Powered by Deep Web Technologies
Note: This page contains sample records for the topic "industrial output growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

AEO2014: Preliminary Industrial Output  

Gasoline and Diesel Fuel Update (EIA)

Elizabeth Sendich, Analyst, and Kay Smith, Team Leader Macroeconomic Analysis Team September 26, 2013 Preliminary AEO2014 Macroeconomic Industrial Results DO NOT CITE OR...

2

Inflation uncertainty, growth uncertainty, oil prices, and output growth in the UK  

Science Journals Connector (OSTI)

This study examines the transmission and response of inflation uncertainty and output uncertainty on inflation and output growth in the UK using a bi-variate EGARCH model. Results suggest that inflation uncertain...

Ramprasad Bhar; Girijasankar Mallik

2013-12-01T23:59:59.000Z

3

Economic impacts and challenges of China’s petroleum industry: An input–output analysis  

Science Journals Connector (OSTI)

It is generally acknowledged that the petroleum industry plays an important role in China’s national economic and social development. The direct, indirect, and induced impacts of China’s petroleum industry are analyzed in this study by using the Input–Output approach. The study also considers the main challenges that China’s economy might face in the future. The research results suggest the following: (1) The total economic impacts coefficients on output, given each unit of final demands change in extraction of petroleum and processing of petroleum, are 1.9180 and 3.2747 respectively, and the corresponding economic impacts coefficients on GDP are 1.0872 and 0.9001 respectively; (2) Extraction of petroleum has a more direct impact on GDP, while processing of petroleum has a greater effect on the total output; (3) Extraction of petroleum’s total economic impacts coefficients on both output and GDP have remained stable in recent years after a period of long decline; processing of petroleum’s total economic impacts coefficient on output is steadily increasing; (4) Import uncertainty, the likelihood of rising oil prices, and net oil exports caused by items manufactured with petroleum products (i.e. “Made in China” goods) are the main challenges the petroleum industry will cause for China’s overall economy.

Tang Xu; Zhang Baosheng; Feng Lianyong; Marwan Masri; Afshin Honarvar

2011-01-01T23:59:59.000Z

4

EIA Energy Efficiency-Table 3e. Gross Output by Selected Industries, 1998,  

Gasoline and Diesel Fuel Update (EIA)

e e Page Last Modified: May 2010 Table 3e. Gross Output1 by Selected Industries, 1998, 2002, and 2006 (Current Billion Dollars) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food Manufacturing 417 444 526 312 Beverage and Tobacco Product Manufacturing 114 128 144 313 Textile Mills 57 45 38 314 Textile Product Mills 31 30 32 315 Apparel Manufacturing 63 40 26 316 Leather and Allied Product Manufacturing 10 6 6 321 Wood Product Manufacturing 91 88 111 322 Paper Manufacturing 153 151 167 323 Printing and Related Support Activities 99 95 99 324 Petroleum and Coal Products Manufacturing 135 212 530 325 Chemical Manufacturing 407 444 639 326 Plastics and Rubber Products Manufacturing 162 169 208 327 Nonmetallic Mineral Product Manufacturing 91 94 126 331 Primary Metal Manufacturing 166 139 230 332 Fabricated Metal Product Manufacturing

5

Apparatus for silicon web growth of higher output and improved growth stability  

DOE Patents (OSTI)

This disclosure describes an apparatus to improve the web growth attainable from prior web growth configurations. This apparatus modifies the heat loss at the growth interface in a manner that minimizes thickness variations across the web, especially regions of the web adjacent to the two bounding dendrites. In the unmodified configuration, thinned regions of web, adjacent to the dendrites, were found to be the origin of crystal degradation which ultimately led to termination of the web growth. According to the present invention, thinning adjacent to the dendrites is reduced and the incidence of crystal degradation is similarly reduced.

Duncan, Charles S. (Penn Hills, PA); Piotrowski, Paul A. (Monroeville, PA)

1989-01-01T23:59:59.000Z

6

Total Pollution Effect and Total Energy Cost per Output of Different Products for Polish Industrial System  

Science Journals Connector (OSTI)

For many years a broad use has been made of the indices of total energy requirements in the whole large production system corresponding to unit output of particular goods (Boustead I., Hancock G.F., 1979). The...

Henryk W. Balandynowicz

1988-01-01T23:59:59.000Z

7

Geothermal Energy Growth Continues, Industry Survey Reports  

Energy.gov (U.S. Department of Energy (DOE))

A survey released by the Geothermal Energy Association (GEA) shows continued growth in the number of new geothermal power projects under development in the United States, a 20% increase since January of this year.

8

Robust Output Feedback Stabilization of Nonlinear Interconnected Systems with Application to an Industrial Utility Boiler  

E-Print Network (OSTI)

to an Industrial Utility Boiler Adarsha Swarnakar, Horacio Jose Marquez and Tongwen Chen Abstract-- This paper boiler (Utility boiler), where the nonlinear model describes the complicated dynamics of the drum

Marquez, Horacio J.

9

DOE Hydrogen Analysis Repository: All Modular Industry Growth Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

All Modular Industry Growth Assessment (AMIGA) Model All Modular Industry Growth Assessment (AMIGA) Model Project Summary Full Title: All Modular Industry Growth Assessment (AMIGA) Model Project ID: 139 Principal Investigator: Donald Hanson Purpose A comprehensive economic model of energy markets, primarily used to simulate a wide range of technology and policy issues. Performer Principal Investigator: Donald Hanson Organization: Argonne National Laboratory (ANL) Address: 9700 S. Cass Ave. Argonne, IL 60439 Telephone: 630-252-5061 Email: dhanson@anl.gov Additional Performers: Peter Balash, NETL; John Marano, NETL Sponsor(s) Name: Peter Balash Organization: National Energy Technology Laboratory (NETL) Telephone: 412-386-5753 Email: Peter.Balash@NETL.DOE.GOV Period of Performance Start: January 2001 Project Description

10

Quantifying the Total Environmental Impacts of an Industrial Symbiosis - a Comparison of Process-, Hybrid and Input?Output Life Cycle Assessment  

Science Journals Connector (OSTI)

In this study, we compared process, hybrid and input?output life cycle assessment (LCA) approaches in quantifying the overall environmental impacts of a forest industrial symbiosis, situated in Kymenlaakso, Finland. ... Starch is a product of the grain milling industry, which has embodied pesticide emissions from agriculture. ...

Tuomas J. Mattila; Suvi Pakarinen; Laura Sokka

2010-04-21T23:59:59.000Z

11

EUROPEAN TECHNOLOGY PLATFORM ON INDUSTRIAL SAFETY (ETPIS), A VISION TO GAIN SAFETY FOR A SUSTAINABLE INDUSTRY GROWTH  

E-Print Network (OSTI)

Safety (ETPIS). It is a result of a collective work made by research- ers from organisationsEUROPEAN TECHNOLOGY PLATFORM ON INDUSTRIAL SAFETY (ETPIS), A VISION TO GAIN SAFETY that consider industrial safety as a strategic issue for the sustainable growth of the European Industry

Paris-Sud XI, Université de

12

Projected growth effects of the biotechnology industry in Finland: the fourth pillar of the economy?  

Science Journals Connector (OSTI)

This study assesses the impact of the Finnish biotechnology industry on economic growth in Finland. The study employs official data from Statistics Finland and new survey data covering 84 Finnish biotechnology companies. An econometric forecast for the economy-wide growth impact of the biotechnology industry in Finland is presented. In the estimation procedure, this study employs the survey data both in forming growth anticipations within a new emerging industry and assessing inter-industrial growth effects. Applied Monte Carlo simulations predict that the contribution of the biotechnology industry to annual GDP growth in 2002â??2006 will be in the range of 0.05â??0.09 percentage points per annum with a probability of 90%. These results imply that it will take decades rather than years for the biotechnology industry to become a fourth pillar of the Finnish economy beside the forest industry, the metal products and machinery industry, and the electronics industry.

Raine Hermans; Martti Kulvik

2005-01-01T23:59:59.000Z

13

MAP: Watch 30 Years of U.S. Solar Industry Growth  

Office of Energy Efficiency and Renewable Energy (EERE)

Over the last 30 years, the U.S. has seen expansive growth in our Solar Industry. Check out our map to watch this happen.

14

22nd NREL Industry Growth Forum Opening Remarks - Day 2 (Presentation)  

SciTech Connect

A presentation at the 22nd Industry Growth Forum by Tod Perry that provides information and statistics about the presenting companies.

Perry, T.

2009-11-04T23:59:59.000Z

15

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Landfill Gas: Consumption for Useful Thermal Output, B. Landfill Gas: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 993 0 116 0 876 2004 2,174 0 735 10 1,429 2005 1,923 0 965 435 522 2006 2,051 0 525 1,094 433 2007 1,988 0 386 1,102 501 2008 1,025 0 454 433 138 2009 793 0 545 176 72 2010 1,623 0 1,195 370 58 2011 3,195 0 2,753 351 91 2012 3,189 0 2,788 340 61 2010 January 118 0 83 30 5 February 110 0 79 27 5 March 132 0 94 32 6 April 131 0 93 33 6 May 132 0 92 34 6 June 139 0 104 30 5 July 140 0 102 33 5 August 132 0 95 32 5 September 148 0 113 30 5

16

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Petroleum Coke: Consumption for Useful Thermal Output, B. Petroleum Coke: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 517 0 111 6 399 2003 763 0 80 9 675 2004 1,043 0 237 8 798 2005 783 0 206 8 568 2006 1,259 0 195 9 1,055 2007 1,262 0 162 11 1,090 2008 897 0 119 9 769 2009 1,007 0 126 8 873 2010 1,059 0 98 11 950 2011 1,080 0 112 6 962 2012 1,346 0 113 11 1,222 2010 January 92 0 10 1 81 February 93 0 10 1 82 March 84 0 12 1 71 April 76 0 9 1 66 May 84 0 10 0 75 June 93 0 8 0 86 July 89 0 8 0 80 August 87 0 2 1 84 September 82 0 2 1 79

17

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, F. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 193,120 57,296 105,416 227 30,182 2003 197,827 69,695 92,384 309 35,440 2004 245,389 116,086 90,747 259 38,297 2005 256,441 115,727 111,098 260 29,356 2006 246,687 102,117 98,314 269 45,987 2007 208,198 77,941 81,845 348 48,064 2008 180,034 64,843 79,856 280 35,055 2009 166,449 77,919 52,428 245 35,856 2010 173,078 94,331 41,090 340 37,317 2011 176,349 99,257 40,167 173 36,752 2012 144,266 60,862 24,925 353 58,126 2010 January 14,949 7,995 3,716 38 3,199

18

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Coal: Consumption for Electricity Generation and Useful Thermal Output, C. Coal: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 1,005,144 767,803 209,703 1,405 26,232 2003 1,031,778 757,384 247,732 1,816 24,846 2004 1,044,798 772,224 244,044 1,917 26,613 2005 1,065,281 761,349 276,135 1,922 25,875 2006 1,053,783 753,390 273,246 1,886 25,262 2007 1,069,606 764,765 280,377 1,927 22,537 2008 1,064,503 760,326 280,254 2,021 21,902 2009 955,190 695,615 238,012 1,798 19,766 2010 1,001,411 721,431 253,621 1,720 24,638 2011 956,470 689,316 243,168 1,668 22,319 2012 845,066 615,467 208,085 1,450 20,065

19

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Landfill Gas: Consumption for Useful Thermal Output, E. Landfill Gas: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 500 0 61 0 439 2004 1,158 0 415 5 738 2005 994 0 519 212 263 2006 1,034 0 267 549 218 2007 985 0 226 532 228 2008 552 0 271 211 70 2009 440 0 313 91 37 2010 847 0 643 174 30 2011 1,635 0 1,422 165 48 2012 1,630 0 1,441 156 32 2010 January 61 0 44 14 3 February 58 0 42 13 3 March 67 0 49 15 3 April 67 0 49 15 3 May 68 0 49 16 3 June 73 0 56 14 3 July 73 0 55 16 2 August 69 0 52 15 3 September 79 0 62 14 3 October 75 0 59 14 2

20

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Coal: Consumption for Useful Thermal Output, B. Coal: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 17,561 0 2,255 929 14,377 2003 17,720 0 2,080 1,234 14,406 2004 24,275 0 3,809 1,540 18,926 2005 23,833 0 3,918 1,544 18,371 2006 23,227 0 3,834 1,539 17,854 2007 22,810 0 3,795 1,566 17,449 2008 22,168 0 3,689 1,652 16,827 2009 20,507 0 3,935 1,481 15,091 2010 21,727 0 3,808 1,406 16,513 2011 21,532 0 3,628 1,321 16,584 2012 19,333 0 2,790 1,143 15,400 2010 January 1,972 0 371 160 1,440 February 1,820 0 347 139 1,334 March 1,839 0 338 123 1,378 April 2,142 0 284 95 1,764

Note: This page contains sample records for the topic "industrial output growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Petroleum Liquids: Consumption for Useful Thermal Output, E. Petroleum Liquids: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 76,737 0 1,669 3,276 71,788 2003 85,488 0 6,963 3,176 75,349 2004 124,809 0 8,592 7,219 108,997 2005 125,689 0 8,134 6,145 111,410 2006 87,137 0 6,740 3,481 76,916 2007 82,768 0 7,602 2,754 72,412 2008 45,481 0 7,644 2,786 35,051 2009 48,912 0 7,557 1,802 39,552 2010 29,243 0 6,402 1,297 21,545 2011 22,799 0 5,927 1,039 15,833 2012 18,233 0 5,871 746 11,616 2010 January 3,648 0 614 190 2,843 February 3,027 0 422 157 2,447 March 2,015 0 272 43 1,699

22

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, C. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Barrels) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 146,643 88,595 39,320 1,210 17,517 2003 189,260 105,319 62,617 1,394 19,929 2004 185,761 103,793 57,843 1,963 22,162 2005 185,631 98,223 63,546 1,584 22,278 2006 87,898 53,529 18,332 886 15,150 2007 95,895 56,910 24,097 691 14,198 2008 61,379 38,995 14,463 621 7,300 2009 51,690 31,847 11,181 477 8,185 2010 44,968 30,806 9,364 376 4,422 2011 31,152 20,844 6,637 301 3,370 2012 25,702 17,521 5,102 394 2,685 2010 January 6,193 4,381 1,188 48 576

23

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Wood / Wood Waste Biomass: Consumption for Useful Thermal Output, E. Wood / Wood Waste Biomass: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 682,060 0 9,585 727 671,747 2003 746,375 0 10,893 762 734,720 2004 1,016,124 0 14,968 1,493 999,663 2005 997,331 0 19,193 1,028 977,111 2006 1,049,161 0 18,814 1,045 1,029,303 2007 982,486 0 21,435 1,756 959,296 2008 923,889 0 18,075 1,123 904,690 2009 816,285 0 19,587 1,135 795,563 2010 876,041 0 18,357 1,064 856,620 2011 893,314 0 16,577 1,022 875,716 2012 883,158 0 19,251 949 862,958 2010 January 73,418 0 1,677 91 71,651 February 67,994 0 1,689 81 66,224

24

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, F. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 66,270 3,930 59,149 1,753 1,438 2004 70,489 5,373 60,929 2,098 2,089 2005 68,897 5,650 59,144 2,571 1,532 2006 77,004 8,287 64,217 3,937 563 2007 80,697 8,620 68,657 2,875 544 2008 94,768 10,242 81,300 2,879 346 2009 100,261 9,748 87,086 3,089 337 2010 106,681 10,029 93,405 3,011 236 2011 114,173 11,146 91,279 11,497 251 2012 125,927 12,721 101,379 10,512 1,315 2010 January 8,502 853 7,379 251 19 February 7,882 830 6,823 209 20

25

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Other Waste Biomass: Consumption for Useful Thermal Output, E. Other Waste Biomass: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 29,854 0 10,655 757 18,442 2004 30,228 0 12,055 2,627 15,547 2005 38,010 0 10,275 2,086 25,649 2006 36,966 0 8,561 2,318 26,087 2007 41,757 0 10,294 2,643 28,820 2008 41,851 0 9,674 1,542 30,635 2009 41,810 0 10,355 1,638 29,817 2010 47,153 0 8,436 1,648 37,070 2011 43,483 0 6,460 1,566 35,458 2012 46,863 0 6,914 1,796 38,153 2010 January 4,885 0 1,088 137 3,661 February 4,105 0 943 137 3,025 March 4,398 0 845 136 3,417 April 4,224 0 399 138 3,688

26

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Petroleum Coke: Consumption for Useful Thermal Output, E. Petroleum Coke: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 14,395 0 3,192 179 11,024 2003 21,170 0 2,282 244 18,644 2004 29,342 0 6,768 226 22,347 2005 22,224 0 5,935 228 16,061 2006 38,169 0 5,672 236 32,262 2007 38,033 0 4,710 303 33,019 2008 27,100 0 3,441 243 23,416 2009 29,974 0 3,652 213 26,109 2010 31,303 0 2,855 296 28,152 2011 31,943 0 3,244 153 28,546 2012 38,777 0 3,281 315 35,181 2010 January 2,683 0 285 33 2,365 February 2,770 0 302 29 2,439 March 2,424 0 338 36 2,050 April 2,257 0 255 22 1,980

27

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Other Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, F. Other Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 64,629 2,456 26,514 5,323 30,337 2004 49,443 2,014 21,294 6,935 19,201 2005 55,862 2,485 17,640 6,763 28,974 2006 54,693 2,611 16,348 6,755 28,980 2007 60,840 2,992 19,155 6,692 32,001 2008 66,139 3,409 22,419 5,227 35,085 2009 66,658 3,679 23,586 5,398 33,994 2010 77,150 3,668 22,884 5,438 45,159 2011 74,255 4,488 22,574 5,382 41,810 2012 77,205 4,191 22,654 5,812 44,548 2010 January 7,109 189 2,166 458 4,295 February 6,441 275 2,151 429 3,586

28

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Natural Gas: Consumption for Electricity Generation and Useful Thermal Output, F. Natural Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 7,135,572 2,307,358 3,481,961 75,985 1,270,268 2003 6,498,549 1,809,003 3,450,177 60,662 1,178,707 2004 6,912,661 1,857,247 3,749,945 73,744 1,231,725 2005 7,220,520 2,198,098 3,837,717 69,682 1,115,023 2006 7,612,500 2,546,169 3,847,644 69,401 1,149,286 2007 8,181,986 2,808,500 4,219,827 71,560 1,082,099 2008 7,900,986 2,803,283 4,046,069 67,571 984,062 2009 8,138,385 2,981,285 4,062,633 77,077 1,017,390 2010 8,694,186 3,359,035 4,191,241 87,357 1,056,553

29

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, B. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 1,358 0 311 865 182 2004 2,743 0 651 1,628 464 2005 2,719 0 623 1,536 560 2006 2,840 0 725 1,595 520 2007 2,219 0 768 1,136 315 2008 2,328 0 806 1,514 8 2009 2,426 0 823 1,466 137 2010 2,287 0 819 1,316 152 2011 2,044 0 742 1,148 154 2012 1,986 0 522 1,273 190 2010 January 191 0 69 107 14 February 178 0 61 106 11 March 204 0 66 126 12 April 207 0 67 127 13 May 249 0 67 167 15 June 204 0 69 120 14 July 194 0 68 115 11

30

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, C. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 137,414 9,168 122,100 3,280 2,865 2004 146,018 11,250 126,584 4,091 4,093 2005 143,822 11,490 124,030 5,232 3,070 2006 162,084 16,617 136,632 7,738 1,096 2007 168,762 17,442 144,490 5,699 1,131 2008 196,802 20,465 170,001 5,668 668 2009 207,585 19,583 181,234 6,106 661 2010 219,954 19,975 193,623 5,905 451 2011 235,990 22,086 183,609 29,820 474 2012 259,564 25,193 204,753 27,012 2,606 2010 January 17,649 1,715 15,406 491 37 February 16,300 1,653 14,198 410 38

31

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, C. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 7,353 2,125 3,691 8 1,529 2003 7,067 2,554 3,245 11 1,257 2004 8,721 4,150 3,223 9 1,339 2005 9,113 4,130 3,953 9 1,020 2006 8,622 3,619 3,482 10 1,511 2007 7,299 2,808 2,877 12 1,602 2008 6,314 2,296 2,823 10 1,184 2009 5,828 2,761 1,850 9 1,209 2010 6,053 3,325 1,452 12 1,264 2011 6,092 3,449 1,388 6 1,248 2012 5,021 2,105 869 13 2,034 2010 January 525 283 130 1 110 February 497 258 131 1 106 March 522 308 119 1 94

32

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, E. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 13,694 0 3,118 8,858 1,718 2004 19,991 0 4,746 12,295 2,950 2005 20,296 0 4,551 11,991 3,754 2006 21,729 0 5,347 12,654 3,728 2007 16,174 0 5,683 8,350 2,141 2008 18,272 0 6,039 12,174 59 2009 18,785 0 6,229 11,535 1,021 2010 17,502 0 6,031 10,333 1,138 2011 16,766 0 5,807 9,731 1,227 2012 16,310 0 4,180 10,615 1,515 2010 January 1,476 0 518 851 107 February 1,365 0 444 835 86 March 1,572 0 486 992 93 April 1,598 0 495 1,003 100

33

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Petroleum Liquids: Consumption for Useful Thermal Output, B. Petroleum Liquids: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Barrels) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 12,228 0 286 384 11,558 2003 14,124 0 1,197 512 12,414 2004 20,654 0 1,501 1,203 17,951 2005 20,494 0 1,392 1,004 18,097 2006 14,077 0 1,153 559 12,365 2007 13,462 0 1,303 441 11,718 2008 7,533 0 1,311 461 5,762 2009 8,128 0 1,301 293 6,534 2010 4,866 0 1,086 212 3,567 2011 3,826 0 1,004 168 2,654 2012 3,097 0 992 122 1,984 2010 January 606 0 105 31 470 February 504 0 78 26 401 March 335 0 46 7 281 April 355 0 86 9 260 May 340 0 93 14 232

34

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Natural Gas: Consumption for Useful Thermal Output, E. Natural Gas: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 885,987 0 267,675 45,359 572,953 2003 762,779 0 250,120 21,238 491,421 2004 1,085,191 0 398,476 40,122 646,593 2005 1,008,404 0 392,842 35,037 580,525 2006 968,574 0 339,047 33,928 595,599 2007 894,272 0 347,181 36,689 510,402 2008 813,794 0 333,197 33,434 447,163 2009 836,863 0 312,553 42,032 482,279 2010 841,521 0 308,246 47,001 486,274 2011 861,006 0 315,411 40,976 504,619 2012 909,087 0 330,354 48,944 529,788 2010 January 74,586 0 27,368 4,148 43,070 February 65,539 0 24,180 3,786 37,573

35

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, F. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 912,218 553,390 243,561 7,229 108,031 2003 1,174,795 658,868 387,341 8,534 120,051 2004 1,156,763 651,712 358,685 11,763 134,603 2005 1,160,733 618,811 395,489 9,614 136,820 2006 546,529 335,130 112,052 5,444 93,903 2007 595,191 355,999 147,579 4,259 87,354 2008 377,848 242,379 87,460 3,743 44,266 2009 315,420 196,346 66,834 2,903 49,336 2010 273,357 188,987 55,444 2,267 26,660 2011 186,753 125,755 39,093 1,840 20,066 2012 153,189 105,179 29,952 2,364 15,695

36

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Natural Gas: Consumption for Useful Thermal Output, B. Natural Gas: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 860,024 0 263,619 41,435 554,970 2003 721,267 0 225,967 19,973 475,327 2004 1,052,100 0 388,424 39,233 624,443 2005 984,340 0 384,365 34,172 565,803 2006 942,817 0 330,878 33,112 578,828 2007 872,579 0 339,796 35,987 496,796 2008 793,537 0 326,048 32,813 434,676 2009 816,787 0 305,542 41,275 469,970 2010 821,775 0 301,769 46,324 473,683 2011 839,681 0 308,669 39,856 491,155 2012 886,103 0 322,607 47,883 515,613 2010 January 72,867 0 26,791 4,086 41,990

37

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Coal: Consumption for Useful Thermal Output, E. Coal: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 421,084 0 50,041 23,099 347,944 2003 416,700 0 47,817 28,479 340,405 2004 564,497 0 87,981 34,538 441,978 2005 548,666 0 88,364 34,616 425,685 2006 532,561 0 84,335 34,086 414,140 2007 521,717 0 83,838 34,690 403,189 2008 503,096 0 81,416 36,163 385,517 2009 462,674 0 90,867 32,651 339,156 2010 490,931 0 90,184 30,725 370,022 2011 479,822 0 84,855 28,056 366,911 2012 420,923 0 58,275 23,673 338,975 2010 January 44,514 0 8,627 3,445 32,442 February 40,887 0 8,041 3,024 29,823

38

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Wood / Wood Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, F. Wood / Wood Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 1,287,114 10,659 139,532 1,196 1,135,727 2003 1,265,669 16,545 150,745 1,199 1,097,180 2004 1,360,258 19,973 145,216 1,661 1,193,408 2005 1,352,582 27,373 157,600 1,235 1,166,373 2006 1,399,235 27,455 154,360 1,314 1,216,106 2007 1,335,511 31,568 154,388 2,040 1,147,516 2008 1,262,675 29,150 148,198 1,410 1,083,917 2009 1,136,729 29,565 150,481 1,408 955,276 2010 1,225,571 40,167 155,429 1,338 1,028,637 2011 1,240,937 35,474 146,684 1,504 1,057,275

39

Sustainability Policy and Green Growth of the South Korean Construction Industry  

E-Print Network (OSTI)

South Korea is among a host of countries trying to achieve sustainable development across whole industry sectors by adopting "Green Growth" as the vision of the national development in the Korean government. The government has executed a vast effort...

Jeong, Hwayeon

2011-10-21T23:59:59.000Z

40

Industrial structure and employment growth in the 1990s in Appalachian counties  

E-Print Network (OSTI)

Employment growth in the 1990s and its relationship with the initial industrial structure in 1990 are examined in the case of Appalachian counties, after controlling for labor-market conditions and other factors, such as ...

Tan, Zhijun (Zhijun Jeanne)

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial output growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Strategies for Low Carbon Growth In India: Industry and Non Residential  

NLE Websites -- All DOE Office Websites (Extended Search)

Strategies for Low Carbon Growth In India: Industry and Non Residential Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors Title Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors Publication Type Report Refereed Designation Unknown LBNL Report Number LBNL-4557E Year of Publication 2011 Authors Sathaye, Jayant A., Stephane Rue de la du Can, Maithili Iyer, Michael A. McNeil, Klaas Jan Kramer, Joyashree Roy, Moumita Roy, and Shreya Roy Chowdhury Date Published 5/2011 Publisher LBNL Keywords Buildings Energy Efficiency, CO2 Accounting Methodology, CO2 mitigation, Demand Side Management, energy efficiency, greenhouse gas (ghg), india, industrial energy efficiency, industrial sector, Low Carbon Growth, Low Growth, Non Residential Abstract This report analyzed the potential for increasing energy efficiency and reducing greenhouse gas emissions (GHGs) in the non-residential building and the industrial sectors in India. The first two sections describe the research and analyses supporting the establishment of baseline energy consumption using a bottom up approach for the non residential sector and for the industry sector respectively. The third section covers the explanation of a modeling framework where GHG emissions are projected according to a baseline scenario and alternative scenarios that account for the implementation of cleaner technology.

42

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and F. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 161,803 5,766 132,065 21,953 2,020 2004 161,567 3,705 129,562 25,204 3,096 2005 164,635 4,724 131,080 24,914 3,918 2006 168,716 4,078 135,127 25,618 3,893 2007 162,482 4,557 133,509 21,393 3,022 2008 166,723 4,476 136,080 26,108 59 2009 165,755 3,989 132,877 27,868 1,021 2010 162,436 3,322 130,467 27,509 1,138 2011 152,007 3,433 121,648 25,664 1,262 2012 152,045 3,910 117,598 28,923 1,614 2010 January 13,015 244 10,405 2,260 107

43

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and C. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 22,554 695 18,611 2,952 296 2004 22,330 444 17,959 3,439 488 2005 22,089 560 17,655 3,289 584 2006 22,469 500 18,068 3,356 545 2007 21,796 553 17,885 2,921 437 2008 22,134 509 18,294 3,323 8 2009 22,095 465 17,872 3,622 137 2010 21,725 402 17,621 3,549 152 2011 19,016 388 15,367 3,103 158 2012 18,954 418 14,757 3,577 203 2010 January 1,737 30 1,402 291 14 February 1,562 25 1,276 250 11 March 1,854 36 1,500 306 12

44

NREL's 23rd annual Industry Growth Forum oct. 19-21 | OpenEI Community  

Open Energy Info (EERE)

NREL's 23rd annual Industry Growth Forum oct. 19-21 NREL's 23rd annual Industry Growth Forum oct. 19-21 Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(1992) Super contributor 14 October, 2010 - 13:25 imported OpenEI The National Renewable Energy Laboratory (NREL) will be hosting the 23rd annual Industry Growth Forum in Denver, Colorado from october 19-21. The forum serves to highlight start-up companies invested in developing renewable energy technologies, displaying their new innovations in front of panels, one-on-one meetings, and organized networking opportunities. The main focus of companies attending is to help raise capital from the investors in attendance. The NREL Forum attracts leading cleantech venture capital and investment banks and draws business development executives from

45

Output Analysis  

Science Journals Connector (OSTI)

Every discrete-event simulation experiment with random input generates random sample paths as output. Each path usually consists of a sequence of dependent observations that serve as the raw material for estim...

George S. Fishman

2001-01-01T23:59:59.000Z

46

Industrial  

NLE Websites -- All DOE Office Websites (Extended Search)

Products Industrial Institutional Multi-Sector Residential Momentum Savings Regional Efficiency Progress Report Utility Toolkit Energy Smart Industrial - Energy Management...

47

Industry  

E-Print Network (OSTI)

2004). US DOE’s Industrial Assessment Centers (IACs) are anof Energy’s Industrial Assessment Center program in SMEs

Bernstein, Lenny

2008-01-01T23:59:59.000Z

48

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Weighted Average Cost of Fossil Fuels for the Electric Power Industry, 2002 through 2012 Coal Petroleum Natural Gas Total Fossil Bituminous Subbituminous Lignite All Coal Ranks...

49

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2012 (From Chapter 2.) Supply (Million Megawatthours) Generation Year Electric Utilities IPP (Non-CHP) IPP (CHP) Commercial Sector Industrial Sector Total Imports Total...

