Sample records for industrial process located

  1. Location logistics of industrial facilities

    E-Print Network [OSTI]

    Hammack, William Eugene

    1981-01-01T23:59:59.000Z

    of company intent1ons is not made at the correct time and in the correct manner. 6. Recommend Best Areas for Further Invest1 ations. Once the on-site evaluations have been completed, the 11st of possibilities is reduced still further and only the best... location and site selection. This data was gathered through library research, atten- dance of various industr1al development conferences, sol1citation of mater1als from individuals currently involved with industrial facil1ties location, and various...

  2. Industrial process surveillance system

    DOE Patents [OSTI]

    Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

    1998-06-09T23:59:59.000Z

    A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

  3. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01T23:59:59.000Z

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  4. Electrotechnologies in Process Industries

    E-Print Network [OSTI]

    Amarnath, K. R.

    The Industrial Program at the Electric Power Research Institute (EPRI) promotes the efficient use of electricity to improve the competitive position of the American industry. Electrotechnologies that improve productivity, improve quality...

  5. Energy conservation guide for industrial processes

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    Th Energy Conservation Guide for industrial processes has simple instructions to survey energy use areas at Navy industrial activities like shipyards, Naval air rework facilities and government owned, contractor operated (GOCO) plants. This guide includes information and procedures on: organizing and conducting an industrial energy survey; evaluating purchased energy data; descriptions of industrial systems; and evaluation of industrial processes for conservation.

  6. Industrial process heat market assessment

    SciTech Connect (OSTI)

    Bresnick, S.

    1981-12-01T23:59:59.000Z

    This report is designed to be a reference resource, giving a broad perspective of the potential HTGR market for industrial process heat. It is intended to serve as a briefing document for those wishing to obtain background information and also to serve as a starting point from which more detailed and refined studies may be undertaken. In doing so, the report presents a qualitative and quantitative description of the industrial process heat market in the US, provides a summary discussion of cogeneration experience to date, and outlines the existing institutional and financial framework for cogeneration. The intent is to give the reader an understanding of the current situation and experience in this area. The cogeneration area in particular is an evolving one because of regulations and tax laws, which are still in the process of being developed and interpreted. The report presents the latest developments in regulatory and legislative activities which are associated with that technology. Finally, the report presents a brief description of the three HTGR systems under study during the current fiscal year and describes the specific market characteristics which each application is designed to serve.

  7. Process Integration of Industrial Heat Pumps

    E-Print Network [OSTI]

    Priebe, S. J.; Chappell, R. N.

    PROCESS INTEGRATION OF INDUSTRIAL HEAT PUMPS* S. J. Priebe EG&G Idaho, Inc. Idaho Falls, Idaho ABSTRACT The integration of heat pumps into industrial processes shows potential for energy savings. Heat pumps must, however, be integrated... properly relative to the process pinch and the unit operations in the process. The shape of the grand composite curve, the type of heat ?pump drive, and the kind of heat pump cycle were examined to determine their effects on the placement of industrial...

  8. Process Integration of Industrial Heat Pumps 

    E-Print Network [OSTI]

    Priebe, S. J.; Chappell, R. N.

    1986-01-01T23:59:59.000Z

    The integration of heat pumps into industrial processes shows potential for energy savings. Heat pumps must, however, be integrated properly relative to the process pinch and the unit operations in the process. The shape of the grand composite curve...

  9. Industrial and Process Efficiency Performance Incentives

    Broader source: Energy.gov [DOE]

    The New York State Energy Research and Development Authority (NYSERDA) offers the Industrial and Process Efficiency (IPE) Program to provide performance-based incentives to manufacturers and data...

  10. Hierarchical production scheduling in the process industry

    E-Print Network [OSTI]

    Hierarchical production scheduling in the process industry Anna Lindholm Nils-Petter Nytz are handled. The activities are are denoted production scheduling (PS) and detailed production scheduling (DPS. The focus is on production scheduling for chemical process industries with continuous production

  11. Electrified Separation Processes in Industry

    E-Print Network [OSTI]

    Appleby, A. J.

    1983-01-01T23:59:59.000Z

    distillation, in the chemical and related industries is very considerable. The majority of the energy used for these separations is thermal input in the form of the low heating-value of oil or gas. From the national viewpoint, it would be advantageous...

  12. Integration of heat pumps into industrial processes

    SciTech Connect (OSTI)

    Chappell, R.N. (USDOE, Washington, DC (USA)); Priebe, S.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1989-01-01T23:59:59.000Z

    The Department of Energy and others have funded studies to assess the potential for energy savings using industrial heat pumps. The studies included classifications of heat pumps, economic evaluations, and placement of heat pumps in industrial processes. Pinch technology was used in the placement studies to determine the placement, size, and type of heat pumps for a given applications. There appears to be considerable scope for heat pumping in several industries, but, where maximum process energy savings are desired, it is important to consider heat pumping in the context of overall process integration. 19 refs., 15 figs.

  13. Location theory and the location of industry along an interstate highway

    E-Print Network [OSTI]

    Miller, James Patterson

    1965-01-01T23:59:59.000Z

    to determine the significance of these locational factors among plants with different characteristics that have located in certain localities should provide pertinent information with both practical and theoretical implications. Since 1956, approximately 64... Summary of Plant Location Theory Cost Fac'tots . . . . . . . . . . . . . ~ The Importance of 'the Demand Factor Greenhut's General Theory of Plant Location and the Intangible Factor Location Factors as Revealed by Empirical Study Greenhut's Case...

  14. Integrating Fermentation and Transesterification Industrial Scale Processes

    E-Print Network [OSTI]

    Pike, Ralph W.

    Integrating Fermentation and Transesterification Industrial Scale Processes in the Lower l d CO2 hanol, acetic acid etc. from CO2 Algae growth for use as biomass M lti it i O ti i ti P bl

  15. Surveillance of industrial processes with correlated parameters

    DOE Patents [OSTI]

    White, A.M.; Gross, K.C.; Kubic, W.L.; Wigeland, R.A.

    1996-12-17T23:59:59.000Z

    A system and method for surveillance of an industrial process are disclosed. The system and method includes a plurality of sensors monitoring industrial process parameters, devices to convert the sensed data to computer compatible information and a computer which executes computer software directed to analyzing the sensor data to discern statistically reliable alarm conditions. The computer software is executed to remove serial correlation information and then calculate Mahalanobis distribution data to carry out a probability ratio test to determine alarm conditions. 10 figs.

  16. Location theory and the location of industry along an interstate highway 

    E-Print Network [OSTI]

    Miller, James Patterson

    1965-01-01T23:59:59.000Z

    a greater gamble. This sect. ion has been devoted to s review of the fundamental factors underlying all plant location ss recognised in location theory. The next section will review some recent. empirical attempts to determine the actual... for this thesis was possible through the assistance provided )ointly by the Texas Highway Department and the Bureau of Public Roads. i. v TABLE OF CONTENTS Chapter Page INTRODUCTION Purpose Plan of Study REVIEW OF PLANT LOCATION CONCEPTS Introduction...

  17. Design of Industrial Process Refrigeration Systems

    E-Print Network [OSTI]

    Witherell, W. D.

    of the study is discussed in terms of identifying refrigeration intensive processes. Specific and general conclusions are presented to help faci I itate proper industrial refrigeration system design throughout fhe industry. This paper presents the resul ts... custaner's specifications. Most systems fall into two broad categories: Vapor Canpression Refrigeration Cycles - Mechanical or Steam Jet Canpression Systems Absorption Refrigeration Cycles - Heat Operated Cycles As shown in Table I, refrigerations...

  18. Waste Heat Management Options for Improving Industrial Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Management Options for Improving Industrial Process Heating Systems Waste Heat Management Options for Improving Industrial Process Heating Systems This presentation covers...

  19. Market development directory for solar industrial process heat systems

    SciTech Connect (OSTI)

    None

    1980-02-01T23:59:59.000Z

    The purpose of this directory is to provide a basis for market development activities through a location listing of key trade associations, trade periodicals, and key firms for three target groups. Potential industrial users and potential IPH system designers were identified as the prime targets for market development activities. The bulk of the directory is a listing of these two groups. The third group, solar IPH equipment manufacturers, was included to provide an information source for potential industrial users and potential IPH system designers. Trade associates and their publications are listed for selected four-digit Standard Industrial Code (SIC) industries. Since industries requiring relatively lower temperature process heat probably will comprise most of the near-term market for solar IPH systems, the 80 SIC's included in this chapter have process temperature requirements less than 350/sup 0/F. Some key statistics and a location list of the largest plants (according to number of employees) in each state are included for 15 of the 80 SIC's. Architectural/engineering and consulting firms are listed which are known to have solar experience. Professional associated and periodicals to which information on solar IPH sytstems may be directed also are included. Solar equipment manufacturers and their associations are listed. The listing is based on the SERI Solar Energy Information Data Base (SEIDB).

  20. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    SHIP - Solar heat for industrial processes. Internationalsolar power could be used to provide process heat for

  1. Impact of modern logistics on industrial location choice and property markets

    E-Print Network [OSTI]

    Li, Yu, 1976-

    2007-01-01T23:59:59.000Z

    The debate on the impact of modern logistics on industrial location choice and property markets focuses on (1) whether modern inventory control and supply- chain configuration consolidate manufacturing and distribution ...

  2. High-lift chemical heat pump technologies for industrial processes

    SciTech Connect (OSTI)

    Olszewski, M.; Zaltash, A.

    1995-03-01T23:59:59.000Z

    Traditionally industrial heat pumps (IHPs) have found applications on a process specific basis with reject heat from a process being upgraded and returned to the process. The IHP must be carefully integrated into a process since improper placement may result in an uneconomic application. Industry has emphasized a process integration approach to the design and operation of their plants. Heat pump applications have adopted this approach and the area of applicability was extended by utilizing a process integrated approach where reject heat from one process is upgraded and then used as input for another process. The DOE IHP Program has extended the process integration approach of heat pump application with a plant utility emphasis. In this design philosophy, reject heat from a process is upgraded to plant utility conditions and fed into the plant distribution system. This approach has the advantage that reject heat from any pr@s can be used as input and the output can be used at any location within the plant. Thus the approach can be easily integrated into existing industrial applications and all reject heat streams are potential targets of opportunity. The plant utility approach can not be implemented without having heat pumps with high-lift capabilities (on the order of 65{degree}C). Current heat pumps have only about half the lift capability required. Thus the current emphasis for the DOE IHP Program is the development of high lift chemical heat pumps that can deliver heat more economically to higher heat delivery temperatures. This is achieved with innovative cooling (refrigeration) and heating technologies which are based on advanced cycles and advanced working fluids or a combination of both. This paper details the plan to develop economically competitive, environmentally acceptable heat pump technologies that are capable of providing the delivery temperature and lift required to supply industrial plant utility-grade process heating and/or cooling.

  3. Process Energy Audit for Large Industries

    E-Print Network [OSTI]

    Chari, S.

    can provide the necessary feedback signal to the VSO. Cement Manufacture. Figure 2 illustrates the basic generic flow diagram ofPortland cement manufacture (both wet and dry processes). Table 1 is the electricity consumption for various processes... for 230 ESL-IE-93-03-32 Proceedings from the Fifteenth National Industrial Energy Technology Conference, Houston, Tx, March 24-25, 1993 Figure 2 Process Flow Diagram for a Portland Cement Plant SHALE Attl IAON llAE -----+r------ll"'~~ ..., Il...

  4. Online Modeling in the Process Industry for Energy Optimization

    E-Print Network [OSTI]

    Alexander, J.

    "This paper discusses how steady state models are being used in the process industry to perform online energy optimization of steam and electrical systems. It presents process demands commonly found in the processing industry in terms of steam...

  5. Iron and steel industry process model

    SciTech Connect (OSTI)

    Sparrow, F.T.; Pilati, D.; Dougherty, T.; McBreen, E.; Juang, L.L.

    1980-01-01T23:59:59.000Z

    The iron and steel industry process model depicts expected energy-consumption characteristics of the iron and steel industry and ancillary industries for the next 25 years by means of a process model of the major steps in steelmaking, from ore mining and scrap recycling to the final finishing of carbon, alloy, and stainless steel into steel products such as structural steel, slabs, plates, tubes, and bars. Two plant types are modeled: fully integrated mills and mini-mills. User-determined inputs into the model are as follows: projected energy and materials prices; projected costs of capacity expansion and replacement; energy-conserving options, both operating modes and investments; the internal rate of return required on investment; and projected demand for finished steel. Nominal input choices in the model for the inputs listed above are as follows: National Academy of Sciences Committee on Nuclear and Alternative Energy Systems Demand Panel nominal energy-price projections for oil, gas, distillates, residuals, and electricity and 1975 actual prices for materials; actual 1975 costs; new technologies added; 15% after taxes; and 1975 actual demand with 1.5%/y growth. The model reproduces the base-year (1975) actual performance of the industry; then, given the above nominal input choices, it projects modes of operation and capacity expansion that minimize the cost of meeting the given final demands for each of 5 years, each year being the midpoint of a 5-year interval. The output of the model includes the following: total energy use and intensity (Btu/ton) by type, by process, and by time period; energy conservation options chosen; utilization rates for existing capacity; capital-investment decisions for capacity expansion.

  6. Hierarchical Nanoceramics for Industrial Process Sensors

    SciTech Connect (OSTI)

    Ruud, James, A.; Brosnan, Kristen, H.; Striker, Todd; Ramaswamy, Vidya; Aceto, Steven, C.; Gao, Yan; Willson, Patrick, D.; Manoharan, Mohan; Armstrong, Eric, N., Wachsman, Eric, D.; Kao, Chi-Chang

    2011-07-15T23:59:59.000Z

    This project developed a robust, tunable, hierarchical nanoceramics materials platform for industrial process sensors in harsh-environments. Control of material structure at multiple length scales from nano to macro increased the sensing response of the materials to combustion gases. These materials operated at relatively high temperatures, enabling detection close to the source of combustion. It is anticipated that these materials can form the basis for a new class of sensors enabling widespread use of efficient combustion processes with closed loop feedback control in the energy-intensive industries. The first phase of the project focused on materials selection and process development, leading to hierarchical nanoceramics that were evaluated for sensing performance. The second phase focused on optimizing the materials processes and microstructures, followed by validation of performance of a prototype sensor in a laboratory combustion environment. The objectives of this project were achieved by: (1) synthesizing and optimizing hierarchical nanostructures; (2) synthesizing and optimizing sensing nanomaterials; (3) integrating sensing functionality into hierarchical nanostructures; (4) demonstrating material performance in a sensing element; and (5) validating material performance in a simulated service environment. The project developed hierarchical nanoceramic electrodes for mixed potential zirconia gas sensors with increased surface area and demonstrated tailored electrocatalytic activity operable at high temperatures enabling detection of products of combustion such as NOx close to the source of combustion. Methods were developed for synthesis of hierarchical nanostructures with high, stable surface area, integrated catalytic functionality within the structures for gas sensing, and demonstrated materials performance in harsh lab and combustion gas environments.

  7. Value of solar thermal industrial process heat

    SciTech Connect (OSTI)

    Brown, D.R.; Fassbender, L.L.; Chockie, A.D.

    1986-03-01T23:59:59.000Z

    This study estimated the value of solar thermal-generated industrial process heat (IPH) as a function of process heat temperature. The value of solar thermal energy is equal to the cost of producing energy from conventional fuels and equipment if the energy produced from either source provides an equal level of service. This requirement put the focus of this study on defining and characterizing conventional process heat equipment and fuels. Costs (values) were estimated for 17 different design points representing different combinations of conventional technologies, temperatures, and fuels. Costs were first estimated for median or representative conditions at each design point. The cost impact of capacity factor, efficiency, fuel escalation rate, and regional fuel price differences were then evaluated by varying each of these factors within credible ranges.

  8. Faculty Position in Mechanical Engineering Water Conservation in Industrial Processes

    E-Print Network [OSTI]

    Faculty Position in Mechanical Engineering Water Conservation in Industrial Processes University of Kansas The Department of Mechanical Engineering at the University of Kansas is seeking applications in industrial processes. Exceptional candidates with outstanding qualifications could be considered

  9. ITP Mining: Mining Industry of the Future Mineral Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Future Mineral Processing Technology Roadmap ITP Mining: Mining Industry of the Future Mineral Processing Technology Roadmap mptroadmap.pdf More Documents & Publications ITP...

  10. ESTIMATION AND CONTROL OF INDUSTRIAL PROCESSES WITH PARTICLE FILTERS

    E-Print Network [OSTI]

    de Freitas, Nando

    ESTIMATION AND CONTROL OF INDUSTRIAL PROCESSES WITH PARTICLE FILTERS Rub´en Morales of industrial processes. In particular, we adopt a jump Markov linear Gaussian (JMLG) model to describe an industrial heat exchanger. The parameters of this model are identi- fied with the expectation maximisation

  11. Business Process Management Systems enabling continuous improvement in industrial services

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Business Process Management Systems ­ enabling continuous improvement in industrial services Heikki that modern business process management systems (BPMS) provide in improving industrial service processes. A case study identifies improvement opportunities in the order-to- cash process in two service lines

  12. Combustion Turbine CHP System for Food Processing Industry -...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation on Combustion Turbine CHP System for Food Processing Industry, given by Kevin Chilcoat of Frito-Lay North America, at the U.S. DOE Industrial Distributed Energy...

  13. Combustion Turbine CHP System for Food Processing Industry -...

    Broader source: Energy.gov (indexed) [DOE]

    power grid. The fact sheet contains performance data from the plant after one year of operation. Combustion Turbine CHP System for Food Processing Industry More Documents &...

  14. Industrial waste reduction: The process problem

    SciTech Connect (OSTI)

    Valentino, F.W.; Walmet, G.E.

    1986-09-01T23:59:59.000Z

    Industrial waste problems, especially those involving hazardous waste, seem to be pervasive. The national media report newly discovered waste problems and sites with alarming regularity. Examples that immediately come to mind are Love Canal, New York; Times Beach, Missouri; and Seveso, Italy. Public perceptions of the industrial waste problem, reflecting the media's focus, appear to be that: large corporations are solely responsible for creating waste dumps, and the only role of government is to prevent illegal dumping and to regulate, fine, and require corporations to rectify the problem; all efforts should be directed toward preventing illegal dumping and treatment of the existing waste dumps; all industrial wastes can be classified as hazardous in nature. This general impression is both inaccurate and incomplete. All industrial waste is not hazardous (although most of it is not benign). All waste producers are not large corporations: nearly all industries produce some wastes. And, while existing waste sites must be effectively treated, additional efforts are needed at other points in the industrial waste cycle. Most people would agree both that waste dumping must be carefully regulated because of its negative impacts on the environment and that the less waste the better, even with carefully regulated disposal. Since nearly all industry now produces some waste and no one expects industry to shut down to resolve the waste problem, other strategies need to be available to deal with the problem at the front end. This paper discusses alternative strategies.

  15. Energy Technical Assistance: Industrial Processes Program

    E-Print Network [OSTI]

    McClure, J. D.

    1980-01-01T23:59:59.000Z

    The Energy Technical Assistance Division of Texas Engineering Extension Service (TEEX) has implemented an energy conservation program to assist small industry in using energy more efficiently. This full time service, an outgrowth of the Texas A...

  16. Energy Technical Assistance: Industrial Processes Program 

    E-Print Network [OSTI]

    McClure, J. D.

    1980-01-01T23:59:59.000Z

    The Energy Technical Assistance Division of Texas Engineering Extension Service (TEEX) has implemented an energy conservation program to assist small industry in using energy more efficiently. This full time service, an outgrowth of the Texas A...

  17. System for monitoring an industrial or biological process

    DOE Patents [OSTI]

    Gross, Kenneth C. (Argonne, IL); Wegerich, Stephan W. (Argonne, IL); Vilim, Rick B. (Argonne, IL); White, Andrew M. (Skokie, IL)

    1998-01-01T23:59:59.000Z

    A method and apparatus for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT.

  18. External research and energy efficiency in the process industries

    SciTech Connect (OSTI)

    Kaarsberg, T.M.; Foust, T.D.

    1997-07-01T23:59:59.000Z

    The process industries in the US are under enormous pressure. These industries, even more than US industry on average, face skyrocketing environmental costs, a rapidly changing electricity market, potential climate change policies, aging infrastructure and strong international competition. To be profitable they must reduce their costs and environmental impacts while increasing their product quality, turnaround time, productivity and output. Most of these industries have already cut costs and labor as much as possible. Therefore, to survive, these industries must innovate. History shows that industries that are the most innovative are the most successful. These industries are vital to the US economy. For example, the metals, pulp and paper, chemicals and the petroleum refining industries account for more than $800 billion in products shipped and employ more than three million workers. Although the US has shifted dramatically toward services with 77% of workers and 74% of GDP now in the service sector, what many have missed is that the process industries are important customers for many of these new services. ServOnly the last two years of NSF industrial R and D data provide any breakout of non-manufacturing R and D. This paper discusses the past, current and possible future role of eternal research and development (R and D)--much of which is now in the service sector--in fostering innovation and thus energy efficiency in these industries. The authors suggest that these industries are more innovative than previously thought because of external research.

  19. Comprehensive Energy Efficiency in the Process Industries 

    E-Print Network [OSTI]

    Rossiter, A.

    2015-01-01T23:59:59.000Z

    distillation column after applying insulation (left) and after securing jacketing (right). Courtesy Aspen Aerogels, Inc. This was a major advance over the older high- pressure process, and the new process used much less energy per unit of production. A...

  20. Energy And The Foods Processing Industry

    E-Print Network [OSTI]

    Baker, R.

    temperature of the outside air. Other factors limiting downward progression of SCT inc lude gas pressure-driven pumping systems and improperly designed hot-gas defrost systems. The chief factors limiting upward progression of the SST include excess... flows is performed, with the objective of determining where heat can be transferred from cooling to heating streams. The heat transfer can be either via recuperative heat exchangers or industrial heat pumps; the choice of which is defined...

  1. Industrial Process Heat Pumps--Some Unconventional Wisdom 

    E-Print Network [OSTI]

    Karp, A.

    1987-01-01T23:59:59.000Z

    Recent research on the cost-effective use of industrial process heat pumps challenges some popularly held perceptions about the appropriate use of this technology. Also challenged are some common approaches to identifying technically sound...

  2. Numerical investigation of the heating process inside an industrial furnace

    E-Print Network [OSTI]

    Wolper, Pierre

    Numerical investigation of the heating process inside an industrial furnace Proposition: Combined furnace taking into account convective, conductive and radiative heat transfer. The model: Catalysis, Energy Materials, Performance Materials and Recycling. Each business area is divided into market

  3. Opportunities for Enhancing the Texas Food-Processing Industry.

    E-Print Network [OSTI]

    Wildenthal, Marie; Capps, Oral Jr; Goodwin, H.L. Jr; Williams, Gary W.; Nichols, John P.

    1994-01-01T23:59:59.000Z

    Tooe ZTA245.7 ~lrt9~-T~_ LIBRARY TEXAS A&M UNIVERSITY JAN 24 1995 TEXAS STATE DOCUMENTS TEXAS STATE DEPOSITORY B-1719 NOVEMBER 1994 OPPORTUNITIES FOR ENHANCING THE TEXAS FOOD-PROCESSING INDUSTRY Texas Agricultural Experiment Station... ? Edward A. Hiler, Director? The Texas A&M University System ? College Station, Texas / (Blank Page in OrigIUIllblletiBl ' "f .? . ~ Opportunities for Erihancing the Texas Food-Processing Industry , Marie Wildenthal Oral Capps, Jr. H. L. Goodwin...

  4. Thermal Plasma Systems for Industrial Processes

    E-Print Network [OSTI]

    Fey, M. G.; Meyer, T. N.; Reed, W. H.; Philbrook, W. O.

    1982-01-01T23:59:59.000Z

    furnaces, extending from below 2000 F to almost any conceivably useful processing temperature, with efficiencies much higher than can be achieved with combustion heating equipment. Numerous applications for plasma systems exist in the chemical...

  5. Evolution of the radiation processing industry

    SciTech Connect (OSTI)

    Cleland, Marshall R. [IBA Industrial, Inc., 151 Heartland Boulevard, Edgewood, NY 11717 (United States)

    2013-04-19T23:59:59.000Z

    Early investigations of the effects of treating materials with ionizing radiations began in 1894 with the irradiation of gases at atmospheric pressure using cathode rays from a Crookes gas-discharge tube, in 1895 with the discovery of X-rays emitted from a Crookes tube, and in 1896 with the discovery of radioactivity in uranium. In 1897, small electrically charged particles were detected and identified in the gas discharges inside Crookes tubes. These particles were then named electrons. During the next three decades, it was found that these novel forms of energy could produce ions to initiate chemical reactions in some gases and liquids. By 1921, it had also been shown that insects, parasites and bacteria could be killed by treatment with ionizing radiation. In 1925, a high-vacuum tube with a thermionic cathode and a thin metallic anode was developed to produce electron beams in air by using accelerating potentials up to 250 kilovolts. That unique apparatus was the precursor of the many types of electron accelerators that have been developed since then for a variety of industrial applications. In 1929, the vulcanization of natural rubber without using any chemical additives was achieved by irradiation with electrons from a 250 kilovolt accelerator. In 1939, several liquid monomers were polymerized by treatment with gamma rays from radioactive nuclides. These early results were not exploited before the end of World War II because intense sources of ionizing radiation were not available then. Shortly after that war, there was increased interest in developing the peaceful uses of atomic energy, which included the chemical and biological effects of radiation exposures. Many uses that have been developed since then are described briefly in this paper. These industrial applications are now producing billions of US dollars in revenue every year.

  6. Characterization of industrial process waste heat and input heat streams

    SciTech Connect (OSTI)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01T23:59:59.000Z

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  7. Preliminary overview of innovative industrial-materials processes

    SciTech Connect (OSTI)

    Hane, G.J.; Hauser, S.G.; Blahnik, D.E.; Eakin, D.E.; Gurwell, W.E.; Williams, T.A.; Abarcar, R.; Szekely, J.; Ashton, W.B.

    1983-09-01T23:59:59.000Z

    In evaluating the potential for industrial energy conservation, 45 candidate processes were identified. The chemical and the iron and steel industries presented the most well-developed candidates, whereas those processes identified in the pulp and paper and textiles industries were the most speculative. Examples of the candidate processes identified include direct steelmaking and ore-to-powder systems, which potentially require 30 to 40% less energy, respectively, than conventional steelmaking systems; membrane separations and freeze crystallization, which offer up to 90% reductions in energy use when compared with distillation; the cold processing of cement, which offers a 50% reduction in energy requirements; and the dry forming of paper, which offers a 25% reduction in the energy needed for papermaking. A review of all the industries revealed that the revolutionary alternatives often use similar concepts in avoiding current process inefficiencies. These concepts include using chemical, physical, or biological processes to replace thermally intensive processes; using specific forms of energy to minimize wasteful thermal diffusion; using chemical, biological, or ultrasonic processes to replace physical reduction; combining multiple processing steps into a single reactor; using a dry processing to eliminate energy needed for evaporation; and using sterilization or biotechnology to reduce the need for refrigeration.

  8. Industrial applications of variable frequency microwave energy in materials processing

    SciTech Connect (OSTI)

    Fathi, Z.; Tucker, D.A.; Lewis, W.A.; Wei, J.B. [Lambda Technologies, Inc., Raleigh, NC (United States)

    1996-12-31T23:59:59.000Z

    A review of some market-driven research, process applications and systems development is provided. The variable frequency microwave processing concepts are briefly described. Industrial processing using variable frequency microwave energy in the areas of polymerization, composite processing, bonding and plasma is discussed. Analytical applications inherent in the use of variable frequency and its control are demonstrated in the areas of materials signature analysis for volumetric cure monitoring.

  9. Energy Recovery in Industrial Distillation Processes

    E-Print Network [OSTI]

    Paul, D. B.

    1983-01-01T23:59:59.000Z

    source and delivered to a highe~ temperature si nk through the additi on of work to a multi stage centrifugal compressor. The coef ficient of performance (COP) is often used to descri be the effecti veness of a heat pump cycl e. The COP is defined... as the ratio of heat delivered to process divided by the work supplied or COP = heat delivered work supplied Centrifugal compressor technology offers several advantages for use in vapor recompression systems, including high pressure ratios per stage...

  10. Optimizing the availability of a buffered industrial process

    DOE Patents [OSTI]

    Martz, Jr., Harry F.; Hamada, Michael S.; Koehler, Arthur J.; Berg, Eric C.

    2004-08-24T23:59:59.000Z

    A computer-implemented process determines optimum configuration parameters for a buffered industrial process. A population size is initialized by randomly selecting a first set of design and operation values associated with subsystems and buffers of the buffered industrial process to form a set of operating parameters for each member of the population. An availability discrete event simulation (ADES) is performed on each member of the population to determine the product-based availability of each member. A new population is formed having members with a second set of design and operation values related to the first set of design and operation values through a genetic algorithm and the product-based availability determined by the ADES. Subsequent population members are then determined by iterating the genetic algorithm with product-based availability determined by ADES to form improved design and operation values from which the configuration parameters are selected for the buffered industrial process.

  11. Heat Pipe Technology for Energy Conservation in the Process Industry

    E-Print Network [OSTI]

    Price, B. L. Jr.

    HEAT PIPE TECHNOLOGY FOR ENERGY CONSERVATION IN THE PROCESS INDUSTRY Berwin L. Price. Jr. Q-dot Corporation Garland. Texas ABSTRACT Many applications for heat pipe technology have emerged in the relatively short time this technology has been... and utility industries. The heat pipe offers a unique. efficient heat transfer device that can recover valuable thermal energy resulting in reduced equipment and operating costs. Q-dot is the world leader in heat pipe technology and we have applied our...

  12. Thermal Insulation Performance in the Process Industries: Facts and Fallacies

    E-Print Network [OSTI]

    Tye, R. P.

    Guarded Hot Box Study on Thermal Performance of Fibrous Insulations Used in Lofts," private com munication. 295 ESL-IE-85-05-54 Proceedings from the Seventh National Industrial Energy Technology Conference, Houston, TX, May 12-15, 1985 ...THERMAL INSULATION PERFORMANCE IN 'mE PROCESS INDUSTRIES: FACTS AND FALLACIES R.P. Tye Dynatech RID Company, Cambridge, MA, U.S.A. ABSTRACT The efficient use of thermal insulation materials and systems for design of cryogenic and elevated...

  13. Diverse Applications of Pinch Technology Within the Process Industries

    E-Print Network [OSTI]

    Spriggs, H. D.; Ashton, G.

    the use of pinch technology in a wider range of industries including food, pulp and paper, cement brewing and dairy product processes. These processes have featured; batch and continuous operations; solids, liquids and gas processing; use... retrofit design procedures, evaluation of capital-energy trade-offs, appropriate integration of cogeneration schemes and design methods for improving flexibility. Published results of early applications in ICI (1) and later in Union Carbide (2) were...

  14. Expert system for testing industrial processes and determining sensor status

    DOE Patents [OSTI]

    Gross, K.C.; Singer, R.M.

    1998-06-02T23:59:59.000Z

    A method and system are disclosed for monitoring both an industrial process and a sensor. The method and system include determining a minimum number of sensor pairs needed to test the industrial process as well as the sensor for evaluating the state of operation of both. The technique further includes generating a first and second signal characteristic of an industrial process variable. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the pair of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test. 24 figs.

  15. Expert system for testing industrial processes and determining sensor status

    DOE Patents [OSTI]

    Gross, Kenneth C. (Bolingbrook, IL); Singer, Ralph M. (Naperville, IL)

    1998-01-01T23:59:59.000Z

    A method and system for monitoring both an industrial process and a sensor. The method and system include determining a minimum number of sensor pairs needed to test the industrial process as well as the sensor for evaluating the state of operation of both. The technique further includes generating a first and second signal characteristic of an industrial process variable. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the pair of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

  16. Industrial process heating energy analysis, 1989. Topical report

    SciTech Connect (OSTI)

    Not Available

    1991-05-01T23:59:59.000Z

    The study was initiated to analyze and compare the major process heat trends and applications in U.S. industry at a level of detail sufficient to enable GRI to select industries and process heat technologies where potential R D efforts could have the greatest impact on the efficient use of natural gas and thus improve the competitive position of natural gas technologies. This study was conducted as an update of earlier studies from 1980 and 1985 that estimated the amount of process heat energy consumed by industry. Process heat applications were divided into fifteen major categories, which cover a wide range of applications used in over 16 major industry groups (2-digit SICs). Most of the process heat categories cover a wide variety of technologies that are capable of achieving the same result using different fuel types. In addition, many technologies are used in more than one type of process heat application (e.g., rotary kilns are used for both calcining and ore roasting).

