For Industry | Partnerships | Technology Licensing | Technology Innovation Program SHARE Technology Innovation Program The Technology Innovation Program (TIP) is a 1-year program designed to accelerate selected technologies to commercial readiness. TIP projects are proposed by ORNL scientists and engineers and selected competitively based on their potential for near-term societal or economic impact. TIP technologies are advanced through research and development and outreach to industry. TIP is funded by UT-Battelle licensing royalties. When a technology enters the TIP process, it is initially made unavailable

412

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

SciTech Connect

Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

Sathaye, J.; Xu, T.; Galitsky, C.

2010-08-15T23:59:59.000Z

413

A coal-fired combustion system for industrial process heating applications  

SciTech Connect

PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation's Phase III development contract DE-AC22-91PC91161 for a Coal-Fired Combustion System for Industrial Process Heating Applications'' is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelling and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, approval of Vortec's Environmental Assessment (EA) required under the National Environmental Policy Act (NEPA) was approved. The EA approval cycle took approximately 9 months. The preliminary test program which was being held in abeyance pending approval of the EA was initiated. Six preliminary test runs were successfully competed during the period. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the preliminary tests were completed.

Not Available

1992-09-03T23:59:59.000Z

414

Manufacturing technology  

SciTech Connect

The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

Blaedel, K.L.

1997-02-01T23:59:59.000Z

415

Solar pond technology for large-scale heat processing in a Chilean mine  

Science Journals Connector (OSTI)

Coppermining is the largest industrial activity in Northern Chile a region that relies mostly on imported energy resources thus making the mining sector vulnerable to the rising cost of fuel oil and electricity. The extraction of copper is mostly accomplished by hydrometallurgy a three-step low energy process consisting of heap leaching concentration by solvent extraction and metal recovery by electro-winning. Since the content of copper in its ore tends to degrade as the mining operation proceeds higher leaching temperatures would be needed along with increasing energy requirements. In order to address this demand and considering that the region has one of the highest levels of solar radiation and clear skies the authors assessed the solar pond technology for rising the temperature of the leaching stream. The working principle of such technology is presented as well as its mathematical formulation restrictions and assumptions aiming to simulate the performance of a solar pond and to size a suitable setup. The results indicate that this technology can provide sufficient heat to raise the temperature to a range of 50 to 70?°C throughout the year with an annual gross thermal supply of 626?GWh. In order to minimize the loss of water and salt from the pond a closed salt cycle is suggested. Savings of up to 59 000 tons of diesel oil per year and the avoidance of 164 000 tons of CO2 per year could be achieved with a solar pond effective area of 1.43 km2 reaching an average efficiency of 19.4%. Thus solar pond technology is suitable for attaining the goal of increasing the leaching temperature while diminishing fuel costs and greenhouse emissions.

F. Garrido; R. Soto; J. Vergara; M. Walczak; P. Kanehl; R. Nel; J. García

2012-01-01T23:59:59.000Z

416

Combustion Turbine CHP System for Food Processing Industry- Presentation by Frito-Lay North America, June 2011  

Energy.gov (U.S. Department of Energy (DOE))

Presentation on Combustion Turbine CHP System for Food Processing Industry, given by Kevin Chilcoat of Frito-Lay North America, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

417

Sulfur Iodine Process Summary for the Hydrogen Technology Down-Selection: Process Performance Package  

SciTech Connect

This document describes the details of implementing a Sulfur-Iodine (S-I) hydrogen production plant to deploy with the Next General Nuclear Power Plant (NGNP). Technical requirements and specifications are included, and a conceptual plant design is presented. The following areas of interest are outlined in particular as a baseline for the various technology comparisons: (1) Performance Criteria - (a) Quantity of hydrogen produced, (b) Purity of hydrogen produced, (c) Flexibility to serve various applications, (d) Waste management; (2) Economic Considerations - (a) Cost of hydrogen, (b) Development costs; and (3) Risk - (a) Technical maturity of the S-I process, (b) Development risk, (c) Scale up options.

Benjamin Russ

2009-06-01T23:59:59.000Z

418

Industry Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

idatech.com idatech.com info@idatech.com 63065 NE 18 th Street Bend, OR 97701 541.383.3390 Industry Perspective Biogas and Fuel Cell Workshop National Renewable Energy Laboratory June 11 - 13, 2012 Mike Hicks Chairman of the Board of Directors, FCHEA Treasurer of the Board of Directors, FCS&E Engineering Manager, Technology Development & Integration, IdaTech Outline 1. Critical Factors * Fuel Purity * Fuel Cost 2. Natural Gas - The Wild Card & Competition 3. IdaTech's Experience Implementing Biofuel Critical Factor - Fuel Purity All fuel cell system OEMs have fuel purity specifications * Independent of * Raw materials or feed stocks * Manufacturing process * Depends on * Fuel processor technology * Fuel cell technology - low temp PEM versus SOFC

419

Waste treatment by reverse osmosis and membrane processes: Industrial. (Latest citations from the EI compendex*plus database). Published Search  

SciTech Connect

The bibliography contains citations concerning the use of membranes in the treatment of industrial wastewaters. Reverse osmosis, ion exchange, electrodialysis, liquid membranes, and ultrafiltration techniques are described. Wastewater treatments for removal of metals, ammonia, sodium compounds, nitrates, fluorides, dyes, biologicals, and radioactive waste using membrane technology are discussed. Applications of this technology to the chemical, petrochemical, pulp, textile, steel, ore treatment, electro-plating, and other wastewater and groundwater-remediation industries are included.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1995-09-01T23:59:59.000Z

420

Waste treatment by reverse osmosis and membrane processes: Industrial. (Latest citations from the EI Compendex*Plus database). Published Search  

SciTech Connect

The bibliography contains citations concerning the use of membranes in the treatment of industrial wastewaters. Reverse osmosis, ion exchange, electrodialysis, liquid membranes, and ultrafiltration techniques are described. Wastewater treatments for removal of metals, ammonia, sodium compounds, nitrates, fluorides, dyes, biologicals, and radioactive waste using membrane technology are discussed. Applications of this technology to the chemical, petrochemical, pulp, textile, steel, ore treatment, electro-plating, and other wastewater and groundwater-remediation industries are included. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial process technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Waste treatment by reverse osmosis and membrane processes: Industrial. (Latest citations from the Compendex database). Published Search  

SciTech Connect

The bibliography contains citations concerning the use of membranes in the treatment of industrial wastewaters. Reverse osmosis, ion exchange, electrodialysis, liquid membranes, and ultrafiltration techniques are described. Wastewater treatments for removal of metals, ammonia, sodium compounds, nitrates, fluorides, dyes, biologicals, and radioactive waste using membrane technology are discussed. Applications of this technology to the chemical, petrochemical, pulp, textile, steel, ore treatment, electro-plating, and other wastewater and groundwater-remediation industries are included. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-05-01T23:59:59.000Z

422

The roadmap for downscaling and introducing new technologies in the semiconductor industry is well laid out for the next ten years2.  

