National Library of Energy BETA

Sample records for industrial process technologies

  1. Industrial Process Heating - Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingREnergyDepartment|ReserveofIndustrialJobs |Industrial

  2. Diverse Applications of Pinch Technology Within the Process Industries 

    E-Print Network [OSTI]

    Spriggs, H. D.; Ashton, G.

    1986-01-01

    OF PINCH TECHNOLOGY WITHIN THE PROCESS INDUSTRIES H. P. Spriggs and Greg Ashton Linnhoff March Charleston, WV ABSTRACT PINCH ANALYSIS Within the past few years, pinch technology has revolutionised the way engineers design and retrofit... processes. The technology offers a new approach to process integration based on the applic?tion of the pinch principle. Early applications were mostly in the petrochemical and bulk chemical industries. In this paper we report the use of pinch technology...

  3. Boost Process Heating Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program Process Heating Assessment and Survey Tool (PHAST) can help industrial plants indentify opportunities to save energy.

  4. Industrial Technologies Program Research Plan for Energy-Intensive Process Industries

    SciTech Connect (OSTI)

    Chapas, Richard B.; Colwell, Jeffery A.

    2007-10-01

    In this plan, the Industrial Technologies Program (ITP) identifies the objectives of its cross-cutting strategy for conducting research in collaboration with industry and U.S. Department of Energy national laboratories to develop technologies that improve the efficiencies of energy-intensive process industries.

  5. New Membrane Technology Boosts Efficiency in Industrial Gas Processes

    Office of Energy Efficiency and Renewable Energy (EERE)

    Fact sheet from Membrane Technology and Research, Inc. about its pilot-scale industrial membrane system that was funded by the SBIR program.

  6. Science, technology, and the industrialization of laser-driven processes

    SciTech Connect (OSTI)

    Davis, J.I.; Paisner, J.A.

    1985-05-01

    Members of the laser program at Lawrence Livermore National Laboratory (LLNL) reviewed potential applications of lasers in industry, some of which are: isotope separation; cleanup of radioactive waste; trace impurity removal; selective chemical reactions; photochemical activation or dissociation of gases; control of combustion particulates; crystal and powder chemistry; and laser induced biochemistry. Many of these areas are currently under active study in the community. The investigation at LLNL focused on laser isotope separation of atomic uranium because of the large demand (> 1000 tonnes/year) and high product enrichment price (> $600/kg of product) for material used as fuel in commercial light-water nuclear power reactors. They also believed that once the technology was fully developed and deployed, it could be applied directly to separating many elements economically on an industrial scale. The Atomic Vapor Laser Isotope Separation (AVLIS) program at LLNL has an extensive uranium and plutonium program of >$100 M in FY85 and a minor research program for other elements. This report describes the AVLIS program conducted covering the following topics; candidate elements; separative work units; spectroscopic selectivety; major systems; facilities; integrated process model;multivariable sensitivety studies; world market; and US enrichment enterprise. 23 figs. (AT)

  7. Summary of the government/industry workshop on new materials and processing technologies for industrial applications

    SciTech Connect (OSTI)

    Young, J.K.

    1992-07-01

    This report presents a summary of the 1-day workshop conducted at Ann Arbor, Michigan, on April 16, 1992, between the National Center for Manufacturing Sciences (NCMS) and the US Department of Energy Advanced Industrial Materials Program (DOE AIM). The workshop objectives were to: (1) encourage collaboration between DOE, the DOE national laboratories, and NCMS material manufacturers and (2) assist the DOE AIM program in targeting research and development (R&D) more effectively. During the workshop, participants from industry and DOE laboratories were divided into three working groups. Representatives from the DOE national laboratories currently conducting major research programs for AIM were asked to be working group leaders. The groups developed recommendations for NCMS and AIM managers using a six-step process. As a result of the workshop, the groups identified problems of key concern to NCMS member companies and promising materials and processes to meet industry needs. Overall, the workshop found that the research agenda of DOE AIM should include working with suppliers to develop manufacturing technology. The agenda should not be solely driven by energy considerations, but rather it should be driven by industry needs. The role of DOE should be to ensure that energy-efficient technology is available to meet these needs.

  8. Summary of the government/industry workshop on new materials and processing technologies for industrial applications

    SciTech Connect (OSTI)

    Young, J K

    1992-07-01

    This report presents a summary of the 1-day workshop conducted at Ann Arbor, Michigan, on April 16, 1992, between the National Center for Manufacturing Sciences (NCMS) and the US Department of Energy Advanced Industrial Materials Program (DOE AIM). The workshop objectives were to: (1) encourage collaboration between DOE, the DOE national laboratories, and NCMS material manufacturers and (2) assist the DOE AIM program in targeting research and development (R D) more effectively. During the workshop, participants from industry and DOE laboratories were divided into three working groups. Representatives from the DOE national laboratories currently conducting major research programs for AIM were asked to be working group leaders. The groups developed recommendations for NCMS and AIM managers using a six-step process. As a result of the workshop, the groups identified problems of key concern to NCMS member companies and promising materials and processes to meet industry needs. Overall, the workshop found that the research agenda of DOE AIM should include working with suppliers to develop manufacturing technology. The agenda should not be solely driven by energy considerations, but rather it should be driven by industry needs. The role of DOE should be to ensure that energy-efficient technology is available to meet these needs.

  9. New Membrane Technology Boosts Efficiency in Industrial Gas Processes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for refinery and other applications MTR's current R&D is extending use of membranes to carbon sequestration and biofuels separations. www.mtrinc.com New Membrane Technology...

  10. Using Waste Heat for External Processes; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    necessary? Resources See also the ASM Handbook, Volumes 1 (1990) and 2 (1991), Materials Park, OH: ASM International; Combustion Technology Manual, Fifth Edition, Cincinnati, OH:...

  11. WirelessHART: Applying Wireless Technology in Real-Time Industrial Process Control

    E-Print Network [OSTI]

    Chandy, John A.

    a WirelessHART protocol stack. 1 Introduction Wireless process control has been a popular topic re- centlyWirelessHART: Applying Wireless Technology in Real-Time Industrial Process Control Jianping Song.nixon}@emerson.com Wally Pratt HART Communication Foundation 9390 Research Blvd., Suite I-350 Austin, TX 78759, USA wallyp

  12. Heat Pipe Technology for Energy Conservation in the Process Industry 

    E-Print Network [OSTI]

    Price, B. L. Jr.

    1985-01-01

    is installed at an angle below the condenser section to assist in gravity return of the condensate inside the heat pipes. The angle of installation in the boiler is 30 deg to maximize heat piping capacity and allows smoother duct turns. The exhaust gases... stream_source_info ESL-IE-85-05-47.pdf.txt stream_content_type text/plain stream_size 24618 Content-Encoding ISO-8859-1 stream_name ESL-IE-85-05-47.pdf.txt Content-Type text/plain; charset=ISO-8859-1 HEAT PIPE TECHNOLOGY...

  13. Intelligent Information, Monitoring, and Control Technology of Industrial Process Applications

    E-Print Network [OSTI]

    Taylor, James H.

    -based reasoning, on-line learning, automated process optimization and model identification, robust control and increasingly massive information overload. The automation of AEM within an information and control, enhance safety, and improve product quality. An integrated control and AEM system involves several sub

  14. Design considerations for solar industrial process heat systems: nontracking and line focus collector technologies

    SciTech Connect (OSTI)

    Kutscher, C.F.

    1981-03-01

    Items are listed that should be considered in each aspect of the design of a solar industrial process heat system. The collector technologies covered are flat-plate, evacuated tube, and line focus. Qualitative design considerations are stressed rather than specific design recommendations. (LEW)

  15. High temperature materials technology for industrial energy systems and processes. Final report, April 1984-May 1986

    SciTech Connect (OSTI)

    Bortz, S.A.

    1986-06-01

    GRI is pursuing new technologies that will improve the performance of natural gas in industrial processes and enable natural gas to be competitive in the industrial sector with other energy alternatives. The program focused on three areas of interest that require establishing a ceramic materials data base for technical input to GRI's RandD planning efforts. These areas are: Ceramics for Heat-Exchanger Applications in High-Temperature Corrosive Flue Streams; Advanced Material and Component Technology for Gas-Fueled Prime Movers; and Gas-Fired Indirect Heating and Melting Systems.

  16. POTENTIAL AND FUTURE TRENDS ON INDUSTRIAL RADIATION PROCESSING TECHNOLOGY APPLICATION IN EMERGING COUNTRY - BRAZIL

    SciTech Connect (OSTI)

    Sampa, M.H.O.; Omi, N.M.; Rela, C.S.; Tsai, D.

    2004-10-06

    Brazil started the use of radiation technology in the seventies on crosslinking polyethylene for insulation of wire and electronic cables and sterilization of medical care devices. The present status of industrial applications of radiation shows that the use of this technology is increasing according to the economical development and the necessity to become the products manufactured in the local industries competitive in quality and price for internal and external market. The on going development activities in this area are concentrated on polymers processing (materials modification), foodstuff treatment and environmental protection. The development, the promotion and the technical support to consolidate this technology to the local industries is the main attribution of Institute for Energetic and Nuclear Research-IPEN, a governmental Institution.

  17. Process Industries Division CALL FOR PAPERS

    E-Print Network [OSTI]

    Müller, Norbert

    Process Industries Division CALL FOR PAPERS The Process Industries Division of ASME is sponsoring a series of sessions on issues facing Process industries, such as Heat Exchangers Performance, Compression Technology, Water Purification / Treatment Technologies, Low Temperature Industrial Applications, etc

  18. ITP Mining: Mining Industry of the Future Mineral Processing Technology Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE)

    In June 1998, the Chairman of the National Mining Association and the Secretary of energy entered into a Compact to pursue a collaborative technology research partnership, the Mining Industry of the Future.

  19. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  20. The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry 

    E-Print Network [OSTI]

    Lung, R. B.; Masanet, E.; McKane, A.

    2006-01-01

    to each emerging technology in its target industry sector in 2020 was calculated. Projected savings were calculated in terms of both delivered energy (i.e., natural gas and electricity consumed at the plant) and primary energy (i.e., the fossil fuels...Wh/lb. (electricity) Specific energy consumption of base technologies (delivered) 166 Btu/lb. (natural gas) Regional weighted average fossil fuel intensity of electricity generation 7,380 Btu/kWh Regional weighted average CO 2 emissions from electricity...

  1. Application and Technology Requirements for Heat Pumps at the Process Industries 

    E-Print Network [OSTI]

    Priebe, S.; Chappell, R.

    1987-01-01

    AND TECHNOLOGY REQUIREMENTS FOR HEAT PUMPS AT THE PROCESS INDUSTRIESl Stephen Priebe Engineering Specialist EG&G Idaho, Inc. Idaho Falls, ID There are basically three categories of equip ment used to manage heat energy flows in an indus trial process.... First, heat exchangers are used to move heat through the process down the temperature gradient. Second, heat pumps are used to move heat through the process up the temperature gra dient. Third, heat engines are used to convert heat to shaft power...

  2. Design approaches for solar industrial process-heat systems: nontracking and line-focus collector technologies

    SciTech Connect (OSTI)

    Kutscher, C.F.; Davenport, R.L.; Dougherty, D.A.; Gee, R.C.; Masterson, P.M.; May, E.K.

    1982-08-01

    The design methodology for solar industrial process heat systems is described, and an overview is given of the use of solar energy in industry. A way to determine whether solar energy makes sense for a particular application is described. The basic system configurations used to supply hot water or steam are discussed, and computer-generated graphs are supplied that allow the user to select a collector type. Detailed energy calculations are provided, including the effects of thermal losses and storage. The selection of subsystem components is described, and control systems, installation and start-up details, economics, and safety and environmental issues are explained. (LEW)

  3. Advanced Membrane Separation Technologies for Energy Recovery from Industrial Process Streams

    SciTech Connect (OSTI)

    Keiser, J.R.; Wang, D.; Bischoff, B.; Ciora; Radhakrishnan, B.; Gorti, S.B.

    2013-01-14

    Recovery of energy from relatively low-temperature waste streams is a goal that has not been achieved on any large scale. Heat exchangers do not operate efficiently with low-temperature streams and thus require such large heat exchanger surface areas that they are not practical. Condensing economizers offer one option for heat recovery from such streams, but they have not been widely implemented by industry. A promising alternative to these heat exchangers and economizers is a prototype ceramic membrane system using transport membrane technology for separation of water vapor and recovery of heat. This system was successfully tested by the Gas Technology Institute (GTI) on a natural gas fired boiler where the flue gas is relatively clean and free of contaminants. However, since the tubes of the prototype system were constructed of aluminum oxide, the brittle nature of the tubes limited the robustness of the system and even limited the length of tubes that could be used. In order to improve the robustness of the membrane tubes and make the system more suitable for industrial applications, this project was initiated with the objective of developing a system with materials that would permit the system to function successfully on a larger scale and in contaminated and potentially corrosive industrial environments. This required identifying likely industrial environments and the hazards associated with those environments. Based on the hazardous components in these environments, candidate metallic materials were identified that are expected to have sufficient strength, thermal conductivity and corrosion resistance to permit production of longer tubes that could function in the industrial environments identified. Tests were conducted to determine the corrosion resistance of these candidate alloys, and the feasibility of forming these materials into porous substrates was assessed. Once the most promising metallic materials were identified, the ability to form an alumina membrane layer on the surface of the metallic tubes was evaluated. Evaluation of this new style of membrane tube involved exposure to SO{sub 2} containing gases as well as to materials with a potential for fouling. Once the choice of substrate and membrane materials and design were confirmed, about 150 tubes were fabricated and assembled into three modules. These modules were mounted on an industrial size boiler and their performance carefully monitored during a limited testing period. The positive results of this performance test confirm the feasibility of utilizing such a system for recovery of heat and water from industrial waste streams. The improved module design along with use of long metallic substrate tubes with a ceramic membrane on the outer surface resulted in the successful, limited scale demonstration of the Transport Membrane Condenser (TMC) technology in the GTI test facility. This test showed this technology can successfully recover a significant amount of heat and water from gaseous waste streams. However, before industry will make the investment to install a full scale TMC, a full scale system will need to be constructed, installed and successfully operated at a few industrial sites. Companies were identified that had an interest in serving as a host site for a demonstration system.

  4. Automotive Turbocharging: Industrial Requirements and Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbocharging: Industrial Requirements and Technology Developments Automotive Turbocharging: Industrial Requirements and Technology Developments Significant improvements in...

  5. Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels

    SciTech Connect (OSTI)

    Agrawal, Ajay; Taylor, Robert

    2013-09-30

    This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a path forward to utilize both fossil and alternative liquid fuels in the same combustion system. In particular, experiments show that straight VO can be cleanly combusted without the need for chemical processing or preheating steps, which can result in significant economic and environmental benefits. Next, low-emission combustion of glycerol/methane was achieved by utilizing FB injector to yield fine droplets of highly viscous glycerol. Heat released from methane combustion further improves glycerol pre-vaporization and thus its clean combustion. Methane addition results in an intensified reaction zone with locally high temperatures near the injector exit. Reduction in methane flow rate elongates the reaction zone, which leads to higher CO emissions and lower NOx emissions. Similarly, higher air to liquid (ALR) mass ratio improves atomization and fuel pre-vaporization and shifts the flame closer to the injector exit. In spite of these internal variations, all fuel mixes of glycerol with methane produced similar CO and NOx emissions at the combustor exit. Results show that FB concept provides low emissions with the flexibility to utilize gaseous and highly viscous liquid fuels, straight VO and glycerol, without preheating or preprocessing the fuels. Following these initial experiments in quartz combustor, we demonstrated that glycerol combustion can be stably sustained in a metal combustor. Phase Doppler Particle Analyzer (PDPA) measurements in glycerol/methane flames resulted in flow-weighted Sauter Mean Diameter (SMD) of 35 to 40 ?m, depending upon the methane percentage. This study verified that lab-scale dual-fuel burner using FB injector can successfully atomize and combust glycerol and presumably other highly viscous liquid fuels at relatively low HRR (<10 kW). For industrial applications, a scaled-up glycerol burner design thus seemed feasible.

  6. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 2, Industrial liquid waste processing, industrial gaseous waste processing

    SciTech Connect (OSTI)

    Lee, V.E. [ed.; Watts, R.L.

    1993-04-01

    This two-volume proceedings summarize the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Individual reports are indexed separately.

  7. Summary of innovative concepts for industrial process improvement: An experimental technology exchange

    SciTech Connect (OSTI)

    Conger, R.L.; Lee, V.E.; Buel, L.M.

    1995-08-01

    This document is a compilation of one-page technical briefs that summarize the highlights of thirty-eight innovations that were presented at the seventh Innovative Concepts Fair, held in Denver, Colorado on April 20--21, 1995. Sixteen of the innovations were funded through the Innovative Concepts Program, and twenty-two innovations represent other state or federally funded programs. The concepts in this year`s fair addressed innovations that can substantially improve industrial processes. Each tech brief describes the need for the proposed concept; the concept being proposed; and the concept`s economics and market potential, key experimental results, and future development needs. A contact block is also included with each flier.

  8. Harnessing Smart Sensor Technology for Industrial Energy Efficiency- Making Process-Specific Efficiency Projects Cost Effective with a Broadly Configurable, Network-Enabled Monitoring Tool 

    E-Print Network [OSTI]

    Wiczer, J. J.; Wiczer, M. B.

    2011-01-01

    To improve monitoring technology often re-quired by industrial energy efficiency projects, we have developed a set of power and process monitoring tools based on the IEEE 1451.2 smart sensor interface standard. These tools enable a wide...

  9. Industrial process surveillance system

    DOE Patents [OSTI]

    Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

    1998-06-09

    A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

  10. Industrial Process Surveillance System

    DOE Patents [OSTI]

    Gross, Kenneth C. (Bolingbrook, IL); Wegerich, Stephan W (Glendale Heights, IL); Singer, Ralph M. (Naperville, IL); Mott, Jack E. (Idaho Falls, ID)

    2001-01-30

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  11. Industrial process surveillance system

    DOE Patents [OSTI]

    Gross, Kenneth C. (Bolingbrook, IL); Wegerich, Stephan W. (Glendale Heights, IL); Singer, Ralph M. (Naperville, IL); Mott, Jack E. (Idaho Falls, ID)

    1998-01-01

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  12. Improved Technology Transfer Processes for the U.S. Upstream Petroleum Industry

    SciTech Connect (OSTI)

    Rowell, Deborah; Cole, E. Lance

    2003-01-24

    This report covers PTTC's technical progress during the 1st half of FY99, and illustrates its increasing impact on the independent oil and gas producing industry.

  13. Electrotechnologies in Process Industries 

    E-Print Network [OSTI]

    Amarnath, K. R.

    1989-01-01

    applications of innovative electrotechnologies in these sectors. APPLICATIONS Electricity is predominantly used in three ways in process industries: 1. Motor Drives 2. Process Heating 3. Electrochemical Processes Motor drives are mainly used in prime..., infrared, and ultraviolet heating have found a variety of applications, and more are under development. ElectrOChemical processes for separation and synthesis (such as Chlor-Alkali production) are significant users of electricity. New processes...

  14. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel...

  15. The Industrialization of Thermoelectric Power Generation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Industrialization of Thermoelectric Power Generation Technology The Industrialization of Thermoelectric Power Generation Technology Presents module and system requirements for...

  16. Forest Products Industry Technology Roadmap

    SciTech Connect (OSTI)

    none,

    2010-04-01

    This document describes the forest products industry's research and development priorities. The original technology roadmap published by the industry in 1999 and was most recently updated in April 2010.

  17. A Study to Develop an Industrial-Scale, Computer-Controlled High Magnetic Field Processing (HMFP) System to Assist in Commercializing the Novel, Enabling HMFP Manufacturing Technology

    SciTech Connect (OSTI)

    Ludtka, Gail Mackiewicz-; Chourey, Aashish

    2010-08-01

    As the original magnet designer and manufacturer of ORNL s 9T, 5-inch ID bore magnet, American Magnetics Inc. (AMI) has collaborated with ORNL s Materials Processing Group s and this partnership has been instrumental in the development of our unique thermo-magnetic facilities and expertise. Consequently, AMI and ORNL have realized that the commercial implementation of the High Magnetic Field Processing (HMFP) technology will require the evolution of robust, automated superconducting (SC) magnet systems that will be cost-effective and easy to operate in an industrial environment. The goal of this project and CRADA is to significantly expedite the timeline for implementing this revolutionary and pervasive cross-cutting technology for future US produced industrial components. The successful completion of this project is anticipated to significantly assist in the timely commercialization and licensing of our HMFP intellectual property for a broad spectrum of industries; and to open up a new market for AMI. One notable outcome of this project is that the ThermoMagnetic Processing Technology WON a prestigious 2009 R&D 100 Awards. This award acknowledges and recognizes our TMP Technology as one of the top 100 innovative US technologies in 2009. By successfully establishing the design requirements for a commercial scale magnetic processing system, this project effort has accomplished a key first step in facilitating the building and demonstration of a superconducting magnetic processing coil, enabling the transition of the High Magnetic Field Processing Technology beyond a laboratory novelty into a commercially viable and industrially scalable Manufacturing Technology.

  18. Common Industrial Lighting Upgrade Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is used to regulate the ongoing electricity provided to the lamp. COMMON INDUSTRIAL LIGHTING UPGRADE TECHNOLOGIES Due to the phase-out of the incandescent bulb and magnetic...

  19. ITP Mining: Mining Industry of the Future Mineral Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Future Mineral Processing Technology Roadmap ITP Mining: Mining Industry of the Future Mineral Processing Technology Roadmap mptroadmap.pdf More Documents & Publications ITP...

  20. on technology transfer, industry research +

    E-Print Network [OSTI]

    Cafarella, Michael J.

    on technology transfer, industry research + economic development annual report U N I V E R S I T Y and resources available at the University of Michigan as showcased in this year's Annual Report on Technology Transfer, Industry Research, and Economic Development. At the heart of the University's contributions

  1. Reduce Natural Gas Use in Your Industrial Process Heating Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduce Natural Gas Use in Your Industrial Process Heating Systems Industrial Technologies Program DOEGO-102007-2413 September 2007 A Strong Energy Portfolio for a Strong America...

  2. The Office of Industrial Technologies technical reports

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    The US Department of Energy's Office of Industrial Technologies (OIT) conducts R D activities which focus on the objectives of improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial energy conservation. The Office also conducts programs to reduce waste generation, increase recycling efforts, and improve the use of wastes as process feedstocks. An active program of technology transfer and education supports these activities and encourages adoption of new technologies. To accomplish these objectives OIT cooperates with the private sector to identify its technological needs and to share R D efforts. R D is conducted to the point that a new technology is shown to work and that it can be transferred to the private sector end-users. This bibliography contains information on all scientific and technical reports sponsored by the DOE Industrial Energy Conservation Program during the years 1988--1990.

  3. A Study to Develop an Industrial-Scale, Computer-Controlled High Magnetic Field Processing (HMFP) System to Assist in Commercializing the Novel, Enabling HMFP Manufacturing Technology

    SciTech Connect (OSTI)

    Lutdka, G. M.; Chourey, A.

    2010-05-12

    As the original magnet designer and manufacturer of ORNL’s 9T, 5-inch ID bore magnet, American Magnetics Inc. (AMI) has collaborated with ORNL’s Materials Processing Group’s and this partnership has been instrumental in the development of our unique thermo-magnetic facilities and expertise. Consequently, AMI and ORNL have realized that the commercial implementation of the High Magnetic Field Processing (HMFP) technology will require the evolution of robust, automated superconducting (SC) magnet systems that will be cost-effective and easy to operate in an industrial environment. The goal of this project and CRADA is to significantly expedite the timeline for implementing this revolutionary and pervasive cross-cutting technology for future US produced industrial components. The successful completion of this project is anticipated to significantly assist in the timely commercialization and licensing of our HMFP intellectual property for a broad spectrum of industries; and to open up a new market for AMI. One notable outcome of this project is that the ThermoMagnetic Processing Technology WON a prestigious 2009 R&D 100 Awards. This award acknowledges and recognizes our TMP Technology as one of the top 100 innovative US technologies in 2009. By successfully establishing the design requirements for a commercial scale magnetic processing system, this project effort has accomplished a key first step in facilitating the building and demonstration of a superconducting magnetic processing coil, enabling the transition of the High Magnetic Field Processing Technology beyond a laboratory novelty into a commercially viable and industrially scalable Manufacturing Technology.

  4. IMPACTS: Industrial Technologies Program, Summary of Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009 IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009...

  5. Steel Industry Technology Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE)

    Introduction; Process Improvement; Iron Unit Recycling; Environment; Product Development; Notes; Glossary

  6. Emerging energy-efficient industrial technologies

    SciTech Connect (OSTI)

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if not more important in many cases) in influencing the decision on whether to adopt an emerging technology. The technologies were characterized with respect to energy efficiency, economics, and environmental performance. The results demonstrate that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. We show that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity and worker safety, and reduced capital costs.

  7. Comprehensive Energy Efficiency in the Process Industries 

    E-Print Network [OSTI]

    Rossiter, A.

    2015-01-01

    Efficiency in the Process Industries Alan Rossiter Rossiter & Associates alan@rossiters.org Beth Jones LyondellBasell (ret) ESL-IE-15-06-15a Proceedings of the Thrity-Seventh Industrial Energy Technology Conference New Orleans, LA. June 2-4, 2015 The Main.... June 2-4, 2015 Keys to Improvement •Behavioral changes ? people and organizations ? no-cost savings •Process improvements ? typically capital projects ESL-IE-15-06-15a Proceedings of the Thrity-Seventh Industrial Energy Technology Conference New Orleans...

  8. Process modeling and industrial energy use

    SciTech Connect (OSTI)

    Howe, S O; Pilati, D A; Sparrow, F T

    1980-11-01

    How the process models developed at BNL are used to analyze industrial energy use is described and illustrated. Following a brief overview of the industry modeling program, the general methodology of process modeling is discussed. The discussion highlights the important concepts, contents, inputs, and outputs of a typical process model. A model of the US pulp and paper industry is then discussed as a specific application of process modeling methodology. Case study results from the pulp and paper model illustrate how process models can be used to analyze a variety of issues. Applications addressed with the case study results include projections of energy demand, conservation technology assessment, energy-related tax policies, and sensitivity analysis. A subsequent discussion of these results supports the conclusion that industry process models are versatile and powerful tools for energy end-use modeling and conservation analysis. Information on the current status of industry models at BNL is tabulated.

  9. Energy Technology Partnership (ETP) Energy Industry Doctorates

    E-Print Network [OSTI]

    Painter, Kevin

    Energy Technology Partnership (ETP) Energy Industry Doctorates in Low Carbon Energy Technologies for Guidance 1. Introduction The Energy Technology Partnership (ETP) has established an Energy Industry for `industry-ready', post-doctoral researchers to enhance energy industry innovation and knowledge exchange

  10. Industrial process heat market assessment

    SciTech Connect (OSTI)

    Bresnick, S.

    1981-12-01

    This report is designed to be a reference resource, giving a broad perspective of the potential HTGR market for industrial process heat. It is intended to serve as a briefing document for those wishing to obtain background information and also to serve as a starting point from which more detailed and refined studies may be undertaken. In doing so, the report presents a qualitative and quantitative description of the industrial process heat market in the US, provides a summary discussion of cogeneration experience to date, and outlines the existing institutional and financial framework for cogeneration. The intent is to give the reader an understanding of the current situation and experience in this area. The cogeneration area in particular is an evolving one because of regulations and tax laws, which are still in the process of being developed and interpreted. The report presents the latest developments in regulatory and legislative activities which are associated with that technology. Finally, the report presents a brief description of the three HTGR systems under study during the current fiscal year and describes the specific market characteristics which each application is designed to serve.

  11. Industrial heat pumps in Germany -potentials, technological development

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    1 Industrial heat pumps in Germany - potentials, technological development and application examples of Energy (IER) Universität Stuttgart ACHEMA 2012 Application of industrial heat pumps Improving energy-efficiency of industrial processes 13. Juni 2012 #12;ACHEMA 2012 - Industrial heat pumps 21st June 2012 Types of Heat Pumps

  12. Analyzing Your Compressed Air System; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 * August 2004 Industrial Technologies Program For additional information on industrial energy efficiency measures, contact the EERE Information Center at 1-877-337-3463 or visit...

  13. 1 Industrial Electron Accelerators type ILU for Industrial Technologies

    E-Print Network [OSTI]

    1 Industrial Electron Accelerators type ILU for Industrial Technologies The present work describes industrial electron accelerators of the ILU family. Their main parameters, design, principle of action the pulse linear accelerators type ILU are developed and supplied to the industry. The ILU machines

  14. Instrumentation for Process Industries 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    The development of biofuels as an alternative fuel source highlights the MixAlco process as one method to convert organic waste into alcohol fuels. The pretreatment and fermentation of waste is integral to the process ...

  15. Proceedings of the 2009 Industrial Engineering Research Conference Technology Assessment for an Inventory Management Process in a

    E-Print Network [OSTI]

    Rossetti, Manuel D.

    that 16% of hospitals use barcode technology for supply chain management purposes, and 3% use Radio a technological alternative. This paper studies the impact of Auto ID DC technologies on the inventory management Technologies, barcodes, RFID, hospital unit inventory management, quantitative modeling 1. Introduction Auto ID

  16. Advanced Manufacturing Office (Formerly Industrial Technologies Program)

    E-Print Network [OSTI]

    Advanced Manufacturing Office (Formerly Industrial Technologies Program) Leo Christodoulou Jamie August 11, 2011 #12;Background and Opportunity Background Industry accounts for 30% of energy consumption-value industries such as the renewable energy industry. Example materials include low-cost carbon fiber, low

  17. Process Energy Audit for Large Industries 

    E-Print Network [OSTI]

    Chari, S.