  17. Meaningful Energy Efficiency Performance Metrics for the Process Industries

    E-Print Network [OSTI]

    Kumana, J. D.; Sidhwa, N. R.

    industries have developed standard met- rics for their plant performance. A notable example is the Solomon Energy Intensity Index (EII) for Oil Refining, which builds up the overall plant energy index from the energy indices for individual process units.... Energy Intensity, Oil & Gas Industry 0 10 20 30 40 50 60 70 1999 2000 2001 2002 2003 2004 2005 2006 Ce n t s / BO E Oil & Gas prod'n Oil Refining Gas Processing Figure 11. Energy Intensity Trends for Different Business Units The ?standard energy...

  18. Industrial process heat case studies. [PROSYS/ECONMAT code

    SciTech Connect (OSTI)

    Hooker, D.W.; May, E.K.; West, R.E.

    1980-05-01T23:59:59.000Z

    Commercially available solar collectors have the potential to provide a large fraction of the energy consumed for industrial process heat (IPH). Detailed case studies of individual industrial plants are required in order to make an accurate assessment of the technical and economic feasibility of applications. This report documents the results of seven such case studies. The objectives of the case study program are to determine the near-term feasibility of solar IPH in selected industries, identify energy conservation measures, identify conditions of IPH systems that affect solar applications, test SERI's IPH analysis software (PROSYS/ECONOMAT), disseminate information to the industrial community, and provide inputs to the SERI research program. The detailed results from the case studies are presented. Although few near-term, economical solar applications were found, the conditions that would enhance the opportunities for solar IPH applications are identified.

  19. Process Control Systems in the Chemical Industry: Safety vs. Security

    SciTech Connect (OSTI)

    Jeffrey Hahn; Thomas Anderson

    2005-04-01T23:59:59.000Z

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nation’s critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    industry is for process cooling, freezing, and cold storage.Cold Storage Facilities. Proceedings of the 2005 ACEEE Summer Study on Energy Efficiency in Industry,industry. Unit processes such as pasteurization, homogenization, and cold storage

  1. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    process residual like bagasse are now available (Cornland etsugar in- dustry uses bagasse and the edible oils industrySection 7.4.7. ). The use of bagasse for energy is likely to

  2. Energy conservation and cost benefits in the dairy processing industry

    SciTech Connect (OSTI)

    none,

    1982-01-01T23:59:59.000Z

    Guidance is given on measuring energy consumption in the plant and pinpointing areas where energy-conservation activities can return the most favorable economics. General energy-conservation techniques applicable to most or all segments of the dairy processing industry, including the fluid milk segment, are emphasized. These general techniques include waste heat recovery, improvements in electric motor efficiency, added insulation, refrigeration improvements, upgrading of evaporators, and increases in boiler efficiency. Specific examples are given in which these techniques are applied to dairy processing plants. The potential for energy savings by cogeneration of process steam and electricity in the dairy industry is also discussed. Process changes primarily applicable to specific milk products which have resulted in significant energy cost savings at some facilities or which promise significant contributions in the future are examined. A summary checklist of plant housekeeping measures for energy conservation and guidelines for economic evaluation of conservation alternatives are provided. (MHR)

  3. Carbon Strategy for the Food Industry FAPC Food Process Engineer

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    172-1 Carbon Strategy for the Food Industry Tim Bowser FAPC Food Process Engineer FAPC-172 Robert M and Natural Resources Introduction Carbon strategy is a term that refers to a systematic plan of action for managing carbon consumption and emissions related to food manufacturing and distribution activities

  4. Production of Biogas from Wastewaters of Food Processing Industries

    E-Print Network [OSTI]

    Sax, R. I.; Holtz, M.; Pette, K. C.

    1980-01-01T23:59:59.000Z

    volume per day could be treated with the upflow process with a purification efficiency of order 90%. CSM APPLICATION Although the initial work at Wageningen was with potato starch wastewater, the first industrial scale application with this process... was carried out by Centrale Suiker Maatschappij (CSM) , the largest privately-owned beet sugar company in Holland. Their factories had been treating wastewater with oxidation ponds which carried the serious drawbacks of large energy consumption...

  5. Designing Optimal Heat and Power Systems for Industrial Processes

    E-Print Network [OSTI]

    Rutkowski, M. A.; Witherell, W. D.

    Power Research Institute (EPRI) of Palo Alto, California. In the paper, the use of Pinch Technology as a tool for analyzing industrial processes is demonstrated along with proper simulation of a corresponding heat and power system. For each process...Xisting design to determine improvement opportunities. INTRODUCTION This paper presents the results of a study conducted for the Electric Power Research Institute (EPRI) by Linnhoff March. The objective of this study was to develop a methodology...

  6. Optimizing Process Loads in Industrial Cogeneration Energy Systems

    E-Print Network [OSTI]

    Ahner, D. J.; Babson, P. E.

    processes. AUTOMATION REQUIREMENTS The Operations energy Management System (OEMS) can require on-line operation using current measurements (e.g. flow, powers, temperatures, etc.), and calculating optimum energy purchase and equipment dispatch within...kW., A.. kW >- kW OPTIMIZING PROCESS LOADS IN INDUSTRIAL COGENERAnON ENERGY SYSTEMS DJ. Ahner Manager, Generation Technology Power Tecbnologies, Inc. Schenectady, New York ABSTRACT Optimum dispatcb of energy supply systems can...

  7. Industrial and agricultural process heat information user study

    SciTech Connect (OSTI)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01T23:59:59.000Z

    The results of a series of telephone interviews with groups of users of information on solar industrial and agricultural process heat (IAPH) are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. In the current study only high-priority groups were examined. Results from 10 IAPH groups of respondents are analyzed in this report: IPH Researchers; APH Researchers; Representatives of Manufacturers of Concentrating and Nonconcentrating Collectors; Plant, Industrial, and Agricultural Engineers; Educators; Representatives of State Agricultural Offices; and County Extension Agents.

  8. Towards A Unified HFE Process For The Nuclear Industry

    SciTech Connect (OSTI)

    Jacques Hugo

    2012-07-01T23:59:59.000Z

    As nuclear power utilities embark on projects to upgrade and modernize power plants, they are likely to discover that traditional engineering methods do not typically make provision for the integration of human considerations. In addition, human factors professionals will find that traditional human performance methods such as function allocation, task analysis, human reliability analysis and human-machine interface design do not scale well to the complexity of a large-scale nuclear power upgrade project. Up-to-date human factors engineering processes, methods, techniques and tools are required to perform these kinds of analyses. This need is recognized widely in industry and an important part of the Department of Energy’s Light Water Reactor Sustainability Program deals with identifying potential impacts of emerging technologies on human performance and the technical bases needed to address them. However, so far no formal initiative has been launched to deal with the lack of integrated processes. Although human factors integration frameworks do exist in industries such as aviation or defense, no formal integrated human factors process exists in the nuclear industry. As a first step towards creating such a process, a “unified human factors engineering process” is proposed as a framework within which engineering organizations, human factors practitioners and regulatory bodies can ensure that human factors requirements are embedded in engineering activities throughout the upgrade project life cycle.

  9. Divisionalization, product cannibalization and product location choice: Evidence from the U.S. automobile industry 

    E-Print Network [OSTI]

    Jeong, Eui Kyo

    2004-09-30T23:59:59.000Z

    division's new product location choice. But this study didn't find any significant role of divisional status on new product location choice. And contrary to our expectation, the results of intra-firm divisional domain overlap and new product location choice...

  10. System for monitoring an industrial process and determining sensor status

    DOE Patents [OSTI]

    Gross, K.C.; Hoyer, K.K.; Humenik, K.E.

    1995-10-17T23:59:59.000Z

    A method and system for monitoring an industrial process and a sensor are disclosed. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test. 17 figs.

  11. System for monitoring an industrial process and determining sensor status

    DOE Patents [OSTI]

    Gross, K.C.; Hoyer, K.K.; Humenik, K.E.

    1997-05-13T23:59:59.000Z

    A method and system are disclosed for monitoring an industrial process and a sensor. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test. 17 figs.

  12. System for monitoring an industrial process and determining sensor status

    DOE Patents [OSTI]

    Gross, Kenneth C. (Bolingbrook, IL); Hoyer, Kristin K. (Chicago, IL); Humenik, Keith E. (Columbia, MD)

    1995-01-01T23:59:59.000Z

    A method and system for monitoring an industrial process and a sensor. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

  13. System for monitoring an industrial process and determining sensor status

    DOE Patents [OSTI]

    Gross, Kenneth C. (Bolingbrook, IL); Hoyer, Kristin K. (Chicago, IL); Humenik, Keith E. (Columbia, MD)

    1997-01-01T23:59:59.000Z

    A method and system for monitoring an industrial process and a sensor. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

  14. Combined Cycles and Cogeneration - An Alternative for the Process Industries

    E-Print Network [OSTI]

    Harkins, H. L.

    1981-01-01T23:59:59.000Z

    this energy source. Byproduct steam is produced in the recovery of chemicals in pulp and paper industry black liquor recovery boilers. On a bulk basis consideration, a large percentage of process steam is required by the energy intensive in dustries... SYSTEM Gasification Numerous programs are underway for gasification of solid fuels and heavy oils and it is among these systems that many feel medium Btu gas will be pro duced for use in combined cycle systems. Many of the problems now facing...

  15. Industrial Process Heat Pumps--Some Unconventional Wisdom

    E-Print Network [OSTI]

    Karp, A.

    to be incorrect and/or i.llusory. Similar situa tions were uncovered in other industries as part of an EPRI-funded pinch analysis by Union Carbide of heat-pumped evaporators in ten processes.(12) Figure 8 from that study shows that heat pumping applications... additional design insights important to the heat pump I s cost effec tiveness. Figure 9. also from the EPRI study. shows how heat pump sizing can be limited to that which is truly useful. taking into account other process heat integration possibilities...

  16. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01T23:59:59.000Z

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  17. Leakage Evaluated and Controlled from Industrial Process Pipeline by Optimum Gasket Assembly Stress

    E-Print Network [OSTI]

    Chen, Shu-Ching

    will ultimately result in a complete proposal to prevent any hazardous gas leaks in the process industries0 Leakage Evaluated and Controlled from Industrial Process Pipeline by Optimum Gasket Assembly and vehicles), but they have ignore the leakage between pipelines in process industries. When hazardous

  18. Direction of CRT waste glass processing: Electronics recycling industry communication

    SciTech Connect (OSTI)

    Mueller, Julia R., E-mail: mueller.143@osu.edu [Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, OH (United States) and University of Queensland, School of Chemical Engineering (Australia) and Ohio State University, Materials Science and Engineering, OH (United States); Boehm, Michael W. [University of Queensland, School of Chemical Engineering (Australia); Drummond, Charles [Ohio State University, Materials Science and Engineering, OH (United States)

    2012-08-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Given a large flow rate of CRT glass {approx}10% of the panel glass stream will be leaded. Black-Right-Pointing-Pointer The supply of CRT waste glass exceeded demand in 2009. Black-Right-Pointing-Pointer Recyclers should use UV-light to detect lead oxide during the separation process. Black-Right-Pointing-Pointer Recycling market analysis techniques and results are given for CRT glass. Black-Right-Pointing-Pointer Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

  19. Aggregate Production Planning for Process Industries under Competition

    E-Print Network [OSTI]

    Karmarkar, U. S.; Rajaram, K.

    2008-01-01T23:59:59.000Z

    such as the oil refining and steel industries, there arerefining industry appears to be a particularly egregious example of jockeying by crude oil

  20. Divisionalization, product cannibalization and product location choice: Evidence from the U.S. automobile industry

    E-Print Network [OSTI]

    Jeong, Eui Kyo

    2004-09-30T23:59:59.000Z

    -firm divisional domain overlap with a rival division, relative to the focal division's own domain, is more likely to locate its new product (here new car model) closer to that rival's existing car models. And it was also found that divisional density affects a...

  1. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    industrial sectors. Modern control systems are often notmay already have modern process control systems in place togrowing rapidly. Modern process control systems exist for

  2. New Concepts in Hardware and Processes to Conserve Oil and Gas in Industrial Processes

    E-Print Network [OSTI]

    Humphrey, J. L.

    1982-01-01T23:59:59.000Z

    A broad program to identify and evaluate new types of hardware and processes to conserve oil and gas in chemical plants and petroleum refineries has been completed. During the course of this program, which was sponsored by the Office of Industrial...

  3. Using RBF-Nets in Rubber Industry Process Control U. Pietruschka, R. Brause

    E-Print Network [OSTI]

    Brause, R.

    Using RBF-Nets in Rubber Industry Process Control U. Pietruschka, R. Brause J.W. Goethe and the modeling of the industrial problem. The algorithm shows good results even using only a few training samples in rubber industry has the smell of a ,,dirty" industrial branch. This comes not only from the often very

  4. Evolution of gas processing industry in Saudi Arabia

    SciTech Connect (OSTI)

    Showail, A.

    1983-01-01T23:59:59.000Z

    The beginning of the natural gas processing industry in Saudi Arabia is traced back to 1959 when Aramco embarked on a program to recover natural gas liquids (NGL) for export from low pressure gases such as stabilizer overhead, spheroid, tank farm, and refinery off-gases. The processing scheme involves compression and refrigeration to extract C3+ raw NGL, a raw NGL gathering system, and a fractionation plant to separate propane, butane, and natural gasoline. NGL extracted in Abqaiq and Ras Tanura is moved to Ras Tanura for fractionation, storage, and export. The system, built in several increments, has total design capacity of 500 MMscfd of feed gases to produce 320,000 bpd of NGL composed of 40% propane, 30% butane, and 30% natural gasoline. Phase II of the Saudi gas program envisages collection and processing of associated gas produced with Arabian medium and heavy crude oils largely in the northern onshore and offshore fields. Further domestic development may focus on more diversification in gas product utilization and on upgrading to higher value products.

  5. Definition and First Year of a New International Master in Industrial Processes Automation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Definition and First Year of a New International Master in Industrial Processes Automation Emmanuel on industrial processes automation (IPA), proposed by University Joseph Fourier (UJF) / University of Grenoble automation, with clear specifications towards engineering and industry. The local and in- ternational

  6. Estimation and control of industrial processes with particle lters Ruben Morales-Menendez

    E-Print Network [OSTI]

    Poole, David

    an industrial heat exchanger, Figure 1. This exchanger heats 10 gpm of water from 25o C to 70o C us- ing steamEstimation and control of industrial processes with particle Łlters Rub´en Morales and control of industrial processes. In particular, we adopt a jump Markov linear Gaussian (JMLG) model

  7. Locating Performance Improvement Opportunities in an Industrial Software-as-a-Service Application

    E-Print Network [OSTI]

    Zaidman, Andy

    - gories of maintenance are defined: corrective, adaptive, per- fective and preventive maintenance.van.de.graaf, maarten.wiertz, remko.weijers}@exact.com Abstract--The goal of performance maintenance is to im- prove is useful for speeding up the performance maintenance process and that heat maps are a valuable way

  8. Signal Processing 81 (2001) 24032418 www.elsevier.com/locate/sigpro

    E-Print Network [OSTI]

    Cohen, Israel

    Signal Processing 81 (2001) 2403­2418 www.elsevier.com/locate/sigpro Speech enhancement for non controlled recursive averaging (MCRA) noise estimation approach for robust speech enhancement. The spectral. Introduction A practical speech enhancement system gener- ally consists of two major components: the estima

  9. Digital Signal Processing 17 (2007) 578616 www.elsevier.com/locate/dsp

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Digital Signal Processing 17 (2007) 578­616 www.elsevier.com/locate/dsp Short-time phase spectrum Abstract Incorporating information from the short-time phase spectrum into a feature set for automatic speech recognition (ASR) may possibly serve to improve recognition accuracy. Currently, however

  10. Aggregate Production Planning for Process Industries under Competition

    E-Print Network [OSTI]

    Karmarkar, U. S.; Rajaram, K.

    2008-01-01T23:59:59.000Z

    as petro- refining, petrochemicals, basic chemicals, cement,the context of the petrochemical industry, these producerscorrespond to the ten major petrochemical refining companies

  11. Monitoring the resin infusion manufacturing process under industrial environment using distributed sensors

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Monitoring the resin infusion manufacturing process under industrial environment using the Liquid Resin Infusion process under industrial environment is proposed. To detect the resin front; Liquid Resin Infusion. #12;2 1. Introduction Recently, Liquid Composite Molding (LCM) processes have been

  12. Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition

    SciTech Connect (OSTI)

    Not Available

    2008-02-01T23:59:59.000Z

    This is one in a series of sourcebooks to help manufacturers optimize their industrial systems; this particular sourcebook addresses process heating systems.

  13. Advanced Industrial Archaeology: A new reverse-engineering process for contextualizing and

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Advanced Industrial Archaeology: A new reverse-engineering process for contextualizing.bernard@irccyn.ec-nantes.fr, michel.cotte@univ-nantes.fr Abstract Since virtual engineering has been introduced inside industries. Keywords reverse-engineering, 3D digitalization, CAD, Advanced Industrial Archaeology, technical heritage 1

  14. End User Functional and Performance Requirements for HTGR Energy Supply to Industrial Processes

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01T23:59:59.000Z

    This document specifies end user functional and performance requirements to be used in the development of the design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to industrial processes. These requirements were developed from collaboration with industry and HTGR suppliers and from detailed evaluation of integration of the HTGR technology in industrial processes. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a plant design that will serve the broadest range of industrial applications.

  15. Application and Technology Requirements for Heat Pumps at the Process Industries 

    E-Print Network [OSTI]

    Priebe, S.; Chappell, R.

    1987-01-01T23:59:59.000Z

    There are basically three categories of equipment used to manage heat energy flows in an industrial process. First, heat exchangers are used to move heat through the process down the temperature gradient. Second, heat pumps are used to move heat...

  16. Summary of some feasibility studies for site-specific solar industrial process heat

    SciTech Connect (OSTI)

    none,

    1982-01-01T23:59:59.000Z

    Some feasibility studies for several different site specific solar industrial process heat applications are summarized. The followng applications are examined. Leather Tanning; Concrete Production: Lumber and Paper Processing; Milk Processing; Molding, Curing or Drying; Automobile Manufacture; and Food Processing and Preparation. For each application, site and process data, system design, and performance and cost estimates are summarized.

  17. Energy Efficient Microwave Hybrid Processing of Lime for Cement, Steel, and Glass Industries

    SciTech Connect (OSTI)

    Fall, Morgana L; Yakovlev, Vadim; Sahi, Catherine; Baranova, Inessa; Bowers, Johnney G; Esquenazi\t, Gibran L

    2012-02-10T23:59:59.000Z

    In this study, the microwave materials interactions were studied through dielectric property measurements, process modeling, and lab scale microwave hybrid calcination tests. Characterization and analysis were performed to evaluate material reactions and energy usage. Processing parameters for laboratory scale and larger scale calcining experiments were developed for MAT limestone calcination. Early stage equipment design concepts were developed, with a focus on microwave post heating treatment. The retrofitting of existing rotary calcine equipment in the lime industry was assessed and found to be feasible. Ceralink sought to address some of the major barriers to the uptake of MAT identified as the need for (1) team approach with end users, technology partners, and equipment manufacturers, (2) modeling that incorporates kiln materials and variations to the design of industrial microwave equipment. This project has furthered the commercialization effort of MAT by working closely with an industrial lime manufacturer to educate them regarding MAT, identifying equipment manufacturer to supply microwave equipment, and developing a sophisticated MAT modeling with WPI, the university partner. MAT was shown to enhance calcining through lower energy consumption and faster reaction rates compared to conventional processing. Laboratory testing concluded that a 23% reduction in energy was possible for calcining small batches (5kg). Scale-up testing indicated that the energy savings increased as a function of load size and 36% energy savings was demonstrated (22 kg). A sophisticated model was developed which combines simultaneous microwave and conventional heating. Continued development of this modeling software could be used for larger scale calcining simulations, which would be a beneficial low-cost tool for exploring equipment design prior to actual building. Based on these findings, estimates for production scale MAT calcining benefits were calculated, assuming uptake of MAT in the US lime industry. This estimate showed that 7.3 TBTU/year could be saved, with reduction of 270 MMlbs of CO2 emissions, and $29 MM/year in economic savings. Taking into account estimates for MAT implementation in the US cement industry, an additional 39 TBTU/year, 3 Blbs of CO2 and $155 MM/year could be saved. One of the main remaining barriers to commercialization of MAT for the lime and cement industries is the sheer size of production. Through this project, it was realized that a production size MAT rotary calciner was not feasible, and a different approach was adapted. The concept of a microwave post heat section located in the upper portion of the cooler was devised and appears to be a more realistic approach for MAT implementation. Commercialization of this technology will require (1) continued pilot scale calcining demonstrations, (2) involvement of lime kiln companies, and (3) involvement of an industrial microwave equipment provider. An initial design concept for a MAT post-heat treatment section was conceived as a retrofit into the cooler sections of existing lime rotary calciners with a 1.4 year payback. Retrofitting will help spur implementation of this technology, as the capital investment will be minimal for enhancing the efficiency of current rotary lime kilns. Retrofits would likely be attractive to lime manufacturers, as the purchase of a new lime kiln is on the order of a $30 million dollar investment, where as a MAT retrofit is estimated on the order of $1 million. The path for commercialization lies in partnering with existing lime kiln companies, who will be able to implement the microwave post heat sections in existing and new build kilns. A microwave equipment provider has been identified, who would make up part of the continued development and commercialization team.

  18. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    oil, starch and corn refining, since these can be a source of fuel products. The sugar cane industry

  19. Parameter Estimations for Industrial Enzyme Processes Using Genetic Algorithms

    E-Print Network [OSTI]

    Rus, Teodor

    as the kinetic modeling of an enzyme system. The kinetic expression of the enzyme is mathematically defined the industrial batch production of maltose as an example. The mathematical model of the enzyme kinetics proposed 6 and summarized in Section 7. 2. Mathematical Model The enzyme kinetic system, EKS, is defined

  20. Gas Turbines Increase the Energy Efficiency of Industrial Processes 

    E-Print Network [OSTI]

    Banchik, I. N.; Bohannan, W. R.; Stork, K.; McGovern, L. J.

    1981-01-01T23:59:59.000Z

    clean fuel gas for the gas turbine is produced by gasification of coal, are presented. Waste heat from the gasifier and the gas turbine exhaust is converted to high pressure steam for steam turbines. Gas turbines may find application in other industrial...

  1. Gas Turbines Increase the Energy Efficiency of Industrial Processes

    E-Print Network [OSTI]

    Banchik, I. N.; Bohannan, W. R.; Stork, K.; McGovern, L. J.

    1981-01-01T23:59:59.000Z

    It is a well known fact that the gas turbine in a combined cycle has a higher inherent Carnot efficiency than the steam cycle which has been more generally accepted by industry. Unlike steam turbines, gas turbines do not require large boiler feed...

  2. GLOBAL OPTIMIZATION OF ENERGY AND PRODUCTION IN PROCESS INDUSTRIES: A

    E-Print Network [OSTI]

    Neumaier, Arnold

    ) The task of the auxiliary boiler, together with the recovery boiler, is to produce high-pressure steam (HPS, . . . , n) units, and delivers the raw material to department i + 1, working at rate ui+1 units; bj,i+1 · ui+1 units are consumed from buffer j for 1 Partially financed by JNICT/PRAXIS XXI program. Industrial

  3. Process Capability Database Usage In Industry: Myth vs. Reality

    E-Print Network [OSTI]

    Tata, Melissa M.

    1999-01-01T23:59:59.000Z

    Process capability data (PCD) is needed for robust design, optimal tolerance allocation, and variation

  4. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 2, Industrial liquid waste processing, industrial gaseous waste processing

    SciTech Connect (OSTI)

    Lee, V.E. [ed.; Watts, R.L.

    1993-04-01T23:59:59.000Z

    This two-volume proceedings summarize the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Individual reports are indexed separately.

  5. Industrial Energy Conservation by New Process Design and Efficiency Improvements

    E-Print Network [OSTI]

    Kusik, C. L.; Stickles, R. P.; Machacek, R. F.

    1983-01-01T23:59:59.000Z

    from the Fifth Industrial Energy Technology Conference Volume II, Houston, TX, April 17-20, 1983 Po'.,.lla4 E"*VY Potential Saving, t Totti To,.1 En., " r_-. C0!'1V?11Ional T-ehnotogy PrC)doK:1 __l~~=~1 l~~r;:~ 11:rr:U?Yr) AlumInum Imptovltd Hli...

  6. Software Tools and Training Program: For the Efficient Design and Operation of Industrial Processes

    E-Print Network [OSTI]

    Soucy, E.

    2014-01-01T23:59:59.000Z

    -Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 3 Three Scientific Laboratories Across Canada ? Oil sands & heavy oil Devon ? Buildings & communities ? Industrial processes ? Clean electricity ? Bioenergy ? Renewables..., 2014 ESL-IE-14-05-28 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 2 CanmetENERGY ? The largest energy science and technology organization in Canada working on clean energy research...

  7. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    of its electricity requirements in the USA (US DOE, 2002)USA, where motor-driven systems account for 63% of industrial electricity

  8. Department of Industrial Engineering Fall 2011 Transmission Component Reverse Engineering and Process Planning

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Industrial Engineering Fall 2011 Transmission Component Reverse Engineering to fabricate the parts in the Industrial Engineering Department Factory for Advanced Manufacturing Education of the transmission to reverse engineer and develop process plans for efficient fabrication in a low volume setting

  9. PROCESS PARAMETERS AND ENERGY USE OF GAS AND ELECTRIC OVENS IN INDUSTRIAL APPLICATIONS

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    . BACKGROUND This paper will evaluate current practices of clients in the New England/New York whichPROCESS PARAMETERS AND ENERGY USE OF GAS AND ELECTRIC OVENS IN INDUSTRIAL APPLICATIONS Dr for Energy Efficiency and Renewable Energy Department of Mechanical and Industrial Engineering University

  10. The Quantitative Assessment of Risk Caused By Fire and Explosion in Chemical Process Industry

    E-Print Network [OSTI]

    Boyer, Edmond

    The Quantitative Assessment of Risk Caused By Fire and Explosion in Chemical Process Industry Farid by the domino effect are the most destructive accidents related to industrial plants. Fire and explosion; Quantitative risk assessment; Explosions; Fires; Storage areas. 1. Introduction The accidents caused

  11. Photovoltaic industry process from 1980 to mid 1986

    SciTech Connect (OSTI)

    Watts, R.L.; Smith, S.A.

    1986-08-01T23:59:59.000Z

    The objective of this report is to describe PV insustry developments in 1985 and present forecasts for 1986. Information is presented on a regional basis (United States, Europe, Japan, other) to avoid disclosing company confidential data. Information was gleaned from several sources, including a review of technical literature and direct contacts with many PV manufacturers. prior to publishing the regional totals, all numbers were compared with those from other sources published in the United States and those supplied by Japanese industry through their solar energy organization.

  12. Standardization of information systems development processes and banking industry adaptations

    E-Print Network [OSTI]

    Tanrikulu, Zuhal

    2011-01-01T23:59:59.000Z

    This paper examines the current system development processes of three major Turkish banks in terms of compliance to internationally accepted system development and software engineering standards to determine the common process problems of banks. After an in-depth investigation into system development and software engineering standards, related process-based standards were selected. Questions were then prepared covering the whole system development process by applying the classical Waterfall life cycle model. Each question is made up of guidance and suggestions from the international system development standards. To collect data, people from the information technology departments of three major banks in Turkey were interviewed. Results have been aggregated by examining the current process status of the three banks together. Problematic issues were identified using the international system development standards.

  13. Overview: EPRI's Program for Process Industry Energy Efficiency and Environmental Improvement

    E-Print Network [OSTI]

    Amarnath, A.

    , and value in ways that are not possible with other energy forms. This overview presents electrotechnologies selected by EPRI to impact energy efficiency and environment relating to process industry....

  14. Developing system-based leading indicators for proactive risk management in the chemical processing industry

    E-Print Network [OSTI]

    Khawaji, Ibrahim A. (Ibrahim Abdullah)

    2012-01-01T23:59:59.000Z

    The chemical processing industry has faced challenges with achieving improvements in safety performance, and accidents continue to occur. When accidents occur, they usually have a confluence of multiple factors, suggesting ...

  15. Superior Processes at Industrial Equipment Manufacturers Benchmark best practices and performances for next-generation success

    E-Print Network [OSTI]

    Narasayya, Vivek

    Superior Processes at Industrial Equipment Manufacturers Benchmark best practices and performances invest time, effort and resources in establishing the best practices, technology systems and solutions at a pace faster than the competition. · Engaged people/human capital acquisition, development

  16. Real-time monitoring of complex industrial processes with particle filters

    E-Print Network [OSTI]

    Poole, David

    Real-time monitoring of complex industrial processes with particle filters Rub´en Morales-Men, open air-flow grill and clean temperature sensor (we denote this discrete state ˘ˇ¤Ł Ą ). We induced 3

  17. The processes of industrial gold mining and inequality: a Ghanaian case study 

    E-Print Network [OSTI]

    Gawor, Natalie

    2011-11-24T23:59:59.000Z

    The research examined how inequality manifests itself through the processes of industrial gold mining using a case study of Newmont Mining Corporations’ Ahafo Gold Mine in Ghana. The pursuit of neoliberal development and ...

  18. Developing Standard Logic for a Detailed Engineering Project Schedule in the Process Industry

    E-Print Network [OSTI]

    Miller-Karns, Kara A.

    2009-05-15T23:59:59.000Z

    A good schedule is critical to the successful execution of any project. This is especially true in the process industry, where construction schedule overruns can be costly to the client due to lost production capability. ...

  19. Process Waste Heat Recovery in the Food Industry - A System Analysis

    E-Print Network [OSTI]

    Lundberg, W. L.; Mutone, G. A.

    1983-01-01T23:59:59.000Z

    An analysis of an industrial waste heat recovery system concept is discussed. For example purposes, a food processing plant operating an ammonia refrigeration system for storage and blast freezing is considered. Heat is withdrawn from...

  20. Model for multi-strata safety performance measurements in the process industry

    E-Print Network [OSTI]

    Keren, Nir

    2004-09-30T23:59:59.000Z

    ) benchmarking of process safety elements among facilities; and (3) use of incident data collection from various sources for industrial safety performance assessment. The methods presently available for measurement of process safety within facilities... to explore the potential of integrating data sources and harnessing these databases for industrial safety performance assessment. In this study we developed models to pursue the measurement of samples of the strata described above. The measurement...

  1. Online Modeling in the Process Industry for Energy Optimization 

    E-Print Network [OSTI]

    Alexander, J.

    1988-01-01T23:59:59.000Z

    and electricity. It further discusses the methods of providing this energy for refineries, petrochemical plants, and other processing plants - chemical, paper, and metal. A typical system flow diagram is used to highlight the energy system network and describe...

  2. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    iron and steel production. IEA Greenhouse Gas R&D Programme,tempera- ture range. IEA/Caddet, Sittard, The Netherlands.industry. Cheltenham, UK, IEA Greenhouse Gas R&D Programme,

  3. Bates solar industrial process-steam application: preliminary design review

    SciTech Connect (OSTI)

    Not Available

    1980-01-07T23:59:59.000Z

    The design is analyzed for a parabolic trough solar process heat system for a cardboard corrugation fabrication facility in Texas. The program is briefly reviewed, including an analysis of the plant and process. The performance modeling for the system is discussed, and the solar system structural design, collector subsystem, heat transport and distribution subsystem are analyzed. The selection of the heat transfer fluid, and ullage and fluid maintenance are discussed, and the master control system and data acquisition system are described. Testing of environmental degradation of materials is briefly discussed. A brief preliminary cost analysis is included. (LEW)

  4. AUTOMATED RADIOANALYTICAL CHEMISTRY: APPLICATIONS FOR THE LABORATORY AND INDUSTRIAL PROCESS MONITORING

    SciTech Connect (OSTI)

    O'Hara, Matthew J.; Farawila, Anne F.; Grate, Jay W.

