Sample records for industrial primary service

  1. Employment Forecasts for Ohio's Primary Metals Manufacturing and Administrative and Support Services Industries

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    that are outperforming the industry average. Additional research shows that the industry is reactive to manufacturingEmployment Forecasts for Ohio's Primary Metals Manufacturing and Administrative and Support, the primary metals manufacturing industry (NAICS 331000) employment in Ohio is forecasted to decline by 21

  2. Ontario's Industrial Energy Services Program

    E-Print Network [OSTI]

    Ploeger, L. K.

    .8%! ! ! ! OTHER 8.4%! l4.9%! l4.0%! ! ! ! TOTAL 100.0%! 100.0%! 100.0%! ! PROGRAM STRATEGY Ontario's Industrial Energy Services Program was designed to: lead industrial energy consumers to the realization that increased energy efficiency generates... ONTARIO'S INDUSTRIAL ENERGY SERVICES PROGRAM LINDA K. PLOEGER, GENERAL MANAGER, INDUSTRY PROGRAMS ONTARIO MINISTRY OF ENERGY TORONTO, ONTARIO, ABSTRACT The Ontario Ministry of Energy began offering its new Industrial Energy Services Program...

  3. Current and future industrial energy service characterizations

    SciTech Connect (OSTI)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-10-01T23:59:59.000Z

    Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

  4. Technology innovation in financial services industry

    E-Print Network [OSTI]

    Roxo da Fonseca, Gustavo J. C. (Gustavo José Costa), 1967-

    2004-01-01T23:59:59.000Z

    Over the last few decades, we have seen an enormous evolution in the financial services industry driven by technology innovations. Indeed, we cannot imagine the current financial system without electronic fund transfers, ...

  5. An Overview of the Louisiana Primary Solid Wood Products Industry

    E-Print Network [OSTI]

    goal of this second study is to profile the primary solid wood products industry. In addition (including pulp and paper) and secondary manufacturing establishments (Jacob et al. 1987). The forest

  6. US Energy Service Company Industry: History and Business Models

    Broader source: Energy.gov (indexed) [DOE]

    Energy Service Company Industry: History and Business Models Don Gilligan President, NAESCO May 6, 2011 Overview of Presentation * US ESCO industry evolution: Five phases *...

  7. DOE Seeks Industry Participation for Engineering Services to...

    Broader source: Energy.gov (indexed) [DOE]

    Participation for Engineering Services to Design Next Generation Nuclear Plant DOE Seeks Industry Participation for Engineering Services to Design Next Generation Nuclear Plant...

  8. EIS-0123: Direct Service Industry Options

    Broader source: Energy.gov [DOE]

    BPA proposes to implement one or more options to reduce load fluctuations and revenue uncertainty resulting from its electrical service to 10 aluminum smelters and its other direct service industrial customers. BPA believes these options will give BPA greater ability to plan for power needs and help to maintain its relatively strong financial position during the current period of power surplus. They also are expected to enhance BPA's ability to repay the U.S. Treasury. In turn, BPA rates to other customers would stabilize.

  9. Industry strengths open new services opportunities

    SciTech Connect (OSTI)

    Heller, K.

    1993-03-10T23:59:59.000Z

    The environmental service industry is in a state of transition in which innovative technologies are increasingly playing a critical role. These changes play to the strengths of the chemical industry, and several firms are effectively growing environmental businesses. At the same time, chemical companies, which are among the largest buyers of environmental services, are making decisions that reflect the changes. Du Pont, for example, has decided to rethink its involvement with the controversial Waste Technologies Industries (WTI) hazardous waste incinerator in East Liverpool, OH. Initially expecting a shortage of incineration capacity, Du Pont had signed a contract - along with BASF and Chemical Waste Management - for a share of capacity at the 60,000-tons/year WTI unit. A number of chemical firms are leveraging their strengths. Air Products and Chemicals (Allentown, PA), for one, has partnerships in the waste-to-energy and flue-gas desulfurization businesses. The company runs cogeneration plants that can burn a combination of coal and natural gas to make both steam and electricity. Air Products assorted businesses can be strong at different times, says Hinman. The flue-gas desulfurization business, for example, was active during the first phase of enforcement of the 1990 Clean Air Act requirements for lower sulfur dioxide (SO[sub 2]) emissions.

  10. Business Process Management Systems enabling continuous improvement in industrial services

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Business Process Management Systems ­ enabling continuous improvement in industrial services Heikki that modern business process management systems (BPMS) provide in improving industrial service processes. A case study identifies improvement opportunities in the order-to- cash process in two service lines

  11. Scaling Up Primary Education Services in Rural India

    E-Print Network [OSTI]

    Scaling Up Primary Education Services in Rural India Nirupam Bajpai, Ravindra H. Dholakia and Sustainable Development The Earth Institute at Columbia University www.earth.columbia.edu #12;Scaling up attempt to address two key questions in this paper: 1) In terms of state-wide scaling up of rural services

  12. Scaling Up Primary Health Services in Rural India

    E-Print Network [OSTI]

    Scaling Up Primary Health Services in Rural India Nirupam Bajpai, Ravindra H. Dholakia and Jeffrey and Sustainable Development The Earth Institute at Columbia University www.earth.columbia.edu #12;Scaling up Abstract We attempt to address two key questions in this paper: 1) In terms of state-wide scaling up

  13. U.S. Energy Service Company Industry: Market Size and Project Performance from 1990-2008

    E-Print Network [OSTI]

    Larsen, Peter

    2014-01-01T23:59:59.000Z

    of the U.S. Energy Service Company Industry: Market Size andTitle: U.S. Energy Service Company Industry: Market Size and

  14. Congress and the Financial Services Industry, 1989-2008

    E-Print Network [OSTI]

    Clifford, Matthew Philip

    2009-01-01T23:59:59.000Z

    This thesis explores the congressional politics of the financial services industry in the United States between 1989 and 2008. Three approaches are pursued. First, I provide a detailed account of the major legislation ...

  15. Evolution of the financial services industry in Europe and US

    E-Print Network [OSTI]

    Boyar, Pinar

    2009-01-01T23:59:59.000Z

    The thesis aims to address the long lasting phenomena of evolution of financial services industry both in US and Europe. The topic has never been more emphasized since the Great Depression. The dramatic fact of cost cutting ...

  16. The Energy Services Company (ESCO) industry: Analysis of industry and market trends

    SciTech Connect (OSTI)

    Dayton, D.S.; Goldman, C.A.; Pickle, S.J.

    1998-07-01T23:59:59.000Z

    As retail competition accelerates, energy service companies (ESCOs) are confronting major structural changes in the energy services industry and a business environment in which many large customers are re-thinking their energy-related purchasing practices. This paper analyzes recent trends in the ESCO industry and looks specifically at how traditional performance contracting firms are faring during the transition to a new market structure. The authors also discuss trends in both established and emerging ESCO markets. Key findings include: (1) Independent ESCOs are declining both in number and share of the market for energy-efficiency services; (2) Utility-owned ESCOs and retail energy service companies (RESCOs) are an increasingly significant force in the energy-efficiency services market; and (3) Performance contracting, long a hallmark of the ESCO industry, is being overtaken by other forms of energy service contracts in percentage of total revenue.

  17. U.S. Energy Service Company Industry: Market Size and Project Performance from 1990-2008

    E-Print Network [OSTI]

    Larsen, Peter

    2014-01-01T23:59:59.000Z

    verification ESCO energy service company ESPC energy savingstrends in the ESCO industry, administrators of ESPC programs

  18. Pricing Network Services Department of Industrial Engineering

    E-Print Network [OSTI]

    Varaiya, Pravin

    congestion control, differentiated qualities of service, and efficient resource allocation. For users models within the mechanism. We apply this mechanism to the Internet. I. INTRODUCTION The predominant subscribe to certain amount of bandwidth to access the Internet at a monthly flat fee. Businesses may use

  19. Scaling up Primary Health Services in Rural Tamil Nadu: Public Investment Requirements and Health Sector Reform

    E-Print Network [OSTI]

    Scaling up Primary Health Services in Rural Tamil Nadu: Public Investment Requirements and Health two key questions in this paper: 1) In terms of state-wide scaling up of rural services in the area of primary health, what will it cost financially and in terms of human resources to scale-up these services

  20. Scaling up Primary Education Services in Rural Tamil Nadu: Public Investment Requirements and Reform

    E-Print Network [OSTI]

    1 Scaling up Primary Education Services in Rural Tamil Nadu: Public Investment Requirements questions in this paper: 1) In terms of state-wide scaling up of rural services in the area of primary education, what will it cost financially and in terms of human resources to scale-up these services in all

  1. SHR Service Team: Academic Divisions -Contact Matrix Primary Contact by Unit/Division

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    SHR Service Team: Academic Divisions - Contact Matrix Primary Contact by Unit/Division Astronomy Consultation Dawn Harker Teresa Roffe Barbara Lorimer Last Revised: 07/07/2010 Mail Stop: SHR-Service Teams Fax: 831-459-2661 1 of 2 #12;SHR Operations Services Team One SHR Partner Services Senior Manager, SHR

  2. Current Size and Remaining Market Potential of the U.S. Energy Service Company Industry

    E-Print Network [OSTI]

    Stuart, Elizabeth

    2014-01-01T23:59:59.000Z

    of the U.S. Energy Service Company Industry: Market Size andof the U.S. Energy Service Company Industry: Market Size andenergy savings (MMBtu/ft 2 ) to determine total ESCO market size

  3. Evolution of the U.S. Energy Service Company Industry: Market Size and Project Performance from 1990-2008

    E-Print Network [OSTI]

    Goldman, Charles A.

    2013-01-01T23:59:59.000Z

    of the U.S. Energy Service Company Industry: Market Size andof the U.S. Energy Service Company Industry: Market Size and

  4. UCSC Industrial Hygiene Services Providing a little slug of information on...

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    UCSC Industrial Hygiene Services Providing a little slug of information on... Filtering Facepiece the respirator. See the definitions section for more detailed information on APF's. #12;UCSC Industrial Hygiene

  5. Services and the Business Models of Product Firms: An Empirical Analysis of the Software Industry

    E-Print Network [OSTI]

    Suarez, Fernando F.

    Some product firms increasingly rely on service revenues as part of their business models. One possible explanation is that they turn to services to generate additional profits when their product industries mature and ...

  6. Moorhead Public Service Utility- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    [http://www.mpsutility.com Moorhead Public Service Utility] offers the Bright Energy Solutions Programs for commercial and industrial customers that purchase and install qualifying energy-efficient...

  7. Integration of Business and Industrial Knowledge on Services to Set Trusted Business Communities of

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ones) to define extended business service models, paying a particular attention on "fIntegration of Business and Industrial Knowledge on Services to Set Trusted Business Communities, the European Union promotes clearly internet of services based solutions to support innovative business

  8. Proposal for the award of a contract for the provision of maintenance services for industrial trucks on the CERN site

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    Proposal for the award of a contract for the provision of maintenance services for industrial trucks on the CERN site

  9. Energy Management Services for the Industrial Market Segment at TVA

    E-Print Network [OSTI]

    Hamby, R. E.; Knight, V. R.

    1984-01-01T23:59:59.000Z

    The Tennessee Valley Authority has provided energy management surveys (EMSs) to commercial and industrial power consumers since 1979. A significant number of EMSs have been performed to a variety of industry types and sizes. As in all developmental...

  10. Next generation solutions for the energy services industry

    E-Print Network [OSTI]

    Kumar, Satish; Kromer, Steve

    2006-01-01T23:59:59.000Z

    2. The Evolving Business Model for Energy Services In theto shield their businesses from spikes in energy prices. Theone part of the business model of an Energy Service Company.

  11. Developing an energy efficiency service industry in Shanghai

    SciTech Connect (OSTI)

    Lin, Jiang; Goldman, Charles; Levine, Mark; Hopper, Nicole

    2004-02-10T23:59:59.000Z

    The rapid development of the Chinese economy over the past two decades has led to significant growth in China's energy consumption and greenhouse gas (GHG) emissions. Between 1980 and 2000, China's energy consumption more than doubled from 602 million to 1.3 billion tons of coal-equivalent (NBS, 2003). In 2000, China's GHG emissions were about 12% of the global total, ranked second behind only the US. According to the latest national development plan issued by the Chinese government, China's energy demand is likely to double again by 2020 (DRC, 2004), based on a quadrupling of its gross domestic product (GDP). The objectives of the national development plan imply that China needs to significantly raise the energy efficiency of its economy, i.e., cutting the energy intensity of its economy by half. Such goals are extremely ambitious, but not infeasible. China has achieved such reductions in the past, and its current overall level of energy efficiency remains far behind those observed in other developed economies. However, challenges remain whether China can put together an appropriate policy framework and the institutions needed to improve the energy efficiency of its economy under a more market-based economy today. Shanghai, located at the heart of the Yangtze River Delta, is the most dynamic economic and financial center in the booming Chinese economy. With 1% of Chinese population (13 million inhabitants), its GDP in 2000 stood at 455 billion RMB yuan (5% of the national total), with an annual growth rate of 12%--much higher than the national average. It is a major destination for foreign as well as Chinese domestic investment. In 2003, Shanghai absorbed 10% of actual foreign investment in all China (''Economist'', January 17-23, 2004). Construction in Shanghai continues at a breakneck pace, with an annual addition of approximately 200 million square foot of residential property and 100 million square foot of commercial and industrial space over the last 5 years. It is one reason that China consumed over 60% of the world's cement production in 2003 (NBS 2004). Energy consumption in Shanghai has been growing at 6-8% annually, with the growth of electricity demand at over 10% per year. Shanghai, with very limited local energy resources, relies heavily on imported coal, oil, natural gas, and electricity. While coal still constitutes over half of Shanghai's energy consumption, oil and natural gas use have been growing in importance. Shanghai is the major market for China's West to East (natural gas) Pipeline (WEP). With the input from WEP and off-shore pipelines, it is expected that natural gas consumption will grow from 250 million cubic meters in 2000 to 3000-3500 million cubic meters in 2005. In order to secure energy supply to power Shanghai's fast-growing economy, the Shanghai government has set three priorities in its energy strategy: (1) diversification of its energy structure, (2) improving its energy efficiency, and (3) developing renewable and other cleaner forms of energy. Efficiency improvements are likely to be most critical, particularly in the near future, in addressing Shanghai's energy security, especially the recent electricity shortage in Shanghai. Commercial buildings and industries consume the majority of Shanghai's, as well as China's, commercial energy. In the building sector, Shanghai has been very active implementing energy efficiency codes for commercial and residential buildings. Following a workshop on building codes implementation held at LBNL for senior Shanghai policy makers in 2001, the Shanghai government recently introduced an implementation guideline on residential building energy code compliance for the downtown area of Shanghai to commence in April, 2004, with other areas of the city to follow in 2005. A draft code for commercial buildings has been developed as well. In the industrial sector, the Shanghai government started an ambitious initiative in 2002 to induce private capital to invest in energy efficiency improvements via energy management/services companies (EMC/ESCOs). In partic

  12. Current Size and Remaining Market Potential of the U.S. Energy Service Company Industry

    Broader source: Energy.gov [DOE]

    "This report contains information on Current Size and Remaining Market Potential of the U.S. Energy Service Company Industry, prepared for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy, Weatherization and Intergovernmental Program."

  13. Technical & Biosystems Engineering, Industrial Technology, and Packaging Services Organizations Hiring Students in Technical & Biosystems Engineering, Industrial Technology, and Packaging

    E-Print Network [OSTI]

    Faurecia FCA Packaging Fischer Controls Fusion PKG Gavilon, LLC General Motors George W. Auch Geotex,000 57,000 12 Engineer, General 56,513 33,000 80,000 34 Equipment Test Technician 46,000 32,000 60,000 510 Technical & Biosystems Engineering, Industrial Technology, and Packaging Services Organizations

  14. Next generation solutions for the energy services industry

    E-Print Network [OSTI]

    Kumar, Satish; Kromer, Steve

    2006-01-01T23:59:59.000Z

    being used to reduce risks involved with energy efficiencyrisks and uncertainties associated with estimated energy andMinimize Risk Reduce Investment Uncertainties Energy Service

  15. Services-Led Industrialization in India: Assessment and Lessons

    E-Print Network [OSTI]

    Singh, Nirvikar

    2006-01-01T23:59:59.000Z

    Cambridge MA, pp. 188-219. Kuznets, S. (1959), Six Lecturesto services” (e.g. , Kuznets, 1959; Kaldor, 1966; Pack andwords, the environmental Kuznets curve may be flatter in

  16. BPA workshop on Direct-Service Industries, presentation for June...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of both parties in January, BPA committed to continue discussing with the aluminum smelter DSIs and the region the potential for future service. What are the objectives of a...

  17. Current and future industrial energy service characterizations. Volume II. Energy data on the US manufacturing subsector

    SciTech Connect (OSTI)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-10-01T23:59:59.000Z

    In order to characterize industrial energy service, current energy demand, its end uses, and cost of typical energy applications and resultant services in the industrial sector were examined and a projection of state industrial energy demands and prices to 1990 was developed. Volume II presents in Section 2 data on the US manufacturing subsector energy demand, intensity, growth rates, and cost for 1971, 1974, and 1976. These energy data are disaggregated not only by fuel type but also by user classifications, including the 2-digit SIC industry groups, 3-digit subgroups, and 4-digit SIC individual industries. These data characterize typical energy applications and the resultant services in this subsector. The quantities of fuel and electric energy purchased by the US manufacturing subsector were converted to British thermal units and reported in billions of Btu. The conversion factors are presented in Table 4-1 of Volume I. To facilitate the descriptive analysis, all energy cost and intensity data were expressed in constant 1976 dollars. The specific US industrial energy service characteristics developed and used in the descriptive analysis are presented in Volume I. Section 3 presents the computer program used to produce the tabulated data.

  18. Ambient RFID Services Infrastructure & RFID Deployment in Wood industry

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    a comparative study of different control systems, like Holonic Manufacturing Systems (HMS) or Product workshop and the planning system, has been developed to answer to a mass production context, that is to say of the bottleneck and the service level. To achieve to these objectives a Product information based control project

  19. Current and future industrial energy service characterizations. Volume III. Energy data on 15 selected states' manufacturing subsector

    SciTech Connect (OSTI)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-11-01T23:59:59.000Z

    An examination is made of the current and future energy demands, and uses, and cost to characterize typical applications and resulting services in the US and industrial sectors of 15 selected states. Volume III presents tables containing data on selected states' manufacturing subsector energy consumption, functional uses, and cost in 1974 and 1976. Alabama, California, Illinois, Indiana, Louisiana, Michigan, Missouri, New Jersey, New York, Ohio, Oregon, Pennsylvania, Texas, West Virginia, and Wisconsin were chosen as having the greatest potential for replacing conventional fuel with solar energy. Basic data on the quantities, cost, and types of fuel and electric energy purchased by industr for heat and power were obtained from the 1974 and 1976 Annual Survey of Manufacturers. The specific indutrial energy servic cracteristics developed for each selected state include. 1974 and 1976 manufacturing subsector fuels and electricity consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector fuel consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector average cost of purchsed fuels and electricity per million Btu by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); 1974 and 1976 manufacturing subsector fuels and electric energy intensity by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); manufacturing subsector average annual growth rates of (1) fuels and electricity consumption, (2) fuels and electric energy intensity, and (3) average cost of purchased fuels and electricity (1974 to 1976). Data are compiled on purchased fuels, distillate fuel oil, residual ful oil, coal, coal, and breeze, and natural gas. (MCW)

  20. Opportunities for UPC Product and Service Suppliers: The Wood Products Industry

    E-Print Network [OSTI]

    Wu, Qinglin

    product and service suppliers. #12;4 UPC Suppliers To The Wood Products Industry Twenty-seven companies.3 percent of all corporate sales for these 27 respondent companies. An additional 15 companies indicated, from the largest timbers to small lengths of wood moulding are complying with customer requirements

  1. Role of gas cooling in tomorrow`s energy services industry

    SciTech Connect (OSTI)

    Hughes, P.J.

    1997-04-01T23:59:59.000Z

    This article discusses the marketing approach and opportunities for suppliers and manufacturers of gas cooling equipment to partner with energy service companies (ESCOs). The author`s viewpoint is that in educating and partnering with ESCOs the gas cooling industry enables their technology to reach its potential in the projects that the ESCOs develop.

  2. E-Business Value Creation in Jordanian Banking Services Industry: An Empirical Analysis of Key Factors

    E-Print Network [OSTI]

    E-Business Value Creation in Jordanian Banking Services Industry: An Empirical Analysis of Key an extended conceptual research model for assessing the value of e-business at the bank level environment) that may affect value creation of carrying out e- business in Jordanian banking sector. Survey

  3. Invited viewpoint in Industrial Robot (2005), 32:6, p.437 The What and When of Service Robotics

    E-Print Network [OSTI]

    Bugmann, Guido

    Invited viewpoint in Industrial Robot (2005), 32:6, p.437 The What and When of Service Robotics industrial robotics and gain a dominant share of the estimated $59 billion robotics market in 2010 (Key the kind of applications proposed for commercial service robots and the research in laboratories worldwide

  4. The Soviet uranium industry and exports of nuclear materials and services

    SciTech Connect (OSTI)

    Sagers, M.J.