E-Print Network (OSTI)

The roadmap for downscaling and introducing new technologies in the semiconductor industry is well in the International Technology Roadmap for Semiconductors, one- dimensional structures, such as carbon nanotubes an impact on future post-complementary metal- oxide-semiconductor (CMOS) technology depends on more factors

423

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network (OSTI)

efficiency with regard to carbon capture". Energy 31 (15):67 3.6. Emerging Carbon Capture Technologies for the Pulp2011. Technology Roadmaps: Carbon Capture and Storage in

Kong, Lingbo

2014-01-01T23:59:59.000Z

424

Technology and policy options for reducing industrial air pollutants in the Mexico City Metropolitan Area  

E-Print Network (OSTI)

Technology plays an important role in dealing with air pollution and other environmental problems faced by developing and developed societies. This research examines if technological solutions alone, such as end-of-pipe ...

Vijay, Samudra, 1968-

2005-01-01T23:59:59.000Z

425

ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry  

Energy.gov (U.S. Department of Energy (DOE))

The study examines current and emerging melting technologies and discusses their technical barriers to scale-up issues and research needed to advance these technologies, improving melting efficiency, lowering metal transfer heat loss, and reducing scrap.

426

Solar capabilities : promoting, technological learning in South Africa's photovoltaic supply industry  

E-Print Network (OSTI)

I explore the mechanisms through which technological capabilities have been built in the market for photovoltaic (PV) module and balance of system (BOS) manufacture in South Africa. Drawing on the literature on technology ...

Wright, Janelle N., 1978-

2003-01-01T23:59:59.000Z

427

Magnetic Processing – A Pervasive Energy Efficient Technology for Next Generation Materials for Aerospace and Specialty Steel Markets  

SciTech Connect

Thermomagnetic Magnetic Processing is an exceptionally fertile, pervasive and cross-cutting technology that is just now being recognized by several major industry leaders for its significant potential to increase energy efficiency and materials performance for a myriad of energy intensive industries in a variety of areas and applications. ORNL has pioneered the use and development of large magnetic fields in thermomagnetically processing (T-MP) materials for altering materials phase equilibria and transformation kinetics. ORNL has discovered that using magnetic fields, we can produce unique materials responses. T-MP can produce unique phase stabilities & microstructures with improved materials performance for structural and functional applications not achieved with traditional processing techniques. These results suggest that there are unprecedented opportunities to produce significantly enhanced materials properties via atomistic level (nano-) microstructural control and manipulation. ORNL (in addition to others) have shown that grain boundary chemistry and precipitation kinetics are also affected by large magnetic fields. This CRADA has taken advantage of ORNL’s unique, custom-designed thermo-magnetic, 9 Tesla superconducting magnet facility that enables rapid heating and cooling of metallic components within the magnet bore; as well as ORNL’s expertise in high magnetic field (HMF) research. Carpenter Technologies, Corp., is a a US-based industrial company, that provides enhanced performance alloys for the Aerospace and Specialty Steel products. In this CRADA, Carpenter Technologies, Corp., is focusing on applying ORNL’s Thermomagnetic Magnetic Processing (TMP) technology to improve their current and future proprietary materials’ product performance and open up new markets for their Aerospace and Specialty Steel products. Unprecedented mechanical property performance improvements have been demonstrated for a high strength bainitic alloy industrial/commercial alloy that is envisioned to provide the potential for new markets for this alloy. These thermomechanical processing results provide these alloys with a major breakthrough demonstrating that simultaneous improvements in yield strength and ductility are achieved: 12 %, 10%, 13%, and 22% increases in yield strength, elongation, reduction-in-area, and impact energy respectively. In addition, TMP appears to overcome detrimental chemical homogeneity impacts on uniform microstructure evolution.

Mackiewicz-Ludtka, G.; Ludtka, G.M.; Ray, P. (Carpenter Technologies, Inc.); Magee, J. (Carpenter Technologies, Inc.)

2010-09-10T23:59:59.000Z

428

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network (OSTI)

gasification with combined cycles biological oxygen demandsintegrated gasification combined cycle Intergovernmentalbe integrated with combined-cycle (CC) technology (BLGCC),

Kong, Lingbo

2014-01-01T23:59:59.000Z

429

An Industrial Case Study of Immediate Benefits of Requirements Engineering Process Improvement at the Australian Center for Unisys Software  

Science Journals Connector (OSTI)

This paper describes an industrial experience in process improvement at one of the Unisys development labs in Australia. Following a capability maturity model (CMM) mini-assessment, the organization is underta...

Daniela Damian; Didar Zowghi…

2004-03-01T23:59:59.000Z

430

Implementing technology roadmap process in the energy services sector: A case study of a government agency  

Science Journals Connector (OSTI)

Energy sector has become increasingly sensitive to emerging new technologies as our society is seeking alternative energy sources. Many utility companies and government agencies have started to implement technology planning processes for roadmapping their future technology portfolios. This paper focuses on technology planning in the government energy services sector. Through a case study research method, the paper documents how technology planning and specifically technology roadmaps were implemented at a federal agency tasked with managing power transmission in the Northwest United States. Three application areas are covered: transmission, renewables and energy efficiency. The paper provides details on the Energy Efficiency Roadmaps. Through the review of the case a technology planning methodology based on technology roadmaps is detailed. Key conclusions were reached on how to manage such process implementation in similar organizations. Some of these conclusions can be generalized to those that are implementing technology planning processes for the first time. We concluded that adoption of such methods would require a longer time than anticipated. Organizational changes to adopt the process will likely reduce the time it takes to deliver the required roadmaps. We also found that a typical sequence of events would be Technology Gap Analysis and Identification of Technology Candidates, Evaluation and Prioritization of Technologies, Roadmapping of Technologies and Allocation of Resources to the R&D Programs or to the direct acquisition of the technologies.

Tugrul U. Daim; Terry Oliver

2008-01-01T23:59:59.000Z

431

Hot demonstrations of nuclear-waste processing technologies  

Science Journals Connector (OSTI)

Several types of nuclear-waste-treatment technologies are currently being demonstrated at Argonne National Laboratory-West, ranging from complex,...