    2009-11-10T23:59:59.000Z

    The identification and quantification of targeted ?- and ?-emitting radionuclides via destructive analysis in complex radioactive liquid matrices is highly challenging. Analyses are typically accomplished at on- or off-site laboratories through laborious sample preparation steps and extensive chemical separations followed by analysis using a variety of detection methodologies (e.g., liquid scintillation, alpha energy spectroscopy, mass spectrometry). Analytical results may take days or weeks to report. When an industrial-scale plant requires periodic or continuous monitoring of radionuclides as an indication of the composition of its feed stream, diversion of safeguarded nuclides, or of plant operational conditions (for example), radiochemical measurements should be rapid, but not at the expense of precision and accuracy. Scientists at Pacific Northwest National Laboratory have developed and characterized a host of automated radioanalytical systems designed to perform reproducible and rapid radioanalytical processes. Platforms have been assembled for 1) automation and acceleration of sample analysis in the laboratory and 2) automated monitors for monitoring industrial scale nuclear processes on-line with near-real time results. These methods have been applied to the analysis of environmental-level actinides and fission products to high-level nuclear process fluids. Systems have been designed to integrate a number of discrete sample handling steps, including sample pretreatment (e.g., digestion and valence state adjustment) and chemical separations. The systems have either utilized on-line analyte detection or have collected the purified analyte fractions for off-line measurement applications. One PNNL system of particular note is a fully automated prototype on-line radioanalytical system designed for the Waste Treatment Plant at Hanford, WA, USA. This system demonstrated nearly continuous destructive analysis of the soft ?-emitting radionuclide 99Tc in nuclear tank waste feed solutions. The system is compact, fully self-calibrating, and analytical results can be immediately transmitted to on- or off-site locations. This platform exemplifies how automation can be integrated into reprocessing facilities to support the needs of international nuclear safeguards and reprocessing plant operational monitoring.

  5. 1 INTRODUCTION Industrial processes need to be maintained to prevent

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , in an international market context, companies need to improve their productiv- ity. In this context, maintenance-based maintenance could use spe- cific features extracted from the process like vibra- tion sensors, oil analyzers-Florez and Feldman 1989) survey researches on model optimi- zation for repair, replacement, and inspection of sys

  6. NREL, Clean Cities, and industry leaders join forces to create the first comprehensive online locator for electric vehicle

    E-Print Network [OSTI]

    locator for electric vehicle charging stations. The National Renewable Energy Laboratory (NREL) and the U-in electric vehicles (PEVs) can easily find charging stations across the United States. These leaders in PEV, comprehensive source of locations for electric vehicle supply equipment (EVSE)--better known as charging

  7. Oxygen Enrichment in the Process and Chemical Industries

    E-Print Network [OSTI]

    Milne, R. T.

    1984-01-01T23:59:59.000Z

    . The gases may also be shipped as pure cryogenic liquids in special insulated transports to customers remote from the plant. The availability of pure oxygen (typically 99.5%) in large quantities at a reasonable cost provided a stimulus..., the average selling price of oxygen has declined steadily as a result of refinements in the production technology, and development of important markets for nitrogen and argon, once regarded as mere by-products of the air separation process. The cost...

  8. Continuous Commissioning® Leading Energy Project Process - An Industry Approach

    E-Print Network [OSTI]

    Liu, M.; Wang, J.; Hansen, K.; Seltzer, A.

    2005-01-01T23:59:59.000Z

    State Energy Office ABSTRACT Continuous Commissioning (CC ® ) is an ongoing process to resolve operating problems, improve comfort, optimize energy use, and identify retrofits for existing commercial and institutional buildings and central plant..., P. E., is a Senior Engineer at an electric utility and has over 20 years of experience in building energy system design/consulting, energy measurement and verification. She is a registered Professional Engineer. A. Selzer is a program manager...

  9. Advanced Reactors Thermal Energy Transport for Process Industries

    SciTech Connect (OSTI)

    P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

    2014-07-01T23:59:59.000Z

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

  10. Dental Budget Process: Determination Schema Industry Sponsored, Industry Supported, University to University, Co-operative Group or Foundation Supported Clinical Trials

    E-Print Network [OSTI]

    Oliver, Douglas L.

    11/5/2013 Dental Budget Process: Determination Schema Industry Sponsored, Industry Supported, University to University, Co-operative Group or Foundation Supported Clinical Trials DENTAL BUDGET PROCESS to have a Budget Workbook done by staff in the Office of Clinical & Translational Research (OCTR) before

  11. Industrial Steam System Process-Control Schemes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment of EnergyTreatment andJuneJobs ThomasProcess-Control

  12. Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications

    SciTech Connect (OSTI)

    Lee Nelson

    2011-09-01T23:59:59.000Z

    This report is a summary of analyses performed by the NGNP project to determine whether it is technically and economically feasible to integrate high temperature gas cooled reactor (HTGR) technology into industrial processes. To avoid an overly optimistic environmental and economic baseline for comparing nuclear integrated and conventional processes, a conservative approach was used for the assumptions and calculations.

  13. Improving Process Control Immunity to Supply Voltage Sags in Petroleum and Chemical Industries

    E-Print Network [OSTI]

    Mansoor, A.; Dorr, D.; Olson, G.

    IMPROVING PROCESS CONTROL IMMUNITY TO SUPPLY VOLTAGE SAGS IN PETROLEUM AND CHEMICAL INDUSTRIES Douglas Dorr and Arshad Mansoor EPRI Power Electronics Applications Center Knoxville, TN ABSTRACT In the modem industrial facility, many... by EPRI's Power Quality Test Facility clearly shows that CVT's are an excellent solution for voltage sag problems when they are sized properly. The optimum sizing is achieved when the CVT is loaded to no more than about 40 Figure 3. Batteryless UPS...

  14. submitted to International Journal of Occupational Safety and Ergonomics, JOSE, 1998 Title: Adaptive Process Control in Rubber Industry

    E-Print Network [OSTI]

    Brause, R.

    : Adaptive Process Control in Rubber Industry Authors: Rüdiger W. Brause , Ulf Pietruschka Affiliation: J in rubber industry. We show that the human and economical benefits of an adaptive solution for the approximation of process parameters are very attractive. The modeling of the industrial problem is done

  15. Green alternatives to toxic release inventory (TRI) chemicals in the process industry

    SciTech Connect (OSTI)

    Ahmed, I.; Baron, J.; Hamilton, C. [Booz-Allen & Hamilton Inc., McLean, VA (United States)

    1995-12-01T23:59:59.000Z

    Driven by TRI reporting requirements, the chemical process industry is searching for innovative ways to reduce pollution at the source. Distinct environmental advantages of biobased green chemicals (biochemicals) mean are attractive alternatives to petrochemicals. Biochemicals are made from renewable raw materials in biological processes, such as aerobic and anaerobic fermentation, that operate at ambient temperatures and pressures, and produce only nontoxic waste products. Key TRI chemicals and several classes of commodity and intermediate compounds, used on consumer end-products manufacturing, are examined and alternatives are suggested. Specific substitution options for chlorofluorocarbons, industrial solvents, and commodity organic and inorganic chemicals are reviewed. Currently encouraged pollution prevention alternatives in the manufacturing sector are briefly examined for their long-term feasibility such as bioalternatives to bleaching in the pulp & paper industry, solvent cleaning in the electronics and dry cleaning industries, and using petroleum-based feedstocks in the plastics industry. Total life cycle and cost/benefit analyses are employed to determine whether biochemicals are environmentally feasible and commercially viable as pollution prevention tools. Currently available green chemicals along with present and projected costs and premiums are also presented. Functional compatibility of biochemicals with petrochemicals and bioprocessing systems with conventional chemical processing methods are explored. This review demonstrates that biochemicals can be used cost effectively in certain industrial chemical operations due to their added environmental benefits.

  16. Why Process-Orientation is Scarce: An Empirical Study of Process-oriented Information Systems in the Automotive Industry

    E-Print Network [OSTI]

    Ulm, Universität

    in the Automotive Industry Bela Mutschler, Johannes Bumiller DaimlerChrysler Research & Technology P.O. Box 2360 the reasons for this drawback, we con- ducted a case study in the automotive domain and a survey among 79 in this context concerns the alignment of information systems (IS) and business processes [6]. In the automotive

  17. Final Report - ADVANCED LASER-BASED SENSORS FOR INDUSTRIAL PROCESS CONTROL

    SciTech Connect (OSTI)

    Gupta, Manish; Baer, Douglas

    2013-09-30T23:59:59.000Z

    The objective of this work is to capture the potential of real-time monitoring and overcome the challenges of harsh industrial environments, Los Gatos Research (LGR) is fabricating, deploying, and commercializing advanced laser-based gas sensors for process control monitoring in industrial furnaces (e.g. electric arc furnaces). These sensors can achieve improvements in process control, leading to enhanced productivity, improved product quality, and reduced energy consumption and emissions. The first sensor will utilize both mid-infrared and near-infrared lasers to make rapid in-situ measurements of industrial gases and associated temperatures in the furnace off-gas. The second sensor will make extractive measurements of process gases. During the course of this DOE project, Los Gatos Research (LGR) fabricated, tested, and deployed both in-situ tunable diode laser absorption spectrometry (TDLAS) analyzers and extractive Off-Axis Integrated Cavity Output Spectroscopy (Off-Axis ICOS) analyzers.

  18. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    energy-efficiency investments can be planned and implemented. There are also voluntary agreements covering process emissions in Australia,

  19. Assessment of selected conservation measures for high-temperature process industries

    SciTech Connect (OSTI)

    Kusik, C L; Parameswaran, K; Nadkarni, R; O'Neill, J K; Malhotra, S; Hyde, R; Kinneberg, D; Fox, L; Rossetti, M

    1981-01-01T23:59:59.000Z

    Energy conservation projects involving high-temperature processes in various stages of development are assessed to quantify their energy conservation potential; to determine their present status of development; to identify their research and development needs and estimate the associated costs; and to determine the most effective role for the Federal government in developing these technologies. The program analyzed 25 energy conserving processes in the iron and steel, aluminium, copper, magnesium, cement, and glassmaking industries. A preliminary list of other potential energy conservation projects in these industries is also presented in the appendix. (MCW)

  20. The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry

    SciTech Connect (OSTI)

    Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

    2006-05-01T23:59:59.000Z

    For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

  1. Interated Intelligent Industrial Process Sensing and Control: Applied to and Demonstrated on Cupola Furnaces

    SciTech Connect (OSTI)

    Mohamed Abdelrahman; roger Haggard; Wagdy Mahmoud; Kevin Moore; Denis Clark; Eric Larsen; Paul King

    2003-02-12T23:59:59.000Z

    The final goal of this project was the development of a system that is capable of controlling an industrial process effectively through the integration of information obtained through intelligent sensor fusion and intelligent control technologies. The industry of interest in this project was the metal casting industry as represented by cupola iron-melting furnaces. However, the developed technology is of generic type and hence applicable to several other industries. The system was divided into the following four major interacting components: 1. An object oriented generic architecture to integrate the developed software and hardware components @. Generic algorithms for intelligent signal analysis and sensor and model fusion 3. Development of supervisory structure for integration of intelligent sensor fusion data into the controller 4. Hardware implementation of intelligent signal analysis and fusion algorithms

  2. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    SciTech Connect (OSTI)

    Adam Polcyn; Moe Khaleel

    2009-01-06T23:59:59.000Z

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  3. AN INTEGRATED VISION TO ASSIST THE EVOLUTION IN INDUSTRIAL RISK MANAGEMENT PROCESS IN FRANCE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    AN INTEGRATED VISION TO ASSIST THE EVOLUTION IN INDUSTRIAL RISK MANAGEMENT PROCESS IN FRANCE Management in the field of environmental protection and risk prevention has evolved to the increasing with the complexity of risk management issues, in particular for those related to land-use planning. As technical

  4. Carbon Dioxide Sequestration Industrial-scale processes are available for separating carbon dioxide from the post-

    E-Print Network [OSTI]

    Carbon Dioxide Sequestration Industrial-scale processes are available for separating carbon dioxide dioxide separation and sequestration because the lower cost of carbon dioxide separation from for injection of carbon dioxide into oil or gas-bearing formations. An advantage of sequestration involving

  5. International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    Co-processing Municipal Solid Waste and Sewage Sludge in theno date. “Integrated Solid Waste Management. ” Presentationincineration of Municipal Solid Waste in Cement Industry. :

  6. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    driven systems; high efficiency boilers and process heaters;aims to develop boilers with an efficiency of 94%. However,much lower. Efficiency measures exist for both boilers and

  7. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    for carbon capture and storage technologies. Annual Reviewof carbon capture and storage (CCS) technology offers aCarbon dioxide Capture and Storage (CCS), including oxy-fuel combustion21 Process-specific technologies

  8. End-use matching for solar industrial process heat. Final report

    SciTech Connect (OSTI)

    Brown, K.C.; Hooker, D.W.; Rabl, A.; Stadjuhar, S.A.; West, R.E.

    1980-01-01T23:59:59.000Z

    Because of the large energy demand of industry (37% of US demand) and the wide spectrum of temperatures at which heat is required, the industrial sector appears to be very suitable for the matching of solar thermal technology with industrial process heat (IPH) requirements. A methodology for end-use matching has been devised, complete with required data bases and an evaluation program PROSYS/ECONMAT. Six cities in the United States were selected for an analysis of solar applications to IPH. Typical process heat requirements for 70% of the industrial plants in each city were identified and evaluated in conjunction with meteorological and economic data for each site to determine lowest-cost solar systems for each application. The flexibility and scope of PROSYS/ECONMAT is shown in a variety of sensitivity studies that expand the results of the six-city analysis. Case studies of two industrial plants were performed to evaluate the end-use matching procedure; these results are reported.

  9. Stochastic Processes and their Applications 120 (2010) 403426 www.elsevier.com/locate/spa

    E-Print Network [OSTI]

    Zhang, Jianfeng

    in the energy market. We note that this switching problem has also been used to model industries like copper fluctuates and depends on many factors such as consumer demand, oil prices, weather and so on. It is well in the market. Otherwise the power plant is closed till the time when the profitability is coming back again

  10. Design approaches for solar industrial process-heat systems: nontracking and line-focus collector technologies

    SciTech Connect (OSTI)

    Kutscher, C.F.; Davenport, R.L.; Dougherty, D.A.; Gee, R.C.; Masterson, P.M.; May, E.K.

    1982-08-01T23:59:59.000Z

    The design methodology for solar industrial process heat systems is described, and an overview is given of the use of solar energy in industry. A way to determine whether solar energy makes sense for a particular application is described. The basic system configurations used to supply hot water or steam are discussed, and computer-generated graphs are supplied that allow the user to select a collector type. Detailed energy calculations are provided, including the effects of thermal losses and storage. The selection of subsystem components is described, and control systems, installation and start-up details, economics, and safety and environmental issues are explained. (LEW)

  11. POTENTIAL AND FUTURE TRENDS ON INDUSTRIAL RADIATION PROCESSING TECHNOLOGY APPLICATION IN EMERGING COUNTRY - BRAZIL

    SciTech Connect (OSTI)

    Sampa, M.H.O.; Omi, N.M.; Rela, C.S.; Tsai, D.

    2004-10-06T23:59:59.000Z

    Brazil started the use of radiation technology in the seventies on crosslinking polyethylene for insulation of wire and electronic cables and sterilization of medical care devices. The present status of industrial applications of radiation shows that the use of this technology is increasing according to the economical development and the necessity to become the products manufactured in the local industries competitive in quality and price for internal and external market. The on going development activities in this area are concentrated on polymers processing (materials modification), foodstuff treatment and environmental protection. The development, the promotion and the technical support to consolidate this technology to the local industries is the main attribution of Institute for Energetic and Nuclear Research-IPEN, a governmental Institution.

  12. Solar feasibility study for site-specific industrial-process-heat applications. Final report

    SciTech Connect (OSTI)

    Murray, O.L.

    1980-03-18T23:59:59.000Z

    This study addresses the technical feasibility of solar energy in industrial process heat (IPH) applications in Mid-America. The study was one of two contracted efforts covering the MASEC 12-state region comprised of: Illinois, Michigan, North Dakota, Indiana, Minnesota, Ohio, Iowa, Missouri, South Dakota, Kansas, Nebraska, Wisconsin. The results of our study are encouraging to the potential future role of solar energy in supplying process heat to a varied range of industries and applications. We identified and developed Case Study documentation of twenty feasible solar IPH applications covering eight major SIC groups within the Mid-American region. The geographical distribution of these applications for the existing range of solar insolation levels are shown and the characteristics of the applications are summarized. The results of the study include process identification, analysis of process heat requirements, selection of preliminary solar system characteristics, and estimation of system performance and cost. These are included in each of the 20 Case Studies. The body of the report is divided into two primary discussion sections dealing with the Study Methodology employed in the effort and the Follow-On Potential of the identified applications with regard to possible demonstration projects. The 20 applications are rated with respect to their relative overall viability and procedures are discussed for possible demonstration project embarkment. Also, a possible extension of this present feasibility study for late-comer industrial firms expressing interest appears worthy of consideration.

  13. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Masanet, Eric

    2008-01-01T23:59:59.000Z

    industry is refrigeration, which is used for process cooling, cold storage,Cold Storage Facilities. Proceedings of the 2005 ACEEE Summer Study on Energy Efficiency in Industry,

  14. Solar production of industrial process steam at the Home Cleaning and Laundry Co. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1984-06-01T23:59:59.000Z

    This report presents the results of the operation and performance evaluation period at the Home Laundry Solar Industrial Process Heat Project at Pasadena, California. The installation comprises 6496 ft/sup 2/ (603.5 m/sup 2/) of linear parabolic trough concentrating collectors supplying solar thermal energy for use in laundry and dry cleaning processes. The design phase began in September 1977, and an acceptance test was conducted during the week of April 12, 1982. The plant has been in operation since May 1982, with the 12-month Phase III (operational) period starting in October 1982. The objective of the operational evaluation experiment was to maximize energy delivery to the industrial participant while characterizing system performance. Data were acquired for monthly documentation of system performance, maintenance requirements, and operating costs.

  15. Optical 3-D Measurement Techniques, 9-12 July 2007, Zurich Kohoutek, T. Monitoring of an Industrial Robot by Processing of 3D Range

    E-Print Network [OSTI]

    of an Industrial Robot by Processing of 3D Range Imaging Data Measured by the SwissRanger®SR-3000 Diploma Thesis TU (Switzerland) Industrial robots are commonly used in manufacturing industry, especially in automobile industry environments. The weight and high speeds of industrial robots, and resulting high tuning moments cause harmful

  16. Development of laboratory and process sensors to monitor particle size distribution of industrial slurries

    SciTech Connect (OSTI)

    Pendse, H.P.

    1992-10-01T23:59:59.000Z

    In this paper we present a novel measurement technique for monitoring particle size distributions of industrial colloidal slurries based on ultrasonic spectroscopy and mathematical deconvolution. An on-line sensor prototype has been developed and tested extensively in laboratory and production settings using mineral pigment slurries. Evaluation to date shows that the sensor is capable of providing particle size distributions, without any assumptions regarding their functional form, over diameters ranging from 0.1 to 100 micrometers in slurries with particle concentrations of 10 to 50 volume percents. The newly developed on-line sensor allows one to obtain particle size distributions of commonly encountered inorganic pigment slurries under industrial processing conditions without dilution.

  17. GEOPHYSICS, VOL. 64, NO. 6 (NOVEMBERDECEMBER 1999); P. 18771889, 15 FIGS., 2 TABLES. Source processes of industrially-induced earthquakes

    E-Print Network [OSTI]

    Foulger, G. R.

    , mirrors the steam production rate, sug- gesting that the earthquakes are industrially induced. A 15 processes of industrially-induced earthquakes at The Geysers geothermal area, California Alwyn Ross, G. R reinjection and steam with- drawal. Compensated linear vector dipole (CLVD) com- ponents were up to 100

  18. Potential for Heat Pumps in the U.S. Process Industries

    E-Print Network [OSTI]

    Rossiter, A. P.; Seetharam, R. V.; Ranade, S. M.

    , under contract to the Texas Electric Power Research Institute (EPRI) has developed d pinch-based procedure for the optimum placement of heat pumps. This work has been reported elsewhere [7 , 8 , 9] and 1s not discussed in detail here. A... simplified version of the EPRI procedure has been used by TENSA Services in a study, sponsored by the United States Department of Energy (U.S.DOE), aimed at identifying the scope for cost effective heat pump installations in the process industries...

  19. Monitoring the resin infusion manufacturing process under industrial environment using distributed sensors

    E-Print Network [OSTI]

    Wang, Peng; Drapier, Sylvain; Vautrin, Alain; Minni, Jean-Christophe; 10.1177/0021998311410479

    2012-01-01T23:59:59.000Z

    A novel direct approach to detect the resin flow front during the Liquid Resin Infusion process under industrial environment is proposed. To detect the resin front accurately and verify the results, which are deduced from indirect micro-thermocouples measurements, optical fiber sensors based on Fresnel reflection are utilized. It is expected that the results derived from both techniques will lead to an improvement of our understanding of the resin flow and in particular prove that micro-thermocouples can be used as sensors as routine technique under our experimental conditions. Moreover, comparisons with numerical simulations are carried out and experimental and simulated mold filling times are successfully compared.

  20. The development of a coal-fired combustion system for industrial process heating applications

    SciTech Connect (OSTI)

    Not Available

    1992-07-16T23:59:59.000Z

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation's Coal-Fired Combustion System for Industrial Process Heating Applications has been selected for Phase III development under contract DE-AC22-91PC91161. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting, recycling, and refining processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase HI research effort is being focused on the development of a process heater system to be used for producing glass frits and wool fiber from boiler and incinerator ashes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. The economic evaluation of commercial scale CMS processes has begun. In order to accurately estimate the cost of the primary process vessels, preliminary designs for 25, 50, and 100 ton/day systems have been started under Task 1. This data will serve as input data for life cycle cost analysis performed as part of techno-economic evaluations. The economic evaluations of commercial CMS systems will be an integral part of the commercialization plan.

  1. California Food Processing Industry Wastewater Demonstration Project: Phase I Final Report

    SciTech Connect (OSTI)

    Lewis, Glen; Atkinson, Barbara; Rhyne, Ivin

    2009-09-09T23:59:59.000Z

    Wastewater treatment is an energy-intensive process and electricity demand is especially high during the utilities summer peak electricity demand periods. This makes wastewater treatment facilities prime candidates for demand response programs. However, wastewater treatment is often peripheral to food processing operations and its demand response opportunities have often been overlooked. Phase I of this wastewater demonstration project monitored wastewater energy and environmental data at Bell-Carter Foods, Inc., California's largest olive processing plant. For this monitoring activity the project team used Green Energy Management System (GEMS) automated enterprise energy management (EEM) technologies. This report presents results from data collected by GEMS from September 15, 2008 through November 30, 2008, during the olive harvest season. This project established and tested a methodology for (1) gathering baseline energy and environmental data at an industrial food-processing plant and (2) using the data to analyze energy efficiency, demand response, daily peak load management, and environmental management opportunities at the plant. The Phase I goals were to demonstrate the measurement and interrelationship of electricity demand, electricity usage, and water quality metrics and to estimate the associated CO{sub 2} emissions.

  2. Industrial process data and estimating potential to emit (PTE): The effects of process chemistry on PTE and the emissions inventory

    SciTech Connect (OSTI)

    Najjar, R.C.; Podsiadlo, K. [URS Greiner, Inc., Buffalo, NY (United States)

    1997-12-31T23:59:59.000Z

    Title V of the Clean Air Act Amendments of 1990 (Title V) requires facilities to perform an inventory of their air pollutant emissions to determine if a Title V air permit is required. Facilities emitting air pollutants below applicable Title V thresholds (i.e., particulates, oxides of sulfur (SO{sub x}), oxides of nitrogen (NO{sub x}), carbon monoxide, ozone, volatile organic compounds (VOCs), lead, and hazardous air pollutants (HAPs)) still must show proof to the regulatory agencies that the Title V permitting requirements do not apply. Recently, the authors have performed several emissions inventories for some large industrial facilities in New York State with up to 250 air emissions sources. As a result, they have identified several reoccurring process/chemistry data issues that have impacted the estimation of PTE, the current New York State (NYS) point source permit compliance, and the potential Title V application status. Although there are many training courses that focus on how environmental managers should perform a comprehensive facility air emissions inventory and should prepare Title V applications, these courses generally assume that all emission source data are readily available. However, to the authors` knowledge, no one has communicated key process/chemistry issues and obstacles encountered in completing emissions inventories at large facilities or recommended potential solutions. The authors will highlight their experience with reoccurring facility emission data and data management shortfalls found during the performance of several large facility inventories. This includes their findings of apparently systemic loose practices, procedures, data management, and utilization of process data and chemistry for estimation of potential emissions needed for Title V compliance.

  3. Summary of innovative concepts for industrial process improvement: An experimental technology exchange

    SciTech Connect (OSTI)

    Conger, R.L. [Pacific Northwest Lab., Richland, WA (United States); Lee, V.E.; Buel, L.M. [eds.] [Pacific Northwest Lab., Richland, WA (United States)

    1995-08-01T23:59:59.000Z

    This document is a compilation of one-page technical briefs that summarize the highlights of thirty-eight innovations that were presented at the seventh Innovative Concepts Fair, held in Denver, Colorado on April 20--21, 1995. Sixteen of the innovations were funded through the Innovative Concepts Program, and twenty-two innovations represent other state or federally funded programs. The concepts in this year`s fair addressed innovations that can substantially improve industrial processes. Each tech brief describes the need for the proposed concept; the concept being proposed; and the concept`s economics and market potential, key experimental results, and future development needs. A contact block is also included with each flier.

  4. Optimum Reactor Outlet Temperatures for High Temperature Gas-Cooled Reactors Integrated with Industrial Processes

    SciTech Connect (OSTI)

    Lee O. Nelson

    2011-04-01T23:59:59.000Z

    This report summarizes the results of a temperature sensitivity study conducted to identify the optimum reactor operating temperatures for producing the heat and hydrogen required for industrial processes associated with the proposed new high temperature gas-cooled reactor. This study assumed that primary steam outputs of the reactor were delivered at 17 MPa and 540°C and the helium coolant was delivered at 7 MPa at 625–925°C. The secondary outputs of were electricity and hydrogen. For the power generation analysis, it was assumed that the power cycle efficiency was 66% of the maximum theoretical efficiency of the Carnot thermodynamic cycle. Hydrogen was generated via the hightemperature steam electrolysis or the steam methane reforming process. The study indicates that optimum or a range of reactor outlet temperatures could be identified to further refine the process evaluations that were developed for high temperature gas-cooled reactor-integrated production of synthetic transportation fuels, ammonia, and ammonia derivatives, oil from unconventional sources, and substitute natural gas from coal.

  5. Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 2

    SciTech Connect (OSTI)

    Zanner, F.J.; Moffatt, W.C.

    1995-07-01T23:59:59.000Z

    In July, 1994, a team of materials specialists from Sandia and US. Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US. Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

  6. Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 1

    SciTech Connect (OSTI)

    Zanner, F.J.; Moffatt, W.C.

    1995-07-01T23:59:59.000Z

    In July, 1994, a team of materials specialists from Sandia and U S Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

  7. Locating Heat Recovery Opportunities 

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  8. Locating Heat Recovery Opportunities

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  9. Development and Field Trial of Dimpled-Tube Technology for Chemical Industry Process Heaters

    SciTech Connect (OSTI)

    Yaroslav Chudnovsky; Aleksandr Kozlov

    2006-10-12T23:59:59.000Z

    Most approaches to increasing heat transfer rates in the convection sections of gas-fired process heaters involve the incorporation of fins, baffles, turbulizers, etc. to increase either the heat transfer surface area or turbulence or both. Although these approaches are effective in increasing the heat transfer rates, this increase is invariably accompanied by an associated increase in convection section pressure drop as well as, for heaters firing ‘dirty’ fuel mixtures, increased fouling of the tubes – both of which are highly undesirable. GTI has identified an approach that will increase heat transfer rates without a significant increase in pressure drop or fouling rate. Compared to other types of heat transfer enhancement approaches, the proposed dimpled tube approach achieves very high heat transfer rates at the lowest pressure drops. Incorporating this approach into convection sections of chemical industry fired process heaters may increase energy efficiency by 3-5%. The energy efficiency increase will allow reducing firing rates to provide the required heating duty while reducing the emissions of CO2 and NOx.

  10. Natural and industrial analogues for release of CO2 from storagereservoirs: Identification of features, events, and processes and lessonslearned

    SciTech Connect (OSTI)

    Lewicki, Jennifer L.; Birkholzer, Jens; Tsang, Chin-Fu

    2006-03-03T23:59:59.000Z

    The injection and storage of anthropogenic CO{sub 2} in deep geologic formations is a potentially feasible strategy to reduce CO{sub 2} emissions and atmospheric concentrations. While the purpose of geologic carbon storage is to trap CO{sub 2} underground, CO{sub 2} could migrate away from the storage site into the shallow subsurface and atmosphere if permeable pathways such as well bores or faults are present. Large-magnitude releases of CO{sub 2} have occurred naturally from geologic reservoirs in numerous volcanic, geothermal, and sedimentary basin settings. Carbon dioxide and natural gas have also been released from geologic CO{sub 2} reservoirs and natural gas storage facilities, respectively, due to influences such as well defects and injection/withdrawal processes. These systems serve as natural and industrial analogues for the potential release of CO{sub 2} from geologic storage reservoirs and provide important information about the key features, events, and processes (FEPs) that are associated with releases, as well as the health, safety, and environmental consequences of releases and mitigation efforts that can be applied. We describe a range of natural releases of CO{sub 2} and industrial releases of CO{sub 2} and natural gas in the context of these characteristics. Based on this analysis, several key conclusions can be drawn, and lessons can be learned for geologic carbon storage. First, CO{sub 2} can both accumulate beneath, and be released from, primary and secondary reservoirs with capping units located at a wide range of depths. Both primary and secondary reservoir entrapments for CO{sub 2} should therefore be well characterized at storage sites. Second, many natural releases of CO{sub 2} have been correlated with a specific event that triggered the release, such as magmatic fluid intrusion or seismic activity. The potential for processes that could cause geomechanical damage to sealing cap rocks and trigger the release of CO{sub 2} from a storage reservoir should be evaluated. Third, unsealed fault and fracture zones may act as fast and direct conduits for CO{sub 2} flow from depth to the surface. Risk assessment should therefore emphasize determining the potential for and nature of CO{sub 2} migration along these structures. Fourth, wells that are structurally unsound have the potential to rapidly release large quantities of CO{sub 2} to the atmosphere. Risk assessment should therefore be focused on the potential for both active and abandoned wells at storage sites to transport CO{sub 2} to the surface, particularly at sites with depleted oil or gas reservoirs where wells are abundant. Fifth, the style of CO{sub 2} release at the surface varies widely between and within different leakage sites. In rare circumstances, the release of CO{sub 2} can be a self-enhancing and/or eruptive process; this possibility should be assessed in the case of CO{sub 2} leakage from storage reservoirs. Sixth, the hazard to human health has been small in most cases of large surface releases of CO{sub 2}. This could be due to implementation of public education and CO{sub 2} monitoring programs; these programs should therefore be employed to minimize potential health, safety, and environmental effects associated with CO{sub 2} leakage. Finally, while changes in groundwater chemistry were related to CO{sub 2} leakage due to acidification and interaction with host rocks along flow paths, waters remained potable in most cases. Groundwaters should be monitored for changes that may be associated with storage reservoir leakage.