    1990-08-01T23:59:59.000Z

    The USSR has been offering Western countries, through long-term contracts, services in the processing and enrichment of uranium for their nuclear power industries since 1973. Although known for some time from Western sources, this was confirmed by Boris Semyenov, First Deputy Chairman of the USSR State Committee for the Utilization of Atomic Energy, in 1989. Other sources state that the first service contract was signed in 1971, with initial deliveries beginning in 1973, and that altogether, there are now about 10-12 long-term contracts with firms in various Western European countries that extend to the year 2000 or in some cases to 2010. Although these services are said to remain the mainstay of business with the capitalist countries of the West, the export of enriched uranium materials produced from domestic ore began in 1988. Clients include firms in both the US and Western Europe. Evidently, the severe balance-of-payments problems in Soviet foreign trade operations in recent years have led the Soviets to push alternatives to oil exports as much as possible, notably metals and minerals and chemicals and fertilizers, and this has now extended to the Soviet uranium industry. The paper discusses the USSR uranium industry, uranium mining, uranium enrichment, and plutonium production.

  5. Linking professional organisations of health care to patients’ perceptions and experiences of chronic illness. A discussion of health services for type 2 diabetes in Scottish primary care. 

    E-Print Network [OSTI]

    Milne, Heather

    2011-01-01T23:59:59.000Z

    UK Health policy over the past decade has sought to accelerate established trends of moving services for type 2 diabetes into primary care. This has aimed to make services more accessible and to enable patients to benefit ...

  6. Power Services, Direct Service Industries letter to the region, May 29, 2009

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project OfficePower Electronics Power Electronics Power ServicesMay

  7. Select-service hotels : a guide to understanding the lodging industry and one of its most attractive segments

    E-Print Network [OSTI]

    Berger, Brandon B. (Brandon Brooks)

    2007-01-01T23:59:59.000Z

    This thesis serves as a pedagogical guide to the hospitality industry, and presents a broad overview of the unique issues that arise through the development, ownership and management of select-service franchised hotels. ...

  8. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    SHIP - Solar heat for industrial processes. Internationalsolar power could be used to provide process heat for

  9. U.S. Energy Service Company Industry: Market Size and Project Performance from 1990-2008

    SciTech Connect (OSTI)

    Larsen, Peter; Goldman, Charles; Satchwell, Andrew

    2012-08-21T23:59:59.000Z

    The U.S. energy service company (ESCO) industry is an example of a private sector business model where energy savings are delivered to customers primarily through the use of performance-based contracts. This study was conceived as a snapshot of the ESCO industry prior to the economic slowdown and the introduction of federal stimulus funding mandated by enactment of the American Recovery and Reinvestment Act of 2009 (ARRA). This study utilizes two parallel analytic approaches to characterize ESCO industry and market trends in the U.S.: (1) a ?top-down? approach involving a survey of individual ESCOs to estimate aggregate industry activity and (2) a ?bottom-up? analysis of a database of ~;;3,250 projects (representing over $8B in project investment) that reports market trends including installed EE retrofit strategies, project installation costs and savings, project payback times, and benefit-cost ratios over time. Despite the onset of a severe economic recession, the U.S. ESCO industry managed to grow at about 7percent per year between 2006 and 2008. ESCO industry revenues were about $4.1 billion in 2008 and ESCOs anticipate accelerated growth through 2011 (25percent per year). We found that 2,484 ESCO projects in our database generated ~;;$4.0 billion ($2009) in net, direct economic benefits to their customers. We estimate that the ESCO project database includes about 20percent of all U.S. ESCO market activity from 1990-2008. Assuming the net benefits per project are comparable for ESCO projects that are not included in the LBNL database, this would suggest that the ESCO industry has generated ~;;$23 billion in net direct economic benefits for customers at projects installed between 1990 and 2008. There is empirical evidence confirming that the industry is evolving by installing more comprehensive and complex measures?including onsite generation and measures to address deferred maintenance?but this evolution has significant implications for customer project economics, especially at K-12 schools. We found that the median simple payback time has increased from 1.9 to 3.2 years in private sector projects since the early-to-mid 1990s and from 5.2 to 10.5 years in public sector projects for the same time period.

  10. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total Delivered Residentialtightb.Alabama"

  11. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total Delivered

  12. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipal shale gas plays:Domestic

  13. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipal shale gas

  14. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    oil, starch and corn refining, since these can be a source of fuel products. The sugar cane industry

  15. A Case Study on In-situ Rejuvenation of Degraded Insulation on Industrial Piping in Hot Service 

    E-Print Network [OSTI]

    Williams, J.

    2015-01-01T23:59:59.000Z

    -situ Rejuvenation of Degraded Insulation on Industrial Piping In Hot Service John Williams VP, Marketing & Technical Services Aspen Aerogels, Inc. jwilliams@aerogel.com ESL-IE-15-06-35 Proceedings of the Thrity-Seventh Industrial Energy Technology Conference New... Orleans, LA. June 2-4, 2015 -2- Presentation Overview • The problem – The physics of wet insulation • The solution – The physics of flexible aerogel blanket material • An example – A case study • Summary and conclusions ESL-IE-15-06-35 Proceedings...

  16. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    of its electricity requirements in the USA (US DOE, 2002)USA, where motor-driven systems account for 63% of industrial electricity

  17. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    and fuel used in the primary smelter. PFC emission includedto current state-of-the art smelter electricity use and 50%commonly been connected to smelter retrofit, conversion, or

  18. Proceedings of the 2009 Industrial Engineering Research Conference Developing a Curriculum in Service Systems Engineering

    E-Print Network [OSTI]

    Onder, Nilufer

    Proceedings of the 2009 Industrial Engineering Research Conference Developing a Curriculum slowly to this change. Although some Industrial Engineering (IE) undergraduate programs have added community has responded slowly to this change. Although some Industrial Engineering undergraduate programs

  19. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    iron and steel production. IEA Greenhouse Gas R&D Programme,tempera- ture range. IEA/Caddet, Sittard, The Netherlands.industry. Cheltenham, UK, IEA Greenhouse Gas R&D Programme,

  20. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    process residual like bagasse are now available (Cornland etsugar in- dustry uses bagasse and the edible oils industrySection 7.4.7. ). The use of bagasse for energy is likely to

  1. Quality Services: Solid Wastes, Part 361: Siting of Industrial Hazardous Waste Facilities (New York)

    Broader source: Energy.gov [DOE]

    These regulations describe the siting of new industrial hazardous waste facilities located wholly or partially within the State. Industrial hazardous waste facilities are defined as facilities used...

  2. Proposal for the award of an industrial service contract for stores operations and relatedlogistics, in-house mail distribution and transport services on the CERN site

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    This document concerns the award of an industrial support contract for stores operations and related logistics, in-house mail distribution and transport services on the CERN site. The Finance Committee is invited to agree to the negotiation of a contract with the consortium ISS (CH) - ISS (ES), for stores operations and related logistics, in-house mail distribution and transport services on the CERN site for a period of three years for a total amount not exceeding 10 312 028 Swiss francs not subject to revision. The contract will include options for two one-year extensions beyond the initial three-year period.

  3. Pricing and licensing of software products and services : a study on industry trends

    E-Print Network [OSTI]

    Nayak, Shivashis

    2006-01-01T23:59:59.000Z

    The software product business reached the $150 billion mark at the end of 2005. The pricing and licensing of new products, maintenance services, services and service maintenance have become an important strategy to deliver ...

  4. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01T23:59:59.000Z

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  5. U.S. Energy Service Company (ESCO) Industry and Market Trends

    Broader source: Energy.gov (indexed) [DOE]

    DG technologies Customer distribution system equip. Industrial process improvements Cogeneration Non-energy improvements Air quality Miscellaneous equipmentsystems Water heating...

  6. U.S. Energy Service Company (ESCO) Industry and Market Trends

    Broader source: Energy.gov (indexed) [DOE]

    market penetration of EE technologies, and customer preferences Approach - NAESCOLBNL partnership with voluntary participation from industry and government agencies -...

  7. Quality of Service, Efficiency and Scale in Network Industries: An analysis of European electricity distribution

    E-Print Network [OSTI]

    Growitsch, Christian; Jamasb, Tooraj; Pollitt, Michael G.

    2006-03-14T23:59:59.000Z

    quality. We also show that incorporating quality of service does not alter scale economy measures. Quality of service should be an integrated part of efficiency analysis and incentive regulation regimes, as well as in the economic review of market...

  8. U.S. Energy Service Company (ESCO) Industry and Market Trends

    Office of Energy Efficiency and Renewable Energy (EERE)

    Information on the U.S. Energy Service Company and its projects, activities, and effects in the market.

  9. Energy Efficiency: Marketing and Service Potential for Energy Utilities' Industrial Markets

    E-Print Network [OSTI]

    Russel, C.; Tate, R.; Tubiolo, A.

    to serve a specific customer segment. Example companies: ? Kansas Gas Service (Kansas City & Wichita, KS) ? Public Service Gas &Electric (Newark, NJ) ? NW Natural (Portland, OR) ? Reliant Minnegasco (Minneapolis, MN) ? Oklahoma Natural Gas (Okla... information or links to other sites that do. A collaboration of New England based utilities have developed the GasNetworks website for both marketing and customer service purposes. Other examples: ? NW Natural (Portland, OR); ? Piedmont Natural Gas...

  10. U.S. Energy Service Company Industry: Market Size and Project Performance from 1990-2008

    E-Print Network [OSTI]

    Larsen, Peter

    2014-01-01T23:59:59.000Z

    valuable information on FEMP ESPC contracts. The authorsESCO energy service company ESPC energy savings performancePerformance Contract (ESPC) program (i.e. , DOE Super-

  11. Industrial DSM Programs: Low-Cost Resource and Smart Customer Service

    E-Print Network [OSTI]

    Jaussaud, D.

    customers through demand-side management programs. The economic consequences of the utility's involvement has been far-reaching in each of the cases presented, and these examples illustrate the close interdependence between utilities and all industries...

  12. A cross-industry analysis and framework of aftermarket products and services

    E-Print Network [OSTI]

    Englezos, Petros

    2006-01-01T23:59:59.000Z

    This thesis looks at how supply chains of Aftermarket Products and Services are structured. The study includes an overall examination of the Aftermarket Function, as well as an overview and examination of Aftermarket Supply ...

  13. Energy Technology Transfer for Industry Through the Texas Energy Extension Service

    E-Print Network [OSTI]

    Riter, S.

    1979-01-01T23:59:59.000Z

    The Texas Energy Extension Service (EES) is one of ten Department of Energy funded pilot programs designed to test methods for assisting small energy users to reduce energy costs. A major thrust of EES in Texas is directed toward providing...

  14. Evolution of the U.S. Energy Service Company Industry: Market Size and Project Performance from 1990-2008

    SciTech Connect (OSTI)

    Larsen, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goldman, Charles A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Satchwell, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-05-08T23:59:59.000Z

    The U.S. energy service company (ESCO) industry is an example of a private sector business model where energy savings are delivered to customers primarily through the use of performance-based contracts. This study was conceived as a snapshot of the ESCO industry prior to the economic slowdown and the introduction of federal stimulus funding mandated by enactment of the American Recovery and Reinvestment Act of 2009 (ARRA). This study utilizes two parallel analytic approaches to characterize ESCO industry and market trends in the U.S.: (1) a “top-down” approach involving a survey of individual ESCOs to estimate aggregate industry activity and (2) a “bottom-up” analysis of a database of -3,265 projects (representing over $8B in project investment) that reports market trends including installed EE retrofit strategies, project installation costs and savings, project payback times, and benefit-cost ratios over time. Despite the onset of an economic recession, the U.S. ESCO industry managed to grow at about 7% per year between 2006 and 2008. ESCO industry revenues are relatively small compared to total U.S. energy expenditures (about $4.1 billion in 2008), but ESCOs anticipated accelerated growth through 2011 (25% per year). We found that 2,484 ESCO projects in our database generated -$4.0 billion ($2009) in net, direct economic benefits to their customers. We estimate that the ESCO project database includes about 20% of all U.S. ESCO market activity from 1990-2008. Assuming the net benefits per project are comparable for ESCO projects that are not included in the LBNL database, this would suggest that the ESCO industry has generated -$23 billion in net direct economic benefits for customers at projects installed between 1990 and 2008. We found that nearly 85% of all public and institutional projects met or exceeded the guaranteed level of savings. We estimated that a typical ESCO project generated $1.5 dollars of direct benefits for every dollar of customer investment. There is empirical evidence confirming that the industry is responding to customer demand by installing more comprehensive and complex measures—including onsite generation and measures to address deferred maintenance—but this evolution has significant implications for customer project economics, especially at K-12 schools. We found that the median simple payback time has increased from 1.9 to 3.2 years in private sector projects since the early-to-mid 1990s and from 5.2 to 10.5 years in public sector projects for the same time period.

  15. Services

    Broader source: Energy.gov [DOE]

    The Office of Management provides many of the services that keep the Department of Energy Headquarters offices operational.  Other Program Offices also provide services to the employees at...

  16. Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization

    E-Print Network [OSTI]

    Akbari, H.

    2008-01-01T23:59:59.000Z

    Heavy industries (such as smelting, oil refining, glass andheavy industry (e.g. , iron and steel, oil refining, and

  17. Cost of Service and Rate Design Issues Affecting Industrial Customers in Retail Rate Proceedings

    E-Print Network [OSTI]

    Stover, C. N. Jr.

    . If energy costs are a significant element in the cost of doi~g business, then the industrial customer must be familiar with the activities involved in the ratemaking process, be aware of the issues that might be raised as a part of the process, know... electric energy cost is a major component of the overall cost of doing business, it is imperative that the customer be familiar with the ratemaking activities and, in particular, know how his individual costs might be affected by the resolution...

  18. Evolution of the U.S. Energy Service Company Industry: Market Size and Project Performance from 1990-2008

    E-Print Network [OSTI]

    Goldman, Charles A.

    2013-01-01T23:59:59.000Z

    ESPC market, (5) industry consolidation, and (6) overly optimistic projections provided by our survey respondents. ESCO

  19. Evolution of the U.S. Energy Service Company Industry: Market Size and Project Performance from 1990-2008

    E-Print Network [OSTI]

    Goldman, Charles A.

    2013-01-01T23:59:59.000Z

    HVAC retrofits. In contrast, median payback time for lighting only Breakdown of industry revenues by market

  20. Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization

    E-Print Network [OSTI]

    Akbari, H.

    2008-01-01T23:59:59.000Z

    Sector Market Study Report to Pacific Gas and Electric (Gas and Electric Company (PG&E) industrial audits [9], Industrial Sector Market Study of PG&E customers, (a report

  1. The U.S. cable television industry : the multi-service operator organizational structure as a bundle of competencies

    E-Print Network [OSTI]

    Moorthy, Satish K. (Satish Kumar)

    2009-01-01T23:59:59.000Z

    The United States cable television industry is experiencing fierce competition from telephone companies and content providers, as well as new and possibly unknown entrants. As organizations in the industry are currently ...

  2. Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomelandMultivariate Metal-Organic Frameworks |Services

  3. Evolution of the U.S. Energy Service Company Industry: Market Size and Project Performance from 1990-2008

    E-Print Network [OSTI]

    Goldman, Charles A.

    2013-01-01T23:59:59.000Z

    Retrofits for ESCOs and ESCO Customers. ” NationalSullivan, 2006. “United States ESCO Market. ” Palo Alto, CA.performance of the U.S. ESCO industry: Results from the

  4. Evolution of the U.S. Energy Service Company Industry: Market Size and Project Performance from 1990-2008

    E-Print Network [OSTI]

    Goldman, Charles A.

    2013-01-01T23:59:59.000Z

    ARRA Btu DOE ECM EERE EIA ESCO ESPC HVAC LBNL MUSH NAESCOESCO project costs, local, state, and federal administrators of ESPCESPC market, (5) industry consolidation, and (6) overly optimistic projections provided by our survey respondents. ESCO

  5. Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization

    E-Print Network [OSTI]

    Akbari, H.

    2008-01-01T23:59:59.000Z

    by ERC, is 448.3 trillion Btu (TBtu). The total CaliforniaBecause the cost of an electrical Btu is roughly 4 timesthat of a source fuel Btu, industrial categories that use

  6. Perspectives on the satellite services industry : analysis of challenges and opportunities in the market, policy and regulatory environments

    E-Print Network [OSTI]

    Torres-Padilla, Juan Pablo

    2005-01-01T23:59:59.000Z

    This thesis focuses on Space Communications and combines engineering, economics, market, and policy analyses to identify challenges and opportunities in the industry that are beyond the scope of any one isolated discipline. ...

  7. Industrial ecology Prosperity Game{trademark}

    SciTech Connect (OSTI)

    Beck, D.; Boyack, K.; Berman, M.

    1998-03-01T23:59:59.000Z

    Industrial ecology (IE) is an emerging scientific field that views industrial activities and the environment as an interactive whole. The IE approach simultaneously optimizes activities with respect to cost, performance, and environmental impact. Industrial Ecology provides a dynamic systems-based framework that enables management of human activity on a sustainable basis by: minimizing energy and materials usage; insuring acceptable quality of life for people; minimizing the ecological impact of human activity to levels that natural systems can sustain; and maintaining the economic viability of systems for industry, trade and commerce. Industrial ecology applies systems science to industrial systems, defining the system boundary to incorporate the natural world. Its overall goal is to optimize industrial activities within the constraints imposed by ecological viability, globally and locally. In this context, Industrial systems applies not just to private sector manufacturing and services but also to government operations, including provision of infrastructure. Sandia conducted its seventeenth Prosperity Game{trademark} on May 23--25, 1997, at the Hyatt Dulles Hotel in Herndon, Virginia. The primary sponsors of the event were Sandia National Laboratories and Los Alamos National Laboratory, who were interested in using the format of a Prosperity Game to address some of the issues surrounding Industrial Ecology. Honorary game sponsors were: The National Science Foundation; the Committee on Environmental Improvement, American Chemical Society; the Industrial and Engineering Chemistry Division, American Chemical Society; the US EPA--The Smart Growth Network, Office of Policy Development; and the US DOE-Center of Excellence for Sustainable Development.

  8. Biomedical | Chemical & Biomolecular | Civil & Environmental | Electrical & Computer | Industrial | Mechanical | Petroleum Careers in Industrial Engineering

    E-Print Network [OSTI]

    Glowinski, Roland

    | Mechanical | Petroleum Careers in Industrial Engineering Manufacturing, service and retail industries hireBiomedical | Chemical & Biomolecular | Civil & Environmental | Electrical & Computer | Industrial a significant number of industrial engineers. Specific industries include automobile manufacturers, electronics

  9. Evolution of the U.S. Energy Service Company Industry: Market Size and Project Performance from 1990-2008

    E-Print Network [OSTI]

    Goldman, Charles A.

    2013-01-01T23:59:59.000Z

    Efficiency and Energy Services (ESD) standard definition of11 Definition of the ESCO market We define an Energy Servicedefinition is in line with the European Commission Directive (2006/32/EC) on Energy

  10. Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization

    E-Print Network [OSTI]

    Akbari, H.

    2008-01-01T23:59:59.000Z

    industry or plants could benefit from new technologies such as cold storagecold storage and space cooling systems technology has. The electricity use in these industriesindustries may also be able to take advan- tage of TES; however, the technology of integrating cold storage

  11. Whitacre College of Engineering Industrial Engineering Department

    E-Print Network [OSTI]

    Gelfond, Michael

    Whitacre College of Engineering Industrial Engineering Department Department Chair and Professor of Industrial Engineering. The Industrial Engineering Department at Texas Tech University has a distinguished industrial engineering education and provide appropriate service to the department, university

  12. Clinic-Level Process of Care for Depression in Primary Care Settings

    E-Print Network [OSTI]

    Fickel, Jacqueline J.; Yano, Elizabeth M.; Parker, Louise E.; Rubenstein, Lisa V.

    2009-01-01T23:59:59.000Z

    in VA primary care clinics. Psychiatric Services (Affairs primary care clinics. Health Services Research, 42(009-0207-1 ORIGINAL PAPER Clinic-Level Process of Care for

  13. Heat Recovery in the Forge Industry

    E-Print Network [OSTI]

    Shingledecker, R. B.

    1982-01-01T23:59:59.000Z

    Department of Energy figures reveal that in 1979 the forging and stamping operations were the primary consumers of energy (27%) within the 'Fabricated Metals Products Industry' (SIC 34). Industrial furnaces utilized by the forging industry often...

  14. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection Obeying Environmental Laws Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the...

  15. CenterPoint Energy- Commercial and Industrial Standard Offer Program

    Broader source: Energy.gov [DOE]

    CenterPoint Energy's Commercial and Industrial Standard Offer Program pays incentives to service providers who install energy efficiency measures in commercial or industrial facilities that are...

  16. Uranium industry annual 1998

    SciTech Connect (OSTI)

    NONE

    1999-04-22T23:59:59.000Z

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

  17. Uranium industry annual 1994

    SciTech Connect (OSTI)

    NONE

    1995-07-05T23:59:59.000Z

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

  18. FINLAND SOURCES 2007 -Forest industry production Authorities

    E-Print Network [OSTI]

    FINLAND SOURCES 2007 - Forest industry production Print Home Finland Government Authorities Local » Turnover » Profit » Energy Year 2006 » Shipping Business services Infrastructure Economy Education strategy of the EU's Forest-Based Industries Technology Platform provides a good basis for preparing

  19. Energy Technical Assistance: Industrial Processes Program

    E-Print Network [OSTI]

    McClure, J. D.

    1980-01-01T23:59:59.000Z

    The Energy Technical Assistance Division of Texas Engineering Extension Service (TEEX) has implemented an energy conservation program to assist small industry in using energy more efficiently. This full time service, an outgrowth of the Texas A...

  20. Energy Technical Assistance: Industrial Processes Program 

    E-Print Network [OSTI]

    McClure, J. D.

    1980-01-01T23:59:59.000Z

    The Energy Technical Assistance Division of Texas Engineering Extension Service (TEEX) has implemented an energy conservation program to assist small industry in using energy more efficiently. This full time service, an outgrowth of the Texas A...

