National Library of Energy BETA

Sample records for industrial price electric

  1. Natural Gas Industrial Price

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  2. Natural Gas Electric Power Price

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  3. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Vehicle Fuel Price Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010

  4. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S.

  5. Competitive Electricity Prices: An Update

    Reports and Publications (EIA)

    1998-01-01

    Illustrates a third impact of the move to competitive generation pricing -- the narrowing of the range of prices across regions of the country. This feature article updates information in Electricity Prices in a Competitive Environment: Marginal Cost Pricing of Generation Services and Financial Status of Electric Utilities.

  6. "2014 Total Electric Industry- Average Retail Price (cents/kWh...

    U.S. Energy Information Administration (EIA) Indexed Site

    and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",17.822291,14.699138,11.842263,10.37511,15.452998 "Connecticut",19.748254,15.5...

  7. 2014 Total Electric Industry- Average Retail Price (cents/kWh...

    U.S. Energy Information Administration (EIA) Indexed Site

    4A-D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 17.82 14.70 11.84 10.38 15.45 Connecticut 19.75 15.55 12.92 13.08 17.05 Maine...

  8. Price Electric Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    Price Electric Coop Inc Jump to: navigation, search Name: Price Electric Coop Inc Place: Wisconsin Phone Number: 715-339-2155 or 1-800-884-0881 Website: www.price-electric.com...

  9. Electricity Prices in a Competitive Environment: Marginal Cost Pricing

    Reports and Publications (EIA)

    1997-01-01

    Presents the results of an analysis that focuses on two questions: (1) How are prices for competitive generation services likely to differ from regulated prices if competitive prices are based on marginal costs rather than regulated cost-of-service pricing? (2) What impacts will the competitive pricing of generation services (based on marginal costs) have on electricity consumption patterns, production costs, and the financial integrity of electricity suppliers?

  10. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  11. Measuring and Explaining Electricity Price Changes in Restructured States

    SciTech Connect (OSTI)

    Fagan, Mark L.

    2006-06-15

    An effort to determine the effect of restructuring on prices finds that, on average, prices for industrial customers in restructured states were lower, relative to predicted prices, than prices for industrial customers in non-restructured states. This preliminary analysis also finds that these price changes are explained primarily by high pre-restructuring prices, not whether or not a state restructured. (author)

  12. Price squeezes in electric power: The new Battle of Concord

    SciTech Connect (OSTI)

    Kwoka, J.E. Jr. )

    1992-06-01

    The US Court of Appeals opinion in Town of Concord v. Boston Edison offers a vigorous statement of the position that in a regulated market, what may appear to be a price squeeze almost certainly cannot harm the competitive process and therefore should not be held to violate the antitrust laws. While not disputing the possibility of self-serving claims of price squeezes, this article shows that truly anticompetitive price squeezes may indeed occur in the electric power industry and cannot be so readily dismissed. This analysis begins with a brief factual and economic background on price squeezes, then addresses arguments made in Concord and elsewhere seeking to disprove their possibility, and demonstrate that sound economics and good policy require a more balanced approach.

  13. Carbon pricing, nuclear power and electricity markets

    SciTech Connect (OSTI)

    Cameron, R.; Keppler, J. H. [OECD Nuclear Energy Agency, 12, boulevard des Iles, 92130 Issy-les-Moulineaux (France)

    2012-07-01

    In 2010, the NEA in conjunction with the International Energy Agency produced an analysis of the Projected Costs of Electricity for almost 200 power plants, covering nuclear, fossil fuel and renewable electricity generation. That analysis used lifetime costs to consider the merits of each technology. However, the lifetime cost analysis is less applicable in liberalised markets and does not look specifically at the viewpoint of the private investor. A follow-up NEA assessment of the competitiveness of nuclear energy against coal- and gas-fired generation under carbon pricing has considered just this question. The economic competition in electricity markets is today between nuclear energy and gas-fired power generation, with coal-fired power generation not being competitive as soon as even modest carbon pricing is introduced. Whether nuclear energy or natural gas comes out ahead in their competition depends on a number of assumptions, which, while all entirely reasonable, yield very different outcomes. The analysis in this study has been developed on the basis of daily data from European power markets over the last five-year period. Three different methodologies, a Profit Analysis looking at historic returns over the past five years, an Investment Analysis projecting the conditions of the past five years over the lifetime of plants and a Carbon Tax Analysis (differentiating the Investment Analysis for different carbon prices) look at the issue of competitiveness from different angles. They show that the competitiveness of nuclear energy depends on a number of variables which in different configurations determine whether electricity produced from nuclear power or from CCGTs generates higher profits for its investors. These are overnight costs, financing costs, gas prices, carbon prices, profit margins (or mark-ups), the amount of coal with carbon capture and electricity prices. This paper will present the outcomes of the analysis in the context of a liberalised electricity market, looking at the impact of the seven key variables and provide conclusions on the portfolio that a utility would be advised to maintain, given the need to limit risks but also to move to low carbon power generation. Such portfolio diversification would not only limit financial investor risk, but also a number of non-financial risks (climate change, security of supply, accidents). (authors)

  14. Electric Sales, Revenue, and Average Price 2011 - Energy Information...

    U.S. Energy Information Administration (EIA) Indexed Site

    Alphabetical Frequency Tag Cloud See All Electricity Reports Electric Sales, Revenue, and Average Price With Data for 2014 | Release Date: October 21, 2015 | Next Release Date: ...

  15. United States Electricity Industry Primer

    Broader source: Energy.gov [DOE]

    The United States Electricity Industry Primer provides a high-level overview of the U.S. electricity supply chain, including generation, transmission, and distribution; markets and ownership structures, including utilities and regulatory agencies; and system reliability and vulnerabilities.

  16. Natural Gas Wellhead Price

    Gasoline and Diesel Fuel Update (EIA)

    Pipeline and Distribution Use Price City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Vehicle Fuel Price Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010

  17. ,"West Virginia Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","1...

  18. ,"Massachusetts Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:15:46 AM" "Back to Contents","Data 1: Massachusetts Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MA3"...

  19. ,"United States Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"12292015 2:57:56 AM" "Back to Contents","Data 1: United States Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"...

  20. ,"North Carolina Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic...

  1. ,"United States Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1292016 12:16:27 AM" "Back to Contents","Data 1: United States Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"...

  2. Fact #666: March 14, 2011 Survey says Electric Vehicle Prices are Key |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 6: March 14, 2011 Survey says Electric Vehicle Prices are Key Fact #666: March 14, 2011 Survey says Electric Vehicle Prices are Key November/December 2010 surveys of 1,716 drivers and 123 automobile industry executives indicate that both groups believe a low electric vehicle price would motivate consumers to switch from a conventional vehicle to an electric-only vehicle (EV). More than half of the drivers surveyed also indicated that an extended vehicle range, the

  3. Solar Real-Time Pricing: Is Real-Time Electricity Pricing Beneficial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Real-Time Pricing: Is Real-Time Electricity Pricing Beneficial to Solar PV in New ... Location New York, New York United States See map: Google Maps Date July 2009 Topic ...

  4. Fact #766: February 11, 2013 Electricity Prices are More Stable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    comparing the national average retail price for a gallon of regular gasoline and a kilowatt-hour (kWh) for residential electricity, the pricing for gasoline is far more volatile. ...

  5. Table 14b. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Average Electricity Prices, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars, cents per kilowatt-hour)" ,1993,1994,1995,1996,1997,1998,1999,2000,200...

  6. Table 14b. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Average Electricity Prices, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars, cents per kilowatt-hour) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002...

  7. Carbon Constraints and the Electric Power Industry

    SciTech Connect (OSTI)

    2007-11-15

    The report is designed to provide a thorough understanding of the type of carbon constraints that are likely to be imposed, when they are likely to take effect, and how they will impact the electric power industry. The main objective of the report is to provide industry participants with the knowledge they need to plan for and react to a future in which carbon emissions are restricted. The main goal of the report is to ensure an understanding of the likely restrictions that will be placed on carbon emissions, the methods available for reducing their carbon emissions, and the impact that carbon reductions will have on the electric power industry. A secondary goal of the report is to provide information on key carbon programs and market participants to enable companies to begin participating in the international carbon marketplace. Topics covered in the report include: overview of what climate change and the Kyoto Protocol are; analysis of the impacts of climate change on the U.S. and domestic efforts to mandate carbon reductions; description of carbon reduction mechanisms and the types of carbon credits that can be created; evaluation of the benefits of carbon trading and the rules for participation under Kyoto; Description of the methods for reducing carbon emissions available to the U.S. electric power industry; analysis of the impact of carbon restrictions on the U.S. electric power industry in terms of both prices and revenues; evaluation of the impact of carbon restrictions on renewable energy; overview of the current state of the global carbon market including descriptions of the three major marketplaces; descriptions of the industry and government programs already underway to reduce carbon emissions in the U.S. electric power industry; and, profiles of the major international carbon exchanges and brokers.

  8. Household Response To Dynamic Pricing Of Electricity: A Survey...

    Open Energy Info (EERE)

    Household Response To Dynamic Pricing Of Electricity: A Survey Of The Experimental Evidence Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Household Response To Dynamic...

  9. Expected annual electricity bill savings for various PPA price...

    Open Energy Info (EERE)

    Expected annual electricity bill savings for various PPA price options Jump to: navigation, search Impact of Utility Rates on PV Economics Bill savings tables (main section): When...

  10. ,"Alabama Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  11. ,"Hawaii Natural Gas Price Sold to Electric Power Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Hawaii Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  12. ,"New Hampshire Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  13. ,"Rhode Island Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  14. ,"New York Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  15. ,"Indiana Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  16. ,"Connecticut Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  17. ,"South Dakota Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  18. ,"Idaho Natural Gas Price Sold to Electric Power Consumers (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  19. ,"Colorado Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  20. ,"Maryland Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  1. ,"West Virginia Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  2. ,"North Dakota Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  3. ,"Alaska Natural Gas Price Sold to Electric Power Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  4. ,"New Jersey Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  5. ,"South Carolina Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  6. ,"North Carolina Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  7. Nongqishi Electric Power Industrial Corporation | Open Energy...

    Open Energy Info (EERE)

    Nongqishi Electric Power Industrial Corporation Jump to: navigation, search Name: Nongqishi Electric Power Industrial Corporation Place: Kuitun City, Xinjiang Autonomous Region,...

  8. Midstate Electric Cooperative - Commercial and Industrial Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial and Industrial Energy Efficiency Rebate Program Midstate Electric Cooperative - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial...

  9. District of Columbia Natural Gas Industrial Price (Dollars per Thousand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Feet) District of Columbia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 -- -- -- -- -- -- -- -- -- -- -- -- 2002 -- -- -- -- -- -- -- -- -- -- -- -- 2003 -- -- -- -- -- -- -- -- -- -- -- -- 2004 -- -- -- -- -- -- -- -- -- -- -- -- 2005 -- -- -- -- -- -- -- -- -- -- -- -- 2006 -- -- -- -- -- -- -- -- -- -- -- -- 2007 -- -- -- -- -- -- -- -- -- -- -- -- 2008 -- -- -- -- -- -- -- -- -- -- -- -- 2009 -- -- -- -- --

  10. ,"Kansas Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1292016 12:15:41 AM" "Back to Contents","Data 1: Kansas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035KS3"...

  11. ,"Texas Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:25 AM" "Back to Contents","Data 1: Texas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035TX3" "Date","Texas...

  12. ,"Idaho Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:36 AM" "Back to Contents","Data 1: Idaho Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035ID3" "Date","Idaho...

  13. ,"Mississippi Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:15:57 AM" "Back to Contents","Data 1: Mississippi Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MS3" "Date","Mississippi...

  14. ,"Maryland Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:48 AM" "Back to Contents","Data 1: Maryland Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MD3" "Date","Maryland...

  15. ,"Nebraska Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:04 AM" "Back to Contents","Data 1: Nebraska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035NE3" "Date","Nebraska...

  16. ,"Alabama Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:20 AM" "Back to Contents","Data 1: Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AL3" "Date","Alabama...

  17. ,"Virginia Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:29 AM" "Back to Contents","Data 1: Virginia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035VA3" "Date","Virginia...

  18. ,"Montana Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:59 AM" "Back to Contents","Data 1: Montana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MT3" "Date","Montana...

  19. ,"Tennessee Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:16:24 AM" "Back to Contents","Data 1: Tennessee Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035TN3" "Date","Tennessee...

  20. ,"Louisiana Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:15:44 AM" "Back to Contents","Data 1: Louisiana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035LA3" "Date","Louisiana...

  1. ,"Maine Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:49 AM" "Back to Contents","Data 1: Maine Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035ME3" "Date","Maine...

  2. ,"Connecticut Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:15:27 AM" "Back to Contents","Data 1: Connecticut Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CT3" "Date","Connecticut...

  3. ,"Iowa Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:35 AM" "Back to Contents","Data 1: Iowa Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035IA3" "Date","Iowa Natural...

  4. ,"Oregon Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:16 AM" "Back to Contents","Data 1: Oregon Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035OR3" "Date","Oregon...

  5. ,"Missouri Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:55 AM" "Back to Contents","Data 1: Missouri Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MO3" "Date","Missouri...

  6. ,"Minnesota Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:15:53 AM" "Back to Contents","Data 1: Minnesota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MN3" "Date","Minnesota...

  7. ,"Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:18 AM" "Back to Contents","Data 1: Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AK3" "Date","Alaska...

  8. ,"Kansas Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:41 AM" "Back to Contents","Data 1: Kansas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035KS3" "Date","Kansas...

  9. ,"Michigan Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:52 AM" "Back to Contents","Data 1: Michigan Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MI3" "Date","Michigan...

  10. ,"Illinois Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:38 AM" "Back to Contents","Data 1: Illinois Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035IL3" "Date","Illinois...

  11. ,"Florida Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:31 AM" "Back to Contents","Data 1: Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035FL3" "Date","Florida...

  12. ,"Wyoming Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:37 AM" "Back to Contents","Data 1: Wyoming Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035WY3" "Date","Wyoming...

  13. ,"Alabama Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:19 AM" "Back to Contents","Data 1: Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AL3" "Date","Alabama...

  14. ,"Virginia Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:30 AM" "Back to Contents","Data 1: Virginia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035VA3" "Date","Virginia...

  15. ,"Utah Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:28 AM" "Back to Contents","Data 1: Utah Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035UT3" "Date","Utah Natural...

  16. ,"Kentucky Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:43 AM" "Back to Contents","Data 1: Kentucky Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035KY3" "Date","Kentucky...

  17. ,"California Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:15:24 AM" "Back to Contents","Data 1: California Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CA3" "Date","California...

  18. ,"Vermont Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:31 AM" "Back to Contents","Data 1: Vermont Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035VT3" "Date","Vermont...

  19. ,"Arizona Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:23 AM" "Back to Contents","Data 1: Arizona Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AZ3" "Date","Arizona...

  20. ,"Washington Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:16:33 AM" "Back to Contents","Data 1: Washington Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035WA3" "Date","Washington...

  1. ,"Ohio Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:13 AM" "Back to Contents","Data 1: Ohio Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035OH3" "Date","Ohio Natural...

  2. ,"Pennsylvania Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:16:18 AM" "Back to Contents","Data 1: Pennsylvania Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035PA3" "Date","Pennsylvania...

  3. ,"Kentucky Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:42 AM" "Back to Contents","Data 1: Kentucky Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035KY3" "Date","Kentucky...

  4. ,"Oklahoma Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:15 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035OK3" "Date","Oklahoma...

  5. ,"Delaware Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:29 AM" "Back to Contents","Data 1: Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035DE3" "Date","Delaware...

  6. ,"Arizona Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:22 AM" "Back to Contents","Data 1: Arizona Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AZ3" "Date","Arizona...

  7. ,"Georgia Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:32 AM" "Back to Contents","Data 1: Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035GA3" "Date","Georgia...

  8. ,"Colorado Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:25 AM" "Back to Contents","Data 1: Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CO3" "Date","Colorado...

  9. ,"Wisconsin Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:16:34 AM" "Back to Contents","Data 1: Wisconsin Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035WI3" "Date","Wisconsin...

  10. ,"Indiana Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:39 AM" "Back to Contents","Data 1: Indiana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035IN3" "Date","Indiana...

  11. ,"Idaho Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:37 AM" "Back to Contents","Data 1: Idaho Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035ID3" "Date","Idaho...

  12. ,"Hawaii Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:34 AM" "Back to Contents","Data 1: Hawaii Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035HI3" "Date","Hawaii...

  13. ,"Ohio Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:14 AM" "Back to Contents","Data 1: Ohio Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035OH3" "Date","Ohio Natural...

  14. ,"Montana Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:58 AM" "Back to Contents","Data 1: Montana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MT3" "Date","Montana...

  15. ,"Indiana Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:40 AM" "Back to Contents","Data 1: Indiana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035IN3" "Date","Indiana...

  16. ,"Arkansas Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:21 AM" "Back to Contents","Data 1: Arkansas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AR3" "Date","Arkansas...

  17. ,"Michigan Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:51 AM" "Back to Contents","Data 1: Michigan Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MI3" "Date","Michigan...

  18. ,"Maine Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:50 AM" "Back to Contents","Data 1: Maine Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035ME3" "Date","Maine...

  19. Florida's electric industry and solar electric technologies

    SciTech Connect (OSTI)

    Camejo, N.

    1983-12-01

    The Florida Electric Industry is in a process of diversifying its generation technology and its fuel mix. This is being done in an effort to reduce oil consumption, which in 1981 accounted for 46.5% of the electric generation by fuel type. This does not compare well with the rest of the nation where oil use is lower. New coal and nuclear units are coming on line, and probably more will be built in the near future. However, eventhough conservation efforts may delay their construction, new power plants will have to be built to accomodate the growing demand for electricity. Other alternatives being considered are renewable energy resources. The purpose of this paper is to present the results of a research project in which 10 electric utilities in Florida and the Florida Electric Power Coordinating Group rated six Solar Electric options. The Solar Electric options considered are: 1) Wind, 2) P.V., 3) Solar thermal-electric, 4) OTEC, 5) Ocean current, and 6) Biomass. The questionaire involved rating the economic and technical feasibility, as well as, the potential environmental impact of these options in Florida. It also involved rating the difficulty in overcoming institutional barriers and assessing the status of each option. A copy of the questionaire is included after the references. The combined capacity of the participating utilities represent over 90% of the total generating capacity in Florida. A list of the participating utilities is also included. This research was done in partial fulfillment for the Mater's of Science Degree in Coastal Zone Management. This paper is complementary to another paper (in these condensed conference proceedings) titled COASTAL ZONE ENERGY MANAGEMENT: A multidisciplinary approach for the integration of Solar Electric Systems with Florida's power generation system, which present a summary of the Master's thesis.

  20. Characterizing the Response of Commercial and Industrial Facilities to Dynamic Pricing Signals from the Utility

    SciTech Connect (OSTI)

    Mathieu, Johanna L.; Gadgil, Ashok J.; Callaway, Duncan S.; Price, Phillip N.; Kiliccote, Sila

    2010-07-01

    We describe a method to generate statistical models of electricity demand from Commercial and Industrial (C&I) facilities including their response to dynamic pricing signals. Models are built with historical electricity demand data. A facility model is the sum of a baseline demand model and a residual demand model; the latter quantifies deviations from the baseline model due to dynamic pricing signals from the utility. Three regression-based baseline computation methods were developed and analyzed. All methods performed similarly. To understand the diversity of facility responses to dynamic pricing signals, we have characterized the response of 44 C&I facilities participating in a Demand Response (DR) program using dynamic pricing in California (Pacific Gas and Electric's Critical Peak Pricing Program). In most cases, facilities shed load during DR events but there is significant heterogeneity in facility responses. Modeling facility response to dynamic price signals is beneficial to the Independent System Operator for scheduling supply to meet demand, to the utility for improving dynamic pricing programs, and to the customer for minimizing energy costs.

  1. Transmission Pricing Issues for Electricity Generation From Renewable Resources

    Reports and Publications (EIA)

    1999-01-01

    This article discusses how the resolution of transmission pricing issues which have arisen under the Federal Energy Regulatory Commission's (FERC) open access environment may affect the prospects for renewable-based electricity.

  2. ,"Texas Natural Gas Price Sold to Electric Power Consumers (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1012015 10:57:50 AM" "Back to Contents","Data 1: Texas Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

  3. Modifications to incorporate competitive electricity prices in the annual energy outlook 1998 - electricity market module

    SciTech Connect (OSTI)

    1998-02-01

    The purpose of this report is to describe modifications to the Electricity Market Module (EMM) for the Annual Energy Outlook 1998. It describes revisions necessary to derive competitive electricity prices and the corresponding reserve margins.

  4. Electric industry restructuring in Massachusetts

    SciTech Connect (OSTI)

    Wadsworth, J.W.

    1998-07-01

    A law restructuring the electric utility industry in Massachusetts became effective on November 25, 1997. The law will break up the existing utility monopolies into separate generation, distribution and transmission entities, and it will allow non-utility generators access to the retail end user market. The law contains many compromises aimed at protecting consumers, ensuring savings, protecting employees and protecting the environment. While it appears that the legislation recognizes the sanctity of independent power producer contracts with utilities, it attempts to provide both carrots and sticks to the utilities and the IPP generators to encourage renegotiations and buy-down of the contracts. Waste-to-energy contracts are technically exempted from some of the obligations to remediate. Waste-to-energy facilities are classified as renewable energy sources which may have positive effects on the value to waste-to-energy derived power. On November 25, 1997, the law restructuring the electric utility industry in Massachusetts became effective. The law will have two primary effects: (1) break up the existing utility monopolies into separate generation, distribution and transmission entities, and (2) allow non-utility generators access to the retail end-user market.

  5. Natural Gas Citygate Price

    Gasoline and Diesel Fuel Update (EIA)

    Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From

  6. Average Commercial Price

    Gasoline and Diesel Fuel Update (EIA)

    Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From

  7. Average Residential Price

    Gasoline and Diesel Fuel Update (EIA)

    Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From

  8. Solar Real-Time Pricing: Is Real-Time Electricity Pricing Beneficial to Solar PV in New York City?

    Broader source: Energy.gov [DOE]

    The goal of this study is to evaluate the validity of the following statement: “the coincidence of high electric energy prices and peak solar electric photovoltaic (PV) output can improve the economics of PV installations, and can also facilitate the wider use of hourly pricing.” The study is focused on Con Edison electric service territory in New York City.

  9. Fact #766: February 11, 2013 Electricity Prices are More Stable than

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gasoline Prices | Department of Energy 6: February 11, 2013 Electricity Prices are More Stable than Gasoline Prices Fact #766: February 11, 2013 Electricity Prices are More Stable than Gasoline Prices All energy prices vary from month to month and year to year. However, when comparing the national average retail price for a gallon of regular gasoline and a kilowatt-hour (kWh) for residential electricity, the pricing for gasoline is far more volatile. In the two year period shown in the

  10. Table A44. Average Prices of Purchased Electricity and Steam

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Average Prices of Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Dollars per Physical Units)" ," Electricity",," Steam" ," (kWh)",," (million Btu)" ,,,,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Row" "Economic

  11. Hydro and geothermal electricity as an alternative for industrial petroleum consumption in Costa Rica

    SciTech Connect (OSTI)

    Mendis, M.; Park, W.; Sabadell, A.; Talib, A.

    1982-04-01

    This report assesses the potential for substitution of electricity for petroleum in the industrial/agro-industrial sector of Costa Rica. The study includes a preliminary estimate of the process energy needs in this sector, a survey of the principal petroleum consuming industries in Costa Rica, an assessment of the electrical technologies appropriate for substitution, and an analysis of the cost trade offs of alternative fuels and technologies. The report summarizes the total substitution potential both by technical feasibility and by cost effectiveness under varying fuel price scenarios and identifies major institutional constraints to the introduction of electric based technologies. Recommendations to the Government of Costa Rica are presented. The key to the success of a Costa Rican program for substitution of electricity for petroleum in industry rests in energy pricing policy. The report shows that if Costa Rica Bunker C prices are increased to compare equitably with Caribbean Bunker C prices, and increase at 3 percent per annum relative to a special industrial electricity rate structure, the entire substitution program, including both industrial and national electric investment, would be cost effective. The definition of these pricing structures and their potential impacts need to be assessed in depth.

  12. Table 14a. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Average Electricity Prices, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars, cents per kilowatt-hour in ""dollar year"" specific to each AEO)" ,"AEO $ Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",1992,6.799,6.7999,6.9,6.9,6.9,6.9,7,7,7.1,7.1,7.2,7.2,7.2,7.3,7.3,7.4,7.5,7.6 "AEO

  13. Informatics requirements for a restructured competitive electric power industry

    SciTech Connect (OSTI)

    Pickle, S.; Marnay, C.; Olken, F.

    1996-08-01

    The electric power industry in the United States is undergoing a slow but nonetheless dramatic transformation. It is a transformation driven by technology, economics, and politics; one that will move the industry from its traditional mode of centralized system operations and regulated rates guaranteeing long-run cost recovery, to decentralized investment and operational decisionmaking and to customer access to true spot market prices. This transformation will revolutionize the technical, procedural, and informational requirements of the industry. A major milestone in this process occurred on December 20, 1995, when the California Public Utilities Commission (CPUC) approved its long-awaited electric utility industry restructuring decision. The decision directed the three major California investor-owned utilities to reorganize themselves by the beginning of 1998 into a supply pool, at the same time selling up to a half of their thermal generating plants. Generation will be bid into this pool and will be dispatched by an independent system operator. The dispatch could potentially involve bidders not only from California but from throughout western North America and include every conceivable generating technology and scale of operation. At the same time, large customers and aggregated customer groups will be able to contract independently for their supply and the utilities will be required to offer a real-time pricing tariff based on the pool price to all their customers, including residential. In related proceedings concerning competitive wholesale power markets, the Federal Energy Regulatory Commission (FERC) has recognized that real-time information flows between buyers and sellers are essential to efficient equitable market operation. The purpose of this meeting was to hold discussions on the information technologies that will be needed in the new, deregulated electric power industry.