50

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Average Price of Coal Delivered to End Use Sector by Census Division and State, 2012 and 2011" 4. Average Price of Coal Delivered to End Use Sector by Census Division and State, 2012 and 2011" "(dollars per short ton)" ,2012,,,,2011,,,,"Annual Percent Change" "Census Division","Electric","Other","Coke","Commercial","Electric","Other","Coke","Commercial","Electric","Other","Coke","Commercial" "and State","Power1","Industrial",,"and","Power1","Industrial",,"and","Power1","Industrial",,"and" ,,,,"Institutional",,,,"Institutional",,,,"Institutional" "New England",88.32,165.17,"-","-",87.62,"w","-","-",0.8,"w","-","-"

51

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Receipts at Other Industrial Plants by Census Division and State" Coal Receipts at Other Industrial Plants by Census Division and State" "(thousand short tons)" ,,,,"Year to Date" "Census Division","April - June","January - March","April - June",2013,2012,"Percent" "and State",2013,2013,2012,,,"Change" "New England","w","w","w","w","w","w" " Maine","w","w","w","w","w","w" " Massachusetts","w","w","w","w","w","w" "Middle Atlantic",627,587,637,1214,1254,-3.1 " New York",214,178,194,392,377,4

52

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Average Price of Coal Receipts at Other Industrial Plants by Census Division and State" Average Price of Coal Receipts at Other Industrial Plants by Census Division and State" "(dollars per short ton)" ,,,,"Year to Date" "Census Division","April - June","January - March","April - June",2013,2012,"Percent" "and State",2013,2013,2012,,,"Change" "New England","w","w","w","w","w","w" " Maine","w","w","w","w","w","w" " Massachusetts","w","w","w","w","w","w" "Middle Atlantic",87.05,93.03,93.73,89.93,95.68,-6 " New York",102.14,105.8,117.15,103.8,117.61,-11.7

53

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Consumption at Other Industrial Plants by Census Division and State" Coal Consumption at Other Industrial Plants by Census Division and State" "(thousand short tons)" ,,,,"Year to Date" "Census Division","April - June","January - March","April - June",2013,2012,"Percent" "and State",2013,2013,2012,,,"Change" "New England","w","w",20,"w","w","w" " Maine","w","w","w","w","w","w" " Massachusetts","w","w","w","w","w","w" "Middle Atlantic",583,589,651,1171,1237,-5.3 " New York",155,181,206,337,374,-10.1

54

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

7. Year-End Coal Stocks by Sector, Census Division, and State, 2012 and 2011" 7. Year-End Coal Stocks by Sector, Census Division, and State, 2012 and 2011" "(thousand short tons)" ,2012,,,,,2011,,,,,"Total" "Census Division","Electric","Other","Coke","Commercial","Producer","Electric","Other","Coke","Commercial","Producer",2012,2011,"Percent" "and State","Power1","Industrial",,"and","and","Power1","Industrial",,"and","and",,,"Change" ,,,,"Institutional","Distributor",,,,"Institutional","Distributor" "New England",1030,13,"-","-","-",1389,"w","-","-","-",1042,"w","w"

55

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

9. Coal Stocks at Other Industrial Plants by Census Division and State" 9. Coal Stocks at Other Industrial Plants by Census Division and State" "(thousand short tons)" "Census Division","June 30 2013","March 31 2013","June 30 2012","Percent Change" "and State",,,,"(June 30)" ,,,,"2013 versus 2012" "New England","w","w",21,"w" " Maine","w","w","w","w" " Massachusetts","w","w","w","w" "Middle Atlantic",295,251,286,3.2 " New York",137,78,107,27.6 " Pennsylvania",158,172,179,-11.5 "East North Central",734,692,761,-3.5 " Illinois",160,152,187,-14.1

56

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Useful Thermal Output by Energy Source: Electric Power Sector Combined Heat and Power, 2002 - 2012 2. Useful Thermal Output by Energy Source: Electric Power Sector Combined Heat and Power, 2002 - 2012 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2002 40,020 1,319 2,550 214,137 5,961 12,550 4,732 281,269 2003 38,249 5,551 1,828 200,077 9,282 19,785 3,296 278,068 2004 39,014 5,731 2,486 239,416 18,200 17,347 3,822 326,017 2005 39,652 5,571 2,238 239,324 36,694 18,240 3,884 345,605 2006 38,133 4,812 2,253 207,095 22,567 17,284 4,435 296,579 2007 38,260 5,294 1,862 212,705 20,473 19,166 4,459 302,219 2008 37,220 5,479 1,353 204,167 22,109 17,052 4,854 292,234 2009 38,015 5,341 1,445 190,875 19,830 17,625 5,055 278,187

57

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Useful Thermal Output by Energy Source: Commerical Sector Combined Heat and Power, 2002 - 2012 3. Useful Thermal Output by Energy Source: Commerical Sector Combined Heat and Power, 2002 - 2012 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2002 18,477 2,600 143 36,265 0 6,902 4,801 69,188 2003 22,780 2,520 196 16,955 0 8,296 6,142 56,889 2004 22,450 4,118 165 21,851 0 8,936 6,350 63,871 2005 22,601 3,518 166 20,227 0 8,647 5,921 61,081 2006 22,186 2,092 172 19,370 0.22 9,359 6,242 59,422 2007 22,595 1,640 221 20,040 0 6,651 3,983 55,131 2008 22,991 1,822 177 20,183 0 8,863 6,054 60,091 2009 20,057 1,095 155 25,902 0 8,450 5,761 61,420 2010 19,216 845 216 29,791 13 7,917 5,333 63,330 2011 17,234 687 111 24,848 14 7,433 5,988 56,314

58

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

0. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code" 0. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code" "(thousand short tons)" "NAICS Code","June 30 2013","March 31 2013","June 30 2012","Percent Change" ,,,,"(June 30)" ,,,,"2013 versus 2012" "311 Food Manufacturing",875,926,1015,-13.9 "312 Beverage and Tobacco Product Mfg.",26,17,19,35.8 "313 Textile Mills",22,22,25,-13.9 "315 Apparel Manufacturing","w","w","w","w" "321 Wood Product Manufacturing","w","w","w","w" "322 Paper Manufacturing",570,583,743,-23.3 "324 Petroleum and Coal Products*",127,113,156,-18.7

59

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

9. Average Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code" 9. Average Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code" "(dollars per short ton)" ,,,,"Year to Date" "NAICS Code","April - June","January - March","April - June",2013,2012,"Percent" ,2013,2013,2012,,,"Change" "311 Food Manufacturing",51.17,49.59,50.96,50.35,50.94,-1.2 "312 Beverage and Tobacco Product Mfg.",111.56,115.95,113.47,113.49,117.55,-3.5 "313 Textile Mills",115.95,118.96,127.41,117.4,128.07,-8.3 "315 Apparel Manufacturing","w","w","w","w","w","w" "321 Wood Product Manufacturing","w","w","w","w","w","w"

60

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

5. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code" 5. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code" "(thousand short tons)" ,,,,"Year to Date" "NAICS Code","April - June","January - March","April - June",2013,2012,"Percent" ,2013,2013,2012,,,"Change" "311 Food Manufacturing",2256,2561,1864,4817,4343,10.9 "312 Beverage and Tobacco Product Mfg.",38,50,48,88,95,-7.7 "313 Textile Mills",31,29,21,60,59,2.2 "315 Apparel Manufacturing","w","w","w","w","w","w" "321 Wood Product Manufacturing","w","w","w","w","w","w"

Note: This page contains sample records for the topic "industrial output growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

8. U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code" 8. U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code" "(thousand short tons)" ,,,,"Year to Date" "NAICS Code","April - June","January - March","April - June",2013,2012,"Percent" ,2013,2013,2012,,,"Change" "311 Food Manufacturing",2214,2356,1994,4570,4353,5 "312 Beverage and Tobacco Product Mfg.",48,37,53,85,90,-5.6 "313 Textile Mills",31,29,22,59,63,-6.1 "315 Apparel Manufacturing","w","w","w","w","w","w" "321 Wood Product Manufacturing","w","w","w","w","w","w"

62

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Total Electric Power Industry Summary Statistics, 2012 and 2011 1. Total Electric Power Industry Summary Statistics, 2012 and 2011 Net Generation and Consumption of Fuels for January through December Total (All Sectors) Electric Power Sector Commercial Industrial Electric Utilities Independent Power Producers Fuel Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Net Generation (Thousand Megawatthours) Coal 1,514,043 1,733,430 -12.7% 1,146,480 1,301,107 354,076 416,783 883 1,049 12,603 14,490 Petroleum Liquids 13,403 16,086 -16.7% 9,892 11,688 2,757 3,655 191 86 563 657 Petroleum Coke 9,787 14,096 -30.6% 5,664 9,428 1,758 3,431 6 3 2,359 1,234 Natural Gas 1,225,894 1,013,689 20.9% 504,958 414,843 627,833 511,447 6,603 5,487 86,500 81,911

63

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Useful Thermal Output by Energy Source: Total Combined Heat and Power (All Sectors), 2002 - 2012 1. Useful Thermal Output by Energy Source: Total Combined Heat and Power (All Sectors), 2002 - 2012 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2002 336,848 61,313 11,513 708,738 117,513 571,509 48,263 1,855,697 2003 333,361 68,329 16,934 610,122 110,263 632,366 54,960 1,826,335 2004 351,871 80,824 16,659 654,242 126,157 667,341 45,456 1,942,550 2005 341,806 79,362 13,021 624,008 138,469 664,691 41,400 1,902,757 2006 332,548 54,224 24,009 603,288 126,049 689,549 49,308 1,878,973 2007 326,803 50,882 25,373 554,394 116,313 651,230 46,822 1,771,816 2008 315,244 29,554 18,263 509,330 110,680 610,131 23,729 1,616,931 2009 281,557 32,591 20,308 513,002 99,556 546,974 33,287 1,527,276

64

The emergence of a growth industry: a comparative analysis of the German, Dutch and Swedish wind turbine industries  

Science Journals Connector (OSTI)

The objective of this paper is to compare the evolution of the wind turbine industry in Germany, the Netherlands and Sweden. Four factors stand out in explaining the relative success of the German industry: (1...

Anna Bergek; Staffan Jacobsson

2003-01-01T23:59:59.000Z

65

Industry  

E-Print Network (OSTI)

Information on corn wet milling. Corn Refiners Association corn wet milling industry: An ENERGYas an automotive fuel. Corn wet milling is the most energy-

Bernstein, Lenny

2008-01-01T23:59:59.000Z

66

Industry  

E-Print Network (OSTI)

increased use of biomass and energy efficiency improvements,Moreira, J. , 2006: Global biomass energy potential. Journal1971–2004 Notes 1) Biomass energy included 2) Industrial

Bernstein, Lenny

2008-01-01T23:59:59.000Z

67

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

7. U.S. Coal Stocks, 2007 - 2013" 7. U.S. Coal Stocks, 2007 - 2013" "(thousand short tons)" ,"Coal Consumers" "Last Day of Quarter","Electric","Coke","Other","Commercial","Total","Coal Producers","Total" ,"Power","Plants","Industrial2","and",,"and" ,"Sector1",,,"Institutional Users",,"Distributors" 2007 " March 31",141389,2444,5756,"-",149588,34007,183595 " June 30",154812,2364,5672,"-",162849,32484,195333 " September 30",142666,1972,5811,"-",150448,30090,180538 " December 31",151221,1936,5624,"-",158781,33977,192758

68

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Consumption by End-Use Sector, 2007 - 2013" U.S. Coal Consumption by End-Use Sector, 2007 - 2013" "(thousand short tons)" ,,,"Other Industrial",,,"Commercial and Institutional" "Year and","Electric","Coke","CHP2","Non-","Total","CHP4","Non-","Total","Total" "Quarter","Power","Plants",,"CHP3",,,"CHP5" ,"Sector1" 2007 " January - March",257516,5576,5834,8743,14578,547,510,1058,278727 " April - June",246591,5736,5552,8521,14074,426,279,705,267106 " July - September",283556,5678,5546,8180,13725,458,247,705,303665 " October - December",257478,5726,5605,8634,14238,495,563,1058,278500

69

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Existing Capacity by Producer Type, 2012 (Megawatts) 4. Existing Capacity by Producer Type, 2012 (Megawatts) Producer Type Number of Generators Generator Nameplate Capacity Net Summer Capacity Net Winter Capacity Electric Power Sector Electric Utilities 9,624 680,592 621,785 644,358 Independent Power Producers, Non-Combined Heat and Power Plants 6,148 412,045 374,964 389,349 Independent Power Producers, Combined Heat and Power Plants 609 39,916 35,266 38,023 Total 16,381 1,132,554 1,032,015 1,071,729 Commercial and Industrial Sectors Commercial Sector 962 3,610 3,223 3,349 Industrial Sector 1,680 31,832 27,795 29,381 Total 2,642 35,442 31,018 32,730 All Sectors Total 19,023 1,167,995 1,063,033 1,104,459 Notes: In 2011, EIA corrected the NAICS codes of several plants which resulted in a net capacity shift from the electric utility sector to the commercial sector.

70

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2.1. Number of Ultimate Customers Served by Sector, by Provider, 2.1. Number of Ultimate Customers Served by Sector, by Provider, 2002 through 2012 Year Residential Commercial Industrial Transportation Other Total Total Electric Industry 2002 116,622,037 15,333,700 601,744 N/A 1,066,554 133,624,035 2003 117,280,481 16,549,519 713,221 1,127 N/A 134,544,348 2004 118,763,768 16,606,783 747,600 1,025 N/A 136,119,176 2005 120,760,839 16,871,940 733,862 518 N/A 138,367,159 2006 122,471,071 17,172,499 759,604 791 N/A 140,403,965 2007 123,949,916 17,377,219 793,767 750 N/A 142,121,652 2008 124,937,469 17,562,726 774,713 727 N/A 143,275,635 2009 125,177,175 17,561,661 757,519 705 N/A 143,497,060 2010 125,717,935 17,674,338 747,746 239 N/A 144,140,258 2011 126,143,072 17,638,062 727,920 92 N/A 144,509,146

71

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Revenue from Retail Sales of Electricity to Ultimate Customers 3. Revenue from Retail Sales of Electricity to Ultimate Customers by Sector, by Provider, 2002 through 2012 (Million Dollars) Year Residential Commercial Industrial Transportation Other Total Total Electric Industry 2002 106,834 87,117 48,336 N/A 7,124 249,411 2003 111,249 96,263 51,741 514 N/A 259,767 2004 115,577 100,546 53,477 519 N/A 270,119 2005 128,393 110,522 58,445 643 N/A 298,003 2006 140,582 122,914 62,308 702 N/A 326,506 2007 148,295 128,903 65,712 792 N/A 343,703 2008 155,433 138,469 68,920 827 N/A 363,650 2009 157,008 132,940 62,504 828 N/A 353,280 2010 166,782 135,559 65,750 815 N/A 368,906 2011 166,714 135,926 67,606 803 N/A 371,049 2012 163,280 133,898 65,761 747 N/A 363,687

72

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

0. Net Metering Customers and Capacity by Technology Type, by End Use Sector, 0. Net Metering Customers and Capacity by Technology Type, by End Use Sector, 2003 through 2012 Capacity (MW) Customers Year Residential Commercial Industrial Transportation Total Residential Commercial Industrial Transportation Total Historical Data 2003 N/A N/A N/A N/A N/A 5,870 775 168 -- 6,813 2004 N/A N/A N/A N/A N/A 14,114 1,494 215 3 15,826 2005 N/A N/A N/A N/A N/A 19,244 1,565 337 -- 21,146 2006 N/A N/A N/A N/A N/A 30,689 2,553 376 -- 33,618 2007 N/A N/A N/A N/A N/A 44,450 3,513 391 -- 48,354 2008 N/A N/A N/A N/A N/A 64,400 5,305 304 -- 70,009 2009 N/A N/A N/A N/A N/A 88,205 7,365 919 -- 96,489 Photovoltaic 2010 697.890 517.861 243.051 -- 1,458.802 137,618 11,897 1,225 -- 150,740

73

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Receipts, Average Cost, and Quality of Fossil Fuels: Industrial Sector, 2002 - 2012 1. Receipts, Average Cost, and Quality of Fossil Fuels: Industrial Sector, 2002 - 2012 Coal Petroleum Liquids Receipts Average Cost Receipts Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMBtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Barrels) (Dollars per MMBtu) (Dollars per Barrel) Average Sulfur Percent by Weight Percentage of Consumption Annual Totals 2002 294,234 13,659 1.45 31.29 1.56 52.1 29,137 4,638 3.55 22.33 1.24 26.5 2003 322,547 15,076 1.45 31.01 1.37 60.7 27,538 4,624 4.85 28.86 1.25 23.2 2004 326,495 15,324 1.63 34.79 1.43 57.6 25,491 4,107 4.98 30.93 1.38 18.5 2005 339,968 16,011 1.94 41.17 1.42 61.9 36,383 5,876 6.64 41.13 1.36 26.4

74

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

. Receipts, Average Cost, and Quality of Fossil Fuels for the Electric Power Industry, 2002 through 2012 . Receipts, Average Cost, and Quality of Fossil Fuels for the Electric Power Industry, 2002 through 2012 Coal Petroleum Natural Gas All Fossil Fuels Average Cost Average Cost Average Cost Average Cost Period Receipts (Thousand Tons) Average Sulfur Percent by Weight (Dollars per MMBtu) (Dollars per Ton) Receipts (Thousand Barrels) Average Sulfur Percent by Weight (Dollars per MMBtu) (Dollars per Barrel) Receipts (Thousand Mcf) (Dollars per MMBtu) (Dollars per MMBtu) 2002 884,287 0.94 1.25 25.52 120,851 1.64 3.34 20.77 5,607,737 3.56 1.86 2003 986,026 0.97 1.28 26.00 185,567 1.53 4.33 26.78 5,500,704 5.39 2.28 2004 1,002,032 0.97 1.36 27.42 186,655 1.66 4.29 26.56 5,734,054 5.96 2.48 2005 1,021,437 0.98 1.54 31.20 194,733 1.61 6.44 39.65 6,181,717 8.21 3.25

75

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Electric Power Industry - Electricity Sales for Resale, 2. Electric Power Industry - Electricity Sales for Resale, 2002 through 2012 (Thousand Megawatthours) Year Electric Utilities Energy-Only Providers Independent Power Producers Combined Heat and Power U.S. Total 2002 1,838,901 5,757,283 943,531 28,963 8,568,678 2003 1,824,030 3,906,220 1,156,796 33,909 6,920,954 2004 1,923,440 3,756,175 1,053,364 25,996 6,758,975 2005 1,925,710 2,867,048 1,252,796 26,105 6,071,659 2006 1,698,389 2,446,104 1,321,342 27,638 5,493,473 2007 1,603,179 2,476,740 1,368,310 31,165 5,479,394 2008 1,576,976 2,718,661 1,355,017 30,079 5,680,733 2009 1,495,636 2,240,399 1,295,857 33,139 5,065,031 2010 1,541,554 2,946,452 1,404,137 37,068 5,929,211 2011 1,529,434 2,206,981 1,372,306 34,400 5,143,121

76

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Net Generation from Renewable Sources: Industrial Sector, 2002 - 2012 B. Net Generation from Renewable Sources: Industrial Sector, 2002 - 2012 (Thousand Megawatthours) Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Sources Annual Totals 2002 0 N/A N/A 29,643 N/A N/A N/A 0 3,825 N/A 2003 0 0 0 27,988 96 36 583 0 4,222 32,926 2004 0 0 0 28,367 120 30 647 0 3,248 32,413 2005 0 0 0 28,271 113 34 585 0 3,195 32,199 2006 0 0 0 28,400 29 35 509 0 2,899 31,872 2007 0 0 0 28,287 27 40 565 0 1,590 30,509 2008 0 0 0 26,641 21 0 800 0 1,676 29,138 2009 0 0 0 25,292 22 0 718 0 1,868 27,901 2010 0 2 0 25,706 15 0 853 0 1,668 28,244

77

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

. Receipts and Quality of Coal Delivered for the Electric Power Industry, 2002 through 2012 . Receipts and Quality of Coal Delivered for the Electric Power Industry, 2002 through 2012 Bituminous Subbituminous Lignite Period Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight 2002 423,128 1.47 10.1 391,785 0.36 6.2 65,555 0.93 13.3 2003 467,286 1.50 10.0 432,513 0.38 6.4 79,869 1.03 14.4 2004 470,619 1.52 10.4 445,603 0.36 6.0 78,268 1.05 14.2 2005 480,179 1.56 10.5 456,856 0.36 6.2 77,677 1.02 14.0 2006 489,550 1.59 10.5 504,947 0.35 6.1 75,742 0.95 14.4 2007 467,817 1.62 10.3 505,155 0.34 6.0 71,930 0.90 14.0

78

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Net Generation by Energy Source: Industrial Sector, 2002 - 2012 A. Net Generation by Energy Source: Industrial Sector, 2002 - 2012 (Thousand Megawatthours) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Nuclear Hydroelectric Conventional Renewable Sources Excluding Hydroelectric Hydroelectric Pumped Storage Other Total Annual Totals 2002 21,525 3,196 1,207 79,013 9,493 0 3,825 30,489 0 3,832 152,580 2003 19,817 3,726 1,559 78,705 12,953 0 4,222 28,704 0 4,843 154,530 2004 19,773 4,128 1,839 78,959 11,684 0 3,248 29,164 0 5,129 153,925 2005 19,466 3,804 1,564 72,882 9,687 0 3,195 29,003 0 5,137 144,739 2006 19,464 2,567 1,656 77,669 9,923 0 2,899 28,972 0 5,103 148,254 2007 16,694 2,355 1,889 77,580 9,411 0 1,590 28,919 0 4,690 143,128

79

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

. Count of Electric Power Industry Power Plants, by Sector, by Predominant Energy Sources within Plant, 2002 through 2012 . Count of Electric Power Industry Power Plants, by Sector, by Predominant Energy Sources within Plant, 2002 through 2012 Year Coal Petroleum Natural Gas Other Gases Nuclear Hydroelectric Conventional Other Renewables Hydroelectric Pumped Storage Other Energy Sources Total (All Sectors) 2002 633 1,147 1,649 40 66 1,426 682 38 28 2003 629 1,166 1,693 40 66 1,425 741 38 27 2004 625 1,143 1,670 46 66 1,425 749 39 28 2005 619 1,133 1,664 44 66 1,422 781 39 29 2006 616 1,148 1,659 46 66 1,421 843 39 29 2007 606 1,163 1,659 46 66 1,424 929 39 25 2008 598 1,170 1,655 43 66 1,423 1,076 39 29 2009 593 1,168 1,652 43 66 1,427 1,219 39 28 2010 580 1,169 1,657 48 66 1,432 1,355 39 32

80

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Receipts, Average Cost, and Quality of Fossil Fuels: Industrial Sector, 2002 - 2012 (continued) 2. Receipts, Average Cost, and Quality of Fossil Fuels: Industrial Sector, 2002 - 2012 (continued) Petroleum Coke Natural Gas All Fossil Fuels Receipts Average Cost Receipts Average Cost Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMbtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Mcf) (Dollars per MMBtu) (Dollars per Mcf) Percentage of Consumption (Dollars per MMBtu) Annual Totals 2002 3,846 138 0.76 21.20 5.91 9.1 852,547 828,439 3.36 3.46 66.8 2.88 2003 16,383 594 1.04 28.74 5.73 47.3 823,681 798,996 5.32 5.48 69.9 4.20 2004 14,876 540 0.98 27.01 5.59 40.4 839,886 814,843 6.04 6.22 68.4 4.76 2005 16,620 594 1.21 33.75 5.44 58.2 828,882 805,132 8.00 8.24 74.3 6.18

Note: This page contains sample records for the topic "industrial output growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Retail Sales and Direct Use of Electricity to Ultimate Customers 2. Retail Sales and Direct Use of Electricity to Ultimate Customers by Sector, by Provider, 2002 through 2012 (Megawatthours) Year Residential Commercial Industrial Transportation Other Total Direct Use Total End Use Total Electric Industry 2002 1,265,179,869 1,104,496,607 990,237,631 N/A 105,551,904 3,465,466,011 166,184,296 3,631,650,307 2003 1,275,823,910 1,198,727,601 1,012,373,247 6,809,728 N/A 3,493,734,486 168,294,526 3,662,029,012 2004 1,291,981,578 1,230,424,731 1,017,849,532 7,223,642 N/A 3,547,479,483 168,470,002 3,715,949,485 2005 1,359,227,107 1,275,079,020 1,019,156,065 7,506,321 N/A 3,660,968,513 150,015,531 3,810,984,044 2006 1,351,520,036 1,299,743,695 1,011,297,566 7,357,543 N/A 3,669,918,840 146,926,612 3,816,845,452

82

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Emissions from Energy Consumption at 1. Emissions from Energy Consumption at Conventional Power Plants and Combined-Heat-and-Power Plants 2002 through 2012 (Thousand Metric Tons) Year Carbon Dioxide (CO2) Sulfur Dioxide (SO2) Nitrogen Oxides (NOx) 2002 2,423,963 10,881 5,194 2003 2,445,094 10,646 4,532 2004 2,486,982 10,309 4,143 2005 2,543,838 10,340 3,961 2006 2,488,918 9,524 3,799 2007 2,547,032 9,042 3,650 2008 2,484,012 7,830 3,330 2009 2,269,508 5,970 2,395 2010 2,388,596 5,400 2,491 2011 2,287,071 4,845 2,406 2012 2,156,875 3,704 2,148 Notes: The emissions data presented include total emissions from both electricity generation and the production of useful thermal output. See Appendix A, Technical Notes, for a description of the sources and methodology used to develop the emissions estimates.

83

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Consumption of Petroleum Coke for Electricity Generation by State, by Sector, 1. Consumption of Petroleum Coke for Electricity Generation by State, by Sector, 2012 and 2011 (Thousand Tons) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 0 0 -- 0 0 0 0 0 0 0 0 Connecticut 0 0 -- 0 0 0 0 0 0 0 0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts 0 0 -- 0 0 0 0 0 0 0 0 New Hampshire 0 0 -- 0 0 0 0 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 0 0 -- 0 0 0 0 0 0 0 0 Middle Atlantic 56 121 -54% 0 0 0 94 0 0 56 27

84

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

5. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: 5. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Industrial Sector by State, 2012 Bituminous Subbituminous Lignite Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight New England 19 0.66 6.9 0 -- -- 0 -- -- Connecticut 0 -- -- 0 -- -- 0 -- -- Maine 19 0.66 6.9 0 -- -- 0 -- -- Massachusetts 0 -- -- 0 -- -- 0 -- -- New Hampshire 0 -- -- 0 -- -- 0 -- -- Rhode Island 0 -- -- 0 -- -- 0 -- -- Vermont 0 -- -- 0 -- -- 0 -- --

85

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Major U.S. Coal Producers, 2012" Major U.S. Coal Producers, 2012" "Rank","Controlling Company Name","Production (thousand short tons)","Percent of Total Production" 1,"Peabody Energy Corp",192563,18.9 2,"Arch Coal Inc",136992,13.5 3,"Alpha Natural Resources LLC",104306,10.3 4,"Cloud Peak Energy",90721,8.9 5,"CONSOL Energy Inc",55752,5.5 6,"Alliance Resource Operating Partners LP",35406,3.5 7,"Energy Future Holdings Corp",31032,3.1 8,"Murray Energy Corp",29216,2.9 9,"NACCO Industries Inc",28207,2.8 10,"Patriot Coal Corp",23946,2.4 11,"Peter Kiewit Sons Inc",22725,2.2 12,"Westmoreland Coal Co",22215,2.2 13,"BHP Billiton Ltd",12580,1.2

86

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Average Retail Price of Electricity to Ultimate Customers 4. Average Retail Price of Electricity to Ultimate Customers by End-Use Sector 2002 through 2012 (Cents per kilowatthour) Year Residential Commercial Industrial Transportation Other Total Total Electric Industry 2002 8.44 7.89 4.88 N/A 6.75 7.20 2003 8.72 8.03 5.11 7.54 N/A 7.44 2004 8.95 8.17 5.25 7.18 N/A 7.61 2005 9.45 8.67 5.73 8.57 N/A 8.14 2006 10.40 9.46 6.16 9.54 N/A 8.90 2007 10.65 9.65 6.39 9.70 N/A 9.13 2008 11.26 10.36 6.83 10.74 N/A 9.74 2009 11.51 10.17 6.81 10.65 N/A 9.82 2010 11.54 10.19 6.77 10.57 N/A 9.83 2011 11.72 10.23 6.82 10.46 N/A 9.90 2012 11.88 10.09 6.67 10.21 N/A 9.84 Full-Service Providers 2002 8.40 7.77 4.78 N/A 6.65 7.13 2003 8.68 7.89 5.01 6.82 N/A 7.38

87

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Average Quality of Fossil Fuel Receipts for the Electric Power Industry, 3. Average Quality of Fossil Fuel Receipts for the Electric Power Industry, 2002 through 2012 Coal Petroleum Natural Gas Period Average Btu per Pound Average Sulfur Percent by Weight Average Ash Percent by Weight Average Btu per Gallon Average Sulfur Percent by Weight Average Ash Percent by Weight Average Btu per Cubic Foot 2002 10,168 0.94 8.7 147,903 1.64 0.2 1,025 2003 10,137 0.97 9.0 147,086 1.53 0.1 1,030 2004 10,074 0.97 9.0 147,286 1.66 0.2 1,027 2005 10,107 0.98 9.0 146,481 1.61 0.2 1,028 2006 10,063 0.97 9.0 143,883 2.31 0.2 1,027 2007 10,028 0.96 8.8 144,546 2.10 0.1 1,027 2008 9,947 0.97 9.0 142,205 2.21 0.3 1,027 2009 9,902 1.01 8.9 141,321 2.14 0.2 1,025 2010 9,842 1.16 8.8 140,598 2.14 0.2 1,022

88

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

An Exploration of Innovation and An Exploration of Innovation and Energy Efficiency in an Appliance Industry Prepared by Margaret Taylor, K. Sydny Fujita, Larry Dale, and James McMahon For the European Council for an Energy Efficient Economy March 29, 2012 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL - 5689E An Exploration of Innovation and Energy Efficiency in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and direction of technological change of product industries; the factors that underlie the outcomes of innovation in these industries; and the ways the innovation system might respond to any given intervention. The report provides an overview of the dynamics of energy efficiency policy and innovation in the appliance

89

Industry  

E-Print Network (OSTI)

for im- proving energy efficiency of corn wet milling havefor the corn wet milling industry: An ENERGY STAR Guide forfuel. Corn wet milling is the most energy-intensive food

Bernstein, Lenny

2008-01-01T23:59:59.000Z

90

Industry  

E-Print Network (OSTI)

options for combined heat and power in Canada. Office ofpolicies to promote combined heat and power in US industry.with fuel inputs in combined heat and power plants being

Bernstein, Lenny

2008-01-01T23:59:59.000Z

91

Industry  

E-Print Network (OSTI)

EJ of primary energy, 40% of the global total of 227 EJ. Bytotal energy use by industry and on the fraction of electricity use consumed by motor driven systems was taken as representative of global

Bernstein, Lenny

2008-01-01T23:59:59.000Z

92

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

9. Consumption of Coal for Electricity Generation by State by Sector, 9. Consumption of Coal for Electricity Generation by State by Sector, 2012 and 2011 (Thousand Tons) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 1,787 2,998 -40% 520 898 1,257 2,087 0 0 10 12 Connecticut 297 317 -6.5% 0 0 297 317 0 0 0 0 Maine 11 14 -18% 0 0 6 7 0 0 5 6 Massachusetts 959 1,769 -46% 0 0 954 1,763 0 0 5 6 New Hampshire 520 898 -42% 520 898 0 0 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 0 0 -- 0 0 0 0 0 0 0 0 Middle Atlantic 44,000 53,658 -18% 6 16 43,734 53,052 4 1 256 589

93

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

D. Petroleum Liquids: Consumption for Electricity Generation, D. Petroleum Liquids: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 835,481 553,390 241,892 3,953 36,243 2003 1,089,307 658,868 380,378 5,358 44,702 2004 1,031,954 651,712 350,093 4,544 25,606 2005 1,035,045 618,811 387,355 3,469 25,410 2006 459,392 335,130 105,312 1,963 16,987 2007 512,423 355,999 139,977 1,505 14,942 2008 332,367 242,379 79,816 957 9,215 2009 266,508 196,346 59,277 1,101 9,784 2010 244,114 188,987 49,042 970 5,115 2011 163,954 125,755 33,166 801 4,233 2012 134,956 105,179 24,081 1,618 4,078 2010 January 33,737 26,715 6,282 100 639

94

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

D. Wood / Wood Waste Biomass: Consumption for Electricity Generation, D. Wood / Wood Waste Biomass: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 605,054 10,659 129,947 469 463,980 2003 519,294 16,545 139,852 437 362,460 2004 344,134 19,973 130,248 168 193,745 2005 355,250 27,373 138,407 207 189,263 2006 350,074 27,455 135,546 269 186,803 2007 353,025 31,568 132,953 284 188,220 2008 338,786 29,150 130,122 287 179,227 2009 320,444 29,565 130,894 274 159,712 2010 349,530 40,167 137,072 274 172,016 2011 347,623 35,474 130,108 482 181,559 2012 390,342 32,723 138,217 478 218,924 2010 January 29,578 3,731 11,954 23 13,870

95

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Demand-Side Management Program Annual Effects by Program 2. Demand-Side Management Program Annual Effects by Program Category, by Sector, 2002 through 2012 Year Residential Commercial Industrial Transportation Total Energy Efficiency - Energy Savings (Thousand MWh) 2002 15,284 24,803 10,242 -- 50,328 2003 12,914 24,758 10,031 551 48,254 2004 17,185 24,290 11,137 50 52,663 2005 18,894 28,073 11,986 47 59,000 2006 21,150 28,720 13,155 50 63,076 2007 22,772 30,359 14,038 108 67,278 2008 25,396 34,634 14,766 75 74,871 2009 27,395 34,831 14,610 76 76,912 2010 32,150 37,416 17,259 89 86,914 2011 46,790 50,732 23,061 76 120,659 2012 54,516 58,894 25,023 92 138,525 Energy Efficiency - Actual Peak Load Reduction (MW) 2002 5,300 5,389 2,768 -- 13,457 2003 5,909 4,911 2,671 94 13,585