H. F. McFarlane; K. M. Goff; F. S. Felicione; C. C. Dwight; D. B. Barber

1997-07-01T23:59:59.000Z

432

proceSS technology College of Rural and Community Development  

E-Print Network (OSTI)

, power generation, utilities, wastewater treatment facili- ties maintenance, and food processingproceSS technology College of Rural and Community Development Community and Technical College 907

Hartman, Chris

433

24 SOLUTIONS! for People, Processes and Paper COATING TECHNOLOGY  

E-Print Network (OSTI)

is available on www.tappi.org · See references at the end of this article NEW CURTAIN COATING TECHNOLOGY OFFERS

Fleming, Paul D. "Dan"

434

Modeling and co-simulation of a parabolic trough solar plant for industrial process heat  

Science Journals Connector (OSTI)

In the present paper a tri-dimensional non-linear dynamic thermohydraulic model of a parabolic trough collector was developed in the high-level acausal object-oriented language Modelica and coupled to a solar industrial process heat plant modeled in TRNSYS. The integration is performed in an innovative co-simulation environment based on the TLK interconnect software connector middleware. A discrete Monte Carlo ray-tracing model was developed in SolTrace to compute the solar radiation heterogeneous local concentration ratio in the parabolic trough collector absorber outer surface. The obtained results show that the efficiency predicted by the model agrees well with experimental data with a root mean square error of 1.2%. The dynamic performance was validated with experimental data from the Acurex solar field, located at the Plataforma Solar de Almeria, South-East Spain, and presents a good agreement. An optimization of the IST collector mass flow rate was performed based on the minimization of an energy loss cost function showing an optimal mass flow rate of 0.22 kg/s m2. A parametric analysis showed the influence on collector efficiency of several design properties, such as the absorber emittance and absorptance. Different parabolic trough solar field model structures were compared showing that, from a thermal point of view, the one-dimensional model performs close to the bi-dimensional. Co-simulations conducted on a reference industrial process heat scenario on a South European climate show an annual solar fraction of 67% for a solar plant consisting on a solar field of 1000 m2, with thermal energy storage, coupled to a continuous industrial thermal demand of 100 kW.

R. Silva; M. Pérez; A. Fernández-Garcia

2013-01-01T23:59:59.000Z

435

Development of Advanced Surface Enhancement Technology for Decreasing Wear and Corrosion of Equipment Used for Mineral Processing  

SciTech Connect

Equipment wear is a major concern in the mineral processing industry, which dramatically increases the maintenance cost and adversely affects plant operation efficiency. In this research, wear problems of mineral processing equipment including screens, sieve bends, heavy media vessel, dewatering centrifuge, etc., were identified. A novel surface treatment technology, high density infrared (HDI) surface coating process was proposed for the surface enhancement of selected mineral processing equipment. Microstructural and mechanical properties of the coated samples were characterized. Laboratory-simulated wear tests were conducted to evaluate the tribological performance of the coated components. Test results indicate that the wear resistance of AISI 4140 and ASTM A36 steels can be increased 3 and 5 folds, respectively by the application of HDI coatings.

Daniel Tao; Craig A. Blue

2004-08-01T23:59:59.000Z

436

Sustainable bio kerosene: Process routes and industrial demonstration activities in aviation biofuels  

Science Journals Connector (OSTI)

Abstract Alternative fuels are expected to play a major role in EU in the coming years due European Directives on the promotion of renewable energies and reduction of greenhouse gas emissions in transports. However, while in road transports a variety of possible renewable fuels (mainly biofuels, but also electricity) can be considered, in aviation only high quality paraffinic biofuels can be adopted. This means that biomass must be converted through advanced processes into pure hydrocarbon fuels, fully compatible with the existing systems. The aviation sector is responsible for the 2% of the world anthropogenic CO2 emissions and the 10% of the fuel consumption: airlines’ costs for fuel reach 30% of operating costs. In addition, the aviation traffic is expected to double within 15 years from 2012, while fuel consumption and CO2 emissions should double in 25 years. Thus, more than 2 billion people and 40 Mt of good/cargo will have to be moved every year. In this context, the EU Flightpath set a target of 2 Mt per year for aviation alternative fuel by 2020 (i.e. 4% of annual fuel consumption). New processes towards bio-hydrocarbons are being developed, demonstrated and soon industrialized. The present work explores the possible routes from biomass feedstock to sustainable paraffinic fuels, either through bio or thermo-chemical processes, as well as discusses those more mature, focusing on industrial demonstration initiatives. In fact, while the number of possible options towards paraffinic biofuel production is very large, and covers both thermochemical and biochemical routes, as well as hybrid one, only two pathways are today ready for testing a significant large scale: these are FT and Hydrotreating. Major industrial activities and testing experiences are thus reported in the present work. In this context, the ITAKA group is developing a full value-chain in Europe to produce sustainable drop-in Synthetic Paraffinic Kerosene (SPK) – called HEFA – in an economically, socially and environmentally sound manner, at large scale enough to allow testing its use in existing logistic systems and in normal flight operations in Europe. The generated knowledge will aim to identify and address barriers to innovation. Within ITAKA, possible pre-processing of used (waste) cooking oil (UCO) to make it compatible with current downstream hydroprocessing techniques are being investigated: this can includes esterification of waste oils, as well as catalytic thermal processing, which will be carried out in a pilot unit available at RE-CORD/CREAR. First samples of feedstock oils were collected and characterized, for further investigation towards their conversion into biokerosene through hydrotreatment.

David Chiaramonti; Matteo Prussi; Marco Buffi; Daniela Tacconi

2014-01-01T23:59:59.000Z

437

Buildings Technologies Deployment | Clean energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

are successfully deployed to the fullest extent possible. ORNL helps optimize the energy performance of buildings and industrial processes by moving technologies to full use...

438

U.S. Department of Energy's Industrial Technology Program and Its Impacts  

E-Print Network (OSTI)

Vehicles 0.000 0.000 0.001 0.000 0.039 0.010 1.46 Aerogel-Based Insulation for Industrial Steam Distribution Systems 0.01 0... Vehicles 0.000 0.000 0.001 0.000 0.039 0.010 1.46 Aerogel-Based Insulation for Industrial Steam Distribution Systems 0.01 0...

Weakley, S. A.; Roop, J. M.

439

Vehicle Technologies Office Merit Review 2014: Process Development and Scale Up of Advanced Electrolyte Materials  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about process...

440

Study of Mono or Polycrystalline Solar Cell Process Using Screen Printing Technology  

Science Journals Connector (OSTI)

The objectives of this contract were to develop a cost effective process for solar cell manufacturing. Dry etching technologies and general use of screen printing have...

J. Donon; H. Lauvray; P. Loubly; P. Aubril

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial process technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Technology Reports Solution Concentration Prediction for Pharmaceutical Crystallization Processes  

E-Print Network (OSTI)

Using Robust Chemometrics and ATR FTIR Spectroscopy Timokleia Togkalidou, Hsien-Hsin Tung,*, Yongkui Sun systems in the presence of impurities and over a wide range of temperature. To our best knowledge in pharmaceutical industry such as crystal size distribution (CSD) and crystal shape of the product pharmaceuticals

Braatz, Richard D.