    1993-01-01

    of the auditor, process improvements would be identified. A systems approach would be used in identifying process improvement. Task 12 ? Identification of Demand Side Management Technologies A derivative of Task 12 would be the identification of DSM... will consist of results of all the tasks. Example Audits. Having discussed the general audit procedure for a comprehensive audit, the following on a few energy intensive industries such as: ? cement ? chloralkalies ? foundry ? paper manufacturing...

  18. ITP Aluminum: Aluminum Industry Technology Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2002, the industry created this updated Aluminum Industry Technology Roadmap to define the specific research and development priorities, performance targets, and milestones required to achieve the set vision.

  19. Compressed Air Storage Strategies; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Technologies Program Suggested Actions * Review the plant's compressed air demand patterns to determine whether storage would be beneficial. * Examine the compressed...

  20. Furnace Pressure Controllers; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 * September 2005 Industrial Technologies Program Furnace Pressure Controllers Furnace draft, or negative pres- sure, is created in fuel-fired furnaces when high temperature gases...

  1. Reduce Air Infiltration in Furnaces; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 * January 2006 Industrial Technologies Program Reduce Air Infiltration in Furnaces Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace...

  2. Compressed Air System Control Strategies; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 * August 2004 Industrial Technologies Program Suggested Actions * Understand your system require- ments by developing a pressure and a demand profile before investing in...

  3. China's Defense Electronics and Information Technology Industry

    E-Print Network [OSTI]

    RAGLAND, LeighAnn; MCREYNOLDS, Joe; GEARY, Debra

    2013-01-01

    2013 China’s Defense Electronics and Information Technologythe Chinese defense electronics and information technology (is moving the defense electronics and IT industry toward

  4. Alternatives to Industrial Cogeneration: A Pinch Technology Perspective 

    E-Print Network [OSTI]

    Karp, A.

    1988-01-01

    TO INDUSTRIAL COGENERATION: A PINCH TECHNOLOGY PERSPECTIVE ALAN KARP, Senior Consultant Linnhoff March, Inc., Leesburg, Virginia ABSTRACT Pinch Technology studies across a broad spectrum of processes confirm that existing plants typically consume 15... industries, Pinch Technology has consistently shown that existing plants typically consume 15-40% more thermal energy than they should. This is true even among relatively new facilities which might be thought to be well optimized. Clearly, cogeneration...

  5. Office of Industrial Technologies research in progress

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffs of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.

  6. Emerging Energy-Efficient Technologies for Industry

    E-Print Network [OSTI]

    2005-01-01

    water treatment High efficiency/low Nox burners Membrane technology wastewater Process Integration (pinch

  7. Emerging energy-efficient technologies for industry

    E-Print Network [OSTI]

    2004-01-01

    water treatment High efficiency/low Nox burners Membrane technology wastewater Process Integration (pinch

  8. Emerging energy-efficient technologies for industry

    E-Print Network [OSTI]

    2001-01-01

    water treatment High efficiency/low Nox burners Membrane technology wastewater Process Integration (pinch

  9. EERE SBIR Case Study: Sonic Energy Improves Industrial Separation and Mixing Processes

    Office of Energy Efficiency and Renewable Energy (EERE)

    Advanced membrane separation technologies offered improvements over conventional processes, but were not being adopted in industrial operations.

  10. Industry Sector Case Study Building Technologies Division

    E-Print Network [OSTI]

    Fischlin, Andreas

    energy supply is based on solar thermal collectors, a photovoltaic system, as well as building technologyIndustry Sector Case Study Building Technologies Division Zug (Switzerland), September 14, 2011,000 m, the New Monte Rosa Hut showcases the latest developments in the building technology field

  11. Industrial Technologies Program ORNL-developed cast nickel aluminide rolls

    E-Print Network [OSTI]

    strength and oxidation resistance. · · · · Metal Infusion Surface Treatment (MIST) (2006)--a process for infusing up to 51 elements into metal and alloy surfaces, MIST lengthens the life of metalworking technology and the deployment of industrial wireless technologies. #12;Nanomanufacturing Metal Infusion

  12. 2008 Industrial Technologies Market Report, May 2009

    SciTech Connect (OSTI)

    Energetics; DOE

    2009-07-01

    The industrial sector is a critical component of the U.S. economy, providing an array of consumer, transportation, and national defense-related goods we rely on every day. Unlike many other economic sectors, however, the industrial sector must compete globally for raw materials, production, and sales. Though our homes, stores, hospitals, and vehicles are located within our borders, elements of our goods-producing industries could potentially be moved offshore. Keeping U.S. industry competitive is essential to maintaining and growing the U.S. economy. This report begins with an overview of trends in industrial sector energy use. The next section of the report focuses on some of the largest and most energy-intensive industrial subsectors. The report also highlights several emerging technologies that could transform key segments of industry. Finally, the report presents policies, incentives, and drivers that can influence the competitiveness of U.S. industrial firms.

  13. Optimize Parallel Pumping Systems: Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a constant rate when these pumps approach no-flow or shutoff head. Some efficient, high-headlow-capacity, centrifugal pumps used in process industries have "drooping" pump...

  14. Emerging energy-efficient industrial technologies

    E-Print Network [OSTI]

    2000-01-01

    Heat Recovery and Energy Saving in a Bakery. ” Project No.energy in the baking industry. (Heat recovery without food contamination in a bakery. )”energy-intensive process step was used in another process step. At bakeries,

  15. Industrial Process Heating - Technology Assessment

    Office of Environmental Management (EM)

    boiler using off-peak 87 electricity are sometimes used in areas with lower cost electricity. 88 Combinations of penetrating electromagnetic (EM) energy (e.g....

  16. Emerging energy-efficient industrial technologies

    E-Print Network [OSTI]

    2000-01-01

    Technology/Measure Pump Efficiency Pinch Analysis Switched Reluctance Motor Advanced Lighting Anaerobic Waste Waterwater treatment High-efficiency/low NO x burners Membrane technology wastewater Process integration (pinch)water treatment High efficiency/low NO x burners Membrane technology wastewater Process Integration (pinch

  17. Technologies and Policies to Improve Energy Efficiency in Industry

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01

    Industrial Technologies Program provides many software tools for assessing energy efficiency of motors,

  18. Optimizing Process Loads in Industrial Cogeneration Energy Systems 

    E-Print Network [OSTI]

    Ahner, D. J.; Babson, P. E.

    1995-01-01

    W OPTIMIZING PROCESS LOADS IN INDUSTRIAL COGENERAnON ENERGY SYSTEMS DJ. Ahner Manager, Generation Technology Power Tecbnologies, Inc. Schenectady, New York ABSTRACT Optimum dispatcb of energy supply systems can result in large savings... and industrial cogeneration are extended to solving this trigeneration problem where the optimum dispatch of the final load devices (i.e. compressors, fans, pumps, etc.) are an integral part of the total energy system optimization. An example industrial...

  19. Modelling of Industrial Processes for Polymer Extrusion and Injection Moulding

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    /Continuum Mechanics. Faculty: Mathematics and Computing Science. Eindhoven University of Technology (EUT) Our mainModelling of Industrial Processes for Polymer Melts: Extrusion and Injection Moulding Fons van de Ven Eindhoven University of Technology P.O.Box 513; 5600 MB Eindhoven, The Netherlands Abstract

  20. Emerging Energy-Efficient Technologies for Industry

    SciTech Connect (OSTI)

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliot, Neal; Shipley, Anna; Thorn, Jennifer

    2005-05-05

    U.S. industry consumes approximately 37 percent of thenation's energy to produce 24 percent of the nation's GDP. Increasingly,society is confronted with the challenge of moving toward a cleaner, moresustainable path of production and consumption, while increasing globalcompetitiveness. Technology is essential in achieving these challenges.We report on a recent analysis of emerging energy-efficient technologiesfor industry, focusing on over 50 selected technologies. The technologiesare characterized with respect to energy efficiency, economics andenvironmental performance. This paper provides an overview of theresults, demonstrating that we are not running out of technologies toimprove energy efficiency, economic and environmental performance, andneither will we in the future. The study shows that many of thetechnologies have important non-energy benefits, ranging from reducedenvironmental impact to improved productivity, and reduced capital costscompared to current technologies.

  1. Trends in petroleum refining process technology

    SciTech Connect (OSTI)

    Kowalczyk, D. [Refining Process Services, Cheswick, PA (United States)

    1995-12-31

    In the 1990`s, the shift toward reformulated fuels and the unrelenting economic pressures on the petroleum refining industry have led to the ongoing development of a series of technological advances to improve fuels quality and industry operating efficiency. In this paper, ten of the most innovative and high impact recent developments in petroleum refining process technology will be highlighted. Process improvements and innovations have occurred in all facets of petroleum refining operations including fluid catalytic cracking, ether production, desulfurization, hydrocracking, gas processing, environmental control and heavy oil processing. Discussed will be the technical and economic impact of each of these new technologies on the petroleum refinery of the late 20th and early 21st century.

  2. Efficient Bayesian sampling inspection for industrial processes

    E-Print Network [OSTI]

    Little, John

    Efficient Bayesian sampling inspection for industrial processes based on transformed spatio of complex industrial systems subject to degradation effects, such as corrosion, is important for safety, inspection, Bayesian, minima. 1 #12;1 Introduction Many large industrial systems including pipes, vessels

  3. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  4. Modeling and Improving an Industrial Software Process

    E-Print Network [OSTI]

    Picco, Gian Pietro

    possible levels of maturity for a software process. At the first level, software production activities continuous improvement. It is the basis of the Japanese approach to industrial production and is applied1 Modeling and Improving an Industrial Software Process Sergio Bandinelli, Alfonso Fuggetta, Member

  5. Science and technology for industrial ecology

    SciTech Connect (OSTI)

    Gilmartin, T.J.; Allenby, B.R.

    1996-07-10

    Scientific and technological communities have a significant role to play and responsibility for the evolution of global sustainability (continuously improving quality of life into the indefinite future). Sustainability is not possible without a substantially improved science and technology basis for industrial ecology. Society needs data and understanding of complex ecological issues to govern itself in a sustainable manner. We should: support and develop multi-disciplinary programs which create the scientific basis for understanding natural and anthropogenic complex systems and for developing environmentally and economically efficient technology; demonstrate a systems-based approach to science and technology issues which is life-cycle comprehensive, integrates environmental considerations, and promotes conservation of natural resources; and encourage development of responsible, technically and scientifically valid, cost-effective environmental laws and practices.

  6. Tools to Boost Steam System Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program steam software tools can help industrial plants identify steam system improvements to save energy and money.

  7. Improve Chilled Water System Performance, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program Chilled Water System Analysis Tool (CWSAT) can help optimize the performance of of industrial chilled water systems.

  8. Inter-Industry Diffusion of Technology That Results

    E-Print Network [OSTI]

    April 2003 Inter-Industry Diffusion of Technology That Results From ATP Projects ADVANCED TECHNOLOGY PROGRAMADVANCED TECHNOLOGY PROGRAM NIST GCR 03-848 National Institute of Standards and Technology Funding Joel Popkin #12;NIST GCR 03-848 Inter-Industry Diffusion of Technology That Results From ATP

  9. ITP Mining: Mining Industry Roadmap for Crosscutting Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap for Crosscutting Technologies ITP Mining: Mining Industry Roadmap for Crosscutting Technologies ccroadmap.pdf More Documents & Publications ITP Mining: Exploration and...

  10. Process Integration of Industrial Heat Pumps 

    E-Print Network [OSTI]

    Priebe, S. J.; Chappell, R. N.

    1986-01-01

    OF INDUSTRIAL HEAT PUMPS* S. J. Priebe EG&G Idaho, Inc. Idaho Falls, Idaho ABSTRACT The integration of heat pumps into industrial processes shows potential for energy savings. Heat pumps must, however, be integrated properly relative to the process pinch... and the unit operations in the process. The shape of the grand composite curve, the type of heat ?pump drive, and the kind of heat pump cycle were examined to determine their effects on the placement of industrial heat pumps. Finally, three ~ample...

  11. Design of Industrial Process Refrigeration Systems 

    E-Print Network [OSTI]

    Witherell, W. D.

    1987-01-01

    of Cascade Refrigeration and Liquefaction Systems", Industrial Engineering Chemicals, Process Des. Develop., Vol. 13, No.4, 1974, pp. 421-433. 5. Cheng, W.B., and Mah, R.S.H., "Interactive Synthesis of Cascade Refrigeration Systems", Indus trial...

  12. Surveillance of industrial processes with correlated parameters

    DOE Patents [OSTI]

    White, A.M.; Gross, K.C.; Kubic, W.L.; Wigeland, R.A.

    1996-12-17

    A system and method for surveillance of an industrial process are disclosed. The system and method includes a plurality of sensors monitoring industrial process parameters, devices to convert the sensed data to computer compatible information and a computer which executes computer software directed to analyzing the sensor data to discern statistically reliable alarm conditions. The computer software is executed to remove serial correlation information and then calculate Mahalanobis distribution data to carry out a probability ratio test to determine alarm conditions. 10 figs.

  13. Surveillance of industrial processes with correlated parameters

    DOE Patents [OSTI]

    White, Andrew M. (Skokie, IL); Gross, Kenny C. (Bolingbrook, IL); Kubic, William L. (Sante Fe, NM); Wigeland, Roald A. (Olympia Fields, IL)

    1996-01-01

    A system and method for surveillance of an industrial process. The system and method includes a plurality of sensors monitoring industrial process parameters, devices to convert the sensed data to computer compatible information and a computer which executes computer software directed to analyzing the sensor data to discern statistically reliable alarm conditions. The computer software is executed to remove serial correlation information and then calculate Mahalanobis distribution data to carry out a probability ratio test to determine alarm conditions.

  14. Ashkelon Technological Industries ATI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpen EnergyInformationAshkelon Technological Industries

  15. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    specified in the ‘Energy Technology List’ during the yearenergy consumers in the chemical industry, and list examples of technology

  16. Solar-Assisted Technology Provides Heat for California Industries

    E-Print Network [OSTI]

    Solar-Assisted Technology Provides Heat for California Industries Industrial/Agriculture/Water End 2011 The Issue Solar thermal technology focuses the Sun's rays to heat water, and is a promising renewable resource for California's industrial sector. Commercially available solar water heating

  17. Combustion Turbine CHP System for Food Processing Industry -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Turbine CHP System for Food Processing Industry - Presentation by Frito-Lay North America, June 2011 Combustion Turbine CHP System for Food Processing Industry -...

  18. Waste Heat Management Options for Improving Industrial Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Management Options for Improving Industrial Process Heating Systems Waste Heat Management Options for Improving Industrial Process Heating Systems This presentation covers...

  19. Innovative New Industrial Technologies: An Industry/DOE Joint Endeavor 

    E-Print Network [OSTI]

    Gross, T. J.

    1986-01-01

    The Department of Energy’s Office of Industrial Programs supports research and development leading to improved energy efficiency and greater overall productivity in the industrial sector. Its basic strategy is a program of cost-shared R...

  20. Roadmap: Systems/Industrial Engineering Technology Associate of Applied Science

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Systems/Industrial Engineering Technology ­ Associate of Applied Science [RE Kent Core Summary below Semester Four: [17 Credit Hours] MERT 22009 Robotics and Flexible Automation 3

  1. DOE Fuel Cell Technologies Office Record 14010: Industry Deployed...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Hydrogen and Fuel Cells Program Record, Record 13008: Industry Deployed Fuel Cell Powered Lift Trucks Market Transformation Fact Sheet DOE Fuel Cell Technologies...

  2. Remove Condensate with Minimal Air Loss; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 * August 2004 Industrial Technologies Program Suggested Actions * Inspect the condensate traps and determine if they are operating properly. * Review your condensate removal...

  3. Industrial and agricultural process heat information user study

    SciTech Connect (OSTI)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    The results of a series of telephone interviews with groups of users of information on solar industrial and agricultural process heat (IAPH) are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. In the current study only high-priority groups were examined. Results from 10 IAPH groups of respondents are analyzed in this report: IPH Researchers; APH Researchers; Representatives of Manufacturers of Concentrating and Nonconcentrating Collectors; Plant, Industrial, and Agricultural Engineers; Educators; Representatives of State Agricultural Offices; and County Extension Agents.

  4. Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms

    E-Print Network [OSTI]

    Lewis, Joanna; Wiser, Ryan

    2005-01-01

    Renewable Energy. Renewable Energy Policy Project ResearchIndustrial Policy and Renewable Energy Technology.Development of Renewable Energy. Energy Policy, 31, 799-812.

  5. Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

  6. Distillation process using microchannel technology

    DOE Patents [OSTI]

    Tonkovich, Anna Lee (Dublin, OH); Simmons, Wayne W. (Dublin, OH); Silva, Laura J. (Dublin, OH); Qiu, Dongming (Carbondale, IL); Perry, Steven T. (Galloway, OH); Yuschak, Thomas (Dublin, OH); Hickey, Thomas P. (Dublin, OH); Arora, Ravi (Dublin, OH); Smith, Amanda (Galloway, OH); Litt, Robert Dwayne (Westerville, OH); Neagle, Paul (Westerville, OH)

    2009-11-03

    The disclosed invention relates to a distillation process for separating two or more components having different volatilities from a liquid mixture containing the components. The process employs microchannel technology for effecting the distillation and is particularly suitable for conducting difficult separations, such as the separation of ethane from ethylene, wherein the individual components are characterized by having volatilities that are very close to one another.

  7. FIEA Advancing Wood Technology Forest Industry Engineering Scholarship

    E-Print Network [OSTI]

    Hickman, Mark

    FIEA ­ Advancing Wood Technology Forest Industry Engineering Scholarship Forest Industry, including any NZQA Unit Standards that you have completed. NOTES: 1. The Regulations for this award be received by the Dunedin office of Forest Industry Engineering Association by 1 March 2012

  8. Emerging Energy-Efficient Technologies for Industry 

    E-Print Network [OSTI]

    Worrell, E.; Martin, N.; Price, L.; Ruth, M.; Elliott, N.; Shipley, A.; Thorn, J.

    2001-01-01

    consists of all industrial activity outside of agriculture, mining, and construction, accounts for 70% of industrial value added (4). In 1998, the United States consumed 94 Quadrillion Btu (99 EJ) of primary energy or 25% of world primary energy use..., mining, construction, energy intensive industries, and non-energy intensive manufacturing. Energy is necessary to help our industries create useful products; however, we are increasingly confronted with the challenge of moving society toward a...

  9. The United States Department of Energy Office of Industrial Technology`s Technology Benefits Recording System

    SciTech Connect (OSTI)

    Hughes, K.R.; Moore, N.L.

    1994-09-01

    The U.S. Department of Energy (DOE) Office of Industrial Technology`s (OIT`s) Technology Benefits Recording System (TBRS) was developed by Pacific Northwest Laboratory (PNL). The TBRS is used to organize and maintain records of the benefits accrued from the use of technologies developed with the assistance of OIT. OIT has had a sustained emphasis on technology deployment. While individual program managers have specific technology deployment goals for each of their ongoing programs, the Office has also established a separate Technology Deployment Division whose mission is to assist program managers and research and development partners commercialize technologies. As part of this effort, the Technology Deployment Division developed an energy-tracking task which has been performed by PNL since 1977. The goal of the energy-tracking task is to accurately assess the energy savings impact of OIT-developed technologies. In previous years, information on OIT-sponsored technologies existed in a variety of forms--first as a hardcopy, then electronically in several spreadsheet formats that existed in multiple software programs. The TBRS was created in 1993 for OIT and was based on information collected in all previous years from numerous industrial contacts, vendors, and plants that have installed OIT-sponsored technologies. The TBRS contains information on technologies commercialized between 1977 and the present, as well as information on emerging technologies in the late development/early commercialization stage of the technology life cycle. For each technology, details on the number of units sold and the energy saved are available on a year-by-year basis. Information regarding environmental benefits, productivity and competitiveness benefits, or impact that the technology may have had on employment is also available.

  10. Technology development life cycle processes.

    SciTech Connect (OSTI)

    Beck, David Franklin

    2013-05-01

    This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81 of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.

  11. Online Modeling in the Process Industry for Energy Optimization 

    E-Print Network [OSTI]

    Alexander, J.

    1988-01-01

    "This paper discusses how steady state models are being used in the process industry to perform online energy optimization of steam and electrical systems. It presents process demands commonly found in the processing industry in terms of steam...

  12. Emerging energy-efficient industrial technologies

    E-Print Network [OSTI]

    2000-01-01

    1998. “Black Liquor Gasifier/Gas Turbine Cogeneration. ”Black Liquor and Biomass Gasifier/Gas Turbine Technology. ”of Black Liquor Gasifier/Combined Cycle Technology

  13. Office of Industry Research and Technology Programs Greetings to Industry

    E-Print Network [OSTI]

    Ginzel, Matthew

    . Cheng, Industrial Engineering. 6 Centers/Laboratories Center Targets Reducing Fuel Consumption of functional materials and reli- ability/strength in metallic materials with integration of nanomaterials removal for hydrogen PEM fuel cells and continuous-flow solar ultraviolet disinfec- tion system

  14. Carbon Dioxide Separation Technology: R&D Needs for the Chemical and Petrochemical Industries

    SciTech Connect (OSTI)

    none,

    2007-11-01

    This report, the second in a series, is designed to summarize and present recommendations for improved CO2 separation technology for industrial processes. This report provides an overview of 1) the principal CO2 producing processes, 2) the current commercial separation technologies and 3) emerging adsorption and membrane technologies for CO2 separation, and makes recommendations for future research.

  15. Partnering for success: Industrial technologies program

    SciTech Connect (OSTI)

    None, None

    2004-02-01

    Partnering for Success features the R&D and industrial energy management best practices and accomplishments of manufacturers who are partnering with DOE.

  16. Achieve Steam System Excellence: Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in plant improvement projects. * Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries (1) defines the volume and...

  17. Steam Digest 2001: Office of Industrial Technologies

    SciTech Connect (OSTI)

    None, None

    2002-01-01

    Steam Digest 2001 chronicles Best Practices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  18. ITP Metal Casting: Metalcasting Industry Technology Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE)

    Castings are essential building blocks of U. S. industry. More than 90% of all mnaufactured, durable good and 100% of all manufacturing machinery contain castings.

  19. Research and development separation technology: The DOE Industrial Energy Conservation Program

    SciTech Connect (OSTI)

    Not Available

    1987-07-01

    This brochure summarizes the Office of Industrial Programs' RandD efforts in the advancement of separation technology. The purpose of this brochure is to provide interested parties with information on federal industrial energy conservation activities in separation technology. The brochure is comprised of the following sections: Separation Technology, summarizes the current state of separation technology and its uses. Potential Energy Savings, discusses the potential for industrial energy conservation through the implementation of advanced separation processes. Office of Industrial Programs' RandD Efforts in Separation Technology Development, describes the separation RandD projects conducted by IP. RandD Data Base, lists contractor, principal investigator, and location of each separation-related RandD effort sponsored by IP.

  20. Hierarchical Nanoceramics for Industrial Process Sensors

    SciTech Connect (OSTI)

    Ruud, James, A.; Brosnan, Kristen, H.; Striker, Todd; Ramaswamy, Vidya; Aceto, Steven, C.; Gao, Yan; Willson, Patrick, D.; Manoharan, Mohan; Armstrong, Eric, N., Wachsman, Eric, D.; Kao, Chi-Chang

    2011-07-15

    This project developed a robust, tunable, hierarchical nanoceramics materials platform for industrial process sensors in harsh-environments. Control of material structure at multiple length scales from nano to macro increased the sensing response of the materials to combustion gases. These materials operated at relatively high temperatures, enabling detection close to the source of combustion. It is anticipated that these materials can form the basis for a new class of sensors enabling widespread use of efficient combustion processes with closed loop feedback control in the energy-intensive industries. The first phase of the project focused on materials selection and process development, leading to hierarchical nanoceramics that were evaluated for sensing performance. The second phase focused on optimizing the materials processes and microstructures, followed by validation of performance of a prototype sensor in a laboratory combustion environment. The objectives of this project were achieved by: (1) synthesizing and optimizing hierarchical nanostructures; (2) synthesizing and optimizing sensing nanomaterials; (3) integrating sensing functionality into hierarchical nanostructures; (4) demonstrating material performance in a sensing element; and (5) validating material performance in a simulated service environment. The project developed hierarchical nanoceramic electrodes for mixed potential zirconia gas sensors with increased surface area and demonstrated tailored electrocatalytic activity operable at high temperatures enabling detection of products of combustion such as NOx close to the source of combustion. Methods were developed for synthesis of hierarchical nanostructures with high, stable surface area, integrated catalytic functionality within the structures for gas sensing, and demonstrated materials performance in harsh lab and combustion gas environments.

  1. Towards A Unified HFE Process For The Nuclear Industry

    SciTech Connect (OSTI)

    Jacques Hugo

    2012-07-01

    As nuclear power utilities embark on projects to upgrade and modernize power plants, they are likely to discover that traditional engineering methods do not typically make provision for the integration of human considerations. In addition, human factors professionals will find that traditional human performance methods such as function allocation, task analysis, human reliability analysis and human-machine interface design do not scale well to the complexity of a large-scale nuclear power upgrade project. Up-to-date human factors engineering processes, methods, techniques and tools are required to perform these kinds of analyses. This need is recognized widely in industry and an important part of the Department of Energy’s Light Water Reactor Sustainability Program deals with identifying potential impacts of emerging technologies on human performance and the technical bases needed to address them. However, so far no formal initiative has been launched to deal with the lack of integrated processes. Although human factors integration frameworks do exist in industries such as aviation or defense, no formal integrated human factors process exists in the nuclear industry. As a first step towards creating such a process, a “unified human factors engineering process” is proposed as a framework within which engineering organizations, human factors practitioners and regulatory bodies can ensure that human factors requirements are embedded in engineering activities throughout the upgrade project life cycle.

  2. Industries of the Future: Creating a Sustainable Technology Edge 

    E-Print Network [OSTI]

    Glatt, S. L.

    2000-01-01

    OF THE FUTURE: Creating A Sustainable Technology Edge Sandra L. Glatt Office of Industrial Technologies Energy Efficiency and Renewable Energy U. S. Department of Energy 55 ESL-IE-00-04-10 Proceedings from the Twenty-second National Industrial Energy....S, Department of Energy Industries of the Future: Creating a Sustainable Technology Edge . cUn' OFwlOd CCooI .. LPG .Eleclric~ CNI!hnIG. AgriclAtll'e Mining A1uminu",J Totll1* kldutb't.1 Conllomption: :W, 111 TrtIlion 8tus Forest E"~ ?'913 1976...

  3. Roadmap 2030: The U.S. Concrete Industry Technology Roadmap

    SciTech Connect (OSTI)

    none,

    2002-12-01

    Roadmap 2030: The U.S. Concrete Industry Technology Roadmap tracks the eight goals published in the American Concrete Institute Strategic Development Council's Vision 2030: A Vision for the U.S. Concrete Industry. Roadmap 2030 highlights existing state-of-the-art technologies and emerging scientific advances that promise high potential for innovation, and predicts future technological needs. It defines enabling research opportunities and proposes areas where governmental-industrial-academic partnerships can accelerate the pace of development. Roadmap 2030 is a living document designed to continually address technical, institutional, and market changes.

  4. Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program

    E-Print Network [OSTI]

    Beckermann, Christoph

    Industrial Technologies Program U.S. Department of Energy Office of Energy Efficiency and Renewable Energy and stresses that develop during the heating and quenching processes. The proposed project will develop Technologies Program A Strong Energy Portfolio for a Strong America Energy efficiency and clean, renewable

  5. Effective Transfer of Industrial Energy Conservation Technologies 

    E-Print Network [OSTI]

    Clement, M.; Vallario, R. W.

    1983-01-01

    Voluntary participation in industrial energy conservation programs resulted in savings of approximately 1 million barrels of oil equivalent per day in the U.S. during 1981. These energy savings accrued largely from the ...

  6. End User Functional and Performance Requirements for HTGR Energy Supply to Industrial Processes

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01

    This document specifies end user functional and performance requirements to be used in the development of the design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to industrial processes. These requirements were developed from collaboration with industry and HTGR suppliers and from detailed evaluation of integration of the HTGR technology in industrial processes. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a plant design that will serve the broadest range of industrial applications.

  7. Technology Roadmap Research Program for the Steel Industry

    SciTech Connect (OSTI)

    Joseph R. Vehec

    2010-12-30

    The steel industry's Technology Roadmap Program (TRP) is a collaborative R&D effort jointly sponsored by the steel industry and the United States Department of Energy. The TRP program was designed to develop new technologies to save energy , increase competitiveness, and improve the environment. TRP ran from July, 1997 to December, 2008, with a total program budget of $38 million dollars. During that period 47 R&D projects were performed by 28 unique research organizations; co-funding was provided by DOE and 60 industry partners. The projects benefited all areas of steelmaking and much know-how was developed and transferred to industry. The American Iron and Steel Institute is the owner of all intellectual property developed under TRP and licenses it at commercial rates to all steelmakers. TRP technologies are in widespread use in the steel industry as participants received royalty-free use of intellectual property in return for taking the risk of funding this research.

  8. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01

    Efficiency and Renewable Energy, Industrial TechnologiesEnergy Efficiency and Renewable Energy, Building TechnologyEfficiency and Renewable Energy, Industrial Technologies

  9. Technology Vision 2020 – The U.S. Chemical Industry

    SciTech Connect (OSTI)

    none,

    1996-12-01

    Technology Vision 2020 is a call to action, innovation, and change for the U.S. chemical industry. The body of this report outlines the current state of the industry, a vision for tomorrow, and the technical advances needed to make this vision a reality.

  10. International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers

    E-Print Network [OSTI]

    Evans, Meredydd

    2008-01-01

    Thermal Energy Storage Technology Optimised Industrial Process Thermal Energy Storage Technology Optimised Industrial Process Thermal Energy Storage Technology Optimised Industrial Process 

  11. Improve the Energy Efficiency of Pump Systems, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program Pumping System Assessment Tool (PSAT) can help industrial plants identify opportunities to save energy and money in pump systems.