96

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

8. Retail Sales of Electricity to Ultimate Customers by End-Use Sector, 8. Retail Sales of Electricity to Ultimate Customers by End-Use Sector, by State, 2012 and 2011 (Million Kilowatthours) Residential Commercial Industrial Transportation All Sectors Census Division and State Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 47,208 47,481 44,864 45,018 27,818 27,927 566 569 120,456 120,995 Connecticut 12,758 12,919 12,976 13,087 3,566 3,668 193 185 29,492 29,859 Maine 4,481 4,382 4,053 4,018 3,027 3,016 0 0 11,561 11,415 Massachusetts 20,313 20,473 17,723 17,767 16,927 16,974 350 357 55,313 55,570 New Hampshire 4,439 4,454 4,478 4,478 1,953 1,936 0 0 10,870 10,869 Rhode Island 3,121 3,129 3,640 3,660 923 916 24 27 7,708 7,732

97

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

0. Average Retail Price of Electricity to Ultimate Customers by End-Use Sector, 0. Average Retail Price of Electricity to Ultimate Customers by End-Use Sector, by State, 2012 and 2011 (Cents per Kilowatthour) Residential Commercial Industrial Transportation All Sectors Census Division and State Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 15.71 15.89 13.68 14.31 11.83 12.55 6.68 7.85 14.02 14.49 Connecticut 17.34 18.11 14.65 15.57 12.67 13.24 9.69 10.25 15.54 16.35 Maine 14.66 15.38 11.53 12.29 7.98 8.88 -- -- 11.81 12.58 Massachusetts 14.91 14.67 13.84 14.33 12.57 13.38 4.91 6.14 13.79 14.11 New Hampshire 16.07 16.52 13.36 14.04 11.83 12.27 -- -- 14.19 14.74 Rhode Island 14.40 14.33 11.87 12.37 10.68 11.27 8.28 14.11 12.74 13.04

98

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

D. Coal: Consumption for Electricity Generation, D. Coal: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 19,996,890 15,517,857 4,215,043 9,168 254,821 2003 20,366,879 15,391,188 4,745,545 13,080 217,066 2004 20,375,751 15,610,335 4,606,584 8,251 150,581 2005 20,801,716 15,397,688 5,250,824 8,314 144,889 2006 20,527,410 15,211,077 5,166,001 7,526 142,807 2007 20,841,871 15,436,110 5,287,202 7,833 110,727 2008 20,548,610 15,189,050 5,242,194 8,070 109,296 2009 18,240,611 13,744,178 4,390,596 7,007 98,829 2010 19,196,315 14,333,496 4,709,686 6,815 146,318 2011 18,074,298 13,551,416 4,399,144 7,263 116,475

99

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

10.6. Advanced Metering Count by Technology Type, 10.6. Advanced Metering Count by Technology Type, 2007 through 2012 Year Residential Commercial Industrial Transportation Total Automated Meter Reading (AMR) 2007 25,785,782 2,322,329 44,015 109 28,152,235 2008 36,425,943 3,529,985 77,122 13 40,033,063 2009 41,462,111 4,239,531 107,033 11 45,808,686 2010 43,913,225 4,611,877 159,315 626 48,685,043 2011 41,451,888 4,341,105 172,692 77 45,965,762 2012 43,455,437 4,691,018 185,862 125 48,330,822 Advanced Metering Infrastructure (AMI) 2007 2,202,222 262,159 9,106 2 2,473,489 2008 4,190,244 444,003 12,757 12 4,647,016 2009 8,712,297 876,419 22,675 10 9,611,401 2010 18,369,908 1,904,983 59,567 67 20,334,525 2011 33,453,548 3,682,159 154,659 7 37,290,373

100

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Summary Statistics for the United States, 2002 - 2012 2. Summary Statistics for the United States, 2002 - 2012 (From Table 2.1.) Number of Ultimate Customers Year Residential Commercial Industrial Transportation Other Total 2002 116,622,037 15,333,700 601,744 N/A 1,066,554 133,624,035 2003 117,280,481 16,549,519 713,221 1,127 N/A 134,544,348 2004 118,763,768 16,606,783 747,600 1,025 N/A 136,119,176 2005 120,760,839 16,871,940 733,862 518 N/A 138,367,159 2006 122,471,071 17,172,499 759,604 791 N/A 140,403,965 2007 123,949,916 17,377,219 793,767 750 N/A 142,121,652 2008 124,937,469 17,562,726 774,713 727 N/A 143,275,635 2009 125,177,175 17,561,661 757,519 705 N/A 143,497,060 2010 125,717,935 17,674,338 747,746 239 N/A 144,140,258 2011 126,143,072 17,638,062 727,920 92 N/A 144,509,146

Note: This page contains sample records for the topic "industrial output growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Natural Gas: Consumption for Electricity Generation, A. Natural Gas: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 6,126,062 2,259,684 3,148,595 32,545 685,239 2003 5,616,135 1,763,764 3,145,485 38,480 668,407 2004 5,674,580 1,809,443 3,265,896 32,839 566,401 2005 6,036,370 2,134,859 3,349,921 33,785 517,805 2006 6,461,615 2,478,396 3,412,826 34,623 535,770 2007 7,089,342 2,736,418 3,765,194 34,087 553,643 2008 6,895,843 2,730,134 3,612,197 33,403 520,109 2009 7,121,069 2,911,279 3,655,712 34,279 519,799 2010 7,680,185 3,290,993 3,794,423 39,462 555,307 2011 7,883,865 3,446,087 3,819,107 47,170 571,501

102

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Consumption of Nautral Gas for Electricity Generation by State, by Sector, 2. Consumption of Nautral Gas for Electricity Generation by State, by Sector, 2012 and 2011 (Million Cubic Feet) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 460,887 461,590 -0.2% 3,652 4,218 428,781 432,350 8,630 6,287 19,824 18,735 Connecticut 120,380 110,546 8.9% 69 730 113,620 105,965 3,952 2,061 2,739 1,790 Maine 44,424 49,352 -10% 0 0 28,456 33,555 307 12 15,662 15,785 Massachusetts 184,330 190,063 -3.0% 2,792 2,393 176,497 182,865 3,749 3,761 1,293 1,045 New Hampshire 50,678 46,927 8.0% 754 1,046 49,655 45,765 139 0 131 115

103

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

D. Other Waste Biomass: Consumption for Electricity Generation, D. Other Waste Biomass: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 34,775 2,456 15,859 4,566 11,894 2004 19,215 2,014 9,240 4,308 3,654 2005 17,852 2,485 7,365 4,677 3,325 2006 17,727 2,611 7,788 4,436 2,893 2007 19,083 2,992 8,861 4,049 3,181 2008 24,288 3,409 12,745 3,684 4,450 2009 24,847 3,679 13,231 3,760 4,177 2010 29,996 3,668 14,449 3,790 8,090 2011 30,771 4,488 16,115 3,816 6,352 2012 30,342 4,191 15,740 4,016 6,395 2010 January 2,223 189 1,078 321 635 February 2,336 275 1,208 291 561 March 2,287 311 1,079 302 594

104

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

6. Receipts of Natural Gas Delivered for Electricity Generation by State, 2012 and 2011 6. Receipts of Natural Gas Delivered for Electricity Generation by State, 2012 and 2011 (Million Cubic Feet) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 440,421 484,260 -9.1% 3,652 4,226 419,062 434,504 3,636 13,156 14,072 32,373 Connecticut 112,084 116,563 -3.8% 71 738 112,012 107,121 0 3,210 0 5,494 Maine 42,374 56,230 -25% 0 0 28,302 33,578 0 NM 14,072 22,639 Massachusetts 175,314 198,295 -12% 2,789 2,393 168,890 184,156 3,636 7,872 0 3,875 New Hampshire 50,408 47,137 6.9% 754 1,046 49,655 45,725 0 0 0 NM

105

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Biogenic Municipal Solid Waste: Consumption for Electricity Generation, A. Biogenic Municipal Solid Waste: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 21,196 695 18,300 2,087 115 2004 19,587 444 17,308 1,811 24 2005 19,370 560 17,033 1,753 25 2006 19,629 500 17,343 1,761 25 2007 19,576 553 17,116 1,785 122 2008 19,805 509 17,487 1,809 0 2009 19,669 465 17,048 2,155 0 2010 19,437 402 16,802 2,233 0 2011 16,972 388 14,625 1,955 4 2012 16,968 418 14,235 2,304 12 2010 January 1,546 30 1,332 184 0 February 1,384 25 1,215 144 0 March 1,650 36 1,434 180 0 April 1,655 33 1,426 196 0

106

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Consumption of Landfill Gas for Electricity Generation by State, by Sector, 3. Consumption of Landfill Gas for Electricity Generation by State, by Sector, 2012 and 2011 (Million Cubic Feet) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 9,595 9,945 -3.5% 0 0 9,074 9,945 520 0 0 0 Connecticut 595 624 -4.6% 0 0 595 624 0 0 0 0 Maine 518 524 -1.0% 0 0 518 524 0 0 0 0 Massachusetts 3,603 3,623 -0.6% 0 0 3,603 3,623 0 0 0 0 New Hampshire 1,790 1,485 21% 0 0 1,270 1,485 520 0 0 0 Rhode Island 2,409 3,037 -21% 0 0 2,409 3,037 0 0 0 0

107

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Landfill Gas: Consumption for Electricity Generation, A. Landfill Gas: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 136,421 9,168 121,984 3,280 1,989 2004 143,844 11,250 125,848 4,081 2,665 2005 141,899 11,490 123,064 4,797 2,548 2006 160,033 16,617 136,108 6,644 664 2007 166,774 17,442 144,104 4,598 630 2008 195,777 20,465 169,547 5,235 530 2009 206,792 19,583 180,689 5,931 589 2010 218,331 19,975 192,428 5,535 393 2011 232,795 22,086 180,856 29,469 384 2012 256,376 25,193 201,965 26,672 2,545 2010 January 17,531 1,715 15,323 461 32 February 16,189 1,653 14,120 384 33

108

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Petroleum Coke: Consumption for Electricity Generation, A. Petroleum Coke: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 6,836 2,125 3,580 2 1,130 2003 6,303 2,554 3,166 2 582 2004 7,677 4,150 2,985 1 541 2005 8,330 4,130 3,746 1 452 2006 7,363 3,619 3,286 1 456 2007 6,036 2,808 2,715 2 512 2008 5,417 2,296 2,704 1 416 2009 4,821 2,761 1,724 1 335 2010 4,994 3,325 1,354 2 313 2011 5,012 3,449 1,277 1 286 2012 3,675 2,105 756 1 812 2010 January 433 283 121 0.17 29 February 404 258 120 0.15 25 March 438 308 108 0.19 23 April 382 253 107 0.12 22 May 415 261 129 0 25

109

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

5. Retail Sales of Electricity to Ultimate Customers: 5. Retail Sales of Electricity to Ultimate Customers: Total by End-Use Sector, 2003 - December 2012 (Million Kilowatthours) Period Residential Commercial Industrial Transportation All Sectors Annual Totals 2003 1,275,824 1,198,728 1,012,373 6,810 3,493,734 2004 1,291,982 1,230,425 1,017,850 7,224 3,547,479 2005 1,359,227 1,275,079 1,019,156 7,506 3,660,969 2006 1,351,520 1,299,744 1,011,298 7,358 3,669,919 2007 1,392,241 1,336,315 1,027,832 8,173 3,764,561 2008 1,379,981 1,335,981 1,009,300 7,700 3,732,962 2009 1,364,474 1,307,168 917,442 7,781 3,596,865 2010 1,445,708 1,330,199 970,873 7,712 3,754,493 2011 1,422,801 1,328,057 991,316 7,672 3,749,846 2012 1,374,515 1,327,101 985,714 7,320 3,694,650 2010

110

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Consumption of Biogenic Municipal Solid Waste for Electricity Generation by State, by Sector, 4. Consumption of Biogenic Municipal Solid Waste for Electricity Generation by State, by Sector, 2012 and 2011 (Thousand Tons) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 4,041 4,122 -2.0% 0 0 3,838 3,922 203 200 0 0 Connecticut 1,415 1,442 -1.9% 0 0 1,415 1,442 0 0 0 0 Maine 440 445 -1.3% 0 0 237 246 203 200 0 0 Massachusetts 2,017 2,063 -2.2% 0 0 2,017 2,063 0 0 0 0 New Hampshire 169 172 -2.0% 0 0 169 172 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0

111

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

6. Net Generation from Other Energy Sources 6. Net Generation from Other Energy Sources by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 2,153 2,019 6.7% 0 0 1,944 1,888 88 84 121 46 Connecticut 756 705 7.3% 0 0 756 704 0 0 0 1 Maine 424 390 8.7% 0 0 245 261 88 84 92 45 Massachusetts 906 860 5.5% 0 0 877 860 0 0 29 0 New Hampshire 66 64 2.6% 0 0 66 64 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 0 0 -- 0 0 0 0 0 0 0 0 Middle Atlantic 2,497 2,441 2.3% 0 0 1,924 1,975 465 344 107 122

112

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

D. Landfill Gas: Consumption for Electricity Generation, D. Landfill Gas: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 65,770 3,930 59,089 1,753 998 2004 69,331 5,373 60,514 2,093 1,351 2005 67,902 5,650 58,624 2,360 1,269 2006 75,970 8,287 63,950 3,388 345 2007 79,712 8,620 68,432 2,344 316 2008 94,215 10,242 81,029 2,668 276 2009 99,821 9,748 86,773 2,999 301 2010 105,835 10,029 92,763 2,837 205 2011 112,538 11,146 89,857 11,332 203 2012 124,297 12,721 99,938 10,356 1,282 2010 January 8,441 853 7,335 236 17 February 7,824 830 6,781 197 17 March 9,056 1,013 7,796 226 21

113

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

D. Natural Gas: Consumption for Electricity Generation, D. Natural Gas: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 6,249,585 2,307,358 3,214,286 30,626 697,315 2003 5,735,770 1,809,003 3,200,057 39,424 687,286 2004 5,827,470 1,857,247 3,351,469 33,623 585,132 2005 6,212,116 2,198,098 3,444,875 34,645 534,498 2006 6,643,926 2,546,169 3,508,597 35,473 553,687 2007 7,287,714 2,808,500 3,872,646 34,872 571,697 2008 7,087,191 2,803,283 3,712,872 34,138 536,899 2009 7,301,522 2,981,285 3,750,080 35,046 535,111 2010 7,852,665 3,359,035 3,882,995 40,356 570,279 2011 8,052,309 3,511,732 3,906,484 48,509 585,584

114

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Petroleum Liquids: Consumption for Electricity Generation, A. Petroleum Liquids: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Thousand Barrels) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 134,415 88,595 39,035 826 5,959 2003 175,136 105,319 61,420 882 7,514 2004 165,107 103,793 56,342 760 4,212 2005 165,137 98,223 62,154 580 4,180 2006 73,821 53,529 17,179 327 2,786 2007 82,433 56,910 22,793 250 2,480 2008 53,846 38,995 13,152 160 1,538 2009 43,562 31,847 9,880 184 1,652 2010 40,103 30,806 8,278 164 855 2011 27,326 20,844 5,633 133 716 2012 22,604 17,521 4,110 272 702 2010 January 5,587 4,381 1,083 17 106 February 2,156 1,599 454 15 88

115

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

D. Biogenic Municipal Solid Waste: Consumption for Electricity Generation, D. Biogenic Municipal Solid Waste: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 148,110 5,766 128,947 13,095 302 2004 141,577 3,705 124,815 12,909 146 2005 144,339 4,724 126,529 12,923 164 2006 146,987 4,078 129,779 12,964 165 2007 146,308 4,557 127,826 13,043 881 2008 148,452 4,476 130,041 13,934 0 2009 146,971 3,989 126,649 16,333 0 2010 144,934 3,322 124,437 17,176 0 2011 135,241 3,433 115,841 15,933 34 2012 135,735 3,910 113,418 18,307 100 2010 January 11,540 244 9,886 1,410 0 February 10,313 190 9,030 1,094 0

116

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

5. Net Generation from Hydroelectric (Pumped Storage) Power 5. Net Generation from Hydroelectric (Pumped Storage) Power by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England -305 -435 -29.9% 0 0 -305 -435 0 0 0 0 Connecticut 3 6 -51.5% 0 0 3 6 0 0 0 0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts -308 -440 -30.1% 0 0 -308 -440 0 0 0 0 New Hampshire 0 0 -- 0 0 0 0 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 0 0 -- 0 0 0 0 0 0 0 0 Middle Atlantic -1,022 -1,124 -9.0% -579 -630 -443 -494 0 0 0 0

117

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

0. Net Generation from Natural Gas 0. Net Generation from Natural Gas by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 62,490 63,236 -1.2% 345 357 58,757 59,763 901 700 2,488 2,416 Connecticut 16,537 15,188 8.9% 6 NM 15,801 14,715 397 211 333 227 Maine 6,044 6,877 -12.1% 0 0 4,057 4,850 26 0.26 1,960 2,026 Massachusetts 24,672 25,940 -4.9% 278 240 23,812 25,120 416 443 166 136 New Hampshire 7,050 6,658 5.9% 58 80 6,947 6,552 16 0 29 26 Rhode Island 8,185 8,571 -4.5% 0 0 8,140 8,525 45 46 0 0

118

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

5. Receipts of Petroleum Coke Delivered for Electricity Generation by State, 2012 and 2011 5. Receipts of Petroleum Coke Delivered for Electricity Generation by State, 2012 and 2011 (Thousand Tons) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 0 0 -- 0 0 0 0 0 0 0 0 Connecticut 0 0 -- 0 0 0 0 0 0 0 0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts 0 0 -- 0 0 0 0 0 0 0 0 New Hampshire 0 0 -- 0 0 0 0 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 0 0 -- 0 0 0 0 0 0 0 0 Middle Atlantic 106 79 35% 0 0 0 23 0 0 106 56 New Jersey 0 NM NM 0 0 0 0 0 0 0 NM

119

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

6. Net Generation 6. Net Generation by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 120,887 123,338 -2.0% 3,278 4,408 111,191 112,613 1,178 949 5,240 5,368 Connecticut 36,118 33,745 7.0% 37 93 35,347 33,208 397 211 337 233 Maine 14,429 15,974 -9.7% 0.17 1 10,186 10,890 208 176 4,035 4,907 Massachusetts 36,198 38,055 -4.9% 591 610 34,321 36,783 469 490 817 172 New Hampshire 19,264 20,066 -4.0% 2,017 2,994 17,170 17,020 49 20 29 31

120

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

0. Net Generation from Solar 0. Net Generation from Solar by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 35 7 427.1% 9 4 25 2 1 1 0 0 Connecticut 0 0 -- 0 0 0 0 0 0 0 0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts 30 5 521.6% 9 4 20 0.14 1 1 0 0 New Hampshire 0 0 -- 0 0 0 0 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 5 2 179.0% 0 0 5 2 0 0 0 0 Middle Atlantic 389 98 295.3% 41 19 303 65 37 8 8 5

Note: This page contains sample records for the topic "industrial output growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Net Generation from Renewable Sources Excluding Hydroelectric 4. Net Generation from Renewable Sources Excluding Hydroelectric by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 8,557 8,015 6.8% 664 574 5,652 5,352 136 104 2,105 1,985 Connecticut 667 660 1.0% 0 0 667 660 0 0 0 0 Maine 4,099 4,495 -8.8% 0 0 2,468 2,421 92 89 1,539 1,985 Massachusetts 1,843 1,207 52.8% 68 48 1,198 1,145 11 13 566 0 New Hampshire 1,381 1,091 26.6% 347 291 1,003 800 31 0 0 0.35 Rhode Island 102 130 -21.8% 0 0 102 130 0 0 0 0

122

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

9. Net Generation from Petroleum Coke 9. Net Generation from Petroleum Coke by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 0 0 -- 0 0 0 0 0 0 0 0 Connecticut 0 0 -- 0 0 0 0 0 0 0 0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts 0 0 -- 0 0 0 0 0 0 0 0 New Hampshire 0 0 -- 0 0 0 0 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 0 0 -- 0 0 0 0 0 0 0 0 Middle Atlantic 76 344 -78.0% 0 0 0 263 0 0 76 81 New Jersey 40 58 -30.6% 0 0 0 0 0 0 40 58

123

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

8. Net Generation from Petroleum Liquids 8. Net Generation from Petroleum Liquids by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 413 639 -35.4% 52 120 267 374 49 55 45 90 Connecticut 112 166 -32.6% 4 5 104 155 0.05 0 4 5 Maine 84 178 -52.8% 0.17 1 65 89 2 3 16 85 Massachusetts 174 197 -11.2% 15 40 98 128 37 28 25 NM New Hampshire 22 78 -72.1% 20 57 0.12 1 2 20 0.17 0.10 Rhode Island 18 14 31.0% 11 10 0.12 1 7 2 0 0 Vermont 3 8 -58.1% 2 6 0 0 1 2 0 0

124

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

8. Net Generation from Biomass 8. Net Generation from Biomass by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 7,229 7,138 1.3% 570 515 4,428 4,544 125 94 2,105 1,985 Connecticut 667 660 1.0% 0 0 667 660 0 0 0 0 Maine 3,212 3,788 -15.2% 0 0 1,581 1,714 92 89 1,539 1,985 Massachusetts 1,724 1,140 51.2% 0 0 1,157 1,137 1 3 566 0 New Hampshire 1,173 1,025 14.4% 347 291 795 734 31 0 0 0.35 Rhode Island 101 127 -21.1% 0 0 101 127 0 0 0 0

125

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Net Generation from Nuclear Energy 2. Net Generation from Nuclear Energy by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 36,116 34,283 5.3% 0 0 36,116 34,283 0 0 0 0 Connecticut 17,078 15,928 7.2% 0 0 17,078 15,928 0 0 0 0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts 5,860 5,085 15.2% 0 0 5,860 5,085 0 0 0 0 New Hampshire 8,189 8,363 -2.1% 0 0 8,189 8,363 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 4,989 4,907 1.7% 0 0 4,989 4,907 0 0 0 0

126

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

7. Net Generation from Coal 7. Net Generation from Coal by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 4,103 6,848 -40.1% 1,268 2,208 2,793 4,592 0 0 42 47 Connecticut 653 526 24.2% 0 0 653 526 0 0 0 0 Maine 45 55 -18.0% 0 0 30 38 0 0 15 18 Massachusetts 2,137 4,059 -47.4% 0 0 2,110 4,029 0 0 27 30 New Hampshire 1,268 2,208 -42.6% 1,268 2,208 0 0 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 0 0 -- 0 0 0 0 0 0 0 0

127

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

9. Revenue from Retail Sales of Electricity to Ultimate Customers by End-Use Sector, 9. Revenue from Retail Sales of Electricity to Ultimate Customers by End-Use Sector, by State, 2012 and 2011 (Million Dollars) Residential Commercial Industrial Transportation All Sectors Census Division and State Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 7,418 7,546 6,137 6,441 3,292 3,504 38 45 16,885 17,536 Connecticut 2,213 2,339 1,901 2,038 452 486 19 19 4,584 4,882 Maine 657 674 467 494 242 268 0 0 1,366 1,436 Massachusetts 3,029 3,003 2,453 2,547 2,127 2,270 17 22 7,627 7,842 New Hampshire 713 736 598 629 231 238 0 0 1,543 1,602 Rhode Island 450 449 432 453 99 103 2 4 982 1,008 Vermont 356 346 285 281 142 139 0 0 784 766

128

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

7. Average Retail Price of Electricity to Ultimate Customers: 7. Average Retail Price of Electricity to Ultimate Customers: Total by End-Use Sector, 2003 - December 2012 (Cents per Kilowatthour) Period Residential Commercial Industrial Transportation All Sectors Annual Totals 2003 8.72 8.03 5.11 7.54 7.44 2004 8.95 8.17 5.25 7.18 7.61 2005 9.45 8.67 5.73 8.57 8.14 2006 10.40 9.46 6.16 9.54 8.90 2007 10.65 9.65 6.39 9.70 9.13 2008 11.26 10.36 6.83 10.74 9.74 2009 11.51 10.17 6.81 10.65 9.82 2010 11.54 10.19 6.77 10.57 9.83 2011 11.72 10.23 6.82 10.46 9.90 2012 11.88 10.09 6.67 10.21 9.84 2010 January 10.49 9.55 6.50 10.17 9.28 February 10.89 9.89 6.55 10.48 9.47 March 11.11 9.95 6.53 10.28 9.48 April 11.71 9.95 6.55 10.52 9.53 May 11.91 10.15 6.64 10.52 9.72

129

Industry  

SciTech Connect

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

130

1996 international conference on power electronics, drives and energy systems for industrial growth: Proceedings. Volume 1  

SciTech Connect

This book contains Volume 1 of the proceedings of the IEEE International Conference on Power Electronics, Drives and Energy Systems for Industrial Growth held January, 1996, in New Delhi. The topics of the papers include resonant and soft switching converters, induction motor drives, solar power generation, control aspects of power generation, PWM and DC/DC converters, field oriented control of AC machines, wind power generation, analysis of electrical machines, topology and control of power electronic converters, switched reluctance and permanent magnet motor drives, active filters and VAR compensation schemes, analysis and design of induction generators/motors, simulation of power electronics converters and drive, brushless and special electrical machines, UPS and battery energy storage systems.

Murthy, S.S.; Roy, S. [eds.] [Indian Inst. of Tech., New Delhi (India); Divan, D. [ed.] [Univ. of Wisconsin, Madison, WI (United States); Doradla, S.R. [ed.] [Indian Inst. of Tech., Kanpur (India); Murthy, B.V. [ed.] [General Motors, Detroit, MI (United States)

1995-12-31T23:59:59.000Z

131

How R&D investments influence TFP growth: Evidence from China’s large and medium-sized industrial enterprises  

Science Journals Connector (OSTI)

This paper investigates the potential channels through which R&D may influence TFP growth using industry-level panel data of China’s large and medium-sized ... provide a closer look of the relationship between R&D

Liqun Zhou; Liangke Xia

2010-12-01T23:59:59.000Z

132

Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial 8,870,422 44.3% Commercial 3,158,244 15.8% Electric Utilities 2,732,496 13.7% Residential 5,241,414 26.2% Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." T e x a s L o u i s i a n a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Industrial Billion Cubic Meters T e x a s C a l i f o r n i a F l o r i d a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Electric Utilities Billion Cubic Meters N e w Y o r k C a l i f o r n i a I l l i n o i s A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Commercial Billion Cubic Meters I l l i n o i s C a l i f o r n i a N e w Y o r k A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Residential Billion Cubic Meters 11. Natural Gas Delivered to Consumers in the United States, 1996 Figure Volumes in Million Cubic Feet Energy Information Administration

133

Growth Strategies in the Telecommunications Industry - A Case Study of MTN Operations in Emerging Markets.  

E-Print Network (OSTI)

??This work endeavours to study deliberate as well as the emergent constituents of strategy making and implementation process within the telecommunications industry. Strategy when imposed… (more)

Quarshie, Dave

2011-01-01T23:59:59.000Z

134

Changing Trends in the Bulk Chemicals and Pulp and Paper Industries (released in AEO2005)  

Reports and Publications (EIA)

Compared with the experience of the 1990s, rising energy prices in recent years have led to questions about expectations of growth in industrial output, particularly in energy-intensive industries. Given the higher price trends, a review of expected growth trends in selected industries was undertaken as part of the production of Annual Energy Outlook 2005 (AEO). In addition, projections for the industrial value of shipments, which were based on the Standard Industrial Classification (SIC) system in AEO2004, are based on the North American Industry Classification System (NAICS) in AEO2005. The change in industrial classification leads to lower historical growth rates for many industrial sectors. The impacts of these two changes are highlighted in this section for two of the largest energy-consuming industries in the U.S. industrial sector-bulk chemicals and pulp and paper.

2005-01-01T23:59:59.000Z

135

Is water security necessary? An empirical analysis of the effects of climate hazards on national-level economic growth  

Science Journals Connector (OSTI)

...extremes leads to risk aversion and a...counterproductive reduction in investment, leading to a...industrial output, investment growth and political stability to all...infrastructure investment is by nature too risky. The greater risk, however, probably...

2013-01-01T23:59:59.000Z

136

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network (OSTI)

11 Figure 8. Energy Use Intensity (EUI) inECO III EF EFMA EIL EMC EPS EUI Average Annual Growth Ratethe energy use intensity (EUI). Typically, energy-efficiency

Sathaye, Jayant

2011-01-01T23:59:59.000Z

137

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

SciTech Connect

This report analyzed the potential for increasing energy efficiency and reducing greenhouse gas emissions (GHGs) in the non-residential building and the industrial sectors in India. The first two sections describe the research and analysis supporting the establishment of baseline energy consumption using a bottom up approach for the non residential sector and for the industry sector respectively. The third section covers the explanation of a modeling framework where GHG emissions are projected according to a baseline scenario and alternative scenarios that account for the implementation of cleaner technology.

Sathaye, Jayant; de la Rue du Can, Stephane; Iyer, Maithili; McNeil, Michael; Kramer, Klaas Jan; Roy, Joyashree; Roy, Moumita; Chowdhury, Shreya Roy

2011-04-15T23:59:59.000Z

138

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network (OSTI)

World Others Share Source: Murthy, 2007 3.3.3 Energy data The productionthe World Bank. 4.2.2 Industrial Production Intensity EnergyEnergy) Production Of crude steel Mt SEC GJ/t cs Coal Elect FO LPG Gas SEC World

Sathaye, Jayant

2011-01-01T23:59:59.000Z

139

A Survey of the U.S. ESCO Industry: Market Growth and Development from 2000 to 2006  

E-Print Network (OSTI)

renewable energy programs. ESCOs project continued growth,renewable energy programs. ESCOs are projecting continued growth,

Hopper, Nicole; Goldman, Charles; Gilligan, Donald; Singer, Terry E.; Birr, Dave

2007-01-01T23:59:59.000Z

140

NRELs Industry Growth Forum Boosts Clean Energy Commercialization Efforts (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL's Industry Growth Forum NREL's Industry Growth Forum Boosts Clean Energy Commercialization Efforts For more than a decade, the National Renewable Energy Laboratory's (NREL) Industry Growth Forum has been the nation's premier event for early-stage clean energy investment. The forum features presentations from the most innovative, promising, and emergent clean energy companies; provocative panels led by thought leaders; and organized networking opportunities. It is the perfect venue for growing cleantech companies to present their business to a wide range of investors. The caliber of investors and entrepreneurial companies that attend are just a part of what make the forum the preeminent clean energy investment event in the country. The forum's unique presentation format, rich educational content, and rigorous evaluation process leave

Note: This page contains sample records for the topic "industrial output growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Exploring open innovation approaches adopted by small and medium firms in emerging/growth industries: case studies from Daegu-Gyeongbuk region of South Korea  

Science Journals Connector (OSTI)

This study explores the status of open innovation in small and medium firms that operate in emerging or growth technological industries that have been designated as new growth engines in the Daegu-Gyeongbuk district in South Korea. Chesbrough (2003, 2006a,b) had demonstrated that the motive power of growth and development of big enterprises, be it in hi-tech or low-tech industries of USA, is 'open innovation'. Studies that followed examined the relationship between open innovation and industry performance had focused considerably on developed/mature industries. Though they analysed open innovation of small and medium firms, their analysis was limited to statistical relationships between open innovation and industry performances. Through the case studies this study's findings indicate that small and medium firms in South Korea seem to be dynamically adopting open innovation in the process of changing their business lines to more prospective hi-tech areas for their existence. It also seems that continuous growth and development could not be expected with closed innovation, and that the existence of small and medium firms can be threatened during verification period because it takes considerable time to get approval or support form markets or science and technology business circle.