442

Upcoming Short Course 10th Annual "WATER Technologies" Process &  

E-Print Network (OSTI)

, & Desalination October 12-15, 2014 For additional information, writing, call, fax or email: Dr. Yongjae Lee & equipment selection costs, economics, and practical appli- cations Orient new product formulators, food systems designs, industrial/commercial applications and economics of membrane systems, pre­ and post

443

An extended model for measuring the technology transfer potentials at the industrial level.  

E-Print Network (OSTI)

??Technology contributes to the development of society and economy of the nation through the invention, diffusion, transfer, and application of new knowledge. In the emerging… (more)

Pachamuthu, Sathayanarayanan

2011-01-01T23:59:59.000Z

444

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network (OSTI)

economics of black liquor gasifier/gas turbine cogenerationblack liquor and biomass gasifier/gas turbine technology".entrained flow booster gasifier in New Bern, North Carolina;

Kong, Lingbo

2014-01-01T23:59:59.000Z

445

Analysis of the impacts of Internet-based business activities on the container shipping industry : the system dynamics modeling approach with the framework of technological evolution  

E-Print Network (OSTI)

The internet-based business (e-business) activities have become a new technological challenge to the container shipping industry (CSI) in recent years. Despite the growing importance of e-business in the CSI, little ...

Auh, Jae Hyuck, 1969-

2003-01-01T23:59:59.000Z

446

Careers in Biomedical Engineering Biomedical engineering students will be prepared for careers in the biomedical technology industry, graduate school or professional programs  

E-Print Network (OSTI)

Careers in Biomedical Engineering Biomedical engineering students will be prepared for careers in the biomedical technology industry, graduate school or professional programs such as engineering, medicine-time positions throughout the region. Scholarships Departmental scholarships are offered through the biomedical

Glowinski, Roland

447

Process and design solutions for exploiting FD-SOI technology towards energy efficient SOCs  

Science Journals Connector (OSTI)

Planar UTBB FD-SOI technology is an opportunity for energy efficient SOCs in deeply scaled technologies. Thanks to its excellent responsiveness to power management design techniques, this technology brings a significant improvement in terms of performance ... Keywords: body biasing, energy efficiency, low voltage, multi-vt, process compensation, soc, ultra wide voltage range, utbb fd-soi

Philippe Flatresse

2014-08-01T23:59:59.000Z

448

ScienceforEnergyTechnology: StrengtheningtheLinkBetweenBasicResearchandIndustry  

E-Print Network (OSTI)

economic and jobs growth. These challenges are linked: the global demand for clean sustainable energy is an unprecedented economic opportunity for creating jobs and exporting energy technology to the developing, and low-carbon energy technologies such as solar energy, carbon sequestration, nuclear energy, electricity

Rollins, Andrew M.

449

A survey of industries which interview students through the Texas A&M Placement Office to ascertain their attitude toward the Engineering Technology Department  

E-Print Network (OSTI)

A SURVEY OF INDUSTRIES WHICH INTERVIEW STUDENTS THROUGH THE TEXAS A&M PLACEMENT OFFICE TO ASCERTAIN THEIR ATTITUDE TOWARD THE ENGINEERING TECHNOLOGY DEPARTMENT A Thesis by ROY NEWELL JOHNSON Submitted to the Graduate College of Texas A... TOWARD THE ENGINEERING TECHNOLOGY DEPARTMENT A Thesis by ROY NEWELL JOHNSON Approved as to style and content by: (Chairman of Committee) (Head of Departmen (Member) (Memb er ) August 1972 g ". ;, 'j', '~ 0 ABSTRACT A Survey of Industries Which...

Johnson, Roy Newell

1972-01-01T23:59:59.000Z

450

Power and Performance of Native and Java Benchmarks on 130nm to 32nm Process Technologies  

E-Print Network (OSTI)

Power and Performance of Native and Java Benchmarks on 130nm to 32nm Process Technologies Hadi with chip power reduc- tions. This paper examines how well process technology and mi- croarchitecture delivered on this assumption. This paper evalu- ates power and performance of native and Java workloads

Paris-Sud XI, Université de

451

Technology Readiness Assessment of Department of Energy Waste Processing Facilities: When is a Technology Ready for Insertion?  

SciTech Connect

This paper will describe a technology readiness assessment process (TRA) that the U.S. Department of Energy (DOE) piloted at Hanford's Waste Treatment and Immobilization Plant (WTP) and has subsequently applied to other projects at Hanford and the Savannah River Site. The methodology used for these TRAs was based upon detailed guidance contained in the U.S. Department of Defense (DoD), Technology Readiness Assessment Desk-book and adapted a technology readiness scale developed by the DOD and National Aeronautics and Space Administration (NASA) to the DOE. This paper will discuss the application of the TRA process to the WTP and the development of a Technology Maturation Plan (TMP) based on the TRA findings. (authors)

Alexander, D. [Department of Energy, Office of River Protection, Richland, Washington (United States); Gerdes, K. [Department of Energy, Office of Waste Processing, Germantown, Maryland (United States); Holton, L. [Pacific Northwest National Laboratory, Richland, Washington (United States); Krahn, St. [Department of Energy, Office of Waste Processing, Germantown, Maryland (United States); Sutter, H. [Consultant, Department of Energy, Office of Project Recovery, Germantown, Maryland (United States)

2008-07-01T23:59:59.000Z

452

Shopfloor attitudes towards advanced manufacturing technology: the changing focus of industrial conflict?  

Science Journals Connector (OSTI)

......there has been a change in the perception...AMT. For these companies, AMT represents...has been a subtle change in the focus of...proposed. The case of company MD Company MD is...competitive position as leader in the industrial...the new shopfloor climate. The CNC operators......

Keith Davids; Robin Martin

1992-08-01T23:59:59.000Z

453

Optimum Reactor Outlet Temperatures for High Temperature Gas-Cooled Reactors Integrated with Industrial Processes  

SciTech Connect

This report summarizes the results of a temperature sensitivity study conducted to identify the optimum reactor operating temperatures for producing the heat and hydrogen required for industrial processes associated with the proposed new high temperature gas-cooled reactor. This study assumed that primary steam outputs of the reactor were delivered at 17 MPa and 540°C and the helium coolant was delivered at 7 MPa at 625–925°C. The secondary outputs of were electricity and hydrogen. For the power generation analysis, it was assumed that the power cycle efficiency was 66% of the maximum theoretical efficiency of the Carnot thermodynamic cycle. Hydrogen was generated via the hightemperature steam electrolysis or the steam methane reforming process. The study indicates that optimum or a range of reactor outlet temperatures could be identified to further refine the process evaluations that were developed for high temperature gas-cooled reactor-integrated production of synthetic transportation fuels, ammonia, and ammonia derivatives, oil from unconventional sources, and substitute natural gas from coal.