  12. Adjustable Speed Pumping Applications: Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with process requirements. A throttling valve is usually employed when the process flow requirement is less than the flow at the pumping system's natural operating point....

  13. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  14. Science and technology for industrial ecology

    SciTech Connect (OSTI)

    Gilmartin, T.J.; Allenby, B.R.

    1996-07-10

    This paper first discusses the challenge offered by natural and anthropogenic systems in all of their complexity and then indicates some areas of research in which specific scientific and technological needs are identifiable.

  15. From Antiquity to the Pre-Industrial World Archaeology, Technology

    E-Print Network [OSTI]

    Cantlon, Jessica F.

    and interdepartmental · Integrates archaeology,architecture,classics,art history,history of technology,and engineeringFrom Antiquity to the Pre-Industrial World Archaeology, Technology and Historical Structures of History, Chair,History Joan Saab, Associate Professor of Art and Art History, Chair, Art and Art History

  16. Industrial Technologies Funding Profile by Subprogram

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIAL TECHNICAL ASSISTANCE Supports the deployment of energy

  17. Industrial Waste Heat Recovery - Potential Applications, Available Technologies and Crosscutting R&D Opportunities

    SciTech Connect (OSTI)

    Thekdi, Arvind; Nimbalkar, Sachin U.

    2015-01-01

    The purpose of this report was to explore key areas and characteristics of industrial waste heat and its generation, barriers to waste heat recovery and use, and potential research and development (R&D) opportunities. The report also provides an overview of technologies and systems currently available for waste heat recovery and discusses the issues or barriers for each. Also included is information on emerging technologies under development or at various stages of demonstrations, and R&D opportunities cross-walked by various temperature ranges, technology areas, and energy-intensive process industries.

  18. ESTIMATION AND CONTROL OF INDUSTRIAL PROCESSES WITH PARTICLE FILTERS

    E-Print Network [OSTI]

    de Freitas, Nando

    ESTIMATION AND CONTROL OF INDUSTRIAL PROCESSES WITH PARTICLE FILTERS Rub´en Morales of industrial processes. In particular, we adopt a jump Markov linear Gaussian (JMLG) model to describe an industrial heat exchanger. The parameters of this model are identi- fied with the expectation maximisation

  19. Office of Industrial Technologies: Summary of program results

    SciTech Connect (OSTI)

    1999-01-01

    Working in partnership with industry, the US Department of Energy`s (DOE`s) Office of Industrial Technologies (OIT) is helping reduce industrial energy use, emissions, and waste while boosting productivity. Operating within the Office of Energy Efficiency and Renewable Energy (EE), OIT conducts research, development, demonstration, and technology transfer efforts that are producing substantial, measurable benefits to industry. This document summarizes some of the impacts of OIT`s programs through 1997. OIT tracks energy savings as well as other benefits associated with the successfully commercialized technologies resulting from OIT-supported research partnerships. Specifically, a chart shows current and cumulative energy savings as well as cumulative reductions of various air pollutants including particulates, volatile organic compounds (VOCs), nitrogen oxides (NO{sub x}), sulfur oxides (SO{sub x}), and the greenhouse gas, carbon dioxide (CO{sub 2}). The bulk of the document consists of four appendices. Appendix 1 describes the technologies currently available commercially, along with their applications and benefits; Appendix 2 describes the OIT-supported emerging technologies that are likely to be commercialized within the next year or two; Appendix 3 describes OIT-sponsored technologies used in commercial applications in the past that are no longer tracked; and Appendix 4 describes the methodology used to assess and track OIT-supported technologies.

  20. Emerging energy-efficient industrial technologies

    E-Print Network [OSTI]

    2000-01-01

    waste water treatment High efficiency/low No x burners BOF gas and sensible heat recoverywaste water treatment Dry sheet forming High Consistency forming Impulse drying BOF gas and sensible heat recoverywaste water treatment Membrane technology wastewater Sensors and controls Black liquor gasification Dry sheet forming Heat recovery—

  1. Oxygen-Enriched Combustion; Industrial Technologies Program ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reheat, soaking pits, ladles Aluminum Melting Copper Smelting and melting Glass Melting Pulp and Paper Lime kilns, black liquor boilers Petroleum Process heaters, crackers Power...

  2. Emerging energy-efficient industrial technologies

    E-Print Network [OSTI]

    2000-01-01

    laden gas with self-cleaning boiler. ” March, No. 1. -----.Coal Coke & other Total Boilers Total Process Use Processwere previously not allocated to boiler inputs and coke for

  3. Preheated Combustion Air; Industrial Technologies Program (ITP...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to improve efficiency and productivity is to preheat the combustion air going to the burners. The source of this heat energy is the exhaust gas stream, which leaves the process...

  4. U.S. Department of Energy's Industrial Technologies Program and Its Impacts 

    E-Print Network [OSTI]

    Weakley, S. A.; Brown, S. A.

    2011-01-01

    The U.S. Department of Energy's Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy...

  5. Industrial Wireless Technology for the 21st Century

    SciTech Connect (OSTI)

    none,

    2002-12-01

    In July 2002, the U.S. Department of Energy's Industrial Technologies Program sponsored the Industrial Wireless Workshop as a forum for articulating some long-term goals that may help guide the development of industrial wireless sensor systems. Over 30 individuals, representing manufacturers and suppliers, end users, universities, and national laboratories, attended the workshop in San Francisco and participated in a series of facilitated sessions. The workshop participants cooperatively developed a unified vision for the future and defined specific goals and challenges. This document presents the results of the workshop as well as some context for non-experts.

  6. Supplier Selection for Supply Chains in the Processed Food Industry

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Supplier Selection for Supply Chains in the Processed Food Industry Pedro Amorima,, Eduardo Curcioa an integrated framework for deciding about the supplier selection for supply chains in the processed food-stage stochastic mixed-integer programming model for the supplier selection in the process food industry

  7. Emerging energy-efficient industrial technologies

    E-Print Network [OSTI]

    2000-01-01

    Brewery Waste Heat Recovery for Process Hot Water Heating. ”waste water treatment High efficiency/low No x burners BOF gas and sensible heat recoverywaste water treatment Dry sheet forming High Consistency forming Impulse drying BOF gas and sensible heat recovery

  8. Fiber-Optic Sensor for Industrial Process Measurement and Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fiber-Optic Sensor for Industrial Process Measurement and Control Reliable Advanced Laser Sensor Helps Control High Temperature Gas Combustion Through a marketing agreement...

  9. Aerogel-Based Insulation for High-Temperature Industrial Processes...

    Office of Scientific and Technical Information (OSTI)

    Aerogel-Based Insulation for High-Temperature Industrial Processes Dr. Owen Evans 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; COMPETITION; ENERGY CONSUMPTION; MARKET;...

  10. Combustion Turbine CHP System for Food Processing Industry -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet, 2011 Combustion Turbine CHP System for Food Processing Industry - Fact Sheet, 2011 Frito-LayPepsiCo, in cooperation with the Energy Solutions Center, is demonstrating...

  11. Combustion Turbine CHP System for Food Processing Industry -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation by Frito-Lay North America, June 2011 Combustion Turbine CHP System for Food Processing Industry - Presentation by Frito-Lay North America, June 2011 Presentation on...

  12. Effective policymaking for developing ICT industries : lessons from three African governments' approach to information and communications technology

    E-Print Network [OSTI]

    Watkins, Kristen D

    2012-01-01

    This thesis studies the effect of different information and communication technology (ICT) policies on the performance of the ICT industry in a given country. Many developing country governments are in the process of ...

  13. Emerging Opportunities in Industrial Electrification Technologies 

    E-Print Network [OSTI]

    Schmidt, P. S.

    1989-01-01

    for Separation and DryIng phasKhange separations Freeze concentration Heat-pumped distillation and evaporation Membrane separatIons Electrodialysis Reverse osmosis Unraflltratlon Gas separations Drying processes Heat pumped dehumidification drying... it can be used in a given application to reduce overall production costs and/or enhance the value of the product produced. To take a non-electric example, consider the use of gasoline as a fuel, relative, say, to natural gas. If the application...

  14. Industrial applications' simulation technologies in virtual environments Part 1: Virtual Prototyping

    E-Print Network [OSTI]

    Aristomenis, Antoniadis

    1 Industrial applications' simulation technologies in virtual environments Part 1: Virtual and Environment Technological Educational Institute of Crete Chania, Crete, 73133, GREECE antoniadis the subject and the potentials of the technology as a simulation tool in industrial environments. Keywords

  15. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    disposal routes, several countries have set incen- tives to promote the use of various wastes in industrial processes in direct

  16. Waste Processing Annual Technology Development Report 2007

    Office of Environmental Management (EM)

    Development Report 2007 SRNS-STI-2008-00040 United States Department of Energy Waste Processing Annual Technology Development Report 2007 Prepared and edited by S. R. Bush...

  17. MAGENTA Technology: MultiAgent Systems for Industrial Logistics

    E-Print Network [OSTI]

    Woolridge, Mike

    MAGENTA Technology: Multi­Agent Systems for Industrial Logistics Jon Himoff 1 Petr Skobelev 1, and illustrate its practical use by describing a field­tested application in the area of logistics for debugging systems. The application we describe is a field­ tested scheduling/logistics system for Tankers

  18. Integration of IC Industry Feature Sizes with University Back-End-of-Line Post Processing

    E-Print Network [OSTI]

    Baker, R. Jacob

    Integration of IC Industry Feature Sizes with University Back-End-of-Line Post Processing: Example., Boise, Idaho 83725 Abstract-- We have demonstrated that back-end-of-line (BEOL) processing can. With this capability, new device technologies and materials can be explored at the university level, where the basic

  19. Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications

    SciTech Connect (OSTI)

    Lee Nelson

    2011-09-01

    This report is a summary of analyses performed by the NGNP project to determine whether it is technically and economically feasible to integrate high temperature gas cooled reactor (HTGR) technology into industrial processes. To avoid an overly optimistic environmental and economic baseline for comparing nuclear integrated and conventional processes, a conservative approach was used for the assumptions and calculations.

  20. The Impact of Information Technology in Nigeria's Banking Industry

    E-Print Network [OSTI]

    Oluwatolani, Oluwagbemi; Philip, Achimugu

    2011-01-01

    Today, information technology (IT) has become a key element in economic development and a backbone of knowledge-based economies in terms of operations, quality delivery of services and productivity of services. Therefore, taking advantage of information technologies (IT) is an increasing challenge for developing countries. There is now growing evidence that Knowledge-driven innovation is a decisive factor in the competitiveness of nations, industries, organizations and firms. Organizations like the banking sector have benefited substantially from e-banking, which is one among the IT applications for strengthening the competitiveness. This paper presents the current trend in the application of IT in the banking industries in Nigeria and gives an insight into how quality banking has been enhanced via IT. The paper further reveals that the deployment of IT facilities in the Nigerian Banking industry has brought about fundamental changes in the content and quality of banking business in the country. This analysis...

  1. Energy Technical Assistance: Industrial Processes Program 

    E-Print Network [OSTI]

    McClure, J. D.

    1980-01-01

    The Energy Technical Assistance Division of Texas Engineering Extension Service (TEEX) has implemented an energy conservation program to assist small industry in using energy more efficiently. This full time service, an outgrowth of the Texas A...

  2. System for monitoring an industrial or biological process

    DOE Patents [OSTI]

    Gross, K.C.; Wegerich, S.W.; Vilim, R.B.; White, A.M.

    1998-06-30

    A method and apparatus are disclosed for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT. 49 figs.

  3. System for monitoring an industrial or biological process

    DOE Patents [OSTI]

    Gross, Kenneth C. (Argonne, IL); Wegerich, Stephan W. (Argonne, IL); Vilim, Rick B. (Argonne, IL); White, Andrew M. (Skokie, IL)

    1998-01-01

    A method and apparatus for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT.

  4. Industrial process as architectural landscape : a small brewery

    E-Print Network [OSTI]

    Garvin, Andrew James

    1989-01-01

    An exploration into whether the processes and artifacts of an industrial process can be integrated with the enclosing architecture into a mutually-enriching landscape. The particular vehicle for this exploration is the ...

  5. Energy Recovery in Industrial Distillation Processes 

    E-Print Network [OSTI]

    Paul, D. B.

    1983-01-01

    Distillation processes are energy intensive separation processes which present attractive opportunities for energy conservation. Through the use of multistage vapor recompression, heat which is normally unavailable can be ...

  6. Advanced Mechanical Heat Pump Technologies for Industrial Applications 

    E-Print Network [OSTI]

    Mills, J. I.; Chappell, R. N.

    1985-01-01

    seven fins per inch are used. The excijangers utilize modular cores consisting/of thirty 5/8-in.-diameter x 48-in.!10n g tubes per row, eight rows deep. Oucting walls, which contain the air/sol ent mixture, are stainless steel. A rofin... HEAT PUMP TECHNOLOGIES FOR INDUSTRIAL APPLICATIONsa James I. Mills D. S. Plaster EG&G Idaho, Inc. Idaho National Engineering Laboratory Idaho Falls, 10 83415 ABSTRACT The Department of Energy (DOE), Office of Industrial Programs (OIP...

  7. Improve Motor System Efficiency with MotorMaster+, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program MotorMaster+ software tool aids industrial plants with finding energy-efficient motor replacement options and managing motor systems.

  8. Integrating Fermentation and Transesterification Industrial Scale Processes

    E-Print Network [OSTI]

    Pike, Ralph W.

    for polymers and chemical intermediates 1 Approximately 1% of global energy market and 3% of global oil an integration of these aspects by world organizations, countries and industries. #12;Corporate SustainabilityCorporate Sustainability · A company's success depends on maximizing the profit as expressed below. Profit = Product Sales

  9. Industrial Activities at DOE: Efficiency, Manufacturing, Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    foundational technologies - Example: Working with PolyPlus Battery Company to increase lithium batteries' energy density by 2-10X at 50% cost with a goal of increasing...

  10. Why Process-Orientation is Scarce: An Empirical Study of Process-oriented Information Systems in the Automotive Industry

    E-Print Network [OSTI]

    Ulm, Universität

    in the Automotive Industry Bela Mutschler, Johannes Bumiller DaimlerChrysler Research & Technology P.O. Box 2360 the reasons for this drawback, we con- ducted a case study in the automotive domain and a survey among 79 in this context concerns the alignment of information systems (IS) and business processes [6]. In the automotive

  11. Improve Overall Plant Efficiency and Fuel Use, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program combined heat and power (CHP) tool can help identify energy savings in gas turbine-driven systems.

  12. Separation process using microchannel technology

    DOE Patents [OSTI]

    Tonkovich, Anna Lee (Dublin, OH); Perry, Steven T. (Galloway, OH); Arora, Ravi (Dublin, OH); Qiu, Dongming (Bothell, WA); Lamont, Michael Jay (Hilliard, OH); Burwell, Deanna (Cleveland Heights, OH); Dritz, Terence Andrew (Worthington, OH); McDaniel, Jeffrey S. (Columbus, OH); Rogers, Jr.; William A. (Marysville, OH); Silva, Laura J. (Dublin, OH); Weidert, Daniel J. (Lewis Center, OH); Simmons, Wayne W. (Dublin, OH); Chadwell, G. Bradley (Reynoldsburg, OH)

    2009-03-24

    The disclosed invention relates to a process and apparatus for separating a first fluid from a fluid mixture comprising the first fluid. The process comprises: (A) flowing the fluid mixture into a microchannel separator in contact with a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the first fluid is sorbed by the sorption medium, removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing first fluid from the sorption medium and removing desorbed first fluid from the microchannel separator. The process and apparatus are suitable for separating nitrogen or methane from a fluid mixture comprising nitrogen and methane. The process and apparatus may be used for rejecting nitrogen in the upgrading of sub-quality methane.

  13. Process Guide for Deburring Technologies

    SciTech Connect (OSTI)

    Frey, David L.

    2012-10-25

    This report is an updated and consolidated view of the current deburring processes at the Kansas City Plant (KCP). It includes specific examples of current burr problems and the methods used for their detection. Also included is a pictorial review of the large variety of available deburr tools, along with a complete numerical listing of existing tools and their descriptions. The process for deburring all the major part feature categories is discussed.

  14. NREL Technology Partnership Agreement Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact:News Releases |NREL Technology Partnership

  15. Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry

    E-Print Network [OSTI]

    Kong, Lingbo

    2014-01-01

    International Energy Agency (IEA). 2007. Tracking IndustrialInternational Energy Agency (IEA). 2009. Energy TechnologyInternational Energy Agency (IEA). 2010a. Energy Technology

  16. IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009

    Office of Energy Efficiency and Renewable Energy (EERE)

    Describes the impacts in energy savings and environmental pollution reduction of the Industrial Technologies Program's commercialized and emerging technologies for CY2009.

  17. IT Support for Release Management Processes in the Automotive Industry

    E-Print Network [OSTI]

    Ulm, Universität

    IT Support for Release Management Processes in the Automotive Industry Dominic M¨uller1,2 , Joachim equipment. Different life cycle times of mechanical, software and hardware components as well as different In the automotive industry, car development has been dramatically influenced by the introduction of electrical

  18. Industrial Activities at DOE: Efficiency, Manufacturing, Process...

    Broader source: Energy.gov (indexed) [DOE]

    Process, and Materials R&D More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop WORKSHOP: MATERIALS FOR HARSH SERVICE CONDITIONS -...

  19. The SOHO Archive Components, Architecture, Processing & Technology

    E-Print Network [OSTI]

    1 The SOHO Archive Components, Architecture, Processing & Technology George Dimitoglou SOHO ESA/NASA Project Science Team EER/L3 Space Sciences Division #12;2 SOHO Archive Components n-tier architecture are many more #12;6 Technology Review #12;7 Statistics CDS 157,350 CELIAS 62,466 EIT 237,158 ERNE 7

  20. Understanding technology development processes theory & practice

    E-Print Network [OSTI]

    Oswald, W. Andrew (William Andrew)

    2013-01-01

    Technology development is hard for management to understand and hard for practitioners to explain, however it is an essential component of innovation. While there are standard and predictable processes for product development, ...

  1. Methodology to manage process technology innovation

    E-Print Network [OSTI]

    Schweizer, Daniel

    2010-01-01

    The research conducted for this thesis was performed at "Company X", a U.S.-based engineered goods manufacturer. This project focused on the company's Advanced Manufacturing group and its process technology development ...

  2. Electrochromic Windows: Advanced Processing Technology

    SciTech Connect (OSTI)

    SAGE Electrochromics, Inc

    2006-12-13

    This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGE’s production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass® products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.026×1015BTU/yr) by the year 2017.

  3. Master of Industrial Technology and Operations Department Web Site: www.intm.iit.edu

    E-Print Network [OSTI]

    Heller, Barbara

    Master of Industrial Technology and Operations Department Web Site: www.intm.iit.edu Industrial1@iit.edu The Master of Industrial Technology and Operations (MITO) is a professional degree designed for individuals who plan to make a career in industry. The purpose of the MITO program

  4. Portal monitoring technology control process

    SciTech Connect (OSTI)

    York, R.L.

    1998-12-31

    Portal monitors are an important part of the material protection, control, and accounting (MPC and A) programs in Russia and the US. Although portal monitors are only a part of an integrated MPC and A system, they are an effective means of controlling the unauthorized movement of special nuclear material (SNM). Russian technical experts have gained experience in the use of SNM portal monitors from US experts ad this has allowed them to use the monitors more effectively. Several Russian institutes and companies are designing and manufacturing SNM portal monitors in Russia. Interactions between Russian and US experts have resulted in improvements to the instruments. SNM portal monitor technology has been effectively transferred from the US to Russia and should be a permanent part of the Russian MPC and A Program. Progress in the implementation of the monitors and improvements to how they are used are discussed.

  5. Energy and process substitution in the frozen-food industry:...

    Office of Scientific and Technical Information (OSTI)

    and process substitution in the frozen-food industry: geothermal energy and the retortable pouch Stern, M.W.; Hanemann, W.M.; Eckhouse, K. 32 ENERGY CONSERVATION, CONSUMPTION, AND...

  6. Production of Biogas from Wastewaters of Food Processing Industries 

    E-Print Network [OSTI]

    Sax, R. I.; Holtz, M.; Pette, K. C.

    1980-01-01

    An Upflow Anaerobic Sludge Blanket Process used in converting biodegradable, soluble, organic pollutants in industrial wastewaters to a directly-burnable biogas composed mainly of methane has been developed, tested, and commercially applied...

  7. Sustaining Industrial Energy Efficiency in Process Cooling in a Potentially Water-Short Future 

    E-Print Network [OSTI]

    Ferland, K.

    2014-01-01

    stream_source_info ESL-IE-14-05-18.pdf.txt stream_content_type text/plain stream_size 14223 Content-Encoding UTF-8 stream_name ESL-IE-14-05-18.pdf.txt Content-Type text/plain; charset=UTF-8 Sustaining Industrial Energy... and Management • Water Reuse and Use of Unconventional Sources ESL-IE-14-05-18 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Topic 1: Existing Technology and Operations Strategy: Sustain process...

  8. Software Tools and Training Program: For the Efficient Design and Operation of Industrial Processes 

    E-Print Network [OSTI]

    Soucy, E.

    2014-01-01

    stream_source_info ESL-IE-14-05-28.pdf.txt stream_content_type text/plain stream_size 13734 Content-Encoding UTF-8 stream_name ESL-IE-14-05-28.pdf.txt Content-Type text/plain; charset=UTF-8 1 Industrial Energy... Technology Conference Software Tools & Training Program: For the Efficient Design and Operation of Industrial Processes Eric Soucy, Director, Industrial Systems Optimization Program, CanmetENERGY Wednesday, May 21, 2014 ESL-IE-14-05-28 Proceedings...

  9. Evolution of the radiation processing industry

    SciTech Connect (OSTI)

    Cleland, Marshall R.

    2013-04-19

    Early investigations of the effects of treating materials with ionizing radiations began in 1894 with the irradiation of gases at atmospheric pressure using cathode rays from a Crookes gas-discharge tube, in 1895 with the discovery of X-rays emitted from a Crookes tube, and in 1896 with the discovery of radioactivity in uranium. In 1897, small electrically charged particles were detected and identified in the gas discharges inside Crookes tubes. These particles were then named electrons. During the next three decades, it was found that these novel forms of energy could produce ions to initiate chemical reactions in some gases and liquids. By 1921, it had also been shown that insects, parasites and bacteria could be killed by treatment with ionizing radiation. In 1925, a high-vacuum tube with a thermionic cathode and a thin metallic anode was developed to produce electron beams in air by using accelerating potentials up to 250 kilovolts. That unique apparatus was the precursor of the many types of electron accelerators that have been developed since then for a variety of industrial applications. In 1929, the vulcanization of natural rubber without using any chemical additives was achieved by irradiation with electrons from a 250 kilovolt accelerator. In 1939, several liquid monomers were polymerized by treatment with gamma rays from radioactive nuclides. These early results were not exploited before the end of World War II because intense sources of ionizing radiation were not available then. Shortly after that war, there was increased interest in developing the peaceful uses of atomic energy, which included the chemical and biological effects of radiation exposures. Many uses that have been developed since then are described briefly in this paper. These industrial applications are now producing billions of US dollars in revenue every year.

  10. Interated Intelligent Industrial Process Sensing and Control: Applied to and Demonstrated on Cupola Furnaces

    SciTech Connect (OSTI)

    Mohamed Abdelrahman; roger Haggard; Wagdy Mahmoud; Kevin Moore; Denis Clark; Eric Larsen; Paul King

    2003-02-12

    The final goal of this project was the development of a system that is capable of controlling an industrial process effectively through the integration of information obtained through intelligent sensor fusion and intelligent control technologies. The industry of interest in this project was the metal casting industry as represented by cupola iron-melting furnaces. However, the developed technology is of generic type and hence applicable to several other industries. The system was divided into the following four major interacting components: 1. An object oriented generic architecture to integrate the developed software and hardware components @. Generic algorithms for intelligent signal analysis and sensor and model fusion 3. Development of supervisory structure for integration of intelligent sensor fusion data into the controller 4. Hardware implementation of intelligent signal analysis and fusion algorithms

  11. Characterization of industrial process waste heat and input heat streams

    SciTech Connect (OSTI)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  12. Plan for advanced microelectronics processing technology application

    SciTech Connect (OSTI)

    Goland, A.N.

    1990-10-01

    The ultimate objective of the tasks described in the research agreement was to identify resources primarily, but not exclusively, within New York State that are available for the development of a Center for Advanced Microelectronics Processing (CAMP). Identification of those resources would enable Brookhaven National Laboratory to prepare a program plan for the CAMP. In order to achieve the stated goal, the principal investigators undertook to meet the key personnel in relevant NYS industrial and academic organizations to discuss the potential for economic development that could accompany such a Center and to gauge the extent of participation that could be expected from each interested party. Integrated of these discussions was to be achieved through a workshop convened in the summer of 1990. The culmination of this workshop was to be a report (the final report) outlining a plan for implementing a Center in the state. As events unfolded, it became possible to identify the elements of a major center for x-ray lithography on Lone Island at Brookhaven National Laboratory. The principal investigators were than advised to substitute a working document based upon that concept in place of a report based upon the more general CAMP workshop originally envisioned. Following that suggestion from the New York State Science and Technology Foundation, the principals established a working group consisting of representatives of the Grumman Corporation, Columbia University, the State University of New York at Stony Brook, and Brookhaven National Laboratory. Regular meetings and additional communications between these collaborators have produced a preproposal that constitutes the main body of the final report required by the contract. Other components of this final report include the interim report and a brief description of the activities which followed the establishment of the X-ray Lithography Center working group.

  13. Technologies and Policies to Improve Energy Efficiency in Industry

    SciTech Connect (OSTI)

    Price, Lynn; Price, Lynn

    2008-03-01

    The industrial sector consumes nearly 40% of annual global primary energy use and is responsible for a similar share of global energy-related carbon dioxide (CO2) emissions. Many studies and actual experience indicate that there is considerable potential to reduce the amount of energy used to manufacture most commodities, concurrently reducing CO2 emissions. With the support of strong policies and programs, energy-efficient technologies and measures can be implemented that will reduce global CO2 emissions. A number of countries, including the Netherlands, the UK, and China, have experience implementing aggressive programs to improve energy efficiency and reduce related CO2 emissions from industry. Even so, there is no silver bullet and all options must be pursued if greenhouse gas emissions are to be constrained to the level required to avoid significant negative impacts from global climate change.

  14. Assessment of selected conservation measures for high-temperature process industries

    SciTech Connect (OSTI)

    Kusik, C L; Parameswaran, K; Nadkarni, R; O'Neill, J K; Malhotra, S; Hyde, R; Kinneberg, D; Fox, L; Rossetti, M

    1981-01-01

    Energy conservation projects involving high-temperature processes in various stages of development are assessed to quantify their energy conservation potential; to determine their present status of development; to identify their research and development needs and estimate the associated costs; and to determine the most effective role for the Federal government in developing these technologies. The program analyzed 25 energy conserving processes in the iron and steel, aluminium, copper, magnesium, cement, and glassmaking industries. A preliminary list of other potential energy conservation projects in these industries is also presented in the appendix. (MCW)

  15. Fostering a Renewable Energy Technology Industry: An InternationalComparison of Wind Industry Policy Support Mechanisms

    SciTech Connect (OSTI)

    Lewis, Joanna; Wiser, Ryan

    2005-11-15

    This article examines the importance of national and sub-national policies in supporting the development of successful global wind turbine manufacturing companies. We explore the motivations behind establishing a local wind power industry, and the paths that different countries have taken to develop indigenous large wind turbine manufacturing industries within their borders. This is done through a cross-country comparison of the policy support mechanisms that have been employed to directly and indirectly promote wind technology manufacturing in twelve countries. We find that in many instances there is a clear relationship between a manufacturer's success in its home country market and its eventual success in the global wind power market. Whether new wind turbine manufacturing entrants are able to succeed will likely depend in part on the utilization of their turbines in their own domestic market, which in turn will be influenced by the annual size and stability of that market. Consequently, policies that support a sizable, stable market for wind power, in conjunction with policies that specifically provide incentives for wind power technology to be manufactured locally, are most likely to result in the establishment of an internationally competitive wind industry.

  16. Estimating energy-augmenting technological change in developing country industries

    E-Print Network [OSTI]

    Sanstad, Alan H.; Roy, Joyashree; Sathaye, Jayant A.

    2006-01-01

    while the pulp and paper industry displays negative rates ofenergy-intensive industries – paper and allied products,Korean industries – cement, fertilizer, pulp and paper, and

  17. Initial Investigation into the Potential of CSP Industrial Process Heat for the Southwest United States

    SciTech Connect (OSTI)

    Kurup, Parthiv; Turchi, Craig

    2015-11-01

    After significant interest in the 1970s, but relatively few deployments, the use of solar technologies for thermal applications, including enhanced oil recovery (EOR), desalination, and industrial process heat (IPH), is again receiving global interest. In particular, the European Union (EU) has been a leader in the use, development, deployment, and tracking of Solar Industrial Process Heat (SIPH) plants. The objective of this study is to ascertain U.S. market potential of IPH for concentrating collector technologies that have been developed and promoted through the U.S. Department of Energy's Concentrating Solar Power (CSP) Program. For this study, the solar-thermal collector technologies of interest are parabolic trough collectors (PTCs) and linear Fresnel (LF) systems.

  18. Optimizing the availability of a buffered industrial process

    DOE Patents [OSTI]

    Martz, Jr., Harry F.; Hamada, Michael S.; Koehler, Arthur J.; Berg, Eric C.

    2004-08-24

    A computer-implemented process determines optimum configuration parameters for a buffered industrial process. A population size is initialized by randomly selecting a first set of design and operation values associated with subsystems and buffers of the buffered industrial process to form a set of operating parameters for each member of the population. An availability discrete event simulation (ADES) is performed on each member of the population to determine the product-based availability of each member. A new population is formed having members with a second set of design and operation values related to the first set of design and operation values through a genetic algorithm and the product-based availability determined by the ADES. Subsequent population members are then determined by iterating the genetic algorithm with product-based availability determined by ADES to form improved design and operation values from which the configuration parameters are selected for the buffered industrial process.