  11. Industrial Compositional Streamline Simulation for Efficient and Accurate Prediction of Gas Injection and WAG Processes

    SciTech Connect (OSTI)

    Margot Gerritsen

    2008-10-31T23:59:59.000Z

    Gas-injection processes are widely and increasingly used for enhanced oil recovery (EOR). In the United States, for example, EOR production by gas injection accounts for approximately 45% of total EOR production and has tripled since 1986. The understanding of the multiphase, multicomponent flow taking place in any displacement process is essential for successful design of gas-injection projects. Due to complex reservoir geometry, reservoir fluid properties and phase behavior, the design of accurate and efficient numerical simulations for the multiphase, multicomponent flow governing these processes is nontrivial. In this work, we developed, implemented and tested a streamline based solver for gas injection processes that is computationally very attractive: as compared to traditional Eulerian solvers in use by industry it computes solutions with a computational speed orders of magnitude higher and a comparable accuracy provided that cross-flow effects do not dominate. We contributed to the development of compositional streamline solvers in three significant ways: improvement of the overall framework allowing improved streamline coverage and partial streamline tracing, amongst others; parallelization of the streamline code, which significantly improves wall clock time; and development of new compositional solvers that can be implemented along streamlines as well as in existing Eulerian codes used by industry. We designed several novel ideas in the streamline framework. First, we developed an adaptive streamline coverage algorithm. Adding streamlines locally can reduce computational costs by concentrating computational efforts where needed, and reduce mapping errors. Adapting streamline coverage effectively controls mass balance errors that mostly result from the mapping from streamlines to pressure grid. We also introduced the concept of partial streamlines: streamlines that do not necessarily start and/or end at wells. This allows more efficient coverage and avoids the redundant work generally done in the near-well regions. We improved the accuracy of the streamline simulator with a higher order mapping from pressure grid to streamlines that significantly reduces smoothing errors, and a Kriging algorithm is used to map from the streamlines to the background grid. The higher accuracy of the Kriging mapping means that it is not essential for grid blocks to be crossed by one or more streamlines. The higher accuracy comes at the price of increased computational costs, but allows coarser coverage and so does not generally increase the overall costs of the computations. To reduce errors associated with fixing the pressure field between pressure updates, we developed a higher order global time-stepping method that allows the use of larger global time steps. Third-order ENO schemes are suggested to propagate components along streamlines. Both in the two-phase and three-phase experiments these ENO schemes outperform other (higher order) upwind schemes. Application of the third order ENO scheme leads to overall computational savings because the computational grid used can be coarsened. Grid adaptivity along streamlines is implemented to allow sharp but efficient resolution of solution fronts at reduced computational costs when displacement fronts are sufficiently separated. A correction for Volume Change On Mixing (VCOM) is implemented that is very effective at handling this effect. Finally, a specialized gravity operator splitting method is proposed for use in compositional streamline methods that gives an effective correction of gravity segregation. A significant part of our effort went into the development of a parallelization strategy for streamline solvers on the next generation shared memory machines. We found in this work that the built-in dynamic scheduling strategies of OpenMP lead to parallel efficiencies that are comparable to optimal schedules obtained with customized explicit load balancing strategies as long as the ratio of number of streamlines to number of threads is sufficiently high, which is the case in real-fie

  12. Improved Technology Transfer Processes for the U.S. Upstream Petroleum Industry

    SciTech Connect (OSTI)

    Rowell, Deborah; Cole, E. Lance

    2003-01-24T23:59:59.000Z

    This report covers PTTC's technical progress during the 1st half of FY99, and illustrates its increasing impact on the independent oil and gas producing industry.

  13. 6th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries SINTEF/NTNU, Trondheim NORWAY

    E-Print Network [OSTI]

    Bothe, Dieter

    INTRODUCTION The efficiency of gas-liquid rectors like bubble columns, air-lift or agitated stirred reactors. Especially in case of fast reactions the effi- ciency of chemical reactors significantly depends on the mass6th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries SINTEF

  14. An Assessment of the Economic Importance of the San Carlos Island Shrimp Processing Industry to the Lee County Economy

    E-Print Network [OSTI]

    Florida, University of

    to the Lee County Economy Chuck Adams, David Mulkey, and Alan Hodges Food and Resource Economics Department the shrimp processing industry on San Carlos Island contributes to the Lee County economy. Most of the shrimp of the revenues earned on a trip are spent within the Lee County economy. During seasons when shrimp landings

  15. The physical separation and recovery of metals from wastes. Process engineering for the chemical, metals and minerals industries, Volume 1

    SciTech Connect (OSTI)

    Veasey, T.J.; Wilson, R.J. (eds.) (Univ. of Birmingham (United Kingdom). School of Chemical Engineering); Squires, D.M. (ed.) (Newell Engineering Ltd., Redditch (United Kingdom))

    1993-01-01T23:59:59.000Z

    This book deals with the physical processes used for the separation of secondary metals from waste sources. The introduction briefly considers the history of the secondary metals industries, defines the terms used in materials recycling and discusses the potential for resource recovery and improved processing. A comprehensive survey is given of the unit operations employed for metals recovery and reclamation, and this is followed by detailed descriptions of processes used to treat fragmentized metal wastes and granulated metal wastes. The final chapter reviews the processing of urban wastes for metals recovery, and gives details of modern plant and practices. The volume aims to bring together technical information on metals recovery from a wide range of sources in order to give a unified review of an important engineering and environmental topic. Topics include: general definitions used in materials recycling; the potential for resource recovery; secondary metals; ranking of scrap; the potential for improved processing; comminution; physical separation methods; the scrap industry; automobile composition; shredders; non-magnetic processing; metal reclamation processes; waste tire processing; battery processing; thermal processing systems; composition of urban waste; and material recovery.

  16. A Process Reference Model for Reuse in Industrial Engineering: Enhancing the ISO/IEC 15504 Framework to Cope with Organizational Reuse Maturity

    E-Print Network [OSTI]

    Mössenböck, Hanspeter

    A Process Reference Model for Reuse in Industrial Engineering: Enhancing the ISO/IEC 15504 in industrial engineering for solution providers is more and more recognized as a key to economic success for reuse in industrial engineering. Based on an overview and the background of the GDES-Reuse improvement

  17. Cost-Effective Gas-Fueled Cooling Systems for Commercial/Industrial Buildings and Process Applications

    E-Print Network [OSTI]

    Lindsay, B. B.

    Gas Research Institute initiated a program in 1985 to develop cost-effective gas engine-driven cooling systems for commercial and industrial applications. Tecogen, Inc., has designed, fabricated, and tested a nominal 150-ton engine-driven water...

  18. Processing factors contributing to growth and decline in the steel industry

    E-Print Network [OSTI]

    Dufalla, Michele (Michele Helene)

    2007-01-01T23:59:59.000Z

    During the second half of the twentieth century, a technological shift occurred in the steel industry. A different mix of refining and melting furnaces were used, with increasing use being made of basic oxygen and electric ...

  19. Waterfront views : defining a new planning process for Brooklyn's post-industrial waterfronts

    E-Print Network [OSTI]

    Grassi, Carrie

    2006-01-01T23:59:59.000Z

    The study of waterfront planning largely focuses on the physical reconnection of the post-industrial, downtown waterfront with the spatial fabric of the city. Attention is given to the need for clarity of regulations, ...

  20. A feasibility study of solar ponds for Wisconsin industrial process heat applications -- Impact of lining material

    SciTech Connect (OSTI)

    Henning, M.A.; Reid, R.L. [Marquette Univ., Milwaukee, WI (United States). Coll. of Engineering

    1995-10-01T23:59:59.000Z

    An economic feasibility study of a salinity gradient solar pond for providing industrial process heat (IPH) in the state of Wisconsin is presented. A survey of current low temperature energy load demands of several companies within Wisconsin was completed. The data obtained was analyzed using a microcomputer based program to assess feasibility. Economic feasibility and thermal performance depends upon area. The area of the pond would determine the corresponding quantities of excavation, salt and lining material required to establish a salinity gradient solar pond (SGSP). The cost of the lining material also has a large impact upon the economic feasibility of a SGSP. The results of the economic feasibility study of a SGSP based on the selection of four types of liners is presented. These liners are a high density polyethylene (HDPE) liner, two forms of a geosynthetic clay liner (GCL) and a chemical and weather resistant polymer coated polyester fabric liner (XR-5). For a load of 10,000 GJ/month on an annual operating schedule for the most favorable economic performance resulted from a geosynthetic clay liner with a high density polyethylene backing. For a 10,000 m{sup 2} pond a payback of 8.4 years can be obtained with a unit cost of $43.20/m{sup 2}. It was also determined that if a larger load was demanded and the corresponding optimal area was provided the economic feasibility of a SGSP increased greatly. For a load of 100,000 GJ/Month on an annual operating schedule, using the same lining material, the optimal pond area was found to be 35,800 m{sup 2}, with a discounted payback of 3.8 years and a unit cost of $35.40/ms{sup 2}. Similar results were obtained for the other materials. From these findings it appears that a SGSP using a geosynthetic clay liner with HDPE backing will be economically feasible for a load of 10,000 GJ/month. The economic feasibility improves with increased thermal load and the corresponding optimal pond area.

  1. Air Pollution Control Regulations: No. 3- Particulate Emissions from Industrial Processes (Rhode Island)

    Broader source: Energy.gov [DOE]

    These regulations limit particulate emissions into the atmosphere by process weight per hour, where process weight is the total weight of all materials introduced into any specific process which...

  2. Model for multi-strata safety performance measurements in the process industry 

    E-Print Network [OSTI]

    Keren, Nir

    2004-09-30T23:59:59.000Z

    Measuring process safety performance is a challenge, and the wide variations in understanding, compliance, and implementation of process safety programs increase the challenge. Process safety can be measured in three strata: ...

  3. Natural and industrial analogues for leakage of CO2 from storagereservoirs: identification of features, events, and processes and lessonslearned

    SciTech Connect (OSTI)

    Lewicki, Jennifer L.; Birkholzer, Jens; Tsang, Chin-Fu

    2006-02-28T23:59:59.000Z

    The injection and storage of anthropogenic CO2 in deepgeologic formations is a potentially feasible strategy to reduce CO2emissions and atmospheric concentrations. While the purpose of geologiccarbon storage is to trap CO2 underground, CO2 could migrate away fromthe storage site into the shallow subsurface and atmosphere if permeablepathways such as well bores or faults are present. Large-magnitudereleases of CO2 have occurred naturally from geologic reservoirs innumerous volcanic, geothermal, and sedimentary basin settings. Carbondioxide and natural gas have also been released from geologic CO2reservoirs and natural gas storage facilities, respectively, due toinfluences such as well defects and injection/withdrawal processes. Thesesystems serve as natural and industrial analogues for the potentialrelease of CO2 from geologic storage reservoirs and provide importantinformation about the key features, events, and processes (FEPs) that areassociated with releases, as well as the health, safety, andenvironmental consequences of releases and mitigation efforts that can beapplied. We describe a range of natural releases of CO2 and industrialreleases of CO2 and natural gas in the context of these characteristics.Based on this analysis, several key conclusions can be drawn, and lessonscan be learned for geologic carbon storage. First, CO2 can bothaccumulate beneath, and be released from, primary and secondaryreservoirs with capping units located at a wide range of depths. Bothprimary and secondary reservoir entrapments for CO2 should therefore bewell characterized at storage sites. Second, many natural releases of CO2have been correlated with a specific event that triggered the release,such as magmatic fluid intrusion or seismic activity. The potential forprocesses that could cause geomechanical damage to sealing cap rocks andtrigger the release of CO2 from a storage reservoir should be evaluated.Third, unsealed fault and fracture zones may act as fast and directconduits for CO2 flow from depth to the surface. Risk assessment shouldtherefore emphasize determining the potential for and nature of CO2migration along these structures. Fourth, wells that are structurallyunsound have the potential to rapidly release large quantities of CO2 tothe atmosphere. Risk assessment should therefore be focused on thepotential for both active and abandoned wells at storage sites totransport CO2 to the surface, particularly at sites with depleted oil orgas reservoirs where wellsare abundant. Fifth, the style of CO2 releaseat the surface varies widely between and within different leakage sites.In rare circumstances, the release of CO2 can be a self-enhancing and/oreruptive process; this possibility should be assessed in the case of CO2leakage from storage reservoirs. Sixth, the hazard to human health hasbeen small in most cases of large surface releases of CO2. This could bedue to implementation of public education and CO2 monitoring programs;these programs should therefore be employed to minimize potential health,safety, and environmental effects associated with CO2 leakage. Finally,while changes in groundwater chemistry were related to CO2 leakage due toacidification and interaction with host rocks along flow paths, watersremained potable in most cases. Groundwaters should be monitored forchanges that may be associated with storage reservoirleakage.

  4. Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications

    SciTech Connect (OSTI)

    Lee Nelson

    2009-10-01T23:59:59.000Z

    This report is a preliminary comparison of conventional and potential HTGR-integrated processesa in several common industrial areas: ? Producing electricity via a traditional power cycle ? Producing hydrogen ? Producing ammonia and ammonia-derived products, such as fertilizer ? Producing gasoline and diesel from natural gas or coal ? Producing substitute natural gas from coal, and ? Steam-assisted gravity drainage (extracting oil from tar sands).

  5. Sustaining Industrial Energy Efficiency in Process Cooling in a Potentially Water-Short Future

    E-Print Network [OSTI]

    Ferland, K.

    2014-01-01T23:59:59.000Z

    Operation: ESL-IE-14-05-18 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 15 eco-ATWE Water Efficient Mode (Combined Evaporative and Dry Mode) Third Mode of Operation: • Two Pumps • Two Water...

  6. Advanced Membrane Separation Technologies for Energy Recovery from Industrial Process Streams

    SciTech Connect (OSTI)

    Keiser, J.R.; Wang, D. (Gas Technology Institute); Bischoff, B.; Ciora (Media and Process Technology); Radhakrishnan, B.; Gorti, S.B.

    2013-01-14T23:59:59.000Z

    Recovery of energy from relatively low-temperature waste streams is a goal that has not been achieved on any large scale. Heat exchangers do not operate efficiently with low-temperature streams and thus require such large heat exchanger surface areas that they are not practical. Condensing economizers offer one option for heat recovery from such streams, but they have not been widely implemented by industry. A promising alternative to these heat exchangers and economizers is a prototype ceramic membrane system using transport membrane technology for separation of water vapor and recovery of heat. This system was successfully tested by the Gas Technology Institute (GTI) on a natural gas fired boiler where the flue gas is relatively clean and free of contaminants. However, since the tubes of the prototype system were constructed of aluminum oxide, the brittle nature of the tubes limited the robustness of the system and even limited the length of tubes that could be used. In order to improve the robustness of the membrane tubes and make the system more suitable for industrial applications, this project was initiated with the objective of developing a system with materials that would permit the system to function successfully on a larger scale and in contaminated and potentially corrosive industrial environments. This required identifying likely industrial environments and the hazards associated with those environments. Based on the hazardous components in these environments, candidate metallic materials were identified that are expected to have sufficient strength, thermal conductivity and corrosion resistance to permit production of longer tubes that could function in the industrial environments identified. Tests were conducted to determine the corrosion resistance of these candidate alloys, and the feasibility of forming these materials into porous substrates was assessed. Once the most promising metallic materials were identified, the ability to form an alumina membrane layer on the surface of the metallic tubes was evaluated. Evaluation of this new style of membrane tube involved exposure to SO{sub 2} containing gases as well as to materials with a potential for fouling. Once the choice of substrate and membrane materials and design were confirmed, about 150 tubes were fabricated and assembled into three modules. These modules were mounted on an industrial size boiler and their performance carefully monitored during a limited testing period. The positive results of this performance test confirm the feasibility of utilizing such a system for recovery of heat and water from industrial waste streams. The improved module design along with use of long metallic substrate tubes with a ceramic membrane on the outer surface resulted in the successful, limited scale demonstration of the Transport Membrane Condenser (TMC) technology in the GTI test facility. This test showed this technology can successfully recover a significant amount of heat and water from gaseous waste streams. However, before industry will make the investment to install a full scale TMC, a full scale system will need to be constructed, installed and successfully operated at a few industrial sites. Companies were identified that had an interest in serving as a host site for a demonstration system.

  7. Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels

    SciTech Connect (OSTI)

    Agrawal, Ajay; Taylor, Robert

    2013-09-30T23:59:59.000Z

    This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a path forward to utilize both fossil and alternative liquid fuels in the same combustion system. In particular, experiments show that straight VO can be cleanly combusted without the need for chemical processing or preheating steps, which can result in significant economic and environmental benefits. Next, low-emission combustion of glycerol/methane was achieved by utilizing FB injector to yield fine droplets of highly viscous glycerol. Heat released from methane combustion further improves glycerol pre-vaporization and thus its clean combustion. Methane addition results in an intensified reaction zone with locally high temperatures near the injector exit. Reduction in methane flow rate elongates the reaction zone, which leads to higher CO emissions and lower NOx emissions. Similarly, higher air to liquid (ALR) mass ratio improves atomization and fuel pre-vaporization and shifts the flame closer to the injector exit. In spite of these internal variations, all fuel mixes of glycerol with methane produced similar CO and NOx emissions at the combustor exit. Results show that FB concept provides low emissions with the flexibility to utilize gaseous and highly viscous liquid fuels, straight VO and glycerol, without preheating or preprocessing the fuels. Following these initial experiments in quartz combustor, we demonstrated that glycerol combustion can be stably sustained in a metal combustor. Phase Doppler Particle Analyzer (PDPA) measurements in glycerol/methane flames resulted in flow-weighted Sauter Mean Diameter (SMD) of 35 to 40 ?m, depending upon the methane percentage. This study verified that lab-scale dual-fuel burner using FB injector can successfully atomize and combust glycerol and presumably other highly viscous liquid fuels at relatively low HRR (<10 kW). For industrial applications, a scaled-up glycerol burner design thus seemed feasible.

  8. Potential for Heat Pumps in the U.S. Process Industries 

    E-Print Network [OSTI]

    Rossiter, A. P.; Seetharam, R. V.; Ranade, S. M.

    1987-01-01T23:59:59.000Z

    Two major criteria for successful heat pump installations in process plants are the "appropriate placement" and "appropriate sizing" of the heat pump, consistent with the thermodynamics of the process. Failure to fulfil these conditions will result...

  9. Improving supply chain performance by implementing weekly demand planning processes in the consumer packaged goods industry

    E-Print Network [OSTI]

    Rah, Myung-Hyun Elisa

    2006-01-01T23:59:59.000Z

    This thesis examines how simple weekly demand planning process can improve inventory levels and customers service levels at the Gillette Company. The processes designed by the project team has been tested and executed in ...

  10. Ensure Continuous Power to Critical Industrial Processes with the New Superconducting Storage Device (SSD™)

    E-Print Network [OSTI]

    Dewinkel, C. C.; Koeppe, P. F.

    ABSTRACT Long-term outages have been effectively reduced by electric utilities. However, momentary voltage disturbances are increasing on power systems across the country. Simultaneously, most industries have increased the use of electronically... Superconductivity, Inc. (SI) stores enough electrical energy (0 provide megawatts of "ride-through" power during voltage sags and momentary power losses. While long-term outages have been effectively reduced by electric utilities. momentary vollage disturbances...

  11. Risk Measures Constituting Risk Metrics for Decision Making in the Chemical Process Industry 

    E-Print Network [OSTI]

    Prem, Katherine

    2012-02-14T23:59:59.000Z

    risk assessment methods for the safety design measures based on a feedback system of using fault tree for credible accidents. Hasle, Kjelle`n and Haugerud (2008) indicate that the Norwegian offshore facilities have the most experience and know...-how in preventing accidents through the design and implementation of good QRA methodologies. Hasle et al. study the principles used by the industry at different phases of design in two ways, namely, the human centered and the energy barrier perspectives...

  12. Application and Technology Requirements for Heat Pumps at the Process Industries

    E-Print Network [OSTI]

    Priebe, S.; Chappell, R.

    APPLICATION AND TECHNOLOGY REQUIREMENTS FOR HEAT PUMPS AT THE PROCESS INDUSTRIESl Stephen Priebe Engineering Specialist EG&G Idaho, Inc. Idaho Falls, ID There are basically three categories of equip ment used to manage heat energy flows... in an indus trial process. First, heat exchangers are used to move heat through the process down the temperature gradient. Second, heat pumps are used to move heat through the process up the temperature gra dient. Third, heat engines are used to convert...

  13. Location | JCESR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy's Argonne National Laboratory, 25 miles southwest of Chicago at the heart of the Midwest's broad industrial and academic research and transportation...

  14. Save Energy Now in Your Process Heating Systems; Industrial Technologies Program (ITP) BestPractices: Process Heating (Fact sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG -EnergyProcess Heating Systems Process heating

  15. Title: Designing Energy-Efficient Information Processing Systems Abstract: The semiconductor industry is facing some extraordinary challenges, including process and

    E-Print Network [OSTI]

    Title: Designing Energy-Efficient Information Processing Systems Abstract: The semiconductor. It is against this backdrop that I provide examples of some techniques used to improve the energy efficiency's research focuses on energy-efficient computing, energy storage systems, low power electronics and design

  16. Furnace Pressure Controllers; Industrial Technologies Program (ITP) Energy Tips - Process Heating Tip Sheet #6 (Fact Sheet).

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies ProgramOutfittedof6 * September 2005 Industrial

  17. Industrial Activities at DOE: Efficiency, Manufacturing, Process, and Materials R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIAN COUNTRY ENERGYEnergyIndustrial

  18. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    Vegetable Processing/Cold Storage Facilities. Proceedings ofControl System in a Food Cold Storage Facility. Case Studyhomogenization, and cold storage can be found in nearly

  19. The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry

    E-Print Network [OSTI]

    Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

    2006-01-01T23:59:59.000Z

    for refrigerated cold storage. Descriptions of theseto processing (e.g. , cold storage of harvested vegetables),the marketplace (e.g. , cold storage of bottled milk). The

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    to implement control systems and more modern systems entercontrol systems; many facilities may already have modernprocess control systems are growing rapidly. Modern process

  1. Integration of Industrial Scale Processes using Biomass Feedstock in the Petrochemical Complex ofBiomass Feedstock in the Petrochemical Complex of

    E-Print Network [OSTI]

    Pike, Ralph W.

    Integration of Industrial Scale Processes using Biomass Feedstock in the Petrochemical Complex ofBiomass Feedstock in the Petrochemical Complex of the Lower Mississippi River Corridor Debalina Sengupta1, Ralph W

  2. Harnessing Smart Sensor Technology for Industrial Energy Efficiency- Making Process-Specific Efficiency Projects Cost Effective with a Broadly Configurable, Network-Enabled Monitoring Tool 

    E-Print Network [OSTI]

    Wiczer, J. J.; Wiczer, M. B.

    2011-01-01T23:59:59.000Z

    To improve monitoring technology often re-quired by industrial energy efficiency projects, we have developed a set of power and process monitoring tools based on the IEEE 1451.2 smart sensor interface standard. These tools enable a wide...

  3. The following are appendices A, B1 and B2 of our paper, "Integrated Process Modeling and Product Design of Biodiesel Manufacturing", that appears in the Industrial and

    E-Print Network [OSTI]

    Liu, Y. A.

    Design of Biodiesel Manufacturing", that appears in the Industrial and Engineering Chemistry Research a Biodiesel Process Model To access NIST TDE Data Engine in Aspen Plus version 2006.5 or V7.0 Step 1. Enter

  4. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    are in the process cooling of milk and other dairy products,to finish cooling the outgoing pasteurized milk. Installingand cooling upon entering the facility for storage, the milk

  5. Risk Measures Constituting Risk Metrics for Decision Making in the Chemical Process Industry

    E-Print Network [OSTI]

    Prem, Katherine

    2012-02-14T23:59:59.000Z

    monetization. Predicting incidents as leading metrics is pivotal to improving plant processes and, for individual and societal safety in the vicinity of the plant (portfolio). From this study it can be concluded that the comprehensive judgments of all the risks...

  6. Using value stream mapping to improve documentation processes in the biopharmacutical industry

    E-Print Network [OSTI]

    Ford, Rebecca (Rebecca Lynn)

    2010-01-01T23:59:59.000Z

    This thesis describes how a 55% reduction in error rate and a 92% decrease in cycle-time were achieved in a batch production records process in a biotech manufacturing facility by utilization of value-stream mapping. The ...

  7. Computer-aided industrial process design; the ASPEN Project. First annual report for the period.

    E-Print Network [OSTI]

    Massachusetts Institute of Technology. Energy Laboratory.

    1977-06-15T23:59:59.000Z

    Work during the first year of this contract concentrated on acquiring the project staff, development of a prototype simulator, the simulation of three coal conversion processes, a survey of software for acquisition, the ...

  8. The Use of Simulation Techniques for Improving Energy Consumption of Industrial Processes

    E-Print Network [OSTI]

    Gourlia, J. P.; Jamen, R.

    1984-01-01T23:59:59.000Z

    the physical meaning of available energy function (or exergy) and we show how graphical representations are helpful for the interpretation for the exergy analysis. The study of a crude oil pipestill allows us to identify the irreversibilities of the process...

  9. Process Innovation by working miners : a case of user innovation in copper mining industry

    E-Print Network [OSTI]

    Burdiles Orellana, Sergio

    2012-01-01T23:59:59.000Z

    Employees are known to develop and use key process improvements. In this thesis, I explore innovation by mining employees working in Codelco, a Chilean mining company. The data on these innovations come from a contest ...

  10. How managing more efficiently substances in the design process of industrial products? An example from the aeronautics sector

    E-Print Network [OSTI]

    Lemagnen, Maud; Brissaud, Daniel

    2009-01-01T23:59:59.000Z

    Lowering environmental impacts of products, i.e. ecodesign, is considered today as a new and promising approach environment protection. This article focuses on ecodesign in the aeronautical sector through the analysis of the practices of a company that designs and produces engine equipments. Noise, gas emissions, fuel consumptions are the main environmental aspects which are targeted by aeronautics. From now on, chemical risk linked to the use of materials and production processes has to be traced, not only because of regulation pressure (e.g. REACh) but also because of customers requirements. So far, the aeronautical sector hasn't been focusing much on managing chemical risks at the design stage. However, new substances regulations notably require that chemical risk management should be by industries used as early as possible in their product development process. The aeronautics sector has therefore to elaborate new chemical risk management. The aim of this paper is to present a new method hat should be adap...

  11. INDUSTRIAL ENGINEERING Industrial engineering is concerned

    E-Print Network [OSTI]

    INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. The focus of industrial engineering is on process improvement

  12. Abstract--The increasing competitiveness in manufacturing industry is forcing manufacturers to seek effective processing

    E-Print Network [OSTI]

    Mustakerov, Ivan

    plant problem. Different processing schedules variants for different technological restrictions were, so they must rely on innovative approaches in all aspects of manufacturing technology. As a result existing results in the literature focus on either a single machine or several identical machines [5

  13. Image Reconstruction of a Metal Fill Industrial Process Using Genetic Programming Alaa Al-Afeef

    E-Print Network [OSTI]

    Fernandez, Thomas

    pipeline and others) using wave of energy [1]­ [3]. Technically, Tomography involves taking direct sec of the dielectric permittivity distribution in the interior of an object from external capacitance measurements processes using capacitance measurements to form images. For exam- ple: gas/liquid flows [8], pneumatic

  14. Process Parameters and Energy Use of Gas and Electric Ovens in Industrial Applications 

    E-Print Network [OSTI]

    Kosanovic, D.; Ambs, L.

    2000-01-01T23:59:59.000Z

    The study was conducted to evaluate the energy use of natural gas and electric ovens in the production of polymer bearings and components. Tests were conducted to evaluate and compare the performance of natural gas and electric ovens in the process...

  15. Process Parameters and Energy Use of Gas and Electric Ovens in Industrial Applications

    E-Print Network [OSTI]

    Kosanovic, D.; Ambs, L.

    The study was conducted to evaluate the energy use of natural gas and electric ovens in the production of polymer bearings and components. Tests were conducted to evaluate and compare the performance of natural gas and electric ovens in the process...

  16. Process Improvement in Large-Scale Industrial Environments Based on SCM

    E-Print Network [OSTI]

    Garching Karlheinz Raith BMW AG Sapporobogen 6-8 Germany ­ 80788 Munich Abstract Process improvement manufacturer BMW has recog- nized the importance of software development for both, its products and its internal information man- agement, several years ago. BMW participates in several initiatives to introduce

  17. Department of Industrial Engineering Spring 2012 Equipment Jack Manufacturing Process Improvement at CIU -Global Project

    E-Print Network [OSTI]

    Demirel, Melik C.

    it to the current system's capacity Perform FMEA to conclude the top events critical to quality for the assembly collection for both EWMA, FMEA, and manufacturing systems Outcomes New, standardized process increased forecast schedules, orders, and capabilities. FMEA illustrates assembly steps that are crucial to quality

  18. Prediction of the Tool Displacement by Coupled Models of the Compliant Industrial Robot and the Milling Process

    E-Print Network [OSTI]

    Stryk, Oskar von

    Prediction of the Tool Displacement by Coupled Models of the Compliant Industrial Robot@sim.tu-darmstadt.de Abstract Using an industrial robot for machining parts provides a cost-saving and flexible alternative for industrial robots is automated pre-machining (deburring and fettling) of cast parts. There, industrial robots

  19. Development of A New Class of Fe-3Cr-W(V)Ferritic Steels for Industrial Process Applications

    SciTech Connect (OSTI)

    Sikka, V.J.; Jawad, M.H. (Nooter Corp.)

    2005-06-15T23:59:59.000Z

    The project, 'Development of a New Class of Fe-Cr-W(V) Ferritic Steels for Industrial Process Applications', was a Cooperative Research and Development Agreement (CRADA) between Oak Ridge National Laboratory (ORNL) and Nooter Corporation. This project dealt with improving the materials performance and fabrication for the hydrotreating reactor vessels, heat recovery systems, and other components for the petroleum and chemical industries. The petroleum and chemical industries use reactor vessels that can approach the ship weights of approximately 300 tons with vessel wall thicknesses of 3 to 8 in. These vessels are typically fabricated from Fe-Cr-Mo steels with chromium ranging from 1.25 to 12% and molybdenum from 1 to 2%. Steels in this composition have great advantages of high thermal conductivity, low thermal expansion, low cost, and properties obtainable by heat treatment. With all of the advantages of Fe-Cr-Mo steels, several issues are faced in design and fabrication of vessels and related components. These issues include the following: (1) low strength properties of current alloys require thicker sections; (2) increased thickness causes heat-treatment issues related to nonuniformity across the thickness and thus not achieving the optimum properties; (3) fracture toughness (ductile-to-brittle transition ) is a critical safety issue for these vessels, and it is affected in thick sections due to nonuniformity of microstructure; (4) PWHT needed after welding and makes fabrication more time-consuming with increased cost; and (5) PWHT needed after welding also limits any modifications of the large vessels in service. The goal of this project was to reduce the weight of large-pressure vessel components (ranging from 100 to 300 tons) by approximately 25% and reduce fabrication cost and improve in-service modification feasibility through development of Fe-3Cr-W(V) steels with combination of nearly a 50% higher strength, a lower DBTT and a higher upper-shelf energy, ease of heat treating, and a strong potential for not requiring PWHT.

  20. Reversible micromachining locator

    DOE Patents [OSTI]

    Salzer, L.J.; Foreman, L.R.

    1999-08-31T23:59:59.000Z

    This invention provides a device which includes a locator, a kinematic mount positioned on a conventional tooling machine, a part carrier disposed on the locator and a retainer ring. The locator has disposed therein a plurality of steel balls, placed in an equidistant position circumferentially around the locator. The kinematic mount includes a plurality of magnets which are in registry with the steel balls on the locator. In operation, a blank part to be machined is placed between a surface of a locator and the retainer ring (fitting within the part carrier). When the locator (with a blank part to be machined) is coupled to the kinematic mount, the part is thus exposed for the desired machining process. Because the locator is removably attachable to the kinematic mount, it can easily be removed from the mount, reversed, and reinserted onto the mount for additional machining. Further, the locator can likewise be removed from the mount and placed onto another tooling machine having a properly aligned kinematic mount. Because of the unique design and use of magnetic forces of the present invention, positioning errors of less than 0.25 micrometer for each machining process can be achieved. 7 figs.

  1. Reversible micromachining locator

    DOE Patents [OSTI]

    Salzer, Leander J. (Los Alamos, NM); Foreman, Larry R. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    This invention provides a device which includes a locator, a kinematic mount positioned on a conventional tooling machine, a part carrier disposed on the locator and a retainer ring. The locator has disposed therein a plurality of steel balls, placed in an equidistant position circumferentially around the locator. The kinematic mount includes a plurality of magnets which are in registry with the steel balls on the locator. In operation, a blank part to be machined is placed between a surface of a locator and the retainer ring (fitting within the part carrier). When the locator (with a blank part to be machined) is coupled to the kinematic mount, the part is thus exposed for the desired machining process. Because the locator is removably attachable to the kinematic mount, it can easily be removed from the mount, reversed, and reinserted onto the mount for additional machining. Further, the locator can likewise be removed from the mount and placed onto another tooling machine having a properly aligned kinematic mount. Because of the unique design and use of magnetic forces of the present invention, positioning errors of less than 0.25 micrometer for each machining process can be achieved.

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

    2008-01-01T23:59:59.000Z

    The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  3. Safe handling of TBP and nitrates in the nuclear process industry

    SciTech Connect (OSTI)

    Hyder, M.L.

    1994-07-01T23:59:59.000Z

    A laboratory and literature study was made of the reactions of tri-n-butyl phosphate (TBP) with nitric acid and nitrates. Its goal was to establish safe conditions for solvent extraction processes involving these chemicals. The damaging explosions at the Tomsk-7 PUREX plant in Russia graphically illustrated the potential hazard involved in such operations. The study has involved a review of prior and contemporary experiments, and new experiments to answer particular questions about these reactions. TBP extracts nitric acid and some metal nitrates from aqueous solutions. The resulting liquid contains both oxidant and reductant, and can react exothermically if heated sufficiently. Safe handling of these potentially reactive materials involves not only limiting the heat generated by the chemical reaction, but also providing adequate heat removal and venting. Specifically, the following recommendations are made to ensure safety: (1) tanks in which TBP-nitrate complexes are or may be present should be adequately vented to avoid pressurization. Data are supplied as a basis for adequacy; (2) chemically degraded TBP, or TBP that has sat a long time in the presence of acids or radiation, should be purified before use in solvent extraction; (3) evaporators in which TBP might be introduced should be operated at a controlled temperature, and their TBP content should be limited; (4) evaporator bottoms that may contain TBP should be cooled under conditions that ensure heat removal. Finally, process design should consider the potential for such reactions, and operators should be made aware of this potential, so that it is considered during training and process operation.