  1. About Genco Energy Services Genco Energy Services has been servicing the rental equipment needs

    E-Print Network [OSTI]

    Fisher, Kathleen

    About Genco Energy Services Genco Energy Services has been servicing the rental equipment needs of the oil business since 1996. The company leases more than 2,000 pieces of equipment like light towers. Situation Working in the fast-paced oil industry, Genco Energy Services could not track its large inventory

  2. Unitil- Commercial and Industrial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Unitil offers three different programs for its commercial, industrial, and institutional customers in New Hampshire: the Small Business Energy Efficiency Services Program, the Large Business...

  3. Electric Utility Industrial Conservation Programs

    E-Print Network [OSTI]

    Norland, D. L.

    1983-01-01T23:59:59.000Z

    The Alliance to Save Energy conducted a study, funded by the John A. Hartford Foundation, of industrial and commercial electricity conservation opportunities in the service territory of Arkansas Power and Light Company (AP&L). The study determined...

  4. International Data Base for the U.S. Renewable Energy Industry

    SciTech Connect (OSTI)

    none

    1986-05-01T23:59:59.000Z

    The International Data Base for the US Renewable Energy Industry was developed to provide the US renewable energy industry with background data for identifying and analyzing promising foreign market opportunities for their products and services. Specifically, the data base provides the following information for 161 developed and developing countries: (1) General Country Data--consisting of general energy indicators; (2) Energy Demand Data--covering commercial primary energy consumption; (3) Energy Resource Data--identifying annual average insolation, wind power, and river flow data; (4) Power System Data--indicating a wide range of electrical parameters; and (5) Business Data--including currency and credit worthiness data.

  5. Uranium industry annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  6. Load Management - An Industrial Perspective on This Developing Technology

    E-Print Network [OSTI]

    Delgado, R. M.

    1983-01-01T23:59:59.000Z

    of this conceot 1& the "Peak Sha e Service" experimental tariff recently approved [Y the Texas Public Utility Commission for Houston Lighting and Power. This tariff was based on t e concept developed under the direction of the author as described above. Some... this tariff, several industrial companies were asked for their input prior to submittal to the Ut lity Commission. Some of t e primary issues Included (1) adequate guaranteed annual payment to cover cost to put in place mechanism/equipment to be able...

  7. Industrial Engineering Industrial Advisory Board

    E-Print Network [OSTI]

    Gelfond, Michael

    Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

  8. California's County and City Environmental Health Services Delivery System

    E-Print Network [OSTI]

    Riverside County Department of Public Health Office of Industrial Hygiene Johns Hopkins University, California Department of Industrial Relations Robin Hook, California Department of Health Services Anne

  9. Rehabilitation Services Sample Occupations

    E-Print Network [OSTI]

    Ronquist, Fredrik

    /Industries Correction Agencies Drug Treatment Centers Addiction Counselor Advocacy Occupations Art Therapist BehavioralRehabilitation Services Sample Occupations Sample Work Settings Child & Day Care Centers Clinics................................ IIB 29-1000 E4 Careers in Counseling and Human Services .........IIB 21-1010 C7 Careers in Health Care

  10. Services for business River House, 5357 High Street, Kingston upon Thames KT11LQ

    E-Print Network [OSTI]

    Matthews, Adrian

    is an independent provider of consultancy services to the oil refining, petrochemical and process industries

  11. Cloud Services Cloud Services

    E-Print Network [OSTI]

    Cloud Services Cloud Services In 2012 UCD IT Services launched an exciting new set of cloud solutions called CloudEdu, which includes cloud servers, cloud storage, cloud hosting and cloud network. The CloudEdu package includes a consultancy service in design, deployment, management and utilisation

  12. Uranium industry annual 1995

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

  13. PROCEEDINGS OF 1976 SUMMER WORKSHOP ON AN ENERGY EXTENSION SERVICE

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    industrial plants with large service or domestic hot water requirements,coupled with large air condi- tioning or heat pump

  14. The Texas Industrial Energy Conservation Program 

    E-Print Network [OSTI]

    Waldrop, T.

    1982-01-01T23:59:59.000Z

    cesses listed. Chart1-lndustrial Target Groups SIC CODE INDUSTRY 201 Meat Products 204 Feed and Grain 207 Fats and Oils 26 Paper and Allied Products 28 Chemicals and Allied Products 30 Rubber and Plastics 33 Primary Metals 34 Fabricated Metals... industry seminars. In the preparation of workbooks for industrial processes, a screening of engineering firms was 763 ESL-IE-82-04-139 Proceedings from the Fourth Industrial Energy Technology Conference, Houston, TX, April 4-7, 1982 conducted in order...

  15. OTHER INDUSTRIES

    Broader source: Energy.gov [DOE]

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  16. Intergovernmental Solid Waste Services (Iowa)

    Broader source: Energy.gov [DOE]

    Two or more local governments may form a public service monopoly, utilizing private recycling industries where possible, if such a monopoly is deemed necessary to protect public health and welfare...

  17. PPL Electric Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    PPL Electric Utilities offers rebates and incentives for commercial and industrial products installed in their service area. The program offers rebates for lighting, heat pumps, refrigeration...

  18. Wells Public Utilities- Commercial & Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    SMMPA develops innovative products and services to help them deliver value to customers. With help from SMMPA, Wells Public Utilities provides incentives for its commercial and industrial custome...

  19. Indiana Michigan Power- Commercial and Industrial Rebates Program

    Broader source: Energy.gov [DOE]

    Indiana Michigan Power offers rebates for HVAC equipment, variable frequency drives, commercial refrigeration equipments, food service equipment and lighting measures for commercial and industrial...

  20. Assessing U.S. ESCO industry performance and market trends: Results from the NAESCO database project

    E-Print Network [OSTI]

    Osborn, Julie; Goldman, Chuck; Hopper, Nicole; Singer, Terry

    2002-01-01T23:59:59.000Z

    Performance of the U.S. ESCO Industry: Results from theMarket Trends in the U.S. ESCO Industry: Results from theenergy service company (ESCO) industry in the United States.

  1. Identifying Opportunities for Industrial Energy Conservation

    E-Print Network [OSTI]

    Hoffman, A. R.

    1981-01-01T23:59:59.000Z

    The Energy Productivity Center of the Mellon Institute is engaged in a 2-year study to identify opportunities for improved U.S. industrial energy productivity. A distinguishing feature is the focus on energy services provided when fuels are consumed...

  2. Industrial Waste Heat Recovery Using Heat Pipes 

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01T23:59:59.000Z

    For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

  3. MIT and the Building/Construction Industries MIT Industry Brief

    E-Print Network [OSTI]

    Ceder, Gerbrand

    devoted to improving the ability of companies to efficiently customize products and services in various in these areas. Please note that this is not a comprehensive summary of research being conducted at MIT in the topic areas listed above. MIT's Industrial Liaison Program (ILP) can bring the intellectual power of MIT

  4. E-Print Network 3.0 - antenatal attendance service Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    up Primary Health Services in Rural Tamil Nadu: Public Investment Requirements and Health Sector Reform Summary: to the OPD. This would directly affect the service of the...

  5. Services Breakout: Expressiveness Challenges

    E-Print Network [OSTI]

    Polz, Martin

    industry standards? a) What to accomplish? b) How? 5. Address specific DAML+OIL challenges for DAML with existing standards ­ WSDL, uPnP, Corba?, ... #12;1 (cont'd.) Requirements · "Web of Services" ­ Compositional architecture ­ API mechanisms supporting modularity, reuse ­ Distinguish API from implementation

  6. Federal agencies active in chemical industry-related research and development

    SciTech Connect (OSTI)

    NONE

    1995-09-29T23:59:59.000Z

    The Energy Policy Act of 1992 calls for a program to further the commercialization of renewable energy and energy efficient technologies for the industrial sector.. The primary objective of the Office of Industrial Technologies Chemical Industry Team is to work in partnership with the US chemical industry to maximize economic, energy, and environmental benefits through research and development of innovative technologies. This document was developed to inventory organizations within the federal government on current chemical industry-related research and development. While an amount of funding or number of projects specifically relating to chemical industry research and development was not defined in all organizations, identified were about 60 distinct organizations representing 7 cabinet-level departments and 4 independent agencies, with research efforts exceeding $3.5 billion in fiscal year 1995. Effort were found to range from less than $500 thousand per year at the Departments of Agriculture and the Interior to over $100 million per year at the Departments of Commerce, Defense, Energy, and Health and Human Services and the National Aeronautics and Space Administration. The total number of projects in these programs exceeded 10,000. This document is complete to the extent that agencies volunteered information. Additions, corrections, and changes are encouraged and will be incorporated in future revisions.

  7. Oceanography Vol.20, No. 1200 The primary objective of this activity is to predict how coastal

    E-Print Network [OSTI]

    Matsumoto, George I.

    systems in many ways, including agricultural practices, sewage, wastewater, industrial wastes-derived activities (wastewater) and primary pro- duction in estuaries. This lab focuses on agricultural sources

  8. SOLAR CENTER INFORMATION Industrial Extension Service

    E-Print Network [OSTI]

    Solar House About the NCSU Solar House The North Carolina State University Solar House was built in 1981 in order to evaluate and demonstrate solar design and construction techniques and energy efficient technolo- gies. It incorporates passive solar features such as a sunspace, trombe walls, and earth

  9. MFR PAPER 1065 The food service industry

    E-Print Network [OSTI]

    .,upported bJ naltonal ad\\ertl\\lng to gain entn intl) the re- tatl market \\l oreo\\t.:r. there are pre,- e\\aluated the producl.~ SURVEY RESULTS The fO"~1\\\\lng 1\\ an anal},i ... of the ...une} re"'pon,e, \\\\hlloh highlight

  10. Direct Service Industries (DSI) (pbl/contracts)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDiesel pricesDiesel28,Collapse | ArgonneDirect

  11. Magnetech Industrial Services | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPower CoLongxing Wind PowerMCFMVV Energie

  12. Primary enzyme quantitation

    DOE Patents [OSTI]

    Saunders, G.C.

    1982-03-04T23:59:59.000Z

    The disclosure relates to the quantitation of a primary enzyme concentration by utilizing a substrate for the primary enzyme labeled with a second enzyme which is an indicator enzyme. Enzyme catalysis of the substrate occurs and results in release of the indicator enzyme in an amount directly proportional to the amount of primary enzyme present. By quantifying the free indicator enzyme one determines the amount of primary enzyme present.

  13. Power Services, Direct Service Industries letter to the region...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    firm power (IP) to an amount sufficient to operate two potlines at Alcoa's Ferndale smelter and the Columbia Falls Aluminum Company smelter located in Montana (460 aMW). 2....

  14. How One Utility is Building Industrial Consumer Relationships

    E-Print Network [OSTI]

    Hamilton, D. E.

    HOW ONE UT1~ITY IS BUILDING INDUSTRIAL CONSUMER RELATIONSHIPS DONALD E. HAMILTON Manager-Industrial Services and Cogeneration Gulf States Utilities Company Beaumont, Texas COMPETITION AND THE UTILITY INDUSTRY The refining and petrochemical... in the eighties: depletion of old low cost oil and gas fields within the United States, the formation of OPEC, a run-up in oil and gas prices, leveling of demand in the petrochemical industry, the transfer of substantial wealth from industrial to oil...

  15. Study of Reasons for the Adoption of Lean Production in the Automobile Industry: Questions for the AEC Industries

    E-Print Network [OSTI]

    Tommelein, Iris D.

    Study of Reasons for the Adoption of Lean Production in the Automobile Industry: Questions IN THE AUTOMOBILE INDUSTRY: QUESTIONS FOR THE AEC INDUSTRIES Scott Featherston1 ABSTRACT The primary intent in opting for an alternative? Were there pressures that gave automobile producers no option but to alter

  16. The Role of Demand Response in Default Service Pricing

    SciTech Connect (OSTI)

    Barbose, Galen; Goldman, Charles; Neenan, Bernie

    2005-11-09T23:59:59.000Z

    Dynamic retail pricing, especially real-time pricing (RTP), has been widely heralded as a panacea for providing much-needed demand response in electricity markets. However, in designing default service for competitive retail markets, demand response has been an afterthought, and in some cases not given any weight at all. But that may be changing, as states that initiated customer choice in the past 5-7 years reach an important juncture in retail market design. Most states with retail choice established an initial transitional period during which utilities were required to offer a default or standard offer generation service, often at a capped or otherwise administratively-determined rate. Many retail choice states have reached the end of their transitional period, and several have adopted or are actively considering an RTP-type default service for large commercial and industrial (C&I) customers. In most cases, the primary reason for adopting RTP as the default service has been to advance policy objectives related to the development of competitive retail markets. However, if attention is paid in its design and implementation, default RTP service can also provide a solid foundation for developing price responsive demand, creating an important link between wholesale and retail market transactions. This article, which draws from a lengthier report, describes experience to date with RTP as a default service, focusing on its role as an instrument for cultivating price responsive demand.1 As of summer 2005, default service RTP was in place or approved for future implementation in five U.S. states: New Jersey, Maryland, Pennsylvania, New York, and Illinois. For each of these states, we conducted a detailed review of the regulatory proceedings leading to adoption of default RTP and interviewed regulatory staff and utilities in these states, as well as eight competitive retail suppliers active in these markets.

  17. MIT and Automotive Industries MIT Industry Brief

    E-Print Network [OSTI]

    Ceder, Gerbrand

    MIT and Automotive Industries MIT Industry Brief MIT's Industrial Liaison Program (ILP) can bring@ilp.mit.edu, or visit http://ilp-www.mit.edu. MIT and Automotive Industries The Massachusetts Institute of Technology (MIT) is a leading center of research and education on topics important to the automotive industry

  18. External research and energy efficiency in the process industries

    SciTech Connect (OSTI)

    Kaarsberg, T.M.; Foust, T.D.

    1997-07-01T23:59:59.000Z

    The process industries in the US are under enormous pressure. These industries, even more than US industry on average, face skyrocketing environmental costs, a rapidly changing electricity market, potential climate change policies, aging infrastructure and strong international competition. To be profitable they must reduce their costs and environmental impacts while increasing their product quality, turnaround time, productivity and output. Most of these industries have already cut costs and labor as much as possible. Therefore, to survive, these industries must innovate. History shows that industries that are the most innovative are the most successful. These industries are vital to the US economy. For example, the metals, pulp and paper, chemicals and the petroleum refining industries account for more than $800 billion in products shipped and employ more than three million workers. Although the US has shifted dramatically toward services with 77% of workers and 74% of GDP now in the service sector, what many have missed is that the process industries are important customers for many of these new services. ServOnly the last two years of NSF industrial R and D data provide any breakout of non-manufacturing R and D. This paper discusses the past, current and possible future role of eternal research and development (R and D)--much of which is now in the service sector--in fostering innovation and thus energy efficiency in these industries. The authors suggest that these industries are more innovative than previously thought because of external research.

  19. Bringing information standards from FERC into the industry: Gas industry standards board`s first year

    SciTech Connect (OSTI)

    McCartney, M.J.

    1995-12-31T23:59:59.000Z

    Since early 1993 the natural gas industry has pursued the creation of industry-wide standards through two parallel paths. The Federal Energy Regulatory Commission (FERC) must be credited with getting the industry moving forward towards electronic information standardization. FERC`s Order 636 required interstate pipelines to set up electronic bulletin boards for trading released capacity. Their goal was to foster an efficient and competitive secondary market for pipeline capacity. The Natural gas Industry set up a Gas Industry Standards Board (GISB) to promote gas standards initially through improving and expanding electronic communication which would then assist the natural gas industry in improving customer service, enhancing the reliability of natural gas service, and increasing the efficiency of natural gas markets. This paper describes the goals and organizational structure of the GISB.

  20. By Patricia A. Plunkert Domestic primary aluminum production increased slightly in

    E-Print Network [OSTI]

    of primary metal produced domestically in 1995 was Voluntary Aluminum Industrial Partnership (VAIP) committed metal came from new (manufacturing) scrap and 47% from old scrap (discarded aluminum products, and Washington conjunction with the domestic primary aluminum industry, accounted for 36% of the production

  1. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    SciTech Connect (OSTI)

    Aden, Nathaniel T.; Zheng, Nina; Fridley, David G.

    2009-07-01T23:59:59.000Z

    Urbanization has re-shaped China's economy, society, and energy system. Between 1990 and 2007 China added 290 million new urban residents, bringing the total urbanization rate to 45%. This population adjustment spurred energy demand for construction of new buildings and infrastructure, as well as additional residential use as rural biomass was replaced with urban commercial energy services. Primary energy demand grew at an average annual rate of 10% between 2000 and 2007. Urbanization's effect on energy demand was compounded by the boom in domestic infrastructure investment, and in the export trade following World Trade Organization (WTO) accession in 2001. Industry energy consumption was most directly affected by this acceleration. Whereas industry comprised 32% of 2007 U.S. energy use, it accounted for 75% of China's 2007 energy consumption. Five sub-sectors accounted for 78% of China's industry energy use in 2007: iron and steel, energy extraction and processing, chemicals, cement, and non-ferrous metals. Ferrous metals alone accounted for 25% of industry and 18% of total primary energy use. The rapid growth of heavy industry has led China to become by far the world's largest producer of steel, cement, aluminum, and other energy-intensive commodities. However, the energy efficiency of heavy industrial production continues to lag world best practice levels. This study uses scenario analysis to quantify the impact of urbanization and trade on industrial and residential energy consumption from 2000 to 2025. The BAU scenario assumed 67% urbanization, frozen export amounts of heavy industrial products, and achievement of world best practices by 2025. The China Lightens Up (CLU) scenario assumed 55% urbanization, zero net exports of heavy industrial products, and more aggressive efficiency improvements by 2025. The five dominant industry sub-sectors were modeled in both scenarios using a LEAP energy end-use accounting model. The results of this study show that a CLU-style development path would avoid 430 million tonnes coal-equivalent energy use by 2025. More than 60% of these energy savings would come from reduced activity and production levels. In carbon terms, this would amount to more than a billion-tonne reduction of energy-related carbon emissions compared with the BAU scenario in 2025, though the absolute level of emissions rises in both scenarios. Aside from the energy and carbon savings related to CLU scenario development, this study showed impending saturation effects in commercial construction, urban appliance ownership, and fertilizer application. The implication of these findings is that urbanization will have a direct impact on future energy use and emissions - policies to guide urban growth can play a central role in China's efforts to mitigate emissions growth.

  2. Oklahoma Industrial Energy Management Program 

    E-Print Network [OSTI]

    Estes, C. B.; Turner, W. C.

    1980-01-01T23:59:59.000Z

    usage continues to rise. With this informa tion, Oklahoma embarked upon a program to help indus try (particularly small to medium sized ones) meet the challenge. Program Objectives The primary objective of the program can be stated simply as: "To... for the country and necessary for her to be competitive in the International marketplace. PROGRAM DESCRIPTION The first step was to develop a symbol that year tenure of the.program. The conferences have concentrated on the industrialized areas of Tulsa...

  3. framework for memorandum of understanding for direct service...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTRACT FOR THE FY 2012 THROUGH FY 2028 PERIOD I. BACKGROUND Alcoa is an aluminum-smelter direct service industrial (DSI) customer of Bonneville Power Administration (BPA) and...

  4. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center at CornellOf SmartIndustrial Users The

  5. Industry @ ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center at CornellOf SmartIndustrial Users

  6. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFP »summerlectures [ICO]default Sign InIndustrial

  7. Primary Prevention of Hypertension

    E-Print Network [OSTI]

    Bandettini, Peter A.

    Primary Prevention of Hypertension: Clinical and Public Health Advisory from the National High NIH PUBLICATION NO. 02-5076 NOVEMBER 2002 Primary Prevention of Hypertension: Clinical and Public OF HYPERTENSION CLINICAL AND PUBLIC HEALTH ADVISORY FROM THE NATIONAL HIGH BLOOD PRESSURE EDUCATION PROGRAM

  8. Education research Primary Science

    E-Print Network [OSTI]

    Rambaut, Andrew

    Education research Primary Science Survey Report December 2011 #12;Primary Science Survey Report, Wellcome Trust 1 Background In May 2009 Key Stage 2 science SATs (Standard Assessment Tests) were abolished fiasco might occur, where the results were delayed and their quality questioned. The loss of science SATs

  9. Master logo Primary version

    E-Print Network [OSTI]

    Bandara, Arosha

    Master logo Primary version The master logo is the most important visual representation practical, this primary version of the logo must be used. Need help with something? Contact: brand logos, trade marks, trade names, photographic and video images, sound recordings, audio tools

  10. Indigenous Services Services for Students

    E-Print Network [OSTI]

    Sinnamon, Gordon J.

    STUDENT SERVICES Indigenous Services Services for Students with Disabilities Learning Skills Distance Studies Continuing Studies Student Success CentreLEARNING SERVICES TEACH ING& DEVELOPM E NTCENTRE collaborative and student- focused efforts make a difference. John Doerksen Vice-Provost (Academic Programs

  11. Table 5. Electric Power Industry Generation by Primary Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    19,26551,6536,8975,17488,20731,12287,7472,8427,8149,0.5,0.1,0 "Wind",666983,508612,5028,5182,5453,5221,5784,5777,5081,5167,6043,871,0,0,0,0,0,0,0,0,0,0,0,0,0.1,5.5 "IPP and...

  12. Mechanical & Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board October 15, 2010 #12;Mechanical & Industrial Engineering 2 MIE Dorothy Adams Undergraduate/Graduate Secretary David Schmidt Associate Professor & Graduate Program Director #12;Mechanical & Industrial Engineering 3 MIE James Rinderle

  13. Industrial Decision Making 

    E-Print Network [OSTI]

    Elliott, R. N.; McKinney, V.; Shipley, A.