Lee O. Nelson

2011-04-01T23:59:59.000Z

454

Development of a Fischer-Tropsch Gasoline Process for the Steam Hydrogasification Technology  

E-Print Network (OSTI)

Industrial   &  engineering  chemistry  research,  2005.  Industrial   &   engineering   chemistry   research,  Industrial   &   engineering   chemistry  research,  1995.  

Li, Yang

2013-01-01T23:59:59.000Z

455

Foreign direct investment, intra-organizational proximity, and technological capability : the case of China's automobile industry  

E-Print Network (OSTI)

This dissertation consists of three self-contained essays, each of which examines part of the causal link among inward/outward foreign direct investment (FDI), intra-organizational proximity, and in-house technology ...

Nam, Kyung-min

2010-01-01T23:59:59.000Z

456

Neural Network Technology as a Pollution Prevention Tool in the Electric Utility Industry  

E-Print Network (OSTI)

This paper documents efforts by the Lower Colorado River Authority (LCRA) to pilot test the use of neural network technology as a pollution prevention tool for reducing stack emissions from a natural gas-fired power generating facility. The project...

Johnson, M. L.

457

Replace Pressure-Reducing Valves with Backpressure Turbogenerators: Office of Industrial Technologies (OIT) Steam Tip Fact Sheet No. 20  

SciTech Connect

Many industrial facilities produce steam at a higher pressure than is demanded by process requirements. Steam passes through pressure-reducing valves (PRVs, also known as letdown valves) at various locations in the steam distribution system to let down or reduce its pressure. A non-condensing or backpressure steam turbine can perform the same pressure-reducing function as a PRV, while converting steam energy into electrical energy.

Not Available

2002-01-01T23:59:59.000Z

458

Overview: EPRI's Program for Process Industry Energy Efficiency and Environmental Improvement  

E-Print Network (OSTI)

Faced with increased energy and labor costs and the expense of complying with stricter environmental regulations, many U.S industries have been unable to compete effectively with lower-cost foreign imports. As these industries lose market shares...

Amarnath, A.

459

Industrial Gases as a Vehicle for Competitiveness  

E-Print Network (OSTI)

the diversity and options available to enable cost savings and environmentally driven process improvements. Industrial gases have come of age during the last fifteen years. Engineers and scientists have looked beyond the paradigms of their operations...INDUSTRIAL GASES AS A VEHICLE FOR COMPETITIVENESS James R. Dale, Director, Technology Programs, Airco Industrial Gases Division, The BOC Group, Inc., Murray Hill, New Jersey ABSTRACT Industrial gases are produced using compressed air...

Dale, J. R.

460

ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry  

Energy.gov (U.S. Department of Energy (DOE))

Portfolio of projects focused on investments in high-impact, crosscutting opportunities that provide significant energy savings and carbon reductions across a broad industrial base

Note: This page contains sample records for the topic "industrial process technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Development and application of a probabilistic evaluation method for advanced process technologies  

SciTech Connect

The objective of this work is to develop and apply a method for research planning for advanced process technologies. To satisfy requirements for research planning, it is necessary to: (1) identify robust solutions to process design questions in the face of uncertainty to eliminate inferior design options; (2) identify key problem areas in a technology that should be the focus of further research to reduce the risk of technology failure; (3) compare competing technologies on a consistent basis to determine the risks associated with adopting a new technology; and (4) evaluate the effects that additional research might have on comparisons with conventional technology. An important class of process technologies are electric power plants. In particular, advanced clean coal technologies are expected to play a key role in the energy and environmental future of the US, as well as in other countries. Research planning for advanced clean coal technology development is an important part of energy and environmental policy. Thus, the research planning method developed here is applied to case studies focusing on a specific clean coal technology. The purpose of the case studies is both to demonstrate the research planning method and to obtain technology-specific conclusions regarding research strategies.

Frey, H.C.; Rubin, E.S.

1991-04-01T23:59:59.000Z

462

Development and application of a probabilistic evaluation method for advanced process technologies. Final report  

SciTech Connect

The objective of this work is to develop and apply a method for research planning for advanced process technologies. To satisfy requirements for research planning, it is necessary to: (1) identify robust solutions to process design questions in the face of uncertainty to eliminate inferior design options; (2) identify key problem areas in a technology that should be the focus of further research to reduce the risk of technology failure; (3) compare competing technologies on a consistent basis to determine the risks associated with adopting a new technology; and (4) evaluate the effects that additional research might have on comparisons with conventional technology. An important class of process technologies are electric power plants. In particular, advanced clean coal technologies are expected to play a key role in the energy and environmental future of the US, as well as in other countries. Research planning for advanced clean coal technology development is an important part of energy and environmental policy. Thus, the research planning method developed here is applied to case studies focusing on a specific clean coal technology. The purpose of the case studies is both to demonstrate the research planning method and to obtain technology-specific conclusions regarding research strategies.

Frey, H.C.; Rubin, E.S.

1991-04-01T23:59:59.000Z

463

Fluidized-bed combustion: effectiveness of an SO/sub 2/ control technology for industrial boilers. Final report  

SciTech Connect

Atmospheric fluidized-bed combustion (AFBC) boilers have developed rapidly over recent years and are now offered commercially in several different configurations. SO/sub 2/ reduction levels of 90% and above have been achieved by coal-fired AFBC boilers in the industrial size category. Based on the data available, industrial FBC NOx emissions have been consistently below 0.5 lb/million Btu. PM emissions of less than 0.5 lb/million Btu have been routinely achieved with fabric filters. AFBC boiler system costs were compared with costs for a conventional boiler equipped with an FGD system and with costs for a conventional boiler using low-sulfur compliance coal. The conclusions drawn from the economic analyses are that (1) studied cost difference between AFBC Technology, conventional boiler/FGD systems, and compliance coal combustion are projected to be small over the SO/sub 2/ emission range of 1.7 to 0.8 lb/million Btu and SO/sub 2/ reduction range of 65 to 90%, and (2) that cost competitiveness among these technologies is not expected to change significantly as the emission limitations change over this range. Absolute economic competitiveness among these options will be sensitive to site-specific parameters and decided on a case-by-case basis.

Aul, E.F.; Owen, M.L.; Jones, A.F.

1984-09-01T23:59:59.000Z

464

The role of information technology in small and medium enterprises in the Brazilian oil offshore industry  

Science Journals Connector (OSTI)

Suppliers of oil companies, even Small and Medium Enterprises (SMEs), have to strive for continuous technological development and excellence at management. In this scenario, the adequate use of Information Technology (IT) stands out as a supporting factor for the success in competition. This paper brings together the considerations found in the literature about the advantages, difficulties, causes of failure and success factors. From a case study carried out in the State of Rio de Janeiro (RJ) ? Brazil, the paper points out some characteristics of the adoption and the use of IT that are common among small firms in general and to other peculiarities observed in the sector of offshore maintenance.