  19. Technologies and Policies to Improve Energy Efficiency in Industry

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01

    cement, and pulp and paper industries (Bernstein et al. ,Ethylene Ammonia Glass Paper Industry Aluminium Cement Iron

  20. Expert system for testing industrial processes and determining sensor status

    DOE Patents [OSTI]

    Gross, Kenneth C. (Bolingbrook, IL); Singer, Ralph M. (Naperville, IL)

    1998-01-01

    A method and system for monitoring both an industrial process and a sensor. The method and system include determining a minimum number of sensor pairs needed to test the industrial process as well as the sensor for evaluating the state of operation of both. The technique further includes generating a first and second signal characteristic of an industrial process variable. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the pair of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

  1. Expert system for testing industrial processes and determining sensor status

    DOE Patents [OSTI]

    Gross, K.C.; Singer, R.M.

    1998-06-02

    A method and system are disclosed for monitoring both an industrial process and a sensor. The method and system include determining a minimum number of sensor pairs needed to test the industrial process as well as the sensor for evaluating the state of operation of both. The technique further includes generating a first and second signal characteristic of an industrial process variable. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the pair of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test. 24 figs.

  2. Bachelor of Industrial Technology and Management Department Web Site: www.intm.iit.edu

    E-Print Network [OSTI]

    Heller, Barbara

    Bachelor of Industrial Technology and Management Department Web Site: www.intm.iit.edu Main Campus of Industrial Technology and Management (BINTM) program is designed to prepare skilled adults for managerial positions in industry. This is a completion program for working individuals who have technical training

  3. Submitted to The First World Congress on Integrated Design and Process Technology Integrated Production Systems for

    E-Print Network [OSTI]

    Foss, Bjarne A.

    and petrochemical plants, oil-processing plants including re neries, pulp and paper plants, metallurgical plantsSubmitted to The First World Congress on Integrated Design and Process Technology Integrated Production Systems for The Process Industries yBjarne A. Foss 1, zRoger Klev, zMorten Levin, xKristian Lien y

  4. Cooperative Efforts to Introduce New Environmental Control Technologies to Industry- A Case Study for Brayton Cycle Heat Pump Technology 

    E-Print Network [OSTI]

    Enneking, J. C.

    1991-01-01

    TO INTRODUCE NEW ENVIRONMENTAL CONTROL TECHNOLOGIES TO INDUSTRY - A CASE STUDY FOR BRAYTON CYCLE HEAT PUMP TECHNOLOGY JOSEPH C. ENNEKING Vice President NUCON International, Inc. Columbus, ABSTRACT New environmental control technologies are rare... it entered the expander. Relatively clean air was returned to an oven used to evaporate solvents from a tape coating operation. 123 COOPERATIVE EFFORTS TO INTRODUCE NEW ENVIRONMENTAL CONTROL TECHNOLOGIES TO INDUSTRY A CASE STUDY FOR BRAYTON CYCLE HEAT...

  5. Full report: Assessment and opportunity identification of energy efficient pollution prevention technologies and processes

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    US industry produces about 12 billion tons of waste a year, or two-thirds of the waste generated in the US. The costs of handling and disposing of these wastes are significant, estimated to be between $25 and $43 billion in 1991, and represent an increase of 66% since 1986. US industry also uses about one-third of all energy consumed in the nation, which adds to the environmental burden. Industrial wastes affect the environmental well-being of the nation and, because of their growing costs, the competitive abilities of US industry. As part of a national effort to reduce industrial wastes, the US Congress passed the Energy Policy Act (EPAct, P.L. 102-486). Section 2108, subsections (b) and (c), of EPAct requires the Department of Energy (DOE) to identify opportunities to demonstrate energy efficient pollution prevention technologies and processes; to assess their availability and the energy, environmental, and cost effects of such technologies; and to report the results. Work for this report clearly pointed to two things, that there is insufficient data on wastes and that there is great breadth and diversity in the US industrial sector. This report identifies: information currently available on industrial sector waste streams, opportunities for demonstration of energy efficient pollution prevention technologies in two industries that produce significant amounts of waste--chemicals and petroleum, characteristics of waste reducing and energy saving technologies identifiable in the public literature, and potential barriers to adoption of waste reducing technologies by industry.

  6. Application of Industrial Heat Improving energy efficiency of

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Application of Industrial Heat Pumps Improving energy ­ efficiency of industrial processes . H Session Application of Industrial Heat Pumps Improving energy ­ efficiency of industrial processes Agency (IEA) - Agreements "Heat Pump Programme" "Industrial Energy-related Technologies and Systems #12

  7. Agenda 2020: A Technology Vision and Research Agenda for America's Forest, Wood and Paper Industry

    SciTech Connect (OSTI)

    none,

    1994-11-01

    In November 1994, the forest products industry published Agenda 2020: A Technology Vision and Research Agenda for America's Forest, Wood and Paper Industry, which articulated the industry's vision. This document set the foundation for collaborative efforts between the industry and the federal government.

  8. Industrial process heat case studies. [PROSYS/ECONMAT code

    SciTech Connect (OSTI)

    Hooker, D.W.; May, E.K.; West, R.E.

    1980-05-01

    Commercially available solar collectors have the potential to provide a large fraction of the energy consumed for industrial process heat (IPH). Detailed case studies of individual industrial plants are required in order to make an accurate assessment of the technical and economic feasibility of applications. This report documents the results of seven such case studies. The objectives of the case study program are to determine the near-term feasibility of solar IPH in selected industries, identify energy conservation measures, identify conditions of IPH systems that affect solar applications, test SERI's IPH analysis software (PROSYS/ECONOMAT), disseminate information to the industrial community, and provide inputs to the SERI research program. The detailed results from the case studies are presented. Although few near-term, economical solar applications were found, the conditions that would enhance the opportunities for solar IPH applications are identified.

  9. The Use of Smart Materials Technologies in Radiation Environment and Nuclear Industry

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    1 The Use of Smart Materials Technologies in Radiation Environment and Nuclear Industry Victor ABSTRACT Application of smart materials technology in nuclear industry offer new opportunities safety of nuclear facilities could benefit from the use of smart materials technologies in both

  10. Defying value-shift : how incumbents regain values in the industry with new technologies

    E-Print Network [OSTI]

    Kuramoto, Yukari

    2010-01-01

    Historically, incumbent assembly firms with unquestionable strong positions in such industries as the automobile, consumer electronics, computer and mobile phone industries, have lost power when new technology is introduced; ...

  11. The impact of manufacturing offshore on technology development paths in the automotive and optoelectronics industries

    E-Print Network [OSTI]

    Fuchs, Erica R. H. (Erica Renee H.), 1977-

    2006-01-01

    This dissertation presents a two-case study of the impact of manufacturing offshore on the technology trajectory of the firm and the industry. It looks in particular at the automotive and optoelectronics industries. The ...

  12. Energy conservation and cost benefits in the dairy processing industry

    SciTech Connect (OSTI)

    none,

    1982-01-01

    Guidance is given on measuring energy consumption in the plant and pinpointing areas where energy-conservation activities can return the most favorable economics. General energy-conservation techniques applicable to most or all segments of the dairy processing industry, including the fluid milk segment, are emphasized. These general techniques include waste heat recovery, improvements in electric motor efficiency, added insulation, refrigeration improvements, upgrading of evaporators, and increases in boiler efficiency. Specific examples are given in which these techniques are applied to dairy processing plants. The potential for energy savings by cogeneration of process steam and electricity in the dairy industry is also discussed. Process changes primarily applicable to specific milk products which have resulted in significant energy cost savings at some facilities or which promise significant contributions in the future are examined. A summary checklist of plant housekeeping measures for energy conservation and guidelines for economic evaluation of conservation alternatives are provided. (MHR)

  13. Maximum Achievable Control Technology for New Industrial Boilers (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    As part of Clean Air Act 90 (CAAA90, the EPA on February 26, 2004, issued a final rulethe National Emission Standards for Hazardous Air Pollutants (NESHAP) to reduce emissions of hazardous air pollutants (HAPs) from industrial, commercial, and institutional boilers and process heaters. The rule requires industrial boilers and process heaters to meet limits on HAP emissions to comply with a Maximum Achievable Control Technology (MACT) floor level of control that is the minimum level such sources must meet to comply with the rule. The major HAPs to be reduced are hydrochloric acid, hydrofluoric acid, arsenic, beryllium, cadmium, and nickel. The EPA predicts that the boiler MACT rule will reduce those HAP emissions from existing sources by about 59,000 tons per year in 2005.

  14. GLOBAL OPTIMIZATION OF ENERGY AND PRODUCTION IN PROCESS INDUSTRIES: A

    E-Print Network [OSTI]

    Neumaier, Arnold

    produces filtered water for consumption in the various mill departments, and so the production rateGLOBAL OPTIMIZATION OF ENERGY AND PRODUCTION IN PROCESS INDUSTRIES: A GENETIC ALGORITHM APPLICATION a genetic algorithm is developed and applied for the optimal assignment of all the production sections

  15. Faculty Position in Mechanical Engineering Water Conservation in Industrial Processes

    E-Print Network [OSTI]

    Faculty Position in Mechanical Engineering Water Conservation in Industrial Processes University of Kansas The Department of Mechanical Engineering at the University of Kansas is seeking applications,000 square feet to the Engineering Complex. The Department of Mechanical Engineering currently has 19 tenured

  16. Imulation of polymer forming processes - addressing industrial needs

    SciTech Connect (OSTI)

    Thibault, F.; DiRaddo, R. [Industrial Materials Institute-National Research Council (Canada)

    2011-05-04

    The objective of this paper is to present the development of simulation and design optimization capabilities, for polymer forming processes, in the context of addressing industrial needs. Accomplishments generated from close to twenty years of research in this field, at the National Research Council (NRC), are presented. Polymer forming processes such as extrusion blow moulding, stretch blow moulding and thermoforming have been the focus of the work, yet the research is extendable to similar polymer forming operations such as micro-blow moulding, sheet blow moulding and composites stamping. The research considers material models, process sequence integration and design optimization, derivative processes and 3D finite elements with multi-body contact.

  17. Industrial Process Heat Pumps--Some Unconventional Wisdom 

    E-Print Network [OSTI]

    Karp, A.

    1987-01-01

    HEAT PUMPS--SOME UNCONVENTIONAL WISDOM ALAN KARP Project Manager Electric Power Research Institute Palo Alto, California ABSTRACT Recent research on the cost-effective use of industrial process heat pumps challenges some popu larly held... on previously formulated prin ciples of "appropriate placement," a generic metho dology has been developed for examining heat pump ing as an alternative to increased heat integration in any process. PC-based software to execute this methodology will soon...

  18. Market development directory for solar industrial process heat systems

    SciTech Connect (OSTI)

    1980-02-01

    The purpose of this directory is to provide a basis for market development activities through a location listing of key trade associations, trade periodicals, and key firms for three target groups. Potential industrial users and potential IPH system designers were identified as the prime targets for market development activities. The bulk of the directory is a listing of these two groups. The third group, solar IPH equipment manufacturers, was included to provide an information source for potential industrial users and potential IPH system designers. Trade associates and their publications are listed for selected four-digit Standard Industrial Code (SIC) industries. Since industries requiring relatively lower temperature process heat probably will comprise most of the near-term market for solar IPH systems, the 80 SIC's included in this chapter have process temperature requirements less than 350/sup 0/F. Some key statistics and a location list of the largest plants (according to number of employees) in each state are included for 15 of the 80 SIC's. Architectural/engineering and consulting firms are listed which are known to have solar experience. Professional associated and periodicals to which information on solar IPH sytstems may be directed also are included. Solar equipment manufacturers and their associations are listed. The listing is based on the SERI Solar Energy Information Data Base (SEIDB).

  19. Estimating energy-augmenting technological change in developing country industries

    E-Print Network [OSTI]

    Sanstad, Alan H.; Roy, Joyashree; Sathaye, Jayant A.

    2006-01-01

    trend due to the constant energy price bias assumption. ThisIndian industries, Energy price bias (standard error)industries, 1980–1997 Energy price bias (standard error)

  20. Estimating energy-augmenting technological change in developing country industries

    E-Print Network [OSTI]

    Sanstad, Alan H.; Roy, Joyashree; Sathaye, Jayant A.

    2006-01-01

    change, while the pulp and paper industry displays negativeKorean industries – cement, fertilizer, pulp and paper, andindustries – aluminum, cement, fertilizer, glass, pulp and paper,

  1. Conduct an In-Plant Pumping System Survey; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Pumping System Performance: A Sourcebook for Industry. Hydraulic Institute-HI is a non- profit industry association for pump and pump system manufacturers; it...

  2. Match Pumps to System Requirements: Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Pumping System Performance: A Sourcebook for Industry. Hydraulic Institute-HI is a non- profit industry association for pump and pump system manufacturers; it...

  3. Estimating energy-augmenting technological change in developing country industries

    E-Print Network [OSTI]

    Sanstad, Alan H.; Roy, Joyashree; Sathaye, Jayant A.

    2006-01-01

    Productivity trends in India's energy-intensive industries,estimates. However, in India, the energy trend is negativefor several energy-intensive industries in India and South

  4. AMO Industrial Distributed Energy: Immediate Deployment of Waste Energy Technologies at Multiple Sites

    Broader source: Energy.gov [DOE]

    Fact sheet overviewing Verso Paper Corp. project that will deploy industrial technologies to recover and reuse water and steam at pulp and paper facilities.

  5. Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 1

    SciTech Connect (OSTI)

    Zanner, F.J.; Moffatt, W.C.

    1995-07-01

    In July, 1994, a team of materials specialists from Sandia and U S Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

  6. Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 2

    SciTech Connect (OSTI)

    Zanner, F.J.; Moffatt, W.C.

    1995-07-01

    In July, 1994, a team of materials specialists from Sandia and US. Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US. Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

  7. Overview of the government/industry workshop on opportunities for new materials in pulp and paper processing

    SciTech Connect (OSTI)

    Young, J.K.; Fowler, R.A.

    1994-05-01

    This report presents a synopsis of the presentations made at the two-day workshop conducted in Portland, Oregon, on August 12 and 13, 1993, for the Advanced Industrial Concepts division (AICD) of the US Department of Energy (DOE) Office of Industrial Technologies (OIT) and DOE national laboratory representatives from the pulp and paper industry. The information from the presentations is supplemented by additional statistics, as appropriate. The workshop objectives were (1) to develop a strategy and framework for collaboration between the pulp and paper industries and DOE`s national laboratories, (2) to identify major challenges to pulp and paper industry modernization, and (3) to identify research objectives for DOE national laboratories to improve materials and process technology in pulp and paper mills. Prior to the workshop, participants had the opportunity to tour paper mills and gain familiarity with pulp and paper processing methods. During the workshop, research needs for materials and processing that were identified at earlier AICD workshops were reviewed. Major problems of the pulp and paper industry were addressed, and ways in which DOE national laboratories are interacting with other industries to foster innovation and solve problems were presented. As a result of this and other workshops, a Pulp Paper Mill of the future strategy is being developed to address challenges identified in these proceedings. Continued efforts are expected by AICD to match candidate materials and processes from DOE national laboratories with the technology needs of pulp and paper mills.

  8. Postfeminist Technologies: Digital Media and the Culture Industries of Choice

    E-Print Network [OSTI]

    Cohn, Jonathan

    2013-01-01

    to Jonathan Cohn. “Plastic Surgery Technology Questions,”to Jonathan Cohn, “Plastic Surgery Technology Questions,”markets its 3D imaging technology to plastic surgeons via

  9. Technology partnerships: Enhancing the competitiveness, efficiency, and environmental quality of American industry

    SciTech Connect (OSTI)

    NONE

    1995-04-01

    An overview of the Department of Energy`s Office of Industrial Technologies and its private sector partnerships is presented. Commercial success stories and real-world benefits of the technology partnerships are discussed.

  10. Industrial applications' simulation technologies in virtual environments Part II: Virtual Manufacturing and Virtual Assembly

    E-Print Network [OSTI]

    Aristomenis, Antoniadis

    categories, according to the subject and the technology that is required: · Virtual Manufacturing1 Industrial applications' simulation technologies in virtual environments Part II: Virtual Manufacturing and Virtual Assembly Bilalis Nikolaos Associate Professor Department of Production and Engineering

  11. Considering the customer : determinants and impact of using technology on industry evolution

    E-Print Network [OSTI]

    Kahl, Steven J. (Steven John)

    2007-01-01

    This dissertation raises two questions: How do customers come to understand and use a technology? What is the influence of customers using a technology on industry evolution and competition? I use two historical cases to ...

  12. Technology Evaluation and Decision Making for Sustainability Enhancement of Industrial Systems Under Uncertainty

    E-Print Network [OSTI]

    Huang, Yinlun

    Technology Evaluation and Decision Making for Sustainability Enhancement of Industrial Systems. A case study on sustainable development of biodiesel manufacturing demonstrates methodological efficacy: sustainability enhancement, decision making, uncertainty, interval-parameter-based analysis, technology

  13. Articulation Agreement Hocking College, Industrial Technology: Alternative Energy and Fuel Cell A.S.

    E-Print Network [OSTI]

    Minnesota, University of

    Energy & Fuel Cells) Credits Transferred from Hocking College: Liberal Education 26 TechnologyArticulation Agreement Between Hocking College, Industrial Technology: Alternative Energy and Fuel Cell A.S. and University of Minnesota, Crookston (UMC), Agriculture & Natural Resources -Ag Systems

  14. INDUSTRY EVOLUTION AND ENTREPRENEURSHIP: STEVEN KLEPPER'S CONTRIBUTIONS TO INDUSTRIAL ORGANIZATION, STRATEGY, TECHNOLOGICAL

    E-Print Network [OSTI]

    Braguinsky, Serguey

    1 INDUSTRY EVOLUTION AND ENTREPRENEURSHIP: STEVEN KLEPPER'S CONTRIBUTIONS TO INDUSTRIAL Van Munching Hall, College Park, MD 20742 rajshree@umd.edu Serguey Braguinsky Associate Professor in industry evolution, employee entrepreneurship, and geographical clusters, we trace the evolution of his

  15. ITP Industrial Distributed Energy: Combustion Turbine CHP System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INDUSTRIAL TECHNOLOGIES PROGRAM Combustion Turbine CHP System for Food Processing Industry Reducing Industry's Environmental Footprint and Easing Transmission Congestion Based at a...

  16. System for monitoring an industrial process and determining sensor status

    DOE Patents [OSTI]

    Gross, K.C.; Hoyer, K.K.; Humenik, K.E.

    1995-10-17

    A method and system for monitoring an industrial process and a sensor are disclosed. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test. 17 figs.

  17. System for monitoring an industrial process and determining sensor status

    DOE Patents [OSTI]

    Gross, Kenneth C. (Bolingbrook, IL); Hoyer, Kristin K. (Chicago, IL); Humenik, Keith E. (Columbia, MD)

    1997-01-01

    A method and system for monitoring an industrial process and a sensor. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

  18. System for monitoring an industrial process and determining sensor status

    DOE Patents [OSTI]

    Gross, K.C.; Hoyer, K.K.; Humenik, K.E.

    1997-05-13

    A method and system are disclosed for monitoring an industrial process and a sensor. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test. 17 figs.

  19. System for monitoring an industrial process and determining sensor status

    DOE Patents [OSTI]

    Gross, Kenneth C. (Bolingbrook, IL); Hoyer, Kristin K. (Chicago, IL); Humenik, Keith E. (Columbia, MD)

    1995-01-01

    A method and system for monitoring an industrial process and a sensor. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

  20. Energy Technology Solutions: Public-Private Partnerships Transforming Industry - December 2010

    SciTech Connect (OSTI)

    none,

    2010-12-01

    AMO's research and development partnerships with industry have resulted in more than 220 technologies and other solutions that can be purchased today. This document includes a description of each solution, its benefits, and vendor contact information. The document also identifies emerging technologies and other resources to help industry save energy.

  1. Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms

    E-Print Network [OSTI]

    Lewis, Joanna; Wiser, Ryan

    2005-01-01

    of Renewable Energy Technologies: Wind Power in the UnitedRenewable Energy, Wind & Hydropower Technologies Program, ofRenewable Energy, Wind & Hydropower Technologies Program, of

  2. Demand Response Enabling Technologies and Approaches for Industrial Facilities 

    E-Print Network [OSTI]

    Epstein, G.; D'Antonio, M.; Schmidt, C.; Seryak, J.; Smith, C.

    2005-01-01

    , there are also huge opportunities for demand response in the industrial sector. This paper describes some of the demand response initiatives that are currently active in New York State, explaining applicability of industrial facilities. Next, we discuss demand...

  3. Telematics industry dynamics and strategies for converging technologies

    E-Print Network [OSTI]

    Luis, Rodrigo, 1973-

    2004-01-01

    The Telematics Industry faces tremendous challenges for growth. Regardless of the efforts and investment from vehicle manufacturers and suppliers, telematics has not been that profitable industry that many analyst forecasted ...

  4. Thermal Insulation Performance in the Process Industries: Facts and Fallacies 

    E-Print Network [OSTI]

    Tye, R. P.

    1985-01-01

    stream_source_info ESL-IE-85-05-54.pdf.txt stream_content_type text/plain stream_size 24703 Content-Encoding ISO-8859-1 stream_name ESL-IE-85-05-54.pdf.txt Content-Type text/plain; charset=ISO-8859-1 THERMAL INSULATION... PERFORMANCE IN 'mE PROCESS INDUSTRIES: FACTS AND FALLACIES R.P. Tye Dynatech RID Company, Cambridge, MA, U.S.A. ABSTRACT The efficient use of thermal insulation materials and systems for design of cryogenic and elevated temperature process...

  5. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    E-Print Network [OSTI]

    Sathaye, J.

    2011-01-01

    de Beer, 1997. "Energy Efficient Technologies in Industry -Tracking Industrial Energy Efficiency and CO2 Emissions.and L. Price. 1999. Energy Efficiency and Carbon Dioxide

  6. U.S. Department of Energy's Industrial Technology Program and Its Impacts 

    E-Print Network [OSTI]

    Weakley, S. A.; Roop, J. M.

    2009-01-01

    of Energy?s Industrial Technology Program and Its Impacts Steven A. Weakley Joseph M. Roop Senior Research Engineer Staff Scientist Pacific Northwest National Laboratory Pacific Northwest National Laboratory P.O. Box 999... Battelle Blvd. MS: K6-05 P.O. Box 999 Battelle Blvd. MS: K6-05 Richland, Washington 99352 Richland, Washington 99352 ABSTRACT The U.S. Department of Energy?s Industrial Technologies Program (ITP) has been working with industry since 1976...

  7. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01

    Pumps, and Fans website at: http://www1.eere.energy.gov/industry/industry/bestpractices/software.html URL: Pump Systemprocessing industry to drive process motors, fans, pumps and

  8. The critical role of manufacturing-process innovation on product development excellence in high-technology companies

    E-Print Network [OSTI]

    Duarte, Carlos E. A., 1962-

    2004-01-01

    Few managers of high-technology companies view manufacturing-process development as primary source of competitive advantage. For the last two decades trends have shown an increasing number of high-tech industries outsourcing ...

  9. Applications of biochemical processes in geothermal and other industries

    SciTech Connect (OSTI)

    Premuzic, E.T.; Lin, M.S.; Jin, J.Z.

    1994-06-01

    Laboratory studies aimed at the development of economically and technically feasible, and environmentally acceptable technology for the disposal of geothermal sludges and wastes have led to the development of biochemical processes which meet the above conditions. A pilot-scale plant has been constructed and used to identify process variables and optimize processing conditions. The total process is flexible and can be used in several modes of operation which include (1) solubilization and removal of many metals, including radionuclides, from brines and sludges; (2) selective removal of a few metals; (3) concentration of metals; (4) recovery of metals; and (5) recovery of salts. The end product is a silica-type material which meets regulatory requirements, while the aqueous phase meets drinking water standards and can be reinjected and/or used for irrigation. Preliminary engineering studies of the metal and salt recovery technologies have indicated that significant cost benefits could be obtained by means of combined processing. Recent accomplishments in the development of new biochemical technologies will be discussed in this paper.

  10. Standardization of information systems development processes and banking industry adaptations

    E-Print Network [OSTI]

    Tanrikulu, Zuhal

    2011-01-01

    This paper examines the current system development processes of three major Turkish banks in terms of compliance to internationally accepted system development and software engineering standards to determine the common process problems of banks. After an in-depth investigation into system development and software engineering standards, related process-based standards were selected. Questions were then prepared covering the whole system development process by applying the classical Waterfall life cycle model. Each question is made up of guidance and suggestions from the international system development standards. To collect data, people from the information technology departments of three major banks in Turkey were interviewed. Results have been aggregated by examining the current process status of the three banks together. Problematic issues were identified using the international system development standards.

  11. DOE Fuel Cell Technologies Office Record 14009: Industry Deployed...

    Broader source: Energy.gov (indexed) [DOE]

    & Publications DOE Hydrogen and Fuel Cells Program Record 13007: Industry Deployed Fuel Cell Backup Power (BuP) DOE Hydrogen and Fuel Cells Program Record, Record 13008:...

  12. Technologies and Policies to Improve Energy Efficiency in Industry

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01

    CO2 Emissions (MtCO2) Transport Residential Buildings Commercial Buildings Agriculture Agriculture Commercial Buildings Residential Buildings Transport Industry Source:

  13. Technology Vision 2020 - The U.S. Chemical Industry

    SciTech Connect (OSTI)

    1996-12-01

    The body of this report outlines the current state of the industry, a vision for tomorrow, and the technical advances needed to make this vision a reality.

  14. Technologies and Policies to Improve Energy Efficiency in Industry

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01

    implementation of energy-efficiency and greenhouse gasWorking Group on Energy-Efficiency and Clean EnergyTracking Industrial Energy Efficiency and CO2 Emissions.

  15. TECHNOLOGY VISION 2020: The U.S. Chemical Industry

    Office of Energy Efficiency and Renewable Energy (EERE)

    The chemical industry faces heightened challenges as it enters the 21st century. Five major forces are among those shaping the topography of its business landscape

  16. Industrial validation models 1 4/23/03 Experimental validation of new software technology

    E-Print Network [OSTI]

    Zelkowitz, Marvin V.

    Industrial validation models 1 4/23/03 Experimental validation of new software technology Marvin V When to apply a new technology in an organization is a critical decision for every software development organization. Earlier work defines a set of methods that the research community uses when a new technology

  17. Cogeneration handbook for the food processing industry. [Contains glossary

    SciTech Connect (OSTI)

    Eakin, D.E.; Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Fasbender, A.G.; Gorges, H.A.

    1984-03-01

    The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the food processing industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

  18. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    Planta- tion Products and Paper Industry Council, Paper Industry, Confederationof European Paper Industries, Brussels, March 2001. CESP,

  19. Wastewater and sludge control-technology options for synfuels industries

    SciTech Connect (OSTI)

    Castaldi, F.J.; Harrison, W.; Ford, D.L.

    1981-02-01

    The options examined were those of zero discharge, partial water reuse with restricted discharge of treated effluents, and unrestricted discharge of treated effluents. Analysis of cost data and performance-analyses data for several candidate secondary-wastewater-treatment unit processes indicated that combined activated-sludge/powdered-activated-carbon (AS/PAC) treatment incorporating wet-air-oxidation carbon regeneration is the most cost-effective control technology available for the removal of organic material from slagging, fixed-bed process wastewaters. Bench-scale treatability and organic-constituent removal studies conducted on process quench waters from a pilot-scale, slagging, fixed-bed gasifer using lignite as feedstock indicated that solvent extraction followed by AS/PAC treatment reduces levels of extractable and chromatographable organics to less than 1 ..mu..g/L in the final effluent. Levels of conventional pollutants also were effectively reduced by AS/PAC to the minimum water-quality standards for most receiving waters. The most favored and most cost-effective treatment option is unrestricted discharge of treated effluents with ultimate disposal of biosludges and landfilling of gasifier ash and slag. This option requires a capital expenditure of $8,260,000 and an annual net operating cost of $2,869,000 in 1978 dollars, exclusive of slag disposal. The net energy requirement of 19.6 x 10/sup 6/ kWh/year, or 15.3 kWh/1000 gal treated, is less than 6% of the equivalent energy demand associated with the zero-discharge option.

  20. Industrial application of GNEP solvent-extraction processes

    SciTech Connect (OSTI)

    Arm, S.T.; Phillips, C.; Dobson, A.

    2008-07-01

    EnergySolutions is currently studying the feasibility of commercially recycling spent nuclear fuel in the USA as part of the Global Nuclear Energy Partnership. Uranium, plutonium, and neptunium recycling are accomplished by employing well-established solvent-extraction technology based on the tributylphosphate extractant and acetohydroxamic complexant stripping in a commercially demonstrated configuration. Americium and curium recycling is best achieved by employing the TRUEX and TALSPEAK solvent-extraction processes or a simplified variant of them. Facility design is not predicated on performing any research and development a priori. Process development and demonstration will proceed in parallel with design by proven design-management techniques. (authors)

  1. Postfeminist Technologies: Digital Media and the Culture Industries of Choice

    E-Print Network [OSTI]

    Cohn, Jonathan

    2013-01-01

    Digital Subjectivity Technology is essential to the transformationsdigital image technologies to present the body as a site of potential transformation –digital plenitude of seemingly endless information is just as much a force in this transformation.

  2. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    E-Print Network [OSTI]

    Sathaye, J.

    2011-01-01

    Technology Support Unit (ETSU), 1988. “High Level Control ofCircle Industries and SIRA (ETSU, 1988). The LINKman system

  3. Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies, June 1999

    Broader source: Energy.gov [DOE]

    Assessment of the potential of CHP technologies to reduce carbon emissions in the US chemicals and pulp and paper industries.