  14. Electricity prices in a competitive environment: Marginal cost pricing of generation services and financial status of electric utilities. A preliminary analysis through 2015

    SciTech Connect (OSTI)

    1997-08-01

    The emergence of competitive markets for electricity generation services is changing the way that electricity is and will be priced in the United States. This report presents the results of an analysis that focuses on two questions: (1) How are prices for competitive generation services likely to differ from regulated prices if competitive prices are based on marginal costs rather than regulated {open_quotes}cost-of-service{close_quotes} pricing? (2) What impacts will the competitive pricing of generation services (based on marginal costs) have on electricity consumption patterns, production costs, and the financial integrity patterns, production costs, and the financial integrity of electricity suppliers? This study is not intended to be a cost-benefit analysis of wholesale or retail competition, nor does this report include an analysis of the macroeconomic impacts of competitive electricity prices.

  15. Electricity Prices in Transition (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    The push by some states to restructure electricity markets progressed rapidly throughout the late 1990s. Although the energy crisis in California during 2000 and 2001 slowed the momentum, 19 states and the District of Columbia currently have some form of restructuring in place. In addition, Washington State, which has not restructured its electricity market, allows its largest industrial customers to choose their suppliers.

  16. Customer Strategies for Responding to Day-Ahead Market HourlyElectricity Pricing

    SciTech Connect (OSTI)

    Goldman, Chuck; Hopper, Nicole; Bharvirkar, Ranjit; Neenan,Bernie; Boisvert, Dick; Cappers, Peter; Pratt, Donna; Butkins, Kim

    2005-08-25

    Real-time pricing (RTP) has been advocated as an economically efficient means to send price signals to customers to promote demand response (DR) (Borenstein 2002, Borenstein 2005, Ruff 2002). However, limited information exists that can be used to judge how effectively RTP actually induces DR, particularly in the context of restructured electricity markets. This report describes the second phase of a study of how large, non-residential customers' adapted to default-service day-ahead hourly pricing. The customers are located in upstate New York and served under Niagara Mohawk, A National Grid Company (NMPC)'s SC-3A rate class. The SC-3A tariff is a type of RTP that provides firm, day-ahead notice of hourly varying prices indexed to New York Independent System Operator (NYISO) day-ahead market prices. The study was funded by the California Energy Commission (CEC)'s PIER program through the Demand Response Research Center (DRRC). NMPC's is the first and longest-running default-service RTP tariff implemented in the context of retail competition. The mix of NMPC's large customers exposed to day-ahead hourly prices is roughly 30% industrial, 25% commercial and 45% institutional. They have faced periods of high prices during the study period (2000-2004), thereby providing an opportunity to assess their response to volatile hourly prices. The nature of the SC-3A default service attracted competitive retailers offering a wide array of pricing and hedging options, and customers could also participate in demand response programs implemented by NYISO. The first phase of this study examined SC-3A customers' satisfaction, hedging choices and price response through in-depth customer market research and a Constant Elasticity of Substitution (CES) demand model (Goldman et al. 2004). This second phase was undertaken to answer questions that remained unresolved and to quantify price response to a higher level of granularity. We accomplished these objectives with a second customer survey and interview effort, which resulted in a higher, 76% response rate, and the adoption of the more flexible Generalized Leontief (GL) demand model, which allows us to analyze customer response under a range of conditions (e.g. at different nominal prices) and to determine the distribution of individual customers' response.

  17. A Brief History of the Electricity Industry

    Gasoline and Diesel Fuel Update (EIA)

    data and evaluating electricity restructuring James Bushnell University of California Energy Inst. www.ucei.berkeley.edu Outline * Shameless flattery - Why EIA data are so important * Why are people so unhappy? - With electricity restructuring * What EIA data have helped us learn - Production efficiencies - Market efficiency - Market competition - Environmental compliance Why EIA is so important * Important industries undergoing historic changes - Restructuring/deregulation - Environmental

  18. Hawaii Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Hawaii Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 11.65 11.84 11.04 11.08 11.23 11.17 11.07 10.89 10.62 11.18 10.76 10.56 2002 8.59 10.48 9.85 9.66 9.97 10.63 10.22 10.43 10.65 10.24 10.98 10.71 2003 10.62 10.92 11.35 12.15 12.35 12.19 11.82 12.14 12.15 12.29 12.17 11.93 2004 12.10 12.37 12.14 12.29 13.18 13.31 13.20 13.15 13.79 14.06 14.30 14.84 2005 14.68 14.45 14.65 15.04

  19. Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 10.05 9.35 7.56 6.07 5.80 5.01 4.55 4.21 3.78 3.00 4.52 3.39 2002 4.07 3.67 3.48 4.65 6.74 5.02 5.11 4.84 4.98 4.92 5.48 5.74 2003 6.56 7.08 9.43 6.70 6.43 7.31 6.62 5.86 5.85 6.10 6.32 6.54 2004 7.95 7.97 6.88 6.96 7.27 8.03 7.89 7.47 6.69 7.22 9.07 7.20 2005 8.99 8.10 8.90 8.37 8.32 8.01 8.52 8.85 11.71 13.33 13.71 14.78 2006

  20. Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 7.37 4.61 11.53 7.36 8.20 6.89 6.65 6.54 6.29 6.19 5.68 6.11 2002 6.58 6.02 6.11 6.16 5.47 7.23 6.29 6.47 6.68 6.34 5.84 5.53 2003 5.33 5.80 7.15 6.71 6.71 6.78 6.38 6.70 7.27 5.95 6.08 6.75 2004 6.39 7.89 6.75 7.26 7.28 7.46 8.39 8.59 8.40 7.30 8.83 8.47 2005 8.85 9.59 9.28 11.33 10.93 10.46 10.46 9.33 10.77 11.27 13.11 14.05

  1. Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9.36 10.07 10.38 7.40 6.89 6.77 6.64 6.64 6.70 5.59 4.12 5.12 2002 6.99 7.76 5.79 5.13 4.85 4.66 4.30 4.21 4.40 4.65 5.49 6.17 2003 7.12 8.22 4.75 4.13 4.15 4.26 4.00 3.95 4.00 6.28 7.97 9.22 2004 9.06 9.91 7.06 6.62 6.59 6.58 6.49 5.88 6.51 7.29 8.08 10.51 2005 7.53 7.58 7.88 7.91 8.19 8.73 8.66 8.95 8.56 8.40 9.99 11.41 2006

  2. Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 8.27 8.02 9.74 8.61 6.66 7.56 6.92 6.22 5.76 5.66 4.51 4.24 2002 5.51 5.35 5.41 4.67 5.27 5.58 5.25 5.17 5.29 5.40 5.30 5.91 2003 5.32 6.03 5.59 7.11 6.97 6.62 7.08 8.14 8.03 7.88 7.25 7.67 2004 7.62 7.91 8.36 8.02 8.00 8.56 9.34 8.95 8.12 8.29 7.64 8.48 2005 9.57 8.52 7.99 8.37 8.42 8.99 8.43 9.99 9.03 12.11 12.07 11.24 2006

  3. Connecticut Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Connecticut Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 10.11 11.82 8.37 8.23 7.19 6.24 3.13 4.62 5.22 4.61 5.15 5.92 2002 5.31 4.97 4.95 4.15 4.88 4.74 4.08 4.10 4.89 4.87 5.56 6.09 2003 7.67 8.43 9.08 8.54 7.03 7.61 7.10 6.50 6.83 6.61 6.56 7.52 2004 12.70 9.38 9.03 8.09 8.00 8.28 7.80 7.86 7.77 7.85 11.27 11.09 2005 9.85 10.02 10.36 10.81 9.51 8.73 9.55 10.51 13.43 17.16 16.27

  4. Iowa Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Iowa Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9.54 8.44 9.52 7.96 6.35 8.08 5.35 5.74 5.26 3.87 4.25 3.42 2002 4.97 4.57 4.89 4.97 5.35 5.37 5.22 4.93 5.11 5.69 6.24 7.14 2003 6.43 6.25 7.71 5.55 6.61 6.87 7.22 5.12 6.15 5.92 6.32 7.20 2004 7.17 6.68 6.80 6.97 7.87 8.32 8.60 8.21 7.12 6.42 7.00 8.44 2005 8.17 7.80 8.09 7.66 8.11 7.65 7.92 9.24 10.27 11.53 12.18 12.05 2006 10.95

  5. Louisiana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9.70 6.97 5.81 5.77 5.43 5.18 4.49 4.18 4.12 3.54 3.85 3.59 2002 3.36 2.97 3.29 3.41 3.67 3.52 3.62 3.29 3.95 4.00 4.40 4.44 2003 5.15 5.98 8.01 5.35 5.34 6.07 5.53 4.84 5.09 4.98 4.91 5.47 2004 6.60 5.98 5.60 5.81 6.31 6.88 6.33 6.42 5.59 6.44 7.91 8.07 2005 6.86 7.31 6.81 7.81 7.14 6.88 7.69 8.45 11.78 14.71 13.93 12.54 2006

  6. Kansas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Kansas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 8.77 10.38 7.59 7.09 6.09 5.29 4.78 4.48 4.65 3.29 3.09 3.99 2002 4.67 4.36 3.55 3.54 3.53 3.43 3.39 3.32 3.47 4.08 4.84 4.67 2003 5.44 5.49 6.14 5.94 4.79 5.27 4.89 4.63 4.47 4.61 4.92 5.39 2004 7.30 7.93 6.36 5.82 5.83 6.42 6.50 6.44 5.85 6.64 7.42 8.41 2005 8.81 8.69 8.62 8.33 7.27 6.61 7.10 7.26 7.83 10.44 10.55 11.14 2006

  7. Kentucky Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 8.55 8.47 8.09 7.29 6.31 5.90 5.58 5.10 4.29 4.78 5.09 4.77 2002 4.88 4.69 4.15 4.57 4.50 4.26 4.14 3.99 4.25 4.66 5.46 5.36 2003 5.80 6.30 8.68 6.38 6.42 6.88 6.54 6.03 6.40 5.88 6.42 6.92 2004 7.65 7.53 6.89 6.77 6.84 7.39 7.27 7.21 6.61 6.97 8.58 8.08 2005 7.92 8.11 7.89 8.38 8.17 7.79 8.32 8.91 11.11 13.42 14.35 12.71 2006

  8. Illinois Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Illinois Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 10.56 9.55 8.26 7.06 6.31 6.24 4.99 5.18 4.53 3.70 3.54 4.34 2002 4.00 4.45 4.24 4.64 5.77 5.43 4.97 5.13 4.95 5.15 5.77 5.79 2003 6.28 6.86 8.79 7.38 6.63 8.25 8.12 7.27 7.19 6.90 6.69 7.45 2004 7.69 7.94 7.40 8.13 8.03 8.55 8.07 8.44 8.32 7.80 8.45 8.76 2005 8.47 7.86 8.25 9.39 9.65 9.40 8.39 9.08 10.25 12.31 12.71 13.07 2006

  9. Indiana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Indiana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9.25 8.48 12.91 9.81 10.26 9.21 12.67 9.57 5.46 3.85 7.01 3.34 2002 7.27 5.92 4.39 6.85 7.28 5.89 5.22 4.81 4.22 4.17 5.16 5.88 2003 6.85 8.02 10.84 10.03 7.84 10.46 9.36 8.56 5.98 10.73 6.50 9.40 2004 11.18 9.96 7.96 10.35 7.42 9.65 6.55 6.70 5.84 5.87 5.77 7.19 2005 7.83 10.43 8.06 10.90 10.16 8.75 9.36 8.94 10.85 11.53 10.54

  10. Mississippi Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 11.59 7.72 6.09 6.16 6.13 4.61 4.85 4.27 4.04 3.79 4.68 3.72 2002 4.10 3.85 3.73 4.37 4.96 4.39 4.45 4.29 4.36 4.95 5.41 5.50 2003 5.39 6.84 8.53 5.36 5.80 6.49 5.86 5.69 6.52 6.23 6.87 6.36 2004 7.34 7.68 5.64 5.31 6.29 7.05 6.44 6.42 5.59 5.81 8.02 7.70 2005 6.34 7.37 7.39 8.13 7.67 7.40 7.55 8.42 9.87 13.41 14.54 13.10

  11. Missouri Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Missouri Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 7.92 10.53 10.14 9.45 8.91 8.70 8.15 8.20 7.78 7.63 7.61 2.74 2002 6.13 5.43 5.13 6.03 6.10 6.07 6.45 6.24 6.18 6.44 6.62 6.94 2003 7.03 7.47 7.77 9.41 8.41 7.97 7.24 8.18 8.15 8.31 8.31 8.34 2004 8.42 8.82 8.06 8.44 8.38 8.85 9.33 8.72 8.70 8.61 10.04 9.58 2005 9.60 9.80 10.04 10.18 10.14 10.06 10.11 10.08 10.90 12.07 13.25

  12. Montana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Montana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 4.63 5.95 4.89 4.79 4.96 5.90 6.07 6.56 6.56 5.79 4.84 4.68 2002 3.01 2.73 2.61 2.51 2.39 2.62 3.20 3.60 3.27 2.89 2.59 2.81 2003 3.67 3.75 3.93 3.60 3.90 4.05 5.23 6.50 6.66 6.39 5.85 5.80 2004 6.14 6.32 6.62 7.02 6.03 6.19 6.37 7.11 6.73 6.10 6.11 6.35 2005 7.94 7.34 7.19 6.84 7.31 7.48 7.76 8.94 9.06 9.83 10.08 10.24 2006

  13. Maine Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Maine Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9.56 9.56 9.83 9.95 9.13 7.98 8.06 6.65 8.25 5.75 4.42 4.60 2002 9.38 8.81 8.44 8.08 7.33 7.65 6.64 7.60 7.45 7.61 9.77 10.02 2003 9.83 9.48 9.50 10.29 10.26 9.36 9.49 9.80 8.70 9.64 10.49 9.72 2004 10.84 11.76 10.46 9.86 9.38 10.33 9.04 8.78 8.67 9.27 11.96 12.32 2005 12.81 13.04 13.11 12.85 10.21 11.15 10.89 11.50 15.21 15.31

  14. Maryland Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Maryland Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 11.60 14.47 10.27 9.58 8.95 8.49 6.31 6.06 6.20 6.00 7.00 6.62 2002 8.10 6.51 7.18 6.55 8.66 8.76 7.01 8.03 6.93 7.29 7.31 7.43 2003 8.41 8.62 11.37 11.41 10.93 11.70 9.64 12.04 9.18 8.72 9.57 7.49 2004 9.40 11.11 10.69 10.62 10.65 11.49 12.39 11.28 10.70 10.82 10.40 10.37 2005 10.46 10.85 10.19 11.38 10.68 10.33 10.99 10.95

  15. Massachusetts Natural Gas Industrial Price (Dollars per Thousand Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feet) Price (Dollars per Thousand Cubic Feet) Massachusetts Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 8.04 8.71 11.80 11.09 10.44 9.23 8.98 8.99 9.79 7.62 7.95 8.07 2002 8.18 7.38 7.18 6.95 7.56 6.02 5.26 5.57 7.53 5.83 6.87 9.52 2003 11.26 12.64 13.31 15.04 13.98 11.25 12.10 12.34 13.23 1.71 12.47 13.92 2004 10.82 12.38 12.13 12.62 12.25 11.44 10.15 14.04 13.85 12.37 13.64 13.82 2005 12.91 12.27 12.23 12.93 12.49

  16. Michigan Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Michigan Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 4.35 4.40 4.46 4.40 5.76 5.77 5.32 5.24 5.18 5.15 5.17 5.14 2002 4.95 5.02 4.99 4.83 4.95 5.13 6.26 5.44 5.26 5.19 5.05 3.71 2003 4.76 4.90 5.31 5.46 5.87 6.51 6.36 6.73 6.59 6.00 5.41 6.42 2004 6.48 6.63 6.32 6.28 6.38 7.41 7.91 7.82 7.63 7.41 7.86 7.74 2005 7.59 7.25 7.34 8.16 8.21 8.95 9.15 9.69 9.91 11.32 10.87 10.74 2006

  17. Shenzhen Soyin Electrical Appliance Industrial Co Ltd | Open...

    Open Energy Info (EERE)

    Soyin Electrical Appliance Industrial Co Ltd Jump to: navigation, search Name: Shenzhen Soyin Electrical Appliance Industrial Co Ltd Place: Xixiang Town,Shenzhen, Guangdong...

  18. Price Responsive Demand in New York Wholesale Electricity Market using OpenADR

    SciTech Connect (OSTI)

    Kim, Joyce Jihyun; Kiliccote, Sila

    2012-06-01

    In New York State, the default electricity pricing for large customers is Mandatory Hourly Pricing (MHP), which is charged based on zonal day-ahead market price for energy. With MHP, retail customers can adjust their building load to an economically optimal level according to hourly electricity prices. Yet, many customers seek alternative pricing options such as fixed rates through retail access for their electricity supply. Open Automated Demand Response (OpenADR) is an XML (eXtensible Markup Language) based information exchange model that communicates price and reliability information. It allows customers to evaluate hourly prices and provide demand response in an automated fashion to minimize electricity costs. This document shows how OpenADR can support MHP and facilitate price responsive demand for large commercial customers in New York City.

  19. 2014 Total Electric Industry- Customers

    Gasoline and Diesel Fuel Update (EIA)

    Customers (Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 6,243,013 862,269 28,017 8 7,133,307 Connecticut 1,459,239 155,372 4,648 4 1,619,263 Maine 706,952 91,541 3,023 0 801,516 Massachusetts 2,720,128 398,717 14,896 3 3,133,744 New Hampshire 606,883 105,840 3,342 0 716,065 Rhode Island 438,879 58,346 1,884 1 499,110 Vermont 310,932 52,453 224 0 363,609 Middle Atlantic 15,806,914 2,247,455 44,397 17

  20. Natural Gas Citygate Price

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  1. Average Commercial Price

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  2. Average Residential Price

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  3. Massachusetts Natural Gas Price Sold to Electric Power Consumers (Dollars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    per Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Massachusetts Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 2.91 2.62 3.09 3.32 3.51 3.41 3.43 3.44 3.72 3.86 4.23 5.03 2003 5.35 6.65 6.64 5.48 W 5.83 5.46 5.02 4.99 5.04 4.89 6.22 2004 10.06 6.26 6.02 6.05 6.51 6.66 6.44 6.04 5.39 6.39 6.69 7.46 2005 8.70 6.99 7.70 7.82 7.33 7.83 8.31 10.00 12.87

  4. Percentage of Total Natural Gas Commercial Deliveries included in Prices

    Gasoline and Diesel Fuel Update (EIA)

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S.

  5. Percentage of Total Natural Gas Residential Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S.

  6. Derivatives and Risk Management in the Petroleum, Natural Gas, and Electricity Industries

    Reports and Publications (EIA)

    2002-01-01

    In February 2002 the Secretary of Energy directed the Energy Information Administration (EIA) to prepare a report on the nature and use of derivative contracts in the petroleum, natural gas, and electricity industries. Derivatives are contracts ('financial instruments') that are used to manage risk, especially price risk.

  7. Table 14a. Average Electricity Prices, Projected vs. Actual

    Gasoline and Diesel Fuel Update (EIA)

    a. Average Electricity Prices, Projected vs. Actual Projected Price in Constant Dollars (constant dollars, cents per kilowatt-hour in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 6.80 6.80 6.90 6.90 6.90 6.90 7.00 7.00 7.10 7.10 7.20 7.20 7.20 7.30 7.30 7.40 7.50 7.60 AEO 1995 1993 6.80 6.80 6.70 6.70 6.70 6.70 6.70 6.80 6.80 6.90 6.90 6.90 7.00 7.00 7.10 7.10 7.20

  8. Electricity pricing as a demand-side management strategy: Western lessons for developing countries

    SciTech Connect (OSTI)

    Hill, L.J.

    1990-12-01

    Electric utilities in the Western world have increasingly realized that load commitments can be met not only by constructing new generating plants but also by influencing electricity demand. This demand-side management (DSM) process requires that electric utilities promote measures on the customer's side of the meter to directly or indirectly influence electricity consumption to meet desired load objectives. An important demand-side option to achieve these load objectives is innovative electricity pricing, both by itself and as a financial incentive for other demand-site measures. This study explores electricity pricing as a DSM strategy, addressing four questions in the process: What is the Western experience with DSM in general and electricity pricing in particular Do innovative pricing strategies alter the amount and pattern of electricity consumption Do the benefits of these pricing strategies outweigh the costs of implementation What are future directions in electricity pricing Although DSM can be used to promote increases in electricity consumption for electric utilities with excess capacity as well as to slow demand growth for capacity-short utilities, emphasis here is placed on the latter. The discussion should be especially useful for electric utilities in developing countries that are exploring alternatives to capacity expansion to meet current and future electric power demand.

  9. District of Columbia Natural Gas Price Sold to Electric Power Consumers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Dollars per Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) District of Columbia Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 -- -- -- -- -- -- -- -- -- -- -- -- 2003 -- -- -- -- -- -- -- -- -- -- -- -- 2004 -- -- -- -- -- -- -- -- -- -- -- -- 2005 -- -- -- -- -- -- -- -- -- -- -- -- 2006 -- -- -- -- -- -- -- -- -- -- -- -- 2007 -- -- -- -- -- -- --

  10. Electric and Gas Industries Association | Open Energy Information

    Open Energy Info (EERE)

    Gas Industries Association Jump to: navigation, search Name: Electric and Gas Industries Association Place: Sacramento, CA Zip: 95821 Website: www.egia.org Coordinates:...

  11. Challenges of Electric Power Industry Restructuring for Fuel Suppliers

    Reports and Publications (EIA)

    1998-01-01

    Provides an assessment of the changes in other energy industries that could occur as the result of restructuring in the electric power industry.

  12. NIPSCO Custom Commercial and Industrial Gas and Electric Incentive Program

    Broader source: Energy.gov [DOE]

    NIPSCO’s Commercial and Industrial Custom Electric and Natural Gas Incentive Program offers financial incentives to qualifying large commercial, industrial, non-profit, governmental and...

  13. United States Industrial Electric Motor Systems Market Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Motor Systems Market Opportunities Assessment United States Industrial Electric Motor Systems Market Opportunities Assessment The objectives of the Market Assessment were...

  14. "Annual Electric Power Industry Report (EIA-861 data file)

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Sales, Revenue, and Average Price CorrectionUpdate Annual data revisions: January 13, 2016 The re-release of the form EIA-861 survey data: January 13, 2016 Revenue data ...

  15. Table 7.3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: U.S. Dollars per Physical Units. Electricity Components Natural Gas Components Steam Components Electricity Natural Gas Steam Electricity from Sources Natural Gas from Sources Steam from Sources Electricity from Local Other than Natural Gas from Local Other than Steam from Local Other than

  16. Electric mergers: Transmission pricing, market size, and effects on competition

    SciTech Connect (OSTI)

    Legato, C.D.

    1996-06-01

    The prospect of deregulation has introducted a wave of mergers among electric utilities. Most of these mergers would fail an antitrust review because, by combining generation assets of interconnected utilities, they have substantially reduced potential competition in generation. In fact, one can predict that most mergers of utilities that operate within the same power pool or reliability region will be anticompetitive, even if they are not interconnected. Using an antitrust analysis, this article illustrates the potential anticompetitive effects of mergers between interconnected utilities. It concludes that the relevant geographic market will be an area in which a single, area-wide transmission price is charged. Moreover, it concludes that this area and, hence, the relevant market will likely span an area no larger than the Mid-American Interconnected Network or the Virginia/Carolina subregion of the Southeastern Reliability Council. Assuming markets of this size, the data on resulting concentration will show severe consequences for mergers of the sort that were announced in 1995 and 1996.