    2008-01-01T23:59:59.000Z

    and industrial investment decision-making. The paper will also address several important questions: • Why has industrial investment declined? • What is the outlook for industrial investment? • How can programs engage industry for future opportunities?...

  14. The state of the energy service company today

    SciTech Connect (OSTI)

    Mozzo, M.A. Jr.

    1998-10-01T23:59:59.000Z

    Energy service companies have been around for several years. Every year, experts predict their demise. The traditional energy service company (ESCo), whose work utilizes utility rebates, will probably be long gone as rebates disappear. The new energy service company will arise in this industry. This new company will be one that can provide a vast menu of services to their customers. These services can include, but are not necessarily limited to, the following: (1) corporate energy management services, (2) natural gas transportation services, (3) electrical deregulation services, (4) energy engineering services, (5) economics and forecasting, and (6) project financing. The new energy service company must have the engineering, financial, and managerial resources and skills to provide these services. It must also have the ability to recognize the needs of a changing industry and adapt to these changes in order to survive and ultimately provide a benefit to society.

  15. Industrial energy efficiency policy in China

    SciTech Connect (OSTI)

    Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

    2001-05-01T23:59:59.000Z

    Chinese industrial sector energy-efficiency policy has gone through a number of distinct phases since the founding of the People s Republic in 1949. An initial period of energy supply growth in the 1950s, 1960s, and 1970s was followed by implementation of significant energy efficiency programs in the 1980s. Many of these programs were dismantled in the 1990s during the continuing move towards a market-based economy. In an effort to once again strengthen energy efficiency, the Chinese government passes the Energy Conservation Law in 1997 which provides broad guidance for the establishment of energy efficiency policies. Article 20 of the Energy Conservation Law requires substantial improvement in industrial energy efficiency in the key energy-consuming industrial facilities in China. This portion of the Law declares that ''the State will enhance energy conservation management in key energy consuming entities.'' In 1999, the industrial sector consumed nearly 30 EJ, or 76 percent of China's primary energy. Even though primary energy consumption has dropped dramatically in recent years, due mostly to a decline in coal consumption, the Chinese government is still actively developing an overall policy for energy efficiency in the industrial sector modeled after policies in a number of industrialized countries. This paper will describe recent Chinese government activities to develop industrial sector energy-efficiency targets as a ''market-based'' mechanism for improving the energy efficiency of key industrial facilities.

  16. INDUSTRIAL ENGINEERING Industrial engineering is concerned

    E-Print Network [OSTI]

    INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. The focus of industrial engineering is on process improvement

  17. INDUSTRIAL ENGINEERING Industrial engineering is concerned

    E-Print Network [OSTI]

    INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. Industrial engineers design and run the factories and systems

  18. Overview of U. S. Department of Energy Program in Industrial Energy Conservation Technology Development

    E-Print Network [OSTI]

    Massey, R. G.

    1980-01-01T23:59:59.000Z

    The primary responsibility for Federal industrial energy conservation is in the Office of Industrial Programs which reports to the Assistant Secretary for Conservation and Solar Energy. The objectives of the Federal program are to: achieve maximum...

  19. State Level Analysis of Industrial Energy Use 

    E-Print Network [OSTI]

    Elliott, R. N.; Shipley, A. M.; Brown, E.

    2003-01-01T23:59:59.000Z

    in the global aluminum market. Similarly, increases in electricity prices combined with declining old-growth timber inventories lead to a decline in the wood products and primary paper industries. The outlook for these industries is equally uncertain.... Available: http://www.eia.doe.gov/cneaf/electricity/esr/ esr sum.html. Washington, D.C.: USDOE. [DOE/EIA] Department of Energy, Energy Information Administration. 2000. Annual Energy Outlook 2001. DOE/EIA 0383(2001). Washington, D.C.: Department...

  20. Facility Manager Primary Purpose

    E-Print Network [OSTI]

    Saskatchewan, University of

    for required goods or services to achieve maximum value for money; b. managing supplier/contractor performance, including employee qualifications, training and developing staff, performance evaluation, and related areas

  1. Industrial recreation in Texas: an exploratory study

    E-Print Network [OSTI]

    Kershaw, Deborah Louise

    1982-01-01T23:59:59.000Z

    that a recreation program was not included in their service offerings. Three of these respondents are vendors of recreation services. One is an institute of higher education and another is a municipal park and recreation department. They indicated... the data concerning the number of employees utilized in the administration of the recreation programs. Table 2. Industrial Recreation Program Organization ~Sons or EmpToyee Sponsor Company Sponsor Combinations ALL RESPONDENTS ~F 18 12 10 fftl...

  2. Review of U.S. ESCO industry market trends: An empirical analysis of project data

    E-Print Network [OSTI]

    Goldman, Charles A.; Hopper, Nicole C.; Osborn, Julie G.; Singer, Terry E.

    2003-01-01T23:59:59.000Z

    energy service company (ESCO) industry in the United States.and Feldman, S. , 1999. ESCO Market Research Study. Preparedperformance of the U.S. ESCO industry: Results from the

  3. Market trends in the U.S. ESCO industry: Results from the NAESCO database project

    E-Print Network [OSTI]

    Goldman, Charles A.; Osborn, Julie G.; Hopper, Nicole C.; Singer, Terry E.

    2002-01-01T23:59:59.000Z

    energy service company (ESCO) industry in the United States.and Shel Feldman 1999." ESCO Market Research Study,”performance of the U.S. ESCO industry: Results from the

  4. Mergers and acquisitions in the medical device industry

    E-Print Network [OSTI]

    Ohashi, Kevin Lee

    2007-01-01T23:59:59.000Z

    Mergers and acquisitions in the Medical Device Industry are the primary mode of exit for early stage companies. The focus of this thesis is to examine factors which influence the value of these M&A transactions from the ...

  5. Energy Management in a Multi-Industry Organization

    E-Print Network [OSTI]

    Lawrence, J.

    1981-01-01T23:59:59.000Z

    Tenneco operates in seven of the nation's ten most energy intensive industries: Petroleum Refining, Chemicals Manufacturing, Pulp and Paper, Transportation Equipment, Primary Metals, Food Processing, and Machinery. This diversification...

  6. The Public Utility and Industry: A Customer- Supplier Relationship for Long-Term Survival

    E-Print Network [OSTI]

    Janson, J. R.

    The entire country is undergoing a significant change in customer attitide toward services and products. This change is geared toward a quality service/ product for the least cost. Industry and the utility sector need to apply the aspects of quality...

  7. Upgrading Amerada-type survey clocks for high-temperature geothermal service

    SciTech Connect (OSTI)

    Major, B.H.; Witten, C.L.

    1980-09-01T23:59:59.000Z

    The Amerada type subsurface recording gauges have been used by the oil and gas industry for many years. These mechanical logging instruments are currently used by the growing goethermal industry. As the gauges were designed for service in low-temperature oil and gas wells, a significant number of failures are occurring at elevated geothermal temperatures. The spring driven mechanical survey clocks appear to be the primary cause of the failures. The clock mechanisms tend to stop or lock-up when exposed to temperatures as high as 300/sup 0/C. This paper summarizes a project that was undertaken to upgrade the survey clocks to 300/sup 0/C capability. The major problems causing clock failure were indentified and corrected by straightforward design modifications together with special lubrication of the moving parts. Several clocks so modified performed reliably, both during laboratory oven tests and during field tests that were performed in actual geothermal wells at temperatures up to 330/sup 0/C.

  8. ITL BULLETIN FOR AUGUST 2011 PROTECTING INDUSTRIAL CONTROL SYSTEMS KEY COMPONENTS OF

    E-Print Network [OSTI]

    , transportation, healthcare, and emergency services sectors. Federal agencies also operate critical production, handling, and distribution. ICS are used in many industries: electric, water, oil and gas

  9. FirstEnergy (Potomac Edison)- Commercial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    FirstEnergy company Potomac Edison offers rebates to eligible commercial, industrial, governmental, and institutional customers in Maryland service territory who are interested in upgrading to...

  10. Designing a service science discipline with discipline

    E-Print Network [OSTI]

    Glushko, Robert J.

    in what IBM began to call, in late 2004, service science, management and engineering--or simply SSME. 3 in information and computing technol- ogy, industrial engineering, business strategy, eco- nomics, lawDesigning a service science discipline with discipline & R. J. Glushko This paper relates our

  11. Industrial energy-efficiency-improvement program

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

  12. Utilizing Industrial Engineers to Implement "Lean Enterprise" at Company A

    E-Print Network [OSTI]

    Stein, Jean D'Ann

    2012-12-14T23:59:59.000Z

    in the implementation of continuous improvement and lean thinking. This skillset has recently allowed IEs to work outside their normal realm of manufacturing, and focus on areas more closely related to service organizations. At Company A, Industrial Engineers...

  13. Delmarva Power- Commercial and Industrial Energy Savings Program

    Broader source: Energy.gov [DOE]

    The Delmarva Power Commercial and Industrial (C&I) Energy Savings Program is designed to promote and encourage the incorporation of energy efficient equipment, products, and services into non-...

  14. Waste Heat Recovery in the Metal Working Industry

    E-Print Network [OSTI]

    McMann, F. C.; Thurman, J.

    1983-01-01T23:59:59.000Z

    WASTE HEAT RECOVERY IN THE METAL WORKING INDUSTRY Fred C. McMann Jimmy Thurman North American Manufacturing Co. Combustion Services Company Woodlands, Texas Houston, Texas The use of exhaust gas heat exchangers to preheat combustion air...

  15. Primary Bilingual logo 02 Primary Unilingual Logo 02

    E-Print Network [OSTI]

    brand Visual identity guidelines #12;logos Primary Bilingual logo 02 Primary Unilingual Logo 02 Logo 08 Athletics 09 Contents brand Colours Primary + Secondary Brand Colour 10 typography 13 friendships. #12;2 logos primary bilingual Crest logo Use the bilingual crest logo for all communications

  16. FINANCIAL & BUSINESS SERVICES Financial & Business Services

    E-Print Network [OSTI]

    FINANCIAL & BUSINESS SERVICES Financial & Business Services Presidential Briefing #12;FINANCIAL & BUSINESS SERVICES Financial & Business Services (FBS) · FBS currently has approx. 140 employees · We) ­ Financial Solutions (6) ­ Travel, Training & Policy Development (6) #12;FINANCIAL & BUSINESS SERVICES Our

  17. Guide to the energy industries. [Index of 2930 items

    SciTech Connect (OSTI)

    Not Available

    1983-01-01T23:59:59.000Z

    The primary focus of the guide is the identification of marketing and financial data on seven specific energy industries: coal, energy alternatives, hydroelectric power, natural gas, nuclear energy, petroleum, and solar energy. The guide is divided into four parts. Part 1 contains sources of data that concern the seven energy industries. It is arranged alphabetically by industry and, within each industry, by broad geographic region. Part 2 lists publishers of energy industry data and includes an index to sources produced by those publishers. Part 3 contains indexes by SIC code and by subject. Part 4 is a title index.

  18. Industrial Assessments and Why Your Plant Should Have One

    E-Print Network [OSTI]

    Glaser, C. J.; Demetrops, J. P.

    list of member energy service companies, including contact information, and descriptions ofthe services offered. The Electric Power Research Institute (EPRI), a research consortia ofelectric utilities, has a number of technical resources which may... be of interest. EPRI, which has about 700 members, is currently working with over twenty participating utilities through the EPRI Partnership for Industrial Competitiveness (EPIC) program., to provide eligible firms with industrial plant surveys. The EPIC...

  19. Wildlife Services

    E-Print Network [OSTI]

    Texas Wildlife Services

    2007-05-23T23:59:59.000Z

    with the Federal Aviation Administration and commercial and military airports to reduce wildlife hazards to aircraft. ? Protecting facilities, structures and other property from damage caused by rats, mice, raccoons, skunks, opossums, squirrels, beavers, birds...'s health, safety and prop- erty from damage caused by wildlife. Wildlife Services accomplishes this goal as a member of the cooperative Texas Wildlife Services Program. This cooperative federal, state and private program includes the Wildlife Services...

  20. ESCO market and industry trends: Updated results from the NAESCO database project

    SciTech Connect (OSTI)

    Osborn, Julie G.; Goldman, Charles A.; Hopper, Nicole C.

    2001-10-15T23:59:59.000Z

    Today's U.S. energy efficiency services industry is one of the most successful examples of private sector energy efficiency services in the world, yet little empirical information is available on the actual market activity of this industry. LBNL, together with the National Association of Energy Services Companies (NAESCO), has compiled the most comprehensive dataset of the energy efficiency services industry: nearly 1,500 case studies of energy efficiency projects. Our analysis of these projects helps shed light on some of the conventional wisdom regarding industry performance and evolution. We report key statistics about typical projects and industry trends that will aid state, federal, and international policymakers, and other investors interested in the development of a private sector energy efficiency services industry.

  1. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  2. Uranium industry annual 1997

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

  3. CASL Industry Council Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IndustryCouncil.shtml The new members that joined the Industry Council include NPP owneroperators with analysis capability: Tyrone Stevens of Exelon, and SMR vendors:...

  4. IndustrialEngineering361 BreakthroughsinQuality

    E-Print Network [OSTI]

    Vardeman, Stephen B.

    1 ......... IndustrialEngineering361 SixSigma BreakthroughsinQuality Trent Lewis Kim Martin Matt, is total business focus on servicing customers. With Six sigma as the enabler, we intend to meet that standard." - GE 1999 Annual Report Six Sigma So, what is six sigma? The Greek letter Sigma, , is used

  5. Gloucester County, New Jersey Industry City

    E-Print Network [OSTI]

    Rusu, Adrian

    Gloucester County, New Jersey Industry City Number of Employees IT Service Provider Paulsboro 600 Oil Refinery Westville 479 Durable Medical Equipment Sewell 500 Flowers and Florist Wholesale Supply Sewell 550 Petroleum Refining Paulsboro 550 Warehousing Pitman 800 Packaged Frozen Food Merchant

  6. Cutting Industrial Solar System Costs in Half 

    E-Print Network [OSTI]

    Niess, R. C.; Weinstein, A.

    1982-01-01T23:59:59.000Z

    collectors that result in an installed first cost that approximates one half of that of conventional solar systems. This technology is now available for producing up to 220 F hot water for industrial process heat, space heating, and service hot water heating...

  7. Survey of US Department of Defense Manufacturing Technology Program activities applicable to civilian manufacturing industries. Final report

    SciTech Connect (OSTI)

    Azimi, S.A.; Conrad, J.L.; Reed, J.E.

    1985-03-01T23:59:59.000Z

    Intent of the survey was to identify and characterize activities potentially applicable to improving energy efficiency and overall productivity in the civilian manufacturing industries. The civilian industries emphasized were the general manufacturing industries (including fabricated metals, glass, machinery, paper, plastic, textile, and transportation equipment manufacturing) and the primary metals industries (including primary aluminum, copper, steel, and zinc production). The principal steps in the survey were to: develop overview taxonomies of the general manufacturing and primary metals industries as well as specific industry taxonomies; identify needs and opportunities for improving process energy efficiency and productivity in the industries included; identify federal programs, capabilities, and special technical expertise that might be relevant to industry's needs and opportunities; contact federal laboratories/facilities, through visits and other forms of inquiry; prepare formatted profiles (descriptions) potentially applicable work efforts; review findings with industry; and compile and evaluate industry responses.

  8. Industrial fouling: problem characterization, economic assessment, and review of prevention, mitigation, and accommodation techniques

    SciTech Connect (OSTI)

    Garrett-Price, B.A.; Smith, S.A.; Watts, R.L.

    1984-02-01T23:59:59.000Z

    A comprehensive overview of heat exchanger fouling in the manufacturing industries is provided. Specifically, this overview addresses: the characteristics of industrial fouling problems; the mitigation and accommodation techniques currently used by industry; and the types and magnitude of costs associated with industrial fouling. A detailed review of the fouling problems, costs and mitigation techniques is provided for the food, textile, pulp and paper, chemical, petroleum, cement, glass and primary metals industries.

  9. The waste-to-energy industry`s perspective on EPA`s proposed MACT regulations

    SciTech Connect (OSTI)

    Ferraro, F.A. [Wheelabrator Technologies Inc., Hampton, NH (United States)

    1996-12-31T23:59:59.000Z

    On September 1, 1994, the US Environmental Protection Agency, under Section 129 of the Clean Air Act, proposed New Source Performance standards and Emissions guidelines for Municipal Waste Combustors. This paper will provide an overview of the proposed MACT regulations as they relate to large, mass-burn Municipal Waste Combustors. This paper will also present a view of the proposed regulations from the perspective the waste-to-energy industry as represented by the industry association, the Integrated Waste Services Association.

  10. Industry Analysis February 2013

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    technology ­ Clean tech/ clean technology #12;7 Industry Studies · IbisWorld ­ U.S. and global industry-Industries · Biodiesel ­ Biofuel ­ Alternate fuels ­ Green fuels ­ Renewable fuels/energy ­ Green energy ­ Green Canada, Census, Industry Canada, the OECD, European Union, IMF, World Bank, UN . . . Never pay for stats

  11. INDUSTRIAL ENGINEERING GRADUATE PROGRAMS

    E-Print Network [OSTI]

    Gelfond, Michael

    : Occupational biomechanics, work physiology, industrial ergonomics, environmental hygiene, cognitive engineeringINDUSTRIAL ENGINEERING GRADUATE PROGRAMS The Master of Science in Industrial Engineering (M Systems and Engineering (M.S.M.S.E.), the Doctor of Philosophy in Industrial Engineering, and the Doctor

  12. Using DOE Industrial Energy Audit Data for Utility Program Design

    E-Print Network [OSTI]

    Glaser, C. J.; Packard, C. P.; Parfomak, P.

    . Baltimore Gas & Electric Company BG&E provides natural gas and electric service to central Maryland, serving approximately 1,000,000 residential customers, 100,000 commercial customers, and 3,000 industrial customers. The industrial customers in BG... time-of-use rates, credits for reducing demand during critical periods, and rebates for efficient lighting, motors, and air compressors. In 1992, BG&E also began the design of its Custom Industrial Plant Upgrade Program, intended to provide custom...

  13. Becoming a cloud service provider: The evolution of communications service providers

    E-Print Network [OSTI]

    Telecommunications Industry White Paper Cloud Computing #12;2 Cloud computing for retail #12;3 If they takeBecoming a cloud service provider: The evolution of communications service providers IBM demand. This paper examines ways that CSPs can take advantage of cloud computing--both internally

  14. Service Oriented Architecture for High Level Applications

    SciTech Connect (OSTI)

    Chu, Chungming; Chevtsov, Sergei; Wu, Juhao; /SLAC; Shen, Guobao; /Brookhaven

    2012-06-28T23:59:59.000Z

    Standalone high level applications often suffer from poor performance and reliability due to lengthy initialization, heavy computation and rapid graphical update. Service-oriented architecture (SOA) is trying to separate the initialization and computation from applications and to distribute such work to various service providers. Heavy computation such as beam tracking will be done periodically on a dedicated server and data will be available to client applications at all time. Industrial standard service architecture can help to improve the performance, reliability and maintainability of the service. Robustness will also be improved by reducing the complexity of individual client applications.

  15. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    SciTech Connect (OSTI)

    Tanaka, T. [Kansai Electric Power Company, Osaka (Japan); Shimizu, S.; Ogata, Y. [Mitsubishi Heavy Industries, Ltd., Kobe (Japan)

    1997-04-01T23:59:59.000Z

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.

  16. A Survey of the U.S. ESCO Industry: Market Growth and Development from 2008 to 2011

    E-Print Network [OSTI]

    Satchwell, Andrew

    2010-01-01T23:59:59.000Z

    Market Trends in the U.S. ESCO Industry: Results from the2007. “A Survey of the U.S. ESCO Industry: Market Growth andInstitutional Markets for ESCO Services: Comparing Programs,

  17. The federal market for ESCO services: How does it measure up?

    E-Print Network [OSTI]

    Hopper, Nicole; Goldman, Charles; Birr, Dave

    2004-01-01T23:59:59.000Z

    Market Trends in the U.S. ESCO Industry: Results from theefficiency projects and ESCO industry activity: TatianaThe Federal Market for ESCO Services: How Does it Measure

  18. In July of 2003, the organizations of Printing Services; Planning, Construction & Maintenance; Parking; Campus

    E-Print Network [OSTI]

    Shim, Moonsub

    , systems & controls, and waste transfer & recycling. Planning Division: The primary focus of our Planning · Parking · Printing · Space Management · Stores · Waste Management & Recycling · Copying ServicesAbout In July of 2003, the organizations of Printing Services; Planning, Construction & Maintenance

  19. Review of tribological sinks in six major industries

    SciTech Connect (OSTI)

    Imhoff, C.H.; Brown, D.R.; Hane, G.J.; Hutchinson, R.A.; Erickson, R.; Merriman, T.; Gruber, T.; Barber, S.

    1985-09-01T23:59:59.000Z

    Friction and material wear occur throughout all industries and are involved in many processes within each industry. These conditions make assessing tribological activity overall in industry very complex and expensive. Therefore, a research strategy to obtain preliminary information on only the most significant industrial tribological sinks was defined. The industries examined were selected according to both the magnitude of overall energy consumption (particularly machine drive) and the known presence of significant tribological sinks. The six industries chosen are as follows: mining, agriculture, primary metals, chemicals/refining, food, and pulp and paper. They were reviewed to identify and characterize the major tribology sinks. It was concluded that wear losses are greater than friction losses, and that reducing wear rates would improve industrial productivity.