  4. The Impact of Control Technology on the Demand Response Potential of California Industrial Refrigerated Facilities Final Report

    E-Print Network [OSTI]

    Scott, Doug

    2014-01-01

    and Automated Demand Response in Industrial RefrigeratedDemand Response .. ..Technology on the Demand Response Potential of California

  5. Direction of CRT waste glass processing: Electronics recycling industry communication

    SciTech Connect (OSTI)

    Mueller, Julia R., E-mail: mueller.143@osu.edu [Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, OH (United States) and University of Queensland, School of Chemical Engineering (Australia) and Ohio State University, Materials Science and Engineering, OH (United States); Boehm, Michael W. [University of Queensland, School of Chemical Engineering (Australia); Drummond, Charles [Ohio State University, Materials Science and Engineering, OH (United States)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Given a large flow rate of CRT glass {approx}10% of the panel glass stream will be leaded. Black-Right-Pointing-Pointer The supply of CRT waste glass exceeded demand in 2009. Black-Right-Pointing-Pointer Recyclers should use UV-light to detect lead oxide during the separation process. Black-Right-Pointing-Pointer Recycling market analysis techniques and results are given for CRT glass. Black-Right-Pointing-Pointer Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

  6. Within-Industry Technological Specialization, Collective Action, and Trade Policy 

    E-Print Network [OSTI]

    Urbanski, Piotr

    2015-01-21

    . I tie this with the logic of collective action and classical trade models to de- 6See Jones (2009). Also Wuchty et al. (2007); Jones et al. 2007. 6 rive an industry’s ability and intensity of lobbying over trade policy. The proposed theory helps us... has continued to de- velop. Arguably at an ever increasing rate. However, some industries have developed faster than others. At the same time some sectors of the American economy have lib- eralized more or less. Are the two trends related...

  7. ISTUM PC: industrial sector technology use model for the IBM-PC

    SciTech Connect (OSTI)

    Roop, J.M.; Kaplan, D.T.

    1984-09-01

    A project to improve and enhance the Industrial Sector Technology Use Model (ISTUM) was originated in the summer of 1983. The project had dix identifiable objectives: update the data base; improve run-time efficiency; revise the reference base case; conduct case studies; provide technical and promotional seminars; and organize a service bureau. This interim report describes which of these objectives have been met and which tasks remain to be completed. The most dramatic achievement has been in the area of run-time efficiency. From a model that required a large proportion of the total resources of a mainframe computer and a great deal of effort to operate, the current version of the model (ISTUM-PC) runs on an IBM Personal Computer. The reorganization required for the model to run on a PC has additional advantages: the modular programs are somewhat easier to understand and the data base is more accessible and easier to use. A simple description of the logic of the model is given in this report. To generate the necessary funds for completion of the model, a multiclient project is proposed. This project will extend the industry coverage to all the industrial sectors, including the construction of process flow models for chemicals and petroleum refining. The project will also calibrate this model to historical data and construct a base case and alternative scenarios. The model will be delivered to clients and training provided. 2 references, 4 figures, 3 tables.

  8. ITP Glass: Glass Industry Technology Roadmap; April 2002

    Office of Energy Efficiency and Renewable Energy (EERE)

    Glass is a unique material that has been produced for thousands of years. The glass industry's products are an integral part of the American economy and everyday life. Glass products are used in food and beverage packaging, lighting, communications, etc.

  9. DOE and Industry Showcase New Control Systems Security Technologies...

    Office of Environmental Management (EM)

    efforts. Industry leaders worked closely with national laboratories in the National SCADA Test Bed and other private-sector partners to develop, test, and gather end-user input...

  10. Check Burner Air to Fuel Ratios; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    radiant tubes. For the fuels most commonly used by U.S. industry, including natural gas, propane, and fuel oils, approximately one cubic foot of air is required to release about...

  11. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETRIEVAL AND PROCESSING

    SciTech Connect (OSTI)

    SAMS TL; MENDOZA RE

    2010-08-11

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  12. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING

    SciTech Connect (OSTI)

    SAMS TL

    2010-07-07

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  13. Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry

    E-Print Network [OSTI]

    Kong, Lingbo

    2014-01-01

    Report. U.S. Department of Energy. Contract No. : DE-FC07-in the Cement Industry". Energy Procedia 1 (1): 87-94. Beck,for U.S. Department of Energy, National Energy Technology

  14. Engineering & Technology News | Industrial News Buzz Flexible electronics could help put Arrhythmic hearts back on rhythm

    E-Print Network [OSTI]

    Rogers, John A.

    Engineering & Technology News | Industrial News Buzz Flexible electronics could help put Arrhythmic hearts back on rhythm Home Engineering Store Products & Services Engineering Forum CAD Forum Engineering Design Data Engineering News Engineering Calculators Newsletter Register Advertise Feedback GD&T Training

  15. Technologies, markets and challenges for development of the Canadian Oil Sands industry

    E-Print Network [OSTI]

    Lacombe, Romain H.

    2007-01-01

    This paper provides an overview of the current status of development of the Canadian oil sands industry, and considers possible paths of further development. We outline the key technology alternatives, critical resource ...

  16. Federal/Industry Development of Energy-Conserving Technologies for the Chemical and Petroleum Refining Industries 

    E-Print Network [OSTI]

    Alston, T. G.; Humphrey, J. L.

    1981-01-01

    Argonne National Laboratory has started a program to identify future RD&D projects that (i) promise cost-effective savings of scarce fuels in the chemical and petroleum refining industries, (ii) are not likely to be pursued by industry alone...

  17. New Concepts in Hardware and Processes to Conserve Oil and Gas in Industrial Processes 

    E-Print Network [OSTI]

    Humphrey, J. L.

    1982-01-01

    A broad program to identify and evaluate new types of hardware and processes to conserve oil and gas in chemical plants and petroleum refineries has been completed. During the course of this program, which was sponsored by the Office of Industrial...

  18. Recovery Act: Oxy-Combustion Technology Development for Industrial...

    Office of Scientific and Technical Information (OSTI)

    Testing in Alstom's 15 MWth Boiler Simulation Facility Levasseur, Armand 01 COAL, LIGNITE, AND PEAT; 54 ENVIRONMENTAL SCIENCES Clean Coal Technology; Coal-Fuels;...

  19. Technology and Organizational Factors in the Notebook Industry Supply Chain

    E-Print Network [OSTI]

    Foster, William; Cheng, Zhang; Dedrick, Jason; Kraemer, Kenneth L

    2006-01-01

    and Their Suppliers . . . . . . . . . . . . . . . . . . . 21Technology in the Third- and Fourth-Tier Suppliers. . . . .Percent) for Taiwanese Suppliers to ODMs . . . . 16 Notebook

  20. Technologies and Policies to Improve Energy Efficiency in Industry

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01

    Opportunities for Petroleum Refineries: An ENERGY STAR Guidesecondary energy such as electricity and petroleum products)90 energy-saving technologies and measures for the petroleum

  1. Methods of Mathematical and Computational Physics for Industry, Science, and Technology

    E-Print Network [OSTI]

    Melnik, Roderick

    Methods of Mathematical and Computational Physics for Industry, Science, and Technology 2006 J industrial problems provide scientists with important and challenging problems that need to be solved today. Gigantic ships and steam engines, repeating catapult of Dionysius and the Antikythera `computer' invented

  2. Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms

    E-Print Network [OSTI]

    Lewis, Joanna; Wiser, Ryan

    2005-01-01

    and Renewable Energy, Wind & Hydropower Technologiesand Renewable Energy, Wind & Hydropower Technologies2004. International Wind Energy Development, World Market

  3. Using RBF-Nets in Rubber Industry Process Control U. Pietruschka, R. Brause

    E-Print Network [OSTI]

    Brause, R.

    Using RBF-Nets in Rubber Industry Process Control U. Pietruschka, R. Brause J.W. Goethe and the modeling of the industrial problem. The algorithm shows good results even using only a few training samples in rubber industry has the smell of a ,,dirty" industrial branch. This comes not only from the often very

  4. Evolution of gas processing industry in Saudi Arabia

    SciTech Connect (OSTI)

    Showail, A.

    1983-01-01

    The beginning of the natural gas processing industry in Saudi Arabia is traced back to 1959 when Aramco embarked on a program to recover natural gas liquids (NGL) for export from low pressure gases such as stabilizer overhead, spheroid, tank farm, and refinery off-gases. The processing scheme involves compression and refrigeration to extract C3+ raw NGL, a raw NGL gathering system, and a fractionation plant to separate propane, butane, and natural gasoline. NGL extracted in Abqaiq and Ras Tanura is moved to Ras Tanura for fractionation, storage, and export. The system, built in several increments, has total design capacity of 500 MMscfd of feed gases to produce 320,000 bpd of NGL composed of 40% propane, 30% butane, and 30% natural gasoline. Phase II of the Saudi gas program envisages collection and processing of associated gas produced with Arabian medium and heavy crude oils largely in the northern onshore and offshore fields. Further domestic development may focus on more diversification in gas product utilization and on upgrading to higher value products.

  5. Application of process safety management to the coke industry

    SciTech Connect (OSTI)

    Mentzer, W.P. (USX Corp., Clairton, PA (United States))

    1994-09-01

    OSHA's Process Safety Management (PSM) standard went into effect on May 26, 1992. Explosions at various industrial facilities that claimed the lives of workers over the past several years were the catalyst for the new federal regulations. The new PSM standard deals with 130 specific chemicals along with flammable liquids and gases used at nearly 25,000 worksites. The performance-based PSM standard consists of 14 elements that establish goals and describe basic program elements to fulfill these goals. The PSM standard requires employers to conduct a process hazard analysis to examine potential problems and determine what preventative measures should be taken. Key elements include employee training, written operating procedures, safety reviews and maintenance requirements to insure the mechanical integrity of critical components. The presentation will cover the evolution of OSHA's PSM standard, the requirements of the 14 elements in the PSM standard and discuss the significant achievements in the development and implementation of the PSM process at US Steel's Clairton coke plant.

  6. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    for the European Pulp and Paper Industry, Confederation ofin food and pulp and paper industry wastes, turbines tocement, and pulp and paper industries and in the control of

  7. Definition and First Year of a New International Master in Industrial Processes Automation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Definition and First Year of a New International Master in Industrial Processes Automation Emmanuel on industrial processes automation (IPA), proposed by University Joseph Fourier (UJF) / University of Grenoble automation, with clear specifications towards engineering and industry. The local and in- ternational

  8. World Congress on Industrial Process Tomography, Aizu, Japan Modelling and predicting flow regimes using wavelet

    E-Print Network [OSTI]

    Barber, Stuart

    4 th World Congress on Industrial Process Tomography, Aizu, Japan Modelling and predicting flow of Statistics, University of Leeds, Leeds, LS2 9JT, UK, robert@maths.leeds.ac.uk ABSTRACT The aim of industrial without intruding into the industrial process, but produce highly correlated and noisy data, and hence

  9. Estimation and control of industrial processes with particle lters Ruben Morales-Menendez

    E-Print Network [OSTI]

    Poole, David

    an industrial heat exchanger, Figure 1. This exchanger heats 10 gpm of water from 25o C to 70o C us- ing steamEstimation and control of industrial processes with particle £lters Rub´en Morales and control of industrial processes. In particular, we adopt a jump Markov linear Gaussian (JMLG) model

  10. Emerging Industrial Innovations for New Energy Efficient Technologies 

    E-Print Network [OSTI]

    Laitner, J. A.

    2007-01-01

    of the materials and technologies that can generate large efficiency gains within all other sectors of the economy. For example, its role in developing a new generation of fuel cell vehicles, “on demand” manufacturing capabilities, or new plastics that double...

  11. Vehicle Technologies Office Merit Review 2014: Dry Process Electrode Fabrication

    Broader source: Energy.gov [DOE]

    Presentation given by Navitas Systems at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about dry process electrode...

  12. Savannah River Site Salt Waste Processing Facility Technology...

    Office of Environmental Management (EM)

    Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report Kurt D. Gerdes Harry D. Harmon Herbert G. Sutter Major C. Thompson John R. Shultz Sahid C....

  13. Vehicle Technologies Office Merit Review 2015: Dry Process Electrode Fabrication

    Broader source: Energy.gov [DOE]

    Presentation given by Navitas Systems at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about dry process electrode...

  14. Industrial clusters and regional innovation based on hydrogen and fuel cell technologies

    E-Print Network [OSTI]

    Industrial clusters and regional innovation based on hydrogen and fuel cell technologies-Westphalia (Germany): Fuel Cell and Hydrogen Network in North Rhine-Westphalia Regional authorities develops fully or regions in Europe with a potential to develop clusters based on hydrogen and fuel cell technologies? 3

  15. Geographically-Distributed Databases: A Big Data Technology for Production Analysis in the Oil & Gas Industry

    E-Print Network [OSTI]

    SPE 167844 Geographically-Distributed Databases: A Big Data Technology for Production Analysis advances in the scientific field of "big-data" to the world of Oil & Gas upstream industry. These off-of-the-start IT technologies currently employed in the data management of Oil & Gas production operations. Most current

  16. Industry Analysis October 2010

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    Industry and Company research ­ they build on each other #12;Industry Studies Standard & Poor's Net of competitors Standard & Poor's NetAdvantage - See 'Industry Surveys' under the "Quick Links" #12;Where Common technologies are there industry standards, platforms manufacturing processes, outsourcing? #12

  17. High Speed Imaging Technology for the Microgravity Containerless Processing Facility

    E-Print Network [OSTI]

    Fossum, Eric R.

    Study on High Speed Imaging Technology for the Microgravity Containerless Processing Facility Dr September 15, 1992 #12;High Speed Imaging Technology Study page 2 TABLE OF CONTENTS Glossary........................................................................................................................18 #12;High Speed Imaging Technology Study page 3 Glossary A/D analog-to-digital converter APS active

  18. Advanced Reactors Thermal Energy Transport for Process Industries

    SciTech Connect (OSTI)

    P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

    2014-07-01

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

  19. Investigating late stage biopharmaceutical product loss using novel analytical and process technology

    E-Print Network [OSTI]

    Hunnicutt, Leigh Anne

    2008-01-01

    The biopharmaceutical industry uses recombinant protein technologies to provide novel therapeutics to patients around the world. These technologies have presented exciting opportunities for breakthrough medical treatments ...

  20. A survey of thin-film solar photovoltaic industry & technologies

    E-Print Network [OSTI]

    Grama, Sorin

    2007-01-01

    A new type of solar cell technology using so-called thin-film solar photovoltaic material has the potential to make a great impact on our lives. Because it uses very little or no silicon at all, thin- film (TF) solar ...

  1. Industrial Technologies Available for Licensing - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat Pumps Heat Pumpsfacility doe logoIn FocusInIndustrial

  2. Trim or Replace Impellers on Oversized Pumps: Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    pump exceeds process requirements. * System bypass valves are open, indicating excess flow rate. * The pump is operating far from its design point. * The operating head and (or)...

  3. ENERGY EFFICIENCY TECHNOLOGY ROADMAP VOLUME 7: INDUSTRIAL FOOD...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    leak detection Preliminary study how laser perforation of blueberry can improve fruit infusion with more yield and better quality Laser food processing (marker and micro...

  4. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    No. 9. CTI, 2005: Climate Technology Initiative. Climate Technology Initiative (CTI)the identification of climate technology needs in developing

  5. Industrial Energy Conservation by New Process Design and Efficiency Improvements 

    E-Print Network [OSTI]

    Kusik, C. L.; Stickles, R. P.; Machacek, R. F.

    1983-01-01

    Industrial energy productivity has increased substantially over the last decade. Such measures as implementing efficient housekeeping practices and using retrofit equipment on currently operating production units have ...

  6. An industry view of the new technology and inventions needed by the independent petroleum industry by 2025

    SciTech Connect (OSTI)

    Oltz, D.F. [Illinois State Geological Survey, Champaign, IL (United States)

    1994-12-31

    In order to remain competitive, the U.S. independent oil industry will need rapid access to relevant data such as development histories, production data, rock samples, fluid samples, reservoir test data, advanced reservoir characterization, optimized drilling and completion technologies, interpreted geophysical (including seismic) data, and a source of funds derived from investors who can expect a return on their money. State geological surveys, attuned to the needs of local independents, can play a major role in meeting these increasing demands for data availability and data interpretation. Surveys can serve as neutral third parties to aid in collecting data not required to be reported to state governments. The interface between independents and surveys and between surveys and the technology developers and providers will produce technological leaps that may include: Improved reservoir imaging in a digital format that can be readily used by an independent`s PC-based system. Availability of data and information on analogous approaches to solutions of various drilling, completion, reservoir and production problems. Development of MWD technology that will allow comparison of real-time acquisition of reservoir rock and fluid data to geological and engineering analogs such as those developed by researchers at state geological surveys. The oil business is risk-based; the price of oil is determined in the world marketplace. At current levels of technology, well abandonments will increase at a deplorable rate between now and 2025. It is in the nation`s best interest from both the natural resource conservation and national energy policy standpoints to reduce the rate of well abandonments and improve recovery efficiency. This can be accomplished through a focused effort by both state and federal agencies addressing the technological needs of the independent industry.

  7. Electrochemical Energy Storage Technologies and the Automotive Industry

    ScienceCinema (OSTI)

    Mark Verbrugge

    2010-01-08

    The first portion of the lecture will relate global energy challenges to trends in personal transportation. Following this introduction, a short overview of technology associated with lithium ion batteries for traction applications will be provided. Last, I shall present new research results that enable adaptive characterization of lithium ion cells. Experimental and modeling results help to clarify the underlying electrochemistry and system performance. Specifically, through chemical modification of the electrodes, it is possible to place markers within the electrodes that signal the state of charge of a battery through abrupt voltage changes during cell operation, thereby allowing full utilization of the battery in applications. In closing, I shall highlight some promising materials research efforts that are expected to lead to substantially improved battery technology

  8. Monitoring the resin infusion manufacturing process under industrial environment using distributed sensors

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Monitoring the resin infusion manufacturing process under industrial environment using the Liquid Resin Infusion process under industrial environment is proposed. To detect the resin front; Liquid Resin Infusion. #12;2 1. Introduction Recently, Liquid Composite Molding (LCM) processes have been

  9. Energy Efficient Microwave Hybrid Processing of Lime for Cement, Steel, and Glass Industries

    SciTech Connect (OSTI)

    Fall, Morgana L; Yakovlev, Vadim; Sahi, Catherine; Baranova, Inessa; Bowers, Johnney G; Esquenazi , Gibran L

    2012-02-10

    In this study, the microwave materials interactions were studied through dielectric property measurements, process modeling, and lab scale microwave hybrid calcination tests. Characterization and analysis were performed to evaluate material reactions and energy usage. Processing parameters for laboratory scale and larger scale calcining experiments were developed for MAT limestone calcination. Early stage equipment design concepts were developed, with a focus on microwave post heating treatment. The retrofitting of existing rotary calcine equipment in the lime industry was assessed and found to be feasible. Ceralink sought to address some of the major barriers to the uptake of MAT identified as the need for (1) team approach with end users, technology partners, and equipment manufacturers, (2) modeling that incorporates kiln materials and variations to the design of industrial microwave equipment. This project has furthered the commercialization effort of MAT by working closely with an industrial lime manufacturer to educate them regarding MAT, identifying equipment manufacturer to supply microwave equipment, and developing a sophisticated MAT modeling with WPI, the university partner. MAT was shown to enhance calcining through lower energy consumption and faster reaction rates compared to conventional processing. Laboratory testing concluded that a 23% reduction in energy was possible for calcining small batches (5kg). Scale-up testing indicated that the energy savings increased as a function of load size and 36% energy savings was demonstrated (22 kg). A sophisticated model was developed which combines simultaneous microwave and conventional heating. Continued development of this modeling software could be used for larger scale calcining simulations, which would be a beneficial low-cost tool for exploring equipment design prior to actual building. Based on these findings, estimates for production scale MAT calcining benefits were calculated, assuming uptake of MAT in the US lime industry. This estimate showed that 7.3 TBTU/year could be saved, with reduction of 270 MMlbs of CO2 emissions, and $29 MM/year in economic savings. Taking into account estimates for MAT implementation in the US cement industry, an additional 39 TBTU/year, 3 Blbs of CO2 and $155 MM/year could be saved. One of the main remaining barriers to commercialization of MAT for the lime and cement industries is the sheer size of production. Through this project, it was realized that a production size MAT rotary calciner was not feasible, and a different approach was adapted. The concept of a microwave post heat section located in the upper portion of the cooler was devised and appears to be a more realistic approach for MAT implementation. Commercialization of this technology will require (1) continued pilot scale calcining demonstrations, (2) involvement of lime kiln companies, and (3) involvement of an industrial microwave equipment provider. An initial design concept for a MAT post-heat treatment section was conceived as a retrofit into the cooler sections of existing lime rotary calciners with a 1.4 year payback. Retrofitting will help spur implementation of this technology, as the capital investment will be minimal for enhancing the efficiency of current rotary lime kilns. Retrofits would likely be attractive to lime manufacturers, as the purchase of a new lime kiln is on the order of a $30 million dollar investment, where as a MAT retrofit is estimated on the order of $1 million. The path for commercialization lies in partnering with existing lime kiln companies, who will be able to implement the microwave post heat sections in existing and new build kilns. A microwave equipment provider has been identified, who would make up part of the continued development and commercialization team.

  10. Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry: A Systematic Prioritization of Research Needs

    E-Print Network [OSTI]

    Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry: A Systematic and Policy Program #12;- 2 - #12;Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry in Technology and Policy Abstract Coal is widely relied upon as a fuel for electric power generation

  11. Save Energy Now in Your Process Heating Systems; Industrial Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    allow at least part of this energy to be reused. Along with making sure that burners and other combustion equipment are operating at peak efficiency, reducing heat losses...

  12. Science for Energy Technology: Strengthening the Link Between Basic Research and Industry

    SciTech Connect (OSTI)

    2010-04-01

    The nation faces two severe challenges that will determine our prosperity for decades to come: assuring clean, secure, and sustainable energy to power our world, and establishing a new foundation for enduring economic and jobs growth. These challenges are linked: the global demand for clean sustainable energy is an unprecedented economic opportunity for creating jobs and exporting energy technology to the developing and developed world. But achieving the tremendous potential of clean energy technology is not easy. In contrast to traditional fossil fuel-based technologies, clean energy technologies are in their infancy, operating far below their potential, with many scientific and technological challenges to overcome. Industry is ultimately the agent for commercializing clean energy technology and for reestablishing the foundation for our economic and jobs growth. For industry to succeed in these challenges, it must overcome many roadblocks and continuously innovate new generations of renewable, sustainable, and low-carbon energy technologies such as solar energy, carbon sequestration, nuclear energy, electricity delivery and efficiency, solid state lighting, batteries and biofuels. The roadblocks to higher performing clean energy technology are not just challenges of engineering design but are also limited by scientific understanding.Innovation relies on contributions from basic research to bridge major gaps in our understanding of the phenomena that limit efficiency, performance, or lifetime of the materials or chemistries of these sustainable energy technologies. Thus, efforts aimed at understanding the scientific issues behind performance limitations can have a real and immediate impact on cost, reliability, and performance of technology, and ultimately a transformative impact on our economy. With its broad research base and unique scientific user facilities, the DOE Office of Basic Energy Sciences (BES) is ideally positioned to address these needs. BES has laid out a broad view of the basic and grand challenge science needs for the development of future clean energy technologies in a series of comprehensive 'Basic Research Needs' workshops and reports (inside front cover and http://www.sc.doe.gov/bes/reports/list.html) and has structured its programs and launched initiatives to address the challenges. The basic science needs of industry, however, are often more narrowly focused on solving specific nearer-term roadblocks to progress in existing and emerging clean energy technologies. To better define these issues and identify specific barriers to progress, the Basic Energy Sciences Advisory Committee (BESAC) sponsored the Workshop on Science for Energy Technology, January 18-21, 2010. A wide cross-section of scientists and engineers from industry, universities, and national laboratories delineated the basic science Priority Research Directions most urgently needed to address the roadblocks and accelerate the innovation of clean energy technologies. These Priority Research Directions address the scientific understanding underlying performance limitations in existing but still immature technologies. Resolving these performance limitations can dramatically improve the commercial penetration of clean energy technologies. A key conclusion of the Workshop is that in addition to the decadal challenges defined in the 'Basic Research Needs' reports, specific research directions addressing industry roadblocks are ripe for further emphasis. Another key conclusion is that identifying and focusing on specific scientific challenges and translating the results to industry requires more direct feedback and communication and collaboration between industrial and BES-supported scientists. BES-supported scientists need to be better informed of the detailed scientific issues facing industry, and industry more aware of BES capabilities and how to utilize them. An important capability is the suite of BES scientific user facilities, which are seen as playing a key role in advancing the science of clean energy technology. Working together, in

  13. California Food Processing Industry Wastewater Demonstration Project: Phase I Final Report

    E-Print Network [OSTI]

    Lewis, Glen

    2010-01-01

    and Automated Demand Response in Wastewater TreatmentProcessing Industry Demand Response Participation: A Scopingand Open Automated Demand Response. Lawrence Berkeley

  14. Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition

    SciTech Connect (OSTI)

    None

    2008-02-01

    This is one in a series of sourcebooks to help manufacturers optimize their industrial systems; this particular sourcebook addresses process heating systems.

  15. Advanced Industrial Archaeology: A new reverse-engineering process for contextualizing and

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Advanced Industrial Archaeology: A new reverse-engineering process for contextualizing.bernard@irccyn.ec-nantes.fr, michel.cotte@univ-nantes.fr Abstract Since virtual engineering has been introduced inside industries. Keywords reverse-engineering, 3D digitalization, CAD, Advanced Industrial Archaeology, technical heritage 1

  16. Thompson Technology Industries Inc TTI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film Solar Technologies Jump to: navigation,TholenMiddle

  17. Clean Technology & Sustainable Industries Organization | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) Jump to:New York:ClayBurn FuelsTechnologiesInformation

  18. Vehicle Technologies Office Merit Review 2015: Development of Industrially

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutoryin theNuclearEnergyVBA-0082TechnologiesHeavy

  19. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    pp. IEA, 2006b: Industrial motor systems energy efficiency:industrial energy efficiency. Presented at Energy Efficiency in Motorenergy-efficient electric motors and motor-systems. These include: (1) industrial

  20. Metropolitan High-Technology Industry Growth in the Mid 1970s: Can Everyone Have a Slice of the High-Tech Pie

    E-Print Network [OSTI]

    Glasmeier, Amy; Hall, Peter; Markusen, Ann R.

    1984-01-01

    such as crystal-growth technology. The second measure ,sustained economic growth (Office of Technology Assessmen t,TABLE 1 High Technology Industries Growth Performance, 1972-

  1. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01

    de Beer (1997). Energy Efficient Technologies in Industry -Council for an Energy-Efficient Economy, Washington, D.C. BCCouncil for an Energy-Efficient Economy, Washington, D.C.

  2. Processing factors contributing to growth and decline in the steel industry

    E-Print Network [OSTI]

    Dufalla, Michele (Michele Helene)

    2007-01-01

    During the second half of the twentieth century, a technological shift occurred in the steel industry. A different mix of refining and melting furnaces were used, with increasing use being made of basic oxygen and electric ...

  3. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    and waste management that take place within industrialpolicies Waste management policies can reduce industrialWaste management policies.56 7.10 Co-benefits of industrial

  4. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    R.R. ,et al. , 2004: Eco-industrial park initiatives in theCHP plant) form an eco-industrial park that serves as an ex-

  5. EERE Technology Commercialization Portal: Connecting Energy Industry and Market Leaders with Laboratory Technologies

    SciTech Connect (OSTI)

    2010-06-01

    A flyer briefly describing the EERE Technology Commercialization Portal along with an example of one of its marketing summaries.

  6. EERE Technology Commercialization Portal: Connecting Energy Industry and Market Leaders with Laboratory Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    A flyer briefly describing the EERE Technology Commercialization Portal along with an example of one of its marketing summaries.

  7. Innovative technology for contamination control in plasma processing

    SciTech Connect (OSTI)

    Selwyn, G.S.

    1994-10-01

    The causes and contributing factors to wafer contamination during plasma processing are discussed in the context of future technologies for controlling particle contamination by tool and process design and by the development of wafer dry cleaning technology. The importance of these developments is linked with the history of technological innovation and with the continuing evolution of the cleanroom from a highly developed facility for reducing ambient particle levels to an integrated, synergistic approach involving facilities and tooling for impeding the formation and transport of particles while also actively removing particles from sensitive surfaces. The methods, strategy and requirements for innovation in contamination control for plasma processing is discussed from a diachronic viewpoint.

  8. Metropolitan High-Technology Industry Growth in the Mid 1970s: Can Everyone Have a Slice of the High-Tech Pie

    E-Print Network [OSTI]

    Glasmeier, Amy; Hall, Peter; Markusen, Ann R.

    1984-01-01

    tion and Gro wth in High Technology Industries: A R egionalC . Burke , Thomas. 1 97 9 . High Technology En terprise in1 9 83c. De fining High Technology Industries. I nstitute of

  9. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    cement and pulp and paper industries in China, and in thePulp and Paper Industry, Confederation of European Paper Industries, Brussels, March 2001. CESP, 2004: China’pulp and paper industries (GOI, 2005). There are 39.8 million SMEs in China,

  10. FY-2010 Process Monitoring Technology Final Report

    SciTech Connect (OSTI)

    Orton, Christopher R.; Bryan, Samuel A.; Casella, Amanda J.; Hines, Wes; Levitskaia, Tatiana G.; henkell, J.; Schwantes, Jon M.; Jordan, Elizabeth A.; Lines, Amanda M.; Fraga, Carlos G.; Peterson, James M.; Verdugo, Dawn E.; Christensen, Ronald N.; Peper, Shane M.