Jin-Hyo Joseph Yun; Avvari V. Mohan

2012-01-01T23:59:59.000Z

142

China's industrial sector in an international context  

SciTech Connect

The industrial sector accounts for 40% of global energy use. In 1995, developing countries used an estimated 48 EJ for industrial production, over one-third of world total industrial primary energy use (Price et al., 1998). Industrial output and energy use in developing countries is dominated by China, India, and Brazil. China alone accounts for about 30 EJ (National Bureau of Statistics, 1999), or about 23% of world industrial energy use. China's industrial sector is extremely energy-intensive and accounted for almost 75% of the country's total energy use in 1997. Industrial energy use in China grew an average of 6.6% per year, from 14 EJ in 1985 to 30 EJ in 1997 (Sinton et al., 1996; National Bureau of Statistics, 1999). This growth is more than three times faster than the average growth that took place in the world during the past two decades. The industrial sector can be divided into light and heavy industry, reflecting the relative energy-intensity of the manufacturing processes. In China, about 80% of the energy used in the industrial sector is consumed by heavy industry. Of this, the largest energy-consuming industries are chemicals, ferrous metals, and building materials (Sinton et al., 1996). This paper presents the results of international comparisons of production levels and energy use in six energy-intensive subsectors: iron and steel, aluminum, cement, petroleum refining, ammonia, and ethylene. The sectoral analysis results indicate that energy requirements to produce a unit of raw material in China are often higher than industrialized countries for most of the products analyzed in this paper, reflecting a significant potential to continue to improve energy efficiency in heavy industry.

Price, Lynn; Worrell, Ernst; Martin, Nathan; Lehman, Bryan; Sinton, Jonathan

2000-05-01T23:59:59.000Z

143

Access to affordable and reliable energy has been a cornerstone of the world's increasing prosperity and economic growth since the beginning of the industrial revolution. Our use of energy in the twenty-first century must also be  

E-Print Network (OSTI)

prosperity and economic growth since the beginning of the industrial revolution. Our use of energy to create the foundation for this new industrial revolution. The talk will also discuss policies public. F E A T U R I N G A New Industrial Revolution for a Sustainable Energy Future SCOB 228 · Friday

144

Common components of industrial metal-working fluids as sources of carbon for bacterial growth. [Acinetobacter; Pseudomonas  

SciTech Connect

Water-based metal-working fluids in large-scale industrial operations consist of many components, but in the most commonly used formulations only three classes of components are present in high enough concentrations that they could, in principle, provide enough carbon to support the high bacterial densities (10/sup 9/ CFU/ml) often observed in contaminated factory fluids. These components are petroleum oil (1 to 5%), petroleum sulfonates (0.1 to 0.5%), and fatty acids (less than 0.1%, mainly linoleic and oleic acids supplied as tall oils). Pure strains of predominating bacteria were isolated from contaminated reservoirs of two metal-working systems and randomly selected 12 strains which were tested in liquid culture for growth with each of the metal-working fluid components as the sole source of carbon. Of the 12 strains, 7 reached high density (10/sup 9/ CFU/ml from an initial inoculum of less than 2 x 10/sup 3/) in 24 h, and 1 strain did the same in 48 h with 0.05% oleic or linoleic acid as the carbon source. These same strains also grew on 1% naphthenic petroleum oil but required up to 72 h to reach densities near 10/sup 8/ CFU/ml. One strain grew slightly and the others not at all on the petroleum sulfonates. The four remaining strains did not grow on any of the components, even though they were among the predominating bacteria in the contaminated system. Of the seven strains that grew best on the fatty acids and on the naphthenic petroleum oil, five were tentatively identified as Acinetobacter species and two were identified as Pseudomonas species. Four of the bacteria that did not grow were tentatively identified as species of Pseudomonas, and one could not be identified.

Foxall-vanAken, S.; Brown, J.A. Jr.; Young, W.; Salmeen, I.; McClure, T.; Napier, S. Jr.; Olsen, R.H.

1986-06-01T23:59:59.000Z

145

Industry Alliance Industry Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century October, 2010...

146

Small firm growth in the Australian biotechnology industry: a study of obstacles to the commercialisation of Australian biotechnology research.  

E-Print Network (OSTI)

??Bibliography: p. 209-223. Introduction  – The biotechnology industry  – Literature review  – Methodology  – Case studies  – Discussion  – Conclusion. Australia has a strong record… (more)

Bondarew, Veronica

2007-01-01T23:59:59.000Z

147

The Gas Industry  

Science Journals Connector (OSTI)

... the total output of towns' gas in Great Britain, distributes annually approximately as much energy as the whole of the electrical undertakings in the country. The industry has reason ... any actual thermal process, and the operations of the gas industry are not outside the ambit of the second law of thermodynamics, high though the efficiency of the carbonising process ...

J. S. G. THOMAS

1924-04-26T23:59:59.000Z

148

Japan's Rayon Industry  

Science Journals Connector (OSTI)

THE RAYON INDUSTRY of Japan has constantly expanded for the past eight years at a pace which has surpassed the development of all the other manufacturing industries of the Empire. At the end of 1926, the combined total output of rayon companies in this ...

KEHTI SISIDO

1934-08-10T23:59:59.000Z

149

Reliable Gas Turbine Output: Attaining Temperature Independent Performance  

E-Print Network (OSTI)

of availability, it is the major option for future power generation. One inherent disadvantage of gas turbines is the degradation of output as the ambient air temperature increases. This reduction in output during times of peak load create a reliability..., power generation for offshore platforms, utility peak load 58 ESL-IE-92-04-10 Proceedings from the 14th National Industrial Energy Technology Conference, Houston, TX, April 22-23, 1992 power generation, emergency power, ship propulsion, and private...

Neeley, J. E.; Patton, S.; Holder, F.

150

Carbon dioxide emissions, economic growth, industrial structure, and technical efficiency: Empirical evidence from Ghana, Senegal, and Morocco on the causal dynamics  

Science Journals Connector (OSTI)

This paper investigated the short-run causal relationships and the long-run equilibrium relationships among carbon dioxide emissions, economic growth, technical efficiency, and industrial structure for three African countries. Using Bounds cointegration approach the result showed evidence of multiple long-run equilibrium relationships for Ghana and Senegal but a one-way long-run equilibrium relationship for Morocco. The result from the Toda and Yomamoto granger causality test showed a mix of bidirectional, unidirectional, and neutral relationships for all countries. Whilst in Senegal carbon dioxide emission was not found to be a limiting factor to economic growth; it was found to act as a limiting factor to economic growth in Morocco and Ghana. Lastly, the result from the variance decomposition analysis revealed that economic growth contributes largely to changes in future carbon dioxide emissions in Senegal and Morocco whilst in Ghana technical efficiency contributes largely to changes in future variations in carbon dioxide emissions. These results have important policy implications for these countries' energy efficiency systems.

Philip Kofi Adom; William Bekoe; Franklin Amuakwa-Mensah; Justice Tei Mensah; Ebo Botchway

2012-01-01T23:59:59.000Z

151

Enhanced performance CCD output amplifier  

DOE Patents (OSTI)

A low-noise FET amplifier is connected to amplify output charge from a che coupled device (CCD). The FET has its gate connected to the CCD in common source configuration for receiving the output charge signal from the CCD and output an intermediate signal at a drain of the FET. An intermediate amplifier is connected to the drain of the FET for receiving the intermediate signal and outputting a low-noise signal functionally related to the output charge signal from the CCD. The amplifier is preferably connected as a virtual ground to the FET drain. The inherent shunt capacitance of the FET is selected to be at least equal to the sum of the remaining capacitances.

Dunham, Mark E. (Los Alamos, NM); Morley, David W. (Santa Fe, NM)

1996-01-01T23:59:59.000Z

152

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model's parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. (Lawrence Berkeley Lab., CA (United States) Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.); Hwang, R. (Lawrence Berkeley Lab., CA (United States))

1992-02-01T23:59:59.000Z

153

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model`s parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. [Lawrence Berkeley Lab., CA (United States)]|[Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics]|[Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Hwang, R. [Lawrence Berkeley Lab., CA (United States)

1992-02-01T23:59:59.000Z

154

America's Wind Industry Reaches Record Highs  

Office of Energy Efficiency and Renewable Energy (EERE)

Sharing key findings from two new Energy Department reports that highlight the record growth of America's wind industry.

155

Carbon dioxide emissions, impact on Malaysia's manufacturing productivity growth  

Science Journals Connector (OSTI)

The methods used to measure productivity growth generally ignore the pollutants that are produced by the industrial processes. For example, pollutant emissions generated as undesirable output, apart from the main output of Malaysia's manufacturing sector, are excluded from the productivity accounting framework. This study aims at an extended productivity measure that takes pollutants into account by internalisation of Carbon dioxide (CO2) as a measure of air pollutant emissions into the production function, as an unpriced input. The results show that there was a slowdown in the contribution of total factor productivity (TFP) growth in general, and a negative impact of CO2 emissions produced by the sector in particular, compared to other productivity indicators of the sector when CO2 is internalised in the models.

Elsadig Musa Ahmed

2006-01-01T23:59:59.000Z

156

Uranium industry annual 1993  

SciTech Connect

Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

Not Available

1994-09-01T23:59:59.000Z

157

Energy Input Output Calculator | Open Energy Information  

Open Energy Info (EERE)

Input Output Calculator Input Output Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Input-Output Calculator Agency/Company /Organization: Department of Energy Sector: Energy Focus Area: Energy Efficiency Resource Type: Online calculator User Interface: Website Website: www2.eere.energy.gov/analysis/iocalc/Default.aspx Web Application Link: www2.eere.energy.gov/analysis/iocalc/Default.aspx OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Language: English References: EERE Energy Input-Output Calculator[1] The Energy Input-Output Calculator (IO Calculator) allows users to estimate the economic development impacts from investments in alternate electricity generating technologies. About the Calculator The Energy Input-Output Calculator (IO Calculator) allows users to estimate

158

Risk analysis of the South African biotechnology industry.  

E-Print Network (OSTI)

??Biotechnology as an industry has come to the fore in the last 2 decades. It is a fast developing industry that offers significant growth opportunities… (more)

Tong, Rene Clarisse

2008-01-01T23:59:59.000Z

159

Industrial Engineering Industrial Advisory Board  

E-Print Network (OSTI)

Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

Gelfond, Michael

160

Virtual R&D Teams: A potential growth of education-industry collaboration Issues: Fal l 2011 -Vol um e 9 Issue 4  

E-Print Network (OSTI)

collaboration is fast becoming the norm in education and industry [1]. Information technology (IT) creates many compete to achieve tcompetitive advantage. Information systems and technology allow companies of virtual teams and its relationships with SMEs, and then briefly explore the research methodology

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "industrial output growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Industry Sponsored Research | Partnerships | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnering Mechanism Sample Sponsored Research Agreement SBIR-STTR Support Economic Development Industrial Partnerships University Partnerships Events and Conferences Success Stories Video Newsletters Staff Contacts Partnerships Home | Connect with ORNL | For Industry | Partnerships | Sponsored Research SHARE Sponsored Research Fiber Optic Research The Oak Ridge National Laboratory is a United States Department of Energy national laboratory, operated under contract by UT-Battelle, LLC. The laboratory's 1500+ research scientists and engineers conduct a vigorous program of scientific discovery and technology development, and ORNL is eager to engage industry in partnerships to help translate its research output into market impact and support for U.S. competitiveness. Companies wishing to learn about the research being

162

Iron and steel industry process model  

SciTech Connect

The iron and steel industry process model depicts expected energy-consumption characteristics of the iron and steel industry and ancillary industries for the next 25 years by means of a process model of the major steps in steelmaking, from ore mining and scrap recycling to the final finishing of carbon, alloy, and stainless steel into steel products such as structural steel, slabs, plates, tubes, and bars. Two plant types are modeled: fully integrated mills and mini-mills. User-determined inputs into the model are as follows: projected energy and materials prices; projected costs of capacity expansion and replacement; energy-conserving options, both operating modes and investments; the internal rate of return required on investment; and projected demand for finished steel. Nominal input choices in the model for the inputs listed above are as follows: National Academy of Sciences Committee on Nuclear and Alternative Energy Systems Demand Panel nominal energy-price projections for oil, gas, distillates, residuals, and electricity and 1975 actual prices for materials; actual 1975 costs; new technologies added; 15% after taxes; and 1975 actual demand with 1.5%/y growth. The model reproduces the base-year (1975) actual performance of the industry; then, given the above nominal input choices, it projects modes of operation and capacity expansion that minimize the cost of meeting the given final demands for each of 5 years, each year being the midpoint of a 5-year interval. The output of the model includes the following: total energy use and intensity (Btu/ton) by type, by process, and by time period; energy conservation options chosen; utilization rates for existing capacity; capital-investment decisions for capacity expansion.

Sparrow, F.T.; Pilati, D.; Dougherty, T.; McBreen, E.; Juang, L.L.

1980-01-01T23:59:59.000Z

163

On the use of fuzzy inference techniques in assessment models: part II: industrial applications  

Science Journals Connector (OSTI)

In this paper, we study the applicability of the monotone output property and the output resolution property in fuzzy assessment models to two industrial Failure Mode and Effect Analysis (FMEA) problems. First, t...

Kai Meng Tay; Chee Peng Lim

2008-09-01T23:59:59.000Z

164

Quantifying potential industrial symbiosis : a case study of brick manufacturing  

E-Print Network (OSTI)

Humanity is currently on an unsustainable path of growth and development. One tool to address sustainability in industrial activities is Industrial Symbiosis, which is the study of cooperation across industry boundaries ...

Hodge, Matthew M

2007-01-01T23:59:59.000Z

165

Anisotropic Grid Adaptation for Multiple Aerodynamic Outputs  

E-Print Network (OSTI)

Anisotropic grid–adaptive strategies are presented for viscous flow simulations in which the accurate prediction of multiple aerodynamic outputs (such as the lift, drag, and moment coefficients) is required from a single ...

Venditti, David A.

166

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

167

SOLAR ENERGY (conditionally accepted 1/2010) QUANTIFYING PV POWER OUTPUT VARIABILITY  

E-Print Network (OSTI)

SOLAR ENERGY (conditionally accepted 1/2010) QUANTIFYING PV POWER OUTPUT VARIABILITY Thomas E create major problems that will require major mitigation efforts. #12;SOLAR ENERGY (conditionally industry believe it could constrain the penetration of gridconnected PV. The U.S. Department of Energy

Perez, Richard R.

168

Industrial Revolutions and Consumption: A Common Model to the Various Periods of Industrialization  

E-Print Network (OSTI)

Industrial Revolutions and Consumption: A Common Model to the Various Periods of Industrialization and establish a plausible link between consumption structure evolutions and industrial revolutions. In particular, we show that an industrial revolution starts with a "smithian growth process", which is demand

Boyer, Edmond

169

Fostering Growth | Department of Energy  

Office of Environmental Management (EM)

Fostering Growth Fostering Growth The solar energy industry in the United States is growing rapidly as the price of solar panels has decreased over the past decade. U.S. solar...

170

NAO Climatology: ROMS output is saved once every 3 days and written to an output file  

E-Print Network (OSTI)

NAO Climatology: ROMS output is saved once every 3 days and written to an output file every 6 days Output after 30 days in 6th file. The Starting Month = July Example: roms_low_his_levts0570dg.0120.nc.gz : July 3 roms_low_his_levts0570dg.0122.nc.gz : July 6 and July 9 roms_low_his_levts0570dg.0124.nc

Gangopadhyay, Avijit

171

Boosting America's Hydropower Output | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boosting America's Hydropower Output Boosting America's Hydropower Output Boosting America's Hydropower Output October 9, 2012 - 2:10pm Addthis The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado. The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado. City of Boulder employees celebrate the completion of the Boulder Canyon Hydroelectric Modernization project. | Photo courtesy of the city of Boulder, Colorado. City of Boulder employees celebrate the completion of the Boulder Canyon Hydroelectric Modernization project. | Photo courtesy of the city of Boulder, Colorado. The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado.

172

PV output smoothing with energy storage.  

SciTech Connect

This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.

Ellis, Abraham; Schoenwald, David Alan

2012-03-01T23:59:59.000Z

173

Industry @ ALS  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry @ ALS Industry @ ALS Industry @ ALS Concrete Industry Benefits from Ancient Romans and the ALS Print Thursday, 17 October 2013 14:24 New insights into the Romans' ingenious concrete harbor structures emerging from ALS beamline research could move the modern concrete industry toward its goal of a reduced carbon footprint. Summary Slide Read more... Moving Industry Forward: Finding the Environmental Opportunity in Biochar Print Thursday, 12 September 2013 08:41 Using ALS Beamlines 10.3.2 and 8.3.2, the Environmental Protection Agency (EPA) is currently investigating how biochar sorbs environmental toxins and which kinds of biochar are the most effective. The possibilities for widespread use have already launched entrepreneurial commercial ventures. Summary Slide

174

Gesture output: eyes-free output using a force feedback touch surface  

Science Journals Connector (OSTI)

We propose using spatial gestures not only for input but also for output. Analogous to gesture input, the proposed gesture output moves the user's finger in a gesture, which the user then recognizes. We use our concept in a mobile scenario where a motion ... Keywords: eyes free, force feedback, gestures, touch

Anne Roudaut; Andreas Rau; Christoph Sterz; Max Plauth; Pedro Lopes; Patrick Baudisch

2013-04-01T23:59:59.000Z

175

Industrial Hygienist  

Energy.gov (U.S. Department of Energy (DOE))

A successful candidate in this position wil l serve as an Industrial Hygienist in the Operations Division, providing technical oversight of the Pacific Northwest National Laboratory contractors...

176

Industrial Users  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Users - Media Publications and Information The Invisible Neutron Threat Neutron-Induced Failures in Semiconductor Devices Nuclear Science Research at the LANSCE-WNR...

177

Industrial Users  

NLE Websites -- All DOE Office Websites (Extended Search)

on altitude. This large flux allows testing of semiconductor devices at greatly accelerated rates. Industry users are invited to contact Steve Wender, phone:505-667-1344 or...

178

Single Inductor Dual Output Buck Converter  

E-Print Network (OSTI)

of value 3V. The main focus areas are low cross regulation between the outputs and supply of completely independent load current levels while maintaining desired values (1.2V,1.5 V) within well controlled ripple levels. Dynamic hysteresis control is used...

Eachempatti, Haritha

2010-07-14T23:59:59.000Z

179

Bioenergy technology balancing energy output with environmental  

E-Print Network (OSTI)

E2.3 Bioenergy technology ­ balancing energy output with environmental benefitsbenefits John standards #12;Is it right to grow bioenergy? Or How much bioenergy production is right? #12;Historical bioenergy Farmers historically used 25% land for horse feed #12;Energy crops are `solar panels' Solar energy

Levi, Ran

180

Modeling Multi Output Filtering Effects in PCMOS  

E-Print Network (OSTI)

Modeling Multi Output Filtering Effects in PCMOS Anshul Singh*, Arindam Basu, Keck-Voon Ling, Nanyang Technological University (NTU), Singapore *NTU-Rice Institute of Sustainable and Applied Infodynamics (ISAID), NTU, Singapore $School of Computer Engineering, NTU, Singapore §School of ECE, Georgia

Mooney, Vincent

Note: This page contains sample records for the topic "industrial output growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Title Slide "The broadband acoustic output of  

E-Print Network (OSTI)

Title Slide "The broadband acoustic output of marine seismic airgun sources" Les Hatton CISM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #12;Seismic sources ­ marine airguns Introduction Modelling Marine Life Impact Where next Overview #12 Normal speed surface movie of airgun firing Courtesy IO limited #12;Seismic sources ­ marine airguns

Hatton, Les

182

Industrial microbiology  

Science Journals Connector (OSTI)

...include the fruit, wine, baking, milling, dairy, and distill-ing industries...fructose known as high fruc-tose corn syrup. Between 500,000 and 1...glucose isomerase has permitted the corn wet milling industry to capture 30 percent of...

AL Demain

1981-11-27T23:59:59.000Z

183

Gasification world database 2007. Current industry status  

SciTech Connect

Information on trends and drivers affecting the growth of the gasification industry is provided based on information in the USDOE NETL world gasification database (available on the www.netl.doe.gov website). Sectors cover syngas production in 2007, growth planned through 2010, recent industry changes, and beyond 2010 - strong growth anticipated in the United States. A list of gasification-based power plant projects, coal-to-liquid projects and coal-to-SNG projects under consideration in the USA is given.

NONE

2007-10-15T23:59:59.000Z

184

The Homopolar Generator as a Pulsed Industrial Power Supply  

E-Print Network (OSTI)

high current, low voltage electrical pulses. The homopolar generator is allowing numerous industrial joining and forming processes to be extended to larger work pieces and higher power output capabilities than were previously possible. The basic...

Weldon, J. M.; Weldon, W. F.

1979-01-01T23:59:59.000Z

185

An examination of the relationship between energy consumption and performance of transportation sector in Malaysia: output multipliers approach  

Science Journals Connector (OSTI)

The objective of the current study is to investigate the energy consumption and the performance of Malaysia's transportation sector. It applied output multiplier approach which is based on input-output model. Three input-output tables of Malaysia covering the 1991, 2000 and 2005 periods were used. The results indicate significant changes in the output multipliers of the transportation sector for the (1991-2005) period. Also, the transportation-to-energy subsector multipliers were found to increase over time. The increasing importance of transportation sector to the development of Malaysian economy resulted in a noticeable increase in the consumption of each energy subsector's output especially 'petrol and coal industries' products. Based on the research findings, several policy implications were suggested for the betterment of both sectors' performance and generally for the improvement of Malaysian economy.

Hussain Ali Bekhet; Azlina Abdullah

2013-01-01T23:59:59.000Z

186

Administrator Ready Reference Guide Customizing an Output Style  

E-Print Network (OSTI)

may be in various sections of the instructions. Some things to look for: - line spacing Preview Utility (Tools, Preview Output Styles) or by simply opening the Output Style Editor (Bibliography, Edit button -- to the right of the output style drop- down). The Output Style Preview Utility

University of Technology, Sydney

187

Generalized Input-Output Inequality Systems  

SciTech Connect

In this paper two types of generalized Leontief input-output inequality systems are introduced. The minimax properties for a class of functions associated with the inequalities are studied. Sufficient and necessary conditions for the inequality systems to have solutions are obtained in terms of the minimax value. Stability analysis for the solution set is provided in terms of upper semi-continuity and hemi-continuity of set-valued maps.

Liu Yingfan [Department of Mathematics, Nanjing University of Post and Telecommunications, Nanjing 210009 (China)], E-mail: yingfanliu@hotmail.com; Zhang Qinghong [Department of Mathematics and Computer Science, Northern Michigan University, Marquette, MI 49855 (United States)], E-mail: qzhang@nmu.edu

2006-09-15T23:59:59.000Z

188

Characterizing detonator output using dynamic witness plates  

SciTech Connect

A sub-microsecond, time-resolved micro-particle-image velocimetry (PIV) system is developed to investigate the output of explosive detonators. Detonator output is directed into a transparent solid that serves as a dynamic witness plate and instantaneous shock and material velocities are measured in a two-dimensional plane cutting through the shock wave as it propagates through the solid. For the case of unloaded initiators (e.g. exploding bridge wires, exploding foil initiators, etc.) the witness plate serves as a surrogate for the explosive material that would normally be detonated. The velocity-field measurements quantify the velocity of the shocked material and visualize the geometry of the shocked region. Furthermore, the time-evolution of the velocity-field can be measured at intervals as small as 10 ns using the PIV system. Current experimental results of unloaded exploding bridge wire output in polydimethylsiloxane (PDMS) witness plates demonstrate 20 MHz velocity-field sampling just 300 ns after initiation of the wire.

Murphy, Michael John [Los Alamos National Laboratory; Adrian, Ronald J [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

189

Industry Perspective  

Energy.gov (U.S. Department of Energy (DOE))

Fuel cell and biogas industries perspectives. Presented by Mike Hicks, Fuel Cell and Hydrogen Energy Association, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

190

EIA - 2010 International Energy Outlook - Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial International Energy Outlook 2010 Industrial Sector Energy Consumption Worldwide industrial energy consumption increases by 42 percent, or an average of 1.3 percent per year, from 2007 to 2035 in the IEO2010 Reference case. Ninety-five percent of the growth occurs in non-OECD nations. Overview The world's industries make up a diverse sector that includes manufacturing, agriculture, mining, and construction. Industrial energy demand varies across regions and countries, depending on the level and mix of economic activity and technological development, among other factors. Energy is consumed in the industrial sector for a wide range of activities, such as processing and assembly, space conditioning, and lighting. Industrial energy use also includes natural gas and petroleum products used as feedstocks to produce non-energy products, such as plastics. In aggregate, the industrial sector uses more energy than any other end-use sector, consuming about one-half of the world's total delivered energy.

191

Off-set stabilizer for comparator output  

DOE Patents (OSTI)

A stabilized off-set voltage is input as the reference voltage to a comparator. In application to a time-interval meter, the comparator output generates a timing interval which is independent of drift in the initial voltage across the timing capacitor. A precision resistor and operational amplifier charge a capacitor to a voltage which is precisely offset from the initial voltage. The capacitance of the reference capacitor is selected so that substantially no voltage drop is obtained in the reference voltage applied to the comparator during the interval to be measured.

Lunsford, James S. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

192

Electronics Industry: Markets & Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronics Industry: Markets & Issues Electronics Industry: Markets & Issues Speaker(s): William M. Smith Date: March 17, 1998 - 12:00pm Location: 90-3148 Seminar Host/Point of Contact: Richard Sextro Electronics represents a unique opportunity to get in on the beginning of an incredible growth spurt, for an already huge industry; $400 billion/year in the U.S. now, moving up by 10%-20% per year in several sectors. This is quite unlike many other U.S. industrial sectors, which often involve mature businesses requiring assistance to stay afloat. The potential for forming business partnerships with electronics firms to deal with issues in energy efficiency, water availability/quality, air quality, productivity/yield, HVAC, power quality, wastewater, air emissions, etc., is staggering. The industrys oligopic nature provides serious opportunities

193

Essays on Productivity Change, Growth, and Development  

E-Print Network (OSTI)

: To replicate an industrial revolution: from exogenous to endogenous growth In the last quarter of the second millennium many countries experienced, simultane- ously, an industrial revolution (an exponential increase

Sadeh, Norman M.

194

Growth in Solar Means Growth in Ohio | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Growth in Solar Means Growth in Ohio Growth in Solar Means Growth in Ohio Growth in Solar Means Growth in Ohio October 6, 2010 - 2:26pm Addthis Lorelei Laird Writer, Energy Empowers Editor's Note: Yesterday Secretary Chu announced that solar panels and a solar hot water heater will be added to the White House by the end of next spring. This entry is cross-posted from the Energy Empowers blog and deals with how the continued growth of solar power is not only a boon for industry, but for local economies as well. The solar industry saw growth in 2010. Market research company Solarbuzz reports that global demand soared by 54 percent in the second quarter of 2010. The research firm reports that in the United States, the annual number of total watts installed moved from 485 MW in all of 2009 to 2.3 GW

195

Growth in Solar Means Growth in Ohio | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Growth in Solar Means Growth in Ohio Growth in Solar Means Growth in Ohio Growth in Solar Means Growth in Ohio October 6, 2010 - 2:26pm Addthis Lorelei Laird Writer, Energy Empowers Editor's Note: Yesterday Secretary Chu announced that solar panels and a solar hot water heater will be added to the White House by the end of next spring. This entry is cross-posted from the Energy Empowers blog and deals with how the continued growth of solar power is not only a boon for industry, but for local economies as well. The solar industry saw growth in 2010. Market research company Solarbuzz reports that global demand soared by 54 percent in the second quarter of 2010. The research firm reports that in the United States, the annual number of total watts installed moved from 485 MW in all of 2009 to 2.3 GW

196

Industrial Radiology  

Science Journals Connector (OSTI)

... chief application of industrial radiology in Norway is in the examination of pipe welds in hydroelectric plant. H. Vinter (Denmark), director of the Akademiet for de Technische Videns ... and to compare various methods of non-destructive testing. He gave results of tests on turbine disk forgings of austenitic steel which showed satisfactory agreement between radiography, ultrasonic examination and ...

1950-11-18T23:59:59.000Z

197

The Production Tax Credit is Key to a Strong U.S. Wind Industry  

Energy.gov (U.S. Department of Energy (DOE))

New report finds the production tax credit has been critical to the growth of the U.S. wind industry.

198

New Advanced System Utilizes Industrial Waste Heat to Power Water...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Water Reuse ADVANCED MANUFACTURING OFFICE New Advanced System Utilizes Industrial Waste Heat to Power Water Purification Introduction As population growth and associated factors...

199

Capital project development in biotechnology industry  

E-Print Network (OSTI)

The biotechnology industry has experienced fast growth during the first 30 years of its existence but is now reaching a stage of maturity. Companies are being challenged by weak pipelines and patent expirations, as well ...

Kristinsdottir, Asbjorg

2008-01-01T23:59:59.000Z

200

Essays on India’s Economic Growth  

E-Print Network (OSTI)

initial euphoria about liberalisation, a revisionist viewand industrial policy liberalisation. Three, growth in thebuilt up under the pre-liberalisation policy regime), their

Singh, Nirvikar

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial output growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Application of computer voice input/output  

SciTech Connect

The advent of microprocessors and other large-scale integration (LSI) circuits is making voice input and output for computers and instruments practical; specialized LSI chips for speech processing are appearing on the market. Voice can be used to input data or to issue instrument commands; this allows the operator to engage in other tasks, move about, and to use standard data entry systems. Voice synthesizers can generate audible, easily understood instructions. Using voice characteristics, a control system can verify speaker identity for security purposes. Two simple voice-controlled systems have been designed at Los Alamos for nuclear safeguards applicaations. Each can easily be expanded as time allows. The first system is for instrument control that accepts voice commands and issues audible operator prompts. The second system is for access control. The speaker's voice is used to verify his identity and to actuate external devices.

Ford, W.; Shirk, D.G.

1981-01-01T23:59:59.000Z

202

Coordinated Output Regulation of Multiple Heterogeneous Linear Systems  

E-Print Network (OSTI)

, the generalizations of coordination of multiple linear dynamic systems to the cooperative output regulation problemCoordinated Output Regulation of Multiple Heterogeneous Linear Systems Ziyang Meng, Tao Yang, Dimos V. Dimarogonas, and Karl H. Johansson Abstract-- The coordinated output regulation problem

Dimarogonas, Dimos

203

Geothermal Energy Growth Continues, Industry Survey Reports ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

economic benefits, according to GEA. "These new projects will result in the infusion of roughly 15 billion in capital investment in the western states, and create 7,000...

204

Future growth in the Texas dairy industry  

E-Print Network (OSTI)

. In these supply equations, regressor variables included the prices of inputs, such as feed and labor; the prices received by farmers per hundred weight of fluid milk; the returns to alternative enterprises, as measured by beef prices and non-agricultural wages... and the specialization of skilled labor. This monograph analyzed how specialization and vertical integration in the dairy subsector have led to an increase in supply contracts between producers and processors, processors and distributors, and processors and retailers...

Seton, Nora Janssen

2012-06-07T23:59:59.000Z

205

Regulatory Reform to Promote Clean Energy: The Potential of Output-Based Emissions Standards  

SciTech Connect

Barriers to industrial energy-efficient technologies hinder their use. A number of EPA analyses and industrial experts have found that the utilization of input-based emissions standards (measured in parts-per-million or pounds/MMBtu) in the Clean Air Act creates a regulatory barrier to the installation and deployment of technologies that emit fewer criteria pollutants and use energy more efficiently. Changing emission management strategies to an output-based emissions standard (measured in tons of pollutant emitted) is a way to ameliorate some of these barriers. Combined heat and power (CHP) is one of the key technologies that would see increased industrial application if the emissions standards were modified. Many states have made this change since the EPA first approved it in 2000, although direction from the Federal government could speed implementation modifications. To analyze the national impact of accelerated state adoption of output-based standards on CHP technologies, this paper uses detailed National Energy Modeling System (NEMS) and spreadsheet analysis illustrating two phased-in adoption scenarios for output-based emissions standards in the industrial sector. Benefit/cost metrics are calculated from a private and public perspective, and also a social perspective that considers the criteria and carbon air pollution emissions. These scenarios are compared to the reference case of AEO 2010 and are quite favorable, with a social benefit-cost ratio of 16.0 for a five-year phase-in scenario. In addition, the appropriateness of the Federal role, applicability, technology readiness, and administrative feasibility are discussed.