  17. Energy Department Releases Updated eGallon Prices as Electric Vehicle Sales

    Office of Environmental Management (EM)

    Double | Department of Energy Updated eGallon Prices as Electric Vehicle Sales Double Energy Department Releases Updated eGallon Prices as Electric Vehicle Sales Double July 19, 2013 - 9:00am Addthis News Media Contact (202) 586-4940 WASHINGTON -- U.S. Energy Secretary Ernest Moniz today highlighted the continued growth of electric vehicle sales - doubling in the first 6 months of 2013 compared to the same period in 2012 - as the Energy Department released its most recent pricing data

  18. Table 11b. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per million Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO

  19. "Table 7b. Natural Gas Price, Electric Power Sector, Actual vs. Projected"

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Natural Gas Price, Electric Power Sector, Actual vs. Projected" "Projected Price in Nominal Dollars" " (nominal dollars per million Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO

  20. Workforce Trends in the Electric Utility Industry | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trends in the Electric Utility Industry Workforce Trends in the Electric Utility Industry Section 1101 of the U.S. Energy Policy Act of 2005 (EPACT)1 calls for a report on the current trends in the workforce of (A) skilled technical personnel that support energy technology industries, and (B) electric power and transmission engineers. It also requests that the Secretary make recommendations (as appropriate) to meet the future labor requirements. PDF icon Workforce Trends in the Electric Utility

  1. Hawaii Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 -- -- -- -- -- -- -- -- -- -- -- -- 2003 -- -- -- -- W -- -- -- -- -- -- -- 2004 -- -- -- -- -- -- -- -- -- -- -- -- 2005 -- -- -- -- -- -- -- -- -- -- -- -- 2006 -- -- -- -- -- -- -- -- -- -- -- -- 2007 -- -- -- -- -- -- -- -- -- -- -- -- 2008 -- -- -- -- -- -- -- -- -- -- -- -- 2009 -- -- -- -- -- -- -- -- -- -- -- -- 2010 -- -- -- -- -- --

  2. ,"U.S. Natural Gas Electric Power Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"12292015 2:58:40 AM" "Back to Contents","Data 1: U.S. Natural Gas Electric Power Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3045US3"...

  3. Short run effects of a price on carbon dioxide emissions from U.S. electric generators

    SciTech Connect (OSTI)

    Adam Newcomer; Seth A. Blumsack; Jay Apt; Lester B. Lave; M. Granger Morgan [Carnegie Mellon University, Pittsburgh, PA (United States). Carnegie Mellon Electricity Industry Center

    2008-05-01

    The price of delivered electricity will rise if generators have to pay for carbon dioxide emissions through an implicit or explicit mechanism. There are two main effects that a substantial price on CO{sub 2} emissions would have in the short run (before the generation fleet changes significantly). First, consumers would react to increased price by buying less, described by their price elasticity of demand. Second, a price on CO{sub 2} emissions would change the order in which existing generators are economically dispatched, depending on their carbon dioxide emissions and marginal fuel prices. Both the price increase and dispatch changes depend on the mix of generation technologies and fuels in the region available for dispatch, although the consumer response to higher prices is the dominant effect. We estimate that the instantaneous imposition of a price of $35 per metric ton on CO{sub 2} emissions would lead to a 10% reduction in CO{sub 2} emissions in PJM and MISO at a price elasticity of -0.1. Reductions in ERCOT would be about one-third as large. Thus, a price on CO{sub 2} emissions that has been shown in earlier work to stimulate investment in new generation technology also provides significant CO{sub 2} reductions before new technology is deployed at large scale. 39 refs., 4 figs., 2 tabs.

  4. Challenges of electric power industry restructuring for fuel suppliers

    SciTech Connect (OSTI)

    1998-09-01

    The purpose of this report is to provide an assessment of the changes in other energy industries that could occur as the result of restructuring in the electric power industry. This report is prepared for a wide audience, including Congress, Federal and State agencies, the electric power industry, and the general public. 28 figs., 25 tabs.

  5. Antitrust Enforcement in the Electricity and Gas Industries: Problems and Solutions for the EU

    SciTech Connect (OSTI)

    Leveque, Francois

    2006-06-15

    Antitrust enforcement in the electricity and gas industries raises specific problems that call for specific solutions. Among the issues: How can the anticompetitive effects of mergers be assessed in a changing regulatory environment? Should long-term agreements in energy purchasing be prohibited? What are the benefits of preventive action such as competition advocacy and market surveillance committees? Should Article 82 (a) of the EC Treaty be used to curb excessive pricing?. (author)

  6. ConEd (Electric)- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Commercial and Industrial Equipment Rebate and Custom Efficiency Programs offer incentives to directly metered electric customers in good standing who contribute to the system benefits charge ...

  7. Lincoln Electric System (Commercial and Industrial)- 2015 Sustainable Energy Program

    Broader source: Energy.gov [DOE]

    Lincoln Electric System (LES) offers a variety of energy efficiency incentives for commercial and industrial customers through the Sustainable Energy Program (SEP). Some incentives are provided on...

  8. Lincoln Electric System (Commercial and Industrial)- Sustainable Energy Program

    Broader source: Energy.gov [DOE]

    Lincoln Electric System (LES) offers a variety of energy efficiency incentives to their commercial and industrial customers through the Sustainable Energy Program (SEP). Some incentives are...

  9. Midstate Electric Cooperative- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Midstate Electric Cooperative (MEC) encourages energy efficiency in the commercial and industrial sectors by giving customers a choice of several different financial incentive programs. First, ...

  10. Green Button Initiative Makes Headway with Electric Industry and Consumers

    Office of Environmental Management (EM)

    | Department of Energy Button Initiative Makes Headway with Electric Industry and Consumers Green Button Initiative Makes Headway with Electric Industry and Consumers July 22, 2015 - 3:01pm Addthis Photo courtesy of San Diego Gas & Electric Photo courtesy of San Diego Gas & Electric Kristen Honey Science and Technology Policy Fellow, Office of Energy Efficiency and Renewable Energy David Wollman Deputy Director of the Smart Grid and Cyber-Physical Systems Program at the National

  11. American Indian tribes and electric industry restructuring: Issues and opportunities

    SciTech Connect (OSTI)

    Howarth, D.; Busch, J.; Starrs, T.

    1997-07-01

    The US electric utility industry is undergoing a period of fundamental change that has significant implications for Native American tribes. Although many details remain to be determined, the future electric power industry will be very different from that of the present. It is anticipated that the new competitive electric industry will be more efficient, which some believe will benefit all participants by lowering electricity costs. Recent developments in the industry, however, indicate that the restructuring process will likely benefit some parties at the expense of others. Given the historical experience and current situation of Native American tribes in the US, there is good reason to pay attention to electric industry changes to ensure that the situation of tribes is improved and not worsened as a result of electric restructuring. This paper provides a review of electricity restructuring in the US and identifies ways in which tribes may be affected and how tribes may seek to protect and serve their interests. Chapter 2 describes the current status of energy production and service on reservations. Chapter 3 provides an overview of the evolution of the electric industry to its present form and introduces the regulatory and structural changes presently taking place. Chapter 4 provides a more detailed discussion of changes in the US electric industry with a specific focus on the implications of these changes for tribes. Chapter 5 presents a summary of the conclusions reached in this paper.

  12. Table 7.3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 20

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: U.S. Dollars per Physical Units." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " ","

  13. Table N8.3. Average Prices of Purchased Electricity, Natural Gas, and Steam,

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Average Prices of Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: U.S. Dollars per Physical Units." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " ","

  14. Salem Electric - Residential, Commercial, and Industrial Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Industrial Local Government Nonprofit Residential State Government Federal Government Multifamily Residential Savings Category Clothes Washers RefrigeratorsFreezers Equipment...

  15. Electric Power Industry Needs for Grid-Scale Storage Applications |

    Energy Savers [EERE]

    Department of Energy Industry Needs for Grid-Scale Storage Applications Electric Power Industry Needs for Grid-Scale Storage Applications Stationary energy storage technologies will address the growing limitations of the electricity infrastructure and meet the increasing demand for renewable energy use. Widespread integration of energy storage devices offers many benefits, including the following: Alleviating momentary electricity interruptions Meeting peak demand Postponing or avoiding

  16. FORM EIA-861 ANNUAL ELECTRIC POWER INDUSTRY REPORT INSTRUCTIONS

    Gasoline and Diesel Fuel Update (EIA)

    61 ANNUAL ELECTRIC POWER INDUSTRY REPORT INSTRUCTIONS Approval: OMB No. 1905-0129 Approval Expires: 05/31/2017 Burden Hours: 10.97 Page 1 PURPOSE Form EIA-861 collects information on the status of electric power industry participants involved in the generation, transmission, distribution, and sale of electric energy in the United States, its territories, and Puerto Rico. The data from this form are made available in EIA publications and databases. The data collected on this form are used to

  17. Public-policy responsibilities in a restructured electricity industry

    SciTech Connect (OSTI)

    Tonn, B.; Hirst, E.; Bauer, D.

    1995-06-01

    In this report, we identify and define the key public-policy values, objectives, and actions that the US electricity industry currently meets. We also discuss the opportunities for meeting these objectives in a restructured industry that relies primarily on market forces rather than on government mandates. And we discuss those functions that governments might undertake, presumably because they will not be fully met by a restructured industry on its own. These discussions are based on a variety of inputs. The most important inputs came from participants in an April 1995 workshop on Public-Policy Responsibilities and Electric Industry Restructuring: Shaping the Research Agenda. Other sources of information and insights include the reviews of a draft of this report by workshop participants and others and the rapidly growing literature on electric-industry restructuring and its implications. One of the major concerns about the future of the electricity industry is the fate of numerous social and environmental programs supported by today`s electric utilities. Many people worry that a market-driven industry may not meet the public-policy objectives that electric utilities have met in the past. Examples of potentially at-risk programs include demand-side management (DSM), renewable energy, low-income weatherization, and fuel diversity. Workshop participants represented electric utilities, public utility commissions (PUCs), state energy offices, public-interest groups, other energy providers, and the research community.

  18. Dakota Electric Association - Commercial and Industrial Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Industrial Agricultural Savings Category Geothermal Heat Pumps Lighting Chillers Heat Pumps Air conditioners Compressed air Energy Mgmt. SystemsBuilding Controls Motors Motor VFDs...

  19. 2014 Total Electric Industry- Sales (Megawatthours

    U.S. Energy Information Administration (EIA) Indexed Site

    and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",47211525,53107038,19107433,557463,119983459 "Connecticut",12777579,12893531,3...

  20. (Electric) Commercial and Industrial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    All Connecticut Utilities implement electric and gas efficiency rebate programs funded by Connecticut's public benefits charge through the Energy Efficiency Fund. The Connecticut Light and Power...

  1. Energy Department Releases Updated eGallon Prices as Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary Ernest Moniz. "As the market continues to grow, electric vehicles will play a key role in our effort to reduce air pollution and slow the effects of climate change." ...

  2. Antitrust policy in the new electricity industry

    SciTech Connect (OSTI)

    Pierce, R.J. Jr.

    1996-12-31

    The Federal Energy Regulatory Commission should encourage all potential consolidations of transmission assets. It should defer to the position of state Public Utility Commissions with respect to all proposed consolidations of distribution assets. It should take a conservative initial attitude toward all proposed changes in the structure of the wholesale market, both proposed consolidations and potential coerced divestitures. It should eliminate price controls on virtually all wholesales on an experimental basis and use the data made available by that experiment as the basis for a more refined set of policies applicable to the structure of the wholesale market in the dramatically new environment that it is in the process of creating.

  3. Working With Industry and Utilities to Promote Electric Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Working With Industry and Utilities to Promote Electric Vehicles Working With Industry and Utilities to Promote Electric Vehicles June 10, 2015 - 10:45am Addthis Tom Kuhn, President of EEI and Secretary Moniz at the MOU signing on Monday, June 8, at Edison Electric Institute (EEI) Annual Convention in New Orleans, LA. | Photo courtesy of EEI Tom Kuhn, President of EEI and Secretary Moniz at the MOU signing on Monday, June 8, at Edison Electric Institute (EEI) Annual

  4. "Table A49. Average Prices of Purchased Electricity, Steam, and Natural Gas"

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Average Prices of Purchased Electricity, Steam, and Natural Gas" " by Type of Supplier, Census Region, and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Dollars per Physical Units)" ," Electricity",," Steam",," Natural Gas" ," (Million kWh)",," (Billion Btu)",," (1000 cu ft)"

  5. Electricity price impacts of alternative Greenhouse gas emission cap-and-trade programs

    SciTech Connect (OSTI)

    Edelston, Bruce; Armstrong, Dave; Kirsch, Laurence D.; Morey, Mathew J.

    2009-07-15

    Limits on greenhouse gas emissions would raise the prices of the goods and services that require such emissions for their production, including electricity. Looking at a variety of emission limit cases and scenarios for selling or allocating allowances to load-serving entities, the authors estimate how the burden of greenhouse gas limits are likely to be distributed among electricity consumers in different states. (author)

  6. Implications of Lower Natural Gas Prices for Electric Generators in the Southeast, The

    Reports and Publications (EIA)

    2009-01-01

    This supplement to the Energy Information Administration's (EIA) May 2009 Short-Term Energy Outlook (STEO) focuses on changes in the utilization of coal- and natural-gas-fired generation capacity in the electric utility sector as the differential between delivered fuel prices narrows.

  7. Impacts of Regional Electricity Prices and Building Type on the Economics of Commercial Photovoltaic Systems

    SciTech Connect (OSTI)

    Ong, S.; Campbell, C.; Clark, N.

    2012-12-01

    To identify the impacts of regional electricity prices and building type on the economics of solar photovoltaic (PV) systems, 207 rate structures across 77 locations and 16 commercial building types were evaluated. Results for expected solar value are reported for each location and building type. Aggregated results are also reported, showing general trends across various impact categories.

  8. "2014 Total Electric Industry- Revenue (Thousands Dollars)"

    U.S. Energy Information Administration (EIA) Indexed Site

    and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",8414175.4,7806276.7,2262752.4,57837.4,18541041.8 "Connecticut",2523348.7,2004...

  9. Empire District Electric- Commercial & Industrial Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    The Empire District Electric Company offers a Commercial/Industrial Prescriptive Rebate Program to its non-residential customers in Arkansas who purchase certain high-efficiency equipment for...

  10. Changing Structure of the Electric Power Industry: Selected Issues, 1998

    Reports and Publications (EIA)

    1998-01-01

    Provides an analytical assessment of the changes taking place in the electric power industry, including market structure, consumer choice, and ratesetting and transition costs. Also presents federal and state initiatives in promoting competition.

  11. Changing Structure of the Electric Power Industry: An Update, The

    Reports and Publications (EIA)

    1996-01-01

    Provides a comprehensive overview of the structure of the U.S. electric power industry over the past 10 years, with emphasis on the major changes that have occurred, their causes, and their effects.

  12. Lodi Electric Utility- Commercial and Industrial Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Lodi Electric Utility provides an on-bill financing program for the commercial and industrial customers. To participate, the customer must receive a rebate through the utility's rebate program, and...

  13. The changing structure of the electric power industry: An update

    SciTech Connect (OSTI)

    1996-12-01

    The U. S. electric power industry today is on the road to restructuring a road heretofore uncharted. While parallels can be drawn from similar journeys taken by the airline industry, the telecommunications industry, and, most recently, the natural gas industry, the electric power industry has its own unique set of critical issues that must be resolved along the way. The transition will be from a structure based on a vertically integrated and regulated monopoly to one equipped to function successfully in a competitive market. The long-standing traditional structure of the electric power industry is the result of a complex web of events that have been unfolding for over 100 years. Some of these events had far-reaching and widely publicized effects. Other major events took the form of legislation. Still other events had effects that are less obvious in comparison (e.g., the appearance of technologies such as transformers and steam and gas turbines, the invention of home appliances, the man-made fission of uranium), and it is likely that their significance in the history of the industry has been obscured by the passage of time. Nevertheless, they, too, hold a place in the underpinnings of today`s electric industry structure. The purpose of this report, which is intended for both lay and technical readers, is twofold. First, it is a basic reference document that provides a comprehensive delineation of the electric power industry and its traditional structure, which has been based upon its monopoly status. Second, it describes the industry`s transition to a competitive environment by providing a descriptive analysis of the factors that have contributed to the interest in a competitive market, proposed legislative and regulatory actions, and the steps being taken by the various components of the industry to meet the challenges of adapting to and prevailing in a competitive environment.

  14. Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    retail outlets, e.g., sales to agricultural customers, commercial sales, and industrial sales. Sources: Energy Information Administration Forms EIA-782A, "Refiners'...

  15. 2014 Total Electric Industry- Revenue (Thousands Dollars)

    U.S. Energy Information Administration (EIA) Indexed Site

    4A-D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 8,414,175 7,806,277 2,262,752 57,837 18,541,042 Connecticut 2,523,349...

  16. Electric utility industry experience with geomagnetic disturbances

    SciTech Connect (OSTI)

    Barnes, P.R.; Rizy, D.T.; McConnell, B.W. ); Taylor, E.R. Jr. ); Tesche, F.M.

    1991-09-01

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

  17. Electric Utility Industry Experience with Geomagnetic Disturbances

    SciTech Connect (OSTI)

    Barnes, P.R.

    1991-01-01

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as a few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration.

  18. Electric utility industry experience with geomagnetic disturbances

    SciTech Connect (OSTI)

    Barnes, P.R.; Rizy, D.T.; McConnell, B.W.; Taylor, E.R. Jr.; Tesche, F.M.

    1991-09-01

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems` responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

  19. Assistance to States on Electric Industry Issues

    SciTech Connect (OSTI)

    Glen Andersen

    2010-10-25

    This project seeks to educate state policymakers through a coordinated approach involving state legislatures, regulators, energy officials, and governors’ staffs. NCSL’s activities in this project focus on educating state legislators. Major components of this proposal include technical assistance to state legislatures, briefing papers, coordination with the National Council on Electricity Policy, information assistance, coordination and outreach, meetings, and a set of transmission-related activities.

  20. Delaware Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Delaware Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 W W W W W W W W W W W W 2003 W W W W W W W W W W W W 2004 W W W W W W W W W W W W 2005 W W W W W W W W W W W W 2006 W W W W W W W W W W W W 2007 W W W W W W W W W W W W 2008 W W W 11.01 W W W W W W W W 2009 W W W W W W W W W W W W 2010 W W W W W W

  1. Kentucky Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 W W W W W W W W W 4.91 4.91 5.24 2003 W W W W W W W W W W W W 2004 W W W W W W W W W W W W 2005 W W W 9.04 W W W W W W W W 2006 W 9.57 W W W W W 8.62 W W W W 2007 W W W W W W W W W W W W 2008 9.16 9.60 W W W W W W W W W W 2009 W W W 6.74 11.32 W W W

  2. Idaho Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Idaho Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 W W W W W W W W W W W W 2003 W W W W W W W W W W W W 2004 W W W -- W W W W W W W W 2005 W W W W W -- W W W W W W 2006 W W W -- W W W W W W W W 2007 W W W W W W W W W W W W 2008 W W W W W W W W W W W W 2009 W 4.87 W 3.77 W W W W W W W W 2010 W W W W W W

  3. Minnesota Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Minnesota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 W W W W W W W W W W W W 2003 W W W W W W W W W W W W 2004 W W W W W W W W W W W W 2005 W W W W W W W W W W W W 2006 W W W W W W W W W W W W 2007 W W W W W W W W W W W W 2008 8.10 W W W W W W W W W W W 2009 W W W W 6.88 W W W 4.13 4.80 6.65 6.41 2010

  4. Missouri Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Missouri Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 W W W W W W W W W W W W 2003 W W W W W W W W W 4.73 W W 2004 W W W W W W W W W W W W 2005 W 5.46 W W W W W W W 10.83 8.54 12.69 2006 11.67 7.98 W W W W W W W W W W 2007 W 8.30 W W W W W W W W W 7.13 2008 W W W W W W W W W W W W 2009 W W W W W W W W W

  5. Institutional contexts of market power in the electricity industry

    SciTech Connect (OSTI)

    Foer, A.A.

    1999-05-01

    Market power is widely recognized as one of the principal issues that must be dealt with if the electricity industry is to make the transition from regulation to competition. In this article, the author provides a legal and economic introduction to what the antitrust community means by market power and offers a primer on why market power is so central an issue in the electricity industry. Finally and most importantly, he offers comments on the institutional contexts of market power, exploring a process which he calls Shermanization that helps explain the institutional aspect of moving from regulation to competition and holds implications for where oversight should reside during this complex transition.

  6. Securing the Electricity Grid: Government and Industry Exercise Together at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GridEx III | Department of Energy Securing the Electricity Grid: Government and Industry Exercise Together at GridEx III Securing the Electricity Grid: Government and Industry Exercise Together at GridEx III November 24, 2015 - 10:00am Addthis Dr. Elizabeth Sherwood-Randall Dr. Elizabeth Sherwood-Randall Deputy Secretary of Energy I had the opportunity this past week to represent the Department of Energy at a critically important exercise here in our Nation's Capital - an exercise, just like

  7. Perspectives on the future of the electric utility industry

    SciTech Connect (OSTI)

    Tonn, B.; Schaffhauser, A.

    1994-04-01

    This report offers perspectives on the future of the electric utility industry. These perspectives will be used in further research to assess the prospects for Integrated Resource Planning (IRP). The perspectives are developed first by examining economic, political and regulatory, societal, technological, and environmental trends that are (1) national and global in scope and (2) directly related to the electric utility industry. Major national and global trends include increasing global economic competition, increasing political and ethnic strife, rapidly changing technologies, and increasing worldwide concern about the environment. Major trends in the utility industry include increasing competition in generation; changing patterns of electricity demand; increasing use of information technology to control power systems; and increasing implementation of environmental controls. Ways in which the national and global trends may directly affect the utility industry are also explored. The trends are used to construct three global and national scenarios- ``business as usual,`` ``technotopia future,`` and ``fortress state`` -and three electric utility scenarios- ``frozen in headlights,`` ``megaelectric,`` and ``discomania.`` The scenarios are designed to be thought provoking descriptions of potential futures, not predictions of the future, although three key variables are identified that will have significant impacts on which future evolves-global climate change, utility technologies, and competition. While emphasis needs to be placed on understanding the electric utility scenarios, the interactions between the two sets of scenarios is also of interest.

  8. United States Industrial Electric Motor Systems Market Opportunities Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    O R E W O R D I United States Industrial Electric Motor Systems Market Opportunities Assessment December 2002 This document was originally published by the U.S. Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) in Decem- ber 1998. As of fiscal year 2000, DOE's Motor Challenge Program was inte- grated into BestPractices, a broad initiative within EERE. EERE's BestPractices introduces industrial end users to emerging technolo- gies and cost-saving opportunities

  9. Changing Structure of the Electric Power Industry: 1970-1991

    Reports and Publications (EIA)

    1993-01-01

    The purpose of this report is to provide a comprehensive overview of the ownership of the U.S. electric power industry over the past two decades, with emphasis on the major changes that have occurred, their causes, and their effects.

  10. Table 11a. Coal Prices to Electric Generating Plants, Projected vs. Actual

    Gasoline and Diesel Fuel Update (EIA)

    a. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per million Btu in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 1.47 1.48 1.53 1.57 1.58 1.57 1.61 1.63 1.68 1.69 1.70 1.72 1.70 1.76 1.79 1.81 1.88 1.92 AEO 1995 1993 1.39 1.39 1.38 1.40 1.40 1.39 1.39 1.42 1.41 1.43 1.44 1.45 1.46 1.46 1.46 1.47

  11. Table 7a. Natural Gas Price, Electric Power Sector, Actual vs. Projected

    Gasoline and Diesel Fuel Update (EIA)

    a. Natural Gas Price, Electric Power Sector, Actual vs. Projected Projected Price in Constant Dollars (constant dollars per million Btu in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 2.44 2.48 2.57 2.66 2.70 2.79 2.84 2.92 3.04 3.16 3.25 3.36 3.51 3.60 3.77 3.91 3.97 4.08 AEO 1995 1993 2.39 2.48 2.42 2.45 2.45 2.53 2.59 2.78 2.91 3.10 3.24 3.38 3.47 3.53 3.61 3.68

  12. Table 11a. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars per million Btu in ""dollar year"" specific to each AEO)" ,"AEO $ Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",1992,1.4699,1.4799,1.53,1.57,1.58,1.57,1.61,1.63,1.68,1.69,1.7,1.72,1.7,1.76,1.79,1.81,1.88,1.92 "AEO

  13. "Table 7a. Natural Gas Price, Electric Power Sector, Actual vs. Projected"

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Natural Gas Price, Electric Power Sector, Actual vs. Projected" "Projected Price in Constant Dollars" " (constant dollars per million Btu in ""dollar year"" specific to each AEO)" ,"AEO $ Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",1992,2.44,2.48,2.57,2.66,2.7,2.79,2.84,2.92,3.04,3.16,3.25,3.36,3.51,3.6,3.77,3.91,3.97,4.08 "AEO

  14. Local government: The sleeping giant in electric industry restructuring

    SciTech Connect (OSTI)

    Ridley, S.

    1997-11-01

    Public power has long been a cornerstone of consumer leverage in the electric industry. But its foundation consists of a much broader and deeper consumer authority. Understanding that authority - and present threats to it - is critical to restructuring of the electric industry as well as to the future of public power. The country has largely forgotten the role that local governments have played and continue to play in the development of the electric industry. Moreover, we risk losing sight of the options local governments may offer to protect consumers, to advance competition in the marketplace, and to enhance opportunities for technology and economic development. The future role of local government is one of the most important issues in the restructuring discussion. The basic authority of consumers rests at the local level. The resulting options consumers have to act as more than just respondents to private brokers and telemarketing calls are at the local level. And the ability for consumers to shape the marketplace and standards for what it will offer exists at the local level as well.