  20. Amplifying Real Estate Value through Energy & Water Management: From ESCO to "Energy Services Partner"

    E-Print Network [OSTI]

    Mills, Evan

    2004-01-01T23:59:59.000Z

    Market Trends in The U.S. ESCO Industry: Results from theWater Management: From ESCO to “Energy Services Partner” 1energy service company (ESCO) business model could become

  1. 28.99.99.M1 Student Health Services Page 1 of 1 UNIVERSITY RULE

    E-Print Network [OSTI]

    The Department of Student Health Services (A.P. Beutel Health Center) is an ambulatory health care provider serving the Texas A&M University student body through the provision of primary health care services28.99.99.M1 Student Health Services Page 1 of 1 UNIVERSITY RULE 28.99.99.M1 Student Health Services

  2. The Industrial Electrification Program

    E-Print Network [OSTI]

    Harry, I. L.

    1982-01-01T23:59:59.000Z

    EPRI's role as the research organization of the electric power industry, in coordination with potential user industries, is to 1) define the viability of candidate electrification technologies by monitoring the state-of-the-art and continuously...

  3. Electrotechnologies in Process Industries

    E-Print Network [OSTI]

    Amarnath, K. R.

    The Industrial Program at the Electric Power Research Institute (EPRI) promotes the efficient use of electricity to improve the competitive position of the American industry. Electrotechnologies that improve productivity, improve quality...

  4. and Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    technologicalandlogisticssystemsbygathering, structuring, and managing information. Indus- trial engineers apply their knowledge not only45 Mechanical and Industrial Engineering 220 Engineering Lab Degrees: Bachelor of Science in Mechanical Engineering Bachelor of Science in Industrial Engineering Contact: James R. Rinderle

  5. Demographics and industry returns

    E-Print Network [OSTI]

    Pollet, Joshua A.; DellaVigna, Stefano

    2007-01-01T23:59:59.000Z

    Industry category Child care Children’s books Children’s clothing Toysindustry Child care Children’s books Children’s clothing ToysIndustries are associated with high demand by children (child care, toys) and

  6. INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY

    E-Print Network [OSTI]

    Pohl, Karsten

    INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY SUMMER 2013 Industrial Engineering COOP Student needed-Fri, for summer 2013. Student must be enrolled in BS Engineering program. (Preferably completed 2-3 yrs

  7. Industry Analysis October 2010

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    Different regulations for some industries in Canada, the U.S. and Europe ie. telecommunications, energy of energy, materials, industrial waste, byproducts #12;Contact Constance Adamson Stauffer Library adamsonc

  8. Assessing U.S. ESCO industry performance and market trends: Results from the NAESCO database project

    SciTech Connect (OSTI)

    Osborn, Julie; Goldman, Chuck; Hopper, Nicole; Singer, Terry

    2002-05-15T23:59:59.000Z

    The U.S. Energy Services Company (ESCO) industry is often cited as the most successful model for the private sector delivery of energy-efficiency services. This study documents actual performance of the ESCO industry in order to provide policymakers and investors with objective informative and customers with a resource for benchmarking proposed projects relative to industry performance. We have assembled a database of nearly 1500 case studies of energy-efficiency projects - the most comprehensive data set of the U.S. ESCO industry available. These projects include $2.55B of work completed by 51 ESCOs and span much of the history of this industry.

  9. Reliability worth assessment in a developing country - commercial and industrial survey results

    SciTech Connect (OSTI)

    Pandey, M.; Billinton, R.

    1999-11-01T23:59:59.000Z

    This paper presents the results of an investigation conducted to determine the costs of electric service interruptions in the commercial and industrial sectors of a developing country. The investigation used in-person interviews of 800 businesses and 300 industries in Nepal. The results indicate the customer implications of service reliability, and show that electric service reliability worth can be assessed in a developing country.

  10. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  11. Energy services companies: Where are international markets going?

    SciTech Connect (OSTI)

    Sullivan, J.B.

    1997-09-01T23:59:59.000Z

    The power industry in developing and reindustrializing countries continues its historic shift toward privatization and competition. This shift opens the door to the very large technical market for the goods and services that energy services companies offer. Signs indicate however that the energy services market will develop along competitive lines with energy being supplied by companies that provide a variety of power marketing, efficiency services and other services. This articles summarizes estimates of current energy efficient market size, lists projects that are viewed as pilot energy services projects, and discusses a number of factors that will affect the ESCO market abroad.

  12. Mechanical & Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical & Industrial Engineering Mario A. Rotea Professor and Department Head #12;2Mechanical & Industrial Engineering Outline · Undergraduate Degree Programs · Graduate Degree Programs · The Faculty · The Research · Summary #12;3Mechanical & Industrial Engineering Undergraduate Programs ­ BSME & BSIE 0 20 40 60

  13. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAboutUser Services PrintServices Print

  14. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAboutUser Services PrintServices

  15. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAboutUser Services PrintServicesUser

  16. Industrial Dojo Program Fosters Industrial Internet Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Launches Cloud Foundry 'Industrial Dojo,' Contributes to Open Source to Foster Continued...

  17. Industrial policy and the Indian electronics industry

    E-Print Network [OSTI]

    Love, Robert (Robert Eric)

    2008-01-01T23:59:59.000Z

    Recently, production within India's Electronics sector amounted to a low $12 billion when compared to the global output of $1400 billion. The slow growth in the local industry is often judged to be the result of late ...

  18. LANSCE | Lujan Center | Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users The Lujan Neutron Scattering Center offers a diverse set of capabilities and instruments for industrial projects. Industrial users are invited to contact Fredrik...

  19. INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering

    E-Print Network [OSTI]

    Rohs, Remo

    78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take of industries including consulting, technology development, software, supply chain manufacturing, engineering

  20. Intern experience with Texas Utilities Services, Inc.: an internship report

    E-Print Network [OSTI]

    Janne, Randall Lee, 1953-

    2013-03-13T23:59:59.000Z

    This report is a review of the author's year of experience as an intern with Texas Utilities Services...The author worked as a Nuclear Fuels Engineer for the duration of the internship period. His primary assignment was the development...

  1. A lessee's guide to leasing industrial equipment

    E-Print Network [OSTI]

    Johnson, Jones Eugene

    1959-01-01T23:59:59.000Z

    is included in the agree- ment, the lessee is treading on dangerous ground, The Internal Reve- nue Service will examine such agreements closely and may decide the original transaction was a sale and not a lease. Regardless, whether the lessee actually...A LESSEE'S GUIDE TO LEASING INDUSTRIAL EQUIPMENT A Thesis Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in Partial fulfillment of the requirements for the degree of Master of Business Administration...

  2. Applications for Computers in Industrial Powerhouses

    E-Print Network [OSTI]

    Delk, S. R.

    1981-01-01T23:59:59.000Z

    of electric motors due to their increased number of starts. In the industrial field, there are many processes that will not allow a cyclical operation. However, in batch processes, electric demand control can be very valuable. Electric demand reduction... these services you generally have several boilers, refrigeration machines, and air compres sors which may be driven by electric motors, topp ing or condensing steam turbines. How do you determine the most economical method to supply all the utilities...

  3. Industrial Compressed Air System Energy Efficiency Guidebook.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1993-12-01T23:59:59.000Z

    Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

  4. Multi-echelon inventory optimization for an oil services company

    E-Print Network [OSTI]

    Chalapong, Michael

    2011-01-01T23:59:59.000Z

    In the oilfield services industry, healthy margins and the criticality of product availability have often over shadowed the need for operational efficiency. Although those factors have not changed, the emergence of stronger ...

  5. Energy Efficiency Services Sector: Workforce Education and Training Needs

    E-Print Network [OSTI]

    Goldman, Charles A.

    2010-01-01T23:59:59.000Z

    2007. “A Survey of the U.S. ESCO Industry: Market Growth andCOMNET DOE EE EERE EESS EIA ESCO EUCI FTE FY HERS HVAC IACenergy services companies (ESCO), trade associations and

  6. Techno-Economic Analysis of PEV Battery Second Use: Repurposed-Battery Selling Price and Commercial and Industrial End-User Value

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.; Williams, B.; Ferry, M.; Eyer, J.

    2012-06-01T23:59:59.000Z

    Accelerated market penetration of plug-in electric vehicles and deployment of grid-connected energy storage are restricted by the high cost of lithium-ion batteries. Research, development, and manufacturing are underway to lower material costs, enhance process efficiencies, and increase production volumes. A fraction of the battery cost may be recovered after vehicular service by reusing the battery where it may have sufficient performance for other energy-storage applications. By extracting post-vehicle additional services and revenue from the battery, the total lifetime value of the battery is increased. The overall cost of energy-storage solutions for both primary (automotive) and secondary (grid) customer could be decreased. This techno-economic analysis of battery second use considers effects of battery degradation in both automotive and grid service, repurposing costs, balance-of-system costs, the value of aggregated energy-storage to commercial and industrial end users, and competitive technology. Batteries from plug-in electric vehicles can economically be used to serve the power quality and reliability needs of commercial and industrial end users. However, the value to the automotive battery owner is small (e.g., $20-$100/kWh) as declining future battery costs and other factors strongly affect salvage value. Repurposed automotive battery prices may range from $38/kWh to $132/kWh.

  7. Making Industry Part of the Climate Solution

    SciTech Connect (OSTI)

    Lapsa, Melissa Voss [ORNL; Brown, Dr. Marilyn Ann [Georgia Institute of Technology; Jackson, Roderick K [ORNL; Cox, Matthew [Georgia Institute of Technology; Cortes, Rodrigo [Georgia Institute of Technology; Deitchman, Benjamin H [ORNL

    2011-06-01T23:59:59.000Z

    Improving the energy efficiency of industry is essential for maintaining the viability of domestic manufacturing, especially in a world economy where production is shifting to low-cost, less regulated developing countries. Numerous studies have shown the potential for significant cost-effective energy-savings in U.S. industries, but the realization of this potential is hindered by regulatory, information, workforce, and financial obstacles. This report evaluates seven federal policy options aimed at improving the energy efficiency of industry, grounded in an understanding of industrial decision-making and the barriers to efficiency improvements. Detailed analysis employs the Georgia Institute of Technology's version of the National Energy Modeling System and spreadsheet calculations, generating a series of benefit/cost metrics spanning private and public costs and energy bill savings, as well as air pollution benefits and the social cost of carbon. Two of the policies would address regulatory hurdles (Output-Based Emissions Standards and a federal Energy Portfolio Standard with Combined Heat and Power); three would help to fill information gaps and workforce training needs (the Superior Energy Performance program, Implementation Support Services, and a Small Firm Energy Management program); and two would tackle financial barriers (Tax Lien Financing and Energy-Efficient Industrial Motor Rebates). The social benefit-cost ratios of these policies appear to be highly favorable based on a range of plausible assumptions. Each of the seven policy options has an appropriate federal role, broad applicability across industries, utilizes readily available technologies, and all are administratively feasible.

  8. INDUSTRIAL ENERGY DATA COLLECTION EXISTING SYSTEM AND PROPOSED FUTURE

    E-Print Network [OSTI]

    .4 Hydro Quebec 14 5.5 Energy Research Group, Simon Fraser University 14 5.6 CANMET 15 #12;Industrial. INDUSTRIAL PRIMARY ENERGY DATA COLLECTION FORMATS 27 9.1 Energy Audits 27 9.1.1 Methodology 29 9.1.2 Steps Involved in an Energy Audit 30 9.2 Surveys 31 9.2.1 Detailed Site Energy End-use Survey 32 9.2.2 Equipment

  9. Industrial Retrofits are Possible

    E-Print Network [OSTI]

    Stobart, E. W.

    . In April of 1987, the provincial government initiated a program to assist industrial energy users to reduce their energy usage. This program was designed to concentrate on an in-depth analysis of the complete operations of industrial plants... with the analyses being performed by specialist, private sector, engineering consultants. The program is in 3 phases providing an Ontario industrial plant with an Energy Analysis, a Feasibility Analysis Grant and a Project Engineering Design Grant...

  10. National and Regional Resources Substance Abuse and Mental Health Services Administration

    E-Print Network [OSTI]

    Acton, Scott

    to carry-out voucher programs for substance abuse clinical treatment and recovery support services. GoalRecovery National and Regional Resources Substance Abuse and Mental Health Services Administration SAMHSA: Recovery is a primary goal for behavioral health care Recovery has been identified as a primary

  11. Presentations for Industry

    Broader source: Energy.gov [DOE]

    Learn energy-saving strategies from leading manufacturing companies and energy experts. The presentations are organized below by topic area. In addition, industrial energy managers, utilities, and...

  12. About Industrial Distributed Energy

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office's (AMO's) Industrial Distributed Energy activities build on the success of predecessor DOE programs on distributed energy and combined heat and power (CHP) while...

  13. Industrial Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    Boiler, Steam, and Cogeneration (BSC) Component. The BSC Component satisfies the steam demand from the PA and BLD Components. In some industries, the PA Component produces...

  14. UM SERVICE VEHICLE PARKING PERMIT APPLICATION Return the completed application to Parking and Transportation Services, 1213 Kipke Dr., 2002, or fax

    E-Print Network [OSTI]

    Kirschner, Denise

    UM SERVICE VEHICLE PARKING PERMIT APPLICATION Return the completed application to Parking vehicles that provide service as stated in the definition below qualify to receive this permit. DEFINITION A service vehicle is any licensed University vehicle, typically a truck or van, whose primary purpose

  15. Low-income energy policy in a restructuring electricity industry: an assessment of federal options

    SciTech Connect (OSTI)

    Baxter, L.W.

    1997-07-01T23:59:59.000Z

    This report identifies both the low-income energy services historically provided in the electricity industry and those services that may be affected by industry restructuring. It identifies policies that are being proposed or could be developed to address low- income electricity services in a restructured industry. It discusses potential federal policy options and identifies key policy and implementation issues that arise when considering these potential federal initiatives. To understand recent policy development at the state level, we reviewed restructuring proposals from eight states and the accompanying testimony and comments filed in restructuring proceedings in these states.

  16. Understanding Sectoral Labor Market Dynamics: An Equilibrium Analysis of the Oil and Gas Field Services

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    Understanding Sectoral Labor Market Dynamics: An Equilibrium Analysis of the Oil and Gas Field examines the response of employment and wages in the US oil and gas ...eld services industry to changes the dynamic response of wages and employment in the U.S. Oil and Gas Field Services (OGFS) industry to changes

  17. Personal Services Agreements Waivers

    E-Print Network [OSTI]

    . Type of Service 1. Consultant Services: Include consulting services, program evaluators, standards, or the School does not have the equipment necessary to perform these services. 6. Graphic and Journalistic Service: Services including graphic design, writing and editing and bookbinding for which CSM does

  18. Evaluating the DSM Potential for Industrial Electrotechnologies and Management Practices

    E-Print Network [OSTI]

    Harrell, P. J.; Pavone, A.

    -side management (DSM) program. This paper outlines the procedures used to evaluate technologies that may impact oil refining, pulp & paper production, and 26 major chemical processes of industrial customers within HL&P's service area. Each technology... practices (technologies) for possible inclusion in an industrial demand-side management (DSM) program. This paper outlines the procedures used to evaluate technologies that may impact oil refining, pulp & paper production, and 26 major chemical processes...

  19. Demand Response and Ancillary Services September 2008

    E-Print Network [OSTI]

    Demand Response and Ancillary Services September 2008 #12;© 2008 EnerNOC, Inc. All Rights Reserved programs The purpose of this presentation is to offer insight into the mechanics of demand response and industrial demand response resources across North America in both regulated and restructured markets As of 6

  20. IBM Global Technology Services February 2009

    E-Print Network [OSTI]

    be seen as an opportunity for your organization. The standard is so well designed that it can actually to companies already burdened with financial services industry regulations such as International Organization for Standardization (ISO)/International Electrotechnical Commission (IEC) 27002 and the Sarbanes-Oxley Act

  1. Growing Hawaii's agriculture industry,

    E-Print Network [OSTI]

    Program Overview Growing Hawaii's agriculture industry, one business at a time Website: http-3547 agincubator@ctahr.hawaii.edu Grow Your Business If you are looking to start an agriculture-related business with our program · Positively impact the agriculture industry in Hawaii with their success

  2. Geothermal industry assessment

    SciTech Connect (OSTI)

    Not Available

    1980-07-01T23:59:59.000Z

    An assessment of the geothermal industry is presented, focusing on industry structure, corporate activities and strategies, and detailed analysis of the technological, economic, financial, and institutional issues important to government policy formulation. The study is based principally on confidential interviews with executives of 75 companies active in the field. (MHR)

  3. Industrial Optimization Compact Course

    E-Print Network [OSTI]

    Kirches, Christian

    Industrial Optimization Compact Course and Challenge Workshop Optimization plays a crucial role of the processes are typically nonlinear and dyna- mic. Thus, complex dynamic optimization or optimal control in industrial optimization. February 17­20, 2014 ·9.00­17.00 IWR ·Im Neuenheimer Feld 368 ·69120 Heidelberg www

  4. Review of China's Low-Carbon City Initiative and Developments in the Coal Industry

    E-Print Network [OSTI]

    Fridley, David

    2014-01-01T23:59:59.000Z

    industry moderates and energy demand from the buildingsChina control its future energy demand and carbon emissions.usual scenario, primary energy demand to fall to 28.18 Mtce

  5. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4.CCSM4large.jpg BER:Services Print The

  6. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4.CCSM4large.jpg BER:Services Print TheUser

  7. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4.CCSM4large.jpg BER:Services Print

  8. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4.CCSM4large.jpg BER:Services PrintUser

  9. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4.CCSM4large.jpg BER:Services PrintUserUser

  10. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAboutUser Services Print The User

  11. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAboutUser Services Print The UserUser

  12. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAboutUser Services Print The

  13. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAboutUser Services Print TheAuthor

  14. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAboutUser Services Print

  15. The Role of Demand Response in Default Service Pricing

    SciTech Connect (OSTI)

    Barbose, Galen; Goldman, Chuck; Neenan, Bernie

    2006-03-10T23:59:59.000Z

    Dynamic retail electricity pricing, especially real-time pricing (RTP), has been widely heralded as a panacea for providing much-needed demand response in electricity markets. However, in designing default service for competitive retail markets, demand response often appears to be an afterthought. But that may be changing as states that initiated customer choice in the past 5-7 years reach an important juncture in retail market design. Most states with retail choice established an initial transitional period, during which utilities were required to offer a default or ''standard offer'' generation service, often at a capped or otherwise administratively-determined rate. Many retail choice states have reached, or are nearing, the end of their transitional period and several states have adopted an RTP-type default service for large commercial and industrial (C&I) customers. Are these initiatives motivated by the desire to induce greater demand response, or is RTP being called upon to serve a different role in competitive markets? Surprisingly, we found that in most cases, the primary reason for adopting RTP as the default service was not to encourage demand response, but rather to advance policy objectives related to the development of competitive retail markets. However, we also find that, if efforts are made in its design and implementation, default RTP service can also provide a solid foundation for developing price responsive demand, creating an important link between wholesale and retail market transactions. This paper, which draws from a lengthier report, describes the experience to date with default RTP in the U.S., identifying findings related to its actual and potential role as an instrument for cultivating price responsive demand [1]. For each of the five states currently with default RTP, we conducted a detailed review of the regulatory proceedings leading to its adoption. To further understand the intentions and expectations of those involved in its design and implementation, we also interviewed regulatory staff and utilities in each state, as well as eight of the most prominent competitive retail suppliers operating in these markets which, together, comprised about 60-65% of competitive C&I sales in the U.S. in 2004 [2].

  16. INDUSTRIAL&SYSTEMS Industrial and Systems engineers use

    E-Print Network [OSTI]

    Rohs, Remo

    78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take · Industrial and Systems Engineering Bachelor of Science 128 units · Industrial and Systems Engineering

  17. Petroleum Service Projects in the Gulf of Guinea

    E-Print Network [OSTI]

    Ken-Worgu, Kenneth Chukwumeka

    2011-10-21T23:59:59.000Z

    to May 2011, I worked on seven projects for the company. The following are the specific services contracts in the Gulf of Guinea: 1. Managing delivering, maintenance and marketing of offshore Vessels: Tug Boats, Pipe lay / work / 184 Man Accommodation... in petroleum service contract jobs for the company. I have procured petroleum pipes, grid blasters, cranes, dozers, pipe cutters, swamp buggies, tug boats and barges for the company. I have negotiated a development agreement between Oil & Industrial Services...

  18. Broadening Industry Governance to Include Nonproliferation

    SciTech Connect (OSTI)

    Hund, Gretchen; Seward, Amy M.

    2008-11-11T23:59:59.000Z

    As industry is the first line of defense in detecting and thwarting illicit trade networks, the engagement of the private sector is critical to any government effort to strengthen existing mechanisms to protect goods and services throughout the supply chain. This study builds on previous PNNL work to continue to evaluate means for greater industry engagement to complement and strengthen existing governmental efforts to detect and stem the trade of illicit goods and to protect and secure goods that could be used in making a weapon of mass destruction. Specifically, the study evaluates the concept of Industry Self Regulation, defined as a systematic voluntary program undertaken by an industry or by individual companies to anticipate, implement, supplement, or substitute for regulatory requirements in a given field, generally through the adoption of best practices. Through a series of interviews with companies with a past history of non-compliance, trade associations and NGOs, the authors identify gaps in the existing regulatory infrastructure, drivers for a self regulation approach and the form such an approach might take, as well as obstacles to be overcome. The authors conclude that it is at the intersection of industry, government, and security that—through collaborative means—the effectiveness of the international nonproliferation system—can be most effectively strengthened to the mutual benefit of both government and the private sector. Industry has a critical stake in the success of this regime, and has the potential to act as an integrating force that brings together the existing mechanisms of the global nonproliferation regime: export controls, physical protection, and safeguards. The authors conclude that industry compliance is not enough; rather, nonproliferation must become a central tenant of a company’s corporate culture and be viewed as an integral component of corporate social responsibility (CSR).