  4. Process Heating Roadmap to Help U.S. Industries Be Competitive | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prev next > SunChallenge to DriveElectrictoProcessProcessof

  5. Solar production of industrial process steam. Quarterly performance report, January 16, 1980-June 30, 1980

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    A solar process steam system for gauze bleaching/sterilization utilizing 1065 m/sup 2/ Acurex Model 3001 line focusing parabolic trough concentrators is described. The system operates by circulating pressurized water through the collector field and then throttling it into a flash boiler. There the heated, pressurized water flashes to steam and flows into the plant steam main for distribution to various plant processes. Makeup water is supplied by the existing plant boiler feedwater system. The flash boiler retains enough thermal storage to provide freeze protection to the collector field when required. The system performance from January 16 to June 30 is summarized. A comparison of predicted and measured performance for a single day in June is presented. A summary of the operation of the system is given in Appendix A for each day of operation. Appendix B contains the hourly average values of system parameters for a single clear day in each month. These values are presented in graphical form in Appendix C. The daily values are tabulated in Appendix D and plotted in Appendix E for each month of operation. (MCW)

  6. Gas Turbine Considerations in the Pulp and Paper Industry

    E-Print Network [OSTI]

    Anderson, J. S.; Kovacik, J. M.

    GAS TURBINE CONSIDERATIONS IN THlI: PULP AND PAPER INDUSTRY J. Steven Anderson, Ph.D. Director-Energy International Paper Company Purchase, NY INTRODUCTION The pulp and paper industry is one of the largest users of energy... as an inte gral part of their power plant systems. The large requirements for process steam combined with process by-products and wood wastes make steam turbines a serious consideration in plant locations where suit able economic conditions are present...

  7. A Study to Develop an Industrial-Scale, Computer-Controlled High Magnetic Field Processing (HMFP) System to Assist in Commercializing the Novel, Enabling HMFP Manufacturing Technology

    SciTech Connect (OSTI)

    Ludtka, Gail Mackiewicz- [ORNL; Chourey, Aashish [American Magnetics Inc.

    2010-08-01T23:59:59.000Z

    As the original magnet designer and manufacturer of ORNL s 9T, 5-inch ID bore magnet, American Magnetics Inc. (AMI) has collaborated with ORNL s Materials Processing Group s and this partnership has been instrumental in the development of our unique thermo-magnetic facilities and expertise. Consequently, AMI and ORNL have realized that the commercial implementation of the High Magnetic Field Processing (HMFP) technology will require the evolution of robust, automated superconducting (SC) magnet systems that will be cost-effective and easy to operate in an industrial environment. The goal of this project and CRADA is to significantly expedite the timeline for implementing this revolutionary and pervasive cross-cutting technology for future US produced industrial components. The successful completion of this project is anticipated to significantly assist in the timely commercialization and licensing of our HMFP intellectual property for a broad spectrum of industries; and to open up a new market for AMI. One notable outcome of this project is that the ThermoMagnetic Processing Technology WON a prestigious 2009 R&D 100 Awards. This award acknowledges and recognizes our TMP Technology as one of the top 100 innovative US technologies in 2009. By successfully establishing the design requirements for a commercial scale magnetic processing system, this project effort has accomplished a key first step in facilitating the building and demonstration of a superconducting magnetic processing coil, enabling the transition of the High Magnetic Field Processing Technology beyond a laboratory novelty into a commercially viable and industrially scalable Manufacturing Technology.

  8. Mineralogical characterization of steel industry hazardous waste and refractory sulfide ores for zinc and gold recovery processing

    SciTech Connect (OSTI)

    Hagni, A.M.; Hagni, R.D. (Univ. of Missouri, Rolla, MO (United States). Geology Geophysics Dept.)

    1994-04-01T23:59:59.000Z

    The steel industry generates dust as a waste product from high temperature electric arc furnaces (EAF), which is a major step in processing scrap metal into steel. The Environmental Protection Agency (EPA) has classified EAF dust as KO61 hazardous waste, due to its lead, cadmium, and chromium content. The dust also contains valuable zinc, averaging 19%. Detailed mineralogical characterization show the zinc is present as crystals of franklinite-magnetite-jacobsite solid solutions in calcium-iron-silicate glass spheres and as zincite mostly as very small individual spheres. Much of the chromium is present in an insoluble form in solid solution in the iron spinels. This microscopic research is a valuable tool in determining treatment processes for the 600,000 tons of dust generated annually in the US. Refractory gold ores, pyrite and arsenopyrite, have been studied to determine additional, cost-effective methods of processing. One technique under investigation involves roasting sulfide mineral particles to hematite to create porosity through which a leach can permeate to recover the gold. Portlandite, Ca(OH)[sub 2], is added to the roast for retention of hazardous sulfur and arsenic. Modern microscopic and spectroscopic techniques, such electron spectroscopy for chemical analysis, cathodoluminescence microscopy, and electron microprobe, have been applied, as well as reflected light and dark field microscopy, and scanning electron microscopy to determine the mineralogy of the sulfur, arsenic, and iron phases, and the extent of porosity, permeability, and oxidation state of the ore particles at various roasting temperatures. It is concluded that mineralogical techniques can be effectively applied to the solution of environmental problems.

  9. International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    no date. “Integrated Solid Waste Management. ” Presentationincineration of Municipal Solid Waste in Cement Industry. :Conference on Sustainable Solid Waste Management, Chennai,

  10. User's Manual for BEST-Dairy: Benchmarking and Energy/water-Saving Tool (BEST) for the Dairy Processing Industry (Version 1.2)

    SciTech Connect (OSTI)

    Xu, T.; Ke, J.; Sathaye, J.

    2011-04-20T23:59:59.000Z

    This User's Manual summarizes the background information of the Benchmarking and Energy/water-Saving Tool (BEST) for the Dairy Processing Industry (Version 1.2, 2011), including'Read Me' portion of the tool, the sections of Introduction, and Instructions for the BEST-Dairy tool that is developed and distributed by Lawrence Berkeley National Laboratory (LBNL).

  11. A Study to Develop an Industrial-Scale, Computer-Controlled High Magnetic Field Processing (HMFP) System to Assist in Commercializing the Novel, Enabling HMFP Manufacturing Technology

    SciTech Connect (OSTI)

    Lutdka, G. M.; Chourey, A. (American Magnetics, Inc.)

    2010-05-12T23:59:59.000Z

    As the original magnet designer and manufacturer of ORNL’s 9T, 5-inch ID bore magnet, American Magnetics Inc. (AMI) has collaborated with ORNL’s Materials Processing Group’s and this partnership has been instrumental in the development of our unique thermo-magnetic facilities and expertise. Consequently, AMI and ORNL have realized that the commercial implementation of the High Magnetic Field Processing (HMFP) technology will require the evolution of robust, automated superconducting (SC) magnet systems that will be cost-effective and easy to operate in an industrial environment. The goal of this project and CRADA is to significantly expedite the timeline for implementing this revolutionary and pervasive cross-cutting technology for future US produced industrial components. The successful completion of this project is anticipated to significantly assist in the timely commercialization and licensing of our HMFP intellectual property for a broad spectrum of industries; and to open up a new market for AMI. One notable outcome of this project is that the ThermoMagnetic Processing Technology WON a prestigious 2009 R&D 100 Awards. This award acknowledges and recognizes our TMP Technology as one of the top 100 innovative US technologies in 2009. By successfully establishing the design requirements for a commercial scale magnetic processing system, this project effort has accomplished a key first step in facilitating the building and demonstration of a superconducting magnetic processing coil, enabling the transition of the High Magnetic Field Processing Technology beyond a laboratory novelty into a commercially viable and industrially scalable Manufacturing Technology.

  12. An Integrated Approach to Evaluating the Technical and Commercial Options for Cogeneration Facilities in the Process Industry 

    E-Print Network [OSTI]

    Cooke, D. H.; McCue, R. H.

    1985-01-01T23:59:59.000Z

    of the refinery, olefins, and other industry complexes is presented. The cycles described include hot gas and steam heat recovery, going beyond the currently popular gas-turbine/ heat-recovery-steam-generator combination....

  13. Development of a computer-aided fault tree synthesis methodology for quantitative risk analysis in the chemical process industry 

    E-Print Network [OSTI]

    Wang, Yanjun

    2005-02-17T23:59:59.000Z

    There has been growing public concern regarding the threat to people and environment from industrial activities, thus more rigorous regulations. The investigation of almost all the major accidents shows that we could ...

  14. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection Obeying Environmental Laws Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the...

  15. Driver expectancy in locating automotive controls

    E-Print Network [OSTI]

    Francis, Dawn Suzette

    1990-01-01T23:59:59.000Z

    Major Subject: Industrial Engineering DRIVER EXPECTANCY IN LOCATING AUTOMOTIVE CONTROLS A Thesis by DAWN SUZETTE FRANCIS Approved as to style and content by: R. Dale Huchi son (Chair of Committee) Rodger . . ppa (Member) Waymon L ohnston (M er... assessment of automotive industry practices in 1971 and concluded that only 50% of controls/displays on various models could be said to have a common location. Perel (1974) reviewed prior research and found that it would be difficult to pinpoint...

  16. A new continuous-flow process for catalytic conversion of glycerol to oxygenated fuel additive: Catalyst screening

    E-Print Network [OSTI]

    Qin, Wensheng

    . This process offers an attractive route for converting glycerol, the main by-product of biodiesel, to solketal: www.elsevier.com/locate/apenergy #12;1. Introduction The booming of biodiesel industry all over for the sustainability of biodiesel industry. In this regard, the fuel industry seems to be a suitable market where

  17. An Integrated Approach to Evaluating the Technical and Commercial Options for Cogeneration Facilities in the Process Industry

    E-Print Network [OSTI]

    Cooke, D. H.; McCue, R. H.

    , economic and financial considerations, as well as to the determination of the appropriate degree of thermal integration of the power and process subsystems. An overview of steam and gas turbine cycle options for process/power integration typical...

  18. Hazardous air pollutant emissions from process units in the Elastomer Manufacturing Industry: Supplementary information document for proposed standards

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    The document contains technical memoranda that provide rationale and information used to develop the Polymers and Resins Group I Elastomers and Synthetic Rubbers proposal package. The memoranda included in the document provide detailed background information for the Basis and Purpose Document for the proposed standards (PB95-231098). The memoranda address industry characterization, baseline emissions, subcategorization, MACT floors and regulatory alternatives, the potential for new sources, and the estimated regulatory alternative impacts.

  19. Development of laboratory and process sensors to monitor particle size distribution of industrial slurries (including shape characterization). Final technical report

    SciTech Connect (OSTI)

    Pendse, H.P.; Goetz, P.J.; Sharma, A.; Han, W; Bliss, T.C.

    1996-10-01T23:59:59.000Z

    The overall goal of the Particle Size Distribution (PSD) sensor projects was to develop and commercialize a sensor system capable of particle analysis, in terms of size distributions, using concentrated suspensions at high solids concentrations. The early research was focused on application of ultrasonic spectroscopy of inorganic pigment slurries (e.g. titanium dioxide) commonly encountered on paper industry. During the project prototypes were tested in both academic and industrial laboratories. Work also involved successful field tests of the on-line prototype at a pigment manufacturing facility. Pen Kem continued the work at its cost beyond the initial funded period from March `92 to September `94. The first project (DE- FC05-88CE40684), which began in September 1988, culminated in a commercial laboratory instrument, Pen Kem AcoustoPhor {trademark} 8000, put on the market in June 1993. The follow-on project was aimed at investigation of shape and orientation effects on ultrasonic spectroscopy. A new cooperative agreement was awarded in September 1994 (DE-FC05-94CE40005) to develop shape characterization capabilities deemed critical by the clay industry. This follow-on project achieved following successes: A theoretical model was developed to account for the effects of size-dependent aspect ratios of spheroid particles under different orientations on ultrasound attenuation spectra of concentrated slurries. The theoretical model was confirmed by laboratory tests on kaolin slurries. An algorithm was developed to simulate evolution of particle orientation fields in simple squeezing flows.

  20. Industrial application of geothermal energy in Southeast Idaho

    SciTech Connect (OSTI)

    Batdorf, J.A.; McClain, D.W.; Gross, M.; Simmons, G.M.

    1980-02-01T23:59:59.000Z

    Those phosphate related and food processing industries in Southeastern Idaho are identified which require large energy inputs and the potential for direct application of geothermal energy is assessed. The total energy demand is given along with that fractional demand that can be satisfied by a geothermal source of known temperature. The potential for geothermal resource development is analyzed by examining the location of known thermal springs and wells, the location of state and federal geothermal exploration leases, and the location of federal and state oil and gas leasing activity in Southeast Idaho. Information is also presented regarding the location of geothermal, oil, and gas exploration wells in Southeast Idaho. The location of state and federal phosphate mining leases is also presented. This information is presented in table and map formats to show the proximity of exploration and development activities to current food and phosphate processing facilities and phosphate mining activities. (MHR)

  1. Condensing Heating and Water Heating Equipment Workshop Location...

    Energy Savers [EERE]

    Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time:...

  2. CO2 Saline Storage Demonstration in Colorado Sedimentary Basins: Applied Studies in Reservoir Assessment and Dynamic Processes Affecting Industrial Operations

    SciTech Connect (OSTI)

    Nummedal, Dag; Sitchler, Alexis; McCray, John; Mouzakis, Katherine; Glossner, Andy; Mandernack, Kevin; Gutierrez, Marte; Doran, Kevin; Pranter, Matthew; Rybowiak, Chris

    2012-09-30T23:59:59.000Z

    This multitask research project was conducted in anticipation of a possible future increase in industrial efforts at CO2 storage in Colorado sedimentary basins. Colorado is already the home to the oldest Rocky Mountain CO2 storage site, the Rangely Oil Field, where CO2-EOR has been underway since the 1980s. The Colorado Geological Survey has evaluated storage options statewide, and as part of the SW Carbon Sequestration Partnership the Survey, is deeply engaged in and committed to suitable underground CO2 storage. As a more sustainable energy industry is becoming a global priority, it is imperative to explore the range of technical options available to reduce emissions from fossil fuels. One such option is to store at least some emitted CO2 underground. In this NETL-sponsored CO2 sequestration project, the Colorado School of Mines and our partners at the University of Colorado have focused on a set of the major fundamental science and engineering issues surrounding geomechanics, mineralogy, geochemistry and reservoir architecture of possible CO2 storage sites (not limited to Colorado). Those are the central themes of this final report and reported below in Tasks 2, 3, 4, and 6. Closely related to these reservoir geoscience issues are also legal, environmental and public acceptance concerns about pore space accessibility—as a precondition for CO2 storage. These are addressed in Tasks 1, 5 and 7. Some debates about the future course of the energy industry can become acrimonius. It is true that the physics of combustion of hydrocarbons makes it impossible for fossil energy to attain a carbon footprint anywhere nearly as low as that of renewables. However, there are many offsetting benefits, not the least that fossil energy is still plentiful, it has a global and highly advanced distribution system in place, and the footprint that the fossil energy infrastructure occupies is orders of magnitude smaller than renewable energy facilities with equivalent energy capacity. Finally, inexpensive natural gas here in North America is pushing coal for electricity generation off the market, thus reducing US CO2 emissions faster than any other large industrialized nation. These two big factors argue for renewed efforts to find technology solutions to reduce the carbon footprint (carbon dioxide as well as methane and trace gases) of conventional and unconventional oil and gas. One major such technology component is likely to be carbon capture, utilization and storage.

  3. Development of a New Class of Fe-3Cr-W(V) Ferritic Steels for Industrial Process Applications

    SciTech Connect (OSTI)

    Jawad, Mann; Sikka, Vinod K.

    2005-04-06T23:59:59.000Z

    The project described in this report dealt with improving the materials performance and fabrication for hydrotreating reactor vessels, heat recovery systems, and other components for the petroleum and chemical industries. These reactor vessels can approach ship weights of about 300 tons with vessel wall thicknesses of 3 to 8 inches. They are typically fabricated from Fe-Cr-Mo alloy steels, containing 1.25 to 12% chromium and 1 to 2% molybdenum. The goal of this project was to develop Fe-Cr-W(V) steels that can perform similar duties, in terms of strength at high temperatures, but will weigh less and thereby save energy.

  4. The development of a coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, January 1992--March 1992

    SciTech Connect (OSTI)

    Not Available

    1992-07-16T23:59:59.000Z

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Coal-Fired Combustion System for Industrial Process Heating Applications has been selected for Phase III development under contract DE-AC22-91PC91161. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting, recycling, and refining processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase HI research effort is being focused on the development of a process heater system to be used for producing glass frits and wool fiber from boiler and incinerator ashes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. The economic evaluation of commercial scale CMS processes has begun. In order to accurately estimate the cost of the primary process vessels, preliminary designs for 25, 50, and 100 ton/day systems have been started under Task 1. This data will serve as input data for life cycle cost analysis performed as part of techno-economic evaluations. The economic evaluations of commercial CMS systems will be an integral part of the commercialization plan.

  5. Development of a New Class of Fe-3Cr-W(V)Ferritic STeels for Industrial Process Applications

    SciTech Connect (OSTI)

    Jawad, M.

    2005-03-31T23:59:59.000Z

    The project described in this report dealt with improving the materials performance and fabrication for hydrotreating reactor vessels, heat recovery systems, and other components for the petroleum and chemical industries. The petroleum and chemical industries use reactor vessels that can approach ship weights of approximately 300 tons with vessel wall thicknesses of 3-8 in. These vessels are typically fabricated from Fe-Cr-Mo steels with chromium ranging from 1.25 to 12% and molybdenum from 1 to 2%. Steels in this composition range have great advantages of high thermal conductivity, low thermal expansion, low cost, and good properties obtainable by heat treatment. With all of the advantages of Fe-Cr-Mo steels, several issues are faced in design and fabrication of vessels and related components. These issues include the following: 1. The low strengths of current alloys require thicker sections. 2. Increased thickness causes heat-treatment issues related to nonuniformity across the thickness and thus a failure to achieve optimum properties. 3. Fracture toughness (ductile-to-brittle transition) is a critical safety issue for these vessels, especially in thick sections because of the nonuniformity of the microstructure. 4. The postweld heat treatment (PWHT) needed after welding makes fabrication more timeconsuming with increased cost. 5. PWHT needed after welding also limits any modifications of the large vessels in service. The goal of this project was to reduce the weight of large-pressure-vessel components (ranging from 100 to 300 tons) by approximately 25%, reduce fabrication cost, and improve in-service modification feasibility through development of Fe-3Cr-W(V) steels with a combination of nearly a 50% higher strength, a lower ductile-brittle transition temperature (DBTT), a higher upper-shelf energy, ease of heat treating, and a strong potential for not requiring PWHT.

  6. CIGS P1, P2, P3 Scribing Processes using a Pulse Programmable Industrial Fiber Laser: Preprint

    SciTech Connect (OSTI)

    Rekow, M.; Murison, R.; Panarello, T.; Dunsky, C.; Dinkel, C.; Nikumb, S.; Pern, F. J.; Mansfield, L.

    2010-10-01T23:59:59.000Z

    We describe a novel set of laser processes for the CIGS P1, P2 and P3 scribing steps, the development of which has been enabled by a unique pulse-programmable fiber laser. We find that the unique pulse control properties of this 1064 nm wavelength laser have significant effects on the material removal dynamics of the various film layers in the CIGS material system. In the case of the P2 and P3 processes, the shaped pulses create new laser/material interaction effects that permit the material to be cleanly and precisely removed with zero Heat Affected Zone (HAZ) at the edges of the scribe. The new P2 and P3 processes we describe demonstrate the first use of infrared nanosecond laser pulses that eliminate the HAZ and the consequent localized compositional changes in the CIGS absorber material that result in poor shunt resistance. SEM micrographs and EDX compositional scans are presented. For the P1 scribe, we process the bi-layer molybdenum from the film side as well as through the glass substrate. Microscopic inspection and compositional analysis of the scribe lines are not sufficient to determine electrical and optical performance in working PV modules. Therefore, to demonstrate the applicability of the infrared pulse-programmable laser to all three scribing processes for thin-film CIGS, we fabricate small-size multiple-cell monolithically interconnected mini-modules in partnership with the National Renewable Energy Laboratory (Golden, Colorado). A total of four mini-modules are produced, two utilizing all laser scribing, and two with the P2 and P3 steps mechanically scribed (by a third party) for reference. Mini-module performance data measured at NREL is presented, and we also discuss the commercialization potential of the new single-laser CIGS scribing process. Finally we present a phenomenological model to describe this physics underlying this novel ablation process.

  7. Industrial Engineering Industrial Advisory Board

    E-Print Network [OSTI]

    Gelfond, Michael

    Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

  8. Save Energy Now in Your Steam Systems; Industrial Technologies Program (ITP) BestPractices: Process Heating (Fact sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG -EnergyProcess Heating Systems ProcessSteam

  9. A National Resource for Industry

    E-Print Network [OSTI]

    alloys, and metal matrix composite products carbon fibe's manufacturing industries. These industries call upon ORNL's expertise in materials synthesis, characterization-efficient manufacturing processes and materials targeting products of the future. The Department of Energy's first

  10. Electrotechnologies and Industrial Pollution Control

    E-Print Network [OSTI]

    Schmidt, P. S.

    The role of electrotechnologies in the control of emissions and effluents from industrial processes is discussed. Matrices are presented identifying those electrotechnologies which impact pollution in various industries. Specific examples...

  11. Site selection and preliminary evaluation of potential solar-industrial-process-heat applications for federal buildings in Texas

    SciTech Connect (OSTI)

    Branz, M A

    1980-09-30T23:59:59.000Z

    The potential for solr process heat applications for federal buildings in Texas is assessed. The three sites considered are Reese Air Force Base, Lubbock; Fort Bliss, El Paso; and Dyess Air Force Base, Abilene. The application at Lubbock is an electroplating and descaling facility for aircraft maintenance. The one at El Paso is a laundry facility. The Abilene system would use solar heat to preheat boiler feedwater makeup for the base hospital boiler plant. The Lubbock site is found to be the most appropriate one for a demonstration plant, with the Abilene site as an alternate. The processes at each site are described. A preliminary evaluation of the potential contribution by solar energy to the electroplating facility at Reese AFB is included. (LEW)

  12. Development of a computer-aided fault tree synthesis methodology for quantitative risk analysis in the chemical process industry

    E-Print Network [OSTI]

    Wang, Yanjun

    2005-02-17T23:59:59.000Z

    analysis in the CPI including Safety Review, Checklist Analysis, Relative Ranking, ?What-if? Analysis, Preliminary Hazard Analysis, Hazard and Operability Study (HAZOP), Failure Modes and Effects Analysis (FMEA), Fault Tree Analysis (FTA), Event Tree.... This study is exhausted systematically by applying appropriate guidewords to each process parameter at each ?study node?. Failure Modes and Effects Analysis (FMEA) FMEA is a systematic procedure in which each equipment failure mode is examined...

  13. Industrial Optimization Compact Course

    E-Print Network [OSTI]

    Kirches, Christian

    Industrial Optimization Compact Course and Challenge Workshop Optimization plays a crucial role of the processes are typically nonlinear and dyna- mic. Thus, complex dynamic optimization or optimal control in industrial optimization. February 17­20, 2014 ·9.00­17.00 IWR ·Im Neuenheimer Feld 368 ·69120 Heidelberg www

  14. Development of a coal-fired combustion system for industrial process heating applications. Phase 3 final report, November 1992--December 1994

    SciTech Connect (OSTI)

    NONE

    1995-09-26T23:59:59.000Z

    A three phase research and development program has resulted in the development and commercialization of a Cyclone Melting System (CMS{trademark}), capable of being fueled by pulverized coal, natural gas, and other solid, gaseous, or liquid fuels, for the vitrification of industrial wastes. The Phase 3 research effort focused on the development of a process heater system to be used for producing value added glass products from the vitrification of boiler/incinerator ashes and industrial wastes. The primary objective of the Phase 3 project was to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential for successful commercialization. The demonstration test consisted of one test run with a duration of 105 hours, approximately one-half (46 hours) performed with coal as the primary fuel source (70% to 100%), the other half with natural gas. Approximately 50 hours of melting operation were performed vitrifying approximately 50,000 lbs of coal-fired utility boiler flyash/dolomite mixture, producing a fully-reacted vitrified product.

  15. Library Locations Locations other than Main Library

    E-Print Network [OSTI]

    Library Locations Locations other than Main Library Example: Feminist Studies HQ1410 .U54 2009 University of California, Santa Barbara Library www.library.ucsb.edu Updated 3-2014 A - B.......................................6 Central M - N..................................................Arts Library (Music Building) P

  16. The Texas Meat Packing Industry -- Structure, Operational Characteristics, and Competitive Practices

    E-Print Network [OSTI]

    Dietrich, Raymond A.; Farris, Donald E.

    1976-01-01T23:59:59.000Z

    with plants located within or near concentrated cattle feeding areas. Many of these specialized slaughter plants fabri- cate and process carcasses into wholesale or retail cuts for direct ship- ment to retail or institutional outlets. Technological... designed to analyze the market structure, performance, and com- petitive practices of the Texas meat industry at the retail, wholesale, and slaughter levels. The first study in this series focused on the Texas retail meat industry. Data for this study...

  17. AI Industrial Engineering 

    E-Print Network [OSTI]

    Unknown

    2011-08-17T23:59:59.000Z

    This paper describes the California Energy Commission’s (Commission) energy policies and programs that save energy and money for California’s manufacturing and food processing industries to help retain businesses in-state and reduce greenhouse gases...

  18. Process studies for a new method of removing H/sub 2/S from industrial gas streams

    SciTech Connect (OSTI)

    Neumann, D.W.; Lynn, S.

    1986-07-01T23:59:59.000Z

    A process for the removal of hydrogen sulfide from coal-derived gas streams has been developed. The basis for the process is the absorption of H/sub 2/S into a polar organic solvent where it is reacted with dissolved sulfur dioxide to form elemental sulfur. After sulfur is crystallized from solution, the solvent is stripped to remove dissolved gases and water formed by the reaction. The SO/sub 2/ is generated by burning a portion of the sulfur in a furnace where the heat of combustion is used to generate high pressure steam. The SO/sub 2/ is absorbed into part of the lean solvent to form the solution necessary for the first step. The kinetics of the reaction between H/sub 2/S and SO/sub 2/ dissolved in mixtures of N,N-Dimethylaniline (DMA)/ Diethylene Glycol Monomethyl Ether and DMA/Triethylene Glycol Dimethyl Ether was studied by following the temperature rise in an adiabatic calorimeter. This irreversible reaction was found to be first-order in both H/sub 2/S and SO/sub 2/, with an approximates heat of reaction of 28 kcal/mole of SO/sub 2/. The sole products of the reaction appear to be elemental sulfur and water. The presence of DMA increases the value of the second-order rate constant by an order of magnitude over that obtained in the glycol ethers alone. Addition of other tertiary aromatic amines enhances the observed kinetics; heterocyclic amines (e.g., pyridine derivatives) have been found to be 10 to 100 times more effective as catalysts when compared to DMA.

  19. How to locate DISSERTATIONS

    E-Print Network [OSTI]

    Computational & applied math .C65 Computer science .D46 Dental hygiene .E24 Ecological sciences .E26 Economics Psychology .P67 Industrial psychology .P68 Industrial/organizational psychology .P69 Virginia Consortium

  20. Driver expectancy in locating automotive controls 

    E-Print Network [OSTI]

    Francis, Dawn Suzette

    1990-01-01T23:59:59.000Z

    DRIVER EXPECTANCY IN LOCATING AUTOMOTIVE CONTROLS A Thesis by DAWN SUZETTE FRANCIS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1990... Major Subject: Industrial Engineering DRIVER EXPECTANCY IN LOCATING AUTOMOTIVE CONTROLS A Thesis by DAWN SUZETTE FRANCIS Approved as to style and content by: R. Dale Huchi son (Chair of Committee) Rodger . . ppa (Member) Waymon L ohnston (M er...

  1. Solar production of industrial process steam. Phase III. Operation and evaluation of the Johnson and Johnson solar facility. Final report, January 1, 1980-March 31, 1981

    SciTech Connect (OSTI)

    Brink, D.F.; Kendall, J.M.; Youngblood, S.B.

    1981-03-01T23:59:59.000Z

    A solar facility that generates 177/sup 0/C (350/sup 0/F) process steam has been designed and constructed by Acurex Corporation and has operated for 1 yr supplying steam to the Johnson and Johnson manufacturing plant in Sherman, Texas. The facility consists of 1068 m/sup 2/ (11,520 ft/sup 2/) of parabolic trough concentrating collectors, a 18,900 1 (5000 gal) flash boiler, and an 18.6 kW (25 hp) circulating pump. In the first year of operation the system was available 97 percent of the days, and with sufficient solar radiation available it operated 70 percent of the days during this period. The measured data showed that the collector field operated at an efficiency of 25.4 percent for the year, and that at least 75 percent of the energy reaching the flash boiler was delivered to the plant as steam. A total of 309,510 kg (682,400 lb) of steam was produced by the solar facility for the first year. An analysis of the data showed that the delivered energy was within 90 to 100 percent of the predicted value. The successful completion of the first year of operation has demonstrated the technical feasibility of generating industrial process steam with solar energy.

  2. Anywhere But Here: An Introduction to State Control of Hazardous Waste Facility Location

    E-Print Network [OSTI]

    Tarlock, Dan A.

    1981-01-01T23:59:59.000Z

    State Control Of Hazardous- Waste Facility Location A. Danautonomy over the location of hazardous-waste managementa hazardous-waste facility-siting process is the location of

  3. Industrial Process Heating - Technology Assessment

    Office of Environmental Management (EM)

    opportunities for technology improvements that can benefit from 146 high-performance computing (HPC) approaches. 147 148 In the next section, the technology assessment...

  4. Gamma Industry Processing Alliance Overview

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOE FY 2011Talley,GENII Code GENII CodeDepartment ofSE

  5. Industrial Process Heating - Technology Assessment

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe RankingReform atSolar2014

  6. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Masanet, Eric

    2008-01-01T23:59:59.000Z

    E. Masanet (2005a). Energy Efficiency Improvement and CostA.R. Ganji (2005). Energy Efficiency Opportunities in FreshSummer Study on Energy Efficiency in Industry, American

  7. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Masanet, Eric

    2008-01-01T23:59:59.000Z

    actions, develop an energy management plan for business; andCaffal, C. (1995). Energy Management in Industry. Centre forEquipment. Federal Energy Management Program, Washington,

  8. Quality Services: Solid Wastes, Part 361: Siting of Industrial Hazardous Waste Facilities (New York)

    Broader source: Energy.gov [DOE]

    These regulations describe the siting of new industrial hazardous waste facilities located wholly or partially within the State. Industrial hazardous waste facilities are defined as facilities used...

  9. OTHER INDUSTRIES

    Broader source: Energy.gov [DOE]

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  10. Reversible micromachining locator

    DOE Patents [OSTI]

    Salzer, Leander J. (Los Almos, NM); Foreman, Larry R. (late of Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    A locator with a part support is used to hold a part onto the kinematic mount of a tooling machine so that the part can be held in or replaced in exactly the same position relative to the cutting tool for machining different surfaces of the part or for performing different machining operations on the same or different surfaces of the part. The locator has disposed therein a plurality of steel balls placed at equidistant positions around the planar surface of the locator and the kinematic mount has a plurality of magnets which alternate with grooves which accommodate the portions of the steel balls projecting from the locator. The part support holds the part to be machined securely in place in the locator. The locator can be easily detached from the kinematic mount, turned over, and replaced onto the same kinematic mount or another kinematic mount on another tooling machine without removing the part to be machined from the locator so that there is no need to touch or reposition the part within the locator, thereby assuring exact replication of the position of the part in relation to the cutting tool on the tooling machine for each machining operation on the part.