  15. Georgia Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Georgia Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 3.16 2.97 3.50 3.86 4.07 3.68 3.40 3.48 3.84 4.47 4.10 5.07 2003 5.56 7.58 7.56 5.87 W 6.28 5.68 5.64 5.24 5.77 5.28 6.66 2004 6.66 5.83 W 6.27 7.03 7.25 6.78 6.10 5.53 6.44 7.46 7.77 2005 7.19 W 7.48 7.75 7.03 7.62 8.56 10.70 15.82 15.24 11.35 15.31

  16. Colorado Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Colorado Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 2.86 2.56 2.92 2.91 2.71 2.11 1.91 2.22 2.06 2.36 3.01 3.25 2003 3.30 3.80 5.12 3.46 W 5.13 4.64 4.56 4.49 4.52 3.97 5.08 2004 5.73 5.49 4.59 4.67 5.59 5.85 5.66 6.16 4.82 5.05 6.80 6.45 2005 W W 5.70 W W W 6.43 6.77 8.46 10.31 10.13 9.77 2006 8.93

  17. Florida Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Florida Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 3.44 3.29 3.61 4.17 4.21 4.05 3.95 3.88 4.12 4.79 4.55 5.57 2003 5.25 6.33 6.59 5.77 W 6.71 6.16 5.88 5.83 5.67 5.55 5.90 2004 6.28 6.04 6.01 6.11 6.59 6.65 6.56 6.33 6.53 6.88 6.76 6.86 2005 7.28 7.29 7.39 7.77 7.28 7.41 8.14 9.01 12.20 11.69 9.80

  18. Connecticut Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Connecticut Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 2.89 2.75 3.66 4.17 4.05 4.07 3.71 3.59 4.02 4.49 W W 2003 W W 9.01 6.12 W W W W W W 5.21 W 2004 W W W W 6.80 6.82 6.51 6.37 5.72 W W W 2005 W 7.08 7.91 7.77 6.95 7.66 8.17 9.89 W 13.87 10.21 13.64 2006 9.41 8.68 7.72 7.71 6.84 6.94 7.02 7.97 5.56

  19. Iowa Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Iowa Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 3.44 2.91 3.18 4.34 4.20 3.89 3.73 3.28 3.78 4.52 5.15 4.89 2003 5.79 6.22 6.25 5.97 W 6.79 6.18 5.80 6.24 4.40 5.77 6.30 2004 7.52 8.03 6.76 6.95 7.79 7.51 7.03 6.59 6.21 6.95 5.44 7.75 2005 7.42 10.29 7.31 7.67 8.12 7.80 8.16 9.14 10.75 4.53 12.65

  20. Louisiana Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 W W W W W 3.61 3.49 3.34 W W W W 2003 5.86 7.31 7.89 5.81 W 6.47 5.74 5.45 5.29 5.20 4.92 W 2004 6.74 6.22 5.99 6.14 6.81 6.91 6.51 6.17 5.49 6.77 7.11 7.48 2005 6.74 6.70 7.20 7.78 7.15 7.46 7.96 9.15 13.07 W 12.25 13.64 2006 11.64 8.69 8.11 7.77

  1. Kansas Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Kansas Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 2.26 2.27 2.94 3.45 3.39 3.24 3.04 2.97 3.09 3.38 4.17 4.22 2003 4.93 6.50 8.26 4.96 W 5.78 5.30 5.00 4.94 4.51 4.28 5.04 2004 5.84 5.54 5.00 5.54 5.91 6.15 5.88 5.49 4.73 5.39 6.68 6.49 2005 6.14 6.03 6.37 6.95 6.27 6.71 7.10 7.97 9.61 10.98 9.63

  2. Illinois Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Illinois Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 2.81 2.69 3.45 3.36 3.86 3.62 3.23 3.44 3.81 4.05 4.76 5.64 2003 5.72 6.71 7.56 6.68 W 6.48 5.82 5.65 6.24 4.99 5.04 5.92 2004 6.60 6.20 6.02 6.26 6.62 7.06 6.74 6.37 6.18 6.35 7.57 7.84 2005 6.88 6.88 7.47 7.45 7.26 7.54 8.36 9.16 11.79 12.99 11.13

  3. Indiana Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Indiana Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 W W 3.18 3.53 3.82 3.38 3.23 3.22 3.46 W W W 2003 5.61 W W W W 7.74 8.08 5.79 W W W W 2004 W W W W 6.40 W 6.41 6.20 5.63 5.67 W W 2005 W 6.70 7.32 7.50 6.79 7.72 7.52 9.64 11.99 13.88 11.30 13.08 2006 9.29 8.93 7.37 7.04 6.64 6.99 7.21 8.65 7.67 6.47

  4. Mississippi Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 2.61 2.39 2.92 W W 3.53 3.33 3.32 3.71 4.25 W W 2003 6.02 W 6.44 5.69 W W 5.48 5.39 5.06 5.16 4.79 W 2004 6.48 5.74 5.67 W 6.71 6.11 6.14 5.77 5.21 6.74 6.38 7.20 2005 6.90 6.62 7.32 7.64 6.87 7.54 7.94 9.49 13.23 W 10.65 W 2006 9.46 8.57 7.68

  5. Montana Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Montana Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 W 4.69 4.82 W W W W W W 3.84 5.21 6.12 2003 5.60 6.12 5.71 W W W W W 6.41 W W 8.96 2004 W W W W W W W W 8.14 6.87 11.65 10.69 2005 9.68 W W 9.50 8.70 W W W W 11.90 12.94 W 2006 14.19 W W W 8.24 W W W 7.74 W W 9.70 2007 W W W W W W W W W W W W 2008 W W

  6. Maine Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Maine Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 3.19 3.07 3.81 3.89 4.05 3.78 3.46 3.69 4.21 4.71 4.87 6.42 2003 7.81 8.43 7.30 5.96 W 6.05 5.50 5.45 5.46 5.39 5.12 6.54 2004 8.33 7.56 5.88 6.25 W W W W W 6.58 6.76 7.74 2005 9.24 7.35 W W W W W W 12.96 W W W 2006 W W W W W W W W W W W W 2007 W W W W

  7. Maryland Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Maryland Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 3.39 3.45 3.59 4.11 4.16 4.11 3.81 3.97 3.93 4.72 4.52 5.75 2003 5.77 7.47 6.88 5.45 W 5.98 5.74 5.41 W W W W 2004 W 5.13 W W 6.40 6.24 5.78 5.43 4.81 5.53 5.38 5.68 2005 5.84 7.22 7.91 8.32 7.23 8.31 8.50 9.82 14.33 14.85 12.48 14.62 2006 10.80 9.15

  8. Michigan Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Michigan Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 3.43 3.29 3.48 3.60 3.49 3.67 3.49 3.42 3.68 3.65 3.69 3.74 2003 3.97 3.56 W W W 4.02 4.24 4.43 3.55 3.35 W W 2004 4.28 W 4.11 4.09 4.57 4.71 4.75 4.62 4.73 W 4.25 W 2005 W 3.65 4.15 4.28 4.73 5.87 6.32 6.39 5.29 6.57 5.16 6.92 2006 6.17 5.75 5.86

  9. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  10. The price of electricity from private power producers: Stage 2, Expansion of sample and preliminary statistical analysis

    SciTech Connect (OSTI)

    Comnes, G.A.; Belden, T.N.; Kahn, E.P.

    1995-02-01

    The market for long-term bulk power is becoming increasingly competitive and mature. Given that many privately developed power projects have been or are being developed in the US, it is possible to begin to evaluate the performance of the market by analyzing its revealed prices. Using a consistent method, this paper presents levelized contract prices for a sample of privately developed US generation properties. The sample includes 26 projects with a total capacity of 6,354 MW. Contracts are described in terms of their choice of technology, choice of fuel, treatment of fuel price risk, geographic location, dispatchability, expected dispatch niche, and size. The contract price analysis shows that gas technologies clearly stand out as the most attractive. At an 80% capacity factor, coal projects have an average 20-year levelized price of $0.092/kWh, whereas natural gas combined cycle and/or cogeneration projects have an average price of $0.069/kWh. Within each technology type subsample, however, there is considerable variation. Prices for natural gas combustion turbines and one wind project are also presented. A preliminary statistical analysis is conducted to understand the relationship between price and four categories of explanatory factors including product heterogeneity, geographic heterogeneity, economic and technological change, and other buyer attributes (including avoided costs). Because of residual price variation, we are unable to accept the hypothesis that electricity is a homogeneous product. Instead, the analysis indicates that buyer value still plays an important role in the determination of price for competitively-acquired electricity.

  11. Cyber Security Challenges in Using Cloud Computing in the Electric Utility Industry

    SciTech Connect (OSTI)

    Akyol, Bora A.

    2012-09-01

    This document contains introductory material that discusses cyber security challenges in using cloud computing in the electric utility industry.

  12. Customer response to day-ahead wholesale market electricity prices: Case study of RTP program experience in New York

    SciTech Connect (OSTI)

    Goldman, C.; Hopper, N.; Sezgen, O.; Moezzi, M.; Bharvirkar, R.; Neenan, B.; Boisvert, R.; Cappers, P.; Pratt, D.

    2004-07-01

    There is growing interest in policies, programs and tariffs that encourage customer loads to provide demand response (DR) to help discipline wholesale electricity markets. Proposals at the retail level range from eliminating fixed rate tariffs as the default service for some or all customer groups to reinstituting utility-sponsored load management programs with market-based inducements to curtail. Alternative rate designs include time-of-use (TOU), day-ahead real-time pricing (RTP), critical peak pricing, and even pricing usage at real-time market balancing prices. Some Independent System Operators (ISOs) have implemented their own DR programs whereby load curtailment capabilities are treated as a system resource and are paid an equivalent value. The resulting load reductions from these tariffs and programs provide a variety of benefits, including limiting the ability of suppliers to increase spot and long-term market-clearing prices above competitive levels (Neenan et al., 2002; Boren stein, 2002; Ruff, 2002). Unfortunately, there is little information in the public domain to characterize and quantify how customers actually respond to these alternative dynamic pricing schemes. A few empirical studies of large customer RTP response have shown modest results for most customers, with a few very price-responsive customers providing most of the aggregate response (Herriges et al., 1993; Schwarz et al., 2002). However, these studies examined response to voluntary, two-part RTP programs implemented by utilities in states without retail competition.1 Furthermore, the researchers had limited information on customer characteristics so they were unable to identify the drivers to price response. In the absence of a compelling characterization of why customers join RTP programs and how they respond to prices, many initiatives to modernize retail electricity rates seem to be stymied.

  13. Table 11b. Coal Prices to Electric Generating Plants, Projected vs. Actual

    Gasoline and Diesel Fuel Update (EIA)

    b. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars per million Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1.50 1.55 1.64 1.73 1.78 1.82 1.92 2.01 2.13 2.22 2.30 2.41 2.46 2.64 2.78 2.90 3.12 3.30 AEO 1995 1.42 1.46 1.49 1.55 1.59 1.62 1.67 1.76 1.80 1.89 1.97 2.05 2.13 2.21 2.28 2.38 2.50 AEO 1996 1.35 1.35 1.37 1.39 1.42 1.46 1.50 1.56 1.62 1.67 1.75

  14. Table 7b. Natural Gas Price, Electric Power Sector, Actual vs. Projected

    Gasoline and Diesel Fuel Update (EIA)

    b. Natural Gas Price, Electric Power Sector, Actual vs. Projected Projected Price in Nominal Dollars (nominal dollars per million Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2.49 2.60 2.76 2.93 3.05 3.24 3.39 3.60 3.86 4.15 4.40 4.70 5.08 5.39 5.85 6.27 6.59 7.01 AEO 1995 2.44 2.61 2.61 2.70 2.78 2.95 3.11 3.44 3.72 4.10 4.43 4.78 5.07 5.33 5.64 5.95 6.23 AEO 1996 2.08 2.19 2.20 2.39 2.47 2.54 2.64 2.74 2.84 2.95 3.09

  15. State energy price and expenditure report 1993

    SciTech Connect (OSTI)

    1995-12-01

    The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 states and the District of Columbia and in aggregate for the US. The five economic sectors used in SEPER correspond to those used in SEDR and are residential, commercial, industrial, transportation, and electric utility. Documentation in appendices describe how the price estimates are developed, provide conversion factors for measures used in the energy analysis, and include a glossary. 65 tabs.

  16. Demand Response is Focus of New Effort by Electricity Industry Leaders |

    Office of Environmental Management (EM)

    Department of Energy is Focus of New Effort by Electricity Industry Leaders Demand Response is Focus of New Effort by Electricity Industry Leaders U.S. Utilities, Grid Operators, Others Come Together in National Effort to Tackle Important New Electricity Area PDF icon Demand Response is Focus of New Effort by Electricity Industry Leaders More Documents & Publications SEAD-Fact-Sheet.pdf The International CHP/DHC Collaborative - Advancing Near-Term Low Carbon Technologies, July 2008 2011

  17. Response model and activity analysis of the revenue reconciliation problem in the marginal cost pricing of electricity

    SciTech Connect (OSTI)

    Hassig, N.L.

    1980-01-01

    The objective of the research was to determine if feasible reconciliation procedures exist that meet the multiple (and sometimes competing) goals of the electricity pricing problem while staying within the constraints of the problem. The answer was that such procedures do exist. Selection among the alternative, feasible procedures depends on the weighting factors placed on the goals. One procedure did not universally satisfy all the goals; the various procedures satisfied the alternative goals to varying degrees. The selection process was sensitive to the initial conditions of the model and to the band width of the constraint boundary conditions. Discriminate analysis was used to identify the variables that contribute the most to the optimal selection process. The results of the research indicated that the variables that are the most effective in selecting among the various procedures were the following: the ratio of peak to off-peak prices, the amount of revenue adjustment required, the constraint on equity, the constraint on peak price stability, and the constraint on meeting the revenue requirement. The poicy recommendations that can be derived from this research are very relevant in light of today's energy problems. Time-of-use pricing of electricity is needed in order to signal to the consumer the true cost of electricity by season and by time of day. Marginal costs capture such costs and rates should be based on such costs. Revenue reconciliation procedures make marginal cost-based rates feasible from a regulatory requirement perspective. This research showed that such procedures are available and selection among alternative procedures depends on the preference rankings placed on the multiple, and sometimes competing goals of electricity pricing.

  18. Techno-Economic Analysis of PEV Battery Second Use: Repurposed-Battery Selling Price and Commercial and Industrial End-User Value

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.; Williams, B.; Ferry, M.; Eyer, J.

    2012-06-01

    Accelerated market penetration of plug-in electric vehicles and deployment of grid-connected energy storage are restricted by the high cost of lithium-ion batteries. Research, development, and manufacturing are underway to lower material costs, enhance process efficiencies, and increase production volumes. A fraction of the battery cost may be recovered after vehicular service by reusing the battery where it may have sufficient performance for other energy-storage applications. By extracting post-vehicle additional services and revenue from the battery, the total lifetime value of the battery is increased. The overall cost of energy-storage solutions for both primary (automotive) and secondary (grid) customer could be decreased. This techno-economic analysis of battery second use considers effects of battery degradation in both automotive and grid service, repurposing costs, balance-of-system costs, the value of aggregated energy-storage to commercial and industrial end users, and competitive technology. Batteries from plug-in electric vehicles can economically be used to serve the power quality and reliability needs of commercial and industrial end users. However, the value to the automotive battery owner is small (e.g., $20-$100/kWh) as declining future battery costs and other factors strongly affect salvage value. Repurposed automotive battery prices may range from $38/kWh to $132/kWh.

  19. Form EIA-861S ANNUAL ELECTRIC POWER INDUSTRY REPORT (SHORT FORM)

    Gasoline and Diesel Fuel Update (EIA)

    1S ANNUAL ELECTRIC POWER INDUSTRY REPORT (SHORT FORM) INSTRUCTIONS OMB No. 1905-0129 Approval Expires: 05/31/2017 Burden: 0.75 Hours Page 1 PURPOSE Form EIA-861S collects information on the status of selected electric power industry participants involved in the sale, and distribution of electric energy in the United States. The data collected on this form are used to monitor the current status and trends of the electric power industry and to evaluate the future of the industry. REQUIRED

  20. Renewable Energy Price-Stability Benefits in Utility Green Power Programs

    SciTech Connect (OSTI)

    Bird, L. A.; Cory, K. S.; Swezey, B. G.

    2008-08-01

    This paper examines utility experiences when offering the fixed-price benefits of renewable energy in green pricing programs, including the methods utilized and the impact on program participation. It focuses primarily on utility green pricing programs in states that have not undergone electric industry restructuring.

  1. "Annual Electric Power Industry Report (EIA-861 data file)

    Gasoline and Diesel Fuel Update (EIA)

    FILES Electric power sales, revenue, and energy efficiency Form EIA-861 detailed data files Release Date: October 21, 2015 Final 2014 data Next Release date: October 15, 2016 Annual data for 2014 re-released: January 13, 2016 (Revision\Correction) The Form EIA-861 and Form EIA-861S (Short Form) data files include information such as peak load, generation, electric purchases, sales, revenues, customer counts and demand-side management programs, green pricing and net metering programs, and

  2. National Grid (Electric) Commercial and Industrial Rebate Program

    Broader source: Energy.gov [DOE]

    National Grid offers various rebate programs for industrial and commercial customers to install energy efficiency measures. 

  3. Dakota Electric Association- Commercial and Industrial Custom Energy Grant Program

    Broader source: Energy.gov [DOE]

    Dakota Electric will conduct an inspection of the project site prior to approval, and grant applications must earn pre-approval from Dakota Electric before any work begins. To qualify for rebates...

  4. Salem Electric- Residential, Commercial, and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Salem Electric provides incentives for members to increase the energy efficiency of eligible homes and facilities. Available rebates include:

  5. State Energy Price System: 1982 update

    SciTech Connect (OSTI)

    Imhoff, K.L.; Fang, J.M.

    1984-10-01

    The State Energy Price System (STEPS) contains estimates of energy prices for ten major fuels (electricity, natural gas, metallurgical coal, steam coal, distillate, motor gasoline, diesel, kerosene/jet fuel, residual fuel, and liquefied petroleum gas), by major end-use sectors (residential, commercial, industrial, transportation, and electric utility), and by state through 1982. Both physical unit prices and prices per million Btu are included in STEPS. Major changes in STEPS data base for 1981 and 1982 are described. The most significant changes in procedures for the updates occur in the residential sector distillate series and the residential sector kerosene series. All physical unit and Btu prices are shown with three significant digits instead of with four significant digits as shown in the original documentation. Details of these and other changes are contained in this report, along with the updated data files. 31 references, 65 tables.

  6. Austin Utilities (Gas and Electric) - Commercial and Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    commercial location per year, 5,000 per industrial location per year Program Info Sector Name Utility Administrator Austin Utilities Website http:www.austinutilities.compages...

  7. Visioning the 21st Century Electricity Industry: Outcomes and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry: Strategies and Outcomes for America http:teeic.anl.govertransmissionrestechdistindex.cfm We all have "visions," in one form or another: * ...

  8. DTE Energy (Electric)- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Energy Efficiency Program for Business offers prescriptive incentives for both electric and natural gas energy efficient improvements in areas of lighting, HVAC, processes, compressed air,...

  9. Oncor Electric Delivery - Commercial and Industrial Rebate Program...

    Broader source: Energy.gov (indexed) [DOE]

    Contact Oncor Program Info Sector Name Utility Administrator Oncor Electric Delivery Website http:www.takealoadofftexas.comindex.aspx?idcommercial-standard-offer...

  10. "Annual Electric Power Industry Report (EIA-861 data file)

    U.S. Energy Information Administration (EIA) Indexed Site

    1 DETAILED DATA Revisions Corrections for electric power sales, revenue, and energy efficiency Form EIA-861 detailed data files Annual data revisions: January 13, 2016 The ...

  11. U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    25 Natural gas prices are developed for the residential, commercial, industrial, transportation, and electric power sectors. Reported natural gas prices are retail prices for sales of natural gas to ultimate users. Natural gas prices are intended to include all federal, state, and local taxes, surcharges, and adjustments billed to consumers. Although the EIA data collection form states that taxes are to be included in the reported gross revenues, it is most likely that respondents would not

  12. U.S. Energy Information Administration | State Energy Data 2014: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    25 Natural gas prices are developed for the residential, commercial, industrial, transportation, and electric power sectors. Reported natural gas prices are retail prices for sales of natural gas to ultimate users. Natural gas prices are intended to include all federal, state, and local taxes, surcharges, and adjustments billed to consumers. Although the EIA data collection form states that taxes are to be included in the reported gross revenues, it is likely that some respondents would not

  13. Renewable Electricity Use by the U.S. Information and Communication Technology (ICT) Industry

    SciTech Connect (OSTI)

    Miller, John; Bird, Lori; Heeter, Jenny; Gorham, Bethany

    2015-07-20

    The information and communication technology (ICT) sector continues to witness rapid growth and uptake of ICT equipment and services at both the national and global levels. The electricity consumption associated with this expansion is substantial, although recent adoptions of cloudcomputing services, co-location data centers, and other less energy-intensive equipment and operations have likely reduced the rate of growth in this sector. This paper is intended to aggregate existing ICT industry data and research to provide an initial look at electricity use, current and future renewable electricity acquisition, as well as serve as a benchmark for future growth and trends in ICT industry renewable electricity consumption.

  14. RG&E (Electric)- Commercial and Industrial Efficiency Program

    Broader source: Energy.gov [DOE]

    NYSEG and RG&E offer rebates to non-residential customers installing energy efficient equipment that have an electricity Systems Benefits Charge (SBC) included in their energy bills. Both...

  15. Dakota Electric Association- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Rebates are limited to 50% of the project cost up to a maximum of $100,000. Customers who wish to participate in this rebate program should call Dakota Electric Association before the new equipme...

  16. Cheyenne Light, Fuel and Power (Electric)- Commercial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cheyenne Light, Fuel and Power offers incentives to commercial and industrial electric customers who wish to install energy efficient equipment and measures in eligible facilities. Incentives are...

  17. Changing Structure of the Electric Power Industry 2000: An Update, The

    Reports and Publications (EIA)

    2000-01-01

    Provides a comprehensive overview of the structure of the U.S. electric power industry over the past 10 years, with emphasis on the major changes that have occurred, their causes, and their effects.

  18. Changing Structure of the Electric Power Industry 1999: Mergers and Other Corporate Combinations, The

    Reports and Publications (EIA)

    1999-01-01

    Presents data about corporate combinations involving investor-owned utilities in the United States, discusses corporate objectives for entering into such combinations, and assesses their cumulative effects on the structure of the electric power industry.

  19. United States Industrial Electric Motor Systems Market Opportunities Assessment

    Broader source: Energy.gov [DOE]

    The objectives of the Market Assessment were to: Develop a detailed profile of the stock of motor-driven equipment in U.S. industrial facilities; Characterize and estimate the magnitude of opportunities to improve the energy efficiency of industrial motor systems; Develop a profile of motor system purchase and maintenance practices; Develop and implement a procedure to update the detailed motor profile on a regular basis using readily available market information; and, Develop methods to estimate the energy savings and market effects attributable to the Motor Challenge Program.

  20. Performance Issues for a Changing Electric Power Industry

    Reports and Publications (EIA)

    1995-01-01

    Provides an overview of some of the factors affecting reliability within the electric bulk power system. Historical and projected data related to reliability issues are discussed on a national and regional basis. Current research on economic considerations associated with reliability levels is also reviewed.

  1. Low-income energy policy in a restructuring electricity industry: an assessment of federal options

    SciTech Connect (OSTI)

    Baxter, L.W.

    1997-07-01

    This report identifies both the low-income energy services historically provided in the electricity industry and those services that may be affected by industry restructuring. It identifies policies that are being proposed or could be developed to address low- income electricity services in a restructured industry. It discusses potential federal policy options and identifies key policy and implementation issues that arise when considering these potential federal initiatives. To understand recent policy development at the state level, we reviewed restructuring proposals from eight states and the accompanying testimony and comments filed in restructuring proceedings in these states.

  2. United States Industrial Electric Motor Systems Market Opportunities Assessment - Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY EFFICIENCY AND RENEWABLE ENERGY U.S. DEPARTMENT OF ENERGY T O F E N E R G Y D E P A R T M E N U E N I T E D S T A T S O F A E R I C A M OFFICE OF INDUSTRIAL TECHNOLOGIES United States Industrial Electric Motor Systems Market Opportunities Assessment Executive Summary United States Industrial Electric Motor Systems Market Opportunities Assessment Executive Summary TABLE OF CONTENTS PROJECT OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . 1 OVERVIEW OF FINDINGS . . . . . . . .

  3. "2014 Total Electric Industry- Customers"

    U.S. Energy Information Administration (EIA) Indexed Site

    Customers" "(Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",6243013,862269,28017,8,7133307 "Connecticut",1459239,155372,4648,4,1619263 "Maine",706952,91541,3023,0,801516 "Massachusetts",2720128,398717,14896,3,3133744 "New Hampshire",606883,105840,3342,0,716065

  4. Efficiency, equity and the environment: Institutional challenges in the restructuring of the electric power industry

    SciTech Connect (OSTI)

    Haeri, M.H.