  19. Quality and Reuse in Industrial Software Engineering Greg Butler

    E-Print Network [OSTI]

    Butler, Gregory

    Quality and Reuse in Industrial Software Engineering Greg Butler Department of Computer Science on the costs and benefits of the approaches, and the criteria which determine a successful transfer the effort and costs of maintenance and understanding are the primary means to increased productivity

  20. Final Assessment of Manual Ultrasonic Examinations Applied to Detect Flaws in Primary System Dissimilar Metal Welds at North Anna Power Station

    SciTech Connect (OSTI)

    Anderson, Michael T.; Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Prowant, Matthew S.; Doctor, Steven R.

    2014-03-24T23:59:59.000Z

    PNNL conducted a technical assessment of the NDE issues and protocols that led to missed detections of several axially oriented flaws in a steam generator primary inlet dissimilar metal weld at North Anna Power Station, Unit 1 (NAPS-1). This particular component design exhibits a significant outside-diameter (OD) taper that is not included as a blind performance demonstration mock-up within the industry’s Performance Demonstration Initiative, administered by EPRI. For this reason, the licensee engaged EPRI to assist in the development of a technical justification to support the basis for a site-specific qualification. The service-induced flaws at NAPS-1 were eventually detected as a result of OD surface machining in preparation for a full structural weld overlay. The machining operation uncovered the existence of two through-wall flaws, based on the observance of primary water leaking from the dissimilar metal weld. A total of five axially oriented flaws were detected in varied locations around the weld circumference. The field volumetric examination that was conducted at NAPS-1 was a non-encoded, real-time manual ultrasonic examination. PNNL conducted both an initial assessment, and subsequently, a more rigorous technical evaluation (reported here), which has identified an array of NDE issues that may have led to the subject missed detections. These evaluations were performed through technical reviews and discussions with NRC staff, EPRI NDE Center personnel, industry and ISI vendor personnel, and ultrasonic transducer manufacturers, and laboratory tests, to better understand the underlying issues at North Anna.

  1. Industrial process surveillance system

    DOE Patents [OSTI]

    Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

    1998-06-09T23:59:59.000Z

    A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

  2. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01T23:59:59.000Z

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  3. Potential environmental effects of energy conservation measures in northwest industries

    SciTech Connect (OSTI)

    Baechler, M C; Gygi, K F; Hendrickson, P L

    1992-01-01T23:59:59.000Z

    The Bonneville Power Administration (Bonneville) has identified 101 plants in the Pacific Northwest that account for 80% of the region's industrial electricity consumption. These plants offer a precise target for a conservation program. PNL determined that most of these 101 plants were represented by 11 major industries. We then reviewed 36 major conservation technologies used in these 11 industrial settings to determine their potential environmental impacts. Energy efficiency technologies designed for industrial use may result in direct or indirect environmental impacts. Effects may result from the production of the conservation measure technology, changes in the working environment due to different energy and material requirements, or changes to waste streams. Industry type, work-place conditions, worker training, and environmental conditions inside and outside the plant are all key variables that may affect environmental outcomes. To address these issues this report has three objectives: Describe potential conservation measures that Bonneville may employ in industrial programs and discuss potential primary impacts. Characterize industrial systems and processes where the measure may be employed and describe general environmental issues associated with each industry type. Review environmental permitting, licensing, and other regulatory actions required for industries and summarize the type of information available from these sources for further analysis.

  4. Balkanized research in ecological engineering revealed by a bibliometric analysis of earthworms and ecosystem services.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and ecosystem services. Manuel Blouin, Nicolas Sery, Daniel Cluzeau, Jean-Jacques Brun, Alain Bédécarrats are believed to be potentially useful organisms for managing ecosystem services, there is actually of the association of ,,earthworms and other terms such as ecosystem services (primary production, nutrient cycling

  5. Energy Smart- Commercial and Industrial Energy Efficiency Rebate Program (20 Municipalities)

    Broader source: Energy.gov [DOE]

    Franklin Energy Services has partnered with the Michigan Public Power Agency (MPPA), which is made up of 20 municipal utilities, to offer the Energy Smart Commercial and Industrial Energy...

  6. The Utility-Industry Partnership for Economic Development: A Troubled Marriage?

    E-Print Network [OSTI]

    Haeri, M. H.; Shaffer, S.

    The electric utilities' relationship with their industrial customers and the importance of the product and services that they offer, uniquely position them as an influential player in the economy of the communities that they serve. Traditionally...

  7. The Constant Voltage Transformer (CVT) for Mitigating Effects of Voltage Sags on Industrial Equipment

    E-Print Network [OSTI]

    Ferraro, R. J.; Osborne, R.; Stephens, R.

    ) an increase in loads that use power electronics in some type of power conversion configuration [1][2]. This paper presents applications of the constant-voltage transformer (CVT) for mitigating the effects of electric service voltage sags on industrial...

  8. A real options approach to manage flexible contracts in the telecommunication networking industry

    E-Print Network [OSTI]

    Tay, Ee Learn, 1968-

    2004-01-01T23:59:59.000Z

    One of the biggest challenges facing Original Equipment Manufacturers (OEMs) and Electronic Manufacturing Services (EMS) providers in the telecommunication networking industry is to predict the spending patterns of the ...

  9. Energy service companies -- The sky's the limit

    SciTech Connect (OSTI)

    Fraser, M.; Montross, C.

    1998-07-01T23:59:59.000Z

    The term ESCO has a different meaning to different people. Increasingly, the term is used in its broadest sense to describe any company providing services related to a customer's energy acquisition and use. Previously, the term ESCO was synonymous with contractors who installed new equipment that was paid for by the energy cost savings that resulted. As a result of competition, restructuring and de-regulation of the electricity and gas sectors, the range of firms offering energy services now includes: local utilities using services to retain customers, remote utilities offering services to customers outside their franchise as a door opener to future commodity sales, local and remote utilities who see services as a more lucrative growth opportunity than commodities or transportation of the commodity, facility managers taking advantage of outsourcing trends and using energy management to reduce costs, power marketers, power brokers, aggregators combining energy analysis to segment their customers with processes to identify potential conservation and load management opportunities, cogeneration developers, and agents who help their customers navigate the uncharted waters of the deregulated energy business. This paper will review the impact of the broader definition of ESCOs with a view toward forecasting future trends in the industry including consideration of the fact that the term, energy service, may, itself, be too narrow a definition for a successful business of industry.

  10. The evolution of the U.S. ESCO industry: Is there a Super ESCO in your life?

    SciTech Connect (OSTI)

    Vine, E. [Lawrence Berkeley National Lab., CA (United States)] [Lawrence Berkeley National Lab., CA (United States); Nakagami, Hidetoshi; Murakoshi, Chiharu

    1999-04-01T23:59:59.000Z

    As the restructuring of the US utility industry proceeds, Super ESCOs are expected to be key players in providing energy and energy-efficiency services to utility customers, and utility companies are expected to be either competing or partnering with Super ESCOs. Super ESCOs are energy service companies, or ESCOs, that provide traditional energy services and supply gas and/or electricity (and/or other fuels) to customers. Examples would include such companies as Duke Solutions, Edison Source, Enron Energy Services, PG and E Energy Services, and Xenergy. The evolution of the US ESCO industry and, in particular, the relationship between utilities and Super ESCOs, is the focus of this article.

  11. Industrial Decision Making

    E-Print Network [OSTI]

    Elliott, R. N.; McKinney, V.; Shipley, A.

    2008-01-01T23:59:59.000Z

    Domestic industrial investment has declined due to unfavorable energy prices, and external markets. Investment behavior has changed over the past few years, and will continue due to high labor costs, tight markets and an unstable U.S. economy...

  12. AI Industrial Engineering 

    E-Print Network [OSTI]

    Unknown

    2011-08-17T23:59:59.000Z

    This paper describes the California Energy Commission’s (Commission) energy policies and programs that save energy and money for California’s manufacturing and food processing industries to help retain businesses in-state and reduce greenhouse gases...

  13. Uranium Industry Annual, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-28T23:59:59.000Z

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  14. Industrial energy use indices 

    E-Print Network [OSTI]

    Hanegan, Andrew Aaron

    2008-10-10T23:59:59.000Z

    Energy use index (EUI) is an important measure of energy use which normalizes energy use by dividing by building area. Energy use indices and associated coefficients of variation are computed for major industry categories ...

  15. Animal Industries Building 

    E-Print Network [OSTI]

    Unknown

    2011-08-17T23:59:59.000Z

    Plant managers around the world are interested in improving the energy efficiency of their facilities while both growing and modernizing their manufacturing capabilities. Emerging industrial technologies, both at the ...

  16. Animal Industries Building 

    E-Print Network [OSTI]

    Unknown

    2011-08-17T23:59:59.000Z

    Industrial steam users recognize the need to reduce system cost in order to remain internationally competitive. Steam systems are a key utility that influence cost significantly, and represent a high value opportunity ...

  17. Utility and Industrial Partnerships

    E-Print Network [OSTI]

    Sashihara, T. F.

    In the past decade, many external forces have shocked both utilities and their large industrial customers into seeking more effective ways of coping and surviving. One such way is to develop mutually beneficial partnerships optimizing the use...

  18. Engineering Industrial & Systems

    E-Print Network [OSTI]

    Berdichevsky, Victor

    powerful tool sets used in industry today. -Brent Gillett, BSIE 2007 Advanced Planning Engineer at BMW I the skills necessary to be successful in today's global environment. EDGE exposes and trains engineering

  19. Services-Led Industrialization in India: Assessment and Lessons

    E-Print Network [OSTI]

    Singh, Nirvikar

    2006-01-01T23:59:59.000Z

    in the Indian Economy,” India Policy Forum, forthcoming.of the economic policies followed by India from independencefor Development Policy In reviewing India’s experience with

  20. Developing an energy efficiency service industry in Shanghai

    E-Print Network [OSTI]

    Lin, Jiang; Goldman, Charles; Levine, Mark; Hopper, Nicole

    2004-01-01T23:59:59.000Z

    Performance Contract (ESPC) programs pre-qualify ESCOs forfederal agencies and supports ESPC programs. Lessons Learned

  1. Next generation solutions for the energy services industry

    E-Print Network [OSTI]

    Kumar, Satish; Kromer, Steve

    2006-01-01T23:59:59.000Z

    Enterprise Energy Management (EEM), Remote Data Acquisitionin Enterprise Energy Management (EEM) applications such asEnerscape's powerful EEM applica- tion suite integrates all

  2. Describing dynamism in service dependencies Industrial experience and feedbacks

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    the management of software project development, throughout software lifecycle. First, at development time, teams of their system is updated. Applications are now commonly developed using software components [3]. By using with new development challenges. Indeed, dynamism is a complex concern, difficult to perceive and manage

  3. BPA Letter announcing draft contract for Direct Service Industries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Firm Power rate (IP rate) sufficient to meet a portion of Alcoa's load at its Intalco smelter. The proposed power sale would begin Oct. 1, 2009, and extend through Sept. 30, 2016,...

  4. Knowledge Transfer Partnerships Williams Industrial Services Ltd & Queen's University Belfast

    E-Print Network [OSTI]

    Paxton, Anthony T.

    of biogas plant Use of QUESTOR laboratories for sample analysis Company Quote "Through the Knowledge reductions in energy footprint while maintaining treatment performance. Key Benefits Results of sludge

  5. EDA University Center Program Center for Industrial Research and Service

    E-Print Network [OSTI]

    Lin, Zhiqun

    line" well-being of the region coupled with technical assistance to the critical organizations and businesses of the region. The program provides sustainability assessments, technical assistance, these important trade centers saw nonfarm job increases of 2.5 percent despite population losses. Iowa

  6. DOE Seeks Industry Participation for Engineering Services to Design Next

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2ViolatingRegulations | Department

  7. DOE Seeks Industry Participation for Engineering Services to Design Next

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions andDefinition of Showerhead DOE SeeksGeneration

  8. EDF Industrial Power Services (TX), LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjinDynetek Europe

  9. Industrial Plant Services Australia Pty Ltd IPS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7Open Energy Information IndonesiaIndur

  10. Residential Building Industry Consulting Services | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | RoadmapRenewableGeothermal Field | Open EnergyResidential

  11. US Energy Service Company Industry: History and Business Models |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and Battery TechnologyDepartment of..........................

  12. Environmental Program Services Industry Day List Of Attendees

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2 ChgQuestionsReporting Form

  13. Industrial Rehabilitation & Ergonomics - HPMC Occupational Health Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News link to facebook linkProtection »

  14. FINANCIAL & BUSINESS SERVICES Procurement &

    E-Print Network [OSTI]

    Tipple, Brett

    FINANCIAL & BUSINESS SERVICES Procurement & Payment Summary Accounts Payable Perry H. Hull #12;FINANCIAL & BUSINESS SERVICES Agenda · Accounts Payable: Who we are...what we do... · Accounts Payable;FINANCIAL & BUSINESS SERVICES Financial & Business Services #12;FINANCIAL & BUSINESS SERVICES Accounts

  15. Personal Services Agreements Waivers

    E-Print Network [OSTI]

    these services. 4. Support and Maintenance Agreements: Services include preventive maintenance as well - Equipment Maintenance/Repair Services in this category are used for all types of equipment maintenance the equipment necessary to perform certain services. 2. Equipment Maintenance and Repair: Services include

  16. Could energy intensive industries be powered by carbonfree electricity?

    E-Print Network [OSTI]

    MacKay, David J.C.

    chemical services -- for example, coal, converted to coke, acts as a reducing agent in blast furnaces.) (a comes from coal, oil, and natural gas. What infrastructure would be required to deliver the same amount to Royal Society T E X Paper #12; 2 David J C MacKay FRS Primary energy consumption: 2740TWh/y Coal: 475TWh

  17. Commercial and Industrial Conservation and Load Management Programs at New England Electric

    E-Print Network [OSTI]

    Gibson, P. H.

    COMMERCIAL AND INDUSTRIAL CONSERVAT~ON AND LOAD MANAGEMENT PROGRAMS AT NEW ENGLAND ELECTRIC PETER H. GIBSON Manager, Load Management and Conservation Services New England Power Service Company Westborough, Massachusetts ABSTRACT New... is directed mainly toward the commercial and industrial classes, which mske up 62% of sales. The overall program, called Partners In Energy Planning, includes a performance contracting or modified shared savings program, a lighting subsidy program, a...

  18. 2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    David B. Frederick

    2011-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from May 1, 2010 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2010 partial reporting year, an estimated 3.646 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  19. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    David Frederick

    2012-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA-000160-01), for the wastewater reuse site at the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: (1) Facility and system description; (2) Permit required effluent monitoring data and loading rates; (3) Groundwater monitoring data; (4) Status of special compliance conditions; and (5) Discussion of the facility's environmental impacts. During the 2011 reporting year, an estimated 6.99 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. Using the dissolved iron data, the concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  20. 2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2013-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2012 reporting year, an estimated 11.84 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  1. Ancillary Services Provided from DER

    SciTech Connect (OSTI)

    Campbell, J.B.

    2005-12-21T23:59:59.000Z

    Distributed energy resources (DER) are quickly making their way to industry primarily as backup generation. They are effective at starting and then producing full-load power within a few seconds. The distribution system is aging and transmission system development has not kept up with the growth in load and generation. The nation's transmission system is stressed with heavy power flows over long distances, and many areas are experiencing problems in providing the power quality needed to satisfy customers. Thus, a new market for DER is beginning to emerge. DER can alleviate the burden on the distribution system by providing ancillary services while providing a cost adjustment for the DER owner. This report describes 10 types of ancillary services that distributed generation (DG) can provide to the distribution system. Of these 10 services the feasibility, control strategy, effectiveness, and cost benefits are all analyzed as in the context of a future utility-power market. In this market, services will be provided at a local level that will benefit the customer, the distribution utility, and the transmission company.

  2. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

  3. NEMS industrial module documentation report

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2010) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of output of industrial activity. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

  4. Industrial Development Fund (North Carolina)

    Broader source: Energy.gov [DOE]

    The Industrial Development Fund provides financing grants and loans through designated municipalities and counties to assist in infrastructure improvements for targeted industrial projects. The...

  5. Industrial and Systems engineering

    E-Print Network [OSTI]

    Berdichevsky, Victor

    members are nationally recognized experts in a broad range of research areas. From emergency services, Six-Sigma alumna NANCYPHILIPPART has been recognized by Automotive News as one of 100 leading women in the North

  6. Business Activities in an Industrial Context Boris Gruschko1

    E-Print Network [OSTI]

    Turau, Volker

    Business Activities in an Industrial Context Boris Gruschko1 , Friedrich H. Vogt1 , Simon for an encapsulated business activity, hidden behind a well-defined interface. This abstraction fosters the view of complex business activities, as interactions between Services, allowing for an agile business activity

  7. THE FISH LIVER OIL INDUSTRY FISH ERY LEAFLET 233

    E-Print Network [OSTI]

    of livers with respect to oil content and vitamin A potency · · Relationship of oil content and vitamin A by molecular dietillation · Concentration of vitamin A by saponification · Vitamin-oil specifications, pricesQY THE FISH LIVER OIL INDUSTRY FISH ERY LEAFLET 233 FISH AND WILDLIFE SERVICE United States

  8. Industrial Partnership Prosperity Game{trademark}

    SciTech Connect (OSTI)

    Boyak, K.; Berman, M.; Beck, D.

    1998-02-01T23:59:59.000Z

    Prosperity Games TM are an outgrowth and adaptation move/countermove and seminar War Games. Prosperity Games TM are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education, and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games TM are unique in that both the game format and the player contributions vary from game to game. This report documents the Industry Partnership Prosperity Game sponsored by the Technology Partnerships and Commercialization Center at Sandia National Laboratories. Players came from the Sandia line organizations, the Sandia business development and technology partnerships organizations, the US Department of Energy, academia, and industry The primary objectives of this game were to: explore ways to increase industry partnerships to meet long-term Sandia goals; improve Sandia business development and marketing strategies and tactics; improve the process by which Sandia develops long-term strategic alliances. The game actions and recommendations of these players provided valuable insights as to what Sandia can do to meet these objectives.

  9. Industrial Energy Efficiency: Designing Effective State Programs...

    Energy Savers [EERE]

    Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector Industrial Energy Efficiency: Designing Effective State Programs for the Industrial...

  10. Mechanical and Industrial Engineering Industry Advisory Board University of Massachusetts Amherst

    E-Print Network [OSTI]

    Mountziaris, T. J.

    9/13/2007 Mechanical and Industrial Engineering Industry Advisory Board University of Massachusetts Amherst Department of Mechanical and Industrial Engineering About the Mechanical and Industrial Engineering Industry Advisory Board The purpose of the Mechanical and Industrial Engineering Industry Advisory

  11. 354 STUDENT SERVICES AND PROGRAMS Student Services

    E-Print Network [OSTI]

    Xie,Jiang (Linda)

    , a vending area, a lounge, and a laundry room. A meal service contract is required in the high-rise residence the suite communities also require a meal service contract, except Squires Hall. On-campus apartments offer

  12. 390 Student Services and Programs Student Services

    E-Print Network [OSTI]

    Xie,Jiang (Linda)

    , a vending area, a lounge, and a laundry room. A meal service contract is required in the high- rise buildings housing the suite communities also require a meal service contract, except Squires Hall. On

  13. DIRECTORY OF HEALTH SERVICES

    E-Print Network [OSTI]

    Yates, Andrew

    a centralized resource of regional health care services for persons with developmental disabilitiesDIRECTORY OF HEALTH SERVICES FOR BRONX RESIDENTS WITH DEVELOPMENTAL DISABILITIES 2012 Compiled Albert Einstein College of Medicine in collaboration with Health Services Committee, Bronx Developmental

  14. University Services Pamela Wheelock

    E-Print Network [OSTI]

    Amin, S. Massoud

    University Services Pamela Wheelock Vice President MANAGEMENT SYSTEMS University Services Human Resources Linda Bjornberg Director open position CIO OPERATIONS Auxiliary Services Laurie Scheich Berthelsen Associate VP Public Safety Gregory Hestness Assistant VP University Health & Safety Craig Moody

  15. Cloud Service Security Requirements Questionnaire 1. What Cloud service will you be providing

    E-Print Network [OSTI]

    /docs/Exhibit-G/exhibit-g-definitions-acronyms-green.pdf 3. Has the information system been certified for Federal Information Security Management Act (FISMA for security and quality control? If so, please provide evidence. 5. Has your cloud service been industry have a current Configuration Management Plan? If so, please provide evidence. 7. Do you have a current

  16. The Impact of Information Technology in Nigeria's Banking Industry

    E-Print Network [OSTI]

    Oluwatolani, Oluwagbemi; Philip, Achimugu

    2011-01-01T23:59:59.000Z

    Today, information technology (IT) has become a key element in economic development and a backbone of knowledge-based economies in terms of operations, quality delivery of services and productivity of services. Therefore, taking advantage of information technologies (IT) is an increasing challenge for developing countries. There is now growing evidence that Knowledge-driven innovation is a decisive factor in the competitiveness of nations, industries, organizations and firms. Organizations like the banking sector have benefited substantially from e-banking, which is one among the IT applications for strengthening the competitiveness. This paper presents the current trend in the application of IT in the banking industries in Nigeria and gives an insight into how quality banking has been enhanced via IT. The paper further reveals that the deployment of IT facilities in the Nigerian Banking industry has brought about fundamental changes in the content and quality of banking business in the country. This analysis...