    2011-01-01

    During FY 2010, work under the Spectroscopy-Based Process Monitoring task included ordering and receiving four fluid flow meters and four flow visible-near infrared spectrometer cells to be instrumented within the centrifugal contactor system at Pacific Northwest National Laboratory (PNNL). Initial demonstrations of real-time spectroscopic measurements on cold-stream simulants were conducted using plutonium (Pu)/uranium (U) (PUREX) solvent extraction process conditions. The specific test case examined the extraction of neodymium nitrate (Nd(NO3)3) from an aqueous nitric acid (HNO3) feed into a tri-n-butyl phosphate (TBP)/ n-dodecane solvent. Demonstration testing of this system included diverting a sample from the aqueous feed meanwhile monitoring the process in every phase using the on-line spectroscopic process monitoring system. The purpose of this demonstration was to test whether spectroscopic monitoring is capable of determining the mass balance of metal nitrate species involved in a cross-current solvent extraction scheme while also diverting a sample from the system. The diversion scenario involved diverting a portion of the feed from a counter-current extraction system while a continuous extraction experiment was underway. A successful test would demonstrate the ability of the process monitoring system to detect and quantify the diversion of material from the system during a real-time continuous solvent extraction experiment. The system was designed to mimic a PUREX-type extraction process with a bank of four centrifugal contactors. The aqueous feed contained Nd(NO3)3 in HNO3, and the organic phase was composed of TBP/n-dodecane. The amount of sample observed to be diverted by on-line spectroscopic process monitoring was measured to be 3 mmol (3 x 10-3 mol) Nd3+. This value was in excellent agreement with the 2.9 mmol Nd3+ value based on the known mass of sample taken (i.e., diverted) directly from the system feed solution.

  11. Innovation and the state : development strategies for high technology industries in a world of fragmented production : Israel, Ireland, and Taiwan

    E-Print Network [OSTI]

    Breznitz, Dan

    2005-01-01

    One of the most unexpected changes of the 1990s is that firms in a number of emerging economies not previously known for their high-technology industries have leapfrogged to the forefront in new Information Technologies ...

  12. Process for making unsaturated hydrocarbons using microchannel process technology

    DOE Patents [OSTI]

    Tonkovich, Anna Lee (Dublin, OH); Yuschak, Thomas (Lewis Center, OH); LaPlante, Timothy J. (Columbus, OH); Rankin, Scott (Columbus, OH); Perry, Steven T. (Galloway, OH); Fitzgerald, Sean Patrick (Columbus, OH); Simmons, Wayne W. (Dublin, OH); Mazanec, Terry (Solon, OH) Daymo, Eric (Dublin, OH)

    2011-04-12

    The disclosed invention relates to a process for converting a feed composition comprising one or more hydrocarbons to a product comprising one or more unsaturated hydrocarbons, the process comprising: flowing the feed composition and steam in contact with each other in a microchannel reactor at a temperature in the range from about 200.degree. C. to about 1200.degree. C. to convert the feed composition to the product, the process being characterized by the absence of catalyst for converting the one or more hydrocarbons to one or more unsaturated hydrocarbons. Hydrogen and/or oxygen may be combined with the feed composition and steam.

  13. Model for multi-strata safety performance measurements in the process industry 

    E-Print Network [OSTI]

    Keren, Nir

    2004-09-30

    of process safety elements within facilities; (2) benchmarking of process safety elements among facilities; and (3) use of incident data collection from various sources for industrial safety performance assessment. The methods presently available...

  14. Process for separating nitrogen from methane using microchannel process technology

    DOE Patents [OSTI]

    Tonkovich, Anna Lee (Marysville, OH); Qiu, Dongming (Dublin, OH); Dritz, Terence Andrew (Worthington, OH); Neagle, Paul (Westerville, OH); Litt, Robert Dwayne (Westerville, OH); Arora, Ravi (Dublin, OH); Lamont, Michael Jay (Hilliard, OH); Pagnotto, Kristina M. (Cincinnati, OH)

    2007-07-31

    The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

  15. Leakage Evaluated and Controlled from Industrial Process Pipeline by Optimum Gasket Assembly Stress

    E-Print Network [OSTI]

    Chen, Shu-Ching

    0 Leakage Evaluated and Controlled from Industrial Process Pipeline by Optimum Gasket Assembly and vehicles), but they have ignore the leakage between pipelines in process industries. When hazardous materials leak imperceptibly, they increase the pathogenic risk to the workers at the workplace. Since 1937

  16. Compressed Air System Modifications Improve Efficiency at a Plastics Blow Molding Plant (Southeastern Container Plant): Office of Industrial Technologies (OIT) BestPractices Technical Case Study

    SciTech Connect (OSTI)

    Wogsland, J.

    2001-06-18

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the plastics blow molding plant project.

  17. Understanding the Costs of Business Process Management Technology

    E-Print Network [OSTI]

    Ulm, Universität

    Understanding the Costs of Business Process Management Technology Bela Mutschler and Manfred. However, introduc- ing BPM approaches in enterprises is associated with significant costs. Though ex- isting economic-driven IT evaluation and software cost estimation approaches have received considerable

  18. IMPACTS. Industrial Technologies Program: Summary of Program Results for CY 2008

    SciTech Connect (OSTI)

    none,

    2010-08-02

    The Impacts report summarizes benefits resulting from ITP-sponsored technologies, including energy savings, waste reduction, increased productivity, and lowered emissions. It also provides an overview of the activities of the Industrial Assessment Centers, BestPractices Program, and Combined Heat and Power efforts.

  19. Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program

    E-Print Network [OSTI]

    Beckermann, Christoph

    Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Program A Strong Energy Portfolio for a Strong America Energy efficiency and clean, renewable energy Industrial Technologies Program U.S. Department of Energy Office of Energy Efficiency and Renewable Energy

  20. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    developed technology to use wastes such as plastics (Ziebekdeveloped technologies that use wastes, such as plastics, as

  1. August 2003 2003 C. David Massey, Ball Aerospace and Technologies Corp.

    E-Print Network [OSTI]

    · Technology Transition to the Shipbuilding industrial base ­ The DoD/Navy Budgeting Process ­ President

  2. California Food Processing Industry Wastewater Demonstration Project: Phase I Final Report

    SciTech Connect (OSTI)

    Lewis, Glen; Atkinson, Barbara; Rhyne, Ivin

    2009-09-09

    Wastewater treatment is an energy-intensive process and electricity demand is especially high during the utilities summer peak electricity demand periods. This makes wastewater treatment facilities prime candidates for demand response programs. However, wastewater treatment is often peripheral to food processing operations and its demand response opportunities have often been overlooked. Phase I of this wastewater demonstration project monitored wastewater energy and environmental data at Bell-Carter Foods, Inc., California's largest olive processing plant. For this monitoring activity the project team used Green Energy Management System (GEMS) automated enterprise energy management (EEM) technologies. This report presents results from data collected by GEMS from September 15, 2008 through November 30, 2008, during the olive harvest season. This project established and tested a methodology for (1) gathering baseline energy and environmental data at an industrial food-processing plant and (2) using the data to analyze energy efficiency, demand response, daily peak load management, and environmental management opportunities at the plant. The Phase I goals were to demonstrate the measurement and interrelationship of electricity demand, electricity usage, and water quality metrics and to estimate the associated CO{sub 2} emissions.

  3. Advanced Process Technology: Combi Materials Science and Atmospheric Processing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts -- High-Throughput Combi Material Science and Atmospheric Processing that includes scope, core competencies and capabilities, and contact/web information.

  4. U.S. Department of Energy’s Industrial Technologies Program and Its Impacts

    SciTech Connect (OSTI)

    Weakley, Steven A.; Brown, Scott A.

    2011-05-20

    The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ-mental performance, product quality, and productivity. To help ITP determine the impacts of its pro-grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro-gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer-cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the new technolo-gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNL’s most recent review (conducted in 2010). From 1976-2009, the commercialized technologies from ITP’s research and development programs and other activities have cumulatively saved 10.0 quadrillion Btu, with a net cost savings of $61.82 billion.

  5. U.S. Department of Energy’s Industrial Technology Program and Its Impacts

    SciTech Connect (OSTI)

    Weakley, Steven A.; Roop, Joseph M.

    2010-05-15

    The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ-mental performance, product quality, and productivity. To help ITP determine the impacts of its pro-grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro-gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer-cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the new technolo¬gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNL’s most recent review (conducted in 2009). From 1976-2008, the commercialized technologies from ITP’s research and development programs and other activities have cumulatively saved 9.27 quadrillion Btu, with a net cost savings of $63.91 billion.

  6. U.S. Department of Energy’s Industrial Technology Program and Its Impacts

    SciTech Connect (OSTI)

    Weakley, Steven A.; Roop, Joseph M.

    2009-04-02

    The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ-mental performance, product quality, and productivity. To help ITP determine the impacts of its pro-grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro-gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer-cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the new technolo¬gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNL’s most recent review (conducted in 2008). From 1976-2007, the commercialized technologies from ITP’s research and development programs and other activities have cumulatively saved 6.17 quadrillion Btu, with a net cost savings of $63.0 billion.

  7. Technology Roadmap for the 21st Century Truck Program, a government-industry research partnership

    SciTech Connect (OSTI)

    2000-12-01

    The 21st Century Truck Program has been established as a government-industry research partnership to support the development and implementation of commercially viable technologies that will dramatically cut fuel use and emissions of commercial trucks and buses while enhancing their safety and affordability as well as maintaining or enhancing performance. The innovations resulting from this program will reduce dependence on foreign oil, improve our nation's air quality, provide advanced technology for military vehicles, and enhance the competitiveness of the U.S. truck and bus industry while ensuring safe and affordable freight and bus transportation for the nation's economy. This Technology Roadmap for the 21st Century Truck Program has been prepared to guide the development of the technical advancements that will enable the needed improvements in commercial truck fuel economy, emissions, and safety.

  8. Gas Turbines Increase the Energy Efficiency of Industrial Processes 

    E-Print Network [OSTI]

    Banchik, I. N.; Bohannan, W. R.; Stork, K.; McGovern, L. J.

    1981-01-01

    It is a well known fact that the gas turbine in a combined cycle has a higher inherent Carnot efficiency than the steam cycle which has been more generally accepted by industry. Unlike steam turbines, gas turbines do not require large boiler feed...

  9. Superior Process Technology Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEuropeEnergy InformationSunrain Jump to:SuntraceProcess

  10. Process Capability Database Usage In Industry: Myth vs. Reality

    E-Print Network [OSTI]

    Tata, Melissa M.

    1999-01-01

    Process capability data (PCD) is needed for robust design, optimal tolerance allocation, and variation

  11. BEHAVIOURAL REALISM IN A TECHNOLOGY EXPLICIT ENERGY-ECONOMY MODEL: THE ADOPTION OF INDUSTRIAL COGENERATION IN CANADA

    E-Print Network [OSTI]

    COGENERATION IN CANADA by Nicholas J. Rivers B.Eng., Memorial University of Newfoundland, 2000 RESEARCH PROJECT: Behavioural realism in a technology explicit energy-economy model: The adoption of industrial cogeneration the results. The model showed that industrial cogeneration is a relatively unknown technology to many firms

  12. Research-Technology Management November--December 2013 | 1 Before the Industrial Revolution, goods were produced by

    E-Print Network [OSTI]

    Research-Technology Management · November--December 2013 | 1 Before the Industrial Revolution linked to the producer; there was no middleman and no supply chain. The Industrial Revolution ushered to the manufacturing sector as the Industrial Revolution was--the age of 3D printing and the digital tools that support

  13. Development and Testing of a Moving Granular Bed Filter at the Taiwan Industrial Technology Research Institute

    SciTech Connect (OSTI)

    Peng, C.Y.; Hsiau, S-S.; Lee, H-T.; Smid, J.; Wu, T-C.

    2002-09-18

    The main purpose of developing high temperature gas cleaning technologies are to clean the gas under high temperature in order to be cost effective and to improve energy efficiency. Moving granular bed filters are technically and economically applicable for high temperature cleaning system because of low cost, possible to keep operation at a constant pressure drop, simple structure, easy in operation and maintenance, no high risk internals, and more tolerant to process thermal flow. Energy and Resource Laboratories, Taiwan Industrial Technology Research Institute (ERL/ITRI) has been developing a moving granular bed filter (MGBF) for BIGCC(Biomass Integrated Gasification Combined Cycle) high temperature gas cleanup. The filter granules move downwards directed by louver-like guide plates and the hot gases penetrate the MGBF horizontally. Filtration mechanisms include collection of the dust cake over the bed media surface and deep bed filtration. Stagnant zones of filter granules combining with the dusts always exist along the louver walls. Such stagnant zones often corrode the louver-like guide plates, increase the system pressure drop and decrease the total reaction efficiency that may endanger MGBF operation. Series louver and inert structure research that modify the granular flow pattern have been designed to eliminate the formation of these stagnant zones. By connecting to an auxiliary dust/bed media separation system, MGBF can be operated continuously at a stable pressure drop with a stable high efficiency. There are several MGBF R&D activities in progress: (1) a 3-dimensional cold flow system for testing the MGBF filtration efficiency; (2) a high temperature gas cleanup experimental system that has been designed and installed; (3) a 2-dimensional flow pattern experimental system for approving design concepts.

  14. Plan for advanced microelectronics processing technology application. Final report

    SciTech Connect (OSTI)

    Goland, A.N.

    1990-10-01

    The ultimate objective of the tasks described in the research agreement was to identify resources primarily, but not exclusively, within New York State that are available for the development of a Center for Advanced Microelectronics Processing (CAMP). Identification of those resources would enable Brookhaven National Laboratory to prepare a program plan for the CAMP. In order to achieve the stated goal, the principal investigators undertook to meet the key personnel in relevant NYS industrial and academic organizations to discuss the potential for economic development that could accompany such a Center and to gauge the extent of participation that could be expected from each interested party. Integrated of these discussions was to be achieved through a workshop convened in the summer of 1990. The culmination of this workshop was to be a report (the final report) outlining a plan for implementing a Center in the state. As events unfolded, it became possible to identify the elements of a major center for x-ray lithography on Lone Island at Brookhaven National Laboratory. The principal investigators were than advised to substitute a working document based upon that concept in place of a report based upon the more general CAMP workshop originally envisioned. Following that suggestion from the New York State Science and Technology Foundation, the principals established a working group consisting of representatives of the Grumman Corporation, Columbia University, the State University of New York at Stony Brook, and Brookhaven National Laboratory. Regular meetings and additional communications between these collaborators have produced a preproposal that constitutes the main body of the final report required by the contract. Other components of this final report include the interim report and a brief description of the activities which followed the establishment of the X-ray Lithography Center working group.

  15. Aerogel-Based Insulation for High-Temperature Industrial Processes...

    Office of Scientific and Technical Information (OSTI)

    CONSUMPTION, AND UTILIZATION; COMPETITION; ENERGY CONSUMPTION; MARKET; PERFORMANCE; POWER PLANTS; PROCESSING; SALES; SILICA; STEAM Insulation, energy savings, aerogel,...

  16. Renewable Electricity Use by the U.S. Information and Communication Technology (ICT) Industry

    SciTech Connect (OSTI)

    Miller, John; Bird, Lori; Heeter, Jenny; Gorham, Bethany

    2015-07-20

    The information and communication technology (ICT) sector continues to witness rapid growth and uptake of ICT equipment and services at both the national and global levels. The electricity consumption associated with this expansion is substantial, although recent adoptions of cloudcomputing services, co-location data centers, and other less energy-intensive equipment and operations have likely reduced the rate of growth in this sector. This paper is intended to aggregate existing ICT industry data and research to provide an initial look at electricity use, current and future renewable electricity acquisition, as well as serve as a benchmark for future growth and trends in ICT industry renewable electricity consumption.

  17. Ultra-High Efficiency and Low-Emissions Combustion Technology for Manufacturing Industries

    SciTech Connect (OSTI)

    Atreya, Arvind

    2013-04-15

    The purpose of this research was to develop and test a transformational combustion technology for high temperature furnaces to reduce the energy intensity and carbon footprint of U.S. manufacturing industries such as steel, aluminum, glass, metal casting, and petroleum refining. A new technology based on internal and/or external Flue Gas Recirculation (FGR) along with significant enhancement in flame radiation was developed. It produces "Radiative Flameless Combustion (RFC)" and offers tremendous energy efficiency and pollutant reduction benefits over and above the now popular "flameless combustion." It will reduce the energy intensity (or fuel consumption per unit system output) by more than 50% and double the furnace productivity while significantly reducing pollutants and greenhouse gas emissions (10^3 times reduction in NOx and 10 times reduction in CO & hydrocarbons and 3 times reduction in CO2). Product quality improvements are also expected due to uniform radiation, as well as, reduction in scale/dross formation is expected because of non-oxidative atmosphere. RFC is inexpensive, easy to implement, and it was successfully tested in a laboratory-scale furnace at the University of Michigan during the course of this work. A first-ever theory with gas and particulate radiation was also developed. Numerical programs were also written to design an industrial-scale furnace. Nine papers were published (or are in the process of publication). We believe that this early stage research adequately proves the concept through laboratory experiments, modeling and computational models. All this work is presented in the published papers. Important conclusions of this work are: (1) It was proved through experimental measurements that RFC is not only feasible but a very beneficial technology. (2) Theoretical analysis of RFC was done in (a) spatially uniform strain field and (b) a planar momentum jet where the strain rate is neither prescribed nor uniform. Four important non-dimensional parameters controlling RFC in furnaces were identified. These are: (i) The Boltzmann number; (ii) The Damkohler number, (iii) The dimensionless Arrhenius number, and (iv) The equivalence ratio. Together they define the parameter space where RFC is possible. It was also found that the Damkohler number must be small for RFC to exist and that the Boltzmann number expands the RFC domain. The experimental data obtained during the course of this work agrees well with the predictions made by the theoretical analysis. Interestingly, the equivalence ratio dependence shows that it is easier to establish RFC for rich mixtures than for lean mixtures. This was also experimentally observed. Identifying the parameter space for RFC is necessary for controlling the RFC furnace operation. It is hoped that future work will enable the methodology developed here to be applied to the operation of real furnaces, with consequent improvement in efficiency and pollutant reduction. To reiterate, the new furnace combustion technology developed enables intense radiation from combustion products and has many benefits: (i) Ultra-High Efficiency and Low-Emissions; (ii) Uniform and intense radiation to substantially increase productivity; (iii) Oxygen-free atmosphere to reduce dross/scale formation; (iv) Provides multi-fuel capability; and (v) Enables carbon sequestration if pure oxygen is used for combustion.

  18. Voltage Sag-Related Upsets of Industrial Process Controls in Petroleum and Chemical Industries 

    E-Print Network [OSTI]

    Mansoor, A.; Key, T.; Woinsky, S.

    1998-01-01

    with PLC controls. The sensitivity of these process controls can stop an essential service motor required for a continuous process such as in a refinery or chemical plant. Typically the controls are sensitive to the common momentary voltage sag caused...

  19. Department of Industrial Engineering Fall 2011 Transmission Component Reverse Engineering and Process Planning

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Industrial Engineering Fall 2011 Transmission Component Reverse Engineering to fabricate the parts in the Industrial Engineering Department Factory for Advanced Manufacturing Education of the transmission to reverse engineer and develop process plans for efficient fabrication in a low volume setting

  20. Cogeneration handbook for the chemical process industries. [Contains glossary

    SciTech Connect (OSTI)

    Fassbender, A.G.; Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Eakin, D.E.; Gorges, H.A.

    1984-03-01

    The desision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the chemical industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

  1. Industrial Steam System Process-Control Schemes | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OFBarriers to Industrial EnergyThe Thomas F.basic

  2. Industrial and Process Efficiency Performance Incentives | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OFBarriers to Industrial EnergyThe

  3. NOx reduction technology for natural-gas-industry prime movers. Special report, August 1990

    SciTech Connect (OSTI)

    Castaldini, C.

    1990-08-01

    The applicability, performance, and costs are summarized for state-of-the-art NOx emission controls for prime movers used by the natural gas industry to drive pipeline compressors. Nearly 7700 prime movers of 300 hp or greater are in operation at compressor stations. NOx control technologies for application to reciprocating engines are catalytic reduction, engine modification, exhaust gas recirculation, and pre-stratified charge. Technologies discussed for application to gas turbines are catalytic reduction, water or steam injection, and low-NOx combustors.

  4. An Assessment of carbon reduction technology opportunities in the petroleum refining industry.

    SciTech Connect (OSTI)

    Petrick, M.

    1998-09-14

    The refining industry is a major source of CO{sub 2} emissions in the industrial sector and therefore in the future can expect to face increasing pressures to reduce emission levels. The energy used in refining is impacted by market dictates, crude quality, and environmental regulations. While the industry is technologically advanced and relatively efficient opportunities nevertheless exist to reduce energy usage and CO{sub 2} emissions. The opportunities will vary from refinery to refinery and will necessarily have to be economically viable and compatible with each refiner's strategic plans. Recognizing the many factors involved, a target of 15-20% reduction in CO{sub 2} emissions from the refining sector does not appear to be unreasonable, assuming a favorable investment climate.

  5. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    of its electricity requirements in the USA (US DOE, 2002)USA, where motor-driven systems account for 63% of industrial electricity

  6. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    increased use of biomass and energy efficiency improvements,Moreira, J. , 2006: Global biomass energy potential. Journal1971–2004 Notes 1) Biomass energy included 2) Industrial

  7. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    of Industrial Electrical Switchgear and Control Gear in the6 from use in electrical switchgear and magnesium processinggas insulated electrical switchgear, during the production

  8. The processes of industrial gold mining and inequality: a Ghanaian case study 

    E-Print Network [OSTI]

    Gawor, Natalie

    2011-11-24

    The research examined how inequality manifests itself through the processes of industrial gold mining using a case study of Newmont Mining Corporations’ Ahafo Gold Mine in Ghana. The pursuit of neoliberal development and widespread transnational...

  9. Developing system-based leading indicators for proactive risk management in the chemical processing industry

    E-Print Network [OSTI]

    Khawaji, Ibrahim A. (Ibrahim Abdullah)

    2012-01-01

    The chemical processing industry has faced challenges with achieving improvements in safety performance, and accidents continue to occur. When accidents occur, they usually have a confluence of multiple factors, suggesting ...

  10. Developing Standard Logic for a Detailed Engineering Project Schedule in the Process Industry

    E-Print Network [OSTI]

    Miller-Karns, Kara A.

    2009-05-15

    A good schedule is critical to the successful execution of any project. This is especially true in the process industry, where construction schedule overruns can be costly to the client due to lost production capability. Developing a standard...

  11. Process Waste Heat Recovery in the Food Industry - A System Analysis 

    E-Print Network [OSTI]

    Lundberg, W. L.; Mutone, G. A.

    1983-01-01

    An analysis of an industrial waste heat recovery system concept is discussed. For example purposes, a food processing plant operating an ammonia refrigeration system for storage and blast freezing is considered. Heat is withdrawn from...

  12. education. Our co-op program is closely associated with the Canadian high technology industry, giving you valuable work

    E-Print Network [OSTI]

    Dawson, Jeff W.

    education. Our co-op program is closely associated with the Canadian high technology industry is a major contributor to Ottawa's prominence in high technology. In return, our program is enriched through, several high technology companies specializing in computer systems and information networks. Admission

  13. The roadmap for downscaling and introducing new technologies in the semiconductor industry is well laid out for the next ten years2.

    E-Print Network [OSTI]

    The roadmap for downscaling and introducing new technologies in the semiconductor industry is well in the International Technology Roadmap for Semiconductors, one- dimensional structures, such as carbon nanotubes

  14. Designing Optimal Heat and Power Systems for Industrial Processes 

    E-Print Network [OSTI]

    Rutkowski, M. A.; Witherell, W. D.

    1988-01-01

    . It must facilitate understanding the tradeoffs among the components of the heat and power system including steam generation, furnaces used for process heating, steam and gas turbines, heat exchange networks, heat pumps, refrigeration systems, and purchased...

  15. Developing Process Safety Indicators for Organizational Factors in Petrochemical Industries 

    E-Print Network [OSTI]

    Alnashwan, Mohammed

    2015-07-09

    Most major process safety incidents are preventable and can be avoided as shown in several incident investigation reports. Moreover, these reports indicated that these incidents were certain to occur as shown from the related near-misses and safety...

  16. Combined Cycles and Cogeneration - An Alternative for the Process Industries 

    E-Print Network [OSTI]

    Harkins, H. L.

    1981-01-01

    Cogeneration may be described as an efficient method for the production of electric power sequentially with process steam or heat which optimizes the energy supplied as fuel to maximize the energy produced for consumption. The state...

  17. Solar industrial retrofit of a natural gas processing plant

    SciTech Connect (OSTI)

    Henry, R.L.; McDowell, J.H.

    1980-01-01

    This study was a joint effort by Northrup, Inc., and ARCO Oil and Gas Company to design a solar powered process heat system to be installed at the ARCO North Coles Levee Gas Processing Plant No. 8. Thermal energy for the process is supplied by a heat medium oil at temperatures of 301/sup 0/C (575 F) to 193/sup 0/C (380 F). Currently, this oil is being heated by two natural gas fired heaters and a heat recovery unit that operates on waste heat from a continuously operated gas turbine. The solar retrofit system is being designed to displace natural gas presently consumed in the heaters. The solar system will deliver solar energy to the process with an annual average efficiency of 58% and has been sized to yield an average solar fraction of 33% relative to the plant's normal annual usage of 83,450 MW/sub th/-hr.

  18. Survey of US Department of Defense Manufacturing Technology Program activities applicable to civilian manufacturing industries. Final report

    SciTech Connect (OSTI)

    Azimi, S.A.; Conrad, J.L.; Reed, J.E.

    1985-03-01

    Intent of the survey was to identify and characterize activities potentially applicable to improving energy efficiency and overall productivity in the civilian manufacturing industries. The civilian industries emphasized were the general manufacturing industries (including fabricated metals, glass, machinery, paper, plastic, textile, and transportation equipment manufacturing) and the primary metals industries (including primary aluminum, copper, steel, and zinc production). The principal steps in the survey were to: develop overview taxonomies of the general manufacturing and primary metals industries as well as specific industry taxonomies; identify needs and opportunities for improving process energy efficiency and productivity in the industries included; identify federal programs, capabilities, and special technical expertise that might be relevant to industry's needs and opportunities; contact federal laboratories/facilities, through visits and other forms of inquiry; prepare formatted profiles (descriptions) potentially applicable work efforts; review findings with industry; and compile and evaluate industry responses.

  19. 6/10/12 UK team advances measurement of gas bubbles in pipelines. | Technology news | Process Engineer... 1/2processengineering.theengineer.co.uk/.../1012631.article

    E-Print Network [OSTI]

    Sóbester, András

    process in the manufacturing, power, oil & gas and petrochemical industries. For instance, the sharp6/10/12 UK team advances measurement of gas bubbles in pipelines. | Technology news | Process | Process Engineer... 2/2processengineering.theengineer.co.uk/.../1012631.article The work centred

  20. Bates solar industrial process-steam application: preliminary design review

    SciTech Connect (OSTI)

    Not Available

    1980-01-07

    The design is analyzed for a parabolic trough solar process heat system for a cardboard corrugation fabrication facility in Texas. The program is briefly reviewed, including an analysis of the plant and process. The performance modeling for the system is discussed, and the solar system structural design, collector subsystem, heat transport and distribution subsystem are analyzed. The selection of the heat transfer fluid, and ullage and fluid maintenance are discussed, and the master control system and data acquisition system are described. Testing of environmental degradation of materials is briefly discussed. A brief preliminary cost analysis is included. (LEW)

  1. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

    2008-01-01

    The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  2. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    options for combined heat and power in Canada. Office ofpolicies to promote combined heat and power in US industry.conversions, such as combined heat and power and coke ovens,

  3. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    iron and steel production. IEA Greenhouse Gas R&D Programme,tempera- ture range. IEA/Caddet, Sittard, The Netherlands.industry. Cheltenham, UK, IEA Greenhouse Gas R&D Programme,

  4. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    developing countries, like India, adoption of efficient electricitydeveloping countries the sugar in- dustry uses bagasse and the edible oils industry uses byproduct wastes to generate steam and/or electricity (

  5. Supercritical Fluid Extraction Applications in the Process Industries 

    E-Print Network [OSTI]

    Lahiere, R. J.; Fair, J. R.; Humphrey, J. L.

    1985-01-01

    of glycerides with supercritical CO 2 and co-solvent acetone would require 30% less energy than other methods [18]. While considering the implementation of an SFE process versus, say, distillation, an energy manager must balance the benefits... solvent, to high densities where the fluid is a good one. The primary region of interest in SFE is bounded by 0.9 supercritical fluids are intermediate...

  6. Redesigning Process Cooling Systems in the Plastics Industry 

    E-Print Network [OSTI]

    Anderson, G. R.

    2006-01-01

    systems were designed with one thing in mind – ensuring adequate capacity. Energy consumption was a much lower priority with their process cooling systems, resulting in inefficient chillers, oversized pumps, undersized cooling towers, and poorly... sequenced operations. Lifetime decided to step back and evaluate their entire cooling system for opportunities to reduce energy use after they recognized the potential for “free cooling” from the chiller’s cooling towers during the winter. Lifetime’s...

  7. Potential for Heat Pumps in the U.S. Process Industries 

    E-Print Network [OSTI]

    Rossiter, A. P.; Seetharam, R. V.; Ranade, S. M.

    1987-01-01

    PUMPS IN THE U. S. PROCESS INDUSTRIES A.P. ROSSITER, R.V. SEETHARAM AND S.M. RANADE TENSA Services Houston, ABSTRACT Two major criteria for successful heat pump installations in process plants are the "appropriate placement" and "appropriate... sizing" of the heat pump, consistent with the thermodynamics of the process. Failure to fulfil these conditions will result in the heat pump not achieving the anticipated savings and may even cause a net increase in process energy costs. This paper...