Cox, Matthew [Georgia Institute of Technology] [Georgia Institute of Technology; Brown, Dr. Marilyn Ann [Georgia Institute of Technology] [Georgia Institute of Technology; Jackson, Roderick K [ORNL] [ORNL

2011-01-01T23:59:59.000Z

206

Output power characteristics and performance of TOPAZ II Thermionic Fuel Element No. 24  

SciTech Connect

A final report on the output power characteristics and capabilities of single cell TOPAZ II Thermionic Fuel Element (TFE) No. 24 is presented. Thermal power tests were conducted for over 3000 hours to investigate converter performance under normal and adverse operating conditions. Experiments conducted include low power testing, high power testing, air introduction to the interelectrode gap, collector temperature optimization, thermal modeling, and output power characteristic measurements. During testing, no unexpected degradation in converter performance was observed. The TFE has been removed from the test stand and returned to Scientific Industrial Association {open_quote}{open_quote}LUCH{close_quote}{close_quote} for materials analysis and report. This research was conducted at the Thermionic System Evaluation Test (TSET) Facility at the New Mexico Engineering Research Institute (NMERI) as a part of the Topaz International Program (TIP) by the Air Force Phillips Laboratory (PL). {copyright} {ital 1996 American Institute of Physics.}

Luchau, D.W.; Bruns, D.R. [Team Specialty Services, Inc., TOPAZ International Program, 901 University Blvd., SE, Albuquerque, New Mexico 87106 (United States); Izhvanov, O.; Androsov, V. [JV INERTEK, Scientific Industrial Association ``Luch``, 24 Zheleznodorozhnaya, Podolsk, (Russia) 142100

1996-03-01T23:59:59.000Z

207

Mechanical & Industrial Engineering  

E-Print Network (OSTI)

Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board October 15, 2010 #12;Mechanical & Industrial Engineering 2 MIE Dorothy Adams Undergraduate/Graduate Secretary David Schmidt Associate Professor & Graduate Program Director #12;Mechanical & Industrial Engineering 3 MIE James Rinderle

Mountziaris, T. J.

208

Industry Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

idatech.com idatech.com info@idatech.com 63065 NE 18 th Street Bend, OR 97701 541.383.3390 Industry Perspective Biogas and Fuel Cell Workshop National Renewable Energy Laboratory June 11 - 13, 2012 Mike Hicks Chairman of the Board of Directors, FCHEA Treasurer of the Board of Directors, FCS&E Engineering Manager, Technology Development & Integration, IdaTech Outline 1. Critical Factors * Fuel Purity * Fuel Cost 2. Natural Gas - The Wild Card & Competition 3. IdaTech's Experience Implementing Biofuel Critical Factor - Fuel Purity All fuel cell system OEMs have fuel purity specifications * Independent of * Raw materials or feed stocks * Manufacturing process * Depends on * Fuel processor technology * Fuel cell technology - low temp PEM versus SOFC

209

Compact waveguide power divider with multiple isolated outputs  

DOE Patents (OSTI)

A waveguide power divider (10) for splitting electromagnetic microwave power and directionally coupling the divided power includes an input waveguide (21) and reduced height output waveguides (23) interconnected by axial slots (22) and matched loads (25) and (26) positioned at the unused ends of input and output guides (21) and (23) respectively. The axial slots are of a length such that the wave in the input waveguide (21) is directionally coupled to the output waveguides (23). The widths of input guide (21) and output guides (23) are equal and the width of axial slots (22) is one half of the width of the input guide (21).

Moeller, Charles P. (Del Mar, CA)

1987-01-01T23:59:59.000Z

210

Engineering Industrial & Systems  

E-Print Network (OSTI)

Industrial Engineering Department of Industrial & Systems Engineering Leslie Monplaisir, Ph powerful tool sets used in industry today. -Brent Gillett, BSIE 2007 Advanced Planning Engineer at BMW I is available at: http://ise.wayne.edu/bs-industrial/index What is Industrial Engineering? The industrial

Berdichevsky, Victor

211

INDUSTRIAL ENGINEERING Industrial engineering is concerned  

E-Print Network (OSTI)

INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. Industrial engineers design and run the factories and systems

212

INDUSTRIAL ENGINEERING Industrial engineering is concerned  

E-Print Network (OSTI)

INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. The focus of industrial engineering is on process improvement

213

GAMS program used to estimate capacity output using a distance function with both good and bad output, variable returns to scale and weak disposability of the bad outputs.  

E-Print Network (OSTI)

." VIMS Marine resource Report N. 2007-6. August 2007. Author: John B. Walden NMFS/NEFSC 166 Water St(obs) weights ; POSITIVE Variable weight, lambda; EQUATIONS CONSTR1(GOUTPUT, OBS) DEA constraint for each output

214

Analysis of photovoltaic module energy output under operating conditions in South Africa  

SciTech Connect

South Africa does not have any industry standard methodology to evaluate photovoltaic (PV) modules for energy production. The aim of this study is to characterize the energy production of PV modules deployed outdoors at the University of Port Elizabeth (UPE), Summerstrand, South Africa with the view of facilitating such a standard. The system developed for this study was designed to monitor the energy production of seven PV modules under normal operating conditions. An analysis of energy production of three of the PV modules under test, while operating under prevailing outdoor conditions, is given. Measured energy output is also compared with that predicted using an energy model.

Dyk, E.E. van; Meyer, E.L.; Scott, B.J.; O`Connor, D.A.; Wessels, J.B. [Univ. of Port Elizabeth (South Africa). Dept. of Physics

1997-12-31T23:59:59.000Z

215

Entertaining Malthus: Bread, Circuses and Economic GrowthI  

E-Print Network (OSTI)

historical facts. The widely-held belief that growth prior to the Industrial Revolution was flat is based Growth, Technology Change, Industrial Revolution I First Version: June 20, 2013. We are grateful to NSF capita consumption that has taken place since the Industrial Revolution. Rather, it is asserted

Bandyopadhyay, Antar

216

Constellation Shaping for Communication Channels with Quantized Outputs  

E-Print Network (OSTI)

average energy are selected more frequently than constellations with higher energy. However, the resultsConstellation Shaping for Communication Channels with Quantized Outputs Chandana Nannapaneni signal constellation and the output is quantized by a uniform scalar quantizer. The goal is to jointly

Valenti, Matthew C.

217

ANALOG-DIGITAL INPUT OUTPUT SYSTEM FOR APPLE CO  

E-Print Network (OSTI)

ADIOS ANALOG-DIGITAL INPUT OUTPUT SYSTEM FOR APPLE CO NATIONAL RADIO ASTRONOMY OBSERVATORY TABLES ADIOS - ANALOG-DIGITAL INPUT OUTPUT SYSTEM FOR APPLE COMPUTER TABLE FOR CONTENTS Page I Module and Apple Card (Photograph) Figure 3 Complete Apple/ADIOS System (Photograph) Figure 4 Analog

Groppi, Christopher

218

The National Energy Modeling System: An Overview 2000 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing industries, subject to delivered prices of energy and macroeconomic variables representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to the electricity grid. The IDM structure is shown in Figure 7. industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing industries, subject to delivered prices of energy and macroeconomic variables representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to the electricity grid. The IDM structure is shown in Figure 7. Figure 7. Industrial Demand Module Structure Industrial energy demand is projected as a combination of “bottom up” characterizations of the energy-using technology and “top down” econometric estimates of behavior. The influence of energy prices on industrial energy consumption is modeled in terms of the efficiency of use of existing capital, the efficiency of new capital acquisitions, and the mix of fuels utilized, given existing capital stocks. Energy conservation from technological change is represented over time by trend-based “technology possibility curves.” These curves represent the aggregate efficiency of all new technologies that are likely to penetrate the future markets as well as the aggregate improvement in efficiency of 1994 technology.

219

Most efficient quantum thermoelectric at finite power output  

E-Print Network (OSTI)

Machines are only Carnot efficient if they are reversible, but then their power output is vanishingly small. Here we ask, what is the maximum efficiency of an irreversible device with finite power output? We use a nonlinear scattering theory to answer this question for thermoelectric quantum systems; heat engines or refrigerators consisting of nanostructures or molecules that exhibit a Peltier effect. We find that quantum mechanics places an upper bound on both power output, and on the efficiency at any finite power. The upper bound on efficiency equals Carnot efficiency at zero power output, but decays with increasing power output. It is intrinsically quantum (wavelength dependent), unlike Carnot efficiency. This maximum efficiency occurs when the system lets through all particles in a certain energy window, but none at other energies. A physical implementation of this is discussed, as is the suppression of efficiency by a phonon heat flow.

Robert S. Whitney

2014-03-13T23:59:59.000Z

220

Relationship Among Efficiency and Output Power of Heat Energy Converters  

E-Print Network (OSTI)

Relationship among efficiency and output power of heat-electric energy converters as well as of any converters for transforming of heat energy into any other kind of energy is considered. It is shown, that the parameter efficiency does not determine univocally the output power of a converter. It is proposed to use another parameter for determination of working ability of heat energy converters. It is shown, that high output power can not be achieved by any kind of Stirling-type converters in spite of their high efficiency.

Alexander Luchinskiy

2004-09-02T23:59:59.000Z

Note: This page contains sample records for the topic "industrial output growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

and Industrial Engineering  

E-Print Network (OSTI)

45 Mechanical and Industrial Engineering 220 Engineering Lab Degrees: Bachelor of Science in Mechanical Engineering Bachelor of Science in Industrial Engineering Contact: James R. Rinderle to prosthetic limbs to windmills, and their myriad components. Industrial engineers are concerned

Mountziaris, T. J.

222

Industrial and Systems engineering  

E-Print Network (OSTI)

Industrial and Systems engineering COLLEGE of ENGINEERING DepartmentofIndustrialandSystemsEngineering EDGE Engineering Entrepreneur Certificate Program is a great addition to an industrial and systems to expert clinical recommendations. engineering.wayne.edu/isefaculty Industrial and systems engineering

Berdichevsky, Victor

223

Commentary on industrial processes  

Science Journals Connector (OSTI)

...crucial for an industrial process, namely: catalyst activity...of catalysis to industrial processes. The papers, however, do...at the heart of successful commercialization of catalytic science and technology...addressed in any industrial process, namely: activity-the...

2005-01-01T23:59:59.000Z

224

Uranium industry annual 1997  

SciTech Connect

This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

NONE

1998-04-01T23:59:59.000Z

225

Sparse Convolved Gaussian Processes for Multi-output Regression  

E-Print Network (OSTI)

the concentration of different heavy metal pollutants [5]. Modelling multiple output variables is a challenge as we methodology for synthetic data and real world applications on pollution prediction and a sensor network. 1

Rattray, Magnus

226

Computability in Anonymous Networks: Revocable vs. Irrecovable Outputs  

E-Print Network (OSTI)

Computability in Anonymous Networks: Revocable vs. Irrecovable Outputs Yuval Emek1 , Jochen Seidel2, and leader election. 1 Introduction We study computability in networks, referred to hereafter as distributed

227

Failure mode and effects analysis outputs: are they valid?  

Science Journals Connector (OSTI)

Failure Mode and Effects Analysis (FMEA) is a prospective risk assessment tool that ... this study was to explore the validity of FMEA outputs within a hospital setting in the...

Nada Atef Shebl; Bryony Dean Franklin; Nick Barber

2012-06-01T23:59:59.000Z

228

Grid adaptation for functional outputs of compressible flow simulations  

E-Print Network (OSTI)

An error correction and grid adaptive method is presented for improving the accuracy of functional outputs of compressible flow simulations. The procedure is based on an adjoint formulation in which the estimated error in ...

Venditti, David Anthony, 1973-

2002-01-01T23:59:59.000Z

229

Community Climate System Model (CCSM) Experiments and Output Data  

DOE Data Explorer (OSTI)

The CCSM web makes the source code of various versions of the model freely available and provides access to experiments that have been run and the resulting output data.

230

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

231

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

232

The Implementation of Industry Foundation Classes in Simulation Tools for the Building Industry  

SciTech Connect

Industry Foundation Classes (IFC) provide an environment of interoperability among IFC-compliant software applications in the architecture, engineering, construction, and facilities management (AEC/FM) industry. They allow building simulation software to automatically acquire building geometry and other building data from project models created with IFC compliant CAD software. They also facilitate direct exchange of input and output data with other simulation software. This paper discusses how simulation software can be made compliant with version 1.5 of the IFC. It also describes the immediate plans for expansion of IFC and the process of definition and addition of new classes to the model.

Bazjanac, Vladimir; Crawley, Drury B.

1997-06-01T23:59:59.000Z

233

U.S. Industrial Energy Efficiency Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Second U.S.-China Second U.S.-China Energy Efficiency Forum May 6, 2011 James Quinn Energy Efficiency & Renewable Energy U.S. Department of Energy U.S. Industrial Energy Efficiency Programs 2 | Industrial Energy Efficiency eere.energy.gov Global Energy Challenges Energy efficiency and renewable energy provide solutions to global energy challenges. Security Environment Economy Clean Energy Solutions Overarching Challenges: * Carbon reduction * Market delivery of clean energy technologies * Research and development needs * Economic growth * Workforce development 3 | Industrial Energy Efficiency eere.energy.gov U.S. industry accounts for about one-third of all U.S. energy consumption. Petroleum Natural Gas Electricity* Coal and Coke Renewable Energy Residential 21.8% Industry 31.4% Commercial

234

Water Efficient and Low Pollution Textile Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative and Emerging Technologies for an Energy Efficient Alternative and Emerging Technologies for an Energy Efficient Water Efficient and Low Pollution Textile Industry year month institution Lawrence Berkeley National Laboratory address Berkeley abstract p Emerging energy efficiency greenhouse gas GHG and pollution mitigation technologies will be crucial for the textile industry as it responds to population and economic growth that is expected to spur a rapid increase in textile consumption over the coming decades and a corresponding increase in the industry textquoteright s absolute energy use and GHG and other pollutant emissions This report gives an overview of textile industry processes and compiles available information on the energy savings environmental and other benefits costs commercialization status and references for emerging technologies to reduce the industry

235

INDUSTRIAL ENGINEERING GRADUATE PROGRAMS  

E-Print Network (OSTI)

INDUSTRIAL ENGINEERING GRADUATE PROGRAMS The Master of Science in Industrial Engineering (M Systems and Engineering (M.S.M.S.E.), the Doctor of Philosophy in Industrial Engineering, and the Doctor of Philosophy in Systems and Engineering Management programs prepare competent industrial engineers

Gelfond, Michael

236

Mechanical & Industrial Engineering  

E-Print Network (OSTI)

Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board May 5th, 2011 #12;Mechanical & Industrial Engineering 2 IAB 2010-2011 · David K. Anderson ­ Alden Research Laboratory, Inc went on for three weeks Mechanical & Industrial Engineering 6 #12;Reza Shahbazian Yassar Mechanical

Mountziaris, T. J.

237

Career Map: Industrial Engineer  

Energy.gov (U.S. Department of Energy (DOE))

The Wind Program's Career Map provides job description information for Industrial Engineer positions.

238

Rethinking the industrial landscape : the future of the Ford Rouge complex  

E-Print Network (OSTI)

The growth and decline of manufacturing industries in the past century and the industrial landscape that this activity has produced has had profound physical, environmental, social and economic impact on the communities ...

Bodurow Rea, Constance Corinne

1991-01-01T23:59:59.000Z

239

Climate VISION: Industry Associations  

Office of Scientific and Technical Information (OSTI)

Industry Associations Industry Associations Aluminum Aluminum Association (Coordinating aluminum industry Climate VISION activities) The Aluminum Association, Inc. is the trade association for producers of primary aluminum, recyclers and semi-fabricated aluminum products, as well as suppliers to the industry. The Association provides leadership to the industry through its programs and services which aim to enhance aluminum's position in a world of proliferating materials, increase its use as the "material of choice," remove impediments to its fullest use, and assist in achieving the industry's environmental, societal, and economic objectives. Automobile Manufacturers Alliance of Automobile Manufacturers (Coordinating automobile industry Climate VISION activities) The Alliance of Automobile Manufacturers, Inc. is a trade association

240

Interpreting and analyzing model output (A very cursory introduction) Here will talk briefly about using "ncview" and "matlab" to analyze output  

E-Print Network (OSTI)

using "ncview" and "matlab" to analyze output from your model. The model output is in netcdf format for the output. I use matlab to measure, plot, compute, etc.. Recall the the model output is stored in: /scratch shown at the top.) matlab I hope you have some experience with matlab. There are handy tutorials

Gerber, Edwin

Note: This page contains sample records for the topic "industrial output growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The US coal industry 1996  

SciTech Connect

Several years ago a friend and former classmate, Dr. Doug Dahl, put the coal industry into perspective. At that time he worked for Consol, whose parent company was DuPont. I will use his story, but update it with today`s statistics. As can be seen in Figure 1, total US coal production continues to show healthy growth. In 1995 we produced 1,032,000,000 tons, and 1,046,000,000 tons are projected for 1996. Unfortunately as seen in Figure 2, the average price per ton of coal sold is still dropping. The coal industry is experiencing the unusual situation of falling coal prices with increasing coal demand! In 1994 (1995 data not available) the average price for a ton of coal was only $19.41. Multiplying the two numbers, yields the total sales value for our entire industry, $20.1 billion in 1994. That`s roughly half the approximately $40 billion per year sales value for a single chemical company, DuPont, Dr. Dahl`s parent company. As Dr. Dahl pointed out, the coal industry just isn`t that big. As we can see in Figure 3, the yearly trends show that the total value of the US coal production is shrinking. The total value has fallen through the 90`s and follows the average price per ton trend. Even increases in production have generally not been enough to offset the falling prices.

Campbell, J.A.L. [Custom Coals International, Inc., Oklahoma City, OK (United States)

1996-12-31T23:59:59.000Z

242

Potential Urban Forest Carbon Sequestration and Storage Capacities in Burnside Industrial Park, Nova Scotia.  

E-Print Network (OSTI)

??Urban and industrial settings represent potential areas for increased carbon (C) sequestration and storage through intensified tree growth. Consisting of an estimated 1270 ha of… (more)

Walsh, Alison

2012-01-01T23:59:59.000Z

243

Carbon Capture, Transport and Storage Regulatory Test Exercise: Output  

Open Energy Info (EERE)

Carbon Capture, Transport and Storage Regulatory Test Exercise: Output Carbon Capture, Transport and Storage Regulatory Test Exercise: Output Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Capture, Transport and Storage Regulatory Test Exercise: Output Report Focus Area: Clean Fossil Energy Topics: Market Analysis Website: cdn.globalccsinstitute.com/sites/default/files/publications/7326/carbo Equivalent URI: cleanenergysolutions.org/content/carbon-capture-transport-and-storage- Policies: Regulations Regulations: Emissions Mitigation Scheme The Scottish Government published this report to identify regulatory gaps or overlaps in the nation's framework for regulating carbon capture and storage (CCS). The report aims to streamline and better manage CCS regulation. It focuses on evaluating the risks, barriers, information gaps,

244

OECD Input-Output Tables | Open Energy Information  

Open Energy Info (EERE)

OECD Input-Output Tables OECD Input-Output Tables Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Input-Output Tables Agency/Company /Organization: Organisation for Economic Co-Operation and Development Topics: Co-benefits assessment, Market analysis, Co-benefits assessment, Pathways analysis Resource Type: Dataset Website: www.oecd.org/document/3/0,3343,en_2649_34445_38071427_1_1_1_1,00.html Country: Sweden, Finland, Japan, South Korea, Argentina, Australia, China, Israel, United Kingdom, Portugal, Romania, Greece, Poland, Slovakia, Chile, India, Canada, New Zealand, United States, Denmark, Norway, Spain, Austria, Italy, Netherlands, Ireland, France, Belgium, Brazil, Czech Republic, Estonia, Germany, Hungary, Luxembourg, Mexico, Slovenia, South Africa, Turkey, Indonesia, Switzerland, Taiwan, Russia

245

Formalization of computer input and output: the Hadley model  

Science Journals Connector (OSTI)

Current digital evidence acquisition tools are effective, but are tested rather than formally proven correct. We assert that the forensics community will benefit in evidentiary ways and the scientific community will benefit in practical ways by moving beyond simple testing of systems to a formal model. To this end, we present a hierarchical model of peripheral input to and output from von Neumann computers, patterned after the Open Systems Interconnection model of networking. The Hadley model categorizes all components of peripheral input and output in terms of data flow; with constructive aspects concentrated in the data flow between primary memory and the computer sides of peripherals' interfaces. The constructive domain of Hadley is eventually expandable to all areas of the I/O hierarchy, allowing for a full view of peripheral input and output and enhancing the forensics community's capabilities to analyze, obtain, and give evidentiary force to data.

Matthew Gerber; John Leeson

2004-01-01T23:59:59.000Z

246

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 12 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS 27 data.

247

EIA - International Energy Outlook 2009-Industrial Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Industrial Sector Energy Consumption Industrial Sector Energy Consumption International Energy Outlook 2009 Chapter 6 - Industrial Sector Energy Consumption Worldwide industrial energy consumption increases by an average of 1.4 percent per year from 2006 to 2030 in the IEO2009 reference case. Much of the growth is expected to occur in the developing non-OECD nations. Figure 63. OECD and Non-OECD Industrial Sector Energy Consumption, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 64. World Industrial Sector Energy Consumption by Fuel, 2006 and 2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 65. World Industrial Sector Energy Consumption by Major Energy-Intensive Industry Shares, 2005 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800.

248

An input-output approach to analyze the ways to increase total output of energy sectors: The case of Japan  

Science Journals Connector (OSTI)

The purpose of this study is to analyze the ways to increase total output of Japanese energy sectors in future time. In this study, Input-Output (IO) analysis is employed as a tool of analysis. This study focuses on petroleum refinery products and non-ferrous metals as analyzed sectors. The results show that positive impact observed in export and outside households consumption modifications while opposite impact is given by modification of import. The recommendations suggested based on these results are Japanese government should make breakthroughs so analyzed sector's export activities can increase and they have to careful in conducting import activities related to these sectors.

Ubaidillah Zuhdi

2014-01-01T23:59:59.000Z

249

Output-Based Regulations: A Handbook for Air Regulators (U.S. EPA), August 2004  

Energy.gov (U.S. Department of Energy (DOE))

Handbook providing practical information to help regulators decide if they want to use output-based regulations and explains how to develop an output-based emission standard

250

Users from Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Users from Industry Users from Industry Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial users to access our user facilities and engage in productive relationships with our scientific and engineering staff. Examples of past and current research conducted at the ALS can be viewed on the Industry @ ALS Web page. There are several modes of access; the ALS User and Scientific Support Groups are especially committed to helping new industrial users gain a foothold in our user community and welcome inquiries about how to make that happen.

251

Industry 4.0  

Science Journals Connector (OSTI)

Industry is the part of an economy that produces material goods which are highly mechanized and automatized. Ever since the beginning of industrialization, technological leaps have led to paradigm shifts which to...

Dr. Heiner Lasi…

2014-08-01T23:59:59.000Z

252

Chemistry Industry in Egypt  

Science Journals Connector (OSTI)

Chemistry Industry in Egypt ... FROM antiquity the Egyptian economy has been predominately agricultural. ... Nevertheless, it is most probable that the ancient Egyptians were the world's first practical or industrial chemists. ...

1953-08-10T23:59:59.000Z

253

INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY  

E-Print Network (OSTI)

INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY SUMMER 2013 Industrial Engineering COOP Student needed-Fri, for summer 2013. Student must be enrolled in BS Engineering program. (Preferably completed 2-3 yrs

Pohl, Karsten

254

Industrial Green | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Green Industrial Green - This giant bag may not look green, but it keeps a potent greenhouse gas from being released into the atmosphere. It's part of a system at the...

255

The Industrial Electrification Program  

E-Print Network (OSTI)

EPRI's role as the research organization of the electric power industry, in coordination with potential user industries, is to 1) define the viability of candidate electrification technologies by monitoring the state-of-the-art and continuously...

Harry, I. L.

1982-01-01T23:59:59.000Z

256

MODELING MULTI-OUTPUT FILTERING EFFECTS IN PCMOS Anshul Singh*  

E-Print Network (OSTI)

MODELING MULTI-OUTPUT FILTERING EFFECTS IN PCMOS Anshul Singh* , Arindam Basu , Keck-Voon Ling* and Vincent J. Mooney III*$§ Email: anshul.singh@research.iiit.ac.in, {arindam.basu, ekvling}@ntu, Nanyang Technological University (NTU), Singapore * NTU-Rice Institute of Sustainable and Applied

Mooney, Vincent

257

Output-Sensitive Algorithms for Tukey Depth and Related Problems  

E-Print Network (OSTI)

Output-Sensitive Algorithms for Tukey Depth and Related Problems David Bremner University of New de Bruxelles Pat Morin Carleton University Abstract The Tukey depth (Tukey 1975) of a point p halfspace that contains p. Algorithms for computing the Tukey depth of a point in various dimensions

Morin, Pat

258

Soft-Input Soft-Output Sphere Decoding Christoph Studer  

E-Print Network (OSTI)

Soft-Input Soft-Output Sphere Decoding Christoph Studer Integrated Systems Laboratory ETH Zurich Laboratory ETH Zurich, 8092 Zurich, Switzerland Email: boelcskei@nari.ee.ethz.ch Abstract--Soft-input soft, 8092 Zurich, Switzerland Email: studer@iis.ee.ethz.ch Helmut Bölcskei Communication Technology

259

Maximizing output from oil reservoirs without water breakthrough  

E-Print Network (OSTI)

Maximizing output from oil reservoirs without water breakthrough S.K. Lucas School of Mathematics, revised May 2003, published 45(3), 2004, 401­422 Abstract Often in oil reservoirs a layer of water lies, for example, Muskat [8], Bear [1]). When oil is removed from the reservoir by an oil well, it will generate

Lucas, Stephen

260

Systems and Industry Analyses  

NLE Websites -- All DOE Office Websites (Extended Search)

systems and industry analyses News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International Activity Program...

Note: This page contains sample records for the topic "industrial output growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Geothermal Industry Partnership Opportunities  

Energy.gov (U.S. Department of Energy (DOE))

Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

262

Education for the ManufacturingEducation for the Manufacturing Industries of the FutureIndustries of the Future  

E-Print Network (OSTI)

Growth. Every $1.00 in manufactured goods generates an additional $1.43 worth of additional economic© ATI 2006 Education for the ManufacturingEducation for the Manufacturing Industries of the FutureIndustries of the Future presented to thepresented to the 2006 MIT Manufacturing Summit:2006 MIT Manufacturing Summit

Brock, David

263

Photovoltaics industry profile  

SciTech Connect

A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

None

1980-10-01T23:59:59.000Z

264

Mechanical & Industrial Engineering  

E-Print Network (OSTI)

Mechanical & Industrial Engineering Mario A. Rotea Professor and Department Head #12;2Mechanical & Industrial Engineering Outline · Undergraduate Degree Programs · Graduate Degree Programs · The Faculty · The Research · Summary #12;3Mechanical & Industrial Engineering Undergraduate Programs ­ BSME & BSIE 0 20 40 60

Mountziaris, T. J.

265

INDUSTRIAL AND BIOMEDICAL APPLICATIONS  

E-Print Network (OSTI)

INDUSTRIAL AND BIOMEDICAL APPLICATIONS Frank Smith, Nicholas Ovenden and Richard Purvis University are described, one industrial on violent water-air interaction during an impact process and the other biomedical: industrial, biomedical, impacts, networks, theory, computation, scales. 1. INTRODUCTION It is a pleasure

Purvis, Richard

266

Industry - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry banner Industry banner Neutron scattering research has applications in practically every field, and neutron research at ORNL is leading to productive partnerships with the industrial and business communities. We welcome proposals for all types of research, including those involving proprietary work. Recent studies have led to discoveries with potential applications in fields such as medicine, energy, and various metals technologies. For more information, please see our recent research highlights. Research Collaborations Industry-Driven Research Benefits Plastics Manufacturing Corning uses VULCAN to test limits of ceramic material for car emission controls, filtration devices Neutrons Probe Inner Workings of Batteries Industry and Neutron Science: Working To Make a Match

267

Interacting With the Pharmaceutical Industry  

E-Print Network (OSTI)

INTERACTING WITH THE PHARMACEUTICAL INDUSTRY Stephen R.to interactions with the pharmaceutical industry! This is ancome from the pharmaceutical industry. It is also reality

Hayden, Stephen R

2003-01-01T23:59:59.000Z

268

Benteler Industries | Open Energy Information  

Open Energy Info (EERE)

Industries Jump to: navigation, search Name: Benteler Industries Place: Grand Rapids, MI Website: http:www.bentelerindustries. References: Benteler Industries1 Information...

269

LANSCE | Lujan Center | Industrial Users  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Users The Lujan Neutron Scattering Center offers a diverse set of capabilities and instruments for industrial projects. Industrial users are invited to contact the Lujan...

270

Fact Sheet for Industrial Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

for Industrial Facilities May 2012 Overview Public utilities in the Pacific Northwest serve more than 2,200 megawatts of industrial load, making industrial sector users a vitally...

271

Uranium industry annual 1998  

SciTech Connect

The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

NONE

1999-04-22T23:59:59.000Z

272

Uranium industry annual 1994  

SciTech Connect

The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

NONE

1995-07-05T23:59:59.000Z

273

Users from Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Users from Industry Print Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial users to access our user facilities and engage in productive relationships with our scientific and engineering staff. Examples of past and current research conducted at the ALS can be viewed on the Industry @ ALS Web page. There are several modes of access; the ALS User and Scientific Support Groups are especially committed to helping new industrial users gain a foothold in our user community and welcome inquiries about how to make that happen.

274

INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering  

E-Print Network (OSTI)

78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take of industries including consulting, technology development, software, supply chain manufacturing, engineering

Rohs, Remo

275

Compilation and Application of Japanese Inventories for Energy Consumption and Air Pollutant Emissions Using Input?Output Tables  

Science Journals Connector (OSTI)

Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan ... Next, for each of the 400 sectors (the 399 sectors of the consolidated Input?Output Table plus the “consumption expenditure of households” sector, which is one of the final demand sectors), various statistics and source materials were used to estimate gross consumptions, expressed as a physical amount for each sector, of 6 coal-based fuels, 12 petroleum-based fuels, 3 natural gas-based fuels, and 5 other fuels. ... LPG. LPG for automobile and household use is more expensive than that used by industry, because of its higher tax rate and less efficient mode of supply. ...

Keisuke Nansai; Yuichi Moriguchi; Susumu Tohno

2003-04-04T23:59:59.000Z

276

Strategic Growth Initiative (Michigan) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategic Growth Initiative (Michigan) Strategic Growth Initiative (Michigan) Strategic Growth Initiative (Michigan) < Back Eligibility Agricultural Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Home Weatherization Water Solar Wind Program Info State Michigan Program Type Grant Program Provider Michigan Farm Bureau A joint venture between Michigan Department of Agriculture and Rural Development (MDARD) and the Michigan Economic Development Corporation (MEDC), the Strategic Growth Initiative Grant Program was designed to leverage business development and growth for the state's $91.4 billion food and agriculture industry. The grant program aims to remove barriers inhibiting growth in the state's food and agriculture industry, fostering economic opportunities for Michigan-based food processors, agribusiness and

277

Modelling Power Output at Nuclear Power Plant by Neural Networks  

Science Journals Connector (OSTI)

In this paper, we propose two different neural network (NN) approaches for industrial process signal forecasting. Real data is available for this research from boiling water reactor type nuclear power reactors. N...

Jaakko Talonen; Miki Sirola; Eimontas Augilius

2010-01-01T23:59:59.000Z

278

An Advanced simulation Code for Modeling Inductive Output Tubes  

SciTech Connect

During the Phase I program, CCR completed several major building blocks for a 3D large signal, inductive output tube (IOT) code using modern computer language and programming techniques. These included a 3D, Helmholtz, time-harmonic, field solver with a fully functional graphical user interface (GUI), automeshing and adaptivity. Other building blocks included the improved electrostatic Poisson solver with temporal boundary conditions to provide temporal fields for the time-stepping particle pusher as well as the self electric field caused by time-varying space charge. The magnetostatic field solver was also updated to solve for the self magnetic field caused by time changing current density in the output cavity gap. The goal function to optimize an IOT cavity was also formulated, and the optimization methodologies were investigated.

Thuc Bui; R. Lawrence Ives

2012-04-27T23:59:59.000Z

279

Clock-controlled generators with large period output sequences  

Science Journals Connector (OSTI)

Clock-controlled generators are a kind of pseudo-random number generators (PRNG). Recently, some clock-controlled generators based on jumping Linear Finite State Machines (LFSMs) have been proposed, such as Pomaranch and MICKEY. The period and the linear complexity of their output sequences need to be large enough to provide security against linear attacks. In this paper, a new condition for the period to reach its maximal value is presented. The condition is better than the previous one. Further, some clock-controlled generators are considered, including a new generator which uses a Feedback with Carry Shift Register (FCSR) as the control register. How to maximise the period of their output sequences is investigated.