  11. Agricultural productivity and industrialization: A reformulation

    E-Print Network [OSTI]

    Bandyopadhyay, Antar

    Agricultural productivity and industrialization: A reformulation Debasis Mondal Sept 20, 2014 Abstract In this paper we examine the role of agricultural productivity on the process of industrialization industrialization by releasing labor from agriculture to industry. In fact, when agriculture is highly productive

  12. Used oil generation and management in the automotive industries

    E-Print Network [OSTI]

    Jhanani S; Kurian Joseph

    Used oil has been classified as hazardous wastes by the Ministry of Environment and Forests, Government of India which demands its proper management to avoid serious threat to the environment and for economic gains. Used oil could be recovered or reprocessed and reused as base oil thus saving the use of virgin oil. This paper presents an assessment of the used oil generation and management practices by the automotive industries located in Chennai and Kancheepuram in Tamilnadu. Used oil generation and management in eight automotive industries in this area were studied by means of questionnaires, direct observations and interviews. Studies were also undertaken for specific used oil generation from the most common process – reaming and rolling. The specific used oil generation rate varies from 93-336 L/cubic metre of metal cut depending on whether the industries use online centrifuging system for re-refining. Suggestions for the improvement of the used oil management practices are included in this paper.

  13. What Causes Industry Agglomeration? Evidence from Coagglomeration Patterns

    E-Print Network [OSTI]

    Ellison, Glenn

    Why do firms cluster near one another? We test Marshall's theories of industrial agglomeration by examining which industries locate near one another, or coagglomerate. We construct pairwise coagglomeration indices for US ...

  14. Derivation of Locational Marginal Prices for Restructured Wholesale Power Markets

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    Derivation of Locational Marginal Prices for Restructured Wholesale Power Markets Haifeng Liu restructured wholesale power markets, the detailed derivation of LMPs as actually used in industry practice Operator (MISO). Keywords: Locational marginal pricing, wholesale power market, AC optimal power flow, DC

  15. Locations of Industrial Assessment Centers | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1, 1999InspectionsAnnualThe following termsof EnergyBadgesAward

  16. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01T23:59:59.000Z

    energy efficiency in the petrochemical industry,” Chapter 3steel, petroleum and petrochemical, chemical, non-ferrousintensive process in the petrochemical industry with an

  17. Industry Economist

    Broader source: Energy.gov [DOE]

    This position may be located in either the Office of Energy Statistics or the Office of Energy Analysis of EIA. This position is established to provide an expert analyst to perform economic...

  18. Forschungsschwerpunkt S92 Industrial Geometry

    E-Print Network [OSTI]

    JĂĽttler, Bert

    Forschungsschwerpunkt S92 Industrial Geometry http://www.ig.jku.at Computational Geometry Robot Kinematics Computer Aided Geometric Design Image Processing INDUSTRIAL GEOMETRY Classical Geometry Computer unwanted branches of the implicitly defined curves. Moreover, it is required for many applications, e

  19. The industrial ecology of the iron casting industry

    E-Print Network [OSTI]

    Jones, Alissa J. (Alissa Jean)

    2007-01-01T23:59:59.000Z

    Metal casting is an energy and materials intensive manufacturing process, which is an important U.S. industry. This study analyzes iron casting, in particular, for possible improvements that will result in greater efficiencies ...

  20. Calibration of damage parameters is an important issue for the use of damage laws, and particularly for industrial manufacturing processes. This paper deals with an

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Abstract Calibration of damage parameters is an important issue for the use of damage laws Lemaitre damage parameters using tensile tests. An adapted objective function is built, and Efficient, ductile damage, global measurement. 1 Introduction An actual industrial issue is the study of material

  1. Harnessing Smart Sensor Technology for Industrial Energy Efficiency- Making Process-Specific Efficiency Projects Cost Effective with a Broadly Configurable, Network-Enabled Monitoring Tool

    E-Print Network [OSTI]

    Wiczer, J. J.; Wiczer, M. B.

    2011-01-01T23:59:59.000Z

    and Renewable Energy Best Practices. 5. International Society of Information Fusion. http://isif.org/ 6. Shipley, A.M. and R.N. Elliott. 2006. Ripe for the Picking: Have We Exhausted the Low-Hanging Fruit in the Industrial Sector? ACEEE Report IE061...

  2. 2008 Industrial Technologies Market Report, May 2009

    SciTech Connect (OSTI)

    Energetics; DOE

    2009-07-01T23:59:59.000Z

    The industrial sector is a critical component of the U.S. economy, providing an array of consumer, transportation, and national defense-related goods we rely on every day. Unlike many other economic sectors, however, the industrial sector must compete globally for raw materials, production, and sales. Though our homes, stores, hospitals, and vehicles are located within our borders, elements of our goods-producing industries could potentially be moved offshore. Keeping U.S. industry competitive is essential to maintaining and growing the U.S. economy. This report begins with an overview of trends in industrial sector energy use. The next section of the report focuses on some of the largest and most energy-intensive industrial subsectors. The report also highlights several emerging technologies that could transform key segments of industry. Finally, the report presents policies, incentives, and drivers that can influence the competitiveness of U.S. industrial firms.

  3. Measuring Energy Efficiency Improvements in Industrial Battery Chargers 

    E-Print Network [OSTI]

    Matley, R.

    2009-01-01T23:59:59.000Z

    Industrial battery chargers have provided the energy requirements for motive power in industrial facilities for decades. Their reliable and durable performance, combined with their low energy consumption relative to other industrial processes, has...

  4. Lewis County PUD- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    [http://www.lcpud.org/index.html Lewis County PUD] offers rebates for commercial and industrial lighting, as well as industrial process upgrades, on a case-by-case basis. Eligible industrial...

  5. A cyber-infrastructure for the measurement and estimation of large-scale hydrologic processes

    E-Print Network [OSTI]

    Kerkez, Branko

    2012-01-01T23:59:59.000Z

    Wireless systems for industrial automation: Process controltechnologies for industrial automation applications. The

  6. Hazardous and Industrial Waste (Minnesota)

    Broader source: Energy.gov [DOE]

    This section describes standards that must be met by facilities generating and processing hazardous and industrial waste, as well as required permits for the construction and operation of such a...

  7. Industrial Mathematics and Inverse Problems

    E-Print Network [OSTI]

    Fulmek, Markus

    #12;The Industrial Mathematics Structure in Linz 5 #12;The Blast Furnace Process 6 #12;Aims": Looking for causes of an observed or desired effect! A.Tikhonov ( 1936), geophysical problems. F

  8. Regional secondary resource utilization parks: The industrial parks of the future

    SciTech Connect (OSTI)

    Kuusinen, T.L.; Beck, J.E.; Holter, G.M.

    1992-11-01T23:59:59.000Z

    Obstacles currently facing the solid waste recycling industry are often related to lack of public and investor confidence, issues of profitability and liability, and insufficient consumer identification with products made from recycled materials. Resolution of these issues may not be possible without major changes in the way the solid waste recycling business is structured. One potential solution takes the form of the secondary resource utilization park. The premise is simple: Provide a strategically located facility where a broad range of secondary resources are separated, refined or converted, and made into new products on the site. The secondary material resources would come from municipal solid waste, demolition waste, landscape trimmings, used tires, scrap metal, agricultural waste, food processing waste, and other non-hazardous forms. The park would consist of separation and conversion facilities, research and product standards laboratories, and industries that convert the materials into products and fuels. Energy conversion systems using some waste streams as fuel could be located at the park to supplement energy demands of the industrial operations. The strategic co-location of the resource providers and user industries would also minimize transportation costs and could provide a test case for an industrial ecology'' approach to sustainable economic development.

  9. Regional secondary resource utilization parks: The industrial parks of the future

    SciTech Connect (OSTI)

    Kuusinen, T.L.; Beck, J.E.; Holter, G.M.

    1992-11-01T23:59:59.000Z

    Obstacles currently facing the solid waste recycling industry are often related to lack of public and investor confidence, issues of profitability and liability, and insufficient consumer identification with products made from recycled materials. Resolution of these issues may not be possible without major changes in the way the solid waste recycling business is structured. One potential solution takes the form of the secondary resource utilization park. The premise is simple: Provide a strategically located facility where a broad range of secondary resources are separated, refined or converted, and made into new products on the site. The secondary material resources would come from municipal solid waste, demolition waste, landscape trimmings, used tires, scrap metal, agricultural waste, food processing waste, and other non-hazardous forms. The park would consist of separation and conversion facilities, research and product standards laboratories, and industries that convert the materials into products and fuels. Energy conversion systems using some waste streams as fuel could be located at the park to supplement energy demands of the industrial operations. The strategic co-location of the resource providers and user industries would also minimize transportation costs and could provide a test case for an ``industrial ecology`` approach to sustainable economic development.

  10. Research Projects in Industrial Technology.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration. Industrial Technology Section.

    1990-06-01T23:59:59.000Z

    The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

  11. Research and development separation technology: The DOE Industrial Energy Conservation Program

    SciTech Connect (OSTI)

    Not Available

    1987-07-01T23:59:59.000Z

    This brochure summarizes the Office of Industrial Programs' RandD efforts in the advancement of separation technology. The purpose of this brochure is to provide interested parties with information on federal industrial energy conservation activities in separation technology. The brochure is comprised of the following sections: Separation Technology, summarizes the current state of separation technology and its uses. Potential Energy Savings, discusses the potential for industrial energy conservation through the implementation of advanced separation processes. Office of Industrial Programs' RandD Efforts in Separation Technology Development, describes the separation RandD projects conducted by IP. RandD Data Base, lists contractor, principal investigator, and location of each separation-related RandD effort sponsored by IP.

  12. Electric current locator

    DOE Patents [OSTI]

    King, Paul E. (Corvallis, OR); Woodside, Charles Rigel (Corvallis, OR)

    2012-02-07T23:59:59.000Z

    The disclosure herein provides an apparatus for location of a quantity of current vectors in an electrical device, where the current vector has a known direction and a known relative magnitude to an input current supplied to the electrical device. Mathematical constants used in Biot-Savart superposition equations are determined for the electrical device, the orientation of the apparatus, and relative magnitude of the current vector and the input current, and the apparatus utilizes magnetic field sensors oriented to a sensing plane to provide current vector location based on the solution of the Biot-Savart superposition equations. Description of required orientations between the apparatus and the electrical device are disclosed and various methods of determining the mathematical constants are presented.

  13. Optimal fault location

    E-Print Network [OSTI]

    Knezev, Maja

    2009-05-15T23:59:59.000Z

    are triggered. Protection system consisting of protection relays and circuit breakers (CBs) will operate in order to de-energize faulted line. Different Intelligent Electronic Devices (IEDs) located in substations for the purpose of monitoring... in the control center by an operator who will mark fault event in a spreadsheet and inform other staff responsible for dealing with fault analysis and repair such as protection group or maintenance respectively. Protective relaying staff will be ready...

  14. Optimal fault location

    E-Print Network [OSTI]

    Knezev, Maja

    2008-10-10T23:59:59.000Z

    are triggered. Protection system consisting of protection relays and circuit breakers (CBs) will operate in order to de-energize faulted line. Different Intelligent Electronic Devices (IEDs) located in substations for the purpose of monitoring... in the control center by an operator who will mark fault event in a spreadsheet and inform other staff responsible for dealing with fault analysis and repair such as protection group or maintenance respectively. Protective relaying staff will be ready...

  15. Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStation LocationsGeneseeValleyPerformance

  16. Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStation LocationsGeneseeValleyPerformance

  17. Final Exam Location and Time

    E-Print Network [OSTI]

    Final Exam Location and Time. Math 162 Fall 2001. Date: Wednesday December 12, 2001. Time: 7:00 pm -9:00 pm. Location: Lambert Fieldhouse ...

  18. Final Exam Location and Time

    E-Print Network [OSTI]

    Final Exam Location and Time. Math 161 Fall 2001. Date: Friday December 14, 2001. Time: 8:00 am -10:00 am. Location: Lambert Fieldhouse ...

  19. MIT and Automotive Industries MIT Industry Brief

    E-Print Network [OSTI]

    Ceder, Gerbrand

    MIT and Automotive Industries MIT Industry Brief MIT's Industrial Liaison Program (ILP) can bring@ilp.mit.edu, or visit http://ilp-www.mit.edu. MIT and Automotive Industries The Massachusetts Institute of Technology (MIT) is a leading center of research and education on topics important to the automotive industry

  20. Superior Energy Performance Industrial Facility Best Practice...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    activities, processes or procedures that are "above and beyond" the requirements of ISO 50001. Superior Energy Performance Industrial Facility Best Practice Scorecard...

  1. Analysis of Process Variable Effects on the Roller Imprinting Process

    E-Print Network [OSTI]

    Vijayaraghavan, Athulan; Hayse-Gregson, Stuart; Valdez, Rodolfo; Dornfeld, David

    2008-01-01T23:59:59.000Z

    of metal forming processes,” Computers and Structures, Vol.2006). “A roller embossing process for rapid fabrication ofdesign of industrial forging processes,” Journal of Material

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Masanet, Eric

    2008-01-01T23:59:59.000Z

    Vegetable Processing/Cold Storage Facilities. Proceedings ofControl System in a Food Cold Storage Facility. Case Studyare discussed below. Cold storage involves the storage of

  3. Sandia National Laboratories: Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100LifeAnnouncementsLocations

  4. Risks of using AP locations discovered through war driving

    E-Print Network [OSTI]

    Kotz, David

    Risks of using AP locations discovered through war driving Minkyong Kim, Jeffrey J. Fielding the actual locations are often unavailable, they use estimated locations from war driving estimated through war driving. War driving is the process of collecting Wi-Fi beacons by driving or walking

  5. Industrial Engineering Roles In Industry

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    , be they processes, products or systems · Typical focus areas include: ­ Project Management ­ Manufacturing ­ Quality Measurement and Improvement ­ Program Management ­ Ergonomics/Human Factors ­ Technology, Production and Distribution ­ Supply Chain Management ­ Productivity, Methods and Process Engineering

  6. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center at CornellOf SmartIndustrial Users The

  7. Industry @ ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center at CornellOf SmartIndustrial Users

  8. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFP »summerlectures [ICO]default Sign InIndustrial

  9. ambiente industrial interno: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Grain and Oilseed Processing Industry Page 2 Statistical Data and Overview of the Cluster in Region 9 and 10 Page 3 Oilseed Processing Industry History, Trends and Current...

  10. agua residual industrial: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Grain and Oilseed Processing Industry Page 2 Statistical Data and Overview of the Cluster in Region 9 and 10 Page 3 Oilseed Processing Industry History, Trends and Current...

  11. Short range radio locator system

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    A radio location system comprises a wireless transmitter that outputs two megahertz period bursts of two gigahertz radar carrier signals. A receiver system determines the position of the transmitter by the relative arrival of the radar bursts at several component receivers set up to have a favorable geometry and each one having a known location. One receiver provides a synchronizing gating pulse to itself and all the other receivers to sample the ether for the radar pulse. The rate of the synchronizing gating pulse is slightly offset from the rate of the radar bursts themselves, so that each sample collects one finely-detailed piece of information about the time-of-flight of the radar pulse to each receiver each pulse period. Thousands of sequential pulse periods provide corresponding thousand of pieces of information about the time-of-flight of the radar pulse to each receiver, in expanded, not real time. Therefore the signal processing can be done with relatively low-frequency, inexpensive components. A conventional microcomputer is then used to find the position of the transmitter by geometric triangulation based on the relative time-of-flight information.

  12. The Texas Industrial Energy Conservation Program 

    E-Print Network [OSTI]

    Waldrop, T.

    1982-01-01T23:59:59.000Z

    cesses listed. Chart1-lndustrial Target Groups SIC CODE INDUSTRY 201 Meat Products 204 Feed and Grain 207 Fats and Oils 26 Paper and Allied Products 28 Chemicals and Allied Products 30 Rubber and Plastics 33 Primary Metals 34 Fabricated Metals... industry seminars. In the preparation of workbooks for industrial processes, a screening of engineering firms was 763 ESL-IE-82-04-139 Proceedings from the Fourth Industrial Energy Technology Conference, Houston, TX, April 4-7, 1982 conducted in order...

  13. Guidelines for Estimating Unmetered Industrial Water Use

    SciTech Connect (OSTI)

    Boyd, Brian K.

    2010-08-01T23:59:59.000Z

    The document provides a methodology to estimate unmetered industrial water use for evaporative cooling systems, steam generating boiler systems, batch process applications, and wash systems. For each category standard mathematical relationships are summarized and provided in a single resource to assist Federal agencies in developing an initial estimate of their industrial water use. The approach incorporates industry norms, general rules of thumb, and industry survey information to provide methodologies for each section.

  14. A laser-based solution to industrial decontamination problems

    SciTech Connect (OSTI)

    Edelson, M.C.; Pang, Ho-ming [Ames Lab., IA (United States); Ferguson, R.L. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1995-12-31T23:59:59.000Z

    The ability of lasers to deposit significant amounts of energy on surfaces located at large distances from the laser can be exploited to solve very difficult industrial problems. The Ames Laboratory has been working in partnership with Lockheed Martin Idaho Technologies (LMIT) to apply laser technologies to the decontamination of radioactively contaminated surfaces located in hostile environments. Many such applications exist within former USDOE and nuclear industry facilities. As opposed to laser coating removal systems, which are designed to ``strip`` relatively soft coatings from a substrate without damage to the substrate, the system being developed by Ames - LMIT is designed to remove contaminants that are embedded within the metal surface itself. The system generates irradiance levels sufficient to remove microns of metal from a surface and an off-gas system that prevents the redeposition of materials removed from the surface. Process control is assisted by monitoring the laser-generated plasma produced during laser surface ablation. Results achieved using this apparatus for various metal types will be presented along with a discussion of other potential industrial applications.

  15. Regulation Retrieval Using Industry Specific Abstract Increasingly, taxonomies are being developed and used by industry practitioners

    E-Print Network [OSTI]

    Stanford University

    1 Regulation Retrieval Using Industry Specific Taxonomies Abstract Increasingly, taxonomies, it will be much desirable if industry practitioners are able to easily locate and browse regulations of interest. In practice, multiple sources of government regulations exist and they are often organized and classified

  16. Mechanical & Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board October 15, 2010 #12;Mechanical & Industrial Engineering 2 MIE Dorothy Adams Undergraduate/Graduate Secretary David Schmidt Associate Professor & Graduate Program Director #12;Mechanical & Industrial Engineering 3 MIE James Rinderle

  17. Industrial Decision Making 

    E-Print Network [OSTI]

    Elliott, R. N.; McKinney, V.; Shipley, A.

    2008-01-01T23:59:59.000Z

    and industrial investment decision-making. The paper will also address several important questions: • Why has industrial investment declined? • What is the outlook for industrial investment? • How can programs engage industry for future opportunities?...

  18. INDUSTRIAL ENGINEERING Industrial engineering is concerned

    E-Print Network [OSTI]

    INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. Industrial engineers design and run the factories and systems

  19. Minnesota recycling directory, 1991. Statewide markets and collection locations

    SciTech Connect (OSTI)

    Cera, D.; Cloutier, C.; Estrem, L.; Halpine, C.; Johnson, K.

    1991-12-31T23:59:59.000Z

    ;Table of Contents: Minnesota Recycling Industries: (Individual Company Listings; Recycling Industries by County; Glass Collection, Processing and End-Use by County; Metal Collection, Processing and End-Use by County; Paper Collection, Processing and End-Use by County; and Plastic Collection, Processing and End-Use by County); Appendices: (Used Auto Parts Dealers by County; Barrel Reconditioners; Spent Lead-Acid Battery Collection and Processing by County; Used Oil Collection Centers by County; Waste Tire Collection, Processing and End-Use by County; Wood Waste Processors; and Regional End-Markets); and Update Form.

  20. FConnects the former technological and industrial uses of the site with the potential of reestablishing natu-ral processes once endemic on the site.

    E-Print Network [OSTI]

    Goodman, Robert M.

    for passive recreation vary; yet, follow a similar design typology, throughout the site. The main programmed introduced during the landfill period. The master plan design, INTERLOCK, connects the former technological processes once endemic on the site. First, INTERLOCK integrates the sustainable technology of solar energy

  1. The Cricket indoor location system

    E-Print Network [OSTI]

    Priyantha, Nissanka Bodhi, 1968-

    2005-01-01T23:59:59.000Z

    Indoor environments present opportunities for a rich set of location-aware applications such as navigation tools for humans and robots, interactive virtual games, resource discovery, asset tracking, location-aware sensor ...

  2. T. Larsson, S. Skogestad Control of a industrial heat integrated distillation column Control of a industrial

    E-Print Network [OSTI]

    Skogestad, Sigurd

    T. Larsson, S. Skogestad Control of a industrial heat integrated distillation column Control of a industrial heat integrated distillation column Truls Larsson Sigurd Skogestad ÝDepartment of Chemical. Larsson, S. Skogestad Control of a industrial heat integrated distillation column The process QH column

  3. T. Larsson, S. Skogestad Control of a industrial heat integrated distillation column Control of a industrial

    E-Print Network [OSTI]

    Skogestad, Sigurd

    T. Larsson, S. Skogestad Control of a industrial heat integrated distillation column Control of a industrial heat integrated distillation column Truls Larsson Sigurd Skogestad y Department of Chemical. Larsson, S. Skogestad Control of a industrial heat integrated distillation column The process Q H column

  4. Industry Profile

    Broader source: Energy.gov [DOE]

    Combined heat and power (CHP)—sometimes referred to as cogeneration—involves the sequential process of producing and utilizing electricity and thermal energy from a single fuel. CHP is widely recognized to save energy and costs, while reducing carbon dioxide (CO2) and other pollutants. CHP is a realistic, near-term option for large energy efficiency improvements and significant CO2 reductions.

  5. proceSS technology College of Rural and Community Development

    E-Print Network [OSTI]

    Hartman, Chris

    includes oil and gas production, mining and milling, transportation and refining, chemical manufacturing technology program prepares students for employment as operations technicians in the process industry, which--Industrial Process Instrumentation I...............................3 PRT F144--Industrial Process

  6. Location-Based Tax Incentives: Evidence From India Ritam Chaurey

    E-Print Network [OSTI]

    Bandyopadhyay, Antar

    in India. Specifically, I examine the federally financed New Industrial Policy for the statesLocation-Based Tax Incentives: Evidence From India Ritam Chaurey Department of Economics, State University of New York, Binghamton August 24, 2014 Abstract While policies targeting particular geographic

  7. HTGR Industrial Application Functional and Operational Requirements

    SciTech Connect (OSTI)

    L. E. Demick

    2010-08-01T23:59:59.000Z

    This document specifies the functional and performance requirements to be used in the development of the conceptual design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to a typical industrial facility. These requirements were developed from collaboration with industry and HTGR suppliers over the preceding three years to identify the energy needs of industrial processes for which the HTGR technology is technically and economically viable. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a conceptual design of the plant that will serve the broadest range of industrial applications.

  8. Comparing the Effects of Mutualism and Competition on Industrial Districts

    E-Print Network [OSTI]

    Hoyle, Rebecca B.

    stations. The diversity of industries situated in the region include food processing industries, oil refining, chemical and bio-chemical produc- tion facilities, as well as heavy industrial facilitiesComparing the Effects of Mutualism and Competition on Industrial Districts Christopher J.K. Knighta

  9. Materials needs and opportunities in the pulp and paper industry

    SciTech Connect (OSTI)

    Angelini, P. [comp.

    1995-08-01T23:59:59.000Z

    The Department of Energy`s (DOE) Office of Industrial Technologies (OIT) supports research and development (R&D) in industry, the DOE national laboratories, and in universities to develop energy efficient, environmentally-acceptable industrial technologies. The Office of Industrial Technologies is working with seven energy-intensive industries to develop R&D roadmaps that will facilitate cooperative government-industry efforts to achieve energy-efficient, environmentally-acceptable, sustainable industries of the future. The forest products industry is one of the industries with which OIT is working to develop an R&D roadmap. The Advanced Industrial Materials (AIM) Program of the Office of Industrial Technologies sponsors long-term, directed research on materials that will enable industry to develop and utilize more energy-efficient, sustainable processes and technologies. The purpose of the study described in this report was to identify the material R&D needs and opportunities for the pulp and paper mill of the future.

  10. Improving Process Heating System Performance: A Sourcebook for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Heating System Performance: A Sourcebook for Industry, Second Edition Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition This...

  11. Industrial applications of electron accelerators

    E-Print Network [OSTI]

    Cleland, M R

    2006-01-01T23:59:59.000Z

    This paper addresses the industrial applications of electron accelerators for modifying the physical, chemical or biological properties of materials and commercial products by treatment with ionizing radiation. Many beneficial effects can be obtained with these methods, which are known as radiation processing. The earliest practical applications occurred during the 1950s, and the business of radiation processing has been expanding since that time. The most prevalent applications are the modification of many different plastic and rubber products and the sterilization of single-use medical devices. Emerging applications are the pasteurization and preservation of foods and the treatment of toxic industrial wastes. Industrial accelerators can now provide electron energies greater than 10 MeV and average beam powers as high as 700 kW. The availability of high-energy, high-power electron beams is stimulating interest in the use of X-rays (bremsstrahlung) as an alternative to gamma rays from radioactive nuclides.

  12. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  13. Uranium industry annual 1997

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

  14. CASL Industry Council Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IndustryCouncil.shtml The new members that joined the Industry Council include NPP owneroperators with analysis capability: Tyrone Stevens of Exelon, and SMR vendors:...

  15. Applications of Automatic Vehicle Location systems towards improving service reliability and operations planning in London

    E-Print Network [OSTI]

    Ehrlich, Joseph Emanuel

    2010-01-01T23:59:59.000Z

    Technological advances in the transit industry, such as the introduction of Automatic Vehicle Location (AVL) systems, have provided agencies with robust data collection and measurement systems and enabled the development ...

  16. Approved Module Information for CE3001, 2014/5 Module Title/Name: Process Economics and Loss

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Brammer) * Capital cost estimation * Variable cost estimation * Inflation, escalation and location effects in maintaining the viability of the chemical and process industries. * The methodologies to estimate costs the effects of hazards. Knowledge and understanding * A range of cost estimation techniques * The factors

  17. Automated detection and location of indications in eddy current signals

    DOE Patents [OSTI]

    Brudnoy, David M. (Albany, NY); Oppenlander, Jane E. (Burnt Hills, NY); Levy, Arthur J. (Schenectady, NY)

    2000-01-01T23:59:59.000Z

    A computer implemented information extraction process that locates and identifies eddy current signal features in digital point-ordered signals, signals representing data from inspection of test materials, by enhancing the signal features relative to signal noise, detecting features of the signals, verifying the location of the signal features that can be known in advance, and outputting information about the identity and location of all detected signal features.

  18. Mobile Alternative Fueling Station Locator

    SciTech Connect (OSTI)

    Not Available

    2009-04-01T23:59:59.000Z

    The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

  19. Precision zero-home locator

    DOE Patents [OSTI]

    Stone, W.J.

    1983-10-31T23:59:59.000Z

    A zero-home locator includes a fixed phototransistor switch and a moveable actuator including two symmetrical, opposed wedges, each wedge defining a point at which switching occurs. The zero-home location is the average of the positions of the points defined by the wedges.

  20. Advanced Mechanical Heat Pump Technologies for Industrial Applications

    E-Print Network [OSTI]

    Mills, J. I.; Chappell, R. N.

    , advanced chemical and mechanical heat pump technologies are being developed for industrial application. Determining which technologies are appropriate for particular industrial applications and then developing those technologies is a stepped process which...

  1. Early career development in the sport industry: factors affecting employment

    E-Print Network [OSTI]

    Hutchinson, Michael Daniel

    2009-05-15T23:59:59.000Z

    The purpose of this study is to identify the processes and factors contributing to employment in the sport industry. In order to completely address the sport industry as a whole, sport management has been pragmatically divided into five sub...

  2. agencies industrial facilities: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Processes and Industries Associated with Cancer in Humans CiteSeer Summary: Report of an IARC ad hoc Working Group which met in Lyon, 8- i 2 February i 982 to advise...

  3. Energy Conservation and Waste Reduction in the Metal Fabrication Industry

    E-Print Network [OSTI]

    Kirk, M. C. Jr.; Looby, G. P.

    Reductions of energy use and waste generation can help manufacturers to be more profitable and more environmentally acceptable. Industrial Assessment Centers located at universities throughout the United States, funded by the U.S. Department...

  4. Carbon Footprinting for the Food Industry

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    174-1 Carbon Footprinting for the Food Industry Tim Bowser FAPC Food Process Engineer FAPC-174 and Natural Resources Carbon footprinting in the food industry is an activity that determines the greenhouse.g. tons) of carbon dioxide (CO2) equivalent per functional unit (e.g. kg or liter of goods sold) (PAS2050

  5. Industry Analysis February 2013

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    technology ­ Clean tech/ clean technology #12;7 Industry Studies · IbisWorld ­ U.S. and global industry-Industries · Biodiesel ­ Biofuel ­ Alternate fuels ­ Green fuels ­ Renewable fuels/energy ­ Green energy ­ Green Canada, Census, Industry Canada, the OECD, European Union, IMF, World Bank, UN . . . Never pay for stats

  6. INDUSTRIAL ENGINEERING GRADUATE PROGRAMS

    E-Print Network [OSTI]

    Gelfond, Michael

    : Occupational biomechanics, work physiology, industrial ergonomics, environmental hygiene, cognitive engineeringINDUSTRIAL ENGINEERING GRADUATE PROGRAMS The Master of Science in Industrial Engineering (M Systems and Engineering (M.S.M.S.E.), the Doctor of Philosophy in Industrial Engineering, and the Doctor

  7. Industry in Motion: Using Smart Phones to Explore the Spatial Network of the Garment Industry in New York City

    E-Print Network [OSTI]

    Williams, Sarah E.

    Industrial agglomerations have long been thought to offer economic and social benefits to firms and people that are only captured by location within their specified geographies. Using the case study of New York City’s ...

  8. Position: Forestry Intern Location: Lower Suwannee National Wildlife Refuge

    E-Print Network [OSTI]

    Mazzotti, Frank

    Position: Forestry Intern Location: Lower Suwannee National Wildlife Refuge Application Process: Student Conservation Association (SCA) Forestry and biological Wildlife Refuge. This forestry position will be mostly field work within the Lower

  9. Colorado Statewide Forest Products Industry Profile

    E-Print Network [OSTI]

    Colorado Statewide Forest Products Industry Profile Economic Sustainability and Ecological and Comparisons · Production and Processing · Sales and Markets · Economic and Ecological Contributions Sawmills · 1/4 for Roundwood (post and pole, vigas, house logs), furniture, excelsior etc. ­ Sawmill

  10. The Resurgence of America's Auto Industry

    ScienceCinema (OSTI)

    Zimmer, Stephen; Cischke, Sue;

    2013-05-29T23:59:59.000Z

    A look at how strategic investments and partnerships between the Energy Department and automakers have helped the American auto industry become a leader in advanced and fuel-efficient vehicles ? creating jobs and boosting profits in the process.

  11. Development Requirements for Advanced Industrial Heat Pumps 

    E-Print Network [OSTI]

    Chappell, R. N.; Priebe, S. J.; Bliem, C. J.; Mills, J. I.

    1985-01-01T23:59:59.000Z

    DOE is attempting to advance the use of heat pumps to save energy in industrial processes. The approach has emphasized developing better heat pump technology and transferring that technology to the private sector. DOE requires that heat pump...

  12. Development Requirements for Advanced Industrial Heat Pumps

    E-Print Network [OSTI]

    Chappell, R. N.; Priebe, S. J.; Bliem, C. J.; Mills, J. I.

    DOE is attempting to advance the use of heat pumps to save energy in industrial processes. The approach has emphasized developing better heat pump technology and transferring that technology to the private sector. DOE requires that heat pump...

  13. Industrial Waste Heat Recovery Using Heat Pipes

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01T23:59:59.000Z

    -expanding variety of industrial processes. One notable application in recent years has been for combustion airs preheat of fired heaters in petroleum refineries and petrochemical plants. Another recent development has been a waste heat recovery boiler using heat...

  14. Industrial Low Temperature Waste Heat Utilization

    E-Print Network [OSTI]

    Altin, M.

    1981-01-01T23:59:59.000Z

    In this paper, some common and emerging techniques to better utilize energy in the chemical process industries are discussed. Temperature levels of waste heat available are pointed out. Emerging practices for further economical utilization of waste...

  15. Industrial & Manufacturing Processes | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Fuel at Lower Cost Facilitates the analysis of trace impurities in high-pressure hydrogen streams Replaces costly analytical equipment with inexpensive, easy-to-operate,...

  16. Industrial Activities at DOE: Efficiency, Manufacturing, Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials R&D More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop Advanced Manufacturing Office Overview Microwave and Radio Frequency Workshop...