Francisco Duarte; Suzana Dantas Hecksher; Roberto dos Santos Bartholo Junior

2012-01-01T23:59:59.000Z

465

4 - Future industrial coal utilization: forecasts and emerging technological and regulatory issues  

Science Journals Connector (OSTI)

Abstract: Coal production and utilization will grow substantially in the future. This chapter starts by describing coal production and consumption, with a focus on future trends. A discussion of major technology and regulatory issues for coal-fired power plants and the production of metallurgical coal then follows.

J.K. Alderman

2013-01-01T23:59:59.000Z

466

6/10/12 UK team advances measurement of gas bubbles in pipelines. | Technology news | Process Engineer... 1/2processengineering.theengineer.co.uk/.../1012631.article  

E-Print Network (OSTI)

process in the manufacturing, power, oil & gas and petrochemical industries. For instance, the sharp

Sóbester, András

467

Solar Assisted Air Heating Process?Implementing Solar Collectors in Sri Lankan Tea Industry.  

E-Print Network (OSTI)

?? Sri Lanka is one of the greatest producers and exporters of quality tea in the world. The tea industry plays a key role in… (more)

Erikson Brangstrup, Paulina

2014-01-01T23:59:59.000Z

468

Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry  

Energy.gov (U.S. Department of Energy (DOE))

Portfolio of projects focused on investments in high-impact, crosscutting opportunities that provide significant energy savings and carbon reductions across a broad industrial base

469

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network (OSTI)

2003).How to Improve Energy Efficiency in Refrigeratingpowder: Energy use and energy efficiency in the EuropeanSummer Study on Energy Efficiency in Industry SenterNovem (

Brush, Adrian

2012-01-01T23:59:59.000Z

470

ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum Industry  

Energy.gov (U.S. Department of Energy (DOE))

This detailed report benchmarks the energy and environmental characteristics of the key technologies used in the major processes of the aluminum industry.

471

Future Beam-Controlled Processing Technologies for Microelectronics  

Science Journals Connector (OSTI)

...alternative approach fabricates these defect in an x-ray lithographic mk (21). The defect consists ofthe regions trough the process...been used to create thin-layer structures. MBE utilizes an ultra-high vacuum system where atoms are supplied to the growing...

DIETER P. KERN; THOMAS F. KUECH; MODEST M. OPRYSKO; . AL WAGNER; DEAN E. EASTMAN

1988-08-19T23:59:59.000Z

472

Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications  

SciTech Connect

This Topical Report outlines guidelines and key considerations for design and operation of pulverized coal-fired boilers for oxy-combustion. The scope addressed includes only the boiler island, not the entire oxy-fired CO{sub 2} capture plant. These guidelines are primarily developed for tangential-fired boilers and focus on designs capable of dual air and oxy-fired operation. The guidelines and considerations discussed are applicable to both new units and existing boiler retrofits. These guidelines are largely based on the findings from the extensive 15 MW{sub th} pilot testing and design efforts conducted under this project. A summary level description is provided for each major aspect of boiler design impacted by oxy-combustion, and key considerations are discussed for broader application to different utility and industrial designs. Guidelines address the boiler system arrangement, firing system, boiler thermal design, ducting, materials, control system, and other key systems.

Levasseur, Armand

2014-01-01T23:59:59.000Z

473

Dissolution of refractories for gasification process of petroleum coke for the steel industry  

Science Journals Connector (OSTI)

The production of energizing gases such as H2 and CO by gasification process of solid fuels is a technology that has increased in recent years since it is an efficient and clean process. To enable the production of gases, it is necessary to use refractory materials capable of withstanding high temperatures, thermal shock and contact with aggressive media. Nowadays, there is not published literature on refractory materials used for furnaces lining for petroleum coke gasification at high temperatures (?1900 °C). Therefore, this paper deals with the study of alumina and magnesium aluminate/alumina-based refractories as candidates for the furnace lining used in the petroleum coke gasification for steel production. Refractory samples were made with some designed formulations which were subjected to chemical interactions with pellets made of petroleum coke and petroleum coke ash at 1650 °C for 4 h. After completing the tests, the formulations were cut transversely and were characterized by SEM-EDS and XRD to evaluate the resistance to slag penetration and formation of low melting point phases. The results show that slag penetration and corrosion in the refractory formulations occur due to the formation of hibonite, spinels (Ni2+, Fe2+, Mg2+)(Al, Fe)2O4 and gehlenite phases. However, these phases together stop the molten slag penetration.

R. Puente-Ornelas; C.J. Lizcano-Zulaica; A.M. Guzmán; P.C. Zambrano; T.K. Das-Roy

2012-01-01T23:59:59.000Z

474

Vehicle Technologies Office Merit Review 2014: Process Development and Scale-up of Advanced Cathode Materials  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about process development and scale...

475

Methodology for technology evaluation under uncertainty and its application in advanced coal gasification processes  

E-Print Network (OSTI)

Integrated gasification combined cycle (IGCC) technology has attracted interest as a cleaner alternative to conventional coal-fired power generation processes. While a number of pilot projects have been launched to ...

Gong, Bo, Ph. D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

476

Pharmaceutical Industry Wastewater: Review of the Technologies for Water Treatment and Reuse  

Science Journals Connector (OSTI)

The recovered waste stream can be used elsewhere in the process, and the water could be used for boiler feed or cooling towers and other operations thereby reducing consumption of precious raw water and drastically reducing operating costs. ...

Chandrakanth Gadipelly; Antía Pérez-González; Ganapati D. Yadav; Inmaculada Ortiz; Raquel Ibáñez; Virendra K. Rathod; Kumudini V. Marathe

2014-06-20T23:59:59.000Z

477

Development of Functionally Graded Materials for Manufacturing Tools and Dies and Industrial Processing Equipment  