Zhiqiang Lin

2014-01-01T23:59:59.000Z

280

Control of XeF laser output by pulse injecton  

SciTech Connect

Injection locking is investigated as a means for control of optical pulse duration and polarization in a XeF laser. Intense short-pulse generation in the ultraviolet is achieved by injection of a low-level 1-ns optical pulse into a XeF oscillator. Control of laser output polarization by injection locking is demonstrated and studied as a function of injected signal level. Enhancement of XeF electric-discharge laser efficiency by injection pulse ''priming'' is observed.

Pacala, T.J.; Christensen, C.P.

1980-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "industrial output growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Output power characteristics of the neutral xenon long laser  

SciTech Connect

Lasers which oscillate within inhomogeneously broadened gain media exhibit spectral hole burning and concomitant reduction in output power compared with equivalent homogeneously-broadened laser gain media. By increasing the cavity length, it may be possible to demonstrate at least a partial transition from an inhomogeneous laser cavity mode spectrum to a homogeneous spectrum. There are a number of high gain laser lines which are inhomogeneously-broadened transitions in electric discharges of neutral xenon. In neutral xenon lasers, as in the cases of many other gas lasers, the inhomogeneous spectral broadening mechanism arises from Doppler shifts, {Delta}{nu}{sub D}, of individual atoms in thermal motion within the electric discharge comprising the laser gain medium. Optical transitions corresponding to these noble gas atoms have natural linewidths, {Delta}{nu}{sub n}{lt}{Delta}{nu}{sub D}. Simulations of the output power characteristics of the xenon laser were carried out as a function of laser cavity parameters, including the cavity length, L. These calculations showed that when the intracavity mode spacing frequency, c/2L{lt}{Delta}{nu}{sub n}, the inhomogeneously broadened xenon mode spectrum converted to a homogeneously broadened oscillation spectrum with an increase in output power. These simulations are compared with experimental results obtained for the long laser oscillation characteristics of the (5d[5/2]{degree}{sub 2}{r_arrow}6p[3/2]{sub 1}) transition corresponding to the strong, high-gain 3.508 {mu} line in xenon.

Linford, G.J. [TRW Space and Electronics Group, Redondo Beach, CA (United States). Space and Technology Div.

1994-12-31T23:59:59.000Z

282

Pacific Rim Summit on Industrial Biotechnology & Bioenergy  

Energy.gov (U.S. Department of Energy (DOE))

The ninth annual Pacific Rim Summit on Industrial Biotechnology and Bioenergy will be held from December 7–9, 2014, in San Diego, California, at the Westin Gaslamp Quarter. Bringing together representatives from various countries all around the Pacific Rim, this event will focus on the growth of the industrial biotechnology and bioenergy sectors in North America and the Asia-Pacific region. Glenn Doyle, BETO's Deployment & Demonstration Technology Manager, will be moderating and speaking at a session on entitled "Utilizing Strategic Partnerships to Grow Your Business" on December 9.

283

Business models and strategies in the video game industry : an analysis of Activision-Blizzard and Electronic Arts  

E-Print Network (OSTI)

In recent years the video game industry has been of great importance in the business world beyond the role of a cultural medium. With its huge size and potential for more growth, the industry has attracted many newcomers. ...

Lee, Ruri

2013-01-01T23:59:59.000Z

284

Industrial | OpenEI  

Open Energy Info (EERE)

Industrial Industrial Dataset Summary Description The Industrial Assessment Centers (IAC) Database is a collection of all the publicly available data from energy efficiency assessments conducted by IACs at small and medium-sized industrial facilities. Source Department of Energy Industrial Assessment Centers Date Released September 20th, 2012 (2 years ago) Date Updated September 20th, 2012 (2 years ago) Keywords assessment energy efficiency Industrial manufacturing small and medium-sized Data application/vnd.ms-excel icon copy_of_iac_database.xls (xls, 28.7 MiB) Quality Metrics Level of Review Standards Comment Temporal and Spatial Coverage Frequency Daily Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset

285

Electrotechnologies in Process Industries  

E-Print Network (OSTI)

Processes Motor drives are mainly used in prime movers (pumps, fans, compressors, etc.) and in materials processing and handling (grinders, conveyors, etc.). EPRI develops and promotes technologies such as industrial heat pumps, freeze concentra tion... the need to disseminate the results of its research and development so that they can be applied broadly across the industrial sector. Specific technology transfer activities in process industries include: o Conferences and workshops o Tech...

Amarnath, K. R.

286

Industrial Energy Efficiency Assessments  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Energy Efficiency Assessments Lynn Price Staff Scientist China Energy Group Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Industrial Energy Efficiency Assessments - Definition and overview of key components - International experience - Chinese situation and recommendations - US-China collaboration Industrial Energy Efficiency Assessments - Analysis of the use of energy and potential for energy efficiency in an industrial facility * Current situation * Recommendations for improving energy efficiency * Cost-benefit analysis of recommended options * An action plan for realizing potential savings Types of Industrial Energy Efficiency Assessments - Preliminary or walk-through - Detailed or diagnostic Audit criteria

287

Industrial Security Specialst  

Energy.gov (U.S. Department of Energy (DOE))

A successful candidate in this position will serve in a developmental capacity assisting senior specialists in carrying out a variety of industrial security and oversight functions.

288

Window industry technology roadmap  

SciTech Connect

Technology roadmap describing technology vision, barriers, and RD and D goals and strategies compiled by window industry stakeholders and government agencies.

Brandegee

2000-04-27T23:59:59.000Z

289

Commercial & Industrial Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response...

290

An industrial policy  

Science Journals Connector (OSTI)

An industrial policy ... There are problems that are very much intertwined with national policy, but there are strengths, too, and they are worth noting. ...

1984-03-05T23:59:59.000Z

291

Industrial and Grid Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial and Grid Security Establishing resilient infrastructures that operate when sensors and physical assets are perturbed is an important national objective. Two related LDRD...

292

CAD company caters for the electronics industry  

Science Journals Connector (OSTI)

This paper presents a case study of a company involved in the development and application of computer-aided design techniques to the electronics industry. Racal-Redac has been developing CAD products since 1965. The growth of interest in CAD is reflected in the growth of the company and in the number of applications products that it has made available. It has recently launched four new products and updated a fifth. They are all software design tools. One is for chip design and the others are for PCB design. The functions of these products are described as are the types of facilities that they offer.

David F. Cowan

1985-01-01T23:59:59.000Z

293

NCPART: management of ICEMDDN output for numerical control users  

SciTech Connect

NCPART is a procedure developed by the Numerical Control Department at Bendix Kansas City Division to handle the entry to and exit from ICEMDDN, and process all of the local files output by ICEMDDN. The NCPART procedure is menu driven, and provides automatic access to ICEMDDN and any files necessary to process information with ICEM for numerical Control users. Basically, the procedure handles all of the ICEMDDN operations that involve operating system commands, and frees the NC programmer to concentrate on his/her work as a programmer.

Rossini, B.F.

1986-04-01T23:59:59.000Z

294

Waveguide submillimetre laser with a uniform output beam  

SciTech Connect

A method for producing non-Gaussian light beams with a uniform intensity profile is described. The method is based on the use of a combined waveguide quasi-optical resonator containing a generalised confocal resonator with an inhomogeneous mirror with absorbing inhomogeneities discretely located on its surface and a hollow dielectric waveguide whose size satisfies the conditions of self-imaging of a uniform field in it. The existence of quasi-homogeneous beams at the output of an optically pumped 0.1188-mm waveguide CH{sub 3}OH laser with a amplitude-stepped mirror is confirmed theoretically and experimentally. (lasers)

Volodenko, A V; Gurin, O V; Degtyarev, A V; Maslov, Vyacheslav A; Svich, V A; Topkov, A N [V.N. Karazin Kharkiv National University, Kharkiv (Ukraine)

2007-01-31T23:59:59.000Z

295

Growing Hawaii's agriculture industry,  

E-Print Network (OSTI)

Program Overview Growing Hawaii's agriculture industry, one business at a time Website: http-3547 agincubator@ctahr.hawaii.edu Grow Your Business If you are looking to start an agriculture-related business with our program · Positively impact the agriculture industry in Hawaii with their success

296

Conference on Industrial Physics  

Science Journals Connector (OSTI)

... THE first Conference on Industrial Physics to be held in Great Britain took place in Manchester under the ... auspices of the Institute of Physics on March 28-30. The subject chosen for the Conference was “Vacuum Devices in Research and Industry”, and its chief object was to ...

HERBERT R. LANG

1935-04-06T23:59:59.000Z

297

Industrial Optimization Compact Course  

E-Print Network (OSTI)

Industrial Optimization Compact Course and Challenge Workshop Optimization plays a crucial role of the processes are typically nonlinear and dyna- mic. Thus, complex dynamic optimization or optimal control in industrial optimization. February 17­20, 2014 ·9.00­17.00 IWR ·Im Neuenheimer Feld 368 ·69120 Heidelberg www

Kirches, Christian

298

Industrial electrotechnology development  

Science Journals Connector (OSTI)

New and improved industrial technologies have a tremendous role in enhancing productivity, minimising waste, reducing overall energy consumption, and mitigating environmental impacts. The electric utility industry plays a major role in developing these new and improved technologies. This paper describes several major advances and their potential impacts.

Clark W. Gellings

1997-01-01T23:59:59.000Z

299

32 - Fundamentals of Industrial Crystallization  

Science Journals Connector (OSTI)

Abstract Industrial crystallization processes aim at the large-scale production of crystalline products through the formation of involving a suspension of growing particles in a solution. The product quality is defined by the kind of crystalline phase produced, the crystal size distribution, the crystal morphology, and the product purity. These product quality aspects are determined by the subprocesses of crystallization of which crystal nucleation and growth are usually of main importance. The driving force for these subprocesses is usually established either by evaporating solvent to increase the concentration or cooling the solution to decrease the solubility. The recent pharmaceutical research interest in continuous crystallization processes is fortified by claims of improved product quality, efficient use of materials and energy resources, and waste stream reductions.

Joop H. ter Horst; Christiane Schmidt; Joachim Ulrich

2015-01-01T23:59:59.000Z

300

Old growth and new forestry  

SciTech Connect

Concerns for ecosystems have spurred a rethinking of forest management practices. This paper reviews the current resource management practices of the timber industry and of the Menominee Indians of Wisconsin who have been practicing sustained management through selective harvest since 1854. The paper begins with a discussion of the definitions of old growth, snags, coarse woody debris, and riparian zones and the Congressional excesses of the past which are at least partly to blame for the situation in the timber industry of the Pacific Northwest.

Meadows, D.G.

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial output growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Industry - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry and Neutron Science Industry and Neutron Science Industry and Neutron Science: Working To Make a Match "In fundamental research, we want to know everything. Industry wants to know enough to answer a question." Research Contact: Mike Crawford September 2011, Written by Deborah Counce Mike Crawford and Souleymane Diallo Mike Crawford of Dupont (right) and Souleymane Diallo, instrument scientist for the Backscattering Spectrometer at SNS, prepare a material sample for an experiment on the instrument. Industrial users are starting to eye the potential of neutron science for solving problems that can't be solved in any other way. At the same time, the SNS and HFIR neutron science facilities at ORNL are exploring ways to woo such users and to make a match of it, to the benefit of both.

302

Uranium industry annual 1996  

SciTech Connect

The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

NONE

1997-04-01T23:59:59.000Z

303

Uranium industry annual 1995  

SciTech Connect

The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

NONE

1996-05-01T23:59:59.000Z

304

Method and system for managing an electrical output of a turbogenerator  

DOE Patents (OSTI)

The system and method manages an electrical output of a turbogenerator in accordance with multiple modes. In a first mode, a direct current (DC) bus receives power from a turbogenerator output via a rectifier where turbogenerator revolutions per unit time (e.g., revolutions per minute (RPM)) or an electrical output level of a turbogenerator output meet or exceed a minimum threshold. In a second mode, if the turbogenerator revolutions per unit time or electrical output level of a turbogenerator output are less than the minimum threshold, the electric drive motor or a generator mechanically powered by the engine provides electrical energy to the direct current bus.

Stahlhut, Ronnie Dean (Bettendorf, IA); Vuk, Carl Thomas (Denver, IA)

2010-08-24T23:59:59.000Z

305

Posted 3/2/13 Medline Industries Industrial Engineer  

E-Print Network (OSTI)

Posted 3/2/13 Medline Industries ­ Industrial Engineer Medline Industries, Inc. has an immediate opening for an Industrial Engineer for our SPT Division located in Waukegan, IL. We are seeking a hard-working, detail-oriented professional with experience in industrial engineering and lean manufacturing within

Heller, Barbara

306

INDUSTRIAL&SYSTEMS Industrial and Systems engineers use  

E-Print Network (OSTI)

78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take · Industrial and Systems Engineering Bachelor of Science 128 units · Industrial and Systems Engineering

Rohs, Remo

307

INDUSTRIAL & SYSTEMS Industrial and Systems engineers use engineering  

E-Print Network (OSTI)

78 INDUSTRIAL & SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in todays global marketplace. The Industrial and Systems engineers task is to take limited Industrial and Systems Engineering Bachelor of Science 128 units Industrial and Systems Engineering

Rohs, Remo

308

INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering  

E-Print Network (OSTI)

78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take · Industrial and Systems Engineering Bachelor of Science 128 units · Industrial and Systems Engineering

Rohs, Remo

309

Modelling power output at nuclear power plant by neural networks  

Science Journals Connector (OSTI)

In this paper, we propose two different neural network (NN) approaches for industrial process signal forecasting. Real data is available for this research from boiling water reactor type nuclear power reactors. NNs are widely used for time series prediction, ... Keywords: evaluation methods, model input selection, neural networks, nuclear power plant, one-step ahead prediction

Jaakko Talonen; Miki Sirola; Eimontas Augilius

2010-09-01T23:59:59.000Z

310

Industry Supply Chain Development (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Supply Chain Development (Ohio) Industry Supply Chain Development (Ohio) Industry Supply Chain Development (Ohio) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Retail Supplier Systems Integrator Fuel Distributor Transportation Savings Category Solar Buying & Making Electricity Wind Program Info State Ohio Program Type Grant Program Industry Recruitment/Support Loan Program Provider Ohio Development Services Agency Supply Chain Development programs are focused on targeted industries that have significant growth opportunities for Ohio's existing manufacturing sector from emerging energy resources and technologies. The Office of Energy is currently working on developing the supply chains for the wind,

311

NSLS Industrial User Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Jun Wang Physicist, Industrial Program Coordinator Phone: 344-2661 Email: junwang@bnl.gov Jun Wang is an Industrial Program Coordinator in the Photon Science Directorate at Brookhaven National Laboratory. She is working closely with industrial researchers as well as beamline staff to identify and explore new opportunities in industrial applications using synchrotron radiation. She has been leading the industrial research program including consultation, collaboration and outreach to the industrial user groups. Before joining BNL in 2008, Jun Wang was a Lead Scientist for a high-resolution high throughput powder diffraction program at the Advanced Photon Source (APS). As a Physicist at BNL, her research focuses on materials structure determination and evolution. Her expertise covers wide range x-ray techniques such as thin film x-ray diffraction and reflectivity, powder diffraction, small angle x-ray scattering, protein solution scattering and protein crystallography, as well as x-ray imaging. Currently she is the project leader of a multi-million dollar project on transmission x-ray microscopy recently funded by the U.S. DOE and the spokesperson for this new imaging beamline at the NSLS. She has also been collaborating with universities and industries for several projects on energy research at the NSLS.

312

Industrial process surveillance system  

DOE Patents (OSTI)

A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

1998-06-09T23:59:59.000Z

313

E-Print Network 3.0 - aqueous chemical growth Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

de... ,33405 Talencecedtx)France Abstract: Industrial a-quartz growth mainly refers to hydrothermal ... Source: Ecole Polytechnique, Centre de mathmatiques Collection:...

314

GIS Based Multi-criteria Analysis for Industrial Site Selection  

Science Journals Connector (OSTI)

Abstract Site selection is one of the basic vital decisions in the start-up process, expansion or relocation of businesses of all kinds. Construction of a new industrial system is a major long-term investment, and in this sense determining the location is critical point on the road to success or failure of industrial system. One of the main objectives in industrial site selection is finding the most appropriate site with desired conditions defined by the selection criteria. Most of the data used by managers and decision makers in industrial site selection are geographical which means that industrial site selection process is spatial decision problem. Such studies are becoming more and more common, due to the availability of the Geographic Information Systems (GIS) with user-friendly interfaces. Geographic information systems (GIS) are powerful tool for spatial analysis which provides functionality to capture, store, query, analyze, display and output geographic information. Geographic Information Systems are used in conjunction with other systems and methods such as systems for decision making (DSS) and the method for multi-criteria decision making (MCDM). Synergistic effect is generated by combining these tools contribute to the efficiency and quality of spatial analysis for industrial site selection. This paper presents a successful solution for spatial decision support in the case of spatial analysis of Vojvodina as a region of interest for industrial site selection.

Aleksandar Rikalovic; Ilija Cosic; Djordje Lazarevic

2014-01-01T23:59:59.000Z

315

US Energy Service Company Industry: History and Business Models  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Service Company Industry: Energy Service Company Industry: History and Business Models Don Gilligan President, NAESCO May 6, 2011 Overview of Presentation * US ESCO industry evolution: Five phases * Business models in each phase * Financing models in each phase * Factors that forced change to next phase * Lessons learned US ESCO Industry: Five Phases * Pre-1985: The Beginning of Large-scale Energy Efficiency (EE) * 1985-1995: Early ESCo experience * 1995-2000: Consolidation and Growth * 2000-2004: Setbacks * 2004 - present: Growth and new services Beginning of EE: pre-1985 * Federal government mandates utilities to provide energy conservation * Business model: ESCOs provide services - Energy audits, arranging contracting, etc. * Finance model: fee for service - Utilities pay ESCOs for services

316

Carbon Emissions: Food Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Food Industry Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 6.6% Total First Use of Energy: 1,193 trillion Btu -- Pct. of All Manufacturers: 5.5% Carbon Intensity: 20.44 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 24.4 Net Electricity 9.8 Natural Gas 9.1 Coal 4.2 All Other Sources 1.3 Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998

317

Carbon Emissions: Chemicals Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Chemicals Industry Chemicals Industry Carbon Emissions in the Chemicals Industry The Industry at a Glance, 1994 (SIC Code: 28) Total Energy-Related Emissions: 78.3 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.1% -- Nonfuel Emissions: 12.0 MMTC Total First Use of Energy: 5,328 trillion Btu -- Pct. of All Manufacturers: 24.6% Energy Sources Used As Feedstocks: 2,297 trillion Btu -- LPG: 1,365 trillion Btu -- Natural Gas: 674 trillion Btu Carbon Intensity: 14.70 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 78.3 Natural Gas 32.1

318

Argonne CNM: Industrial Users  

NLE Websites -- All DOE Office Websites (Extended Search)

For Industrial Users For Industrial Users The Center for Nanoscale Materials (CNM) has specific interest in growing the industrial user program and encourages researchers in industry to consider the capabilities and expertise we have to offer. As a CNM user, you have easy access to sophisticated scientific instrumentation geared toward nanoscience and nanotechnology. Moreover, our widely recognized staff researchers offer support in designing your experiments, using the equipment, and analyzing your data. Access to the CNM is through peer review of user proposals. Before you submit your first user proposal, we encourage you to contact any of our staff researchers, group leaders, the User Office, or division management to discuss the feasibility of your intended research using the expertise and facilities at the CNM. We are here to serve you as part of our user community and will be happy to address any questions you might have.

319

Electric Utility Industry Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utility Industry Update Electric Utility Industry Update Steve Kiesner Director, National Customer Markets Edison Electric Institute FUPWG Spring 2012 April 12, 2012 Edison Electric Institute  Investor-Owned Electric Companies  Membership includes  200 US companies,  More than 65 international affiliates and  170 associates  US members  Serve more than 95% of the ultimate customers in the investor-owned segment of the industry and  Nearly 70% of all electric utility ultimate customers, and  Our mission focuses on advocating public policy; expanding market opportunities; and providing strategic business information Agenda Significant Industry Trends Utility Infrastructure Investments Generation and Fuel Landscape

320

Carbon Emissions: Paper Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Paper Industry Paper Industry Carbon Emissions in the Paper Industry The Industry at a Glance, 1994 (SIC Code: 26) Total Energy-Related Emissions: 31.6 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 8.5% Total First Use of Energy: 2,665 trillion Btu -- Pct. of All Manufacturers: 12.3% -- Pct. Renewable Energy: 47.7% Carbon Intensity: 11.88 MMTC per quadrillion Btu Renewable Energy Sources (no net emissions): -- Pulping liquor: 882 trillion Btu -- Wood chips and bark: 389 trillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 31.6 Net Electricity 11.0

Note: This page contains sample records for the topic "industrial output growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Industry | OpenEI  

Open Energy Info (EERE)

Industry Industry Dataset Summary Description The Energy Statistics Database contains comprehensive energy statistics on the production, trade, conversion and final consumption of primary and secondary; conventional and non-conventional; and new and renewable sources of energy. The Energy Statistics dataset, covering the period from 1990 on, is available at UNdata. This dataset relates to the consumption of alcohol by other industries and construction. Data is only available for Paraguay and the U.S., years 2000 to 2007. Source United Nations (UN) Date Released December 09th, 2009 (5 years ago) Date Updated Unknown Keywords Agriculture Alcohol consumption Industry UN Data application/zip icon XML (zip, 514 bytes) application/zip icon XLS (zip, 425 bytes) Quality Metrics

322

Industry - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Former User Group Chair Enthusiastic About Relevance of Neutron Scattering Former User Group Chair Enthusiastic About Relevance of Neutron Scattering to Industrial Research Former User Group Chair Mike Crawford Mike Crawford, DuPont Research and Development. The drive is intensifying to encourage research partnerships between Neutron Sciences and private industry. Such partnerships, a long-term strategic goal set by the DOE's Basic Energy Sciences Advisory Committee, will deliver industry and its technological problems to SNS and HFIR, where joint laboratory-industry teams can use the unparalleled resources available here to resolve them. "SNS is a tremendous facility. It has the potential to have a couple of thousand user visits a year and, if they build another target station in the future, you're probably talking about 4000 user visits a year,"

323

Safety in Offshore Industry  

Science Journals Connector (OSTI)

A large number of accidents in offshore industry have occurred over the years. Ten of the deadliest of these accidents occurred at or on the Piper Alpha ... , the Alexander L. Kielland (a Norwegian semi-submersible

2010-01-01T23:59:59.000Z

324

Energy Industry Analyst  

Energy.gov (U.S. Department of Energy (DOE))

A successful candidate in this position will function as an Energy Industry Analyst within FE's Office of Oil and Gas, with responsibility for supporting senior staff members in performing policy...

325

Mining Industry Profile  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. mining industry consists of the search for, extraction, beneficiation, and processing of naturally occurring solid minerals from the earth. These mined minerals include coal, metals such...

326

Load Management for Industry  

E-Print Network (OSTI)

In the electric utility industry, load management provides the opportunity to control customer loads to beneficially alter a utility's load curve Load management alternatives are covered. Load management methods can be broadly classified into four...

Konsevick, W. J., Jr.

1982-01-01T23:59:59.000Z

327

Uranium Industry Annual, 1992  

SciTech Connect

The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

Not Available

1993-10-28T23:59:59.000Z

328

Industrial power by research?  

Science Journals Connector (OSTI)

... The largest nation on the Earth is at last on the road to becoming an industrial power matching in prosperity and creativity the most successful nations elsewhere in the world. ... ask whether China has always been so certain of itself.

1985-11-21T23:59:59.000Z

329

Steel Industry Profile  

Energy.gov (U.S. Department of Energy (DOE))

The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of manufacturing, construction, transportation, and various consumer products. Traditionally...

330

Utility and Industrial Partnerships  

E-Print Network (OSTI)

In the past decade, many external forces have shocked both utilities and their large industrial customers into seeking more effective ways of coping and surviving. One such way is to develop mutually beneficial partnerships optimizing the use...

Sashihara, T. F.

331

Presentations for Industry  

Energy.gov (U.S. Department of Energy (DOE))

Industrial energy managers, utilities, and energy management professionals can find online trainings and information dissemination at no-cost. AMO has provided these energy-saving strategies from leading manufacturing companies and energy experts through several different presentation series.

332

Industrial Decision Making  

E-Print Network (OSTI)

Domestic industrial investment has declined due to unfavorable energy prices, and external markets. Investment behavior has changed over the past few years, and will continue due to high labor costs, tight markets and an unstable U.S. economy...

Elliott, R. N.; McKinney, V.; Shipley, A.

2008-01-01T23:59:59.000Z

333

Macro Industrial Working Group  

U.S. Energy Information Administration (EIA) Indexed Site

your attention 22 Industrial Team Washington DC, September 29, 2014 Macro Team: Kay Smith (lead) (202) 586-1132 | kay.smith@eia.gov Vipin Arora (202) 586-1048 |...

334

Industrial Assessment Center  

SciTech Connect

The University of Dayton (UD) performed energy assessments, trained students and supported USDOE objectives. In particular, the UD Industrial Assessment Center (IAC) performed 96 industrial energy assessment days for mid-sized manufacturers. The average identified and implemented savings on each assessment were $261,080 per year and $54,790 per year. The assessments served as direct training in industrial energy efficiency for 16 UD IAC students. The assessments also served as a mechanism for the UD IAC to understand manufacturing energy use and improve upon the science of manufacturing energy efficiency. Specific research results were published in 16 conference proceedings and journals, disseminated in 22 additional invited lectures, and shared with the industrial energy community through the UD IAC website.

J. Kelly Kissock; Becky Blust

2007-04-17T23:59:59.000Z

335

Measurement and Modeling of Solar and PV Output Variability: Preprint  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Measurement and Modeling of Measurement and Modeling of Solar and PV Output Variability Preprint M. Sengupta To be presented at SOLAR 2011 Raleigh, North Carolina May 17-21, 2011 Conference Paper NREL/CP-5500-51105 April 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty,

336

Quantum teleportation scheme by selecting one of multiple output ports  

E-Print Network (OSTI)

The scheme of quantum teleportation, where Bob has multiple (N) output ports and obtains the teleported state by simply selecting one of the N ports, is thoroughly studied. We consider both deterministic version and probabilistic version of the teleportation scheme aiming to teleport an unknown state of a qubit. Moreover, we consider two cases for each version: (i) the state employed for the teleportation is fixed to a maximally entangled state, and (ii) the state is also optimized as well as Alice's measurement. We analytically determine the optimal protocols for all the four cases, and show the corresponding optimal fidelity or optimal success probability. All these protocols can achieve the perfect teleportation in the asymptotic limit of $N\\to\\infty$. The entanglement properties of the teleportation scheme are also discussed.

Satoshi Ishizaka; Tohya Hiroshima

2009-04-06T23:59:59.000Z

337

Industrial energy use indices  

E-Print Network (OSTI)

and colder are determined by annual average temperature weather data). Data scatter may have several explanations, including climate, plant area accounting, the influence of low cost energy and low cost buildings used in the south of the U.S. iv... This analysis uses electricity and natural gas energy consumption and area data of manufacturing plants available in the U.S. Department of Energy’s national Industrial Assessment Center (IAC) database. The data there come from Industrial Assessment Centers...

Hanegan, Andrew Aaron

2008-10-10T23:59:59.000Z

338

Tuesday Webcasts for Industry  

Energy.gov (U.S. Department of Energy (DOE))

Learn about AMO's software tools, technologies, partnership opportunities, and other resources by watching the Tuesday Webcasts for Industry. They are held on the first Tuesday of every month from 2:00 to 3:00 p.m. Eastern time and are presented by manufacturers, AMO staff, and industry experts. Register to participate in upcoming Tuesday webcasts by visiting the AMO Events Calendar or Training Calendar. Each entry includes the webcast's date, topic, and registration link, and a detailed description.

339

Japan Confronts Industry Decline  

Science Journals Connector (OSTI)

Japan Confronts Industry Decline ... The moves are taking place at a time when demand in Japan is weak and companies face competition from lower-cost players in the Middle East and the U.S. ... Only a few months ago, Japan’s largest chemical company, Mitsubishi Chemical, cited deteriorating business conditions when it announced it would close one of its ethylene crackers in Kashima, Ibaraki prefecture, an industrial city a few hours’ drive northeast of Tokyo. ...

JEAN-FRANÇOIS TREMBLAY

2013-02-11T23:59:59.000Z

340

A Framework to Determine the Probability Density Function for the Output Power of Wind Farms  

E-Print Network (OSTI)

A Framework to Determine the Probability Density Function for the Output Power of Wind Farms Sairaj to the power output of a wind farm while factoring in the availability of the wind turbines in the farm availability model for the wind turbines, we propose a method to determine the wind-farm power output pdf

Liberzon, Daniel

Note: This page contains sample records for the topic "industrial output growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Linear model-based estimation of blood pressure and cardiac output for Normal and Paranoid cases  

Science Journals Connector (OSTI)

Provisioning a generic simple linear mathematical model for Paranoid and Healthy cases leading to auxiliary investigation of the neuroleptic drugs effect imposed on cardiac output (CO) and blood pressure (BP). Multi-input single output system identification ... Keywords: Blood pressure, Cardiac output, Heart rate, MISO transfer function, Stroke volume, System identification

Mohamed Abdelkader Aboamer, Ahmad Taher Azar, Khaled Wahba, Abdallah S. Mohamed

2014-11-01T23:59:59.000Z

342

The role of hydrogen energy development in the Korean economy: An input–output analysis  

Science Journals Connector (OSTI)

Abstract Korea has been developing hydrogen energy technology to enhance its energy security. The Hydrogen Energy R&D Center established by the Korean government invested about 100 billion Korean won (KRW) into the development of hydrogen energy technology from 2003 to 2012. This study uses input–output (I–O) analysis, along with the scenario–based exogenous specification method, to investigate the effect of hydrogen energy technology investment on the Korean economy for the period 2020–2040. We focus on two perspectives: (1) the sectoral linkage effect and (2) the sectoral impacts of hydrogen energy supply investments. The overall results reveal that the hydrogen sector can be characterized as intermediate primary production because of its high backward and forward linkage effects. By 2040, total production in the hydrogen sector under two scenarios will be 13,484 and 2979 billion KRW, respectively. This study is a pioneering study into the assessment of the economy–wide effects of Korea's hydrogen energy industries.

Dongphil Chun; Chungwon Woo; Hangyeol Seo; Yanghon Chung; Sungjun Hong; Jongwook Kim

2014-01-01T23:59:59.000Z

343

Analysis and Decomposition of the Energy Intensity of Industries in  

NLE Websites -- All DOE Office Websites (Extended Search)

and Decomposition of the Energy Intensity of Industries in and Decomposition of the Energy Intensity of Industries in California Title Analysis and Decomposition of the Energy Intensity of Industries in California Publication Type Journal Article Year of Publication 2012 Authors de la du Can, Stephane Rue, Ali Hasanbeigi, and Jayant A. Sathaye Journal Energy Policy Volume 46 Pagination 234-245 Keywords california, co2 emissions, energy intensity, energy use Abstract In 2008, the gross domestic product (GDP) of California industry was larger than GDP of industry in any other U.S. states. This study analyses the energy use of and output from seventeen industry subsectors in California and performs decomposition analysis to assess the influence of different factors on California industry energy use. The logarithmic mean Divisia index method is used for the decomposition analysis. The decomposition analysis results show that the observed reduction of energy use in California industry since 2000 is the result of two main factors: the intensity effect and the structural effect. The intensity effect has started pushing final energy use downward in 2000 and has since amplified. The second large effect is the structural effect. The significant decrease of the energy-intensive "Oil and Gas Extraction" subsector's share of total industry value added, from 15% in 1997 to 5% in 2008, and the increase of the non-energy intensive "Electric and electronic equipment manufacturing" sector's share of value added, from 7% in 1997 to 30% in 2008, both contributed to a decrease in the energy intensity in the industry sector

344

Autonomic Intelligent Cyber-Sensor to Support Industrial Control Network Awareness  

SciTech Connect

The proliferation of digital devices in a networked industrial ecosystem, along with an exponential growth in complexity and scope, has resulted in elevated security concerns and management complexity issues. This paper describes a novel architecture utilizing concepts of autonomic computing and a simple object access protocol (SOAP)-based interface to metadata access points (IF-MAP) external communication layer to create a network security sensor. This approach simplifies integration of legacy software and supports a secure, scalable, and self-managed framework. The contribution of this paper is twofold: 1) A flexible two-level communication layer based on autonomic computing and service oriented architecture is detailed and 2) three complementary modules that dynamically reconfigure in response to a changing environment are presented. One module utilizes clustering and fuzzy logic to monitor traffic for abnormal behavior. Another module passively monitors network traffic and deploys deceptive virtual network hosts. These components of the sensor system were implemented in C++ and PERL and utilize a common internal D-Bus communication mechanism. A proof of concept prototype was deployed on a mixed-use test network showing the possible real-world applicability. In testing, 45 of the 46 network attached devices were recognized and 10 of the 12 emulated devices were created with specific operating system and port configurations. In addition, the anomaly detection algorithm achieved a 99.9% recognition rate. All output from the modules were correctly distributed using the common communication structure.