    1998-07-01

    In the electric power industry, fundamental changes are underway in Europe, America, Australia, New Zealand and, more recently, in Asia. Rooted in increased deregulation and competition, these changes are likely to radically alter the structure of the industry. Liberalization of electric power markets in the United Kingdom is, for the most part, complete. The generation market in the United States began opening to competition following the 1987 Public Utility Regulatory Policies Act (PURPA). The Energy Policy Act of 1992 set the stage for a much more dramatic change in the industry. The most far-reaching provision of the Act was its electricity title, which opened access to the electric transmission grid. With legal barriers now removed, the traditionally sheltered US electric utility market is becoming increasingly open to entry and competition. A number of important legislative, regulatory and governmental policy initiatives are underway in the Philippines that will have a profound effect on the electric power industry. In Thailand, the National Energy Planning Organization (NEPO) has undertaken a thorough investigation of industry restructuring. This paper summarizes recent international developments in the deregulation and liberalization of electricity markets in the U.K., U.S., Australia, and New Zealand. It focuses on the relevance of these experiences to development underway in the Philippines and Thailand, and presents alternative possible structures likely to emerge in these countries, drawing heavily on the authors' recent experiences in Thailand and the Philippines. The impact of these changes on the business environment for power generation and marketing will be discussed in detail, as will the opportunities these changes create for investment among private power producers.

  5. Ultra-Efficient and Power Dense Electric Motors for U. S. Industry

    SciTech Connect (OSTI)

    Melfi, Michael J.; Schiferl, Richard F.; Umans, Stephen D.

    2013-03-12

    The primary purpose of this project was to combine the ease-of-installation and ease-of-use attributes of industrial induction motors with the low-loss and small size and weight advantages of PM motors to create an ultra-efficient, high power density industrial motor that can be started across-the-line or operated from a standard, Volts/Hertz drive without the need for a rotor position feedback device. PM motor products that are currently available are largely variable speed motors that require a special adjustable speed drive with rotor position feedback. The reduced size and weight helps to offset the magnet cost in order make these motors commercially viable. The scope of this project covers horsepower ratings from 20 ? 500. Prototypes were built and tested at ratings ranging from 30 to 250 HP. Since fans, pumps and compressors make up a large portion of industrial motor applications, the motor characteristics are tailored to those applications. Also, since there is extensive use of adjustable frequency inverters in these applications, there is the opportunity to design for an optimal pole number and operate at other than 60 Hz frequency when inverters are utilized. Designs with four and eight pole configurations were prototyped as part of this work. Four pole motors are the most commonly used configuration in induction motors today. The results of the prototype design, fabrication, and testing were quite successful. The 50 HP rating met all of the design goals including efficiency and power density. Tested values of motor losses at 50 HP were 30% lower than energy efficient induction motors and the motor weight is 35% lower than the energy efficient induction motor of the same rating. Further, when tested at the 30 HP rating that is normally built in this 286T frame size, the efficiency far exceeds the project design goals with 30 HP efficiency levels indicating a 55% reduction in loss compared to energy efficient motors with a motor weight that is a few percentage points lower than the energy efficient motor. This 30 HP rating full load efficiency corresponds to a 46% reduction in loss compared to a 30 HP NEMA Premium? efficient motor. The cost goals were to provide a two year or shorter efficiency-based payback of a price premium associated with the magnet cost in these motors. That goal is based on 24/7 operation with a cost of electricity of 10 cents per kW-hr. Similarly, the 250 HP prototype efficiency testing was quite successful. In this case, the efficiency was maximized with a slightly less aggressive reduction in active material. The measured full load efficiency of 97.6% represents in excess of a 50% loss reduction compared to the equivalent NEMA Premium Efficiency induction motor. The active material weight reduction was a respectable 14.5% figure. This larger rating demonstrated both the scalability of this technology and also the ability to flexibly trade off power density and efficiency. In terms of starting performance, the 30 ? 50 HP prototypes were very extensively tested. The demonstrated capability included the ability to successfully start a load with an inertia of 25 times the motor?s own inertia while accelerating against a load torque following a fan profile at the motor?s full nameplate power rating. This capability will provide very wide applicability of this motor technology. The 250 HP prototype was also tested for starting characteristics, though without a coupled inertia and load torque. As a result it was not definitively proven that the same 25 times the motor?s own inertia could be started and synchronized successfully at 250 HP. Finite element modeling implies that this load could be successfully started, but it has not yet been confirmed by a test.

  6. Electric Industry Structure and Regulatory Responses in a High Distributed Energy Resources Future

    SciTech Connect (OSTI)

    Corneli, Steve; Kihm, Steve; Schwartz, Lisa

    2015-11-01

    The emergence of distributed energy resources (DERs) that can generate, manage and store energy on the customer side of the electric meter is widely recognized as a transformative force in the power sector. This report focuses on two key aspects of that transformation: structural changes in the electric industry and related changes in business organization and regulation that are likely to result from them. Both industry structure and regulation are inextricably linked. History shows that the regulation of the power sector has responded primarily to innovation in technologies and business models that created significant structural changes in the sector’s cost and organizational structure.

  7. U.S. Energy Information Administration | State Energy Data 2014: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    05 Section 6. Electricity E L E C T R I C I T Y S A L E S Electricity Consumed by End-Use Sectors Electricity prices in the U.S. Energy Information Administration (EIA) State Energy Data System (SEDS) tables are retail prices for sales to ultimate users in dollars per million Btu. Prices are developed for the residential, commercial, industrial, and transportation sectors. Taxes collected by a electricity retailer from an end user and turned over to a government authority are included in the

  8. Open Automated Demand Response Dynamic Pricing Technologies and Demonstration

    SciTech Connect (OSTI)

    Ghatikar, Girish; Mathieu, Johanna L.; Piette, Mary Ann; Koch, Ed; Hennage, Dan

    2010-08-02

    This study examines the use of OpenADR communications specification, related data models, technologies, and strategies to send dynamic prices (e.g., real time prices and peak prices) and Time of Use (TOU) rates to commercial and industrial electricity customers. OpenADR v1.0 is a Web services-based flexible, open information model that has been used in California utilities' commercial automated demand response programs since 2007. We find that data models can be used to send real time prices. These same data models can also be used to support peak pricing and TOU rates. We present a data model that can accommodate all three types of rates. For demonstration purposes, the data models were generated from California Independent System Operator's real-time wholesale market prices, and a California utility's dynamic prices and TOU rates. Customers can respond to dynamic prices by either using the actual prices, or prices can be mapped into"operation modes," which can act as inputs to control systems. We present several different methods for mapping actual prices. Some of these methods were implemented in demonstration projects. The study results demonstrate show that OpenADR allows interoperability with existing/future systems/technologies and can be used within related dynamic pricing activities within Smart Grid.

  9. Demand response medium sized industry consumers (Smart Grid Project...

    Open Energy Info (EERE)

    demand and regulation power in Danish Industry consumers via a price and control signal from the supplier of electricity. The aim is to develop a valuable solution for the...

  10. State energy price system. Volume I: overview and technical documentation

    SciTech Connect (OSTI)

    Fang, J.M.; Nieves, L.A.; Sherman, K.L.; Hood, L.J.

    1982-06-01

    This study utilizes existing data sources and previous analyses of state-level energy prices to develop consistent state-level energy prices series by fuel type and by end-use sector. The fuels are electricity, natural gas, coal, distillate fuel oil, motor gasoline, diesel, kerosene, jet fuel, residual fuel, and liquefied petroleum gas. The end-use sectors are residential, commercial, industrial, transportation, and electric utility. Based upon an evaluation of existing data sources, recommendations were formulated on the feasible approaches for developing a consistent state energy price series. The data series were compiled based upon the approaches approved after a formal EIA review. Detailed documentation was provided, including annual updating procedures. Recommendations were formulated for future improvements in the collection of data or in data processing. Generally, the geographical coverage includes the 50 states and the District of Columbia. Information on state-level energy use was generally taken from the State Energy Data System (SEDS). Corresponding average US prices are also developed using volumes reported in SEDS. To the extent possible, the prices developed are quantity weighted average retail prices. Both a Btu price series and a physical unit price series are developed for each fuel. The period covered by the data series is 1970 through 1980 for most fuels, though prices for electricity and natural gas extend back to 1960. (PSB)

  11. Electric power industry restructuring in Australia: Lessons from down-under. Occasional paper No. 20

    SciTech Connect (OSTI)

    Ray, D.

    1997-01-01

    Australia`s electric power industry (EPI) is undergoing major restructuring. This restructuring includes commercialization of state-owned electric organization through privatization and through corporatization into separate governmental business units; structural unbundling of generation, transmission, retailing, and distribution; and creation of a National Electricity Market (NEM) organized as a centralized, market-based trading pool for buying and selling electricity. The principal rationales for change in the EPI were the related needs of enhancing international competitiveness, improving productivity, and lowering electric rates. Reducing public debt through privatization also played an important role. Reforms in the EPI are part of the overall economic reform package that is being implemented in Australia. Enhancing efficiency in the economy through competition is a key objective of the reforms. As the need for reform was being discussed in the early 1990s, Australia`s previous prime minister, Paul Keating, observed that {open_quotes}the engine which drives efficiency is free and open competition.{close_quotes} The optimism about the economic benefits of the full package of reforms across the different sectors of the economy, including the electricity industry, is reflected in estimated benefits of a 5.5 percent annual increase in real gross domestic product and the creation of 30,000 more jobs. The largest source of the benefits (estimated at 25 percent of total benefits) was projected to come from reform of the electricity and gas sectors.

  12. Deregulation-restructuring: Evidence for individual industries

    SciTech Connect (OSTI)

    Costello, K.W.; Graniere, R.J.

    1997-05-01

    Several studies have measured the effects of regulation on a particular industry. These studies range widely in sophistication, from simple observation (comparison) of pre-transformation and post-transformation actual industry performance to econometric analysis that attempt to separate the effects of deregulation from other factors in explaining changes in an industry`s performance. The major problem with observation studies is that they are unable to measure the effect of one particular event, such as deregulation, on an industry`s performance. For example, at the same time that the United Kingdom privatized its electric power industry, it also radically restructured the industry to encourage competition and instituted a price-cap mechanism to regulate the prices of transmission, distribution, and bundled retail services. Subsequent to these changes in 1991, real prices for most UK electricity customers have fallen. It is not certain however, which of these factors was most important or even contributed to the decline in price. In any event, one must be cautious in interpreting the results of studies that attempt to measure the effect of deregulation per se for a specific industry. This report highlights major outcomes for five industries undergoing deregulation or major regulatory and restructuring reforms. These include the natural gas, transportation, UK electric power, financial, and telecommunications industries. Particular attention was given to the historical development of events in the telecommunications industry.

  13. Natural Gas Industrial Price

    Gasoline and Diesel Fuel Update (EIA)

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History U.S. 5.49 5.13 3.88 4.64 5.55 3.84 1997-2015 Alabama 6.64 5.57 4.35 4.98 5.49 3.94 1997-2015 Alaska 4.23 3.84 5.11 8.16 7.97 7.21 1997-2015 Arizona 7.54 6.86 5.78 6.29 7.52 NA 1997-2015 Arkansas 7.28 7.44 6.38 6.74 6.99 6.97 1997-2015 California 7.02 7.04 5.77 6.57 7.65 6.35 1997-2015 Colorado

  14. Natural Gas Industrial Price

    Gasoline and Diesel Fuel Update (EIA)

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History U.S. 5.49 5.13 3.88 4.64 5.55 3.84 1997-2015 Alabama 6.64 5.57 4.35 4.98 5.49 3.94 1997-2015 Alaska 4.23 3.84 5.11 8.16 7.97 7.21 1997-2015 Arizona 7.54 6.86 5.78 6.29 7.52 NA 1997-2015 Arkansas 7.28 7.44 6.38 6.74 6.99 6.97 1997-2015 California 7.02 7.04 5.77 6.57 7.65 6.35 1997-2015 Colorado

  15. Natural Gas Industrial Price

    Gasoline and Diesel Fuel Update (EIA)

    67 3.73 3.58 3.46 3.18 3.38 2001-2015 Alabama 3.82 3.91 3.68 3.48 3.33 3.48 2001-2015 Alaska 7.17 7.17 7.17 7.17 7.17 7.24 2001-2015 Arizona 6.80 NA 6.62 6.36 6.35 6.43 2001-2015 Arkansas 6.71 6.62 6.47 6.46 6.02 5.67 2001-2015 California 6.02 6.07 6.09 5.88 5.77 6.92 2001-2015 Colorado 7.28 6.53 6.11 5.95 5.14 4.46 2001-2015 Connecticut 5.88 5.66 6.59 5.76 5.87 6.60 2001-2015 Delaware 8.82 11.38 11.40 11.15 9.62 8.32 2001-2015 District of Columbia -- -- -- -- -- -- 2001-2015 Florida 6.69 6.02

  16. The distributed utility: A new electric utility planning and pricing paradigm

    SciTech Connect (OSTI)

    Feinstein, C.D.; Orans, R.; Chapel, S.W.

    1997-12-31

    The distributed utility concept provides an alternate approach to guide electric utility expansion. The fundamental idea within the distributed utility concept is that particular local load increases can be satisfied at least cost by avoiding or delaying the more traditional investments in central generation capacity, bulk transmission expansion, and local transmission and distribution upgrades. Instead of these investments, the distributed utility concept suggests that investments in local generation, local storage, and local demand-side management technologies can be designed to satisfy increasing local demand at lower total cost. Critical to installation of distributed assets is knowledge of a utility system`s area- and time-specific costs. This review introduces the distributed utility concept, describes an application of ATS costs to investment planning, discusses the various motivations for further study of the concept, and reviews relevant literature. Future research directions are discussed.

  17. Massachusetts Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Imports Price 4.86 4.77 3.69 5.49 8.00 1989-2014 Pipeline and Distribution Use Price 1967-2005 Citygate Price 7.74 7.04 6.03 6.20 6.96 NA 1984-2015 Residential Price 14.53 13.81 13.22 13.49 14.50 NA 1967-2015 Percentage of Total Residential Deliveries included in Prices 85.4 89.3 87.8 99.6 99.5 NA 1989-2015 Commercial Price 12.00 11.68 10.68 11.25 12.48 NA 1967-2015 Percentage of Total Commercial Deliveries included in Prices 52.1 50.0 48.6 39.4 42.3 NA 1990-2015 Industrial Price 10.41 10.14

  18. Mississippi Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    4.17 1967-2010 Imports Price -- 12.93 -- -- -- 2007-2014 Pipeline and Distribution Use Price 1967-2005 Citygate Price 5.73 5.29 3.97 4.44 5.29 NA 1984-2015 Residential Price 10.19 9.47 9.60 9.00 9.49 9.71 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 99.5 99.5 99.5 100.0 NA 1989-2015 Commercial Price 8.75 7.99 7.37 7.61 8.36 NA 1967-2015 Percentage of Total Commercial Deliveries included in Prices 90.6 89.8 89.0 89.1 87.5 NA 1990-2015 Industrial Price 6.19 5.83

  19. Florida Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price NA 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 5.49 5.07 3.93 4.44 5.05 NA 1984-2015 Residential Price 17.89 18.16 18.34 18.46 19.02 19.29 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 98.0 97.7 97.8 97.8 97.8 1989-2015 Commercial Price 10.60 11.14 10.41 10.87 11.38 10.74 1967-2015 Percentage of Total Commercial Deliveries included in Prices 100.0 38.5 37.0 33.3 32.3 NA 1990-2015 Industrial Price 8.33 8.07 6.96 6.77 6.89

  20. " and Electricity Generation by Census Region, Census Division, Industry Group,"

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Total Inputs of Selected Wood and Wood-Related Products for Heat, Power," " and Electricity Generation by Census Region, Census Division, Industry Group," " and Selected Industries, 1994" " (Estimates in Billion Btu)" ,,,,"Selected Wood and Wood-Related Products" ,,,,,"Biomass" " "," ",," "," "," ","Wood Residues","Wood-Related"," " " ","

  1. SO{sub 2} trading program as a metaphor for a competitive electric industry

    SciTech Connect (OSTI)

    O`Connor, P.R.

    1996-12-31

    This very brief presentation focuses on the competitive market impacts of sulfur dioxide SO{sub 2} emissions trading. Key points of the presentation are highlighted in four tables. The main principles and results of the emissions trading program are outlined, and the implications of SO{sub 2} trading for the electric industry are listed. Parallels between SO{sub 2} trading and electric utility restructing identified include no market distortion by avoiding serious disadvantages to competitors, and avoidance of stranded costs through compliance flexibility. 4 tabs.

  2. The revenue requirement approach to analysis of alternative technologies in the electric utility industry

    SciTech Connect (OSTI)

    Lohrasbi, J. )

    1990-01-01

    The advancement of coal-based power generation technology is of primary interest to the U.S. Department of Energy (DOE). The interests are well-founded due to increasing costs for premium fuels and, more importantly, the establishment of energy independence to promote national security. One of DOE's current goals is to promote the development of coal-fired technology for the electric utility industry. This paper is concerned with the economic comparison of two alternative technologies: the coal gasification-combined cycle (GCC) and the coal-fired magnetohydrodynamic (MHD)-combined cycle. The revenue requirement analysis was used for the economic evaluation of engineering alternatives in the electric utility industry. The results were compared based on year-by-year revenue requirement analysis. A computer program was written in Fortran to perform the calculations.

  3. Deployment of CCS Technologies across the Load Curve for a Competitive Electricity Market as a Function of CO2 Emissions Permit Prices

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.

    2011-04-18

    Consistent with other published studies, the modelling presented here reveals that baseload power plants are the first aspects of the electricity sector to decarbonize and are essentially decarbonized once CO2 permit prices exceed a certain threshold ($90/ton CO2 in this study). The decarbonization of baseload electricity is met by significant expansions of nuclear power and renewable energy generation technologies as well as the application of carbon dioxide capture and storage (CCS) technologies applied to both coal and natural gas fired power plants. Relatively little attention has been paid thus far to whether intermediate and peaking units would respond the same way to a climate policy given the very different operational and economic context that these kinds of electricity generation units operate under. In this paper, the authors discuss key aspects of the load segmentation methodology used to imbed a varying electricity demand within the GCAM (a state-of-the-art Integrated Assessment Model) energy and economic modelling framework and present key results on the role CCS technologies could play in decarbonizng subpeak and peak generation (encompassing only the top 10% of the load) and under what conditions. To do this, the authors have modelled two hypothetical climate policies that require 50% and 80% reductions in US emissions from business as usual by the middle of this century. Intermediate electricity generation is virtually decarbonized once carbon prices exceed approximately $150/tonCO2. When CO2 permit prices exceed $160/tonCO2, natural gas power plants with CCS have roughly the same marketshare as conventional gas plants in serving subpeak loads. The penetration of CCS into peak load (upper 6% here) is minimal under the scenarios modeled here suggesting that CO2 emissions from this aspect of the U.S. electricity sector would persist well into the future even with stringent CO2 emission control policies in place.

  4. Different approaches to estimating transition costs in the electric- utility industry

    SciTech Connect (OSTI)

    Baxter, L.W.

    1995-10-01

    The term ``transition costs`` describes the potential revenue shortfall (or welfare loss) a utility (or other actor) may experience through government-initiated deregulation of electricity generation. The potential for transition costs arises whenever a regulated industry is subject to competitive market forces as a result of explicit government action. Federal and state proposals to deregulate electricity generation sparked a national debate on transition costs in the electric-utility industry. Industry-wide transition cost estimates range from about $20 billion to $500 billion. Such disparate estimates raise important questions on estimation methods for decision makers. This report examines different approaches to estimating transition costs. The study has three objectives. First, we discuss the concept of transition cost. Second, we identify the major cost categories included in transition cost estimates and summarize the current debate on which specific costs are appropriately included in these estimates. Finally, we identify general and specific estimation approaches and assess their strengths and weaknesses. We relied primarily on the evidentiary records established at the Federal Energy Regulatory Commission and the California Public Utilities Commission to identify major cost categories and specific estimation approaches. We also contacted regulatory commission staffs in ten states to ascertain estimation activities in each of these states. We refined a classification framework to describe and assess general estimation options. We subsequently developed and applied criteria to describe and assess specific estimation approaches proposed by federal regulators, state regulators, utilities, independent power companies, and consultants.

  5. Fairness and dynamic pricing: comments

    SciTech Connect (OSTI)

    Hogan, William W.

    2010-07-15

    In ''The Ethics of Dynamic Pricing,'' Ahmad Faruqui lays out a case for improved efficiency in using dynamic prices for retail electricity tariffs and addresses various issues about the distributional effects of alternative pricing mechanisms. The principal contrast is between flat or nearly constant energy prices and time-varying prices that reflect more closely the marginal costs of energy and capacity. The related issues of fairness criteria, contracts, risk allocation, cost allocation, means testing, real-time pricing, and ethical policies of electricity market design also must be considered. (author)

  6. Mississippi Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    3.81 3.82 3.64 3.68 NA 4.29 1989-2015 Residential Price 14.87 15.82 15.39 13.96 12.13 9.71 1989-2015 Percentage of Total Residential Deliveries included in Prices 99.3 100.0 100.0 100.0 NA 100.0 2002-2015 Commercial Price 7.79 NA NA 7.81 7.98 8.06 1989-2015 Percentage of Total Commercial Deliveries included in Prices 81.0 NA NA 82.3 NA 86.1 1989-2015 Industrial Price 4.49 3.95 4.46 4.21 4.26 4.12 2001-2015 Percentage of Total Industrial Deliveries included in Prices 8.7 9.3 9.6 8.8 8.5 8.4

  7. Connecticut Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    4.58 4.45 4.59 3.58 3.36 3.80 1989-2015 Residential Price 18.22 19.33 NA 15.30 12.50 11.82 1989-2015 Percentage of Total Residential Deliveries included in Prices 95.8 94.3 NA 94.6 95.9 96.4 2002-2015 Commercial Price 9.29 9.52 NA 9.53 8.48 8.18 1989-2015 Percentage of Total Commercial Deliveries included in Prices 71.9 67.6 NA 73.5 75.4 78.4 1989-2015 Industrial Price 5.88 5.66 6.59 5.76 5.87 6.60 2001-2015 Percentage of Total Industrial Deliveries included in Prices 43.9 45.3 44.5 47.8 49.8

  8. Delaware Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    10.56 10.03 10.35 6.54 5.14 4.98 1989-2015 Residential Price 21.80 23.75 23.22 NA 14.03 11.09 1989-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2015 Commercial Price 13.35 13.86 13.93 12.54 10.82 9.15 1989-2015 Percentage of Total Commercial Deliveries included in Prices 35.8 33.4 29.9 31.6 31.6 38.9 1989-2015 Industrial Price 8.82 11.38 11.40 11.15 9.62 8.32 2001-2015 Percentage of Total Industrial Deliveries included in Prices 0.2

  9. Georgia Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    16 4.16 4.14 3.80 3.37 3.51 1989-2015 Residential Price 25.45 24.78 25.75 20.43 15.20 14.41 1989-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2015 Commercial Price 9.08 9.07 9.38 8.65 9.72 7.80 1989-2015 Percentage of Total Commercial Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2015 Industrial Price 4.06 4.25 4.15 4.02 3.65 3.74 2001-2015 Percentage of Total Industrial Deliveries included in Prices 20.0

  10. Hawaii Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    22.97 17.72 15.38 14.59 14.92 14.81 1989-2015 Residential Price 45.12 37.43 36.33 37.38 38.46 38.20 1989-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2015 Commercial Price 36.02 30.45 28.60 27.06 28.13 28.72 1989-2015 Percentage of Total Commercial Deliveries included in Prices 100 100 100 100 100 100 1989-2015 Industrial Price 21.32 19.06 18.87 17.77 17.47 14.88 2001-2015 Percentage of Total Industrial Deliveries included in Prices

  11. Idaho Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    65 4.50 NA 3.75 3.52 3.34 1989-2015 Residential Price 10.72 10.96 9.56 8.93 7.74 7.89 1989-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2015 Commercial Price 8.41 8.12 8.00 7.65 6.93 7.12 1989-2015 Percentage of Total Commercial Deliveries included in Prices 52.9 58.6 64.4 67.0 79.0 83.5 1989-2015 Industrial Price 6.09 6.08 5.93 5.77 NA 5.39 2001-2015 Percentage of Total Industrial Deliveries included in Prices 2.2 NA 1.9 NA NA 2.4

  12. Iowa Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    54 4.61 4.62 3.58 3.81 3.79 1989-2015 Residential Price 15.67 17.34 16.40 13.15 8.41 7.29 1989-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2015 Commercial Price 8.45 8.95 8.14 5.99 6.39 5.72 1989-2015 Percentage of Total Commercial Deliveries included in Prices 59.1 55.5 59.3 70.3 NA 75.2 1989-2015 Industrial Price 5.32 5.00 NA 4.46 5.14 4.50 2001-2015 Percentage of Total Industrial Deliveries included in Prices 2.4 1.9 NA 5.2 6.3

  13. Tennessee Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    2 4.00 4.03 3.80 3.49 3.45 1989-2015 Residential Price 17.72 19.78 17.47 14.51 11.82 9.28 1989-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2015 Commercial Price 9.34 9.86 9.37 8.92 8.72 8.33 1989-2015 Percentage of Total Commercial Deliveries included in Prices 79.8 76.7 79.7 81.9 85.5 88.4 1989-2015 Industrial Price 4.66 4.65 4.49 4.32 4.34 4.45 2001-2015 Percentage of Total Industrial Deliveries included in Prices 27.8 29.5 29.3