  8. Cluster building by policy design: a sociotechnical constituency study of information communication technology (ICT) industries in Scotland and Hong Kong 

    E-Print Network [OSTI]

    Wong, Alexandra Wai Wah

    2009-01-01

    This thesis investigates whether and how public policies can help build industrial clusters. The research applies a case study method based on 60 interviews to the emerging information communication technology (ICT) ...

  9. Crossing the Valley of Death: Policy Options to Advance the Uptake of Energy-Efficient Emerging Technologies in US Industry 

    E-Print Network [OSTI]

    Harris, J.; Bostrom, P.; Lung, R. B.

    2011-01-01

    and private investment, perceived risk, organizational decision-making, and regulatory certainty are all factors that influence the market penetration of emerging industrial technologies. Understanding their interplay is crucial to providing a policy...

  10. VIRTUAL ENVIRONMENTS FOR MACHINING PROCESSES SIMULATION: REVIEW ON THE REQUIRED TECHNOLOGIES AND

    E-Print Network [OSTI]

    Aristomenis, Antoniadis

    VIRTUAL ENVIRONMENTS FOR MACHINING PROCESSES SIMULATION: REVIEW ON THE REQUIRED TECHNOLOGIES@yahoo.gr Aristomenis Antoniadis Department of Natural Resources and Environment Technological Educational Institute at clarifying the technologies involved in the development of a virtual environment for machining processes

  11. ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market (May 1999)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Cooperative partnerships between industry and government are encouraging the development and use of innovative technologies that reduce industrial energy use, processing wastes, and production costs.

  12. Latest Developments in Image Processing Methods and Technologies for Magnetic Confinement Nuclear Fusion

    E-Print Network [OSTI]

    Latest Developments in Image Processing Methods and Technologies for Magnetic Confinement Nuclear Fusion

  13. Oxygen Enrichment in the Process and Chemical Industries 

    E-Print Network [OSTI]

    Milne, R. T.

    1984-01-01

    the efficiency of combustion processes. In a conventional ai r-fuel flame, combustion results from the collision of oxygen molecules wi th those 0f the fuel. The use 0f oxygen enrichment to increase the oxygen concentration in the fuel-air mixture... (Figure 3), which leads to improved heat transfer in the combustion zone. This results in a number of potential advantages: i. Fuel Savings At constant output the fuel firing rate may be reduced to compensate for the improved heat utilization...

  14. Image Reconstruction of a Metal Fill Industrial Process Using Genetic Programming Alaa Al-Afeef

    E-Print Network [OSTI]

    Fernandez, Thomas

    the characteristic of the molten metal in Lost Foam Casting (LFC) process [12], [13] and many others. B. ECT SensorImage Reconstruction of a Metal Fill Industrial Process Using Genetic Programming Alaa Al-field and Ill-condition characteristic of ECT. The basic idea of the ECT for image re- construction for a metal

  15. Japanese power electronics inverter technology and its impact on the American air conditioning industry

    SciTech Connect (OSTI)

    Ushimaru, Kenji.

    1990-08-01

    Since 1983, technological advances and market growth of inverter- driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries-- microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices--were able to direct the development and market success of inverter-driven heat pumps. As a result, leading US variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales. 54 refs., 47 figs., 1 tab.

  16. 4 th World Congress on Industrial Process Tomography, Aizu, Japan Modelling and predicting flow regimes using wavelet

    E-Print Network [OSTI]

    Aykroyd, Robert G.

    4 th World Congress on Industrial Process Tomography, Aizu, Japan Modelling and predicting flow of Statistics, University of Leeds, Leeds, LS2 9JT, UK, robert@maths.leeds.ac.uk ABSTRACT The aim of industrial without intruding into the industrial process, but produce highly correlated and noisy data, and hence

  17. submitted to International Journal of Occupational Safety and Ergonomics, JOSE, 1998 Title: Adaptive Process Control in Rubber Industry

    E-Print Network [OSTI]

    Brause, R.

    : Adaptive Process Control in Rubber Industry Authors: Rüdiger W. Brause , Ulf Pietruschka Affiliation: J in rubber industry. We show that the human and economical benefits of an adaptive solution for the approximation of process parameters are very attractive. The modeling of the industrial problem is done

  18. Steam Technical Brief: Industrial Heat Pumps for Steam and Fuel Savings

    SciTech Connect (OSTI)

    2010-06-25

    The purpose of this Steam Techcial Brief is to introduce heat-pump technology and its applicaiton in industrial processes.

  19. Industrial Heat Pumps for Steam and Fuel Savings: A BestPractices Steam Technical Brief

    SciTech Connect (OSTI)

    Not Available

    2003-06-01

    The purpose of this Steam Techcial Brief is to introduce heat-pump technology and its applicaiton in industrial processes.

  20. Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry

    E-Print Network [OSTI]

    Kong, Lingbo

    2014-01-01

    potential in the pulp and paper industry up to 2030. Master1999. India's Pulp and Paper Industry: Productivity andfor the Pulp and Paper Industry . 69

  1. Waste generation process modeling and analysis for fuel reprocessing technologies

    SciTech Connect (OSTI)

    Kornreich, D. E. (Drew E.); Koehler, A. C. (Andrew C.); Farman, Richard F.

    2002-01-01

    Estimates of electric power generation requirements for the next century, even when taking the most conservative tack, indicate that the United States will have to increase its production capacity significantly. If the country determines that nuclear power will not be a significant component of this production capacity, the nuclear industry will have to die, as maintaining a small nuclear component will not be justifiable. However, if nuclear power is to be a significant component, it will probably require some form of reprocessing technology. The once-through fuel cycle is only feasible for a relatively small number of nuclear power plants. If we are maintaining several hundred reactors, the once-through fuel cycle is more expensive and ethically questionable.

  2. Final Report - ADVANCED LASER-BASED SENSORS FOR INDUSTRIAL PROCESS CONTROL

    SciTech Connect (OSTI)

    Gupta, Manish; Baer, Douglas

    2013-09-30

    The objective of this work is to capture the potential of real-time monitoring and overcome the challenges of harsh industrial environments, Los Gatos Research (LGR) is fabricating, deploying, and commercializing advanced laser-based gas sensors for process control monitoring in industrial furnaces (e.g. electric arc furnaces). These sensors can achieve improvements in process control, leading to enhanced productivity, improved product quality, and reduced energy consumption and emissions. The first sensor will utilize both mid-infrared and near-infrared lasers to make rapid in-situ measurements of industrial gases and associated temperatures in the furnace off-gas. The second sensor will make extractive measurements of process gases. During the course of this DOE project, Los Gatos Research (LGR) fabricated, tested, and deployed both in-situ tunable diode laser absorption spectrometry (TDLAS) analyzers and extractive Off-Axis Integrated Cavity Output Spectroscopy (Off-Axis ICOS) analyzers.

  3. Technology Licensing Opportunity Non-Confidential Summary

    E-Print Network [OSTI]

    Peak, Derek

    Technology Licensing Opportunity Non-Confidential Summary Industry Liaison Office 121 Research synthesis. #12;Technology Licensing Opportunity Non-Confidential Summary Industry Liaison Office 121 Agriculture Chair of Lipid Quality and Utilization Research interests: Oil seed processing, vegetable oil

  4. FY 2009 Progress: Process Monitoring Technology Demonstration at PNNL

    SciTech Connect (OSTI)

    Arrigo, Leah M.; Christensen, Ronald N.; Fraga, Carlos G.; Liezers, Martin; Peper, Shane M.; Thomas, Elizabeth M.; Bryan, Samuel A.; Douglas, Matthew; Laspe, Amy R.; Lines, Amanda M.; Peterson, James M.; Ward, Rebecca M.; Casella, Amanda J.; Duckworth, Douglas C.; Levitskaia, Tatiana G.; Orton, Christopher R.; Schwantes, Jon M.

    2009-12-01

    Pacific Northwest National Laboratory (PNNL) is developing and demonstrating three technologies designed to assist in the monitoring of reprocessing facilities in near-real time. These technologies include 1) a multi-isotope process monitor (MIP), 2) a spectroscopy-based monitor that uses UV-Vis-NIR (ultraviolet-visible-near infrared) and Raman spectrometers, and 3) an electrochemically modulated separations approach (EMS). The MIP monitor uses gamma spectroscopy and pattern recognition software to identify off-normal conditions in process streams. The UV-Vis-NIR and Raman spectroscopic monitoring continuously measures chemical compositions of the process streams including actinide metal ions (uranium, plutonium, neptunium), selected fission products, and major cold flow sheet chemicals. The EMS approach provides an on-line means for separating and concentrating elements of interest out of complex matrices prior to detection via nondestructive assay by gamma spectroscopy or destructive analysis with mass spectrometry. A general overview of the technologies and ongoing demonstration results are described in this report.

  5. Lubricant oil production: The proper marriage of process and catalyst technologies

    SciTech Connect (OSTI)

    Everett, G.L.; Suchanek, A.

    1996-12-01

    As the industry moves into the next millennium, higher product quality demands to meet the higher performance needs of modern engine technology and rising costs of traditional good quality lube crudes are driving lubricant base oil manufacturers to select hydroprocessing options versus traditional solvent refining techniques. This paper discusses how to properly select the best economic hydroprocessing technology necessary to produce high quality lubricant base oils and waxes. The economic success of such operations depends on the proper combination of process and catalyst technologies that maximizes yields of high quality products with minimum consumption of hydrogen resources and process utilities. This is particular true on the extreme end of the quality spectrum, namely, Very High Viscosity Index (VHVI) base oils and food grade white oils and waxes where there is no room for marginal product quality. Multiplicity of operations is also becoming more important as refiners try to upgrade their facilities with as little capital expense as possible, while at the same time, broaden their high valued product slate to recoup these expenses in the shortest possible payback period. Lyondell Licensing and Criterion Catalyst have put together an effective alliance based on years of development and commercial experience in both the process and catalyst areas to assist lubricant oil manufacturers in meeting these future challenges using as much existing equipment and infrastructure as is practical. Their experience will permit the proper fitting of the chemistry of hydroprocessing to make lubricant base oils to existing or new operations.

  6. Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry

    SciTech Connect (OSTI)

    2011-03-07

    AMO is developing advanced technologies that cut energy use and carbon emissions in some of the most energy-intensive processes within U.S. manufacturing. The brochure describes the AMO R&D projects that address these challenges.

  7. OPPORTUNITIES FOR AUTOMATED DEMAND RESPONSE IN CALIFORNIA’S DAIRY PROCESSING INDUSTRY

    SciTech Connect (OSTI)

    Homan, Gregory K.; Aghajanzadeh, Arian; McKane, Aimee

    2015-08-30

    During periods of peak electrical demand on the energy grid or when there is a shortage of supply, the stability of the grid may be compromised or the cost of supplying electricity may rise dramatically, respectively. Demand response programs are designed to mitigate the severity of these problems and improve reliability by reducing the demand on the grid during such critical times. In 2010, the Demand Response Research Center convened a group of industry experts to suggest potential industries that would be good demand response program candidates for further review. The dairy industry was suggested due to the perception that the industry had suitable flexibility and automatic controls in place. The purpose of this report is to provide an initial description of the industry with regard to demand response potential, specifically automated demand response. This report qualitatively describes the potential for participation in demand response and automated demand response by dairy processing facilities in California, as well as barriers to widespread participation. The report first describes the magnitude, timing, location, purpose, and manner of energy use. Typical process equipment and controls are discussed, as well as common impediments to participation in demand response and automated demand response programs. Two case studies of demand response at dairy facilities in California and across the country are reviewed. Finally, recommendations are made for future research that can enhance the understanding of demand response potential in this industry.

  8. Vehicle Technologies Office Merit Review 2015: Advanced Drying Process for Lower Manufacturing Cost of Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by Lambda Technologies at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced drying process...

  9. OTHER INDUSTRIES

    Office of Energy Efficiency and Renewable Energy (EERE)

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  10. Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications

    SciTech Connect (OSTI)

    Armstrong, Phillip

    2014-11-01

    Air Products is carrying out a scope of work under DOE Award No. DE-FE0012065 “Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications.” The Statement of Project Objectives (SOPO) includes a Task 4f in which a Decision Point shall be reached, necessitating a review of Tasks 2-5 with an emphasis on Task 4f. This Topical Report constitutes the Decision Point Application pertaining to Task 4f. The SOPO under DOE Award No. DE-FE0012065 is aimed at furthering the development of the Ion Transport Membrane (ITM) Oxygen production process toward a demonstration scale facility known as the Oxygen Development Facility (ODF). It is anticipated that the completion of the current SOPO will advance the technology significantly along a pathway towards enabling the design and construction of the ODF. Development progress on several fronts is critical before an ODF project can commence; this Topical Report serves as an early update on the progress in critical development areas. Progress was made under all tasks, including Materials Development, Ceramic Processing Development, Engineering Development, and Performance Testing. Under Task 4f, Air Products carried out a cost and performance study in which several process design and cost parameters were varied and assessed with a process model and budgetary costing exercise. The results show that the major variables include ceramic module reliability, ITM operating temperature, module production yield, and heat addition strategy. High-temperature compact heat exchangers are shown to contribute significant cost benefits, while directly firing into the feed stream to an ITM are even a mild improvement on the high-temperature recuperation approach. Based on the findings to-date, Air Products recommends no changes to the content or emphasis in the current SOPO and recommends its completion prior to another formal assessment of these factors.

  11. Record of the facility deactivation, decommissioning, and material disposition (D and D) workshop: A new focus for technology development, opportunities for industry/government collaboration

    SciTech Connect (OSTI)

    Bedick, R.C.; Bossart, S.J.; Hart, P.W.

    1995-07-01

    This workshop was held at the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia, on July 11--12, 1995. The workshop sought to establish a foundation for continued dialogue between industry and the DOE to ensure that industry`s experiences, lessons learned, and recommendations are incorporated into D and D program policy, strategy, and plans. The mission of the D and D Focus Area is to develop improved technologies, processes and products, to characterize, deactivate, survey, maintain, decontaminate, dismantle, and dispose of DOE surplus structures, buildings, and contents. The target is a five-to-one return on investment through cost avoidance. The cornerstone of the D and D focus area activities is large-scale demonstration projects that actually decontaminate, decommission, and dispose of a building. The aim is to demonstrate innovative D and D technologies as part of an ongoing DOE D and D project. OTD would pay the incremental cost of demonstrating the innovative technologies. The goal is to have the first demonstration project completed within the next 2 years. The intent is to select projects, or a project, with visible impact so all of the stakeholders know that a building was removed, and demonstrate at a scale that is convincing to the customers in the EM program so they feel comfortable using it in subsequent D and D projects. The plan is to use a D and D integrating contractor who can then use the expertise in this project to use in jobs at other DOE sites.

  12. Actinide solution processing at the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    1995-04-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1039, for radioactive solution removal and processing at Rocky Flats Environmental Technology Site, Golden, Colorado. The proposal for solution removal and processing is in response to independent safety assessments and an agreement with the State of Colorado to remove mixed residues at Rocky Flats and reduce the risk of future accidents. Monthly public meetings were held during the scoping and preparation of the EA. The scope of the EA included evaluations of alternative methods and locations of solution processing. A comment period from February 20, 1995 through March 21, 1995 was provided to the public and the State of Colorado to offer written comment on the EA. Comments were received from the State of Colorado and the U.S. Environmental Protection Agency. A response to the agency comments is included in the Final EA.

  13. Science for Energy Technology: The Industry Perspective (2011 EFRC Summit, panel session)

    SciTech Connect (OSTI)

    Wadsworth, Jeffrey (Battelle Memorial Institute) [Battelle Memorial Institute; Carlson, David E. (BP Solar) [BP Solar; Chiang, Yet-Ming (MIT and A123 Systems) [MIT and A123 Systems; Hunt, Catherine T. (Dow Chemical) [Dow Chemical

    2011-05-25

    A distinguished panel of industry leaders discussed how basic science impacts energy technology at the 2011 EFRC Summit. Panel members are Jeffrey Wadworth, President and CEO of Battelle Memorial Institute; David E. Carlson, the Chief Scientist for BP Solar; Yet-Ming Chiang, Professor at MIT and the founder of A123 Systems; and Catherine T. Hunt, the R&D Director of Innovation Sourcing and Sustainable Technologies at the Dow Chemical Company. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss 'Science for our Nation's Energy Future.' In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  14. Science for Energy Technology: The Industry Perspective (2011 EFRC Summit, panel session)

    ScienceCinema (OSTI)

    Wadsworth, Jeffrey (Battelle Memorial Institute); Carlson, David E. (BP Solar); Chiang, Yet-Ming (MIT and A123 Systems); Hunt, Catherine T. (Dow Chemical)

    2012-03-20

    A distinguished panel of industry leaders discussed how basic science impacts energy technology at the 2011 EFRC Summit. Panel members are Jeffrey Wadworth, President and CEO of Battelle Memorial Institute; David E. Carlson, the Chief Scientist for BP Solar; Yet-Ming Chiang, Professor at MIT and the founder of A123 Systems; and Catherine T. Hunt, the R&D Director of Innovation Sourcing and Sustainable Technologies at the Dow Chemical Company. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss 'Science for our Nation's Energy Future.' In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  15. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    SciTech Connect (OSTI)

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  16. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01

    Emerging Technologies for Ironmaking Using Blast FurnaceAgglomerates 3.4. Alternative Ironmaking Technologies 3.4.1.Tecnored 3.4.4. ITmk3 Ironmaking Process 3.4.5. Paired

  17. AN INTEGRATED VISION TO ASSIST THE EVOLUTION IN INDUSTRIAL RISK MANAGEMENT PROCESS IN FRANCE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    AN INTEGRATED VISION TO ASSIST THE EVOLUTION IN INDUSTRIAL RISK MANAGEMENT PROCESS IN FRANCE Management in the field of environmental protection and risk prevention has evolved to the increasing with the complexity of risk management issues, in particular for those related to land-use planning. As technical

  18. The application of neural networks with artificial intelligence technique in the modeling of industrial processes

    SciTech Connect (OSTI)

    Saini, K. K.; Saini, Sanju [CDLM engg. College Panniwala Mota, Sirsa and Murthal, Sonipat, Haryana (India)

    2008-10-07

    Neural networks are a relatively new artificial intelligence technique that emulates the behavior of biological neural systems in digital software or hardware. These networks can 'learn', automatically, complex relationships among data. This feature makes the technique very useful in modeling processes for which mathematical modeling is difficult or impossible. The work described here outlines some examples of the application of neural networks with artificial intelligence technique in the modeling of industrial processes.

  19. Materials needs and opportunities in the pulp and paper industry

    SciTech Connect (OSTI)

    Angelini, P. [comp.

    1995-08-01

    The Department of Energy`s (DOE) Office of Industrial Technologies (OIT) supports research and development (R&D) in industry, the DOE national laboratories, and in universities to develop energy efficient, environmentally-acceptable industrial technologies. The Office of Industrial Technologies is working with seven energy-intensive industries to develop R&D roadmaps that will facilitate cooperative government-industry efforts to achieve energy-efficient, environmentally-acceptable, sustainable industries of the future. The forest products industry is one of the industries with which OIT is working to develop an R&D roadmap. The Advanced Industrial Materials (AIM) Program of the Office of Industrial Technologies sponsors long-term, directed research on materials that will enable industry to develop and utilize more energy-efficient, sustainable processes and technologies. The purpose of the study described in this report was to identify the material R&D needs and opportunities for the pulp and paper mill of the future.

  20. Separation process using microchannel technology (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail. (Conference) |Janka,FerraraTechnologies (Conference) | SciTechSeparation process

  1. Innovation in mature industries : recent impacts of the oil & gas and automobile technological trends on the steel industry

    E-Print Network [OSTI]

    Tivelli, Marco M. (Marco Mario), 1964-

    2004-01-01

    In order to survive, the steel industry has undergone traumatic changes in the last years. A thirty years old overcapacity combined with a slow growing market led to a steadily eroding profitability of steel companies, ...

  2. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    as cover gas for casting the primary metal into ingots andsmelting, metal refining, rolling and casting. For most non-Casting CO 2 – Electricity CO 2 – Other steps in the production process All other Non-Ferrous-Metals

  3. Development Requirements for Advanced Industrial Heat Pumps 

    E-Print Network [OSTI]

    Chappell, R. N.; Priebe, S. J.; Bliem, C. J.; Mills, J. I.

    1985-01-01

    DOE is attempting to advance the use of heat pumps to save energy in industrial processes. The approach has emphasized developing better heat pump technology and transferring that technology to the private sector. DOE requires that heat pump...

  4. Virtual Welded - Joint Design Integrating Advanced Materials and Processing Technology

    SciTech Connect (OSTI)

    Yang, Zhishang; Ludewig, Howard W.; Babu, S. Suresh

    2005-06-30

    Virtual Welede-Joint Design, a systematic modeling approach, has been developed in this project to predict the relationship of welding process, microstructure, properties, residual stress, and the ultimate weld fatique strength. This systematic modeling approach was applied in the welding of high strength steel. A special welding wire was developed in this project to introduce compressive residual stress at weld toe. The results from both modeling and experiments demonstrated that more than 10x fatique life improvement can be acheived in high strength steel welds by the combination of compressive residual stress from the special welding wire and the desired weld bead shape from a unique welding process. The results indicate a technology breakthrough in the design of lightweight and high fatique performance welded structures using high strength steels.

  5. REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES

    SciTech Connect (OSTI)

    Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

    2002-02-25

    The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

  6. SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT COLLEGE OF ENGINEERING, ARCHITECTURE AND TECHNOLOGY

    E-Print Network [OSTI]

    Piao, Daqing

    SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT COLLEGE OF ENGINEERING performance. Candidates must have a Ph.D. in industrial engineering or a related in the industrial engineering and management field. We seek candidates with curricular

  7. Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry

    E-Print Network [OSTI]

    Kong, Lingbo

    2014-01-01

    potential in the pulp and paper industry up to 2030. Master1999. India's Pulp and Paper Industry: Productivity andWhite. 2006. Pulp and Paper Industry Energy Bandwidth Study.

  8. New process modeling [sic], design, and control strategies for energy efficiency, high product quality, and improved productivity in the process industries. Final project report

    SciTech Connect (OSTI)

    Ray, W. Harmon

    2002-06-05

    This project was concerned with the development of process design and control strategies for improving energy efficiency, product quality, and productivity in the process industries. In particular, (i) the resilient design and control of chemical reactors, and (ii) the operation of complex processing systems, was investigated. Specific topics studied included new process modeling procedures, nonlinear controller designs, and control strategies for multiunit integrated processes. Both fundamental and immediately applicable results were obtained. The new design and operation results from this project were incorporated into computer-aided design software and disseminated to industry. The principles and design procedures have found their way into industrial practice.

  9. Technological options of Taiwan to mitigate global warming: Perspectives of a newly industrialized economy

    SciTech Connect (OSTI)

    Young, R.T.; Fang, L.J.

    1996-12-31

    While there is no shortage of studies on whether and how OECD countries can stabilize their CO{sub 2} emissions, the situation in developing countries has been subjected to much less scrutiny. Although current emission levels in developing countries are low, they can vastly increase in the future due to higher economic growth rates. Of particular interest are newly industrializing economies; they are positioned to be the first group of countries to catch up with OECD emission levels. In this paper, the authors examine the CO{sub 2} emission scenarios in Taiwan, whose economy is still growing at more than 6% after years of impressive performance. A dynamic, multi-period optimization model was constructed to evaluate various energy system development paths. Both currently utilized technologies and advanced technologies that may become available are considered. The model meets externally specified final energy sectoral demands while keeping the objective function minimal. For devising a practical program to control greenhouse gases emissions, relative advantages of the conventional regulation approach with incentive-based approaches are compared. The comparison is made by running the model using different objective functions.

  10. Solar feasibility study for site-specific industrial-process-heat applications. Final report

    SciTech Connect (OSTI)

    Murray, O.L.

    1980-03-18

    This study addresses the technical feasibility of solar energy in industrial process heat (IPH) applications in Mid-America. The study was one of two contracted efforts covering the MASEC 12-state region comprised of: Illinois, Michigan, North Dakota, Indiana, Minnesota, Ohio, Iowa, Missouri, South Dakota, Kansas, Nebraska, Wisconsin. The results of our study are encouraging to the potential future role of solar energy in supplying process heat to a varied range of industries and applications. We identified and developed Case Study documentation of twenty feasible solar IPH applications covering eight major SIC groups within the Mid-American region. The geographical distribution of these applications for the existing range of solar insolation levels are shown and the characteristics of the applications are summarized. The results of the study include process identification, analysis of process heat requirements, selection of preliminary solar system characteristics, and estimation of system performance and cost. These are included in each of the 20 Case Studies. The body of the report is divided into two primary discussion sections dealing with the Study Methodology employed in the effort and the Follow-On Potential of the identified applications with regard to possible demonstration projects. The 20 applications are rated with respect to their relative overall viability and procedures are discussed for possible demonstration project embarkment. Also, a possible extension of this present feasibility study for late-comer industrial firms expressing interest appears worthy of consideration.

  11. An Integrated Approach to Evaluating the Technical and Commercial Options for Cogeneration Facilities in the Process Industry 

    E-Print Network [OSTI]

    Cooke, D. H.; McCue, R. H.

    1985-01-01

    Cogeneration under the PURPA law is providing opportunity to the Process Industry not only to conserve fuel and electric costs associated with commercial process production, but effectively to share in the revenue from the sale of consumer power...

  12. ITP Metal Casting: Energy and Environmental Profile of the U.S. Metal casting Industry

    Office of Energy Efficiency and Renewable Energy (EERE)

    The DOE's Office of Industrial Technologies has formed apartnership with the U.S. metalcasting industry to accelerate the development of technoloiges and processes that will improve the industry's energy efficiency and environmental performance.

  13. Efficient Nonlinear Optimization with Rigorous Models for Large Scale Industrial Chemical Processes 

    E-Print Network [OSTI]

    Zhu, Yu

    2011-08-08

    of Department, Michael Pishko May 2011 Major Subject: Chemical Engineering iii ABSTRACT Efficient Nonlinear Optimization with Rigorous Models for Large Scale Industrial Chemical Processes. (May 2011) Yu Zhu, B.S., Zhejiang University; M.S., Zhejiang... . . . . . . . . . . . . . . . . . . . . . . . . . . 1 A. Nonlinear Optimization with Rigorous Large Scale Models 1 B. Chemical Applications of Nonlinear Optimization . . . . . 2 1. Design under Uncertainty . . . . . . . . . . . . . . . . 3 2. Optimal Operations with Steady State Models . . . . 4...

  14. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01

    Experiences with Industrial Heat Pumps. Analyses Series #23.of Energy (DOE) (2003). Industrial Heat Pumps for Steam andin the industrial sector. However, geothermal heat pumps may

  15. BEHAVIOURAL REALISM IN A TECHNOLOGY EXPLICIT ENERGY-ECONOMY MODEL: THE ADOPTION OF INDUSTRIAL COGENERATION IN CANADA

    E-Print Network [OSTI]

    COGENERATION IN CANADA Prepared for: OFFICE OF ENERGY EFFICIENCY NATURAL RESOURCES CANADA Prepared by: NIC choice model was estimated from the results. The model showed that industrial cogeneration is a relatively unknown technology to many firms. Among those that were familiar with cogeneration, its high

  16. Incentives to Accelerate the Penetration of Electricity in the Industrial Sector by Promoting New Technologies: A French Experiment 

    E-Print Network [OSTI]

    Bouchet, J.; Froehlich, R.

    1983-01-01

    A major problem encountered when trying to speed up electrification of French industry has been 'hot to finance, at end-user's level, investments related to such a change of technology'. Government incentives, the aims of which are to help saving...

  17. Technology, Knowledge, Culture, and Management: the keys The shift from industrial societies to information societies

    E-Print Network [OSTI]

    Kopec, Danny

    Technology, Knowledge, Culture, and Management: the keys to success Abstract The shift from to success: technology, knowledge, culture and management. Organizations employ technology with the goal of improving efficiency and reducing operational costs. Hence technology structures within organizations must

  18. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Masanet, Eric

    2008-01-01

    industry/bestpractices/software.html Pump System AssessmentPumps, and Fans website at: http://www1.eere.energy.gov/industry/processing industry: steam systems, motors and pumps,

  19. Energy and Environmental Profile of the Aluminum Industry

    SciTech Connect (OSTI)

    Margolis, Nancy

    1997-07-01

    This detailed report (PDF 2.5 MB) benchmarks the energy and environmental characteristics of the key technologies used in the major processes of the aluminum industry.

  20. Process automation using combinations of process and machine control technologies with application to a continuous dissolver

    SciTech Connect (OSTI)

    Spencer, B.B.: Yarbro, O.O.

    1991-01-01

    Operation of a continuous rotary dissolver, designed to leach uranium-plutonium fuel from chopped sections of reactor fuel cladding using nitric acid, has been automated. The dissolver is a partly continuous, partly batch process that interfaces at both ends with batchwise processes, thereby requiring synchronization of certain operations. Liquid acid is fed and flows through the dissolver continuously, whereas chopped fuel elements are fed to the dissolver in small batches and move through the compartments of the dissolver stagewise. Sequential logic (or machine control) techniques are used to control discrete activities such as the sequencing of isolation valves. Feedback control is used to control acid flowrates and temperatures. Expert systems technology is used for on-line material balances and diagnostics of process operation. 1 ref., 3 figs.

  1. 12010-10-21 ESDSWG -Technolgy Infusion Working Group Technology Infusion Process

    E-Print Network [OSTI]

    Christian, Eric

    /function provided vs. needs). Technology assessment matrix with scores. ­ Cost/benefit analysis. ­ Proof of concept12010-10-21 ESDSWG - Technolgy Infusion Working Group Technology Infusion Process Steve Olding 9th Infusion Working Group Technology Infusion Process 2009 Stakeholder needs identification Science needs End

  2. Applying New Technologies: ANT Automation es una empresa de Automatizacin Industrial, con operaciones en USA, Argentina y Espaa. La empresa est conformada por un slido grupo de

    E-Print Network [OSTI]

    Maguitman, Ana Gabriela

    Applying New Technologies: ANT Automation es una empresa de Automatización Industrial, con más de 12 años de experiencia en Software/Automatización Industrial y por nuevos jóvenes talentos con el desarrollo de productos de software industrial: OPC, SCADA, MES, VISION ARTIFICIAL, MODELOS

  3. Prospects for pyrolysis technologies in managing municipal, industrial, and DOE cleanup wastes

    SciTech Connect (OSTI)

    Reaven, S.J.