Denis T. Vollmer; Milos Manic; O. Linda

2014-05-01T23:59:59.000Z

345

Clean Energy Manufacturing Initiative Industrial Efficiency and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

346

Industrial Energy Efficiency Assessments | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Industrial Energy Efficiency Assessments Industrial Energy Efficiency Assessments Details about the Industrial Energy Efficiency Assessments program and its implementation in...

347

1 Industrial Electron Accelerators type ILU for Industrial Technologies  

E-Print Network (OSTI)

1 Industrial Electron Accelerators type ILU for Industrial Technologies The present work describes industrial electron accelerators of the ILU family. Their main parameters, design, principle of action the pulse linear accelerators type ILU are developed and supplied to the industry. The ILU machines

348

industrial & systems Industrial and Systems engineers use engineering  

E-Print Network (OSTI)

78 industrial & systems Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take s e n G i n e e r i n G ( i s e ) ISE 105 Introduction to Industrial and Systems Engineering (2, Fa

Rohs, Remo

349

industrial & systems Industrial and Systems engineers use engineering  

E-Print Network (OSTI)

78 industrial & systems Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take to introduce the philosophy, subject matter, aims, goals, and techniques of industrial and systems engineering

Rohs, Remo

350

Mechanical and Industrial Engineering Industry Advisory Board University of Massachusetts Amherst  

E-Print Network (OSTI)

9/13/2007 Mechanical and Industrial Engineering Industry Advisory Board University of Massachusetts Amherst Department of Mechanical and Industrial Engineering About the Mechanical and Industrial Engineering Industry Advisory Board The purpose of the Mechanical and Industrial Engineering Industry Advisory

Mountziaris, T. J.

351

Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by  

NLE Websites -- All DOE Office Websites (Extended Search)

2: August 13, 2: August 13, 2007 Refinery Output by World Region to someone by E-mail Share Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Facebook Tweet about Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Twitter Bookmark Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Google Bookmark Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Delicious Rank Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Digg Find More places to share Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on AddThis.com... Fact #482: August 13, 2007

352

A study of Korean shipbuilders' strategy for sustainable growth  

E-Print Network (OSTI)

This paper aims to develop potential strategies for Korean shipbuilders for sustainable growth by understanding the characteristics of the shipbuilding industry and the current market situation. Before the financial meltdown ...

Won, Duck Hee

2010-01-01T23:59:59.000Z

353

Introduction to the Industrial Technologies Program (ITP) Webinar, January 15, 2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jim Quinn Jim Quinn Industrial Technologies Program U.S. Department of Energy Introduction to the Industrial Technologies Program (ITP) Webinar January 15, 2009 2 U.S. Industry and Energy Use R&D Program Technology Delivery Partnerships Energy Management Approach Opportunities Outline 3 Industrial Technologies Program (ITP) Mission Improve national energy security, climate, environment, and economic competitiveness by transforming the way U.S. industry uses energy. 4 Industry: Key to U.S. Economic & Energy Security U.S. manufacturing sector * Consumes more energy than any other economic sector (~32 quads) * Produces about 1,670 MMT CO 2 per year from energy use * Makes highest contribution to GDP (12%) * Produces nearly a quarter of world manufacturing output * Supplies >60% of US exports, worth $50

354

Workshop proceeding of the industrial building energy use  

SciTech Connect

California has a large number of small and medium sized industries which have a major impact on the demand growth of California utilities. Energy use in building services (lighting, HVAC, office equipment, computers, etc.). These industries constitute an important but largely neglected fraction of the total site energy use. The ratio of energy use in building service to the total site energy use is a function of the industrial activity, its size, and the climate at the site of the facility. Also, energy use in building services is more responsive to weather and occupant schedules than the traditional base-load'' industrial process energy. Industrial energy use is considered as a base-load'' by utility companies because it helps to increase the utilities' load factor. To increase this further, utilities often market energy at lower rates to industrial facilities. Presently, the energy use in the building services of the industrial sector is often clubbed together with industrial process load. Data on non-process industrial energy use are not readily available in the literature. In cases where the major portion of the energy is used in the building services (with daily and seasonal load profiles that in fact peak at the same time as systemwide load peaks), the utility may be selling below cost at peak power times. These cases frequently happen with electric utilities. 30 figs., 6 tabs.

Akbari, H.; Gadgil, A. (eds.)

1988-01-01T23:59:59.000Z

355

ET Industries, Inc.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ET Industries, Inc. ET Industries, Inc. (showerheads) Issued: May 24, 2013 BEFORE THE U.S. DEPARTMENT OF ENERGY Washington, D.C. 20585 ) ) ) ) ) Case Number: 2012-SE-2902 AMENDED NOTICE OF NONCOMPLIANCE DETERMINATION 1 Manufacturers (including importers) are prohibited from distributing covered products in the United States that do not comply with applicable federal water conservation standards. See 10 C.F.R. §§ 429.5, 429.102; 42 U.S.C. §§ 6291(10), 6302. On April 3, 2012, DOE tested one unit of the "ThunderHead" showerhead basic model ("basic model TH-1 " 2 ), which ET Industries, Inc. ("ET") imported into the United States. On April 24, 2012, DOE completed testing of three additional units of basic model TH-1, also imported into

356

Petrochemical industry drivers  

SciTech Connect

Extensive analyses of profit-ability and pricing over the years have shown that the trends seen in the petrochemical industry have two dominant drivers, namely, industry experience curves (reflecting continuous process improvement and cost savings) and profitability cycles. Any outlook for the future must examine both of these facets. The author`s algorithm for price projections has two primary terms: a cost-related one and a supply/demand-related one. Both are strong functions of experience curves; the latter is also a prime function of cyclicality. At SRI International. To arrive at medium-term quantitative projections, SRI typically creates a consistent base-case scenario that more or less mirrors the past but also incorporates observed directional changes. In this article the author examines in detail how these scenarios are used for projection. He describes experience curves, ethylene/gross domestic product (GDP) penetration levels, industry structure, and cyclicality as they apply to ethylene prices.

Sedriks, W.

1995-11-01T23:59:59.000Z

357

Solar Industry Scorches Records  

Office of Energy Efficiency and Renewable Energy (EERE)

A new report indicates photovoltaic (PV) installations continued their impressive growth in 2013, increasing 41% over 2012 to 4,751 megawatts (MW) of installed power in the United States.

358

Emulsified industrial oils recycling  

SciTech Connect

The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

Gabris, T.

1982-04-01T23:59:59.000Z

359

Methodological and Practical Considerations for DevelopingMultiproject Baselines for Electric Power and Cement Industry Projects inCentral America  

SciTech Connect

The Lawrence Berkeley National Laboratory (Berkeley Lab) andthe Center for Sustainable Development in the Americas (CSDA) conductedtechnical studies and organized two training workshops to developcapacity in Central America for the evaluation of climate changeprojects. This paper describes the results of two baseline case studiesconducted for these workshops, one for the power sector and one for thecement industry, that were devised to illustrate certain approaches tobaseline setting. Multiproject baseline emission rates (BERs) for themain Guatemalan electricity grid were calculated from 2001 data. Inrecent years, the Guatemalan power sector has experienced rapid growth;thus, a sufficient number of new plants have been built to estimateviable BERs. We found that BERs for baseload plants offsetting additionalbaseload capacity ranged from 0.702 kgCO2/kWh (using a weighted averagestringency) to 0.507 kgCO2/kWh (using a 10th percentile stringency),while the baseline for plants offsetting load-followingcapacity is lowerat 0.567 kgCO2/kWh. For power displaced from existing load-followingplants, the rate is higher, 0.735 kgCO2/kWh, as a result of the age ofsome plants used for meeting peak loads and the infrequency of their use.The approved consolidated methodology for the Clean Development Mechanismyields a single rate of 0.753 kgCO2/kWh. Due to the relatively smallnumber of cement plants in the region and the regional nature of thecement market, all of Central America was chosen as the geographicboundary for setting cement industry BERs. Unfortunately, actualoperations and output data were unobtainable for most of the plants inthe region, and many data were estimated. Cement industry BERs rangedfrom 205 kgCO2 to 225 kgCO2 per metric ton of cement.

Murtishaw, Scott; Sathaye, Jayant; Galitsky, Christina; Dorion,Kristel

2004-09-02T23:59:59.000Z

360

Output, efficiency, emissions improved with Cat's 3500 series B engine  

SciTech Connect

Like most technologies, engine developments tend to follow evolutionary paths. And it's a given that the longer an engine's been around and the more successful it's been, the more likely it is that any changes made would be incremental. On the surface, such is the case with the Caterpillar 3500 Series B diesel engine, recently introduced in Europe and the United States. Based on the well-proven 3500 engine first introduced in 1980 and upgraded with a Phase II program five years later, most of the changes appear incremental. But taken as a whole, they provide a level of performance and durability that Caterpillar anticipates will make this engine an even stronger contender in power generation and marine applications for years to come. It's not hard to see why. Output has been increased between 17% and 30% on some models; fuel consumption is improved by as much as 15%; and with the new aftertreatment system introduced with the engines, emissions as low as 1.3 g/kWh NO[sub x] are said to be achieveable. This paper outlines the design, specifications, and highlights of the improvements in performance of these new engines. 3 figs.

Brezonick, M.

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial output growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Sources of productivity growth in the American coal industry  

E-Print Network (OSTI)

This paper develops new techniques to assess the expanse of the geographic market under varying supply and demand conditions and applies these techniques to the current wholesale electricity market in the western United ...

Ellerman, Thomas M.

1998-01-01T23:59:59.000Z

362

Financing the growth of energy efficiency service industry in Shanghai  

E-Print Network (OSTI)

Performance Measurement and Verification Protocol,and project savings measurement and verification (M&V). ThePerformance Measurement and Verification Protocol (IPMVP,

Lin, Jiang; Gilligan, Donald; Zhao, Yinghua

2005-01-01T23:59:59.000Z

363

NREL: News - NREL's Industry Growth Forum Brings Together Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy efficiency research and development. NREL is operated for DOE by The Alliance for Sustainable Energy, LLC. For a list of participating companies and sponsors, please visit...

364

Understanding the Growth of the Cellulosic Ethanol Industry  

SciTech Connect

This report identifies, outlines, and documents a set of plausible scenarios for producing significant quantities of lignocellulosic ethanol in 2017. These scenarios can provide guidance for setting government policy and targeting government investment to the areas with greatest potential impact.

Sandor, D.; Wallace, R.; Peterson, S.

2008-04-01T23:59:59.000Z

365

NREL: Continuum Magazine - Industry Growth Forum Cultivates Clean...  

NLE Websites -- All DOE Office Websites (Extended Search)

7AC, a startup based in Beverly, Massachusetts, has developed a membrane-isolated plastic plate technology that enables the design of highly efficient liquid...

366

NREL: News Feature - New Initiatives Debut at Industry Growth...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Guy Foster of HiQ Solar, which built a new-generation photovoltaic string inverter that promises to reduce the cost of commercial solar installations. Award winners...

367

China's Industrial Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

China's Industrial Energy China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy- Saving Program and the Ten Key Energy-Saving Projects Jing Ke, Lynn Price, Stephanie Ohshita, David Fridley, Nina Khanna, Nan Zhou, Mark Levine China Energy Group Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Reprint version of journal article published in "Energy Policy", Volume 50, Pages 562-569, November 2012 October 2012 This work was supported by the China Sustainable Energy Program of the Energy Foundation through the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

368

Natural Gas Industrial Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

369

BTU Accounting for Industry  

E-Print Network (OSTI)

convert utility bills to BTUs? All fuels can be measured in terms of BTU content. Natural gas has a million BTUs per thousand cubic feet; propane - 92,000 BTUs per gallon; fuel oil - 140,000 BTUs per gallon; electricity - 3,413 BTUs per KW hour... BTU ACCOUNTING FOR INDUSTRY Robert O. Redd-CPA Seidman & Seidman Grand Rapids, Michigan Today, as never before, American industry needs to identify and control their most criti cal resources. One of these is energy. In 1973 and again in 1976...

Redd, R. O.

1979-01-01T23:59:59.000Z

370

Chapter 11 - Industrial Automation  

Science Journals Connector (OSTI)

The industrial systems of the future are complex systems composed of vast numbers of devices interacting with each other and with enterprise systems. Modern technologies such as web services, service-oriented architectures (SOAs), the cloud, etc. make it possible for sophisticated infrastructures to emerge in future factories. We take a closer look at key visionary aspects that are expected to be introduced in the industrial automation domain in the years to come, and the pivotal role of M2M and IoT. Additionally, we investigate the impact on the collaboration of machines among themselves and with enterprise systems and their services.

Jan Höller; Vlasios Tsiatsis; Catherine Mulligan; Stamatis Karnouskos; Stefan Avesand; David Boyle

2014-01-01T23:59:59.000Z

371

Industrial Partnerships | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Fiber Consortium Manufacturing Industrial Partnerships Staff University Partnerships Events and Conferences Success Stories Video Newsletters Staff Contacts Partnerships Home | Connect with ORNL | For Industry | Partnerships | Industrial Partnerships SHARE Industrial Partnerships ORNL takes great pride in its work with U.S. industry. Each year, the Industrial Partnerships team hosts more than 100 visits to ORNL by both large corporations and small companies to help our potential partners understand the capabilities and expertise that exist at the laboratory and the various mechanisms available to help facilitate collaboration. Mechanism for Partnering How do I get started exploring industrial partnerships at ORNL? As the nation's largest science and energy laboratory, it can sometimes be

372

Molar Growth  

NLE Websites -- All DOE Office Websites (Extended Search)

Molar Growth Molar Growth Name: Daniel Location: N/A Country: N/A Date: N/A Question: What animals have molars that grow continuously ? Replies: No mammals that I or my colleagues are aware of, only some few whose incisors grow continuously. J. Elliott Most vertebrates are "polyphyodonts" meaning that they replace teeth continuously through out their lives. All the teeth aren't replaced at once, but in waves so that the animals always have functional teeth around those that are lost. Most mammals are "diphyodonts", which means that they have only 2 sets of teeth: baby teeth and adult teeth. The teeth of herbivore mammals, those which eat grasses, seem to grow throughout their lives. But really, the teeth are very long and extend far down into the jaws. They gradually move up in the jaw toward the surface over time, with the area beneath them filling in with bone.

373

Wool Industries Research Association  

Science Journals Connector (OSTI)

... THE report of Dr. A. B. P. Cassie, director of research of the Wool Industries Research Association, presented to the annual general meeting of the Association on April ... No. 212.) Headingley, Leeds: 1959). Modifications have been made to the pilot scouring plant, while methods for determining oil and grease in ...

1959-06-27T23:59:59.000Z

374

CONGRESS BLASTS OIL INDUSTRY  

Science Journals Connector (OSTI)

IN PACKED HEARINGS last week before angry members of Congress, the heads of BP, ExxonMobil, Chevron, ConocoPhillips, and Shell Oil defended their industry in light of the April 20 BP oil rig explosion in the Gulf of Mexico, which has led to the worst ...

JEFF JOHNSON

2010-06-21T23:59:59.000Z

375

Industry Partners Panel  

Energy.gov (U.S. Department of Energy (DOE))

Industry Panel presenters include: Michael G. Andrew, Director - Academic and Technical Programs, Advanced Products and Materials, Johnson Controls Power Solutions Michael A. Fetcenko, Vice President and Managing Director, BASF Battery Materials – Ovonic, BASF Corporation Adam Kahn, Founder and CEO, AKHAN Technologies, Inc. Stephen E. Zimmer, Executive Director, United States Council for Automotive Research (USCAR)

376

A study of the correlation between pre-IPO venture funds and founder characteristics with high-tech firm growth  

E-Print Network (OSTI)

High-tech firms are among the fastest growing in the United States. The four industries with the most rapid growth -internet, software, semiconductors, and technology hardware - have almost doubled their share of industry ...

Zaheer, Safwan

2008-01-01T23:59:59.000Z

377

China urges rapid growth  

SciTech Connect

This time last year China's paramount leader, Deng Xiaoping, launched the country on another bout of fast-paced economic growth and restructuring. After three years of riding out political and economic clampdown, foreign chemical companies were jerked awake by major changes in China's chemical industry. As the state becomes less involved with managing the economy, unleashing 12% gross national product growth, closer involvement with domestic factories has become attractive and essential. MCI officials say government funds will now be channeled toward clearing energy and transport bottlenecks, and chemical enterprises will be given more chance to turn a profit. They will be allowed to issue shares, seek foreign investment partners themselves, and bypass trading companies like China National Import-Export Corp. (Sinochem), the former state monopoly. Foreign analysts question whether China's finances and oil resources can support expansion. Even if they can, Cai estimates that ethylene imports will remain around the present level of 1 million tons. To further guarantee chemical supplies, China has invested in urea and polypropylene plants in the US and polystyrene plant in Hong Kong.

Hendry, S.

1993-02-03T23:59:59.000Z

378

New Energy Dept., Berkeley Lab Report on Energy Service Company Industry  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Energy Dept., Berkeley Lab Report on Energy Service Company New Energy Dept., Berkeley Lab Report on Energy Service Company Industry Growth New Energy Dept., Berkeley Lab Report on Energy Service Company Industry Growth September 25, 2013 - 2:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department and Lawrence Berkeley National Laboratory today released a new report on the market size, trends and growth projections for America's energy service company (ESCO) industry. The report details steady growth in the energy savings performance-based contracting sector over the past ten years, led by investments from state and local governments, the federal government and K-12 schools. Each year, this industry typically saves customers more than $4 billion in utility bills and enough energy to power nearly 2 million households - equivalent

379

Rapid industrialization and market for energy and minerals: China in the East Asian context  

Science Journals Connector (OSTI)

The mainland of China’s rapid pace of industrialization and trade expansion have led many to ask whether its ever-increasing demand for resources can be met without disruption to economic stability and growth ...

Ross Garnaut; Ligang Song

2006-09-01T23:59:59.000Z

380

Economic Growth Policies & Economic Growth Theory Influences.  

E-Print Network (OSTI)

?? The aim of this thesis is to describe the presence of theories for economic growth in municipalities’ economic growth strategies, and to compare the… (more)

Hallden, Sophie

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial output growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Industrial Energy Use and Energy Efficiency in Developing Countries  

E-Print Network (OSTI)

The industrial sector accounts for over 50% of energy used in developing countries. Growth in this sector has been over 4.5% per year since 1980. Energy intensity trends for four energy-intensive sub-sectors (iron and steel, chemicals, building...

Price, L.; Martin, N.; Levine, M. D.; Worrell, E.

382

Continuing consolidation in the coal industry  

SciTech Connect

Extensive consolidation has occurred in the coal industry over the past decade. The greatest degree of consolidation has occurred in Northern Appalachia, the Illinois Basin, and the Wyoming portion of the Powder River Basin (PRB), which are the coal supply regions where most observers expect the greatest growth in coal production over the next decade. In addition to reducing the number of alternative suppliers, high level of concentration also tend to result in higher prices, more volatile spot markets, and lower levels of reliability. Therefore, coal-fired generators purchasing in these regions need to respond proactively and strategically to these market trends. 2 figs.

Gaalaas, T. [Pace Global Energy Services LLC (United States)

2006-08-15T23:59:59.000Z

383

Nanoscale Growth Twins in Sputtered Copper Films  

E-Print Network (OSTI)

.............................................................. 7 I.1.3. Chemical vapor deposition (CVD) .................................... 8 I.2. Fabrication of copper thin films .................................................... 12... to the exposure of the film growth surface to the solution, impurities may be introduced. I.1.3. Chemical vapor deposition (CVD) CVD is a chemical process used to produce high-purity, high-performance thin films and often used in the semiconductor industry...

Anderoglu, Osman

2011-08-08T23:59:59.000Z

384

Industrial Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Facilities Industrial Facilities Industrial Facilities October 8, 2013 - 10:14am Addthis The Federal Energy Management Program (FEMP) encourages Federal agencies requiring assistance with implementing energy-efficiency measures in their industrial facilities to hire a U.S. Department of Energy Industrial Assessment Center (IAC) for assessment services. The following resources can be used to plan and implement industrial facility energy-efficiency projects. Technical Publications: The Advanced Manufacturing Office (AMO) website offers fact sheets, handbooks, and self-assessment manuals covering steam system efficiency, fundamentals of compressed air systems, motor systems management, and other topics. Tools: The AMO website offers valuable software tools for evaluating

385

Trends in Occupational Fatalities and Industry Growth for Construction Industry in the United States  

E-Print Network (OSTI)

sets. Some countries like Finland, Spain, and Switzerland exclude self-employed workers while Australia, Germany, Italy, and United States including all the workers when counting the deaths. In addition, countries have different coverage periods... for the work related deaths. For example; Australia, Finland, and Switzerland define the deaths if it occurs within one year. Germany and Spain count the work related deaths if it happens within a month, whereat united States, Italy, Norway have...

Dogan, Yildirim

2010-07-14T23:59:59.000Z

386

New Model Demonstrates Offshore Wind Industry’s Job Growth Potential  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department’s National Renewable Energy Laboratory (NREL) has developed a tool to estimate jobs and other economic impacts associated with offshore wind development in the United States.

387

Combining frequency and time domain approaches to systems with multiple spike train input and output  

E-Print Network (OSTI)

between neuronal spike trains. Prog Biophys Mol Biol Vapnikto systems with multiple spike train input and output D. R.Keywords Multiple spike trains · Neural coding · Maximum

Brillinger, D. R.; Lindsay, K. A.; Rosenberg, J. R.

2009-01-01T23:59:59.000Z

388

On using transputers to design the header and output processors for the PSi architecture  

E-Print Network (OSTI)

the complexity associatecl with general soft ware. From Upper Layer Needer Processor From Lower Leyei' Input Bus Concoction Processor Connection Processor 256 CP's Output Bus To Upper Layer Output Processor To Lower Layer Fig. 2. d. Block... yer From Lower Layer T2 T3 To Input Bus of CP's From Output Bus of CF's From Output Bus of Cfes Fig, 4. 1. e. Block diagram of Design I transputers has its own private memory. Tl acts as the header processor. Two of its serial links...

Manickam, Muralidhar

2012-06-07T23:59:59.000Z

389

A CSP Timed Input-Output Relation and a Strategy for Mechanised Conformance Verification  

Science Journals Connector (OSTI)

Here we propose a timed input-output conformance relation (named CSPTIO) based on the process algebra CSP. In contrast to other relations, CSPTIO...

Gustavo Carvalho; Augusto Sampaio…

2013-01-01T23:59:59.000Z

390

FORMALIZATION OF INPUT AND OUTPUT IN MODERN OPERATING SYSTEMS: THE HADLEY MODEL.  

E-Print Network (OSTI)

??We present the Hadley model, a formal descriptive model of input and output for modern computer operating systems. Our model is intentionally inspired by the… (more)

Gerber, Matthew

2005-01-01T23:59:59.000Z

391

Cavity dumping versus stationary output coupling in repetitively Q-switched solid-state lasers  

Science Journals Connector (OSTI)

A comparative theoretical analysis of continuously pumped actively Q-switched solid-state lasers differing in output coupling methods (cavity dumping versus a partially transmitting...

Grishin, Mikhail

2011-01-01T23:59:59.000Z

392

Essays on the industrial organization of the airline industry  

E-Print Network (OSTI)

This thesis analyzes several aspects of the Industrial Organization of the airline industry in three separate chapters. Chapter 1 investigates the effect of air traffic delays on airline prices. The degree to which prices ...

Januszewski, Silke I. (Silke Irene), 1974-

2003-01-01T23:59:59.000Z

393

Eyeball Growth  

NLE Websites -- All DOE Office Websites (Extended Search)

Eyeball Growth Eyeball Growth Name: Jade Hawk Status: N/A Age: N/A Location: N/A Country: N/A Date: N/A Question: Okay, I know I'm supposed to be able to answer questions here, but a friend who teaches grades 7 & 8 general science wants to know if the human eyeball is fully grown at birth. I checked my references, which are rather limited when it comes to human physiology, and found nothing. Can anyone help? Replies: The eye will still develop in size, pigmentation, and neurologically but I don't have the details here at hand. A kitten is born with eyes even more immature than human babies. Besides having sealed eyes that take about a week to open, they have retinas that a avascularized and need to undergo neovascularization to properly nourish and oxygenate the tissue. We have used the kitten to study retinopathy of prematurity, a condition caused in part by increased inspired oxygen. The kitten is also used in the study of diabetic retinopathy which a I think is the leading cause of blindness in the US. Look up publications by Dale Phelps, MD.

394

Coal industry annual 1993  

SciTech Connect

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

395

Industrial Assessment Centers (IACs)  

Energy.gov (U.S. Department of Energy (DOE))

Small- and medium-sized manufacturers may be eligible to receive a no-cost assessment provided by DOE Industrial Assessment Centers (IACs). Teams located at 24 universities around the country conduct the energy audits to identify opportunities to improve productivity, reduce waste, and save energy. Each manufacturer typically identifies about $55,000 in potential annual savings on average. Over 15,000 IAC assessments have been conducted. IACs also train the next-generation of energy savvy engineers.

396

Recent developments: Industry briefs  

SciTech Connect

This article is the `Industry Briefs` portion of Nuexco`s July 1992 `Recent Developments` section. Specific items mentioned include: (1) the merger of Entergy and Gulf States Utilities, (2) restart of the Sequoyah Fuels facility in Oklahoma, (3) development of the 7th and 8th nuclear units in Taiwan, (4) purchase of interest in Rio Algom, Ltd, and (5) acquisition of the Italian firm AGIP by a Canadian company.

NONE

1992-07-01T23:59:59.000Z

397

Industrial Analytics Corporation  

SciTech Connect

The lost foam casting process is sensitive to the properties of the EPS patterns used for the casting operation. In this project Industrial Analytics Corporation (IAC) has developed a new low voltage x-ray instrument for x-ray radiography of very low mass EPS patterns. IAC has also developed a transmitted visible light method for characterizing the properties of EPS patterns. The systems developed are also applicable to other low density materials including graphite foams.

Industrial Analytics Corporation

2004-01-30T23:59:59.000Z

398

SymposiumandIndustrialAffiliatesProgramLightinAction Industrial Affiliates Program  

E-Print Network (OSTI)

SymposiumandIndustrialAffiliatesProgramLightinAction #12;Industrial Affiliates Program Friday, 8 Session I Abstract: Recently Additive Manufacturing (AM) has been hailed as the "third industrial revolution" by Economist magazine [April -2012]. Precision of the product manufactured by AM largely depends

Van Stryland, Eric

399

Consumption, Social Capital, and the 'Industrious Revolution' in Early Modern Germany  

E-Print Network (OSTI)

Consumption, Social Capital, and the “Industrious Revolution” in Early Modern Germany SHEILAGH OGILVIE Faculty of Economics, University of Cambridge Acknowledgements: I am grateful to Marco Belfanti, André... ; labour; discrimination; gender; Germany 1 Expanding market consumption is widely ascribed a key role in European economic growth before industrialization. A “Consumer Revolution” between 1650 and 1800 is thought to have seen the middle classes...

Ogilvie, Sheilagh

400

Model documentation report: Industrial sector demand module of the National Energy Modeling System  

SciTech Connect

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects. The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2015) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

NONE

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial output growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

NETL: Industrial Capture & Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Capture & Storage Industrial Capture & Storage Technologies Industrial Capture & Storage The United States Department of Energy, National Energy Technology Laboratory (DOE/NETL, or DOE) is currently implementing a program titled "Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2 Use." This CO2 Capture and Sequestration (CCS) and CO2 use program is a cost-shared collaboration between the Government and industry whose purpose is to increase investment in clean industrial technologies and sequestration projects. In accordance with the American Recovery and Reinvestment Act of 2009, and Section 703 of Public Law 110-140, DOE's two specific objectives are to demonstrate: (1) Large-Scale Industrial CCS projects from industrial sources, and (2) Innovative Concepts for beneficial CO2 use.

402

LCA experiences in Danish industry  

Science Journals Connector (OSTI)

A study has been performed on Danish industry’s experiences with LCA. Twenty-six enterprises from different sectors conpleted ... learning phase, and experiences with full-blown LCA’s are sparse. Expectations of ...

Ole Broberg; Per Christensen

1999-09-01T23:59:59.000Z

403

Energy Efficient Industrial Building Design  

E-Print Network (OSTI)

The design of industrial buildings today is still largely unaffected by energy legislation and building technologies. The present corporate tax structures for industry do little to encourage investment of capital for future operating cost savings...

Holness, G. V. R.

1983-01-01T23:59:59.000Z

404

Solar Industrial Process Heat Production  

Science Journals Connector (OSTI)

An overview of state of the art in producing industrial process heat via solar energy is presented. End-use matching methodology for assessing solar industrial process heat application potential is described f...

E. Özil

1987-01-01T23:59:59.000Z

405

Industrial Heat Pump Design Options  

E-Print Network (OSTI)

There are numerous industries that can incorporate heat pumps into their operations to save energy costs and payoff the investment in well under two years. Many of these industries can cut energy costs associated with evaporation by over 75...

Gilbert, J. S.

406

Texas Industries of the Future  

E-Print Network (OSTI)

The purpose of the Texas Industries of the Future program is to facilitate the development, demonstration and adoption of advanced technologies and adoption of best practices that reduce industrial energy usage, emissions, and associated costs...

Ferland, K.

407

Empirical essays in industrial organization  

E-Print Network (OSTI)

In this dissertation, I present three empirical essays that encompass topics in industrial organization. The first essay examines the degree of competition and spatial differentiation in the retail industry by exploiting ...

Chiou, Lesley C

2005-01-01T23:59:59.000Z

408

High Technology and Industrial Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Semiconductor clean room Semiconductor clean room High Technology and Industrial Systems EETD's research on high technology buildings and industrial systems is aimed at reducing energy consumed by the industrial sector in manufacturing facilities, including high technology industries such as data centers, cleanrooms in the such industries as electronics and pharmaceutical manufacturing, and laboratories, improving the competitiveness of U.S. industry. Contacts William Tschudi WFTschudi@lbl.gov (510) 495-2417 Aimee McKane ATMcKane@lbl.gov (518) 782-7002 Links High-Performance Buildings for High-Tech Industries Industrial Energy Analysis Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

409

Innovative Utility Pricing for Industry  

E-Print Network (OSTI)

INNOVATIVE UTILITY PRICING FOR INDUSTRY James A. Ross Drazen-Brubaker &Associates, Inc. St. Louis, Missouri ABSTRACT The electric utility industry represents only one source of power available to industry. Al though the monopolistic... structure of the electric utility industry may convey a perception that an electric utility is unaffected by competition, this is an erroneous perception with regard to in dustry. Electric utilities face increased compe tition, both from other utilities...

Ross, J. A.

410

EPRI's Industrial Energy Management Program  

E-Print Network (OSTI)

EPRI's INDUSTRIAL ENERGY MANAGEMENT PROGRAM ED MERGENS MANAGER EPRI's CHEMICALS & PETROLEUM OFFICE HOUSTON, TEXAS ABSTRACT The loss of American industry jobs to foreign competition is made worse by national concerns over fuels combustion... and other industrial activity effects on our environment. Energy efficiency programs and new electrical processes can playa major role in restoring the environment and in creating a stronger industrial sector in the national economy. Since 1984...

Mergens, E.; Niday, L.