  14. Ohio Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    3.24 3.04 2.34 3.02 3.45 3.75 1989-2015 Residential Price 23.83 25.46 24.31 15.36 9.68 7.40 1989-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2015 Commercial Price 8.14 8.02 7.99 6.79 6.03 5.53 1989-2015 Percentage of Total Commercial Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2015 Industrial Price 6.43 7.26 NA 6.68 5.64 5.55 2001-2015 Percentage of Total Industrial Deliveries included in Prices 1.4 1.0 NA

  15. Oklahoma Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    5.17 5.43 5.45 5.28 4.22 3.86 1989-2015 Residential Price 23.13 26.66 25.23 23.39 14.41 7.35 1989-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2015 Commercial Price 13.62 15.18 14.85 14.21 10.78 6.14 1989-2015 Percentage of Total Commercial Deliveries included in Prices 30.4 28.6 29.4 30.1 30.8 47.6 1989-2015 Industrial Price NA 8.56 NA 9.67 7.72 6.04 2001-2015 Percentage of Total Industrial Deliveries included in Prices NA 0.4 NA

  16. Oregon Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    6.30 5.84 5.19 5.15 3.92 3.72 1989-2015 Residential Price 16.60 17.52 14.81 13.88 10.10 NA 1989-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2015 Commercial Price 10.76 11.12 10.13 10.18 8.39 9.09 1989-2015 Percentage of Total Commercial Deliveries included in Prices 94.3 94.0 94.2 94.7 95.1 95.3 1989-2015 Industrial Price 6.39 6.49 6.47 6.51 5.67 5.59 2001-2015 Percentage of Total Industrial Deliveries included in Prices 15.3 15.4

  17. Vermont Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    6.39 6.34 5.96 4.59 5.08 5.93 1989-2015 Residential Price 21.69 23.04 23.16 18.41 14.89 13.84 1989-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2015 Commercial Price 6.10 NA 6.97 6.20 6.65 7.37 1989-2015 Percentage of Total Commercial Deliveries included in Prices 100 100 100 100 100 100 1989-2015 Industrial Price 5.90 4.53 4.65 5.58 5.42 5.81 2001-2015 Percentage of Total Industrial Deliveries included in Prices 100.0 100.0 100.0

  18. Wisconsin Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    68 5.95 5.61 4.25 4.21 3.96 1989-2015 Residential Price 13.27 14.05 12.80 8.42 7.89 7.38 1989-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2015 Commercial Price 6.42 6.44 6.18 5.37 6.34 6.12 1989-2015 Percentage of Total Commercial Deliveries included in Prices 54.8 57.2 58.1 69.4 75.1 77.7 1989-2015 Industrial Price 4.54 4.91 4.56 4.69 5.37 5.43 2001-2015 Percentage of Total Industrial Deliveries included in Prices 11.5 11.1 12.6

  19. Alabama Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    4.46 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 6.46 5.80 5.18 4.65 4.93 NA 1984-2015 Residential Price 15.79 15.08 16.20 15.47 14.59 13.95 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 99.0 1989-2015 Commercial Price 13.34 12.36 12.56 12.35 11.92 11.03 1967-2015 Percentage of Total Commercial Deliveries included in Prices 79.3 78.9 76.2 76.6 78.4 77.6 1990-2015 Industrial Price 6.64 5.57 4.35 4.98 5.49 3.94

  20. Arkansas Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    3.84 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 6.76 6.27 5.36 4.99 5.84 4.76 1984-2015 Residential Price 11.53 11.46 11.82 10.46 10.39 11.20 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2015 Commercial Price 8.89 8.90 7.99 7.68 7.88 8.08 1967-2015 Percentage of Total Commercial Deliveries included in Prices 55.6 51.5 40.2 43.7 45.5 42.5 1990-2015 Industrial Price 7.28 7.44 6.38 6.74 6.99 6.97

  1. Missouri Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    1967-1997 Pipeline and Distribution Use Price 1967-2005 Citygate Price 6.17 5.85 5.27 4.99 5.76 4.65 1984-2015 Residential Price 11.66 12.02 12.25 10.88 10.83 11.59 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2015 Commercial Price 10.28 9.99 9.54 9.00 8.96 9.10 1967-2015 Percentage of Total Commercial Deliveries included in Prices 76.5 73.1 69.2 72.3 70.5 71.1 1990-2015 Industrial Price 8.70 8.54 7.85 8.19 8.00 7.75 1997-2015

  2. Nebraska Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    8 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 5.62 5.11 4.31 4.61 5.58 NA 1984-2015 Residential Price 8.95 8.84 8.68 8.39 8.77 8.94 1967-2015 Percentage of Total Residential Deliveries included in Prices 87.4 87.3 85.8 87.5 87.8 87.2 1989-2015 Commercial Price 7.08 6.69 6.19 6.49 7.27 6.54 1967-2015 Percentage of Total Commercial Deliveries included in Prices 60.6 60.6 55.8 57.3 56.4 56.1 1990-2015 Industrial Price 5.85 5.61 4.34 4.72 5.69 4.61 1997-2015 Percentage of

  3. Nevada Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    NA 2006-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 7.19 6.77 5.13 5.16 5.90 4.06 1984-2015 Residential Price 12.25 10.66 10.14 9.42 11.44 11.82 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2015 Commercial Price 9.77 8.07 7.43 6.61 8.21 8.66 1967-2015 Percentage of Total Commercial Deliveries included in Prices 65.4 64.3 61.4 60.1 58.4 57.9 1990-2015 Industrial Price 10.53 8.99 7.34 6.66 7.83 NA 1997-2015

  4. Ohio Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    3 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 6.87 5.51 4.47 4.51 4.91 4.49 1984-2015 Residential Price 11.13 10.78 9.91 9.46 10.16 9.49 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2015 Commercial Price 9.25 8.55 7.11 6.21 7.82 6.62 1967-2015 Percentage of Total Commercial Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1990-2015 Industrial Price 7.40 6.77 5.48 6.03 7.06 NA 1997-2015

  5. Oklahoma Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    71 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 6.18 5.67 5.00 4.75 5.35 4.59 1984-2015 Residential Price 11.12 10.32 11.10 9.71 10.10 10.26 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2015 Commercial Price 9.77 8.94 8.95 8.05 8.26 8.22 1967-2015 Percentage of Total Commercial Deliveries included in Prices 47.5 46.3 41.1 44.6 45.3 43.7 1990-2015 Industrial Price 8.23 7.37 7.65 7.16 8.27 NA 1997-2015

  6. Oregon Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    92 1979-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 6.78 5.84 5.21 4.82 5.40 4.65 1984-2015 Residential Price 12.49 11.76 11.22 10.84 11.72 NA 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2015 Commercial Price 10.10 9.60 8.91 8.60 9.44 NA 1967-2015 Percentage of Total Commercial Deliveries included in Prices 97.4 97.4 96.9 96.6 96.0 NA 1990-2015 Industrial Price 7.05 6.84 5.87 5.79 6.20 6.38 1997-2015

  7. Pennsylvania Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    NA 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 7.04 6.28 5.52 5.26 5.59 NA 1984-2015 Residential Price 12.90 12.46 11.99 11.63 11.77 NA 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 91.2 88.6 87.3 86.2 NA 1989-2015 Commercial Price 10.47 10.42 10.24 10.11 10.13 NA 1967-2015 Percentage of Total Commercial Deliveries included in Prices 100.0 48.5 42.1 40.2 41.4 NA 1990-2015 Industrial Price 8.23 9.86 9.58 9.13 9.95 NA 1997-2015 Percentage

  8. Tennessee Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    35 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 5.78 5.23 4.35 4.73 5.37 4.06 1984-2015 Residential Price 10.46 10.21 9.95 9.44 10.13 9.69 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2015 Commercial Price 9.39 9.04 8.36 8.41 9.30 8.46 1967-2015 Percentage of Total Commercial Deliveries included in Prices 90.8 89.9 88.8 90.0 90.7 88.6 1990-2015 Industrial Price 6.64 6.15 4.98 5.62 6.31 4.89 1997-2015

  9. Utah Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    23 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 5.53 5.68 5.50 5.70 5.74 5.70 1984-2015 Residential Price 8.22 8.44 8.70 8.55 9.48 9.72 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2015 Commercial Price 6.83 7.05 7.00 7.13 7.71 7.97 1967-2015 Percentage of Total Commercial Deliveries included in Prices 86.2 86.7 83.9 81.8 78.3 77.0 1990-2015 Industrial Price 5.57 5.50 4.69 5.22 5.83 5.89 1997-2015

  10. Vermont Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    6.54 5.81 4.90 5.72 6.61 1989-2014 Pipeline and Distribution Use Price 1982-2005 Citygate Price 8.29 7.98 6.63 6.16 7.08 NA 1984-2015 Residential Price 16.14 16.17 16.73 15.87 14.68 14.56 1980-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2015 Commercial Price 11.82 11.90 12.09 7.57 9.13 NA 1980-2015 Percentage of Total Commercial Deliveries included in Prices 100 100 100 100 100 NA 1990-2015 Industrial Price 6.57 6.09 4.89 8.59 6.63

  11. Virginia Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    NA 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 6.88 6.64 5.64 5.54 5.98 NA 1984-2015 Residential Price 12.73 12.72 12.42 11.68 12.07 NA 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 90.1 89.5 89.9 90.1 NA 1989-2015 Commercial Price 9.55 9.69 8.77 8.83 9.17 8.11 1967-2015 Percentage of Total Commercial Deliveries included in Prices 100.0 54.1 52.1 54.6 55.8 54.2 1990-2015 Industrial Price 6.68 6.44 5.29 6.02 6.43 NA 1997-2015 Percentage

  12. Colorado Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    3.96 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 5.26 4.94 4.26 4.76 5.42 3.96 1984-2015 Residential Price 8.13 8.25 8.28 7.85 8.89 NA 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 NA 1989-2015 Commercial Price 7.58 7.84 7.58 7.26 8.15 NA 1967-2015 Percentage of Total Commercial Deliveries included in Prices 94.6 93.8 92.2 94.7 94.5 NA 1990-2015 Industrial Price 5.84 6.42 5.79 5.90 6.84 NA 1997-2015 Percentage of

  13. Georgia Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Imports Price 4.39 4.20 2.78 3.36 4.33 1999-2014 Pipeline and Distribution Use Price 1967-2005 Citygate Price 5.93 5.19 4.35 4.66 5.19 3.82 1984-2015 Residential Price 15.17 15.72 16.23 14.60 14.45 15.06 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2015 Commercial Price 10.95 10.51 9.75 9.38 9.86 8.49 1967-2015 Percentage of Total Commercial Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1990-2015 Industrial

  14. Illinois Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    NA 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 5.52 5.09 4.11 4.43 6.28 3.82 1984-2015 Residential Price 9.39 8.78 8.26 8.20 9.59 7.95 1967-2015 Percentage of Total Residential Deliveries included in Prices 88.0 88.0 87.9 87.7 87.3 86.3 1989-2015 Commercial Price 8.76 8.27 7.78 7.57 8.86 7.26 1967-2015 Percentage of Total Commercial Deliveries included in Prices 42.3 38.1 36.8 38.4 38.5 NA 1990-2015 Industrial Price 7.13 6.84 5.63 6.00 7.75 5.36 1997-2015 Percentage of

  15. Indiana Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    4.13 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 5.52 4.97 4.23 4.38 5.63 NA 1984-2015 Residential Price 8.63 9.46 8.94 8.43 9.02 NA 1967-2015 Percentage of Total Residential Deliveries included in Prices 94.1 94.6 94.5 95.0 95.3 NA 1989-2015 Commercial Price 7.55 8.04 7.69 7.59 8.19 NA 1967-2015 Percentage of Total Commercial Deliveries included in Prices 72.5 70.2 67.4 68.2 67.6 NA 1990-2015 Industrial Price 5.65 6.53 6.19 6.54 7.45 NA 1997-2015 Percentage of Total

  16. Iowa Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price 1967-2005 Citygate Price 5.69 5.27 4.84 4.95 6.24 NA 1984-2015 Residential Price 9.57 9.54 9.46 8.99 10.02 8.49 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2015 Commercial Price 7.81 7.55 7.13 6.97 8.15 6.49 1967-2015 Percentage of Total Commercial Deliveries included in Prices 72.0 72.1 72.2 72.5 74.4 NA 1990-2015 Industrial Price 6.10 5.78 4.70 5.43 7.40 NA 1997-2015 Percentage of Total

  17. Kansas Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    23 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 6.08 5.53 4.74 4.98 6.10 NA 1984-2015 Residential Price 10.61 9.93 10.12 10.19 10.59 NA 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 NA 1989-2015 Commercial Price 9.65 8.89 8.82 9.07 9.53 8.83 1967-2015 Percentage of Total Commercial Deliveries included in Prices 66.0 62.6 59.8 61.4 59.3 NA 1990-2015 Industrial Price 5.49 5.28 3.87 4.86 5.70 4.37 1997-2015 Percentage

  18. Kentucky Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    47 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 5.69 5.18 4.17 4.47 5.16 NA 1984-2015 Residential Price 10.02 10.44 10.19 9.80 10.62 10.94 1967-2015 Percentage of Total Residential Deliveries included in Prices 95.7 95.5 95.9 96.2 96.3 96.3 1989-2015 Commercial Price 8.61 8.79 8.28 8.32 9.04 8.80 1967-2015 Percentage of Total Commercial Deliveries included in Prices 80.5 79.2 77.4 78.8 80.5 79.2 1990-2015 Industrial Price 5.57 5.16 3.96 4.84 5.80 4.36 1997-2015

  19. Wisconsin Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price 1967-2005 Citygate Price 6.14 5.65 4.88 4.88 6.96 4.71 1984-2015 Residential Price 10.34 9.77 9.27 8.65 10.52 NA 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2015 Commercial Price 8.53 8.03 7.34 6.94 8.74 NA 1967-2015 Percentage of Total Commercial Deliveries included in Prices 76.2 76.4 74.4 77.7 77.0 NA 1990-2015 Industrial Price 7.56 7.05 5.81 6.02 8.08 NA 1997-2015 Percentage of Total

  20. Wyoming Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    4.30 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 5.04 4.65 4.03 4.51 5.27 4.36 1984-2015 Residential Price 8.58 8.72 8.42 8.27 9.34 9.19 1967-2015 Percentage of Total Residential Deliveries included in Prices 75.4 75.6 75.3 73.8 72.9 73.3 1989-2015 Commercial Price 7.13 7.29 6.72 6.81 7.69 NA 1967-2015 Percentage of Total Commercial Deliveries included in Prices 65.3 64.0 62.6 62.9 60.8 NA 1990-2015 Industrial Price 4.91 5.57 4.87 4.62 5.89 NA 1997-2015 Percentage of

  1. Alternative Fuel Price Report - March 28, 2005

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    At the national average gasoline price of 2.109 per gallon, the fuel cost of an electric Ranger is less than that of its conventional counterpart for electricity price up...

  2. Observed Temperature Effects on Hourly Residential Electric LoadReduction in Response to an Experimental Critical Peak PricingTariff

    SciTech Connect (OSTI)

    Herter, Karen B.; McAuliffe, Patrick K.; Rosenfeld, Arthur H.

    2005-11-14

    The goal of this investigation was to characterize themanual and automated response of residential customers to high-price"critical" events dispatched under critical peak pricing tariffs testedin the 2003-2004 California Statewide Pricing Pilot. The 15-monthexperimental tariff gave customers a discounted two-price time-of-userate on 430 days in exchange for 27 critical days, during which the peakperiod price (2 p.m. to 7 p.m.) was increased to about three times thenormal time-of-use peak price. We calculated response by five-degreetemperature bins as the difference between peak usage on normal andcritical weekdays. Results indicatedthat manual response to criticalperiods reached -0.23 kW per home (-13 percent) in hot weather(95-104.9oF), -0.03 kW per home (-4 percent) in mild weather (60-94.9oF),and -0.07 kW per home (-9 percent) during cold weather (50-59.9oF).Separately, we analyzed response enhanced by programmable communicatingthermostats in high-use homes with air-conditioning. Between 90oF and94.9oF, the response of this group reached -0.56 kW per home (-25percent) for five-hour critical periods and -0.89 kW/home (-41 percent)for two-hour critical periods.

  3. All Price Tables.vp

    U.S. Energy Information Administration (EIA) Indexed Site

    e There are no direct fuel costs for hydroelectric, geothermal, wind, photovoltaic, or solar thermal energy. f Electricity imports are included in these prices but not shown...

  4. All Price Tables.vp

    U.S. Energy Information Administration (EIA) Indexed Site

    g There are no direct fuel costs for hydroelectric, geothermal, wind, photovoltaic, or solar thermal energy. h Electricity imports are included in these prices but not shown...

  5. Understanding electricity market reforms and the case of Philippine deregulation

    SciTech Connect (OSTI)

    Santiago, Andrea; Roxas, Fernando

    2010-03-15

    The experience of the Philippines offers lessons that should be relevant to any country seeking to deregulate its power industry. Regardless of structure, consumers must face the real price of electricity production and delivery that is closer to marginal cost. Politically motivated prices merely shift the burden from ratepayers to taxpayers. And any reform should work within a reasonable timetable. (author)

  6. Real-time Pricing Demand Response in Operations

    SciTech Connect (OSTI)

    Widergren, Steven E.; Marinovici, Maria C.; Berliner, Teri; Graves, Alan

    2012-07-26

    Abstract—Dynamic pricing schemes have been implemented in commercial and industrial application settings, and recently they are getting attention for application to residential customers. Time-of-use and critical-peak-pricing rates are in place in various regions and are being piloted in many more. These programs are proving themselves useful for balancing energy during peak periods; however, real-time (5 minute) pricing signals combined with automation in end-use systems have the potential to deliver even more benefits to operators and consumers. Besides system peak shaving, a real-time pricing system can contribute demand response based on the locational marginal price of electricity, reduce load in response to a generator outage, and respond to local distribution system capacity limiting situations. The US Department of Energy (DOE) is teaming with a mid-west electricity service provider to run a distribution feeder-based retail electricity market that negotiates with residential automation equipment and clears every 5 minutes, thus providing a signal for lowering or raising electric consumption based on operational objectives of economic efficiency and reliability. This paper outlines the capability of the real-time pricing system and the operational scenarios being tested as the system is rolled-out starting in the first half of 2012.

  7. Illinois Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Citygate Price 5.12 4.75 4.91 3.61 3.17 3.43 1989-2015 Residential Price 15.10 15.87 15.35 9.68 7.11 6.28 1989-2015 Percentage of Total Residential Deliveries included in Prices 85.2 85.3 86.3 87.1 88.2 86.8 2002-2015 Commercial Price 11.48 12.68 11.81 8.21 6.63 6.02 1989-2015 Percentage of Total Commercial Deliveries included in Prices 25.2 21.9 22.8 30.4 NA 37.1 1989-2015 Industrial Price 6.32 5.82 6.00 5.24 4.48 4.54 2001-2015 Percentage

  8. Indiana Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Citygate Price 4.57 4.82 4.58 NA 3.62 3.52 1989-2015 Residential Price 17.18 17.31 15.21 9.26 7.32 6.91 1989-2015 Percentage of Total Residential Deliveries included in Prices 95.1 95.5 95.9 95.4 95.9 96.0 2002-2015 Commercial Price 10.56 10.62 8.02 NA 6.05 6.16 1989-2015 Percentage of Total Commercial Deliveries included in Prices 56.8 53.9 57.5 NA 65.5 67.8 1989-2015 Industrial Price 6.22 5.79 5.15 4.23 4.36 4.74 2001-2015 Percentage of

  9. Kansas Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Citygate Price 5.39 NA NA 5.53 3.94 3.55 1989-2015 Residential Price 19.38 20.79 19.68 14.37 NA 7.81 1989-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 NA 100.0 2002-2015 Commercial Price 12.42 11.98 12.47 9.39 7.25 7.08 1989-2015 Percentage of Total Commercial Deliveries included in Prices 31.1 NA 35.8 40.1 53.1 59.0 1989-2015 Industrial Price 4.12 4.07 4.02 4.31 4.76 5.79 2001-2015 Percentage of

  10. Alabama Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Citygate Price 3.80 4.04 3.81 3.83 3.61 3.27 1989-2015 Residential Price 20.35 20.60 20.38 19.12 17.67 14.30 1989-2015 Percentage of Total Residential Deliveries included in Prices 100.0 68.8 100.0 100.0 100.0 100.0 2002-2015 Commercial Price 11.89 11.93 11.75 11.40 11.47 10.73 1989-2015 Percentage of Total Commercial Deliveries included in Prices 70.5 69.7 69.7 68.6 69.9 76.2 1989-2015 Industrial Price 3.82 3.91 3.68 3.48 3.33 3.48

  11. Arizona Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Citygate Price 4.55 4.53 4.48 4.25 4.42 NA 1989-2015 Residential Price 23.59 24.01 23.01 20.77 14.57 12.75 1989-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2015 Commercial Price 10.67 10.52 10.40 10.14 9.36 9.17 1989-2015 Percentage of Total Commercial Deliveries included in Prices 80.7 79.4 80.1 80.2 83.3 85.5 1989-2015 Industrial Price 6.80 NA 6.62 6.36 6.35 6.43 2001-2015

  12. Energy & Financial Markets: What Drives Crude Oil Prices? - Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Markets - U.S. Energy Information Administration (EIA) ... Electricity Sales, revenue and prices, power plants, fuel ... spread Quarterly 12312015 Spot Prices World crude oil ...

  13. Price Elasticities for Energy Use in Buildings of the United...

    U.S. Energy Information Administration (EIA) Indexed Site

    end uses in the Electricity Price Doubled case 10 ... 2014 U.S. Energy Information Administration | Price ... is cut in half between 2015 and 2040)......

  14. Real Time Pricing and the Real Live Firm

    SciTech Connect (OSTI)

    Moezzi, Mithra; Goldman, Charles; Sezgen, Osman; Bharvirkar, Ranjit; Hopper, Nicole

    2004-05-26

    Energy economists have long argued the benefits of real time pricing (RTP) of electricity. Their basis for modeling customers response to short-term fluctuations in electricity prices are based on theories of rational firm behavior, where management strives to minimize operating costs and optimize profit, and labor, capital and energy are potential substitutes in the firm's production function. How well do private firms and public sector institutions operating conditions, knowledge structures, decision-making practices, and external relationships comport with these assumptions and how might this impact price response? We discuss these issues on the basis of interviews with 29 large (over 2 MW) industrial, commercial, and institutional customers in the Niagara Mohawk Power Corporation service territory that have faced day-ahead electricity market prices since 1998. We look at stories interviewees told about why and how they respond to RTP, why some customers report that they can't, and why even if they can, they don't. Some firms respond as theorized, and we describe their load curtailment strategies. About half of our interviewees reported that they were unable to either shift or forego electricity consumption even when prices are high ($0.50/kWh). Reasons customers gave for why they weren't price-responsive include implicit value placed on reliability, pricing structures, lack of flexibility in adjusting production inputs, just-in-time practices, perceived barriers to onsite generation, and insufficient time. We draw these observations into a framework that could help refine economic theory of dynamic pricing by providing real-world descriptions of how firms behave and why.

  15. DOE National Power Grid recommendations: unreliable guides for the future organization of the bulk electric-power industry

    SciTech Connect (OSTI)

    Miller, J.T. Jr.

    1980-01-01

    The bulk electric power supply industry needs leadership to meet its problems effectively, economically, and with the least injury to the environment during the rest of the century. The industry's pluralistic character, which is one of its strengths, and the range of the federal antitrust laws have blunted industry response to the challenge of supplying adequate bulk power. DOE failed to recognize the leadership vacuum and to use the opportunity provided by its Final Report on the National Power Grid Study to adopt a more effective role. DOE can still recover and urge Congress to pass the necessary enabling legislation to establish a regional bulk power supply corporation that would generate and transmit electric power for sale to federally chartered, privately owned electric utilities having no corporate links to their wholesale customers. 87 references.

  16. Primer on electricity futures and other derivatives

    SciTech Connect (OSTI)

    Stoft, S.; Belden, T.; Goldman, C.; Pickle, S.

    1998-01-01

    Increased competition in bulk power and retail electricity markets is likely to lower electricity prices, but will also result in greater price volatility as the industry moves away from administratively determined, cost-based rates and encourages market-driven prices. Price volatility introduces new risks for generators, consumers, and marketers. Electricity futures and other derivatives can help each of these market participants manage, or hedge, price risks in a competitive electricity market. Futures contracts are legally binding and negotiable contracts that call for the future delivery of a commodity. In most cases, physical delivery does not take place, and the futures contract is closed by buying or selling a futures contract on or near the delivery date. Other electric rate derivatives include options, price swaps, basis swaps, and forward contracts. This report is intended as a primer for public utility commissioners and their staff on futures and other financial instruments used to manage price risks. The report also explores some of the difficult choices facing regulators as they attempt to develop policies in this area.

  17. Industrial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  18. Average Price (Cents/kilowatthour) by State by Provider, 1990-2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Average Price (Cents/kilowatthour) by State by Provider, 1990-2014" "Year","State","Industry Sector Category","Residential","Commercial","Industrial","Transportation","Other","Total" 2014,"AK","Total Electric Industry",19.14,17.09,15.66,0,"NA",17.46 2014,"AL","Total Electric Industry",11.48,10.79,6.15,0,"NA",9.27

  19. Mergers, acquisitions, divestitures, and applications for market-based rates in a deregulating electric utility industry

    SciTech Connect (OSTI)

    Cox, A.J.