SciTech Connect

Hot forming processes such as forging, die casting and glass forming require tooling that is subjected to high temperatures during the manufacturing of components. Current tooling is adversely affected by prolonged exposure at high temperatures. Initial studies were conducted to determine the root cause of tool failures in a number of applications. Results show that tool failures vary and depend on the operating environment under which they are used. Major root cause failures include (1) thermal softening, (2) fatigue and (3) tool erosion, all of which are affected by process boundary conditions such as lubrication, cooling, process speed, etc. While thermal management is a key to addressing tooling failures, it was clear that new tooling materials with superior high temperature strength could provide improved manufacturing efficiencies. These efficiencies are based on the use of functionally graded materials (FGM), a new subset of hybrid tools with customizable properties that can be fabricated using advanced powder metallurgy manufacturing technologies. Modeling studies of the various hot forming processes helped identify the effect of key variables such as stress, temperature and cooling rate and aid in the selection of tooling materials for specific applications. To address the problem of high temperature strength, several advanced powder metallurgy nickel and cobalt based alloys were selected for evaluation. These materials were manufactured into tooling using two relatively new consolidation processes. One process involved laser powder deposition (LPD) and the second involved a solid state dynamic powder consolidation (SSDPC) process. These processes made possible functionally graded materials (FGM) that resulted in shaped tooling that was monolithic, bi-metallic or substrate coated. Manufacturing of tooling with these processes was determined to be robust and consistent for a variety of materials. Prototype and production testing of FGM tooling showed the benefits of the nickel and cobalt based powder metallurgy alloys in a number of applications evaluated. Improvements in tool life ranged from three (3) to twenty (20) or more times than currently used tooling. Improvements were most dramatic where tool softening and deformation were the major cause of tool failures in hot/warm forging applications. Significant improvement was also noted in erosion of aluminum die casting tooling. Cost and energy savings can be realized as a result of increased tooling life, increased productivity and a reduction in scrap because of improved dimensional controls. Although LPD and SSDPC tooling usually have higher acquisition costs, net tooling costs per component produced drops dramatically with superior tool performance. Less energy is used to manufacture the tooling because fewer tools are required and less recycling of used tools are needed for the hot forming process. Energy is saved during the component manufacturing cycle because more parts can be produced in shorter periods of time. Energy is also saved by minimizing heating furnace idling time because of less downtime for tooling changes.

Lherbier, Louis, W.; Novotnak, David, J.; Herling, Darrell, R.; Sears, James, W.

2009-03-23T23:59:59.000Z

478

Economic technique for analyzing fuel saving technology in the seafood industry  

SciTech Connect

This research was aimed at supplementing and expanding the ongoing Mississippi-Alabama Sea Grant Consortium's efforts to aid the shrimp fleets in their battle against high fuel costs. This report is essentially a research application of tried methodologies in the areas of economics and finance and will analyze the fuel-savings additions to the capital stock. Since the use of such technology requires considerable investment, it is necessary to determine whether its introduction is profitable in the long run. The use of information provided by this report should prove helpful in making decisions regarding energy-conserving alternatives.

Nissan, E.; Daniel, D.; Williams, D.C. Jr

1983-06-01T23:59:59.000Z

479

Supporting technology for enhanced oil recovery - EOR thermal processes  

SciTech Connect

This report contains the results of efforts under the six tasks of the Eighth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section.

NONE

1995-03-01T23:59:59.000Z

480

Voestalpine Anarbeitung: Commercialization Framework for Technology Development Projects  

Science Journals Connector (OSTI)

...voestalpine Anarbeitung GmbH developed a framework for commercializing technology development (TD) projects in the automotive supply industry, which demonstrates how a commercialization process can be structur...

Kurt Gaubinger; Fiona Schweitzer…

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial process technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Linking, leveraging and learning: sectoral systems of innovation and technological catch-up in China's commercial aerospace industry  

Science Journals Connector (OSTI)

Developing countries often have ambitions to become major players in the commercial aerospace industry, but it remains effectively a duopoly dominated by Boeing of the USA and Europe's Airbus. China is no exception and the projects designed to bring this about have taken a number of forms. Adopting the sectoral system of innovation (SSI) as an analytical framework, this paper explores recent changes in the industry. Using China's ARJ21 regional jet programme as a case study, it examines how these changes provide opportunities for latecomer nations to catch-up technologically. It is argued that the new institutional context and the presence of new actors within the SSI, represent an opportunity for latecomer nations like China to acquire the capability to design, develop and manufacture commercial jet airliners, through linking with Western suppliers. However the analysis reveals that as a latecomer nation, China may prove to be a special case, with the opportunities for catch-up by other latecomers much more limited.

David J. Smith; Michael Zhang

2014-01-01T23:59:59.000Z

482

Industrial symbiosis and the successional city : adapting exchange networks to energy constraints  

E-Print Network (OSTI)

Industrial ecology offers models for hybridizing technology and natural processes, human desires and the capacities of ecosystems in an effort to reconcile the expanding conflicts among them. Industrial symbiosis applies ...

Terway, Timothy M. (Timothy Michael)

2007-01-01T23:59:59.000Z

483

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

processing industry are reverse osmosis systems and ultra-ultra-filtration and reverse osmosis has been used for applepassed through a reverse osmosis membrane and an ultra-

Masanet, Eric

2008-01-01T23:59:59.000Z

484

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry: An ENERGY STAR? Guide for Energy and Plant Managers  

E-Print Network (OSTI)

ultrafiltration, and reverse osmosis, each indicating asubjected to reverse osmosis filtration, microfiltration,processing industry are reverse osmosis systems and ultra-

Brush, Adrian

2014-01-01T23:59:59.000Z

485

A Process Reference Model for Reuse in Industrial Engineering: Enhancing the ISO/IEC 15504 Framework to Cope with Organizational Reuse Maturity  

E-Print Network (OSTI)

A Process Reference Model for Reuse in Industrial Engineering: Enhancing the ISO/IEC 15504 in industrial engineering for solution providers is more and more recognized as a key to economic success for reuse in industrial engineering. Based on an overview and the background of the GDES-Reuse improvement

Mössenböck, Hanspeter

486

Biological treatment of chemically flocculated agro-industrial waste from the wool scouring industry by an aerobic process without sludge recycle  

Science Journals Connector (OSTI)

A new agro-industrial effluent known as Sirolan CF effluent is the aqueous phase remaining after the chemical flocculation of wool scouring effluent by the Sirolan CF process. This effluent has been characterized, and shown to be effectively treated by biological degradation. It has a high concentration of organic material (5750 mg/L COD), with a low BOD5/COD ratio (0.29). Aerobic biological treatment was tested using laboratory and pilot scale reactors, and shown to remove essentially all BOD5, solvent extractable material and detergent activity. Maximum removal of the COD was 65% leaving a 2000 mg/L residual component of nonbiodegradable organic material. The combined processes of Sirolan CF and biological treatment removed over 90% of the COD and all solvent extractable material from raw wool scouring effluent. This compares favourably to existing treatment systems, and represents a viable and attractive alternative to treat this extremely polluted wastewater.

Andrew J Poole; Ralf Cord-Ruwisch; F.William Jones

1999-01-01T23:59:59.000Z

487

Shopfloor attitudes towards advanced manufacturing technology: the changing focus of industrial conflict?  

Science Journals Connector (OSTI)

......among this group and training in the use of the...Consequently, the selection process for choosing...evening classes for training and yet were still...believed to be co-operating with management...enhancing the level of training with AMT for the...jobs to people' Personnel Management 48-51......