  17. Lubrication Systems Market : Mining & Mineral Processing Industry...

    Open Energy Info (EERE)

    Energy Concerns to Push Global Market to Grow at 8.1% CAGR from 2013 to 2019 Oil Shale Market is Estimated to Reach USD 7,400.70 Million by 2022 more Group members (32)...

  18. Thermal Plasma Systems for Industrial Processes 

    E-Print Network [OSTI]

    Fey, M. G.; Meyer, T. N.; Reed, W. H.; Philbrook, W. O.

    1982-01-01T23:59:59.000Z

    required to produce hot metal. To plasma superheat wind. energy is transferred to the air stream via a plasma torch. To maximize the coke reduction due to wind superheating. other fuels such as oil. natural gas. coke oven gas. and coal can be considered... tuyere injections of steam. oxygen, methane. natural gas. coke-oven gas. coal gas. fuel oils. or coals of various ranks is a two-stage blast furnace mass and heat balance developed by Rist and Meysson [12.13J and others at IRSID. A constraint...

  19. Efficient Bayesian sampling inspection for industrial processes

    E-Print Network [OSTI]

    Little, John

    tanks provides a good example of the issues involved. There are many different non-intrusive methods. For more information on these different types of non-intrusive inspection see [Terpstra, ]???. Thousands

  20. Energy efficient industrialized housing research program

    SciTech Connect (OSTI)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

    1989-12-01T23:59:59.000Z

    This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

  1. Assessment and development of an industrial wet oxidation system for burning waste and low upgrade fuels. Final report, Phase 2B: Pilot demonstration of the MODAR supercritical water oxidation process

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    Stone & Webster Engineering Corporation is Project Manager for the Development and Demonstration of an Industrial Wet Oxidation System for Burning Wastes and Low Grade Fuel. This program has been ongoing through a Cooperative Agreement sponsored by the Department of Energy, initiated in June 1988. This report presents a comprehensive discussion of the results of the demonstration project conducted under this cooperative agreement with the overall goal of advancing the state-of-the-art in the practice of Supercritical Water Oxidation (SCWO). In recognition of the Government`s support of this project, we have endeavored to include all material and results that are not proprietary in as much detail as possible while still protecting MODAR`s proprietary technology. A specific example is in the discussion of materials of construction where results are presented while, in some cases, the specific materials are not identified. The report presents the results chronologically. Background material on the earlier phases (Section 2) provide an understanding of the evolution of the program, and bring all reviewers to a common starting point. Section 3 provides a discussion of activities from October 1991 through July 1992, during which the pilot plant was designed; and various studies including computational fluid dynamic modeling of the reactor vessel, and a process HAZOP analyses were conducted. Significant events during fabrication are presented in Section 4. The experimental results of the test program (December 1992--August 1993) are discussed in Section 5.

  2. NORM Management in the Oil and Gas Industry

    SciTech Connect (OSTI)

    Cowie, Michael; Mously, Khalid; Fageeha, Osama; Nassar, Rafat [Environmental Protection Department, Saudi Aramco Dhahran 31311 (Saudi Arabia)

    2008-08-07T23:59:59.000Z

    It has been established that Naturally Occurring Radioactive Materials (NORM) accumulates at various locations along the oil/gas production process. Components such as wellheads, separation vessels, pumps, and other processing equipment can become NORM contaminated, and NORM can accumulate in sludge and other waste media. Improper handling and disposal of NORM contaminated equipment and waste can create a potential radiation hazard to workers and the environment. Saudi Aramco Environmental Protection Department initiated a program to identify the extent, form and level of NORM contamination associated with the company operations. Once identified the challenge of managing operations which had a NORM hazard was addressed in a manner that gave due consideration to workers and environmental protection as well as operations' efficiency and productivity. The benefits of shared knowledge, practice and experience across the oil and gas industry are seen as key to the establishment of common guidance on NORM management. This paper outlines Saudi Aramco's experience in the development of a NORM management strategy and its goals of establishing common guidance throughout the oil and gas industry.

  3. Benchmarks for industrial energy efficiency

    SciTech Connect (OSTI)

    Amarnath, K.R. [Electric Power Research Inst., Palo Alto, CA (United States); Kumana, J.D. [Linnhoff March, Inc., Houston, TX (United States); Shah, J.V. [Electric Power Research Inst., Pittsburgh, PA (United States). Chemicals and Petroleum Center

    1996-12-31T23:59:59.000Z

    What are the standards for improving energy efficiency for industries such as petroleum refining, chemicals, and glass manufacture? How can different industries in emerging markets and developing accelerate the pace of improvements? This paper discusses several case studies and experiences relating to this subject emphasizing the use of energy efficiency benchmarks. Two important benchmarks are discussed. The first is based on a track record of outstanding performers in the related industry segment; the second benchmark is based on site specific factors. Using energy use reduction targets or benchmarks, projects have been implemented in Mexico, Poland, India, Venezuela, Brazil, China, Thailand, Malaysia, Republic of South Africa and Russia. Improvements identified through these projects include a variety of recommendations. The use of oxy-fuel and electric furnaces in the glass industry in Poland; reconfiguration of process heat recovery systems for refineries in China, Malaysia, and Russia; recycling and reuse of process wastewater in Republic of South Africa; cogeneration plant in Venezuela. The paper will discuss three case studies of efforts undertaken in emerging market countries to improve energy efficiency.

  4. Industrial Energy Auditing: An Opportunity for Improving Energy Efficiency and Industrial Competitiveness

    E-Print Network [OSTI]

    Glaser, C.

    /Process Changes Buildings and Grounds Non-Energy Related Cost Savings Alternate Fuels The University City Science Center examines and critiques every audit report generated by the EADCs to ensure high quality work. They also periodically accompany the EADC...INDUSTRIAL ENERGY AUDITING: AN OPPORTUNITY FOR IMPROVING ENERGY EFFICIENCY AND INDUSTRIAL COMPETITIVENESS CHARLES GLASER, PROGRAM MANAGER, IMPLEMENTATION AND DEPLOYMENT DIVISION OFFICE OF INDUSTRIAL TECHNOLOGIES, U.S. DEPARTMENT OF ENERGY...

  5. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 1 The Impact of Temperature on Outdoor

    E-Print Network [OSTI]

    Roedig, Utz

    support new areas such as industrial process automation and control applications. There are a large number sensor networks for industrial process automation and control applications in outdoor May 31, 2009 DRAFTIEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 1 The Impact of Temperature on Outdoor Industrial WSN

  6. The Industrial Electrification Program

    E-Print Network [OSTI]

    Harry, I. L.

    1982-01-01T23:59:59.000Z

    EPRI's role as the research organization of the electric power industry, in coordination with potential user industries, is to 1) define the viability of candidate electrification technologies by monitoring the state-of-the-art and continuously...

  7. and Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    technologicalandlogisticssystemsbygathering, structuring, and managing information. Indus- trial engineers apply their knowledge not only45 Mechanical and Industrial Engineering 220 Engineering Lab Degrees: Bachelor of Science in Mechanical Engineering Bachelor of Science in Industrial Engineering Contact: James R. Rinderle

  8. Demographics and industry returns

    E-Print Network [OSTI]

    Pollet, Joshua A.; DellaVigna, Stefano

    2007-01-01T23:59:59.000Z

    Industry category Child care Children’s books Children’s clothing Toysindustry Child care Children’s books Children’s clothing ToysIndustries are associated with high demand by children (child care, toys) and

  9. INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY

    E-Print Network [OSTI]

    Pohl, Karsten

    INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY SUMMER 2013 Industrial Engineering COOP Student needed-Fri, for summer 2013. Student must be enrolled in BS Engineering program. (Preferably completed 2-3 yrs

  10. Industry Analysis October 2010

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    Different regulations for some industries in Canada, the U.S. and Europe ie. telecommunications, energy of energy, materials, industrial waste, byproducts #12;Contact Constance Adamson Stauffer Library adamsonc

  11. Implementation guidance for industrial-level security systems using radio frequency alarm links

    SciTech Connect (OSTI)

    Swank, R.G.

    1996-07-12T23:59:59.000Z

    Spread spectrum (SS) RF transmission technologies have properties that make the transmitted signal difficult to intercept, interpret, and jam. The digital code used in the modulation process results in a signal that has high reception reliability and supports multiple use of frequency bands and selective addressing. These attributes and the relatively low installation cost of RF systems make SSRF technologies candidate for communications links in security systems used for industrial sites, remote locations, and where trenching or other disturbances of soil or structures may not be desirable or may be costly. This guide provides a description of such a system and presents implementation methods that may be of engineering benefit.

  12. area industrial single: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting Proc Heat Proc Cool HVAC Other Process Use Other HVAC Pumps BoilerIndustrial Energy Savings by End Use - 2016 Compressed Air Fans Pumps Drives Heating Refrigeration...

  13. Global Energy Efficient IT Equipment Industry 2015 Market Research...

    Open Energy Info (EERE)

    overview; industry policies and plans; product specifications; manufacturing processes; cost structures and so on. Then it analyzed the world's main region market conditions,...

  14. Global High-purity Pentoxide Industry 2015 Market Research Report...

    Open Energy Info (EERE)

    overview; industry policies and plans; product specifications; manufacturing processes; cost structures and so on. Then it analyzed the world's main region market conditions,...

  15. New Advanced System Utilizes Industrial Waste Heat to Power Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is crucial to ensuring their status as global competitors. Currently, most industries treat water to meet standards for direct discharge to surface water. The process includes a...

  16. SRC-II process

    SciTech Connect (OSTI)

    Schmid, B.K.; Jackson, D.M.

    1980-01-01T23:59:59.000Z

    Extensive laboratory and pilot plant experimental work on the Solvent Refined Coal Process has led to the development of an improved version of the process known as SRC-II. This work has shown considerable promise and plans are being made to demonstrate the SRC-II process using commercial size equipment in a 6000 T/D plant to be located near Morgantown, West Virginia. On the basis of recent economic studies, the products (both liquid and gas) from a future large-scale commercial plant are expected to have an overall selling price of $4.00 to 5.00 per million Btu (first quarter 1980 basis). The major product of the primary process is distillate fuel oil of less than 0.3% sulfur for use largely as a non-polluting fuel for generating electrical power and steam, especially in the east where utilities and industry are presently using petroleum products. For the longer term, the major growth opportunity for SRC-II fuel oil in the generation of electric power will probably be through advanced combustion turbine units with heat recovery boilers (combined cycle units). The light liquid fractions (naphtha and middle distillate) produced by the SRC-II process can be upgraded to a high octane unleaded gasoline to supplement petroleum-derived supplies. Significant quantities of pipeline gas are also produced at a cost which should be competitive with SNG from direct coal gasification. Light hydrocarbons (ethane, propane) from the process may be effectively converted to ethylene in conventional cracking plants to offset ethylene demand from petroleum-derived naphtha and gas oil, both of which could otherwise be used for other refinery products. In addition, certain fraction of the fuel oil might also be used in medium speed diesel engines and automotive gas turbines.

  17. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  18. Synchronized sampling improves fault location

    SciTech Connect (OSTI)

    Kezunovic, M. [Texas A and M Univ., College Station, TX (United States)] [Texas A and M Univ., College Station, TX (United States); Perunicic, B. [Lamar Univ., Beaumont, TX (United States)] [Lamar Univ., Beaumont, TX (United States)

    1995-04-01T23:59:59.000Z

    Transmission line faults must be located accurately to allow maintenance crews to arrive at the scene and repair the faulted section as soon as possible. Rugged terrain and geographical layout cause some sections of power transmission lines to be difficult to reach. In the past, a variety of fault location algorithms were introduced as either an add-on feature in protective relays or stand-alone implementation in fault locators. In both cases, the measurements of current and voltages were taken at one terminal of a transmission line only. Under such conditions, it may become difficult to determine the fault location accurately, since data from other transmission line ends are required for more precise computations. In the absence of data from the other end, existing algorithms have accuracy problems under several circumstances, such as varying switching and loading conditions, fault infeed from the other end, and random value of fault resistance. Most of the one-end algorithms were based on estimation of voltage and current phasors. The need to estimate phasors introduces additional difficulty in high-speed tripping situations where the algorithms may not be fast enough in determining fault location accurately before the current signals disappear due to the relay operation and breaker opening. This article introduces a unique concept of high-speed fault location that can be implemented either as a simple add-on to the digital fault recorders (DFRs) or as a stand-alone new relaying function. This advanced concept is based on the use of voltage and current samples that are synchronously taken at both ends of a transmission line. This sampling technique can be made readily available in some new DFR designs incorporating receivers for accurate sampling clock synchronization using the satellite Global Positioning System (GPS).

  19. Mechanical & Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical & Industrial Engineering Mario A. Rotea Professor and Department Head #12;2Mechanical & Industrial Engineering Outline · Undergraduate Degree Programs · Graduate Degree Programs · The Faculty · The Research · Summary #12;3Mechanical & Industrial Engineering Undergraduate Programs ­ BSME & BSIE 0 20 40 60

  20. Control of an industrial polymerization reactor using flatness *, P. Rouchona

    E-Print Network [OSTI]

    Control of an industrial polymerization reactor using flatness N. Petita, *, P. Rouchona , J polypropylene reactor. This is the first industrial process-controller to use the so-called flatness property tank reactor; Control; Flatness; Industrial application 1. Introduction The aim of this paper

  1. Trajectory Description Conception for Industrial Robots. Sergey Alatartsev

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Trajectory Description Conception for Industrial Robots. Sergey Alatartsev Computer Systems for industrial robots programming. It should allow them to obtain difficult motions by easy com- bination of modern manufactur- ing process. At the present moment industrial robots do not meet these demands

  2. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 55, NO. 3, MARCH 2008 1421 On the Use of a Lower Sampling Rate for Broken

    E-Print Network [OSTI]

    Chow, Mo-Yuen

    the continuity of the process and production chains of many industries. The list of the indus- tries industries, petrochemical industries, and domestic appliance industries. Induction motors are often used

  3. Industrial Dojo Program Fosters Industrial Internet Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Launches Cloud Foundry 'Industrial Dojo,' Contributes to Open Source to Foster Continued...

  4. Industrial policy and the Indian electronics industry

    E-Print Network [OSTI]

    Love, Robert (Robert Eric)

    2008-01-01T23:59:59.000Z

    Recently, production within India's Electronics sector amounted to a low $12 billion when compared to the global output of $1400 billion. The slow growth in the local industry is often judged to be the result of late ...

  5. LANSCE | Lujan Center | Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users The Lujan Neutron Scattering Center offers a diverse set of capabilities and instruments for industrial projects. Industrial users are invited to contact Fredrik...

  6. Building Address Locations -Assumes entire

    E-Print Network [OSTI]

    Guenther, Frank

    Building Address Locations - Assumes entire building unless noted Designation Submit through* 560, 4 BU Crosstown Center 801 Massachusetts Ave Floor 1, 2 BMC BCD Building 800 Harrison Avenue BCD BMC Biosquare III 670 Albany Floors 2, 3, 6, 7 BMC Biosquare III 670 Albany Floors 1, 4, 5, 8 BU Building

  7. Boston, Massachusetts Location: Boston, MA

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    -recovery ventilation and water-source heat pumps Each unit has fresh air ducted independently. Each residence is warmed by a heat pump that taps the Trigen Energy Corporation steam lines that run underneath the street. #12;WallsBoston, Massachusetts #12;Location: Boston, MA Building type(s): Multi-unit residential, Retail 350

  8. Application of solar energy for the generation and supply of industrial-process low-to intermediate-pressure steam ranging from 300/sup 0/F-550/sup 0/F (high-temperature steam). Final report, September 30, 1978-June 30, 1979

    SciTech Connect (OSTI)

    Matteo, M.; Kull, J.; Luddy, W.; Youngblood, S.

    1980-12-01T23:59:59.000Z

    A detailed design was developed for a solar industrial process heat system to be installed at the ERGON, Inc. Bulk Oil Storage Terminal in Mobile, Alabama. The 1874 m/sup 2/ (20160 ft/sup 2/) solar energy collector field will generate industrial process heat at temperatures ranging from 150 to 290/sup 0/C (300 to 550/sup 0/F). The heat will be used to reduce the viscosity of stored No. 6 fuel oil, making it easier to pump from storage to transport tankers. Heat transfer oil is circulated in a closed system, absorbing heat in the collector field and delivering it through immersed heat exchangers to the stored fuel oil. The solar energy system will provide approximately 44 percent of the process heat required.

  9. Process Monitoring for Nuclear Safeguards

    SciTech Connect (OSTI)

    Ehinger, Michael H [ORNL] [ORNL; Pomeroy, George D [ORNL] [ORNL; Budlong-Sylvester, Kory W [ORNL] [ORNL

    2009-01-01T23:59:59.000Z

    Process Monitoring has long been used to evaluate industrial processes and operating conditions in nuclear and non-nuclear facilities. In nuclear applications there is a recognized need to demonstrate the safeguards benefits from using advanced process monitoring on spent fuel reprocessing technologies and associated facilities, as a complement to nuclear materials accounting. This can be accomplished by: defining credible diversion pathway scenarios as a sample problem; using advanced sensor and data analysis techniques to illustrate detection capabilities; and formulating 'event detection' methodologies as a means to quantify performance of the safeguards system. Over the past 30 years there have been rapid advances and improvement in the technology associated with monitoring and control of industrial processes. In the context of bulk handling facilities that process nuclear materials, modern technology can provide more timely information on the location and movement of nuclear material to help develop more effective safeguards. For international safeguards, inspection means verification of material balance data as reported by the operator through the State to the international inspectorate agency. This verification recognizes that the State may be in collusion with the operator to hide clandestine activities, potentially during abnormal process conditions with falsification of data to mask the removal. Records provided may show material is accounted for even though a removal occurred. Process monitoring can offer additional fidelity during a wide variety of operating conditions to help verify the declaration or identify possible diversions. The challenge is how to use modern technology for process monitoring and control in a proprietary operating environment subject to safeguards inspectorate or other regulatory oversight. Under the U.S. National Nuclear Security Administration's Next Generation Safeguards Initiative, a range of potential safeguards applications for process monitoring are under conceptual development and evaluation. This paper reports on a study of process monitoring for a sample problem involving spent fuel reprocessing with aqueous reprocessing technologies. This includes modeling the processes in the context of a nuclear material diversion scenario and measuring the associated process chemistry. A systems-centric model is applied using actual and simulated plant data, advanced sensors, anomaly detection methods, statistical analysis and data authentication methods, to help illustrate the benefits of process monitoring applications.

  10. Uranium industry annual 1998

    SciTech Connect (OSTI)

    NONE

    1999-04-22T23:59:59.000Z

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

  11. Uranium industry annual 1994

    SciTech Connect (OSTI)

    NONE

    1995-07-05T23:59:59.000Z

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

  12. INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering

    E-Print Network [OSTI]

    Rohs, Remo

    78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take of industries including consulting, technology development, software, supply chain manufacturing, engineering

  13. An Evaluation of Industrial Heat Pumps for Effective Low-Temperature Heat Utilization 

    E-Print Network [OSTI]

    Leibowitz, H. M.; Colosimo, D. D.

    1980-01-01T23:59:59.000Z

    The implementation of industrial heat pumps utilizing waste water from various industrial processes for the production of process steam is presented as a viable economic alternative to a conventional fossil-fired boiler and as an effective fuel...

  14. Measurement and prediction of aerosol formation for thesafe utilization of industrial fuids

    E-Print Network [OSTI]

    Krishna, Kiran

    2004-09-30T23:59:59.000Z

    Mist or aerosol explosions present a serious hazard to process industries. Heat transfer fluids are widely used in the chemical process industry, are flammable above their flash points, and can cause aerosol explosions. Though the possibility...

  15. Measurement and prediction of aerosol formation for thesafe utilization of industrial fuids 

    E-Print Network [OSTI]

    Krishna, Kiran

    2004-09-30T23:59:59.000Z

    Mist or aerosol explosions present a serious hazard to process industries. Heat transfer fluids are widely used in the chemical process industry, are flammable above their flash points, and can cause aerosol explosions. ...

  16. An Evaluation of Industrial Heat Pumps for Effective Low-Temperature Heat Utilization

    E-Print Network [OSTI]

    Leibowitz, H. M.; Colosimo, D. D.

    1980-01-01T23:59:59.000Z

    The implementation of industrial heat pumps utilizing waste water from various industrial processes for the production of process steam is presented as a viable economic alternative to a conventional fossil-fired boiler and as an effective fuel...

  17. WINDExchange: School Wind Project Locations

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:

  18. District heating feasibility, Industrial Corridor, Jamestown, New York

    SciTech Connect (OSTI)

    Not Available

    1988-06-01T23:59:59.000Z

    The Industrial Corridor of Jamestown, New York, contains more than twenty industrial/manufacturing companies, whose thermal demands, in addition to space heating, include significant process heating loads. This study investigated in depth, the technical and economic feasibility of implementing a district heating system in the Industrial Corridor which can serve both process and space heating loads. Based upon the heat load assessment conducted, the study focused upon nine companies with the largest thermal demand. Alternative system implementation designs were considered including new conventional centralized boiler plants, gas turbine cogeneration, and both high temperature hot water and steam as the heat transport media in an underground distribution system. The study concluded that, in view of the nature of existing prospective customer loads being primarily steam based, the most economical system for near term phased development is a steam based system with a new conventional centrally located steam boiler plant. The economic potential for a cogeneration system was found to be sensitive to electricity buy back rates, which at present, are not attractive. Implementing a modern high temperature hot water system would require significant customer retrofit costs to convert their steam based systems to hot water, resulting in long and unattractive pay back periods. Unless customer hot water retrofit costs can be expended without penalty to the district system economics, hot water district heating is not considered economically feasible. Chapters describe heat load assessment; heat source analysis; system implementation; transmission and distribution systems assessment; institutional assessment; system economic analysis; and customer retrofit, economic analysis, and conclusions 20 figs., 22 tabs.

  19. Industrial Heat Pumps for Steam and Fuel Savings: A BestPractices Steam Technical Brief

    SciTech Connect (OSTI)

    Not Available

    2003-06-01T23:59:59.000Z

    The purpose of this Steam Techcial Brief is to introduce heat-pump technology and its applicaiton in industrial processes.

  20. U.S. Energy Service Company (ESCO) Industry and Market Trends

    Broader source: Energy.gov (indexed) [DOE]

    DG technologies Customer distribution system equip. Industrial process improvements Cogeneration Non-energy improvements Air quality Miscellaneous equipmentsystems Water heating...

  1. Joint microseismic event location with uncertain velocity

    E-Print Network [OSTI]

    Poliannikov, Oleg V.

    2013-01-01T23:59:59.000Z

    We study the problem of the joint location of seismic events using an array of receivers. We show that locating multiple seismic events simultaneously is advantageous compared to the more traditional approaches of locating ...

  2. Energy Department Launches Alternative Fueling Station Locator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Launches Alternative Fueling Station Locator App Energy Department Launches Alternative Fueling Station Locator App November 7, 2013 - 11:16am Addthis As part of...

  3. Asymptotic analysis of an optimal location problem

    E-Print Network [OSTI]

    2003-05-13T23:59:59.000Z

    Asymptotic analysis of an optimal location problem. One considers the problem of optimal location of masses(say production centers) in order to approximate a ...

  4. The Homopolar Generator as a Pulsed Industrial Power Supply

    E-Print Network [OSTI]

    Weldon, J. M.; Weldon, W. F.

    1979-01-01T23:59:59.000Z

    power supply for numerous industrial applications such as large metal cross section pulsed resistance welding, pulsed billet heating for subsequent hot working processes, pulsed heating for localized forging processes, and magnetic metal forming. Each...

  5. The Homopolar Generator as a Pulsed Industrial Power Supply 

    E-Print Network [OSTI]

    Weldon, J. M.; Weldon, W. F.

    1979-01-01T23:59:59.000Z

    power supply for numerous industrial applications such as large metal cross section pulsed resistance welding, pulsed billet heating for subsequent hot working processes, pulsed heating for localized forging processes, and magnetic metal forming. Each...

  6. Energy Management and Computers in the Pulp and Paper Industry

    E-Print Network [OSTI]

    Sommerfeld, J. T.; Hartley, E. M.

    1981-01-01T23:59:59.000Z

    dryer hood waste heat. o Biomass feedstocks for the production of specialized chemial products. o Crossing of the stone groundwood process with the thermomechanical pulping process. 236 ESL-IE-81-04-42 Proceedings from the Third Industrial Energy...

  7. Emerging Opportunities in Industrial Electrification Technologies 

    E-Print Network [OSTI]

    Schmidt, P. S.

    1989-01-01T23:59:59.000Z

    in the manufacturing sector. Nearly half of manufacturing energy use was in the process industries, which include chemicals, petroleum products, pulp and paper, foods, textiles, and tobacco. Metals production, primarily aluminum and steel, accounted for about 21... %, and metals fabrication, including transportation, machinery, instrumentation and electronics, and other metal products, about 19%. The balance of about 14% was used in other non-metals industries, such as stone, clay, and glass, rubber and plastics...

  8. Demand-Side Response from Industrial Loads

    SciTech Connect (OSTI)

    Starke, Michael R [ORNL; Alkadi, Nasr E [ORNL; Letto, Daryl [Enbala Power Networks; Johnson, Brandon [University of Tennessee, Knoxville (UTK); Dowling, Kevin [University of Tennessee, Knoxville (UTK); George, Raoule [Enbala Power Networks; Khan, Saqib [University of Texas, Austin

    2013-01-01T23:59:59.000Z

    Through a research study funded by the Department of Energy, Smart Grid solutions company ENBALA Power Networks along with the Oak Ridge National Laboratory (ORNL) have geospatially quantified the potential flexibility within industrial loads to leverage their inherent process storage to help support the management of the electricity grid. The study found that there is an excess of 12 GW of demand-side load flexibility available in a select list of top industrial facilities in the United States. Future studies will expand on this quantity of flexibility as more in-depth analysis of different industries is conducted and demonstrations are completed.

  9. Facility Location in evolving metrics

    E-Print Network [OSTI]

    Fondements et Applications, Université Paris 7

    (1)') ] 13 [ ab('SIG_ASSIGN_5405(3)') ] 14 [ ab('PROCESS_452(2)') ] 15 [ ab('SIG_ASSIGN_4787(2)') ] 16 [ ab

  10. Industrial Retrofits are Possible

    E-Print Network [OSTI]

    Stobart, E. W.

    . In April of 1987, the provincial government initiated a program to assist industrial energy users to reduce their energy usage. This program was designed to concentrate on an in-depth analysis of the complete operations of industrial plants... with the analyses being performed by specialist, private sector, engineering consultants. The program is in 3 phases providing an Ontario industrial plant with an Energy Analysis, a Feasibility Analysis Grant and a Project Engineering Design Grant...

  11. Presentations for Industry

    Broader source: Energy.gov [DOE]

    Learn energy-saving strategies from leading manufacturing companies and energy experts. The presentations are organized below by topic area. In addition, industrial energy managers, utilities, and...

  12. About Industrial Distributed Energy

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office's (AMO's) Industrial Distributed Energy activities build on the success of predecessor DOE programs on distributed energy and combined heat and power (CHP) while...

  13. Industrial Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    Boiler, Steam, and Cogeneration (BSC) Component. The BSC Component satisfies the steam demand from the PA and BLD Components. In some industries, the PA Component produces...

  14. A STOCHASTIC PROGRAMMING APPROACH TO QUANTIFYING EFFECTS OF CONTINGENCIES ON LOCATIONAL MARGINAL PRICES

    E-Print Network [OSTI]

    Stankoviæ, Aleksandar

    on varia- tions of Locational Marginal Prices (LMPs) in restruc- tured power markets. The process: Locational marginal prices (LMPs), Un- certainty, Power system security, Optimization meth- ods, StochasticA STOCHASTIC PROGRAMMING APPROACH TO QUANTIFYING EFFECTS OF CONTINGENCIES ON LOCATIONAL MARGINAL

  15. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01T23:59:59.000Z

    Processing (2005a). Petrochemical processes 2005. More info:in boilers and petrochemical process units have shownalmost every process in the petrochemical industry, whereas

  16. Growing Hawaii's agriculture industry,

    E-Print Network [OSTI]

    Program Overview Growing Hawaii's agriculture industry, one business at a time Website: http-3547 agincubator@ctahr.hawaii.edu Grow Your Business If you are looking to start an agriculture-related business with our program · Positively impact the agriculture industry in Hawaii with their success

  17. Geothermal industry assessment

    SciTech Connect (OSTI)

    Not Available

    1980-07-01T23:59:59.000Z

    An assessment of the geothermal industry is presented, focusing on industry structure, corporate activities and strategies, and detailed analysis of the technological, economic, financial, and institutional issues important to government policy formulation. The study is based principally on confidential interviews with executives of 75 companies active in the field. (MHR)

  18. The Office of Industrial Technologies - enhancing the competitiveness, efficiency, and environmental quality of American industry through technology partnerships

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    A critical component of the Federal Government`s effort to stimulate improved industrial energy efficiency is the DOE`s Office of Industrial Technologies (OIT). OIT funds research, development, and demonstration (RD&D) efforts and transfers the resulting technology and knowledge to industry. This document describes OIT`s program, including the new Industries of the Future (IOF) initiative and the strategic activities that are part of the IOF process. It also describes the energy, economic, and environmental characteristics of the materials and process industries that consume nearly 80% of all energy used by manufacturing in the United States. OIT-supported RD&D activities relating to these industries are described, and quantitative estimates of the potential benefits of many OIT-supported technologies for industry are also provided.

  19. Sculpture as process

    E-Print Network [OSTI]

    Kracke, Bernd

    1981-01-01T23:59:59.000Z

    Sculpture as process is rooted in the historical development of movement as a theme of art in general and of sculpture in particular since 1900. The impact of the industrial revolution and the subsequent scientific/technological ...

  20. Uranium industry annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  1. INDUSTRIAL&SYSTEMS Industrial and Systems engineers use

    E-Print Network [OSTI]

    Rohs, Remo

    78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take · Industrial and Systems Engineering Bachelor of Science 128 units · Industrial and Systems Engineering

  2. Uranium industry annual 1995

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

  3. Automating An Industrial Power Plant

    E-Print Network [OSTI]

    Williams, D. R.; McCowen, R. R.

    AUTlliATING AN INDUSTRIAL POWER PLANT DAVID R. WILLIAMS, P.E. Energy Coordi?nator John Deere Component Works Waterloo, Iowa ABSTRACT The need for an upgrade of boiler and turbine controls in the 15 MW coal-fired cogeneration plant... for the project was estimated at $860,OOO/year. The upgrading process began with a search for a design/ build contractor that could provide complete turn key capability, beginning with a site survey and ending with operator acceptanoe. The contractor...

  4. Jax Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias SolarJane Capital Partners JumpMissouri:Java -Jax Industries

  5. Advanced Industrial Materials Program. Annual progress report, FY 1993

    SciTech Connect (OSTI)

    Stooksbury, F. [comp.

    1994-06-01T23:59:59.000Z

    Mission of the AIM program is to commercialize new/improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. Program investigators in the DOE national laboratories are working with about 100 companies, including 15 partners in CRDAs. Work is being done on intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The program supports other efforts in the Office of Industrial Technologies to assist the energy-consuming process industries. The aim of the AIM program is to bring materials from basic research to industrial application to strengthen the competitive position of US industry and save energy.

  6. AVLIS industrial access program

    SciTech Connect (OSTI)

    Not Available

    1984-11-15T23:59:59.000Z

    This document deals with the procurements planned for the construction of an Atomic Vapor Laser Isotope Separation (AVLIS) production plant. Several large-scale AVLIS facilities have already been built and tested; a full-scale engineering demonstration facility is currently under construction. The experience gained from these projects provides the procurement basis for the production plant construction and operation. In this document, the status of the AVLIS process procurement is presented from two viewpoints. The AVLIS Production Plant Work Breakdown Structure is referenced at the level of the items to be procured. The availability of suppliers for the items at this level is discussed. In addition, the work that will result from the AVLIS enrichment plant project is broken down by general procurement categories (construction, mechanical equipment, etc.) and the current AVLIS suppliers are listed according to these categories. A large number of companies in all categories are currently providing AVLIS equipment for the Full-Scale Demonstration Facility in Livermore, California. These companies form an existing and expanding supplier network for the AVLIS program. Finally, this document examines the relationship between the AVLIS construction project/operational facility and established commercial suppliers. The goal is to utilize existing industrial capability to meet the needs of the project in a competitive procurement situation. As a result, costs and procurement risks are both reduced because the products provided come from within the AVLIS suppliers' experience base. At the same time, suppliers can benefit by the potential to participate in AVLIS technology spin-off markets. 35 figures.