    1999-05-01

    In this article, the author reviews FERC's current procedures for undertaking competitive analysis. The current procedure for evaluating the competitive impact of transactions in the electric utility industry is described in Order 592, in particular Appendix A. These procedures effectively revised criteria that had been laid out in Commonwealth Edison and brought its merger policy in line with the EPAct and the provisions of Order 888. Order 592 was an attempt to provide more certainty and expedition in handling mergers. It established three criteria that had to be satisfied for a merger to be approved: Post-merger market power must be within acceptable thresholds or be satisfactorily mitigated, acceptable customer protections must be in place (to ensure that rates will not go up as a result of increased costs) and any adverse effect on regulation must be addressed. FERC states that its Order 592 Merger Policy Statement is based upon the Horizontal Merger Guidelines issued jointly by the Federal Trade Commission and the Antitrust Division Department of Justice (FTC/DOJ Merger Guidelines). While it borrows much of the language and basic concepts of the Merger Guidelines, FERC's procedures have been criticized as not following the methodology closely enough, leaving open the possibility of mistakes in market definition.

  20. New York Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    7.23 7.28 7.03 4.50 3.49 3.56 1989-2015 Residential Price 17.10 17.33 17.53 14.26 12.27 11.42 1989-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2015 Commercial Price 6.08 5.75 5.99 6.27 6.33 6.82 1989-2015 Percentage of Total Commercial Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2015 Industrial Price 5.95 5.41 5.91 5.66 6.10 6.36 2001-2015 Percentage of Total Industrial Deliveries included in Prices 5.0

  1. North Carolina Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    4.64 4.68 4.46 3.88 NA 3.10 1989-2015 Residential Price 21.31 NA 21.72 14.57 12.12 12.84 1989-2015 Percentage of Total Residential Deliveries included in Prices 100.0 NA 100.0 100.0 100.0 100.0 2002-2015 Commercial Price 9.38 NA 9.30 8.01 8.45 NA 1989-2015 Percentage of Total Commercial Deliveries included in Prices 73.6 NA 75.8 79.7 81.3 NA 1989-2015 Industrial Price 5.78 5.70 5.96 5.86 5.57 5.70 2001-2015 Percentage of Total Industrial Deliveries included in Prices 8.7 9.4 9.4 10.0 10.4 11.4

  2. North Dakota Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    3.56 4.32 5.00 4.58 4.16 3.94 1989-2015 Residential Price 21.07 NA NA 9.60 6.57 5.61 1989-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2015 Commercial Price 8.73 8.86 7.91 NA 5.68 5.23 1989-2015 Percentage of Total Commercial Deliveries included in Prices 85.7 82.9 87.0 NA 93.2 94.3 1989-2015 Industrial Price 3.12 2.96 2.81 2.76 2.58 2.88 2001-2015 Percentage of Total Industrial Deliveries included in Prices 23.9 34.8 41.6 44.0 44.9

  3. Rhode Island Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    2.52 2.41 2.31 2.24 2.22 2.22 1989-2015 Residential Price 19.72 20.92 20.98 19.02 15.46 13.47 1989-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2015 Commercial Price 16.62 17.00 17.11 15.74 12.87 10.96 1989-2015 Percentage of Total Commercial Deliveries included in Prices 51.5 52.8 53.1 53.9 48.6 54.1 1989-2015 Industrial Price 9.61 10.09 9.79 9.92 9.48 8.22 2001-2015 Percentage of Total Industrial Deliveries included in Prices 4.8

  4. South Carolina Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    3.97 3.96 4.01 3.56 3.20 3.48 1989-2015 Residential Price 24.86 22.97 24.15 16.51 NA NA 1989-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2015 Commercial Price 8.33 8.04 8.28 7.97 8.35 10.06 1989-2015 Percentage of Total Commercial Deliveries included in Prices 90.1 90.2 88.8 89.7 91.3 NA 1989-2015 Industrial Price 4.22 4.46 4.13 4.03 3.86 4.01 2001-2015 Percentage of Total Industrial Deliveries included in Prices 42.2 41.8 43.2 43.6

  5. West Virginia Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    37 4.72 4.77 3.60 3.57 3.63 1989-2015 Residential Price 19.80 19.04 17.53 12.20 9.60 8.84 1989-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2015 Commercial Price 11.49 11.90 11.49 9.96 7.94 7.64 1989-2015 Percentage of Total Commercial Deliveries included in Prices 28.1 32.7 27.5 45.9 49.4 56.0 1989-2015 Industrial Price 4.38 4.39 4.34 4.37 NA 3.51 2001-2015 Percentage of Total Industrial Deliveries included in Prices 11.5 12.1 12.8

  6. The Impact of Ethanol Production on U.S. and Regional Gasoline Prices and on the Profitability of the U.S. Oil Refinery Industry

    SciTech Connect (OSTI)

    Du, Xiaodong; Hayes, Dermot J.

    2008-04-01

    This report details pooled regional time-series data and panel data estimation used to quantify the impact of monthly ethanol production on monthly retail regular gasoline prices.

  7. Minnesota Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    4.68 4.52 4.49 3.51 4.06 3.65 1989-2015 Residential Price 13.30 13.01 12.75 9.33 7.71 7.16 1989-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2015 Commercial Price 8.17 8.03 7.72 6.43 6.20 6.10 1989-2015 Percentage of Total Commercial Deliveries included in Prices 71.0 74.7 74.2 82.7 82.4 89.0 1989-2015 Industrial Price 4.59 4.76 4.23 4.31 4.20 4.31 2001-2015 Percentage of Total Industrial Deliveries included in Prices 11.4 12.6 12.7

  8. Nebraska Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    4.11 4.16 4.68 4.04 3.83 3.23 1989-2015 Residential Price 14.88 15.79 15.70 13.92 9.51 6.88 1989-2015 Percentage of Total Residential Deliveries included in Prices 88.9 88.2 88.9 87.2 83.8 86.9 2002-2015 Commercial Price 6.03 6.25 6.43 5.91 5.67 5.34 1989-2015 Percentage of Total Commercial Deliveries included in Prices 47.5 44.6 43.4 52.4 48.8 58.3 1989-2015 Industrial Price 4.31 4.38 4.32 4.15 4.09 4.85 2001-2015 Percentage of Total Industrial Deliveries included in Prices 5.5 5.6 6.4 6.1 6.4

  9. Colorado Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    5.36 5.61 5.62 4.60 3.24 3.07 1989-2015 Residential Price 14.21 13.61 13.03 9.26 6.88 6.45 1989-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2015 Commercial Price 9.41 9.33 9.19 7.83 6.49 6.18 1989-2015 Percentage of Total Commercial Deliveries included in Prices 90.9 91.0 90.8 93.1 95.7 95.8 1989-2015 Industrial Price 7.28 6.53 6.11 5.95 5.14 4.46 2001-2015 Percentage of Total Industrial Deliveries included in Prices 3.5 4.4 5.8 6.6

  10. Florida Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    87 4.44 4.53 4.17 3.92 4.65 1989-2015 Residential Price 24.58 24.59 24.41 23.37 21.56 19.15 1989-2015 Percentage of Total Residential Deliveries included in Prices 97.8 97.7 97.9 97.7 97.6 97.6 2002-2015 Commercial Price 10.92 10.91 11.15 10.61 10.69 10.89 1989-2015 Percentage of Total Commercial Deliveries included in Prices 28.0 26.9 27.7 27.8 27.6 28.6 1989-2015 Industrial Price 6.69 6.02 6.08 6.29 6.20 NA 2001-2015 Percentage of Total Industrial Deliveries included in Prices 3.3 3.3 3.5 3.0

  11. Texas Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    3.94 3.86 3.73 4.17 3.90 4.38 1989-2015 Residential Price 18.32 21.15 20.97 19.25 15.54 9.34 1989-2015 Percentage of Total Residential Deliveries included in Prices 99.7 99.7 100.0 100.0 99.6 99.8 2002-2015 Commercial Price 7.50 7.63 7.71 7.66 7.24 6.52 1989-2015 Percentage of Total Commercial Deliveries included in Prices 65.9 63.0 62.6 64.3 66.1 76.4 1989-2015 Industrial Price 3.08 3.14 2.96 2.78 2.29 2.39 2001-2015 Percentage of Total Industrial Deliveries included in Prices 41.5 39.5 41.3

  12. Pennsylvania Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    5.83 6.67 6.64 NA 4.31 4.15 1989-2015 Residential Price 17.83 18.62 18.32 NA 10.56 9.85 1989-2015 Percentage of Total Residential Deliveries included in Prices 87.1 87.4 87.3 NA 87.7 86.8 2002-2015 Commercial Price 12.09 11.21 11.10 NA 8.27 8.13 1989-2015 Percentage of Total Commercial Deliveries included in Prices 28.5 28.5 29.5 NA 37.3 38.5 1989-2015 Industrial Price 10.81 11.12 10.34 9.59 9.10 8.18 2001-2015 Percentage of Total Industrial Deliveries included in Prices 0.2 0.2 0.2 0.4 0.7 1.0

  13. Wyoming Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    3.06 3.50 3.89 4.09 3.88 3.89 1989-2015 Residential Price 15.33 15.71 15.37 13.00 8.57 7.11 1989-2015 Percentage of Total Residential Deliveries included in Prices 75.2 76.0 75.3 76.5 75.4 75.7 2002-2015 Commercial Price 7.74 7.55 7.80 7.36 6.65 6.19 1989-2015 Percentage of Total Commercial Deliveries included in Prices 55.0 58.0 51.1 54.8 46.0 53.2 1989-2015 Industrial Price 4.72 4.85 4.85 4.93 5.06 NA 2001-2015 Percentage of Total Industrial Deliveries included in Prices 2.2 2.9 2.1 1.9 1.4 NA

  14. Utah Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    4.34 3.96 4.18 5.49 4.84 5.96 1989-2015 Residential Price 10.69 10.85 10.89 10.85 9.22 8.75 1989-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2015 Commercial Price 7.26 7.30 7.29 7.33 7.33 7.53 1989-2015 Percentage of Total Commercial Deliveries included in Prices 66.9 65.1 66.7 67.0 76.1 80.7 1989-2015 Industrial Price 5.17 5.29 5.27 5.21 5.31 5.98 2001-2015 Percentage of Total Industrial Deliveries included in Prices 10.9 8.0 7.6

  15. Virginia Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    7.00 7.36 5.78 4.75 4.07 4.36 1989-2015 Residential Price 20.25 21.10 19.45 NA 11.72 12.09 1989-2015 Percentage of Total Residential Deliveries included in Prices 87.6 87.8 88.8 NA 90.7 89.5 2002-2015 Commercial Price 8.55 8.58 8.91 8.02 7.57 7.93 1989-2015 Percentage of Total Commercial Deliveries included in Prices 47.0 44.3 40.0 48.0 50.4 53.2 1989-2015 Industrial Price 4.81 5.41 4.86 4.22 3.95 4.49 2001-2015 Percentage of Total Industrial Deliveries included in Prices 7.3 7.7 9.0 10.0 7.5

  16. Washington Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    29 5.84 5.08 4.25 3.51 3.46 1989-2015 Residential Price 12.37 12.57 11.71 11.24 9.71 9.15 1989-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2015 Commercial Price 9.80 10.04 9.42 9.32 8.35 7.80 1989-2015 Percentage of Total Commercial Deliveries included in Prices 79.6 84.3 80.7 83.1 86.0 87.2 1989-2015 Industrial Price 9.45 8.94 8.87 8.48 7.87 7.27 2001-2015 Percentage of Total Industrial Deliveries included in Prices 4.5 4.1 5.0 5.5

  17. New Jersey Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price 1967-2005 Citygate Price 8.41 7.53 6.74 6.21 6.21 NA 1984-2015 Residential Price 12.84 11.78 11.09 10.89 9.69 8.37 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 94.6 92.8 90.1 90.7 93.4 1989-2015 Commercial Price 10.11 9.51 8.50 9.55 10.08 8.52 1967-2015 Percentage of Total Commercial Deliveries included in Prices 36.1 32.6 30.8 35.2 32.0 NA 1990-2015 Industrial Price 9.63 9.23 7.87 8.19 10.45 NA 1997-2015 Percentage of Total

  18. New Mexico Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    5.32 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 4.84 4.52 3.70 4.08 4.99 NA 1984-2015 Residential Price 9.63 9.14 8.69 8.92 10.13 8.58 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2015 Commercial Price 7.47 6.98 6.31 6.77 7.87 NA 1967-2015 Percentage of Total Commercial Deliveries included in Prices 60.7 59.8 57.0 57.0 54.4 NA 1990-2015 Industrial Price 6.17 6.22 4.96 5.58 6.45 4.95 1997-2015

  19. North Carolina Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price 1967-2005 Citygate Price 6.02 5.45 4.00 4.63 5.41 NA 1984-2015 Residential Price 12.50 12.55 12.19 11.83 11.88 NA 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 NA 1989-2015 Commercial Price 10.18 9.64 8.62 8.81 9.12 NA 1967-2015 Percentage of Total Commercial Deliveries included in Prices 84.8 84.4 83.5 84.5 84.9 NA 1990-2015 Industrial Price 8.24 7.70 6.37 6.87 7.55 NA 1997-2015 Percentage of Total

  20. South Dakota Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    NA 1979-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 5.54 5.21 4.67 4.83 6.14 4.17 1984-2015 Residential Price 8.77 8.59 8.39 8.23 9.27 8.21 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2015 Commercial Price 7.13 6.98 6.45 6.59 7.65 6.11 1967-2015 Percentage of Total Commercial Deliveries included in Prices 80.9 81.7 81.6 81.6 81.6 81.0 1990-2015 Industrial Price 5.92 6.25 5.37 5.67 6.88 4.98 1997-2015

  1. West Virginia Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    NA 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 6.31 5.91 4.99 4.65 5.07 4.00 1984-2015 Residential Price 11.39 10.91 10.77 9.98 10.21 10.46 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2015 Commercial Price 10.27 9.65 9.35 8.61 8.92 9.15 1967-2015 Percentage of Total Commercial Deliveries included in Prices 51.0 49.2 48.9 52.9 56.7 53.3 1990-2015 Industrial Price 5.40 4.89 3.60 4.30 5.00 NA 1997-2015

  2. Is the price squeeze doctrine still viable in fully-regulated energy markets

    SciTech Connect (OSTI)

    Spiwak, L.J.

    1993-01-01

    Simply stated, a price squeeze occurs when a firm with monopoly power on the primary, or wholesale, level engages in a prolonged price increase that drives competitors out of the secondary, or retail level, and thereby extends its monopoly power to the secondary market. A price squeeze will not be found, however, for any short-term exercise in market power. Rather, because anticompetitive effects of a price squeeze are indirect, the price squeeze must last long enough and be severe enough to produce effects on actual or potential competition in the secondary market. In regulated electric industries, a price squeeze claim usually arises from the complex relationship between the supplier, the wholesale customer, the retail customer, and the federal and state regulators. The supplier sells electric power to both wholesale and retail customers. Wholesale transactions are regulated by federal regulators, and retail transactions are regulated at the state level. The wholesale customers in turn sell power to their retail customers. Over the last several years, there have been substantial developments in the application of the price squeeze doctrine to fully-regulated electric utilities. This article will examine the current developments in this area, and attempt to highlight the burdens potential litigants, both plaintiffs and defendants, must overcome to succeed.

  3. Workplace Charging Management Policies: Pricing

    Broader source: Energy.gov [DOE]

    Organizations offering plug-in electric vehicle (PEV) charging at work can benefit from setting clear guidelines in the areas of administration, registration and liability, sharing, and pricing to...

  4. Annual Outlook for US Electric Power, 1985

    SciTech Connect (OSTI)

    Not Available

    1985-08-12

    This report provides a history and projections of US electric utility markets. It includes summary information on the production of electricity, its distribution to end-use sectors, and on electricity, its distribution to end-use sectors, and on electricity costs and prices. Further, this publication describes the ownership structure of the industry and the operations of utility systems and outlines basic electricity generating technologies. The historical information covers the period from 1882 through 1984, while projections extend from 1985 through 1995. 9 figs., 8 tabs.

  5. No. 2 Distillate Prices - Industrial

    Gasoline and Diesel Fuel Update (EIA)

    14 2.409 - - - - 1983-2014 East Coast (PADD 1) 1.967 2.380 - - - - 1983-2014 New England (PADD 1A) 2.029 2.381 - - - - 1983-2014 Connecticut 1.976 2.400 - - - - 1983-2014 Maine 2.017 2.452 - - - - 1983-2014 Massachusetts 1.985 NA - - - - 1983-2014 New Hampshire 2.117 2.482 - - - - 1983-2014 Rhode Island 2.020 2.559 - - - - 1983-2014 Vermont 2.182 2.492 - - - - 1983-2014 Central Atlantic (PADD 1B) 1.921 2.380 - - - - 1983-2014 Delaware 1.964 2.344 - - - - 1983-2014 District of Columbia W W - - -

  6. Propane (Consumer Grade) Prices - Industrial

    Gasoline and Diesel Fuel Update (EIA)

    06 1.880 - - - - 1994-2014 East Coast (PADD 1) 1.686 1.945 - - - - 1994-2014 New England (PADD 1A) 1.765 1.954 - - - - 1994-2014 Central Atlantic (PADD 1B) 1.760 2.021 - - - - 1994-2014 Lower Atlantic (PADD 1C) 1.640 1.917 - - - - 1994-2014 Midwest (PADD 2) 1.698 1.822 - - - - 1994-2014 Gulf Coast (PADD 3) 1.785 1.842 - - - - 1994-2014 Rocky Mountain (PADD 4) 1.745 1.918 - - - - 1994-2014 West Coast (PADD 5) 1.701 1.927

  7. This document is to provide input for a probable future state of the electric system and electric industry in 2030

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bruce Renz - Renz Consulting State of the Electric System in 2030 The Issue Last month's SGN article by Joe Miller discussed how the transition to a Smart Grid might take place. Joe's article was part of a series that has discussed the seven Principal Characteristics of a Smart Grid. While those seven characteristics promise a future in which the power grid supports and enables the needs of 21 st century society, such a grid does not exist today. And it will not exist tomorrow unless there is a

  8. California Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Citygate Price 3.56 3.55 3.42 3.32 3.08 3.02 1989-2015 Residential Price 11.68 11.85 11.91 11.53 10.31 11.37 1989-2015 Percentage of Total Residential Deliveries included in Prices 94.8 94.9 94.6 94.7 96.1 95.6 2002-2015 Commercial Price 7.68 7.87 7.84 7.69 7.20 8.23 1989-2015 Percentage of Total Commercial Deliveries included in Prices 45.0 43.5 43.9 46.6 51.7 54.8 1989-2015 Industrial Price 6.02 6.07 6.09 5.88 5.77 6.92 2001-2015

  9. Kentucky Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Citygate Price 3.44 3.41 3.34 3.41 3.21 3.85 1989-2015 Residential Price 23.26 22.36 21.14 16.21 11.07 9.41 1989-2015 Percentage of Total Residential Deliveries included in Prices 96.9 97.6 97.2 97.6 97.4 96.7 2002-2015 Commercial Price 11.98 11.34 10.55 9.42 8.63 7.72 1989-2015 Percentage of Total Commercial Deliveries included in Prices 66.4 67.6 68.0 72.3 76.0 80.6 1989-2015 Industrial Price 4.24 4.05 3.86 3.78 3.44 3.58 2001-2015

  10. Alaska Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Citygate Price 5.60 5.80 5.90 6.11 6.56 6.53 1989-2015 Residential Price 11.78 11.50 9.86 9.44 8.89 8.79 1989-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2015 Commercial Price 7.74 7.89 7.03 7.67 7.43 7.39 1989-2015 Percentage of Total Commercial Deliveries included in Prices 96.6 97.2 98.3 98.7 99.9 99.7 1989-2015 Industrial Price 7.17 7.17 7.17 7.17 7.17 7.24 2001-2015

  11. Arkansas Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Citygate Price 6.97 6.92 5.58 5.63 4.16 4.00 1989-2015 Residential Price 17.53 19.19 18.15 17.40 13.80 10.34 1989-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2015 Commercial Price 8.09 8.19 8.00 7.71 7.86 7.29 1989-2015 Percentage of Total Commercial Deliveries included in Prices 28.0 25.0 25.7 28.1 28.2 41.8 1989-2015 Industrial Price 6.71 6.62 6.47 6.46 6.02 5.67 2001-2015

  12. Electric Power Interruption Cost Estimates for Individual Industries, Sectors, and U.S. Economy

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Roop, Joseph M.; Schienbein, Lawrence A.; DeSteese, John G.; Weimar, Mark R.

    2002-02-27

    During the last 20 years, utilities and researchers have begun to understand the value in the collection and analysis of interruption cost data. The continued investigation of the monetary impact of power outages will facilitate the advancement of the analytical methods used to measure the costs and benefits from the perspective of the energy consumer. More in-depth analysis may be warranted because of the privatization and deregulation of power utilities, price instability in certain regions of the U.S. and the continued evolution of alternative auxiliary power systems.

  13. 1990,"AK","Total Electric Power Industry","All Sources",4208809...

    U.S. Energy Information Administration (EIA) Indexed Site

    Cogen","Petroleum",49092,1984,263 1990,"AK","Industrial Non-Cogen","All ... 1991,"OK","IPP NAICS-22 Cogen","Coal",1984516,4744,7324 1991,"OK","IPP NAICS-22 ...

  14. Electric industry restructuring and environmental issues: A comparative analysis of the experience in California, New York, and Wisconsin

    SciTech Connect (OSTI)

    Fang, J.M.; Galen, P.S.

    1996-08-01

    Since the California Public Utilities Commission (CPUC) issued its April 20, 1994, Blue Book proposal to restructure the regulation of electric utilities in California to allow more competition, over 40 states have initiated similar activities. The question of how major public policy objectives such as environmental protection, energy efficiency, renewable energy, and assistance to low-income customers can be sustained in the new competitive environment is also an important element being considered. Because many other states will undergo restructuring in the future, the experience of the {open_quotes}early adopter{close_quotes} states in addressing public policy objectives in their electric service industry restructuring processes can provide useful information to other states. The Competitive Resource Strategies Program of the U.S. Department of Energy`s (DOE`s) Office of Utility Technologies, is interested in documenting and disseminating the experience of the pioneering states. The Center for Energy Analysis and Applications of the National Renewable Energy Laboratory assisted the Office of Utility Technologies in this effort with a project on the treatment of environmental issues in electric industry restructuring.

  15. Electricity and technical progress: The bituminous coal mining industry, mechanization to automation

    SciTech Connect (OSTI)

    Devine, W.D. Jr.

    1987-07-01

    Development and use of electric mobile machinery facilitated the mechanization of underground bituminous coal mining and has played a lesser but important role in the growth of surface mining. Electricity has been central to the rise of mechanically integrated mining, both underground (after 1950) and on the surface (recently). Increasing labor productivity in coal mining and decreasing total energy use per ton of coal mined are associated with penetration of new electric technology through at least 1967. Productivity declined and energy intensity increased during the 1970s due in part to government regulations. Recent productivity gains stem partly from new technology that permits automation of certain mining operations. On most big electric excavating machines, a pair of large alternating current (ac) motors operate continuously at full speed. These drive direct current (dc) generators that energize dc motors, each matched to the desired power and speed range of a particular machine function. Direct-current motors provide high torque at low speeds, thus reducing the amount of gearing required; each crawler is independently propelled forward or backward by its own variable-speed dc motors. The principal advantages of electric power are that mechanical power-transmission systems - shafts, gears, etc. - are eliminated or greatly simplified. Reliability is higher, lifetime is longer, and maintenance is much simpler with electric power than with diesel power, and the spare parts inventory is considerably smaller. 100 refs., 11 figs., 12 tabs.

  16. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Commercial power plant tests blend of refuse-derived fuel and coal to generate electricity

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    MSW can be converted to energy in two ways. One involves the direct burning of MSW to produce steam and electricity. The second converts MSW into refuse-derived fuel (RDF) by reducing the size of the MSW and separating metals, glass, and other inorganic materials. RDF can be densified or mixed with binders to form fuel pellets. As part of a program sponsored by DOE`s Office of Industrial Technologies, the National Renewable Energy Laboratory participated in a cooperative research and development agreement to examine combustion of binder-enhanced, densified refuse-derived fuel (b-d RDF) pellets with coal. Pelletized b-d RDF has been burned in coal combustors, but only in quantities of less than 3% in large utility systems. The DOE project involved the use of b-d RDF in quantities up to 20%. A major goal was to quantify the pollutants released during combustion and measure combustion performance.