  17. IBM Global Technology Services Server Services

    E-Print Network [OSTI]

    ServerTM, Power SystemsTM, pSeries®, #12;2 PowerVMTM, PowerHATM, System StorageTM disk systems, System p®, System x® and other IBM selected products with the option to purchase as a ServicePac® including: IBM Implementation Services for Power Systems-- AIX V6.1 remote implementation IBM Implementation Services for Power

  18. U. S. petroleum industry retrenchment continues

    SciTech Connect (OSTI)

    Not Available

    1992-08-10T23:59:59.000Z

    This paper reports that retrenchment among U.S. oil and gas companies and their service/supply contractors is very much alive. W.R. Grace and Co. began efforts to sell assets of its Grace Energy Corp. unit and retained four investment brokers to assist it in completing divestitures as soon as possible; Ashland Oil Inc. is implementing an enhanced voluntary retirement program to cut employment levels and costs; and Dresser Industries Inc., Dallas, will permanently close its Security Division drillbit plant in Eunice, La.

  19. Primary

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a evie _ =_ In7, 2011 atJohnPrices,2: PricesData33Net

  20. Initial Placement of BS Chemical Engineers, `00-01 Industry 55.9%

    E-Print Network [OSTI]

    Haile, Sossina M.

    Initial Placement of BS Chemical Engineers, `00-01 Industry 55.9% Other 1.8% Graduate.8% Initial placement of Chemical Engineering Graduates, Academic Year `00-'01, AIChE Career Services Department #12;Breakdown of Industrial Employment for BS Chemical Engineers Chemical 23.3% Fuels 15

  1. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY Appl. Stochastic Models Bus. Ind., 2006; 22:297311

    E-Print Network [OSTI]

    Shen, Haipeng

    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY Appl. Stochastic Models Bus. Ind., 2006; 22 Non-parametric modelling of time-varying customer service times at a bank call centre Haipeng Shen1 are interested in modelling the time-varying pattern of average customer service times at a bank call centre

  2. Lead-free primary explosives

    DOE Patents [OSTI]

    Huynh, My Hang V.

    2010-06-22T23:59:59.000Z

    Lead-free primary explosives of the formula (cat).sub.Y[M.sup.II(T).sub.X(H.sub.2O).sub.6-X].sub.Z, where T is 5-nitrotetrazolate, and syntheses thereof are described. Substantially stoichiometric equivalents of the reactants lead to high yields of pure compositions thereby avoiding dangerous purification steps.

  3. Primary Health Faculty of Medicine,

    E-Print Network [OSTI]

    Albrecht, David

    School of Primary Health Care Faculty of Medicine, Nursing and Health Sciences Central Clinical Hospital Centre for Inflammatory Diseases School of Public Health & Preventive Medicine Australasian Disability Health Victoria School of Psychology and Psychiatry Centre for Rural Mental Health (in abeyance

  4. Policies on Japan's Space Industry

    E-Print Network [OSTI]

    with space emerging countries 3. Step up leading-edge science and technology as an innovation engine (1Policies on Japan's Space Industry Shuichi Kaneko Director, Space Industry Office Manufacturing Industries Bureau Ministry of Economy, Trade and Industry (METI) #12;Japan's Space Policy is based

  5. Emulsified industrial oils recycling

    SciTech Connect (OSTI)

    Gabris, T.

    1982-04-01T23:59:59.000Z

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  6. Industrial Assessment Center

    SciTech Connect (OSTI)

    Dr. Diane Schaub

    2007-03-05T23:59:59.000Z

    Since its inception, the University of Florida Industrial Assessment Center has successfully completed close to 400 energy assessments of small to medium manufacturing facilities in Florida, southern Georgia and southern Alabama. Through these efforts, recommendations were made that would result in savings of about $5 million per year, with an implementation rate of 20-25%. Approximately 80 engineering students have worked for the UF-IAC, at least 10 of whom went on to work in energy related fields after graduation. Additionally, through the popular course in Industrial Energy Management, many students have graduated from the University of Florida with a strong understanding and support of energy conservation methods.

  7. Libyan oil industry

    SciTech Connect (OSTI)

    Waddams, F.C.

    1980-01-01T23:59:59.000Z

    Three aspects of the growth and progress of Libya's oil industry since the first crude oil discovery in 1961 are: (1) relations between the Libyan government and the concessionary oil companies; (2) the impact of Libyan oil and events in Libya on the petroleum markets of Europe and the world; and (3) the response of the Libyan economy to the development of its oil industry. The historical review begins with Libya's becoming a sovereign nation in 1951 and traces its subsequent development into a position as a leading world oil producer. 54 references, 10 figures, 55 tables.

  8. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01T23:59:59.000Z

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  9. Industrial Equipment Impacts Infrastructure

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf05 IdentifiedPathways to SustainedIndustrial AssessmentIndustrial

  10. The Web Services Vision Definition of Web Services

    E-Print Network [OSTI]

    Cheverst, Keith

    1 The Web Services Vision Overview Definition of Web Services Key concepts Difference from traditional web model Context Service-oriented architecture Distributed computing Overview Microsoft .NET vision Web Services Difference from traditional web model Context Service-oriented architecture

  11. Innovative financing for energy-efficiency improvements. Chapter V: energy service companies

    SciTech Connect (OSTI)

    Klepper, M.; Sherman, J.

    1982-01-01T23:59:59.000Z

    The use of energy service companies (ESCo) to promote energy efficiency investments for each of three different categories of buildings (multifamily, commercial, and industrial) is discussed. Topics discussed include: the energy service concept; advantages and disadvantages of shared savings; the financial analysis of shared savings; barriers to energy service company transactions; financing an energy service company; the impact of shared savings on each sector; and development of ESCo documents for mulifamily housing. (MCW)

  12. Ohio State's industry research partnerships

    E-Print Network [OSTI]

    Canyon Pharmaceuticals Inc Rockville, MD Booz Allen Hamilton Inc Fisher BioServices Mars Botanical Shire

  13. Personal Services Agreements Waivers

    E-Print Network [OSTI]

    , State Controller's Office). All personal services contract activity will be reported through the state

  14. Industry Partners Panel

    Broader source: Energy.gov [DOE]

    Industry Panel presenters include: Michael G. Andrew, Director - Academic and Technical Programs, Advanced Products and Materials, Johnson Controls Power Solutions Michael A. Fetcenko, Vice President and Managing Director, BASF Battery Materials – Ovonic, BASF Corporation Adam Kahn, Founder and CEO, AKHAN Technologies, Inc. Stephen E. Zimmer, Executive Director, United States Council for Automotive Research (USCAR)

  15. Industrial Energy Use Indices

    E-Print Network [OSTI]

    Hanegan, A.; Heffington, W. M.

    2007-01-01T23:59:59.000Z

    of variations for all industry types in warm versus cold regions of the U.S. generally is greater than unity. Data scatter may have several explanations, including climate, plant area accounting, the influence of low cost energy and low cost buildings used...

  16. INTERMOUNTAIN INDUSTRIAL ASSESSMENT CENTER

    SciTech Connect (OSTI)

    MELINDA KRAHENBUHL

    2010-05-28T23:59:59.000Z

    The U. S. Department of Energy’s Intermountain Industrial Assessment Center (IIAC) at the University of Utah has been providing eligible small- and medium-sized manufacturers with no-cost plant assessments since 2001, offering cost-effective recommendations for improvements in the areas of energy efficiency, pollution prevention, and productivity improvement.

  17. Service Level Agreement University ServicesPurchasing with University Services customers

    E-Print Network [OSTI]

    Webb, Peter

    be determined individually with each customer for each service contract. USP provides services that can

  18. Primary Productivity at the CAP LTER Chris Martin, Thomas Day, John Briggs, Jean Stutz,

    E-Print Network [OSTI]

    Hall, Sharon J.

    and Lead Investigators Remote Sensing, Dr. John Briggs Abiotic impacts on terrestrial primary productivity and increased productivity during winter during to increased heat storage and re-radiation. 4. Trees were more long term monitoring at residential, commercial, industrial, and public sites 2. Using remote sensing

  19. Energy use and CO2 emissions of China’s industrial sector from a global perspective

    SciTech Connect (OSTI)

    Zhou, Sheng; Kyle, G. Page; Yu, Sha; Clarke, Leon E.; Eom, Jiyong; Luckow, Patrick W.; Chaturvedi, Vaibhav; Zhang, Xiliang; Edmonds, James A.

    2013-07-10T23:59:59.000Z

    The industrial sector has accounted for more than 50% of China’s final energy consumption in the past 30 years. Understanding the future emissions and emissions mitigation opportunities depends on proper characterization of the present-day industrial energy use, as well as industrial demand drivers and technological opportunities in the future. Traditionally, however, integrated assessment research has handled the industrial sector of China in a highly aggregate form. In this study, we develop a technologically detailed, service-oriented representation of 11 industrial subsectors in China, and analyze a suite of scenarios of future industrial demand growth. We find that, due to anticipated saturation of China’s per-capita demands of basic industrial goods, industrial energy demand and CO2 emissions approach a plateau between 2030 and 2040, then decrease gradually. Still, without emissions mitigation policies, the industrial sector remains heavily reliant on coal, and therefore emissions-intensive. With carbon prices, we observe some degree of industrial sector electrification, deployment of CCS at large industrial point sources of CO2 emissions at low carbon prices, an increase in the share of CHP systems at industrial facilities. These technological responses amount to reductions of industrial emissions (including indirect emission from electricity) are of 24% in 2050 and 66% in 2095.

  20. Transforming the Oil Industry into the Energy Industry

    E-Print Network [OSTI]

    Sperling, Daniel; Yeh, Sonia

    2009-01-01T23:59:59.000Z

    Transforming the Oil Industry into the Energy Industry BYculprit. It consumes half the oil used in the world andconsuming two thirds of the oil and causing about one third

  1. Innovative New Industrial Technologies: An Industry/DOE Joint Endeavor

    E-Print Network [OSTI]

    Gross, T. J.

    The Department of Energy’s Office of Industrial Programs supports research and development leading to improved energy efficiency and greater overall productivity in the industrial sector. Its basic strategy is a program of cost-shared R...

  2. INDUSTRIAL ASSOCIATESHIP SCHEME Centre for Industrial Consultancy and Sponsored Research

    E-Print Network [OSTI]

    Bhashyam, Srikrishna

    this scheme: #12;(i) Energy Energy Storage (1990) Strategies for Energy Saving in Industry (1993) Pollution Control Equipment (2001) Acoustics and Noise Control for Industry (2005) Urban Air Quality

  3. INDUSTRIAL & SYSTEMS Industrial and Systems engineers use engineering

    E-Print Network [OSTI]

    Rohs, Remo

    78 INDUSTRIAL & SYSTEMS Industrial and Systems engineers use engineering and business principles of physical and human resources. These engineers are involved in developing manufacturing systems to help companies compete in todays global marketplace. The Industrial and Systems engineers task is to take limited

  4. American Indian tribes and electric industry restructuring: Issues and opportunities

    SciTech Connect (OSTI)

    Howarth, D. [Morse, Richard, and Weisenmiller, and Associates Inc., Oakland, CA (United States); Busch, J. [Lawrence Berkeley National Lab., CA (United States); Starrs, T. [Kelso, Starrs, and Associates LLC, Vashon, WA (United States)

    1997-07-01T23:59:59.000Z

    The US electric utility industry is undergoing a period of fundamental change that has significant implications for Native American tribes. Although many details remain to be determined, the future electric power industry will be very different from that of the present. It is anticipated that the new competitive electric industry will be more efficient, which some believe will benefit all participants by lowering electricity costs. Recent developments in the industry, however, indicate that the restructuring process will likely benefit some parties at the expense of others. Given the historical experience and current situation of Native American tribes in the US, there is good reason to pay attention to electric industry changes to ensure that the situation of tribes is improved and not worsened as a result of electric restructuring. This paper provides a review of electricity restructuring in the US and identifies ways in which tribes may be affected and how tribes may seek to protect and serve their interests. Chapter 2 describes the current status of energy production and service on reservations. Chapter 3 provides an overview of the evolution of the electric industry to its present form and introduces the regulatory and structural changes presently taking place. Chapter 4 provides a more detailed discussion of changes in the US electric industry with a specific focus on the implications of these changes for tribes. Chapter 5 presents a summary of the conclusions reached in this paper.

  5. Coal industry annual 1997

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  6. Coal industry annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-06T23:59:59.000Z

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  7. BTU Accounting for Industry

    E-Print Network [OSTI]

    Redd, R. O.

    1979-01-01T23:59:59.000Z

    , salesmen cars, over the highway trucks, facilities startup, waste used as fuel and fuels received for storage. This is a first step in the DOE's effort to establish usage guidelines for large industrial users and, we note, it requires BTU usage data...-generated electricity, heating, ventilating, air conditioning, in-plant transportation, ore hauling, raw material storage and finished product warehousing. Categories which are excluded are corporate and divisional offices, basic research, distribution centers...

  8. Industrial Waste Heat Recovery

    E-Print Network [OSTI]

    Ward, M. E.; Solomon, N. G.; Tabb, E. S.

    1980-01-01T23:59:59.000Z

    INDUSTRIAL WASTE HEAT RECOVREY M. E. Ward and N. G. Solomon E. S. Tabb Solar Turbines International and Gas Research Institute San Diego, California Chicago, Illinois ABSTRACT i I One hundred fifty reports were reviewed along with interviews... tests, promising low temperature heat exchanger tube alloys and coated surfaces were identified. 1INTROUCTION of advanced technology heat recovery techniques 1_ Recovering waste heat from the flue gases of the pr~ary objective. Specific objectives...

  9. Industrial Energy Efficiency Assessments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIAN COUNTRYBarriers to Industrial

  10. The impact of government policies on industrial evolution : the case of China's automotive industry

    E-Print Network [OSTI]

    Luo, Jianxi

    2006-01-01T23:59:59.000Z

    Governmental industrial policies have great influence on industrial performances and development trajectories. The infant industry theory has been the dominating theoretical foundation of the industrial policies in developing ...

  11. 1District health services research: 2011 District health

    E-Print Network [OSTI]

    Geldenhuys, Jaco

    meDicine anD Primary care, faculty of meDicine anD HealtH sciences, stellenboscH university #12RoDUctIon...................................................................................................................................... clInIcal famIly meDIcIne anD DIstRIct health caRe systems1District health services research: 2011 District health services research: 2011Division of family

  12. Industrial Heat Pump Design Options

    E-Print Network [OSTI]

    Gilbert, J. S.

    There are numerous industries that can incorporate heat pumps into their operations to save energy costs and payoff the investment in well under two years. Many of these industries can cut energy costs associated with evaporation by over 75...

  13. Industrial Heat Pump Design Options 

    E-Print Network [OSTI]

    Gilbert, J. S.

    1985-01-01T23:59:59.000Z

    There are numerous industries that can incorporate heat pumps into their operations to save energy costs and payoff the investment in well under two years. Many of these industries can cut energy costs associated with evaporation by over 75...

  14. A National Resource for Industry

    E-Print Network [OSTI]

    alloys, and metal matrix composite products carbon fibe's manufacturing industries. These industries call upon ORNL's expertise in materials synthesis, characterization-efficient manufacturing processes and materials targeting products of the future. The Department of Energy's first

  15. Electrotechnologies and Industrial Pollution Control

    E-Print Network [OSTI]

    Schmidt, P. S.

    The role of electrotechnologies in the control of emissions and effluents from industrial processes is discussed. Matrices are presented identifying those electrotechnologies which impact pollution in various industries. Specific examples...

  16. Deaerators in Industrial Steam Systems

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on deaerators in industrial steam systems provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  17. Modeling the semiconductor industry dynamics

    E-Print Network [OSTI]

    Wu, Kailiang

    2008-01-01T23:59:59.000Z

    The semiconductor industry is an exciting and challenging industry. Strong demand at the application end, plus the high capital intensity and rapid technological innovation in manufacturing, makes it difficult to manage ...

  18. Texas Industries of the Future

    E-Print Network [OSTI]

    Ferland, K.

    The purpose of the Texas Industries of the Future program is to facilitate the development, demonstration and adoption of advanced technologies and adoption of best practices that reduce industrial energy usage, emissions, and associated costs...

  19. Fracking: An Industry Under Pressure

    E-Print Network [OSTI]

    Melville, Jo

    2013-01-01T23:59:59.000Z

    is able to squeeze out of oil and gas wells, it is a hugehugely to the local oil and gas industries, household incomeMore importantly, the oil and gas industry -- mostly through

  20. Managing prisons using a ‘business-like approach: a case study of the Scottish Prison Service 

    E-Print Network [OSTI]

    Sangkhanate, Assanee

    2012-06-26T23:59:59.000Z

    The primary aim of this research is to examine the extent which prison management has been influenced by New Public Management (NPM). Much has been written about the growing influence of NPM on public services like health, ...

  1. Energy Conservation and Management for Electric Utility Industrial Customers

    E-Print Network [OSTI]

    McChesney, H. R.; Obee, T. N.; Mangum, G. F.

    within an industrial plant. Detai 1s of an EPRI sponsored pilot program are sUl1ll1arized and results presented on the use of the computer model to provide comprehensive EC&M system evaluations of potential energy management opportun ities in HL... Conference, Houston, TX, May 12-15, 1985 (EPRI) in close association with several participat ing electric utilities and selected industrial cus tomers (1). In initiating this service, the first step would normally involve periodic contact between a...

  2. Innovative Utility Pricing for Industry

    E-Print Network [OSTI]

    Ross, J. A.

    tariffs can re a market for power during the time when it has sult in benefits to industry, to the electric abundant capacity available. From the other rate utility, and to other ratepayers on the electric payers' perspective, there will be a continued...INNOVATIVE UTILITY PRICING FOR INDUSTRY James A. Ross Drazen-Brubaker &Associates, Inc. St. Louis, Missouri ABSTRACT The electric utility industry represents only one source of power available to industry. Al though the monopolistic...

  3. Primary Components of Binomial Ideals

    E-Print Network [OSTI]

    Eser, Zekiye

    2014-07-11T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.4 A band graph with an infinite component . . . . . . . . . . . . . . . . 50 2.5 The band graph G6pMq . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.6 Slice graphs for IpBq #16; xx4z #1; y4, x7z #1; y7y . . . . . . . . . . . . . . 56 2... decomposition in charpkq #16; 0 and the primary components are Ii1,...,ir . The following example illustrates how the operations defined above work. All the computations are performed using the computer algebra system Singular, [16]. Example 1.45. Let D #16; #20...

  4. Information Management Software Services IMS Services Overview

    E-Print Network [OSTI]

    Information Management Software Services IMS Services Overview You know how powerful and important performance and available manner. This requires that the IMS systems, applications, databases, and supporting and then create a written report on recommendations to improve setup, procedures and processes associated

  5. EMPLOYEE BENEFIT SERVICE Signature Service Oil Change

    E-Print Network [OSTI]

    New Mexico, University of

    UNM Staff EMPLOYEE BENEFIT SERVICE Jiffy Lube Signature Service Oil Change Fast - No Appointment We change your oil with up to 5 quarts of major brand motor oil We install a new oil fi We visually inspect. ASE training programs · Jiffy Lube uses top quality products that meet or exceed vehicle warranty

  6. GENERAL SERVICES ADMINISTRATION PUBLIC BUILDINGS SERVICE

    E-Print Network [OSTI]

    II - ESTIMATED ANNUAL COST OF OWNERSHIP EXCLUSIVE OF CAPITAL CHARGES 28. REAL ESTATE TAXES 29, and zip code) SECTION I - ESTIMATED ANNUAL COST OF SERVICES AND UTILITIES FURNISHED BY LESSOR AS PART) represent my best estimate as to the annual costs of services, utilities and ownership. 34. SIGNATURE

  7. Center for Health & Counseling Services Health Services

    E-Print Network [OSTI]

    Rainforth, Emma C.

    College How is West Nile diagnosed? If a health care provider suspects WNV, samples of the patient's bloodCenter for Health & Counseling Services Health Services 505 Ramapo Valley Road, Mahwah, NJ 07430 Nile Virus outbreak is the biggest since the virus was first identified in the United States, health

  8. A Critical Analysis of Technological Innovation and Economic Development in Southern California's Urban Water Reuse And Recycling Industry

    E-Print Network [OSTI]

    Pilip-Florea, Shadrach Jay

    2012-01-01T23:59:59.000Z

    news-service/huge-lack-of-water- in-california-means-big-crop irrigation due to lack of steady water sources (CA DWR,concerned over the lack of a water industry trade lobby, ala

  9. Introduction: The California Top Two Primary

    E-Print Network [OSTI]

    Sinclair, Betsy

    2015-01-01T23:59:59.000Z

    with the adoption of the top two primary, and we lookIntroduction: The California Top Two Primary Betsy Sinclairfrequently asserted that the “top-two” would produce more

  10. The federal market for ESCO services: How does it measure up?

    E-Print Network [OSTI]

    Hopper, Nicole; Goldman, Charles; Birr, Dave

    2004-01-01T23:59:59.000Z

    and interviewing ESCO representatives. Federal ESPC marketto the ESCO industry over the last decade. Through the ESPCESCO projects – Utility Energy Services Contracts (UESC), Army and Air Force Energy Savings Performance Contracts (ESPC)

  11. The Contribution of Services and other Sectors to Australian Productivity Growth 1980-2004

    E-Print Network [OSTI]

    de Gispert, Adrià

    The Contribution of Services and other Sectors to Australian Productivity Growth 1980-2004 A Report pointers to the Australian literature on sectoral productivity growth. Finally, we would like to thank ................................................................................................................................6 Labour Productivity: Macroeconomic Trends and Industry Patterns

  12. Nonresident Alien Professional Services Contract

    E-Print Network [OSTI]

    Liu, Taosheng

    Nonresident Alien Professional Services Contract (This Contract form should be completed before Services: #12;Nonresident Alien Professional Services Contract Michigan State University is an affirmative

  13. Flexible Service Choreography 

    E-Print Network [OSTI]

    Barker, Adam

    2007-01-01T23:59:59.000Z

    Service-oriented architectures are a popular architectural paradigm for building software applications from a number of loosely coupled, distributed services. Through a set of procedural rules, workflow technologies ...