    1994-12-01

    Pyrolysis converts portions of municipal solid wastes, hazardous wastes, and special wastes such as tires, medical wastes, and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. Pyrolysis heats a carbonaceous waste stream typically to 290--900 C in the absence of oxygen, and reduces the volume of waste by 90% and its weight by 75%. The solid carbon char has existing markets as an ingredient in many manufactured goods, and as an adsorbent or filter to sequester certain hazardous wastes. Pyrolytic gases may be burned as fuel by utilities, or liquefied for use as chemical feedstocks, or low-pollution motor vehicle fuels and fuel additives. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates for the four most promising pyrolytic systems their technological and commercial readiness, their applicability to regional waste management needs, and their conformity with DOE requirements for environmental restoration and waste management. This summary characterizes their engineering performance, environmental effects, costs, product applications, and markets. Because it can effectively treat those wastes that are inadequately addressed by current systems, pyrolysis can play an important complementing role in the region`s existing waste management strategy. Its role could be even more significant if the region moves away from existing commitments to incineration and MSW composting. Either way, Long Island could become the center for a pyrolysis-based recovery services industry serving global markets in municipal solid waste treatment and hazardous waste cleanup. 162 refs.

  4. Integrating renewable energy technologies in the electric supply industry: A risk management approach

    SciTech Connect (OSTI)

    Hoff, T.E. [Pacific Energy Group, Walnut Creek, CA (United States)

    1997-07-01

    Regulatory and technical forces are causing electric utilities to move from a natural monopoly to a more competitive environment. Associated with this movement is an increasing concern about how to manage the risks associated with the electric supply business. One approach to managing risks is to purchase financial instruments such as options and futures contracts. Another approach is to own physical assets that have low risk attributes or characteristics. This research evaluates how investments in renewable energy technologies can mitigate risks in the electric supply industry. It identifies risks that are known to be of concern to utilities and other power producers. These risks include uncertainty in fuel prices, demand, environmental regulations, capital cost, supply, and market structure. The research then determines how investments in renewables can mitigate these risks. Methods are developed to calculate the value of renewables in terms of their attributes of fuel costs, environmental costs, lead-time, modularity, availability, initial capital costs, and investment reversibility. Examples illustrate how to apply the methods.

  5. Agricultural Industry Advanced Vehicle Technology: Benchmark Study for Reduction in Petroleum Use

    SciTech Connect (OSTI)

    Roger Hoy

    2014-09-01

    Diesel use on farms in the United States has remained relatively constant since 1985, decreasing slightly in 2009, which may be attributed to price increases and the economic recession. During this time, the United States’ harvested area also has remained relatively constant at roughly 300 million acres. In 2010, farm diesel use was 5.4% of the total United States diesel use. Crops accounting for an estimated 65% of United States farm diesel use include corn, soybean, wheat, hay, and alfalfa, respectively, based on harvested crop area and a recent analysis of estimated fuel use by crop. Diesel use in these cropping systems primarily is from tillage, harvest, and various other operations (e.g., planting and spraying) (Figure 3). Diesel efficiency is markedly variable due to machinery types, conditions of operation (e.g., soil type and moisture), and operator variability. Farm diesel use per acre has slightly decreased in the last two decades and diesel is now estimated to be less than 5% of farm costs per acre. This report will explore current trends in increasing diesel efficiency in the farm sector. The report combines a survey of industry representatives, a review of literature, and data analysis to identify nascent technologies for increasing diesel efficiency

  6. Product strategy in response to technological innovation in the semiconductor test industry

    E-Print Network [OSTI]

    Lin, Robert W. (Robert Wei-Pang), 1976-

    2004-01-01

    After the market boom of 2000 in the semiconductor industry changed significantly. The changes included stricter limits on capital cost spending, and the increased propensity of the industry to outsource the manufacturing ...

  7. Overview of U. S. Department of Energy Program in Industrial Energy Conservation Technology Development 

    E-Print Network [OSTI]

    Massey, R. G.

    1980-01-01

    The primary responsibility for Federal industrial energy conservation is in the Office of Industrial Programs which reports to the Assistant Secretary for Conservation and Solar Energy. The objectives of the Federal program are to: achieve maximum...

  8. Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry

    E-Print Network [OSTI]

    Kong, Lingbo

    2014-01-01

    Pulp and Paper Industry Lingbo Kong, Ali Hasanbeigi, Lynn Price ChinaPulp and Paper Industry Lingbo Kong 1, 2 , Ali Hasanbeigi 1 , Lynn Price 1 ChinaPulp and Paper Industry Lingbo Kong 1, 2 , Ali Hasanbeigi 1 , Lynn Price 1 China

  9. National Institute of Advanced Industrial Science and Technology Material Test Systems in High Pressure

    E-Print Network [OSTI]

    Siefert, Chris

    Pressure Hydrogen Gas at AIST Tsukuba Takashi Iijima, Bai An Hydrogen Industrial Use and Storage Group for Hydrogen Industrial Use and Storage) Collaborative Research Center between Kyusu University and AIST for Hydrogen Industrial Use and Storage (HYDROGENIUS) AIST Tsukuba Hydrogen Dynamics in Metals Research Team

  10. Combustion Turbine CHP System for Food Processing Industry- Presentation by Frito-Lay North America, June 2011

    Broader source: Energy.gov [DOE]

    Presentation on Combustion Turbine CHP System for Food Processing Industry, given by Kevin Chilcoat of Frito-Lay North America, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

  11. GEOPHYSICS, VOL. 64, NO. 6 (NOVEMBERDECEMBER 1999); P. 18771889, 15 FIGS., 2 TABLES. Source processes of industrially-induced earthquakes

    E-Print Network [OSTI]

    Foulger, G. R.

    , mirrors the steam production rate, sug- gesting that the earthquakes are industrially induced. A 15 processes of industrially-induced earthquakes at The Geysers geothermal area, California Alwyn Ross, G. R reinjection and steam with- drawal. Compensated linear vector dipole (CLVD) com- ponents were up to 100

  12. Magnetic Processing – A Pervasive Energy Efficient Technology for Next Generation Materials for Aerospace and Specialty Steel Markets

    SciTech Connect (OSTI)

    Mackiewicz-Ludtka, G.; Ludtka, G.M.; Ray, P.; Magee, J.

    2010-09-10

    Thermomagnetic Magnetic Processing is an exceptionally fertile, pervasive and cross-cutting technology that is just now being recognized by several major industry leaders for its significant potential to increase energy efficiency and materials performance for a myriad of energy intensive industries in a variety of areas and applications. ORNL has pioneered the use and development of large magnetic fields in thermomagnetically processing (T-MP) materials for altering materials phase equilibria and transformation kinetics. ORNL has discovered that using magnetic fields, we can produce unique materials responses. T-MP can produce unique phase stabilities & microstructures with improved materials performance for structural and functional applications not achieved with traditional processing techniques. These results suggest that there are unprecedented opportunities to produce significantly enhanced materials properties via atomistic level (nano-) microstructural control and manipulation. ORNL (in addition to others) have shown that grain boundary chemistry and precipitation kinetics are also affected by large magnetic fields. This CRADA has taken advantage of ORNL’s unique, custom-designed thermo-magnetic, 9 Tesla superconducting magnet facility that enables rapid heating and cooling of metallic components within the magnet bore; as well as ORNL’s expertise in high magnetic field (HMF) research. Carpenter Technologies, Corp., is a a US-based industrial company, that provides enhanced performance alloys for the Aerospace and Specialty Steel products. In this CRADA, Carpenter Technologies, Corp., is focusing on applying ORNL’s Thermomagnetic Magnetic Processing (TMP) technology to improve their current and future proprietary materials’ product performance and open up new markets for their Aerospace and Specialty Steel products. Unprecedented mechanical property performance improvements have been demonstrated for a high strength bainitic alloy industrial/commercial alloy that is envisioned to provide the potential for new markets for this alloy. These thermomechanical processing results provide these alloys with a major breakthrough demonstrating that simultaneous improvements in yield strength and ductility are achieved: 12 %, 10%, 13%, and 22% increases in yield strength, elongation, reduction-in-area, and impact energy respectively. In addition, TMP appears to overcome detrimental chemical homogeneity impacts on uniform microstructure evolution.

  13. Development of Advanced Surface Enhancement Technology for Decreasing Wear and Corrosion of Equipment Used for Mineral Processing

    SciTech Connect (OSTI)

    Daniel Tao; Craig A. Blue

    2004-08-01

    Equipment wear is a major concern in the mineral processing industry, which dramatically increases the maintenance cost and adversely affects plant operation efficiency. In this research, wear problems of mineral processing equipment including screens, sieve bends, heavy media vessel, dewatering centrifuge, etc., were identified. A novel surface treatment technology, high density infrared (HDI) surface coating process was proposed for the surface enhancement of selected mineral processing equipment. Microstructural and mechanical properties of the coated samples were characterized. Laboratory-simulated wear tests were conducted to evaluate the tribological performance of the coated components. Test results indicate that the wear resistance of AISI 4140 and ASTM A36 steels can be increased 3 and 5 folds, respectively by the application of HDI coatings.

  14. Development of Advanced Surface Enhancement Technology for Decreasing Wear and Corrosion of Equipment Used for Mineral Processing

    SciTech Connect (OSTI)

    Daniel Tao; R. Honaker; B. K. Parekh

    2007-09-20

    Equipment wear is a major concern in the mineral processing industry, which dramatically increases the maintenance cost and adversely affects plant operation efficiency. In this research, novel surface treatment technologies, High Density Infrared (HDI) and Laser Surface Engineering (LSE) surface coating processes were developed for the surface enhancement of selected mineral and coal processing equipment. Microstructural and mechanical properties of the coated specimens were characterized. Laboratory-simulated wear tests were conducted to evaluate the tribological performance of the coated components. Test results indicate that the wear resistance of ASTM A36 (raw coal screen section) and can be significantly increased by applying HDI and LSE coating processes. Field testing has been performed using a LSE-treated screen panel and it showed a significant improvement of the service life.

  15. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    SciTech Connect (OSTI)

    Sathaye, J.; Xu, T.; Galitsky, C.

    2010-08-15

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

  16. A Study of Customer Service, Customer Satisfaction and Service Quality in the Logistics Function of the UK Food Processing Industry 

    E-Print Network [OSTI]

    Grant, David Bruce

    The aim of this thesis is to test the importance and sufficiency of existing constructs of customer service, customer satisfaction and service quality in the logistics function of the UK food processing industry. These ...

  17. Buildings Technologies Deployment | Clean energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are successfully deployed to the fullest extent possible. ORNL helps optimize the energy performance of buildings and industrial processes by moving technologies to full...

  18. High efficiency coarse-grained customised dynamically reconfigurable architecture for digital image processing and compression technologies 

    E-Print Network [OSTI]

    Zhao, Xin

    2012-06-25

    Digital image processing and compression technologies have significant market potential, especially the JPEG2000 standard which offers outstanding codestream flexibility and high compression ratio. Strong demand for ...

  19. Nuclear Safety R&D in the Waste Processing Technology Development...

    Office of Environmental Management (EM)

    Baione Office of Waste Processing DOE-EM Office of Engineering & Technology 2 Outline Nuclear Safety Research & Development Overview Summary of EM- NSR&D Presentations from...

  20. 6.152J / 3.155J Microelectronics Processing Technology, Fall 2003

    E-Print Network [OSTI]

    Schmidt, Martin A.

    Introduces the theory and technology of integrated-circuit fabrication. Lectures and laboratory sessions on basic processing techniques such as diffusion, oxidation, epitaxy, photolithography, chemical vapor deposition, ...

  1. Vehicle Technologies Office Merit Review 2014: Process Development and Scale Up of Advanced Electrolyte Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about process...

  2. Vehicle Technologies Office Merit Review 2015: Process Development and Scale up of Advanced Active Battery Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Process...

  3. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01

    energy efficiency measures available for motors and pumps in industrialEnergy (DOE) (2002e). United States Industrial Electric MotorIndustrial Electric Motor Systems Market Opportunities Assessment. Prepared for the United States Department of Energy’

  4. Technology Choices for the PV Industry: A Comparative Life Cycle Assessment

    E-Print Network [OSTI]

    Boyd, Sarah; Dornfeld, David A

    2005-01-01

    2000), “Environmental Life Cycle Assessment of Solar HomePV INDUSTRY: A Comparative Life Cycle Assessment Sarah Boydinput-output life cycle assessment (EIOLCA) to capture both

  5. 2014 U.S. Offshore Wind Market Report: Industry Trends, Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stehly, Walt Musial Floating Substructure Sensitivities Global Market Trends * The global offshore wind industry is set to reach a deployment record with 4,000 megawatts (MW)...

  6. Ultra Wideband Technology and the Struggle to Adopt a Standard for the Consumer Electronics Industry

    E-Print Network [OSTI]

    Malakooty, Nina

    2006-01-01

    30). No Standard for UWB. Electronics News. Retrieved Marchuse throughout consumer electronics, is building a wirelessfor the Consumer Electronics Industry Nina Malakooty

  7. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01

    Summer Study on Energy Efficiency in Industry. AmericanSummer Study on Energy Efficiency in Industry. AmericanCanada, Office of Energy Efficiency, Ottawa, Ontario. Carbon

  8. ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY

    E-Print Network [OSTI]

    Kramer, Klaas Jan

    2010-01-01

    Efficiency and Renewable Energy, Industrial TechnologiesEfficiency and Renewable Energy, Industrial TechnologiesEfficiency and Renewable Energy, Industrial Technologies

  9. Innovative Bioenergy Process Recognized for Excellence in Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Award for developing an innovative process that uses heat and pressure to convert whole algae into biocrude oil in just minutes-much faster than existing processes. Using...

  10. Chemicals Industry Vision

    SciTech Connect (OSTI)

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  11. The ITRS Design Technology and System Drivers Roadmap: Process and Status

    E-Print Network [OSTI]

    Kahng, Andrew B.

    The ITRS Design Technology and System Drivers Roadmap: Process and Status Andrew B. Kahng CSE (TWG) is one of 16 working groups in the International Technology Roadmap for Semiconduc- tors (ITRS) effort. It is responsible for the ITRS' Design Chap- ter, which roadmaps design technology requirements

  12. "UUV FCEPS Technology Assessment and Design Process" Kevin L. Davies1

    E-Print Network [OSTI]

    Natural Energy Institute (HNEI), School of Ocean and Earth Science and Technology (SOEST) University on available UUV FCEPS technology, design methodology, and concepts. The report is limited to the Polymer"UUV FCEPS Technology Assessment and Design Process" Kevin L. Davies1 and Robert M. Moore Hawaii

  13. Technology Reports Solution Concentration Prediction for Pharmaceutical Crystallization Processes

    E-Print Network [OSTI]

    Using Robust Chemometrics and ATR FTIR Spectroscopy Timokleia Togkalidou, Hsien-Hsin Tung,*, Yongkui Sun systems in the presence of impurities and over a wide range of temperature. To our best knowledge in pharmaceutical industry such as crystal size distribution (CSD) and crystal shape of the product pharmaceuticals

  14. Supporting industries energy and environmental profile

    SciTech Connect (OSTI)

    None, None

    2005-09-21

    As part of its Industries of the Future strategy, the Industrial Technologies Program within the U.S. Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy works with energy-intensive industries to improve efficiency, reduce waste, and increase productivity. These seven Industries of the Future (IOFs) – aluminum, chemicals, forest products, glass, metal casting, mining, and steel – rely on several other so-called “supporting industries” to supply materials and processes necessary to the products that the IOFs create. The supporting industries, in many cases, also provide great opportunities for realizing energy efficiency gains in IOF processes.

  15. Demonstration of Innovative Applications of Technology for the CT-121 FGD Process. Project Performance Summary, Clean Coal Technology Demonstration Project

    SciTech Connect (OSTI)

    None, None

    2002-08-01

    This project is part of the U.S. Department of Energy?s (DOE) Clean Coal Technology Demonstration Program (CCTDP) established to address energy and environmental concerns related to coal use. DOE sought cost-shared partnerships with industry through five nationally competed solicitations to accelerate commercialization of the most promising advanced coal-based power generation and pollution control technologies. The CCTDP, valued at over five billion dollars, has significantly leveraged federal funding by forging effective partnerships founded on sound principles. For every federal dollar invested, CCTDP participants have invested two dollars. These participants include utilities, technology developers, state governments, and research organizations. The project presented here was one of sixteen selected from 55 proposals submitted in 1988 and 1989 in response to the CCTDP second solicitation.

  16. Solar capabilities : promoting, technological learning in South Africa's photovoltaic supply industry

    E-Print Network [OSTI]

    Wright, Janelle N., 1978-

    2003-01-01

    I explore the mechanisms through which technological capabilities have been built in the market for photovoltaic (PV) module and balance of system (BOS) manufacture in South Africa. Drawing on the literature on technology ...

  17. Technology and policy options for reducing industrial air pollutants in the Mexico City Metropolitan Area

    E-Print Network [OSTI]

    Vijay, Samudra, 1968-

    2005-01-01

    Technology plays an important role in dealing with air pollution and other environmental problems faced by developing and developed societies. This research examines if technological solutions alone, such as end-of-pipe ...

  18. ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry

    Office of Energy Efficiency and Renewable Energy (EERE)

    The study examines current and emerging melting technologies and discusses their technical barriers to scale-up issues and research needed to advance these technologies, improving melting efficiency, lowering metal transfer heat loss, and reducing scrap.

  19. Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry

    SciTech Connect (OSTI)

    None

    2005-11-01

    The study examines current and emerging melting technologies and discusses their technical barriers to scale-up issues and research needed to advance these technologies, improving melting efficiency, lowering metal transfer heat loss, and reducing scrap.

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01

    Opportunities in the Canadian Brewing Industry. Brewersat its G. Heileman Division brewing facility in La Crosse,

  1. Proceedings of the Conference on Industry Partnerships to Deploy Environmental Technology

    SciTech Connect (OSTI)

    1996-01-01

    Three goals were accomplished at the meeting: review of the latest environmental and waste-management technologies being developed under FETC sponsorship; addressing the accomplishments in, and barriers affecting, private-sector development of these technologies; and laying the groundwork for future technology development initiatives and opportunities.

  2. Using Software Engineering Technology to Improve the Quality of Medical Processes*

    E-Print Network [OSTI]

    Avrunin, George S.

    Using Software Engineering Technology to Improve the Quality of Medical Processes* Lori A. Clarke@cs.umass.edu ABSTRACT In this paper, we describe some of the key observations resulting from our work on using software, but is suggesting new research directions for medical process improvement, software engineering technologies

  3. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    SciTech Connect (OSTI)

    Xu, T.T.; Sathaye, J.; Galitsky, C.

    2010-09-30

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. With the working of energy programs and policies on carbon regulation, how to effectively analyze and manage the costs associated with GHG reductions become extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions (e.g., carbon emission) for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct brief overview on different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by problem statements, and a description of the basic concepts of quantifying the cost of conserved energy including integrating non-regrets options. A non-regrets option is defined as a GHG reduction option that is cost effective, without considering their additional benefits related to reducing GHG emissions. Based upon these, we develop information on costs of mitigation measures and technological change. These serve as the basis for collating the data on energy savings and costs for their future use in integrated assessment models. In addition to descriptions of the iron and steel making processes, and the mitigation measures identified in this study, the report includes tabulated databases on costs of measure implementation, energy savings, carbon-emission reduction, and lifetimes. The cost curve data on mitigation measures are available over time, which allows an estimation of technological change over a decade-long historical period. In particular, the report will describe new treatment of technological change in energy-climate modeling for this industry sector, i.e., assessing the changes in costs and energy-savings potentials via comparing 1994 and 2002 conservation supply curves. In this study, we compared the same set of mitigation measures for both 1994 and 2002 -- no additional mitigation measure for year 2002 was included due to unavailability of such data. Therefore, the estimated potentials in total energy savings and carbon reduction would most likely be more conservative for year 2002 in this study. Based upon the cost curves, the rate of change in the savings potential at a given cost can be evaluated and be used to estimate future rates of change that can be the input for energy-climate models. Through characterizing energy-efficiency technology costs and improvement potentials, we have developed and presented energy cost curves for energy efficiency measures applicable to the U.S. iron and steel industry for the years 1994 and 2002. The cost curves can change significantly under various scenarios: the baseline year, discount rate, energy intensity, production, industry structure (e.g., integrated versus secondary steel making and number of plants), efficiency (or mitigation) measures, share of iron and steel production to which the individual measures can be applied, and inclusion of other non-energy benefits. Inclusion of other non-energy benefits from implementing mitigation measures can reduce the costs of conserved energy significantly. In addition, costs of conserved energy (CCE) for individual mitigation measures increase with the increases in discount rates, resulting in a general increase in total cost of mitigation measures for implementation and operation with a higher discount rate. In 1994, integrated steel mills in the U.S. produced 55.

  4. Preliminary survey report: control technology for gallium arsenide processing at Morgan Semiconductor Division, Garland, Texas

    SciTech Connect (OSTI)

    Lenihan, K.L.

    1987-03-01

    The report covers a walk through survey made of the Morgan Semiconductor Facility in Garland, Texas, to evaluate control technology for gallium-arsenide dust in the semiconductor industry. Engineering controls included the synthesis of gallium-arsenide outside the crystal pullers to reduce arsenic residues in the pullers, also reducing worker exposure to arsenic during cleaning of the crystal pullers.

  5. Industrial Technology of Decontamination of Liquid Radioactive Waste in SUE MosSIA 'Radon' - 12371

    SciTech Connect (OSTI)

    Adamovich, Dmitry V.; Neveykin, Petr P.; Karlin, Yuri V.; Savkin, Alexander E. [SUE MosSIA 'Radon', 7th Rostovsky lane 2/14, Moscow 119121 (Russian Federation)

    2012-07-01

    SUE MosSIA 'RADON' - this enterprise was created more than 50 years ago, which deals with the recycling of radioactive waste and conditioning of spent sources of radiation in stationary and mobile systems in the own factory and operating organizations. Here is represented the experience SUE MosSIA 'Radon' in the field of the management with liquid radioactive waste. It's shown, that the activity of SUE MosSIA 'RADON' is developing in three directions - improvement of technical facilities for treatment of radioactive waters into SUE MosSIA 'RADON' development of mobile equipment for the decontamination of radioactive waters in other organizations, development of new technologies for decontamination of liquid radioactive wastes as part of various domestic Russian and international projects including those related to the operation of nuclear power and nuclear submarines. SUE MosSIA 'RADON' has processed more than 270 thousand m{sup 3} of radioactive water, at that more than 7000 m{sup 3} in other organizations for more than 50 years. It is shown that a number of directions, particularly, the development of mobile modular units for decontamination of liquid radioactive waste, SUE MosSIA 'RADON' is a leader in the world. (authors)

  6. Innovative Technology Improves Upgrading Process for Unconventional Oil

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIAL TECHNICAL ASSISTANCEPueblo, NewResources | Department of

  7. A Review of Energy Use and Energy Efficiency Technologies for the Textile Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01

    Inc. for U.S. Department of Energy’s Office of IndustrialRenewable and Sustainable Energy Reviews”, Volume 16 (2012)and Muthukumaraswamy, P. SITRA Energy Audit – Implementation

  8. A study of building technology in the Natal building industry, South Africa 

    E-Print Network [OSTI]

    Pather, Rubintheran

    1989-01-01

    This thesis reports the findings of a mail survey of 215 randomly selected Natal building industry professionals consisting of architects, civil engineers, quantity surveyors, academics, managers of building product manufacturers, and building...

  9. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Commercial power plant tests blend of refuse-derived fuel and coal to generate electricity

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    MSW can be converted to energy in two ways. One involves the direct burning of MSW to produce steam and electricity. The second converts MSW into refuse-derived fuel (RDF) by reducing the size of the MSW and separating metals, glass, and other inorganic materials. RDF can be densified or mixed with binders to form fuel pellets. As part of a program sponsored by DOE`s Office of Industrial Technologies, the National Renewable Energy Laboratory participated in a cooperative research and development agreement to examine combustion of binder-enhanced, densified refuse-derived fuel (b-d RDF) pellets with coal. Pelletized b-d RDF has been burned in coal combustors, but only in quantities of less than 3% in large utility systems. The DOE project involved the use of b-d RDF in quantities up to 20%. A major goal was to quantify the pollutants released during combustion and measure combustion performance.

  10. Method for evaluating the potential of geothermal energy in industrial process heat applications

    SciTech Connect (OSTI)

    Packer, M.B.; Mikic, B.B.; Meal, H.C., Guillamon-Duch, H.

    1980-05-01

    A method is presented for evaluating the technical and economic potential of geothermal energy for industrial process heat applications. The core of the method is a computer program which can be operated either as a design analysis tool to match energy supplies and demands, or as an economic analysis tool if a particular design for the facility has already been selected. Two examples are given to illustrate the functioning of the model and to demonstrate that results reached by use of the model closely parallel those that have been determined by more traditional techniques. Other features of interest in the model include: (1) use of decision analysis techniques as well as classical methods to deal with questions relating optimization; (2) a tax analysis of current regulations governing percentage depletion for geothermal deposits; and (3) development of simplified correlations for the thermodynamic properties of salt solutions in water.

  11. Optimum Reactor Outlet Temperatures for High Temperature Gas-Cooled Reactors Integrated with Industrial Processes

    SciTech Connect (OSTI)

    Lee O. Nelson

    2011-04-01

    This report summarizes the results of a temperature sensitivity study conducted to identify the optimum reactor operating temperatures for producing the heat and hydrogen required for industrial processes associated with the proposed new high temperature gas-cooled reactor. This study assumed that primary steam outputs of the reactor were delivered at 17 MPa and 540°C and the helium coolant was delivered at 7 MPa at 625–925°C. The secondary outputs of were electricity and hydrogen. For the power generation analysis, it was assumed that the power cycle efficiency was 66% of the maximum theoretical efficiency of the Carnot thermodynamic cycle. Hydrogen was generated via the hightemperature steam electrolysis or the steam methane reforming process. The study indicates that optimum or a range of reactor outlet temperatures could be identified to further refine the process evaluations that were developed for high temperature gas-cooled reactor-integrated production of synthetic transportation fuels, ammonia, and ammonia derivatives, oil from unconventional sources, and substitute natural gas from coal.

  12. Analysis of the impacts of Internet-based business activities on the container shipping industry : the system dynamics modeling approach with the framework of technological evolution

    E-Print Network [OSTI]

    Auh, Jae Hyuck, 1969-

    2003-01-01

    The internet-based business (e-business) activities have become a new technological challenge to the container shipping industry (CSI) in recent years. Despite the growing importance of e-business in the CSI, little ...

  13. Development of a Fischer-Tropsch Gasoline Process for the Steam Hydrogasification Technology

    E-Print Network [OSTI]

    Li, Yang

    2013-01-01

    Industrial   &  engineering  chemistry  research,  2005.  Industrial   &   engineering   chemistry   research,  Industrial   &   engineering   chemistry  research,  1995.  

  14. ANALYZING HIGHWAY DAMAGE COSTS ATTRIBUTED TO TRUCK TRAFFIC OF PROCESSED MEAT AND RELATED INDUSTRIES IN SOUTHWEST KANSAS

    E-Print Network [OSTI]

    Liu, Chunxiao

    2007-12-03

    .................................................................................... 10 2.1 Processed Meat Industries in Southwest Kansas ............................................ 11 2.1.1 Various Stages in the Movement of Cattle.............................................. 12 2.1.2 Cattle Feeding Industry... ................................................................................................................ 57 4.1 Truck VMT for Transporting Feeder Cattle to Feed Yards............................ 62 4.1.1 Truck Travel Paths for Transporting Feeder Cattle to Feed Yards ....... 62 4.1.2 Truckloads for Transporting Feeder Cattle to Feed Yards...

  15. A survey of industries which interview students through the Texas A&M Placement Office to ascertain their attitude toward the Engineering Technology Department 

    E-Print Network [OSTI]

    Johnson, Roy Newell

    1972-01-01

    A SURVEY OF INDUSTRIES WHICH INTERVIEW STUDENTS THROUGH THE TEXAS A&M PLACEMENT OFFICE TO ASCERTAIN THEIR ATTITUDE TOWARD THE ENGINEERING TECHNOLOGY DEPARTMENT A Thesis by ROY NEWELL JOHNSON Submitted to the Graduate College of Texas A... TOWARD THE ENGINEERING TECHNOLOGY DEPARTMENT A Thesis by ROY NEWELL JOHNSON Approved as to style and content by: (Chairman of Committee) (Head of Departmen (Member) (Memb er ) August 1972 g ". ;, 'j', '~ 0 ABSTRACT A Survey of Industries Which...

  16. Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry

    E-Print Network [OSTI]

    Kong, Lingbo

    2014-01-01

    economics of black liquor gasifier/gas turbine cogenerationblack liquor and biomass gasifier/gas turbine technology".entrained flow booster gasifier in New Bern, North Carolina;

  17. Innovative Bioenergy Process Recognized for Excellence in Technology

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OFBarriers to IndustrialStacks

  18. Midwest Industrial Energy Efficiency Handbook

    SciTech Connect (OSTI)

    2010-06-25

    This Industrial Technologies Program handbook connects industry with the various energy efficiency resources available in the midwest.

  19. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01

    in the development of ISO 50001, the International Standardswww.energystar.gov/industry. ISO 50001 was published on June

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01

    Caffal, C. (1995). Energy Management in Industry. Centre forEnergy Management .Management. Federal Energy Management Program, Washington,