  17. Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply 1. Summary 2. Electricity Reliability Issues in California 3. Petroleum Refineries 4. Constraints Outside the Refinery Gate 5. Petroleum Product Prices and Supply Disruptions 6. Natural Gas 7. End Notes 8. Contacts 1. Summary Industry electric reliability organizations, the California Energy Commission, and the California Independent System Operator, expect California to be subject to rotating electricity outages in

  18. Annual outlook for US electric power, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-04-24

    This document includes summary information on the ownership structure of the US electric utility industry, a description of electric utility regulation, and identification of selected factors likely to affect US electricity markets from 1985 through 1995. This Outlook expands upon projections first presented in the Annual Energy Outlook 1985, offering additional discussion of projected US electricity markets and regional detail. It should be recognized that work on the Annual Energy Outlook 1985 had been completed prior to the sharp reductions in world oil prices experienced early in 1986.

  19. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    End Use: December 2015 Retail rates/prices and consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by state regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on

  20. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  1. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "megawatthours" "item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  2. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric

  3. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "megawatthours" "item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  4. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "megawatthours" "item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  5. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  6. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  7. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  8. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  9. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "megawatthours" "item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  10. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  11. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  12. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  13. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  14. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  15. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  16. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  17. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  18. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  19. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  20. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  1. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  2. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  3. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  4. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  5. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  6. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  7. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  8. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  9. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  10. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  11. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  12. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  13. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  14. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  15. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  16. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  17. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  18. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  19. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  20. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  1. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  2. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  3. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  4. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Viriginia" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  5. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  6. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  7. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  8. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  9. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  10. Energy Department Announces $25 Million to Develop Next Generation of Electric Machines for Industrial Energy Savings

    Broader source: Energy.gov [DOE]

    As part of the Obama Administration's Mission Innovation effort to double clean energy research and development (R&D) investments over the next five years, the Energy Department today announced up to $25 million in available funding aimed at advancing technologies for energy-efficient electric motors through applied R&D.

  11. District of Columbia Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    82-2005 Citygate Price -- -- -- -- -- -- 1989-2015 Residential Price 13.53 13.06 12.10 12.45 13.05 12.52 1980-2015 Percentage of Total Residential Deliveries included in Prices 75.5 75.0 73.9 75.0 73.8 73.2 1989-2015 Commercial Price 12.26 12.24 11.19 11.64 12.18 11.55 1980-2015 Percentage of Total Commercial Deliveries included in Prices 100.0 16.9 17.9 19.1 19.9 21.4 1990-2015 Industrial Price -- -- -- -- -- -- 2001-2015 Percentage of Total Industrial Deliveries included in Prices 0 0 0 0 0 0

  12. 2014,"AK","Total Electric Power Industry","All Sources",10,6,59.1,52.9

    U.S. Energy Information Administration (EIA) Indexed Site

    "Planned Year","State Code","Producer Type","Fuel Source","Generators","Facilities","Nameplate Capacity (Megawatts)","Summer Capacity (Megawatts)" 2014,"AK","Total Electric Power Industry","All Sources",10,6,59.1,52.9 2014,"AK","Total Electric Power Industry","Hydroelectric",2,1,4.8,4.8 2014,"AK","Total Electric Power

  13. Natural Gas Electric Power Price

    Gasoline and Diesel Fuel Update (EIA)

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History U.S. 5.27 4.89 3.54 4.49 5.19 3.37 1997-2015 Alabama 4.85 W 3.09 4.14 4.74 3.06 1997-2015 Alaska W 5.04 4.32 4.73 5.06 5.40 1997-2015 Arizona 4.84 W 3.51 4.60 5.30 3.43 1997-2015 Arkansas 5.11 W 3.19 4.32 W W 1997-2015 California 4.99 4.71 3.68 4.53 5.23 3.39 1997-2015 Colorado 5.16 4.98 W 4.91

  14. Natural Gas Electric Power Price

    U.S. Energy Information Administration (EIA) Indexed Site

    4.93 5.27 4.89 3.54 4.49 5.19 1997-2014 Alabama 4.30 4.85 W 3.09 4.14 4.74 1997-2014 Alaska W W 5.04 4.32 4.73 5.06 1997-2014 Arizona 4.16 4.84 W 3.51 4.60 5.30 1997-2014 Arkansas...

  15. Natural Gas Electric Power Price

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    24 3.23 3.22 3.19 3.03 2.76 2002-2015 Alabama 3.17 3.25 3.13 3.07 2.78 W 2002-2015 Alaska 5.14 5.19 5.21 5.48 5.45 5.48 2002-2015 Arizona 3.47 3.54 3.42 W W W 2002-2015 Arkansas W...

  16. Prospects for the medium- and long-term development of China`s electric power industry and analysis of the potential market for superconductivity technology

    SciTech Connect (OSTI)

    Li, Z.

    1998-05-01

    First of all, overall economic growth objectives in China are concisely and succinctly specified in this report. Secondly, this report presents a forecast of energy supply and demand for China`s economic growth for 2000--2050. In comparison with the capability of energy construction in China in the future, a gap between supply and demand is one of the important factors hindering the sustainable development of Chain`s economy. The electric power industry is one of China`s most important industries. To adopt energy efficiency through high technology and utilizing energy adequately is an important technological policy for the development of China`s electric power industry in the future. After briefly describing the achievements of China`s electric power industry, this report defines the target areas and policies for the development of hydroelectricity and nuclear electricity in the 2000s in China, presents the strategic position of China`s electric power industry as well as objectives and relevant plans of development for 2000--2050. This report finds that with the discovery of superconducting electricity, the discovery of new high-temperature superconducting (HTS) materials, and progress in materials techniques, the 21st century will be an era of superconductivity. Applications of superconductivity in the energy field, such as superconducting storage, superconducting transmission, superconducting transformers, superconducting motors, its application in Magneto-Hydro-Dynamics (MHD), as well as in nuclear fusion, has unique advantages. Its market prospects are quite promising. 12 figs.

  17. An overview of market power issues in today`s electricity industry

    SciTech Connect (OSTI)

    Guth, L.A.

    1998-07-01

    With the tendency for vertical disintegration of control and/or ownership of assets within the industry, however, properly defining the relevant product in horizontal competition at each stage of production, transmission, distribution, and marketing assumes increasing importance. There is every reason to expect that market power issues and antitrust concerns will arise in each of the five dimensions outlined above. In each case, the author believes the framework will continue to be properly measuring market shares and concentration for carefully defined product and geographic markets as a basis for making informed judgments about market power concerns. The modeling of industry demand, supply, and competitive interactions certainly helps to inform this process by testing the proper scopes of product and geographic markets and of the economic significance of productive assets in the market defined. Modeling should also help the screening process where the issue is possible market power in markets being restructured for retail competition.

  18. Identification, definition and evaluation of potential impacts facing the US electric utility industry over the next decade. Final report

    SciTech Connect (OSTI)

    Grainger, J.J.; Lee, S.S.H.

    1993-11-26

    There are numerous conditions of the generation system that may ultimately develop into system states affecting system reliability and security. Such generation system conditions should also be considered when evaluating the potential impacts on system operations. The following five issues have been identified to impact system reliability and security to the greatest extent: transmission access/retail wheeling; non-utility generators and independent power producers; integration of dispersed storage and generation into utility distribution systems; EMF and right-of-way limitations; Clean Air Act Amendments. Strictly speaking, some issues are interrelated and one issue cannot be completely dissociated from the others. However, this report addresses individual issues separately in order to determine all major aspects of bulk power system operations affected by each issue. The impacts of the five issues on power system reliability and security are summarized. This report examines the five critical issues that the US electric utility industry will be facing over the next decade. The investigation of their impacts on utility industry will be facing over the next decade. The investigation of their impacts on utility system reliability and security is limited to the system operation viewpoint. Those five issues will undoubtedly influence various planning aspects of the bulk transmission system. However, those subjects are beyond the scope of this report. While the issues will also influence the restructure and business of the utility industry politically, sociologically, environmentally, and economically, all discussion included in the report are focused only on technical ramifications.

  19. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Wholesale Markets: December 2015 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale prices at selected pricing locations and daily peak demand for selected electricity systems in the Nation. The range of daily prices and demand data is shown for the report month and for the year ending with the report month. Prices and demand are shown for six Regional Transmission Operator (RTO) markets: ISO New

  20. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",23419,23615,23642,23642,23285,23144,23182,23218,23252,23346,22943,23429,22532,22366,21461,21292,20840,20692,20463,19878,19972,19972,19902,19354,95,72.9,72.4

  1. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",11559,13131,11464,11488,11456,11459,11467,10669,10434,9769,9774,9551,9615,9330,9279,9619,9688,9639,9639,9168,9033,9000,8996,8944,96,71.9,78.2

  2. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric Utilities",2205,1946,1891,1889,1868,1847,1820,1736,1769,1722,1752,1740,1770,1775,1725,1702,1763,1739,1737,1740,1715,1679,1551,1547,84,91.4,92.5

  3. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    " "Arizona" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",20668,20277,20168,20115,20127,19717,19551,19566,18860,16854,15542,15516,15284,15140,15091,15084,15164,15147,15222,15067,14990,14970,14911,14906,98.9,76.2,74.1

  4. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",28165,30294,29011,28685,28021,26467,26334,26346,25248,23739,23171,24390,24347,24321,24324,30665,43711,43936,43303,42329,43140,42673,42780,42822,46.5,42.6,38.2

  5. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",10238,10475,10580,9114,8454,8142,8008,8034,7955,7954,7883,7596,7479,7271,7255,6938,6851,6795,6648,6675,6637,6629,6610,6533,86.6,66.2,69.3

  6. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",152,152,154,160,111,111,111,37,25,174,210,78,185,2204,2454,5617,6295,6321,6723,6579,6600,6600,6764,7079,34.2,1.9,1.7

  7. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",102,98,56,55,55,55,56,58,194,58,58,233,184,969,2285,2285,2277,2239,2239,2269,2269,2267,2162,1777,40.1,1.6,3.1

  8. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",0,0,0,0,0,0,0,0,0,0,0,0,0,0,806,806,806,806,806,806,806,806,806,806,0,0,0

  9. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",50967,51373,51298,50853,50781,47222,47224,45184,45196,42619,41996,40267,38238,37265,36537,36472,39460,36899,35857,34769,33663,33403,32204,32103,89.7,86,86.7

  10. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",28875,29293,27146,26639,26558,26462,26432,26542,26538,25404,24804,25821,24099,24861,23331,23392,23148,22791,22299,21698,21163,21160,20752,20731,89.6,72.7,75.6

  11. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",1821,1821,1821,1828,1859,1730,1730,1730,1705,1691,1624,1622,1622,1627,1609,1617,1597,1611,1603,1603,1603,1602,1522,1488,68.1,72.1,66.1

  12. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",3394,3394,3035,3035,3029,2686,2547,2558,2558,2394,2439,2674,2521,2585,2571,2576,2576,2553,2559,2500,2300,2308,2282,2282,85.7,76.1,68.9

  13. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",5269,5274,5280,4789,4819,4680,4630,4731,3976,4233,3007,4151,4420,17497,16817,30367,33550,33169,33143,32951,32770,33644,32644,32597,48.1,10.9,11.7

  14. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",23309,23031,22763,23008,23631,23598,22012,22021,22017,21261,21016,20392,20616,20554,20358,20337,20201,20681,20712,20632,20901,20901,20702,20588,85.9,83.2,85.7

  15. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",12092,12179,11863,11282,11479,11274,10669,9562,10090,9895,9039,8457,8402,8511,8438,8370,8217,8161,8237,8219,8069,8074,8093,7702,93.5,77.3,75.9

  16. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",11485,11593,11746,11732,11733,11246,10944,10829,10734,10705,10729,10244,10223,10089,10023,9918,9789,9697,9678,9525,9525,9518,9507,9475,99.5,93.5,80.6

  17. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",19599,19681,19601,18945,18763,16759,16819,16878,16234,15860,15349,15419,15229,14781,14708,13995,15660,15686,15425,15397,15297,15297,15333,15511,88,92.6,93.3

  18. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",17297,16661,15991,16471,15615,15755,14756,15176,15137,14249,12728,14233,14165,14317,16339,17014,17080,17150,17019,16433,16221,16221,15883,15839,67.8,61.6,65.9

  19. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",14,19,19,19,19,19,19,19,19,19,19,16,17,21,63,1457,1502,2388,2433,2253,2222,2222,2379,2369,0.5,0.4,0.3

  20. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",85,85,81,80,80,80,80,79,79,79,70,70,70,753,10955,10971,11105,10958,10958,10838,10709,10709,10723,9758,7.2,0.6,0.7

  1. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",969,991,956,936,930,829,827,837,983,981,981,945,993,997,2216,3386,11295,9366,9289,9219,9461,9452,9770,9909,8.1,6.8,7.1

  2. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",22148,22517,22401,21639,21759,21885,21894,22734,23029,23310,23345,23575,22833,22757,22378,21948,21916,21990,21986,22396,22395,22347,22258,22298,88.3,72.6,73.5

  3. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",11901,11685,11650,11547,11639,11432,10719,10458,10543,10175,10129,10073,9885,9069,8988,9090,9217,9181,8925,8936,8853,8830,8854,8806,88.4,78.5,75.5

  4. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",12842,12691,11442,10858,10081,10093,9377,9407,8904,8431,8656,8888,7964,7057,6817,7156,7159,7177,7170,7041,6972,6972,6839,6839,78.3,69.2,82.5

  5. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",20562,20767,20831,20360,19600,19621,19570,19675,18970,18602,18587,18409,18221,17182,16757,16284,16215,15980,15727,15490,15429,15405,15311,15179,99.4,93.7,94.3

  6. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",2568,2570,2483,2340,2232,2190,2179,2163,2186,2189,2274,2237,2235,2265,2257,4945,4943,4943,4943,4907,4871,4871,4829,4912,38.7,39.9,40.6

  7. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",7911,7810,7834,7647,7675,7011,6959,7056,7007,6722,6667,6154,6112,6043,5963,5944,5894,5765,5663,5651,5645,5637,5584,5586,99.7,97.3,93.6

  8. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",7915,7807,8939,8713,8741,8741,6998,6771,5611,5389,5323,5384,5388,5434,5434,5642,5642,5643,5556,5478,5235,5235,5125,4944,80.9,76.3,74.3

  9. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",1121,1121,1134,1132,1118,1125,1121,1116,1121,1121,1121,1105,1128,2290,2294,2292,2715,2705,2698,2692,2692,2692,2793,2821,80.2,27.1,25.4

  10. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",544,517,473,460,466,477,558,1005,1005,1190,1244,1244,1244,1005,12085,13390,13684,13645,13817,13500,13850,13850,13725,13648,6.2,2.5,2.9

  11. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",5912,6359,6321,6345,6344,6324,6324,6223,5692,5348,5398,5463,5250,5250,5299,5294,5183,5077,5078,4940,4967,4967,4950,4947,93.8,78,74.5

  12. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",10736,10739,11022,11032,11871,11784,12056,12046,11927,11386,11902,11675,11572,15807,17679,29587,29987,30061,32149,31567,32323,30163,31177,31020,44.4,28,26.9

  13. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",26706,27265,26158,25398,25376,25405,25345,24553,23822,23984,24036,23650,23478,22015,21182,21020,21054,20923,20597,19691,20041,20043,19990,20049,89.9,91.8,88.9

  14. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",5292,5217,4908,4912,4852,4691,4668,4634,4622,4673,4561,4659,4677,4679,4676,4657,4733,4208,4485,4487,4476,4476,4497,4476,99.2,79.4,80.6

  15. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",20779,21072,20120,20179,20356,20340,20012,20147,19312,27713,27547,27304,27081,26301,27083,26768,26630,27279,27365,26347,26388,26388,26939,25365,92.3,61,64

  16. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",16951,17148,16487,16015,16187,15913,14495,14648,13992,13460,13463,13387,12941,13438,12861,12622,12931,13092,12928,12546,12348,12348,12308,12284,94.6,76.2,72.8

  17. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",10973,10888,10892,10846,10683,10491,10502,9971,9839,9805,10298,10357,10354,10337,10293,10449,10537,10526,10445,10165,10132,10132,11235,11235,91.7,76.1,70.1

  18. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",455,455,455,455,455,455,455,455,455,4921,4921,4887,4887,13394,25251,33781,33825,34060,33699,32710,32509,32505,32423,32526,36.3,1,1.1

  19. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",21039,21280,22227,22082,22100,22062,21730,21019,20787,20406,19402,19103,18246,17717,17682,17627,17431,17165,16693,16152,16131,16118,16162,14909,94.8,92.1,91.4

  20. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",3480,3428,3130,2994,3042,2911,2826,2889,2759,2618,2650,2752,2712,2710,2763,2791,2795,2822,2818,2831,2543,2543,2519,2517,100,82.6,84.7

  1. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",20635,20635,20474,20761,20211,20249,19770,19768,19120,19044,19011,19137,18600,17893,17253,17546,18212,17253,16144,16334,16076,16076,16121,16848,92,96.9,96.8

  2. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",28705,28463,27389,26533,25140,25005,24569,24991,24033,23587,22629,38903,38940,65384,65293,65209,64858,64768,64425,63351,63214,63213,61420,61261,79.8,24.5,26.2

  3. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",6669,6637,6641,6648,6581,6499,6710,6212,6053,5754,5574,5575,5131,5113,5104,5079,4947,4927,4930,4818,4678,4670,4645,4563,97.9,88.7,86.6

  4. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",329,329,265,260,257,259,258,259,258,261,260,261,262,778,783,775,904,901,899,902,911,911,908,882,78.9,23,26.2

  5. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",20601,20626,19999,19430,19131,18824,18372,18162,18087,17547,17045,15817,15761,15608,15312,15316,15293,14764,14300,13764,14055,14020,13652,13661,79.5,80.6,83

  6. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",27070,27037,26375,26498,26322,26243,24511,24303,24046,23828,24166,24132,24191,23841,25190,25236,25274,24277,24278,24254,24243,24242,24243,24173,91.5,86.9,88.3

  7. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",10625,10590,11740,11719,11698,11698,11711,11975,10890,10164,10164,10172,10188,14475,14505,14495,14491,14492,14495,14510,14448,14448,14435,14435,95.9,71,65.3

  8. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",13358,13464,13408,13098,12998,12975,11767,12911,12877,12405,12523,12335,12246,12211,12086,11862,11866,11866,11536,11264,10909,10747,10504,10545,89.8,73.4,77

  9. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",7279,7278,7333,6931,6713,6450,6142,6137,6241,6086,6088,6083,6050,6048,6012,6018,6045,5966,5971,5864,5842,5842,5817,5800,97.1,86.8,86.9

  10. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric utilities",0,0,71199,0,0,0,0,0,0,0,0,0,0,97423,230003,243975,70661,109809,188862,274252,188452,73991,179814,361043,67.5,0,0 "Natural

  11. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric utilities",597,168,754,1759,867,1080,1317,489,827,1121,1409,865,0,2781,1189273,3549008,3222785,7800149,2668381,9015544,8075919,8334852,9518506,9063595,0,0,0

  12. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric utilities",10659,10552,10473,10827,10612,10612,11075,11008,10805,12402,11771,11836,0,10823,9436,2061351,3562833,3301111,653076,68641,53740,109308,171457,591756,0.2,0.1,0.2

  13. BGE's Smart Energy Pricing Pilot Summer 2008 Impact Evaluation | Department

    Energy Savers [EERE]

    of Energy BGE's Smart Energy Pricing Pilot Summer 2008 Impact Evaluation BGE's Smart Energy Pricing Pilot Summer 2008 Impact Evaluation The Brattle Group was retained by Baltimore Gas & Electric Company (BGE) in December 2006 to assist in the design of a dynamic pricing pilot program to develop assessments of the likely impact of a variety of dynamic pricing programs on BGE residential customer load shapes. The residential pilot program, Smart Energy Pricing (SEP) Pilot, was subsequently

  14. How regulators should use natural gas price forecasts

    SciTech Connect (OSTI)

    Costello, Ken

    2010-08-15

    Natural gas prices are critical to a range of regulatory decisions covering both electric and gas utilities. Natural gas prices are often a crucial variable in electric generation capacity planning and in the benefit-cost relationship for energy-efficiency programs. High natural gas prices can make coal generation the most economical new source, while low prices can make natural gas generation the most economical. (author)

  15. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "megawatts" "item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",8,8,7,7,7,7,8,8,6,7,9,9,7,6,7,7,441,441,442,148,148,148,162,263,0.5,0.4,0.4 "Hydroelectric",0,0,0,0,0,0,1,1,1,0,1,1,1,2,2,2,2,2,2,2,2,1,1,1,0.2,0,0 "Natural

  16. District of Columbia Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    -- -- -- -- -- -- 1989-2015 Residential Price 17.68 18.15 18.17 16.21 12.60 10.70 1989-2015 Percentage of Total Residential Deliveries included in Prices 68.0 68.8 69.6 70.6 70.1 72.4 2002-2015 Commercial Price 11.15 11.17 11.50 11.68 11.28 10.01 1989-2015 Percentage of Total Commercial Deliveries included in Prices 15.8 16.0 15.0 15.9 17.4 21.9 1989-2015 Industrial Price -- -- -- -- -- -- 2001-2015 Percentage of Total Industrial Deliveries included in Prices 0 0 0 0 0 0

  17. The roles of antitrust law and regulatory oversight in the restructured electricity industry

    SciTech Connect (OSTI)

    Glazer, C.A.; Little, M.B.

    1999-05-01

    The introduction of retail wheeling is changing the roles of regulators and the courts. When states unbundle the vertically integrated investor-owned utility (IOU) into generation companies, transmission companies, and distribution companies, antitrust enforcement and policy setting by the state public utility/service commissions (PUCs) will be paramount. As was seen in the deregulation of the airline industry, vigorous enforcement of antitrust laws by the courts and proper policy setting by the regulators are the keys to a successful competitive market. Many of the problems raised in the airline deregulation movement came about due to laxity in correcting clear antitrust violations and anti-competitive conditions before they caused damage to the market. As retail wheeling rolls out, it is critical for state PUCs to become attuned to these issues and, most of all, to have staff trained in these disciplines. The advent of retail wheeling changes the application of the State Action Doctrine and, in turn, may dramatically alter the role of the state PUC--meaning antitrust law and regulatory oversight must step in to protect competitors and consumers from monopolistic abuse.

  18. Methods to estimate stranded commitments for a restructuring US electricity industry

    SciTech Connect (OSTI)

    Hirst, E.; Hadley, S.; Baxter, L.

    1996-01-01

    Estimates of stranded commitments for US investor-owned electric utilities range widely, from as little as $20 billion to as much as $500 billion (more than double the shareholder equity in US utilities). These potential losses are a consequence of the above-market book values for some utility-owned power plants, long-term power-purchase contracts, deferred income taxes, regulatory assets, and public-policy programs. Because of the wide range of estimates and the potentially large dollar amounts involved, state and federal regulators need a clear understanding of the methods used to calculate these estimates. In addition, they may want simple methods that they can use to check the reasonableness of the estimates that utilities and other parties present in regulatory proceedings. This report explains various top-down and bottom-up methods to calculate stranded commitments. The purpose of this analysis is to help regulators and others understand the implications of different analytical approaches to estimating stranded-commitment amounts. Top-down methods, because they use the utility as the unit of analysis, are simple to apply and to understand. However, their aggregate nature makes it difficult to determine what specific assets and liabilities affect their estimates. Bottom-up methods use the individual asset (e.g., power plant) or liability (e.g., power-purchase contract, fuel-supply contract, and deferred income taxes) as the unit of analysis. These methods have substantial data and computational requirements.

  19. A utility survey and market assessment on repowering in the electric power industry

    SciTech Connect (OSTI)

    Klara, J.M.; Weinstein, R.E.; Wherley, M.R.

    1996-08-01

    Section 1 of this report provides a background about the DOE High Performance Power Systems (HIPPS) program. There are two kinds of HIPPS cycles under development. One team is led by the Foster Wheeler Development Corporation, the other team is led by the United Technologies Research Center. These cycles are described. Section 2 summarizes the feedback from the survey of the repowering needs of ten electric utility companies. The survey verified that the utility company planners favor a repowering for a first-of-a-kind demonstration of a new technology rather than an all-new-site application. These planners list the major factor in considering a unit as a repowering candidate as plant age: they identify plants built between 1955 and 1965 as the most likely candidates. Other important factors include the following: the need to reduce operating costs; the need to perform major maintenance/replacement of the boiler; and the need to reduce emissions. Section 3 reports the results of the market assessment. Using the size and age preferences identified in the survey, a market assessment was conducted (with the aid of a power plant data base) to estimate the number and characteristics of US generating units which constitute the current, primary potential market for coal-based repowering. Nearly 250 units in the US meet the criteria determined to be the potential repowering market.

  20. New Jersey Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    4.67 4.84 5.00 4.37 4.30 4.27 1989-2015 Residential Price 12.03 12.98 12.38 10.30 9.08 7.85 1989-2015 Percentage of Total Residential Deliveries included in Prices 93.8 93.6 93.8 94.0 94.0 94.3 2002-2015 Commercial Price 8.66 8.78 8.03 8.10 8.66 8.24 1989-2015 Percentage of Total Commercial Deliveries included in Prices 23.0 17.1 NA NA 37.2 42.0 1989-2015 Industrial Price 8.62 8.41 8.63 7.57 7.11 7.92 2001-2015 Percentage of Total Industrial Deliveries included in Prices 3.1 4.1 2.6 3.8 4.5 7.6