  7. The Office of Industrial Technologies technical reports

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The US Department of Energy's Office of Industrial Technologies (OIT) conducts R D activities which focus on the objectives of improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial energy conservation. The Office also conducts programs to reduce waste generation, increase recycling efforts, and improve the use of wastes as process feedstocks. An active program of technology transfer and education supports these activities and encourages adoption of new technologies. To accomplish these objectives OIT cooperates with the private sector to identify its technological needs and to share R D efforts. R D is conducted to the point that a new technology is shown to work and that it can be transferred to the private sector end-users. This bibliography contains information on all scientific and technical reports sponsored by the DOE Industrial Energy Conservation Program during the years 1988--1990.

  8. Advanced Industrial Materials (AIM) Program annual progress report, FY 1997

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    The Advanced Industrial Materials (AIM) Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The mission of AIM is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. OIT has embarked on a fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrating on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans, some of which have been completed. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support.

  9. TWRS information locator database system administrator`s manual

    SciTech Connect (OSTI)

    Knutson, B.J., Westinghouse Hanford

    1996-09-13T23:59:59.000Z

    This document is a guide for use by the Tank Waste Remediation System (TWRS) Information Locator Database (ILD) System Administrator. The TWRS ILD System is an inventory of information used in the TWRS Systems Engineering process to represent the TWRS Technical Baseline. The inventory is maintained in the form of a relational database developed in Paradox 4.5.

  10. Plantwide Energy Management for Hydrocarbon and Petrochemical Industry 

    E-Print Network [OSTI]

    Ahmed, A.; Clinkscales, T.

    1988-01-01T23:59:59.000Z

    Within the hydrocarbon and petrochemical industry the generation and utilization of various forms of energy is a highly complex and dynamic process. The process plant normally generates steam and fuel in the form of process off-gas. The same process...

  11. Industrial Decision Making

    E-Print Network [OSTI]

    Elliott, R. N.; McKinney, V.; Shipley, A.

    2008-01-01T23:59:59.000Z

    Domestic industrial investment has declined due to unfavorable energy prices, and external markets. Investment behavior has changed over the past few years, and will continue due to high labor costs, tight markets and an unstable U.S. economy...

  12. Uranium Industry Annual, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-28T23:59:59.000Z

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  13. Industrial energy use indices 

    E-Print Network [OSTI]

    Hanegan, Andrew Aaron

    2008-10-10T23:59:59.000Z

    Energy use index (EUI) is an important measure of energy use which normalizes energy use by dividing by building area. Energy use indices and associated coefficients of variation are computed for major industry categories ...

  14. Animal Industries Building 

    E-Print Network [OSTI]

    Unknown

    2011-08-17T23:59:59.000Z

    Plant managers around the world are interested in improving the energy efficiency of their facilities while both growing and modernizing their manufacturing capabilities. Emerging industrial technologies, both at the ...

  15. Animal Industries Building 

    E-Print Network [OSTI]

    Unknown

    2011-08-17T23:59:59.000Z

    Industrial steam users recognize the need to reduce system cost in order to remain internationally competitive. Steam systems are a key utility that influence cost significantly, and represent a high value opportunity ...

  16. Utility and Industrial Partnerships

    E-Print Network [OSTI]

    Sashihara, T. F.

    In the past decade, many external forces have shocked both utilities and their large industrial customers into seeking more effective ways of coping and surviving. One such way is to develop mutually beneficial partnerships optimizing the use...

  17. Engineering Industrial & Systems

    E-Print Network [OSTI]

    Berdichevsky, Victor

    powerful tool sets used in industry today. -Brent Gillett, BSIE 2007 Advanced Planning Engineer at BMW I the skills necessary to be successful in today's global environment. EDGE exposes and trains engineering

  18. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

  19. NEMS industrial module documentation report

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2010) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of output of industrial activity. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

  20. Industrial Development Fund (North Carolina)

    Broader source: Energy.gov [DOE]

    The Industrial Development Fund provides financing grants and loans through designated municipalities and counties to assist in infrastructure improvements for targeted industrial projects. The...

  1. Review of tribological sinks in six major industries

    SciTech Connect (OSTI)

    Imhoff, C.H.; Brown, D.R.; Hane, G.J.; Hutchinson, R.A.; Erickson, R.; Merriman, T.; Gruber, T.; Barber, S.

    1985-09-01T23:59:59.000Z

    Friction and material wear occur throughout all industries and are involved in many processes within each industry. These conditions make assessing tribological activity overall in industry very complex and expensive. Therefore, a research strategy to obtain preliminary information on only the most significant industrial tribological sinks was defined. The industries examined were selected according to both the magnitude of overall energy consumption (particularly machine drive) and the known presence of significant tribological sinks. The six industries chosen are as follows: mining, agriculture, primary metals, chemicals/refining, food, and pulp and paper. They were reviewed to identify and characterize the major tribology sinks. It was concluded that wear losses are greater than friction losses, and that reducing wear rates would improve industrial productivity.

  2. Analysis of the AirTouch automatic vehicle location system's ability to locate moving vehicles 

    E-Print Network [OSTI]

    Henry, Tracy Lynn

    1995-01-01T23:59:59.000Z

    Automatic vehicle location systems are becoming more prevalent in diverse transportation applications. Their ability to locate vehicles can assist in locating emergency and public transit vehicles for better real-time dispatching as well...

  3. Analysis of the AirTouch automatic vehicle location system's ability to locate moving vehicles

    E-Print Network [OSTI]

    Henry, Tracy Lynn

    1995-01-01T23:59:59.000Z

    Automatic vehicle location systems are becoming more prevalent in diverse transportation applications. Their ability to locate vehicles can assist in locating emergency and public transit vehicles for better real-time dispatching as well...

  4. Industrial Energy Efficiency: Designing Effective State Programs...

    Energy Savers [EERE]

    Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector Industrial Energy Efficiency: Designing Effective State Programs for the Industrial...

  5. Mechanical and Industrial Engineering Industry Advisory Board University of Massachusetts Amherst

    E-Print Network [OSTI]

    Mountziaris, T. J.

    9/13/2007 Mechanical and Industrial Engineering Industry Advisory Board University of Massachusetts Amherst Department of Mechanical and Industrial Engineering About the Mechanical and Industrial Engineering Industry Advisory Board The purpose of the Mechanical and Industrial Engineering Industry Advisory

  6. Energy Flow Models for the Steel Industry

    E-Print Network [OSTI]

    Hyman, B.; Andersen, J. P.

    Energy patterns in the U. S. steel industry are examined using several models. First is an end-use model based on data in the 1994 Manufacturing Energy Consumption Survey (MECS). Then a seven-step process model is presented and material flow through...

  7. Cutting Industrial Solar System Costs in Half 

    E-Print Network [OSTI]

    Niess, R. C.; Weinstein, A.

    1982-01-01T23:59:59.000Z

    collectors that result in an installed first cost that approximates one half of that of conventional solar systems. This technology is now available for producing up to 220 F hot water for industrial process heat, space heating, and service hot water heating...

  8. NL Industries, Inc EPA ID#: NJD061843249

    E-Print Network [OSTI]

    recycled lead from spent automotive batteries. The batteries were drained of sulfuric acid, crushed The 44-acre NL Industries site is a former secondary lead smelting facility that operated from 1972 and then processed for lead recovery at the smelting facility. The plastic and rubber waste materials resulting from

  9. Applications for Computers in Industrial Powerhouses

    E-Print Network [OSTI]

    Delk, S. R.

    1981-01-01T23:59:59.000Z

    of electric motors due to their increased number of starts. In the industrial field, there are many processes that will not allow a cyclical operation. However, in batch processes, electric demand control can be very valuable. Electric demand reduction... these services you generally have several boilers, refrigeration machines, and air compres sors which may be driven by electric motors, topp ing or condensing steam turbines. How do you determine the most economical method to supply all the utilities...

  10. Industrial symbiosis and the successional city : adapting exchange networks to energy constraints

    E-Print Network [OSTI]

    Terway, Timothy M. (Timothy Michael)

    2007-01-01T23:59:59.000Z

    Industrial ecology offers models for hybridizing technology and natural processes, human desires and the capacities of ecosystems in an effort to reconcile the expanding conflicts among them. Industrial symbiosis applies ...

  11. Assessment of an Industrial Wet Oxidation System for Burning Waste and Low-Grade Fuels 

    E-Print Network [OSTI]

    Bettinger, J.; Koppel, P.; Margulies, A.

    1988-01-01T23:59:59.000Z

    "Stone & Webster Engineering Corporation, under Department of Energy sponsorship, is developing a wet oxidation system to generate steam for industrial processes by burning industrial waste materials and low-grade fuels. The program involves...

  12. A Generalized Method for Estimation of Industrial Energy Savings from Capital and Behavioral Programs 

    E-Print Network [OSTI]

    Luneski, R. D.

    2011-01-01T23:59:59.000Z

    In 2005, NEEA engaged the food processing industry in the Northwest with a behavior based program called Continuous Energy Improvement (CEI). Industrial energy efficiency programs have historically been limited to large ...

  13. Advanced Industrial Materials (AIM) Program: Annual progress report FY 1995

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This Annual Report for FY 1995 contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Areas covered here are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  14. Energy Industry Analyst

    Broader source: Energy.gov [DOE]

    This position is located in the Northeast Satellite Office of the Office of Energy Market Regulation (OEMR)/Division of Electric Power Regulation, East. OEMR works to promote and maintain...

  15. Using a total landed cost model to foster global logistics strategy in the electronics industry

    E-Print Network [OSTI]

    Jearasatit, Apichart

    2010-01-01T23:59:59.000Z

    Global operation strategies have been widely used in the last several decades as many companies and industries have taken advantage of lower production costs. However, in choosing a location, companies often only consider ...

  16. Front End Loading (FEL) and Process Engineering Workflow

    E-Print Network [OSTI]

    Spangler, Ryan

    2005-05-20T23:59:59.000Z

    Project development for the oil refining industry is typically performed through a process called Front End Loading (FEL). In recent years, the Process and Industrial Division of Burns and McDonnell has performed several ...

  17. Combined Heat & Power (CHP) -A Clean Energy Solution for Industry

    E-Print Network [OSTI]

    Parks, H.; Hoffman, P.; Kurtovich, M.

    From the late 1970's to the early 1990's cogeneration or CHP saw enormous growth, especially in the process industries. By 1994, CHP provided 42 GW of electricity generation capacity -about 6 percent of the U.S. total. Three manufacturing industries...

  18. Application of Industrial Heat Improving energy efficiency of

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    compared with Residential Heat Pumps High energy efficiency = high coefficient of performance (COP) (eApplication of Industrial Heat Pumps Improving energy ­ efficiency of industrial processes . H.J. Laue Information Centre on Heat Pumps and Refrigeration IZW e.V. #12;2 Welcome Achema Congress 2012

  19. Optimizing Student Use and Experiences in Industrial Assessments

    E-Print Network [OSTI]

    Ogot, M. M.; Muller, M. R.; Kasten, D. J.

    Using students in the performance of industrial assessments is a cost-effective way to staff a team and is likely to increase in popularity. Students have always been an integral part of the process in DOE's Industrial Assessment Center program...

  20. Policies on Japan's Space Industry

    E-Print Network [OSTI]

    with space emerging countries 3. Step up leading-edge science and technology as an innovation engine (1Policies on Japan's Space Industry Shuichi Kaneko Director, Space Industry Office Manufacturing Industries Bureau Ministry of Economy, Trade and Industry (METI) #12;Japan's Space Policy is based

  1. Compact microwave ion source for industrial applications

    SciTech Connect (OSTI)

    Cho, Yong-Sub; Kim, Dae-Il; Kim, Han-Sung; Seol, Kyung-Tae; Kwon, Hyeok-Jung; Hong, In-Seok [Proton Engineering Frontier Project, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of)

    2012-02-15T23:59:59.000Z

    A 2.45 GHz microwave ion source for ion implanters has many good properties for industrial application, such as easy maintenance and long lifetime, and it should be compact for budget and space. But, it has a dc current supply for the solenoid and a rf generator for plasma generation. Usually, they are located on high voltage platform because they are electrically connected with beam extraction power supply. Using permanent magnet solenoid and multi-layer dc break, high voltage deck and high voltage isolation transformer can be eliminated, and the dose rate on targets can be controlled by pulse duty control with semiconductor high voltage switch. Because the beam optics does not change, beam transfer components, such as focusing elements and beam shutter, can be eliminated. It has shown the good performances in budget and space for industrial applications of ion beams.

  2. Emulsified industrial oils recycling

    SciTech Connect (OSTI)

    Gabris, T.

    1982-04-01T23:59:59.000Z

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  3. Journal of Catalysis 239 (2006) 200211 www.elsevier.com/locate/jcat

    E-Print Network [OSTI]

    Iglesia, Enrique

    2006-01-01T23:59:59.000Z

    on SBA-15 mesoporous silica prepared by a controlled grafting process through atomic layer deposition in the petrochemical and refining industry. Catalytic reactions, such as ethylene polymerization, alkane oxidative

  4. Industrial Assessment Center

    SciTech Connect (OSTI)

    Dr. Diane Schaub

    2007-03-05T23:59:59.000Z

    Since its inception, the University of Florida Industrial Assessment Center has successfully completed close to 400 energy assessments of small to medium manufacturing facilities in Florida, southern Georgia and southern Alabama. Through these efforts, recommendations were made that would result in savings of about $5 million per year, with an implementation rate of 20-25%. Approximately 80 engineering students have worked for the UF-IAC, at least 10 of whom went on to work in energy related fields after graduation. Additionally, through the popular course in Industrial Energy Management, many students have graduated from the University of Florida with a strong understanding and support of energy conservation methods.

  5. Libyan oil industry

    SciTech Connect (OSTI)

    Waddams, F.C.

    1980-01-01T23:59:59.000Z

    Three aspects of the growth and progress of Libya's oil industry since the first crude oil discovery in 1961 are: (1) relations between the Libyan government and the concessionary oil companies; (2) the impact of Libyan oil and events in Libya on the petroleum markets of Europe and the world; and (3) the response of the Libyan economy to the development of its oil industry. The historical review begins with Libya's becoming a sovereign nation in 1951 and traces its subsequent development into a position as a leading world oil producer. 54 references, 10 figures, 55 tables.

  6. Industrial Equipment Impacts Infrastructure

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf05 IdentifiedPathways to SustainedIndustrial AssessmentIndustrial

  7. Kinetic processes of mantle minerals

    E-Print Network [OSTI]

    Koga, Kenneth Tadao, 1969-

    2000-01-01T23:59:59.000Z

    This dissertation discusses the experimental results designed to constrain the processes of MORB generation. The main focus of this study is to investigate the location and the related processes of the transformation ...

  8. lthough proportional-integral-derivative (PID) controllers are widely used in the process indus-try, their effectiveness is often limited due to poor tuning. The manual tuning of PID controllers,

    E-Print Network [OSTI]

    Krstic, Miroslav

    A lthough proportional-integral-derivative (PID) controllers are widely used in the process indus- try, their effectiveness is often limited due to poor tuning. The manual tuning of PID controllers, and it is not desirable to open the process loop for system identifica- tion. Thus, a method for tuning PID parameters

  9. Ontario's Industrial Energy Services Program

    E-Print Network [OSTI]

    Ploeger, L. K.

    .8%! ! ! ! OTHER 8.4%! l4.9%! l4.0%! ! ! ! TOTAL 100.0%! 100.0%! 100.0%! ! PROGRAM STRATEGY Ontario's Industrial Energy Services Program was designed to: lead industrial energy consumers to the realization that increased energy efficiency generates... ONTARIO'S INDUSTRIAL ENERGY SERVICES PROGRAM LINDA K. PLOEGER, GENERAL MANAGER, INDUSTRY PROGRAMS ONTARIO MINISTRY OF ENERGY TORONTO, ONTARIO, ABSTRACT The Ontario Ministry of Energy began offering its new Industrial Energy Services Program...

  10. Industrial Use of Infrared Inspections

    E-Print Network [OSTI]

    Duch, A. A.

    1979-01-01T23:59:59.000Z

    operating load. - Pinpointing of the exact location of the problems. - The inspections will locate problems which will, in most cases, go unnoticed using conventional techniques. An infrared inspection will locate problem areas in the plant electrica1...

  11. Integrated decontamination process for metals

    DOE Patents [OSTI]

    Snyder, Thomas S. (Oakmont, PA); Whitlow, Graham A. (Murrysville, PA)

    1991-01-01T23:59:59.000Z

    An integrated process for decontamination of metals, particularly metals that are used in the nuclear energy industry contaminated with radioactive material. The process combines the processes of electrorefining and melt refining to purify metals that can be decontaminated using either electrorefining or melt refining processes.

  12. Chemical process safety management within the Department of Energy

    SciTech Connect (OSTI)

    Piatt, J.A.

    1995-07-01T23:59:59.000Z

    Although the Department of Energy (DOE) is not well known for its chemical processing activities, the DOE does have a variety of chemical processes covered under OSHA`s Rule for Process Safety Management of Highly Hazardous Chemicals (the PSM Standard). DOE, like industry, is obligated to comply with the PSM Standard. The shift in the mission of DOE away from defense programs toward environmental restoration and waste management has affected these newly forming process safety management programs within DOE. This paper describes the progress made in implementing effective process safety management programs required by the PSM Standard and discusses some of the trends that have supported efforts to reduce chemical process risks within the DOE. In June of 1994, a survey of chemicals exceeding OSHA PSM or EPA Risk Management Program threshold quantities (TQs) at DOE sites found that there were 22 processes that utilized toxic or reactive chemicals over TQs; there were 13 processes involving flammable gases and liquids over TQs; and explosives manufacturing occurred at 4 sites. Examination of the survey results showed that 12 of the 22 processes involving toxic chemicals involved the use of chlorine for water treatment systems. The processes involving flammable gases and liquids were located at the Strategic Petroleum Reserve and Naval petroleum Reserve sites.

  13. Genetic Circuit Performance under Conditions Relevant for Industrial Bioreactors

    E-Print Network [OSTI]

    Moser, Felix

    Synthetic genetic programs promise to enable novel applications in industrial processes. For such applications, the genetic circuits that compose programs will require fidelity in varying and complex environments. In this ...

  14. Accelerating time-to-market in the global electronics industry

    E-Print Network [OSTI]

    Folgo, Elena Jean

    2008-01-01T23:59:59.000Z

    In today's electronics industry, fast time-to-market (TTM) and time-to-profit (TTP) is key to customer satisfaction and firm competitiveness. Optimizing the product development and new product introduction (NPI) process ...

  15. The Role of Thermal Energy Storage in Industrial Energy Conservation

    E-Print Network [OSTI]

    Duscha, R. A.; Masica, W. J.

    1979-01-01T23:59:59.000Z

    Thermal Energy Storage for Industrial Applications is a major thrust of the Department of Energy's Thermal Energy Storage Program. Utilizing Thermal Energy Storage (TES) with process or reject heat recovery systems has been shown to be extremely...

  16. Sustainable treatment of hydrocarbon-contaminated industrial land 

    E-Print Network [OSTI]

    Cunningham, Colin John

    2012-06-25T23:59:59.000Z

    Land contamination by petroleum hydrocarbons is a widespread and global environmental pollution issue from recovery and refining of crude oil and the ubiquitous use of hydrocarbons in industrial processes and applications. ...

  17. Variety and industrial production : the case of housing

    E-Print Network [OSTI]

    Chimits-Cazaux, Catherine

    1984-01-01T23:59:59.000Z

    Industrial processes have addressed with various degrees of success the question of housing production. If assembly-line methods have proven their efficiency in the production and distribution of low-cost housing, they ...

  18. Energy Management in a Multi-Industry Organization

    E-Print Network [OSTI]

    Lawrence, J.

    1981-01-01T23:59:59.000Z

    Tenneco operates in seven of the nation's ten most energy intensive industries: Petroleum Refining, Chemicals Manufacturing, Pulp and Paper, Transportation Equipment, Primary Metals, Food Processing, and Machinery. This diversification...

  19. Radio Frequency & Microwave Energy for the Petro Chemical Industry

    E-Print Network [OSTI]

    Raburn, R.

    Electro-Magnetic Energy has finally made its way into the Petro-Chemical market twenty-five years after market acceptance in the Food Processing Industry. Major factors influencing this change are tighter environmental regulations, price competition...

  20. Characteristics of disruptive innovation within the medical device industry

    E-Print Network [OSTI]

    Berlin, David B. (David Benjamin)

    2011-01-01T23:59:59.000Z

    Innovation within the medical device industry had led to tremendous advances in the provision of care for patients worldwide. Continued progress in the treatment of disease will require effective processes for managing and ...

  1. The Industrial Power Plant Management System - An Engineering Approach

    E-Print Network [OSTI]

    Aarnio, S. E.; Tarvainen, H. J.; Tinnis, V.

    1979-01-01T23:59:59.000Z

    Based on energy studies in over 70 plants in the forest products industry, experience has shown that, in addition to process improvements, the most important energy conservation measures in mill power departments are: - Load shedding and fuel...

  2. Helicopter magnetic survey conducted to locate wells

    SciTech Connect (OSTI)

    Veloski, G.A.; Hammack, R.W.; Stamp, V. (Rocky Mountain Oilfield Testing Center); Hall, R. (Rocky Mountain Oilfield Testing Center); Colina, K. (Rocky Mountain Oilfield Testing Center)

    2008-07-01T23:59:59.000Z

    A helicopter magnetic survey was conducted in August 2007 over 15.6 sq mi at the Naval Petroleum Reserve No. 3’s (NPR-3) Teapot Dome Field near Casper, Wyoming. The survey’s purpose was to accurately locate wells drilled there during more than 90 years of continuous oilfield operation. The survey was conducted at low altitude and with closely spaced flight lines to improve the detection of wells with weak magnetic response and to increase the resolution of closely spaced wells. The survey was in preparation for a planned CO2 flood for EOR, which requires a complete well inventory with accurate locations for all existing wells. The magnetic survey was intended to locate wells missing from the well database and to provide accurate locations for all wells. The ability of the helicopter magnetic survey to accurately locate wells was accomplished by comparing airborne well picks with well locations from an intense ground search of a small test area.

  3. Energy Efficient Industrialized Housing Research Program

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    Six area reported progress in the Energy Efficient Industrialized Housing Research Program during FY 1991. As part of Industry Guidance, meetings were held with steering and technical committees in computers, housing design and manufacturing. This task area enables the program to benefit from the expertise of industry representatives and communicate research results directly to them. As part of the Design Process performance specifications were being developed for the future housing system designed last year. These house designs coordinate and optimize predicted and desirable advances in computerized design processes, materials, components, and manufacturing automation to achieve energy efficiency at reduced first cost. Energy design software were being developed for CAD systems, stressed skin insulating core panel manufacturers; and a prototype energy sales tool. A prototype design was to be developed to integrate one or more subsystems with the building skin. As part of the Manufacturing Process we are developing a manufacturing process simulation and data base to help current and new entrants to the industrialized housing industry in assessing the impact of implementing new manufacturing techniques. For Evaluation we are developing testing plans for six units of housing on the UO campus and the stressed skin insulating core house to be constructed in Oregon. The DOW Chemical test structure will be retrofitted with a tile roof and retested to compare to the dome and conventional construction structures. Calibration of the wind tunnel will be completed so that laboratory tests can be conducted to simulate the ventilation cooling efficiency of houses in design. Research utilization and program management were either aspects of this program.

  4. Industry Partners Panel

    Broader source: Energy.gov [DOE]

    Industry Panel presenters include: Michael G. Andrew, Director - Academic and Technical Programs, Advanced Products and Materials, Johnson Controls Power Solutions Michael A. Fetcenko, Vice President and Managing Director, BASF Battery Materials – Ovonic, BASF Corporation Adam Kahn, Founder and CEO, AKHAN Technologies, Inc. Stephen E. Zimmer, Executive Director, United States Council for Automotive Research (USCAR)

  5. Industrial Energy Use Indices

    E-Print Network [OSTI]

    Hanegan, A.; Heffington, W. M.

    2007-01-01T23:59:59.000Z

    of variations for all industry types in warm versus cold regions of the U.S. generally is greater than unity. Data scatter may have several explanations, including climate, plant area accounting, the influence of low cost energy and low cost buildings used...

  6. INTERMOUNTAIN INDUSTRIAL ASSESSMENT CENTER

    SciTech Connect (OSTI)

    MELINDA KRAHENBUHL

    2010-05-28T23:59:59.000Z

    The U. S. Department of Energy’s Intermountain Industrial Assessment Center (IIAC) at the University of Utah has been providing eligible small- and medium-sized manufacturers with no-cost plant assessments since 2001, offering cost-effective recommendations for improvements in the areas of energy efficiency, pollution prevention, and productivity improvement.

  7. Double Difference Earthquake Locations at the Salton Sea Geothermal Reservoir

    SciTech Connect (OSTI)

    Boyle, K L; Hutchings, L J; Bonner, B P; Foxall, W; Kasameyer, P W

    2007-08-08T23:59:59.000Z

    The purpose of this paper is to report on processing of raw waveform data from 4547 events recorded at 12 stations between 2001 and 2005 by the Salton Sea Geothermal Field (SSGF) seismic network. We identified a central region of the network where vertically elongated distributions of hypocenters have previously been located from regional network analysis. We process the data from the local network by first autopicking first P and S arrivals; second, improving these with hand picks when necessary; then, using cross-correlation to provide very precise P and S relative arrival times. We used the HypoDD earthquake location algorithm to locate the events. We found that the originally elongated distributions of hypocenters became more tightly clustered and extend down the extent of the study volume at 10 Km. However, we found the shapes to depend on choices of location parameters. We speculate that these narrow elongated zones of seismicity may be due to stress release caused by fluid flow.

  8. Regenerator Location Problem in Flexible Optical Networks

    E-Print Network [OSTI]

    BARIS YILDIZ

    2014-11-22T23:59:59.000Z

    Nov 22, 2014 ... Abstract: In this study we introduce the regenerator location problem in flexible optical networks (RLP-FON). With a given traffic demand, ...

  9. Improved Combustion System for Energy Conservation in Industry 

    E-Print Network [OSTI]

    Thekdi, A. C.; Hemsath, K. H.

    1979-01-01T23:59:59.000Z

    IMPROVED COMBUSTION SYSTEM FOR ENERGY CONSERVATION IN INDUSTRY Arvind C. Thekdi and Klaus H. Hemsath Thermal Systems Technical Center Midland-Ross Corporation Toledo, Ohio INTRODUCTION U.S. industry consumes approximately 40 percent of all..., some consideration is given to the process changes and flue gas treatment at the furnace exhaust end to reduce the NO x concentration in flue gases. Midland-Ross, at present, is develop ing a process which can treat the flue gases from high...

  10. Evaluating the DSM Potential for Industrial Electrotechnologies and Management Practices

    E-Print Network [OSTI]

    Harrell, P. J.; Pavone, A.

    -side management (DSM) program. This paper outlines the procedures used to evaluate technologies that may impact oil refining, pulp & paper production, and 26 major chemical processes of industrial customers within HL&P's service area. Each technology... practices (technologies) for possible inclusion in an industrial demand-side management (DSM) program. This paper outlines the procedures used to evaluate technologies that may impact oil refining, pulp & paper production, and 26 major chemical processes...

  11. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01T23:59:59.000Z

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  12. The US glass industry: An energy perspective

    SciTech Connect (OSTI)

    Babcock, E.; Elaahi, A.; Lowitt, H.E.

    1988-09-01T23:59:59.000Z

    This report investigates the state of the US glass industry in terms of energy consumption and conservation. The specific objectives were: to update and verify energy consumption and production data for the various process steps in 1985; to determine the potential energy savings attainable by replacing current practices with state-of-the-art and advanced (year 2010) production practices and technologies; and to identify areas of research and development opportunity that will enable these potential future savings to be achieved. The results of this study concluded that for the year 2010 production level, there is potential to save between 21 and 44 percent of the projected energy use by replacing current technology practices with state-of-the-art and advanced technologies. RandD needs and opportunities were identified for the industry. Potential RandD candidates for DOE involvement were selected from the identified list, primarily based on their energy savings potential and the opinions of industry experts. 100 refs.

  13. The application of satellite time references to HVDC fault location

    SciTech Connect (OSTI)

    Dewe, M.B.; Sankar, S.; Arrillaga, J. (Univ. of Canterbury, Christchurch (New Zealand))

    1993-07-01T23:59:59.000Z

    An HVdc fault location scheme is described which relies on very precise detection of the time of arrival of fault created surges at both ends of the line. Such detection is achieved by a very accurate data acquisition and processing system combined with the time reference signals provided by a global positioning system receiver. Extensive digital simulation is carried out to determine the voltage and current waveforms, to identify the main sources of error and suggest possible compensation techniques.

  14. Transforming the Oil Industry into the Energy Industry

    E-Print Network [OSTI]

    Sperling, Daniel; Yeh, Sonia

    2009-01-01T23:59:59.000Z

    Transforming the Oil Industry into the Energy Industry BYculprit. It consumes half the oil used in the world andconsuming two thirds of the oil and causing about one third

  15. Innovative New Industrial Technologies: An Industry/DOE Joint Endeavor

    E-Print Network [OSTI]

    Gross, T. J.

    The Department of Energy’s Office of Industrial Programs supports research and development leading to improved energy efficiency and greater overall productivity in the industrial sector. Its basic strategy is a program of cost-shared R...

  16. INDUSTRIAL ASSOCIATESHIP SCHEME Centre for Industrial Consultancy and Sponsored Research

    E-Print Network [OSTI]

    Bhashyam, Srikrishna

    this scheme: #12;(i) Energy Energy Storage (1990) Strategies for Energy Saving in Industry (1993) Pollution Control Equipment (2001) Acoustics and Noise Control for Industry (2005) Urban Air Quality

  17. Methods in Industrial Biotechnology for Chemical Engineers

    E-Print Network [OSTI]

    W. B. Vasantha Kandasamy; Florentin Smarandache

    2008-07-13T23:59:59.000Z

    In keeping with the definition that biotechnology is really no more than a name given to a set of techniques and processes, the authors apply some set of fuzzy techniques to chemical industry problems such as finding the proper proportion of raw mix to control pollution, to study flow rates, to find out the better quality of products. We use fuzzy control theory, fuzzy neural networks, fuzzy relational equations, genetic algorithms to these problems for solutions. When the solution to the problem can have certain concepts or attributes as indeterminate, the only model that can tackle such a situation is the neutrosophic model. The authors have also used these models in this book to study the use of biotechnology in chemical industries. This book has six chapters. First chapter gives a brief description of biotechnology. Second chapter deals will proper proportion of mix of raw materials in cement industries to minimize pollution using fuzzy control theory. Chapter three gives the method of determination of temperature set point for crude oil in oil refineries. Chapter four studies the flow rates in chemical industries using fuzzy neutral networks. Chapter five gives the method of minimization of waste gas flow in chemical industries using fuzzy linear programming. The final chapter suggests when in these studies indeterminancy is an attribute or concept involved, the notion of neutrosophic methods can be adopted.

  18. Automated Fault Location In Smart Distribution Systems 

    E-Print Network [OSTI]

    Lotfifard, Saeed

    2012-10-19T23:59:59.000Z

    ............................................................................................................................ 88 x LIST OF FIGURES Page Figure 1 Multiple possible fault location estimation for a fault at node A ........................ 7 Figure 2 Simple faulted network model [1] © [2011] IEEE ............................................ 40 Figure 3... Types C and D voltage sags for different phases [51] © [2003] IEEE .............. 42 Figure 4 Rf estimation procedure [1] © [2011] IEEE ...................................................... 45 Figure 5 Flow chart of the fault location algorithm [1...

  19. RECYCLING PROGRAM TYPE LOCATION ALLOWED NOT ALLOWED

    E-Print Network [OSTI]

    Miami, University of

    RECYCLING PROGRAM TYPE LOCATION ALLOWED NOT ALLOWED Batteries, toner, ink cartridges & cell phones and recycling is an important part of that effort. Below is a guide to on-campus recycling at RSMAS: Visit http://www.rsmas.miami.edu/msgso/ for map of recycling bin locations. NOTE: This is not an exhaustive list. If unauthorized items are found

  20. Optimized Fault Location Final Project Report

    E-Print Network [OSTI]

    Engineering Research Center Optimized Fault Location Concurrent Technologies Corporation Final Project Report by the Concurrent Technologies Corporation (CTC) and the Power Systems Engineering Research Center (PSERC). NeitherOptimized Fault Location Final Project Report Power Systems Engineering Research Center A National