Keith Davids; Robin Martin

1992-08-01T23:59:59.000Z

488

Chapter IB-3 - Low-Cost Industrial Technologies for Crystalline Silicon Solar Cells  

Science Journals Connector (OSTI)

Publisher Summary Silicon substrates used in commercial solar cell processes contain a near-surface saw-damaged layer, which has to be removed at the beginning of the process. Thickness of the damage depends on the technique used in wafering of the ingot. A layer with thickness of 20 to 30 ?m has to be etched from both sides of wafers cut by an inner-diameter blade saw, while only 10 to 200 ? m is enough when a wire saw is used. The etching process has to be slightly modified when applied to multicrystalline substrates. Too fast or prolonged etching can produce steps at grain boundaries. This can lead to problems with interruptions of metal contacts. This problem can be avoided by an isotropic etching based on a mixture of nitric, acetic, and hydrofluoric acids. However, a strong exothermic reaction makes this etching process difficult to control and toxicity of the solution creates safety and waste disposal problems. The silicon surface after saw damage etching is shiny and reflects more than 35% of incident light. The reflection losses in commercial solar cells are reduced mainly by random chemical texturing. Surface texturing reduces the optical reflection from the single crystalline silicon surface to less than 10% by allowing the reflected ray to be recoupled into the cell.

Jozef Szlufcik; S. Sivoththaman; Johan F. Nijs; Robert P. Mertens; Roger Van Overstraeten

2012-01-01T23:59:59.000Z

489

The Future of Computer Technology and its Implications for the Computer Industry  

Science Journals Connector (OSTI)

......Included-minimising the energy demands of electronics...we use scavenged energy, or get power requirements...require a much closer integration between electronics...process! These challenges say something about...demonstrates excellent energy-efficiency, we...contribution to a sustainable future for our planet......

S. Furber

2008-11-01T23:59:59.000Z

490

New Developments in the Technology Readiness Assessment Process in US DOE-EM - 13247  

SciTech Connect

A Technology Readiness Assessment (TRA) is a systematic, metric-based process and accompanying report that evaluates the maturity of the technologies used in systems; it is designed to measure technology maturity using the Technology Readiness Level (TRL) scale pioneered by the National Aeronautics and Space Administration (NASA) in the 1980's. More recently, DoD has adopted and provided systematic guidance for performing TRAs and determining TRLs. In 2007 the GAO recommended that the DOE adopt the NASA/DoD methodology for evaluating technology maturity. Earlier, in 2006-2007, DOE-EM had conducted pilot TRAs on a number of projects at Hanford and Savannah River. In March 2008, DOE-EM issued a process guide, which established TRAs as an integral part of DOE-EM's Project Management Critical Decision Process. Since the development of its detailed TRA guidance in 2008, DOE-EM has continued to accumulate experience in the conduct of TRAs and the process for evaluating technology maturity. DOE has developed guidance on TRAs applicable department-wide. DOE-EM's experience with the TRA process, the evaluations that led to recently developed proposed revisions to the DOE-EM TRA/TMP Guide; the content of the proposed changes that incorporate the above lessons learned and insights are described. (authors)

Krahn, Steven [Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN, 37235 (United States)] [Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN, 37235 (United States); Sutter, Herbert [Consultant, 910 Laurel Green Dr., North Canton, OH, 44720 (United States)] [Consultant, 910 Laurel Green Dr., North Canton, OH, 44720 (United States); Johnson, Hoyt [DOE-EM, 1000 Independence Ave., Washington, DC, 20585 (United States)] [DOE-EM, 1000 Independence Ave., Washington, DC, 20585 (United States)

2013-07-01T23:59:59.000Z

491

Industrial Activities at DOE: Efficiency, Manufacturing, Process, and Materials R&D  

Energy.gov (U.S. Department of Energy (DOE))

Overview of industrial activities at DOE by Joe Cresko, EERE Advanced Manufacturing Office, at the EERE QC Workshop held December 9-10, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

492

Waterfront views : defining a new planning process for Brooklyn's post-industrial waterfronts  

E-Print Network (OSTI)

The study of waterfront planning largely focuses on the physical reconnection of the post-industrial, downtown waterfront with the spatial fabric of the city. Attention is given to the need for clarity of regulations, ...

Grassi, Carrie

2006-01-01T23:59:59.000Z

493

Large Eddy Simulation of Industrial Flares Philip Smith  

E-Print Network (OSTI)

At the Institute for Clean and Secure Energy at the University of Utah we are focused on education through and private industry companies to promote rapid deployment of new technologies through the use of high to solve many industrially relevant problems such as industrial flares, oxy-coal combustion processes

Utah, University of

494

The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry  

E-Print Network (OSTI)

and Renewable Energy (EERE), began to champion thetechnologies in 1979. EERE was attracted to the potential of

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-01-01T23:59:59.000Z

495

Scottish Energy Research Academy Energy Industry Doctorates  

E-Print Network (OSTI)

on a case by case basis. · Wind energy · Marine energy · Bio-energy · Solar energy · Energy conversionScottish Energy Research Academy (SERA) Energy Industry Doctorates Project Selection Process Notes The Energy Technology Partnership (ETP) has established an Energy Industry Doctorate Programme

Painter, Kevin

496

Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.  

SciTech Connect

Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.

Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter; Jow, Hong-Nian; Mattie, Patrick D.; Schelling, Frank Joseph Jr. (; .)

2007-01-01T23:59:59.000Z

497

Water Efficient and Low Pollution Textile Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative and Emerging Technologies for an Energy Efficient Alternative and Emerging Technologies for an Energy Efficient Water Efficient and Low Pollution Textile Industry year month institution Lawrence Berkeley National Laboratory address Berkeley abstract p Emerging energy efficiency greenhouse gas GHG and pollution mitigation technologies will be crucial for the textile industry as it responds to population and economic growth that is expected to spur a rapid increase in textile consumption over the coming decades and a corresponding increase in the industry textquoteright s absolute energy use and GHG and other pollutant emissions This report gives an overview of textile industry processes and compiles available information on the energy savings environmental and other benefits costs commercialization status and references for emerging technologies to reduce the industry

498

EIA - 2010 International Energy Outlook - Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial International Energy Outlook 2010 Industrial Sector Energy Consumption Worldwide industrial energy consumption increases by 42 percent, or an average of 1.3 percent per year, from 2007 to 2035 in the IEO2010 Reference case. Ninety-five percent of the growth occurs in non-OECD nations. Overview The world's industries make up a diverse sector that includes manufacturing, agriculture, mining, and construction. Industrial energy demand varies across regions and countries, depending on the level and mix of economic activity and technological development, among other factors. Energy is consumed in the industrial sector for a wide range of activities, such as processing and assembly, space conditioning, and lighting. Industrial energy use also includes natural gas and petroleum products used as feedstocks to produce non-energy products, such as plastics. In aggregate, the industrial sector uses more energy than any other end-use sector, consuming about one-half of the world's total delivered energy.