  14. Industrial Energy Audit Guidebook: Guidelines for Conducting...

    Open Energy Info (EERE)

    Industry Resource Type: Guidemanual Website: china.lbl.govsiteschina.lbl.govfilesLBNL-3991E.Industrial%20Energy Industrial Energy Audit Guidebook: Guidelines for Conducting...

  15. Local Option- Industrial Facilities and Development Bonds

    Broader source: Energy.gov [DOE]

    Under the Utah Industrial Facilities and Development Act, counties, municipalities, and state universities in Utah may issue Industrial Revenue Bonds (IRBs) or Industrial Development Bonds (IDBs)...

  16. Federal Utility Partnership Working Group Industry Commitment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Commitment Federal Utility Partnership Working Group Industry Commitment Investor-owned electric utility industry members of the Edison Electric Institute pledge to assist...

  17. UGIES Midstream Services

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UGI Corporation UGI Energy Services, LLC. 2 UGI Corporation Domestic Propane International Propane Midstream & Marketing Regulated Utilities UGI Utilities UGI...

  18. Transmission Services J7000

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Business Unit - J7300 CRSP - DSW - RMR Open Access Transmission Tariff Management Transmission Service Requests Interconnection Requests OASIS...

  19. Wellness services --Promoting relaxation,

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    . Complimentary fruit-infused water and assorted hot teas are available before or after services. All of our

  20. Generation of Web Service Descriptions and Web Service

    E-Print Network [OSTI]

    Generation of Web Service Descriptions and Web Service Module Implementation for Concept University of Science and Technology Software Systems Institute (STS) #12;Abstract Nowadays web services in order to initiate the communication. A web services endpoint communication interface utilizes

  1. BNL Technical Services Awarded Service-Disabled Veteran-Owned...

    Energy Savers [EERE]

    BNL Technical Services Awarded Service-Disabled Veteran-Owned Small Business of the Year BNL Technical Services Awarded Service-Disabled Veteran-Owned Small Business of the Year...

  2. Business Services Strategic Plan

    E-Print Network [OSTI]

    Holland, Jeffrey

    Business Services Strategic Plan Updated September 2008 New Synergies: Launching Tomorrow's Leaders Discovery with Delivery Meeting Global Challenges Excellence in Business and Support Services #12;Introduction The mission of Business Services at Purdue University is to enable, serve, and support others

  3. Horizon Health EAP Services

    E-Print Network [OSTI]

    Yates, Andrew

    /09) HorizonCareLinkSM ­ All the help you need online Horizon Health EAP also provides services through counselors- Child care or elder care services- Pet care and veterinarians- Adoption resources- Health clubsHorizon Health EAP Services Employee Assistance Program with Telephone and 3 Face

  4. Mail Services User's Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-10-03T23:59:59.000Z

    This Guide provides information on using Department of Energy (DOE) mail services in accordance with U.S. Postal Service, General Services Administration (GSA), and DOE regulations. Cancels DOE M 573.1-1. Canceled by DOE N 251.89.

  5. Coal Industry Annual 1995

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  6. Industrial Cogeneration Application

    E-Print Network [OSTI]

    Mozzo, M. A.

    INDUSTRIAL COGENERATION APLLICATION Martin A. Mozzo, Jr., P.E. American Standard, Inc. New York,New York ABSTRACT Cogeneration is the sequential use of a single fuel source to generate electrical and thermal energy. It is not a new technology... been reviewing the potential of cogeneration at some of our key facilities. Our plan is to begin with a Pilot Plant 500 KW steam turbine generator to be install~d and operating in 1986. Key points to be discuss~d in the paper are: 1...

  7. Coal industry annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-11-01T23:59:59.000Z

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  8. Industrial energy use indices

    E-Print Network [OSTI]

    Hanegan, Andrew Aaron

    2008-10-10T23:59:59.000Z

    and colder are determined by annual average temperature weather data). Data scatter may have several explanations, including climate, plant area accounting, the influence of low cost energy and low cost buildings used in the south of the U.S. iv... the average EUI for an energy type. The combined CoV from all of the industries considered, which accounts for 8,200 plants from all areas of the continental U.S., is 290%. This paper discusses EUIs and their variations based on electricity and natural...

  9. Natural Gas Industrial Price

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG 0 20Year Jan Feb2009 20103 5.53

  10. Industrial Green | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News link to facebook link to04948Industrial Green

  11. CASL - Industry Council

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0Link to Resources Industry

  12. CASL - Industry Council Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0Link to Resources IndustryCASL

  13. Industrial Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIAN COUNTRYBarriers to Industrial Energy

  14. Industrial Energy Efficiency Assessments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIAN COUNTRYBarriers to IndustrialEnergy

  15. Users from Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAboutUser Services UserUsers from

  16. Reconciling Components and Services The Apam Component-Service Platform

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Reconciling Components and Services The Apam Component-Service Platform Jacky Estublier, German as with SOC. No platform today satisfies both needs. This paper presents the Component-Service model-service platform. Keywords-Service; CBSE, SOC, SOA, service platform, component platform, adaptability . I

  17. Process Control Systems in the Chemical Industry: Safety vs. Security

    SciTech Connect (OSTI)

    Jeffrey Hahn; Thomas Anderson

    2005-04-01T23:59:59.000Z

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nation’s critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  18. Final Technical Report for University of Michigan Industrial Assessment Center

    SciTech Connect (OSTI)

    Atreya, Arvind

    2007-04-17T23:59:59.000Z

    The UM Industrial Assessment Center assisted 119 primary metals, automotive parts, metal casting, chemicals, forest products, agricultural, and glass manufacturers in Michigan, Ohio and Indiana to become more productive and profitable by identifying and recommending specific measures to improve energy efficiency, reduce waste and increase productivity. This directly benefits the environment by saving a total of 309,194 MMBtu of energy resulting in reduction of 0.004 metric tons of carbon emissions. The $4,618,740 implemented cost savings generated also saves jobs that are evaporating from the manufacturing industries in the US. Most importantly, the UM Industrial Assessment Center provided extremely valuable energy education to forty one UM graduate and undergraduate students. The practical experience complements their classroom education. This also has a large multiplier effect because the students take the knowledge and training with them.

  19. Faculty of Engineering & Design Industrial Placements

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    Faculty of Engineering & Design Industrial Placements A guide for industry #12;Industrial placements The Faculty of Engineering & Design has built close links with engineering companies through research, projects, placements and graduate employees. We know that working with industry ensures our

  20. Competitive developments in the electric supply industry

    SciTech Connect (OSTI)

    Bruder, G.F.; Lively, M.

    1996-12-31T23:59:59.000Z

    Competition in the electric supply industry is outlined. The following topics are discussed: six impending major developments in the electric industry; recent and projected developments in the industry; where is the industry headed?; and what the future holds.

  1. Research Projects in Industrial Technology.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration. Industrial Technology Section.

    1990-06-01T23:59:59.000Z

    The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

  2. WORK INTEGRATED LEARNING | Case Study One of the more interesting reasons engineering and resources services

    E-Print Network [OSTI]

    Western Australia, NSW Business Chamber, Tasmanian Chamber of Commerce and Industry and VictorianParsons is a leading provider of professional services to the energy, resource and complex process industries in Australia. It is one of Australia's largest employers of professional engineers and, with employee growth

  3. The Industrialization of Thermoelectric Power Generation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Industrialization of Thermoelectric Power Generation Technology The Industrialization of Thermoelectric Power Generation Technology Presents module and system requirements for...

  4. ITP Industrial Materials: Development and Commercialization of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Materials: Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies ITP Industrial Materials: Development and...

  5. SPIDERS Joint Capability Technology Demonstration Industry Day...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SPIDERS Joint Capability Technology Demonstration Industry Day Presentations SPIDERS Joint Capability Technology Demonstration Industry Day Presentations Presentations from the...

  6. Office of Industry Research and Technology Programs Greetings to Industry

    E-Print Network [OSTI]

    Ginzel, Matthew

    Assistant Vice President, Corporate & Foundation Relations Inside this issue... Greetings to Industry. The founding members are American Axle and Manufacturing, Eaton Corpora- tion and John Deere. This applied

  7. EPA recognizes industry leaders for beneficial use

    SciTech Connect (OSTI)

    Goss, D. [American Coal Ash Association (United States)

    2007-07-01T23:59:59.000Z

    The EPA's Coal Combustion Products Partnership C{sup 2}P{sup 2})recognized industry leaders in beneficial use during the second annual C{sup 2}P{sup 2} awards ceremony held 23 October 2006 in Atlanta, Georgia. The C{sup 2}P{sup 2} program is led by the EPA with the ACAA, DOE, FHWA, USDA - Agricultural Research Services (ARS), and Utilities Solid Waste Activities Group (USWAG). The award for overall achievement went to Great River Energy of Underwood, ND who partnered with more than 10 public and private organizations to develop an extensive market for fly ash from Coal Creek Station, the world's largest lignite-fired plant. Other awards were given for environmental achievement, innovation, partnership, research and communications and outreach. 9 photos.

  8. Value of solar thermal industrial process heat

    SciTech Connect (OSTI)

    Brown, D.R.; Fassbender, L.L.; Chockie, A.D.

    1986-03-01T23:59:59.000Z

    This study estimated the value of solar thermal-generated industrial process heat (IPH) as a function of process heat temperature. The value of solar thermal energy is equal to the cost of producing energy from conventional fuels and equipment if the energy produced from either source provides an equal level of service. This requirement put the focus of this study on defining and characterizing conventional process heat equipment and fuels. Costs (values) were estimated for 17 different design points representing different combinations of conventional technologies, temperatures, and fuels. Costs were first estimated for median or representative conditions at each design point. The cost impact of capacity factor, efficiency, fuel escalation rate, and regional fuel price differences were then evaluated by varying each of these factors within credible ranges.

  9. Formal Construction and Verification of Home Service Robots : A Case Study

    E-Print Network [OSTI]

    Kim, Moonzoo

    , reactive na- ture of the robot applications adds to further complexity. Traditional testing is unsuccessful academic and industrial attention. It is because home service robots can increase a quality of human life to offer services. Thus, robot applications should coordinate these components in harmony. Robot de

  10. Formal Construction and Verification of Home Service Robots: A Case Study

    E-Print Network [OSTI]

    , reactive na- ture of the robot applications adds to further complexity. Traditional testing is unsuccessful academic and industrial attention. It is be- cause home service robots can increase a quality of human life to offer services. Thus, robot applications should coordinate these components in harmony. Robot developers

  11. 1ST ANNUAL FALL 2014 YEARS OF SERVICE

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Jannotta Reader: Stephanie Campbell University Catering Conference Services University Communications Cassandra Balent · College of Letters and Science Maya Bronston · Graduate School Ronald Brown · Eastern Ag Research Center Colette Campbell · Film and Photography Kathryn Campbell · Mechanical and Industrial

  12. INNOVATION IN AUTOMOTIVE TELEMATICS SERVICES: CHARACTERISTICS OF THE FIELD AND

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    INNOVATION IN AUTOMOTIVE TELEMATICS SERVICES: CHARACTERISTICS OF THE FIELD AND MANAGEMENT is a radical innovation for automotive industry. Therefore traditional design models, such as heavyweight, published in "Int. J. of Automotive Technology et Management 3, 1/2 (2003) 144-159" #12;2 communication

  13. Lean Implementation in Service Companies Alberto Portioli-Staudacher1

    E-Print Network [OSTI]

    Boyer, Edmond

    the underlying causes of the low productivity growth (Druker, 1991). Despite operations is the area where most service people work -and the area where labour productivity increase can have the larger impact industries could improve their efficiency too. These would allow them to have more efficient and productive

  14. US Department of Energy`s continuous fiber ceramic composite program - components for industrial use

    SciTech Connect (OSTI)

    Jonkouski, J. [Chicago Operations Office, Argonne, IL (United States)

    1997-12-31T23:59:59.000Z

    U.S. industry has a critical need for materials that are light, strong, corrosion resistant, and capable of performing in high temperature environments. The U.S. Department of Energy`s Continuous Fiber Ceramic Composite (CFCC) Program is addressing this critical industrial need. Although many traditional ceramics perform well at high temperature, they typically fail in a catastrophic manner in industrial service. CFCCs are the solution to this problem. A CFCC is made by placing a ceramic matrix around reinforcing continuous fibers that have been placed or woven into a preform. The resulting CFCC is a high temperature resistant material that exhibits tough behavior with better in-service reliability. Various CFCC components and sub-elements are being fabricated and tested in simulated and/or actual service environments during Phase II of this program.

  15. Consistent Query Answering Of Conjunctive Queries Under Primary Key Constraints

    E-Print Network [OSTI]

    Pema, Enela

    2014-01-01T23:59:59.000Z

    Queries and Primary Key Constraints . . . . . . . . . .of Employee w.r.t. the primary key SSN ? {name, salary} . .query answering under primary keys: a characterization of

  16. Industry Supply Chain Development (Ohio)

    Broader source: Energy.gov [DOE]

    Supply Chain Development programs are focused on targeted industries that have significant growth opportunities for Ohio's existing manufacturing sector from emerging energy resources and...

  17. FAQS Reference Guide – Industrial Hygiene

    Broader source: Energy.gov [DOE]

    This reference guide addresses the competency statements in the November 2007 edition of DOE-STD-1138-2007, Industrial Hygiene Functional Area Qualification Standard.

  18. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01T23:59:59.000Z

    s Nuclear Industry After Fukushima Jingdong YUAN SummaryT he March 2011 Fukushima nuclear accident has had aand speedy responses to Fukushima-like and other unexpected

  19. Characterizing emerging industrial technologies in energy models

    SciTech Connect (OSTI)

    Laitner, John A. (Skip); Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

    2003-07-29T23:59:59.000Z

    Conservation supply curves are a common tool in economic analysis. As such, they provide an important opportunity to include a non-linear representation of technology and technological change in economy-wide models. Because supply curves are closely related to production isoquants, we explore the possibility of using bottom-up technology assessments to inform top-down representations of energy models of the U.S. economy. Based on a recent report by LBNL and ACEEE on emerging industrial technologies within the United States, we have constructed a supply curve for 54 such technologies for the year 2015. Each of the selected technologies has been assessed with respect to energy efficiency characteristics, likely energy savings by 2015, economics, and environmental performance, as well as needs for further development or implementation of the technology. The technical potential for primary energy savings of the 54 identified technologies is equal to 3.54 Quads, or 8.4 percent of the assume d2015 industrial energy consumption. Based on the supply curve, assuming a discount rate of 15 percent and 2015 prices as forecasted in the Annual Energy Outlook2002, we estimate the economic potential to be 2.66 Quads - or 6.3 percent of the assumed forecast consumption for 2015. In addition, we further estimate how much these industrial technologies might contribute to standard reference case projections, and how much additional energy savings might be available assuming a different mix of policies and incentives. Finally, we review the prospects for integrating the findings of this and similar studies into standard economic models. Although further work needs to be completed to provide the necessary link between supply curves and production isoquants, it is hoped that this link will be a useful starting point for discussion with developers of energy-economic models.

  20. Unbundling generation and transmission services for competitive electricity markets

    SciTech Connect (OSTI)

    Hirst, E.; Kirby, B.

    1998-01-01T23:59:59.000Z

    Ancillary services are those functions performed by the equipment and people that generate, control, and transmit electricity in support of the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission (FERC) defined such services as those `necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.` The nationwide cost of ancillary services is about $12 billion a year, roughly 10% of the cost of the energy commodity. More important than the cost, however, is the necessity of these services for bulk-power reliability and for the support of commercial transactions. FERC`s landmark Order 888 included a pro forma tariff with provision for six key ancillary services. The Interconnected Operations Services Working Group identified another six services that it felt were essential to the operation of bulk-power systems. Several groups throughput the United States have created or are forming independent system operators, which will be responsible for reliability and commerce. To date, the electricity industry (including traditional vertically integrated utilities, distribution utilities, power markets and brokers, customers, and state and federal regulators) has paid insufficient attention to these services. Although the industry had made substantial progress in identifying and defining the key services, much remains to be doe to specify methods to measure the production, delivery, and consumption of these services; to identify the costs and cost-allocation factors for these services; and to develop market and operating rules for their provision and pricing. Developing metrics, determining costs, and setting pricing rules are important because most of these ancillary services are produced by the same pieces of equipment that produce the basic electricity commodity. Thus, the production of energy and ancillary services is highly interactive, sometimes complementary and sometimes competing. In contrast to today`s typical time-invariant, embedded-cost prices, competitive prices for ancillary services would vary with system loads and spot prices for energy.

  1. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","TypeWyoming"5 Selected5. Light

  2. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","TypeWyoming"5 Selected5. LightAlaska"

  3. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","TypeWyoming"5 Selected5. LightAlaska"

  4. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","TypeWyoming"5 Selected5.

  5. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","TypeWyoming"5 Selected5.Colorado"

  6. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","TypeWyoming"5

  7. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","TypeWyoming"5Delaware"

  8. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","TypeWyoming"5Delaware"District of

  9. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","TypeWyoming"5Delaware"District

  10. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours"

  11. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours"Hawaii" "megawatts" "Item", 2013, 2012, 2011,

  12. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours"Hawaii" "megawatts" "Item", 2013, 2012,

  13. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours"Hawaii" "megawatts" "Item", 2013,

  14. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours"Hawaii" "megawatts" "Item", 2013,Indiana"

  15. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours"Hawaii" "megawatts" "Item",

  16. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours"Hawaii" "megawatts" "Item",Kansas"

  17. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours"Hawaii" "megawatts"

  18. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours"Hawaii" "megawatts"Louisiana" "megawatts"

  19. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours"Hawaii" "megawatts"Louisiana"

  20. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours"Hawaii" "megawatts"Louisiana"Maryland"

  1. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours"Hawaii"

  2. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours"Hawaii"Michigan" "megawatts" "Item", 2013,

  3. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours"Hawaii"Michigan" "megawatts" "Item",

  4. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours"Hawaii"Michigan" "megawatts"

  5. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours"Hawaii"Michigan" "megawatts"Missouri"

  6. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours"Hawaii"Michigan"

  7. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours"Hawaii"Michigan"Nebraska" "megawatts"

  8. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours"Hawaii"Michigan"Nebraska" "megawatts"Nevada"

  9. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours"Hawaii"Michigan"Nebraska"

  10. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours"Hawaii"Michigan"Nebraska"Jersey" "megawatts"

  11. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours"Hawaii"Michigan"Nebraska"Jersey"

  12. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours"Hawaii"Michigan"Nebraska"Jersey"York"

  13. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"

  14. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006,

  15. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007,

  16. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008,

  17. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008,Oregon"

  18. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009,

  19. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009,Carolina"

  20. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item", 2013, 2012, 2011, 2010,

  1. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item", 2013, 2012, 2011, 2010,Tennessee"

  2. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item", 2013, 2012, 2011,

  3. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item", 2013, 2012, 2011,United States"

  4. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item", 2013, 2012, 2011,United States"Utah"

  5. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item", 2013, 2012, 2011,United

  6. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item", 2013, 2012, 2011,UnitedVirginia"

  7. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item", 2013, 2012,

  8. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item", 2013, 2012,West Virginia"

  9. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item", 2013, 2012,West Virginia"Wisconsin"

  10. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item", 2013, 2012,West

  11. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item", 2013, 2012,West1 Offsite-ProducedAlaska"

  12. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item", 2013, 2012,West1

  13. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item", 2013, 2012,West1California"

  14. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item", 2013, 2012,West1California"Colorado"

  15. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item", 2013,

  16. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item", 2013,Delaware" "megawatthours"

  17. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item", 2013,Delaware"

  18. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item", 2013,Delaware"Florida"

  19. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item", 2013,Delaware"Florida"Georgia"

  20. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item",

  1. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item",Idaho" "megawatthours"

  2. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item",Idaho"

  3. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item",Idaho"Indiana"

  4. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item",Idaho"Indiana"Iowa"

  5. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item",Idaho"Indiana"Iowa"Kansas"

  6. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts"

  7. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts"Louisiana" "megawatthours" "Item", 2013,

  8. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts"Louisiana" "megawatthours" "Item",

  9. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts"Louisiana" "megawatthours"

  10. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts"Louisiana" "megawatthours"Massachusetts"

  11. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts"Louisiana"

  12. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts"Louisiana"Minnesota" "megawatthours"

  13. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts"Louisiana"Minnesota"

  14. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts"Louisiana"Minnesota"Missouri"

  15. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts"Louisiana"Minnesota"Missouri"Montana"

  16. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota"

  17. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota"Nevada" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009,

  18. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota"Nevada" "megawatthours" "Item", 2013, 2012, 2011, 2010,

  19. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota"Nevada" "megawatthours" "Item", 2013, 2012, 2011,

  20. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota"Nevada" "megawatthours" "Item", 2013, 2012, 2011,Mexico"