411

PETROLEUM INDUSTRY INFORMATION REPORTING ACT  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION PETROLEUM INDUSTRY INFORMATION REPORTING ACT: RULEMAKING;1 EXECUTIVE SUMMARY In the six months since the new Petroleum Industry Information Reporting Act (PIIRA which is used by the petroleum industry and market trading groups to assess the trends in California

412

Creating Value Wood Products Industry  

E-Print Network (OSTI)

and an information dissemination plan. The program areas are Industrial Process Improvement, Environmental Assessment1 Creating Value for the Wood Products Industry Creating Value for the Wood Products Industry Louisiana Forest Products Development Center #12;2 Louisiana is blessed with quality timberland

413

America's Wind Industry Reaches Record Highs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America's Wind Industry Reaches Record Highs America's Wind Industry Reaches Record Highs America's Wind Industry Reaches Record Highs August 6, 2013 - 8:01am Addthis Our latest Infographic highlights key findings from the 2012 Wind Technologies Market Report. | Infographic by Sarah Gerrity. Our latest Infographic highlights key findings from the 2012 Wind Technologies Market Report. | Infographic by Sarah Gerrity. Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy LEARN MORE Watch our new video highlighting the latest U.S. wind industry trends. See our press release on the Energy Department's two new reports highlighting the record-breaking growth of America's wind power market. Check out our new page: energy.gov/windreport. Today, the Energy Department released two new reports highlighting record

414

Urban Integrated Industrial Cogeneration Systems Analysis. Phase II final report  

SciTech Connect

Through the Urban Integrated Industrial Cogeneration Systems Analysis (UIICSA), the City of Chicago embarked upon an ambitious effort to identify the measure the overall industrial cogeneration market in the city and to evaluate in detail the most promising market opportunities. This report discusses the background of the work completed during Phase II of the UIICSA and presents the results of economic feasibility studies conducted for three potential cogeneration sites in Chicago. Phase II focused on the feasibility of cogeneration at the three most promising sites: the Stockyards and Calumet industrial areas, and the Ford City commercial/industrial complex. Each feasibility case study considered the energy load requirements of the existing facilities at the site and the potential for attracting and serving new growth in the area. Alternative fuels and technologies, and ownership and financing options were also incorporated into the case studies. Finally, site specific considerations such as development incentives, zoning and building code restrictions and environmental requirements were investigated.

Not Available

1984-01-01T23:59:59.000Z

415

Design of fast output sampling feedback control for smart structure model  

Science Journals Connector (OSTI)

In this paper, the problem of modelling and output feedback control design for a smart structural system using piezoelectric material as a sensor/actuator is addressed. The model for a smart cantilever beam is developed by the finite element method. ... Keywords: output feedback, smart structure, vibration control

M. Umapathy; B. Bandyopadhyay

2007-01-01T23:59:59.000Z

416

Estimating Solar PV Output Using Modern Space/Time Geostatistics (Presentation)  

SciTech Connect

This presentation describes a project that uses mapping techniques to predict solar output at subhourly resolution at any spatial point, develop a methodology that is applicable to natural resources in general, and demonstrate capability of geostatistical techniques to predict the output of a potential solar plant.

Lee, S. J.; George, R.; Bush, B.

2009-04-29T23:59:59.000Z

417

PWM Inverter Output Filter Cost to Losses Trade Off and Optimal Design  

E-Print Network (OSTI)

PWM Inverter Output Filter Cost to Losses Trade Off and Optimal Design Robert J. Pasterczyk Jean--This paper describes how to design the output filter of a PWM inverter used in a Uninterruptible Power SupplyVA 3-ph. PWM inverter is taken as example. B. Design Constraints Uninterruptible Power Supply (UPS

Paris-Sud XI, Université de

418

Quality assurance of solar thermal systems with the ISFH-Input/Output-Procedure  

E-Print Network (OSTI)

. Supplementary sensors may be necessary for some special solar systems (e. g. solar systems with several storagesQuality assurance of solar thermal systems with the ISFH- Input/Output-Procedure Peter Paerisch/Output-Controllers for in situ and automatic function control of solar thermal systems that were developed within the research

419

A Method of Decreasing Power Output Fluctuation of Solar Chimney Power Generating Systems  

Science Journals Connector (OSTI)

Severe fluctuation of power output is a common problem in the various generating systems of renewable energies. The hybrid energy storage system with water and soil is adopted to decrease the fluctuation of solar chimney power generating systems in the ... Keywords: Solar chimney power generating system, power output fluctuation, hybrid energy storage layer, collector, chimney

Meng Fanlong; Ming Tingzhen; Pan Yuan

2011-01-01T23:59:59.000Z

420

Statistical post processing of model output from the air quality model LOTOS-EUROS  

E-Print Network (OSTI)

Statistical post processing of model output from the air quality model LOTOS-EUROS Annemiek processing of model output from the air quality model LOTOS-EUROS Author: Annemiek Pijnappel Supervisor summary Air quality forecasts are produced routinely, focusing on concentrations of polluting gases

Stoffelen, Ad

Note: This page contains sample records for the topic "industrial output growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Optimizing the Output of a Human-Powered Energy Harvesting System with Miniaturization and Integrated Control  

E-Print Network (OSTI)

1 Optimizing the Output of a Human-Powered Energy Harvesting System with Miniaturization mechanical energy from human foot-strikes and explore its configuration and control towards optimized energy output. Dielectric Elastomers (DEs) are high-energy density, soft, rubber-like material

Potkonjak, Miodrag

422

Optimization on Solar Panels: Finding the Optimal Output Brian Y. Lu  

E-Print Network (OSTI)

Optimization on Solar Panels: Finding the Optimal Output Brian Y. Lu January 1, 2013 1 Introduction of solar panel: Routing the configuration between solar cells with a switch matrix. However, their result models and control policies for the optimal output of solar panels. The smallest unit on a solar panel

Lavaei, Javad

423

Predicting the Energy Output of Wind Farms Based on Weather Data: Important Variables and their Correlation  

E-Print Network (OSTI)

Wind energy plays an increasing role in the supply of energy world-wide. The energy output of a wind farm is highly dependent on the weather condition present at the wind farm. If the output can be predicted more accurately, energy suppliers can coordinate the collaborative production of different energy sources more efficiently to avoid costly overproductions. With this paper, we take a computer science perspective on energy prediction based on weather data and analyze the important parameters as well as their correlation on the energy output. To deal with the interaction of the different parameters we use symbolic regression based on the genetic programming tool DataModeler. Our studies are carried out on publicly available weather and energy data for a wind farm in Australia. We reveal the correlation of the different variables for the energy output. The model obtained for energy prediction gives a very reliable prediction of the energy output for newly given weather data.

Vladislavleva, Katya; Neumann, Frank; Wagner, Markus

2011-01-01T23:59:59.000Z

424

Method for leveling the power output of an electromechanical battery as a function of speed  

DOE Patents (OSTI)

The invention is a method of leveling the power output of an electromechanical battery during its discharge, while at the same time maximizing its power output into a given load. The method employs the concept of series resonance, employing a capacitor the parameters of which are chosen optimally to achieve the desired near-flatness of power output over any chosen charged-discharged speed ratio. Capacitors are inserted in series with each phase of the windings to introduce capacitative reactances that act to compensate the inductive reactance of these windings. This compensating effect both increases the power that can be drawn from the generator before inductive voltage drops in the windings become dominant and acts to flatten the power output over a chosen speed range. The values of the capacitors are chosen so as to optimally flatten the output of the generator over the chosen speed range. 3 figs.

Post, R.F.

1999-03-16T23:59:59.000Z

425

Guardian Industries | Open Energy Information  

Open Energy Info (EERE)

Industries Industries Jump to: navigation, search Name Guardian Industries Place Auburn Hills, MI Website http://www.guardian.com/ References Results of NREL Testing (Glass Magazine)[1] Guardian News Archive[2] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Other Relationship Partnering Center within NREL Transportation Technologies and Systems Partnership Year 2002 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Guardian Industries is a company located in Auburn Hills, MI. References ↑ "Results of NREL Testing (Glass Magazine)" ↑ "Guardian News Archive" Retrieved from "http://en.openei.org/w/index.php?title=Guardian_Industries&oldid=381719" Categories: Clean Energy Organizations

426

Coal Industry Annual 1995  

SciTech Connect

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

NONE

1996-10-01T23:59:59.000Z

427

Comparison of Bottom-Up and Top-Down Forecasts: Vision Industry Energy Forecasts with ITEMS and NEMS  

E-Print Network (OSTI)

of the Department of Energy's Office of Industrial Technologies, EIA extracted energy use infonnation from the Annual Energy Outlook (AEO) - 2000 (8) for each of the seven # The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute...-6, 2000 NEMS The NEMS industrial module is the official forecasting model for EIA and thus the Department of Energy. For this reason, the energy prices and output forecasts used to drive the ITEMS model were taken from EIA's AEO 2000. Understanding...

Roop, J. M.; Dahowski, R. T

428

Colorado Industrial Challenge and Recognition Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Colorado Industrial Challenge and Recognition Program Colorado Industrial Challenge and Recognition Program This fact sheet offers details of the Colorado Industrial program state...

429

NETL: Industrial Capture & Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Technologies Industrial Capture & Storage Area 1 Large-Scale Industrial CCS Program The United States Department of Energy, National Energy Technology Laboratory (DOE/NETL, or DOE) is currently implementing a program titled "Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2 Use." This CO2 Capture and Sequestration (CCS) and CO2 use program is a cost-shared collaboration between the Government and industry whose purpose is to increase investment in clean industrial technologies and sequestration projects. In accordance with the American Recovery and Reinvestment Act of 2009, and Section 703 of Public Law 110-140, DOE's two specific objectives are to demonstrate: (1) Large-Scale Industrial CCS projects from industrial sources, and (2) Innovative Concepts for beneficial CO2 use.

430

CHAPTER 12 - Source Data for the Manufacturing, Processing, and Mining Industries  

Science Journals Connector (OSTI)

Publisher Summary This chapter provides an overview of the source data for the manufacturing, processing, and mining industries. The manufacturing sector is divided into a number of sectors for the purposes of input-output and may or may not include intermediate processing industries. In many developing countries, industries processing raw materials are the major part of this section of the economy, and final manufacturing industries may be few in number and type. Whatever method of classification is used, the general remarks on source data that follow is applied. Although both large and small businesses usually exist in manufacturing and processing, each industry is often dominated either by large or small businesses. One of the main sources of data is of tax returns for the larger businesses. No difficulty is experienced in obtaining grouped data processed in the taxation department which, when they reach the national income statistician, is in the form of a balancing account for the aggregate businesses covered. As with other sectors, it is important to obtain details of coverage in terms of the number of firms, physical output, or any other information that indicates what proportion of the industry is covered by these accounts.

CARLEEN O'LOUGHLIN

1971-01-01T23:59:59.000Z

431

Finding the quantum thermoelectric with maximal efficiency and minimal entropy production at given power output  

E-Print Network (OSTI)

We investigate the nonlinear scattering theory for quantum systems with strong Seebeck and Peltier effects, and consider their use as heat-engines and refrigerators with finite power outputs. This article gives detailed derivations of the results summarized in Phys. Rev. Lett. 112, 130601 (2014). It shows how to use the scattering theory to find (i) the quantum thermoelectric with maximum possible power output, and (ii) the quantum thermoelectric with maximum efficiency at given power output. The latter corresponds to a minimal entropy production at that power output. These quantities are of quantum origin since they depend on system size over electronic wavelength, and so have no analogue in classical thermodynamics. The maximal efficiency coincides with Carnot efficiency at zero power output, but decreases with increasing power output. This gives a fundamental lower bound on entropy production, which means that reversibility (in the thermodynamic sense) is impossible for finite power output. The suppression of efficiency by (nonlinear) phonon and photon effects is addressed in detail; when these effects are strong, maximum efficiency coincides with maximum power. Finally, we show in particular limits (typically without magnetic fields) that relaxation within the quantum system does not allow the system to exceed the bounds derived for relaxation-free systems, however a general proof of this remains elusive.

Robert S. Whitney

2015-01-28T23:59:59.000Z

432

Research Projects in Industrial Technology.  

SciTech Connect

The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

United States. Bonneville Power Administration. Industrial Technology Section.

1990-06-01T23:59:59.000Z

433

Whitacre College of Engineering Industrial Engineering Department  

E-Print Network (OSTI)

Whitacre College of Engineering Industrial Engineering Department Department Chair and Professor of Industrial Engineering. The Industrial Engineering Department at Texas Tech University has a distinguished industrial engineering education and provide appropriate service to the department, university

Gelfond, Michael

434

Faculty of Engineering & Design Industrial Placements  

E-Print Network (OSTI)

Faculty of Engineering & Design Industrial Placements A guide for industry #12;Industrial placements The Faculty of Engineering & Design has built close links with engineering companies through research, projects, placements and graduate employees. We know that working with industry ensures our

Burton, Geoffrey R.

435

China's Industrial Energy Consumption Trends and Impacts of the Top-1000  

NLE Websites -- All DOE Office Websites (Extended Search)

China's Industrial Energy Consumption Trends and Impacts of the Top-1000 China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects Title China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects Publication Type Journal Year of Publication 2012 Authors Ke, Jing, Lynn K. Price, Stephanie Ohshita, David Fridley, Nina Zheng Khanna, Nan Zhou, and Mark D. Levine Keywords energy saving, energy trends, industrial energy efficiency, top-1000 Abstract This study analyzes China's industrial energy consumption trends from 1996 to 2010 with a focus on the impact of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects. From 1996 to 2010, China's industrial energy consumption increased by 134%, even as the industrial economic energy intensity decreased by 46%. Decomposition analysis shows that the production effect was the dominant cause of the rapid growth in industrial energy consumption, while the efficiency effect was the major factor slowing the growth of industrial energy consumption. The structural effect had a relatively small and fluctuating influence. Analysis shows the strong association of industrial energy consumption with the growth of China's economy and changing energy policies. An assessment of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects indicates that the economic energy intensity of major energy-intensive industrial sub-sectors, as well as the physical energy intensity of major energy-intensive industrial products, decreased significantly during China's 11th Five Year Plan (FYP) period (2006-2010). This study also shows the importance and challenge of realizing structural change toward less energy-intensive activities in China during the 12th FYP period (2011-2015).

436

X-ray source assembly having enhanced output stability, and fluid stream analysis applications thereof  

DOE Patents (OSTI)

An x-ray source assembly and method of operation are provided having enhanced output stability. The assembly includes an anode having a source spot upon which electrons impinge and a control system for controlling position of the anode source spot relative to an output structure. The control system can maintain the anode source spot location relative to the output structure notwithstanding a change in one or more operating conditions of the x-ray source assembly. One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.

Radley, Ian (Glenmont, NY); Bievenue, Thomas J. (Delmar, NY); Burdett, John H. (Charlton, NY); Gallagher, Brian W. (Guilderland, NY); Shakshober, Stuart M. (Hudson, NY); Chen, Zewu (Schenectady, NY); Moore, Michael D. (Alplaus, NY)

2008-06-08T23:59:59.000Z

437

industrial & systems (ISE) Industrial and Systems Engineers use engineering and business principles  

E-Print Network (OSTI)

70 industrial & systems (ISE) Industrial and Systems Engineers use engineering and business systems to help companies compete in today's global marketplace. The Industrial and Systems Engineer. Programs Available · Industrial and Systems Engineering Bachelor of Science 129 units · Industrial

Rohs, Remo

438

industrial & systems (ISE) Industrial and Systems engineers use engineering and business principles  

E-Print Network (OSTI)

74 industrial & systems (ISE) Industrial and Systems engineers use engineering and business to help companies compete in today's global marketplace. The Industrial and Systems engineer's task. Programs Available · Industrial and Systems Engineering Bachelor of Science 128 units · Industrial

Rohs, Remo

439

Zoe Industries, Inc.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issued: February 9, 2012 Issued: February 9, 2012 BEFORE THE U.S. DEPARTMENT OF ENERGY WASHINGTON, D.C. 20585 ) ) ) ) ) ORDER Case Number: 2011-SW-2912 By the General Counsel, U.S. Department of Energy: 1. In this Order, I adopt the attached Compromise Agreement entered into between the U.S. Department of Energy ("DOE") and Zoe Industries, Inc. ("Respondent"). The Compromise Agreement resolves the case initiated against Respondent pursuant to 10 C.F.R. § 429.122 by Notice of Proposed Civil Penalty, alleging that Respondent distributed in commerce in the United States the Giessdorf eight-jet basic model showerhead, SKU 150043, which failed to meet the applicable standard for water usage. See 10 C.F.R. § 430.32(p). 2. The DOE and Respondent have negotiated the terms of the Compromise Agreement

440

ESCO Industry in China  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ESCO Development in ESCO Development in China China-America EE Forum 2011.5.6, S.F Contents Fast development 1 Great potential 2 Opportunities & Challenges 3 Function of EMCA 4 China Energy Conservation project  Officially started in 1998;  It is a key international cooperation project in the field of energy conservation by Chinese government and World Bank/GEF;  The main purpose of the project is to promote Energy Performance Contracting (EPC) mechanism and develop ESCO industry in China Project progress-1 st phase 3 pilot ESCOs: Beijing Liaoning Shandong Phase I EC information Dissemination Center(ECIDC) Project progress-2 nd phase EMCA Phase II I& G New and Potential ESCOs Technical support Financial support Project Progress- 2 nd Phase EMCA---provide practical technical

Note: This page contains sample records for the topic "industrial output growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Zoe Industries, Inc.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

D.C. 20585 D.C. 20585 ) ) ) ) ) Case Number: 2011-SW-2912 Issued: September 28, 2011 NOTICE OF NONCOMPLIANCE DETERMINATION Manufacturers and private labelers are prohibited from distributing covered products that do not comply with applicable Federal water conservation standards. 10 C.F.R. § 429.102; 42 U.S.C. § 6302. On July 20, 2011, DOE tested four units of the Giessdorf eight-jet basic model showerhead, SKU 150043 ("Giessdorf 150043"), manufactured by GiessdorfPlumbing, Inc. ("Giessdorf"), and imported by Zoe Industries, Inc. ("Zoe"), in accordance with DOE test procedures (10 C.F.R. Part 430, Subpart B, Appendix S). DOE's testing demonstrated that the Giessdorf 150043 model is not in compliance with Federal law. First, Federal water conservation standards require that the water flow for a showerhead

442

End User Perspective - Industrial  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid State Research Center Solid State Research Center DOE Fuel Cell Portable Power Workshop End User Perspective - Industrial Consumer Electronics Power (< 20-50W) Department of Energy Fuel Cell Portable Power Workshop Jerry Hallmark Manager Energy Technologies Lab Motorola Labs Solid State Research Center DOE Fuel Cell Portable Power Workshop Outline * Energy & Power of Portable Devices * Fuel Cell Applications & Cost * Key Requirements & Challenges * Fuels for Portable Fuel Cells * Fuel Transportation Regulations and Standards * Methanol Fuel Cells - Direct Methanol Fuel Cells - Reformed Methanol Fuel Cells * Technical Challenges 2 Solid State Research Center DOE Fuel Cell Portable Power Workshop Portable Electronics Yearly Energy Usage  :KU 1990 1980  :KU

443

Rebuttal: Interacting With the Pharmaceutical Industry  

E-Print Network (OSTI)

9. 6. Angell M. The pharmaceutical industry: To whom is ithas shown that the pharmaceutical industry has profited some

Stone, Susan; Herbert, Mel

2003-01-01T23:59:59.000Z

444

ITP Industrial Materials: Development and Commercialization of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Materials: Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies ITP Industrial Materials: Development and...

445

industrial sector | OpenEI  

Open Energy Info (EERE)

industrial sector industrial sector Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata

446

User Facilities for Industry 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Satellite!Workshop!10!-!User!Facilities!for!Industry!101! Satellite!Workshop!10!-!User!Facilities!for!Industry!101! Organizers:+Andreas+Roelofs+(CNM),+Jyotsana+Lal+(APS),+Katie+Carrado+Gregar+(CNM),+and+Susan+Strasser+ (APS)! ! In! order! to! increase! awareness! of! the! industrial! community! to! Argonne! National! Laboratory! user! facilities,!the!Advanced!Photon!Source!(APS),!the!Center!for!Nanoscale!Materials!(CNM)!and!the!Electron! Microscopy!Center!(EMC)!welcomed!industrial!scientists,!engineers!and!related!professionals!to!a!oneC day! workshop! to! learn! more! about! Argonne's! National! Laboratory! and! the! capabilities/techniques! available! for! their! use.! The! workshop! showcased! several! successful! industrial! user! experiments,! and! explained! the! different! ways! in! which! industrial! scientists! can! work! at! Argonne! or! with! Argonne!

447

Industry Profile | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Profile Industry Profile Industry Profile November 1, 2013 - 11:40am Addthis The largest energy consuming industrial sectors account for the largest share of CHP capacity; namely: Chemicals (30%), Petroleum Refining (17%), and Paper Products (14%). Other industrial sectors include: Commercial/Institutional (12%), Food (8%), Primary Metals (5%), Other Manufacturing (8%), and Other Industrial (6%). Combined heat and power (CHP)-sometimes referred to as cogeneration-involves the sequential process of producing and utilizing electricity and thermal energy from a single fuel. CHP is widely recognized to save energy and costs, while reducing carbon dioxide (CO2) and other pollutants. CHP is a realistic, near-term option for large energy efficiency improvements and significant CO2 reductions.

448

Florida Growth Fund (Florida)  

Energy.gov (U.S. Department of Energy (DOE))

The Florida Growth Fund can provide investments in technology and growth-related companies through co-investments with other institutional investors. The Fund awards preference to companies...

449

Industry Interactive Procurement System (IIPS)  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Interactive Industry Interactive Industry Interactive Industry Interactive Procurement System Procurement System (IIPS) (IIPS) Douglas Baptist, Project Manager Information Management Systems Division US Department of Energy IIPS Functions Issue synopses, solicitations and related documents via the Internet Receive and Respond to Solicitation Specific Questions Receive proposal, bid or application information electronically Provide access to proposal information to authorized personnel through a web browser Conduct negotiations or obtain clarifications Issue award documents IIPS Security Security Plan in place and approved by DOE's Chief Information Officer System security tested by DOE's Computer Incident Advisory Capability team Security measures include: - Encryption on the IIPS server

450

Eolica Industrial | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Eolica Industrial Place: Sao Paulo, Sao Paulo, Brazil Zip: 01020-901 Sector: Wind energy Product: Brazil based wind turbine steel towers and...

451

Industrial Carbon Capture Project Selections  

Energy.gov (U.S. Department of Energy (DOE))

Industrial Carbon Capture Project SelectionsSeptember 2, 2010These projects have been selected for negotiation of awards; final award amounts may vary.

452

Deaerators in Industrial Steam Systems  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on deaerators provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

453

Energy Savings in Industrial Buildings  

E-Print Network (OSTI)

for deployment of energy savings technologies will be explored along with recommendations for policies to promote energy efficiency in industrial buildings....

Zhou, A.; Tutterow, V.; Harris, J.

454

FAQS Reference Guide – Industrial Hygiene  

Energy.gov (U.S. Department of Energy (DOE))

This reference guide addresses the competency statements in the November 2007 edition of DOE-STD-1138-2007, Industrial Hygiene Functional Area Qualification Standard.

455

Industry Interactive Procurement System (IIPS)  

Energy.gov (U.S. Department of Energy (DOE))

Presentation on DOE’s Industry Interactive Procurement System (IIPS) presented at the PEM fuel cell pre-solicitation meeting held May 26, 2005 in Arlington, VA.

456

Ventower Industries | Open Energy Information  

Open Energy Info (EERE)

Place: Monroe, Michigan Zip: 48161 Sector: Wind energy Product: Michigan-based wind turbine tower manufacturer. References: Ventower Industries1 This article is a stub. You...

457

Shrenik Industries | Open Energy Information  

Open Energy Info (EERE)

Maharashtra, India Zip: 416 109 Sector: Wind energy Product: Maharashtra-based wind turbine tower manufacturer and subsidiary of the Sanjay Ghodawat Group of Industries....

458

Industrial Facility Best Practice Scorecard  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

BP Scorecard 20120620 ( 2012Georgia Tech Research Corporation) Superior Energy Performance CM Industrial Facility Best Practice Scorecard Rev. 9 5 December 2012 Replaces rev. 8...

459

Motech Industries | Open Energy Information  

Open Energy Info (EERE)

for Others) for this property. Partnering Center within NREL National Center for Photovoltaics Partnership Year 2008 Motech Industries is a company located in Bethlehem, Taiwan....

460

The Department of Industrial and Systems Engineering (ISE) at RENSSELAER POLYTECHNIC INSTITUTE in Troy, NY invites applications for a tenure-track faculty position at the Assistant or  

E-Print Network (OSTI)

The Department of Industrial and Systems Engineering (ISE) at RENSSELAER POLYTECHNIC INSTITUTE in Industrial and Systems Engineering or a closely related field. The ISE department is in a period of growth undergraduate and graduate courses in both the Industrial Systems Engineering curriculum, develop and maintain

Mitchell, John E.

Note: This page contains sample records for the topic "industrial output growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

New Research Center to Increase Safety and Power Output of U.S. Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Research Center to Increase Safety and Power Output of U.S. New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors May 3, 2011 - 3:41pm Addthis Oak Ridge, Tenn. - Today the Department of Energy dedicated the Consortium for Advanced Simulation of Light Water Reactors (CASL), an advanced research facility that will accelerate the advancement of nuclear reactor technology. CASL researchers are using supercomputers to study the performance of light water reactors and to develop highly sophisticated modeling that will help accelerate upgrades at existing U.S. nuclear plants. These upgrades could improve the energy output of our existing reactor fleet by as much as seven reactors' worth at a fraction of the cost of building new reactors, while providing continued improvements in

462

Ensemble regression : using ensemble model output for atmospheric dynamics and prediction  

E-Print Network (OSTI)

Ensemble regression (ER) is a linear inversion technique that uses ensemble statistics from atmospheric model output to make dynamical inferences and forecasts. ER defines a multivariate regression operator using ensemble ...

Gombos, Daniel (Daniel Lawrence)

2009-01-01T23:59:59.000Z

463

Primate Motor Cortex: Individual and Ensemble Neuron-Muscle Output Relationships  

E-Print Network (OSTI)

The specific aims of this study were to: 1) investigate the encoding of forelimb muscle activity timing and magnitude by corticomotoneuronal (CM) cells, 2) test the stability of primary motor cortex (M1) output to forelimb ...

Griffin, Darcy Michelle

2008-07-30T23:59:59.000Z

464

Augmentation of Power Output of Axisymmetric Ducted Wind Turbines by Porous Trailing Edge Disks  

E-Print Network (OSTI)

This paper presents analytical and experimental results that demonstrated that the power output from a ducted wind turbine can be dramatically increased by the addition of a trailing edge device such as a porous disk. In ...

widnall, sheila

2014-06-30T23:59:59.000Z

465

A Hardware Implementation of the Soft Output Viterbi Algorithm for Serially Concatenated Convolutional Codes  

E-Print Network (OSTI)

This thesis outlines the hardware design of a soft output Viterbi algorithm decoder for use in a serially concatenated convolutional code system. Convolutional codes and their related structures are described, as well as the algorithms used...

Werling, Brett William

2010-06-28T23:59:59.000Z

466

Code design for multiple-input multiple-output broadcast channels  

E-Print Network (OSTI)

Recent information theoretical results indicate that dirty-paper coding (DPC) achieves the entire capacity region of the Gaussian multiple-input multiple-output (MIMO) broadcast channel (BC). This thesis presents practical code designs for Gaussian...

Uppal, Momin Ayub

2009-06-02T23:59:59.000Z

467

Cardiac output and stroke volume estimation using a hybrid of three models  

E-Print Network (OSTI)

Cardiac output (CO) and stroke volume (SV) are the key hemodynamic parameters to be monitored and assessed in ambulatory and critically ill patients. The purpose of this study was to introduce and validate a new algorithm ...

Arai, Tatsuya

468

Power output enhancement of a vibration-driven electret generator for wireless sensor applications  

Science Journals Connector (OSTI)

We developed a compact vibration-driven electret generator that excelled at a power output. It succeeded in the operation of wireless sensor modules only on electricity from electret generators. This electret generator can supply enough power to operate a wireless sensor module without an external power source. It was necessary for enabling this operation to enhance the power output of the electret generator. We enhanced the power output by decreasing the parasitic capacitance. To decrease the parasitic capacitance, we fabricated a collector substrate using concave electrodes. We decreased it from 25 to 17 pF. As a result, the power output from our generator was enhanced from 40 to 100 µW considerably at an acceleration of 0.15 g (1.47 m s?2) and a resonance frequency of 30 Hz.

Tatsuakira Masaki; Kenji Sakurai; Toru Yokoyama; Masayo Ikuta; Hiroshi Sameshima; Masashi Doi; Tomonori Seki; Masatoshi Oba

2011-01-01T23:59:59.000Z

469

Variable-Speed Wind Generator System with Maximum Output Power Control  

Science Journals Connector (OSTI)

To achieve maximum output power from wind generator systems, the rotational speed of wind generators should be adjusted in real time according to natural wind speed. This chapter pays attention to an optimum rota...

Yoko Amano

2013-01-01T23:59:59.000Z

470

Department of Industrial Engineering Spring 2011 Armstrong World Industries, Inc  

E-Print Network (OSTI)

PENNSTATE Department of Industrial Engineering Spring 2011 Armstrong World Industries, Inc Overview The main objectives were the following: -To reduce wasted space and optimize the Armstrong Marietta plant generate? How did you analyse them? Outcomes Armstrong will save on forklift fuel costs as a result

Demirel, Melik C.

471

Monitoring hydraulic fracture growth: Laboratory experiments  

SciTech Connect

The authors carry out small-scale hydraulic fracture experiments to investigate the physics of hydraulic fracturing. The laboratory experiments are combined with time-lapse ultrasonic measurements with active sources using both compressional and shear-wave transducers. For the time-lapse measurements they focus on ultrasonic measurement changes during fracture growth. As a consequence they can detect the hydraulic fracture and characterize its shape and geometry during growth. Hence, this paper deals with fracture characterization using time-lapse acoustic data. Hydraulic fracturing is used in the oil and gas industry to stimulate reservoir production.

Groenenboom, J.; Dam, D.B. van

2000-04-01T23:59:59.000Z

472

Imprinting a complete information about a quantum channel on its output state  

E-Print Network (OSTI)

We introduce a novel property of bipartite quantum states, which we call "faithfulness", and we say that a state is faithful when acting with a channel on one of the two quantum systems, the output state carries a complete information about the channel. The concept of faithfulness can also be extended to sets of states, when the output states patched together carry a complete imprinting of the channel.

Giacomo Mauro D'Ariano; Paoloplacido Lo Presti

2002-11-20T23:59:59.000Z

473

Modelling Dynamic Constraints in Electricity Markets and the Costs of Uncertain Wind Output  

E-Print Network (OSTI)

shifts between periods. Finally, higher variable costs, incurred if power stations are operated below their optimal rating, are allocated to the locally lowest de- mand. For inflexible power stations like nuclear, combined cycle gas turbines or coal... the start of the station has to be decided several hours before delivering output. At the earlier time there is still uncertainty about the future demand, possible failures of power stations and predictions for wind-output. We represent the uncertainty...

Musgens, Felix; Neuhoff, Karsten

2006-03-14T23:59:59.000Z

474

Low Carbon Growth Country Studies Program | Open Energy Information  

Open Energy Info (EERE)

Country Studies Program Country Studies Program Jump to: navigation, search Name Low Carbon Growth Country Studies Program Agency/Company /Organization Energy Sector Management Assistance Program of the World Bank Sector Climate, Energy Focus Area Buildings, Energy Efficiency, Industry, Transportation Topics Background analysis, Baseline projection, Low emission development planning, Policies/deployment programs Website http://www.esmap.org/esmap/ Country Poland, Republic of Macedonia UN Region Northern Europe References ESMAP-Macedonia-Low Carbon Growth Country Studies Program[1] References ↑ "ESMAP-Macedonia-Low Carbon Growth Country Studies Program" Retrieved from "http://en.openei.org/w/index.php?title=Low_Carbon_Growth_Country_Studies_Program&oldid=576259"

475

Chapter 7 - Urban Wastewater Treatment for Recycling and Reuse in Industrial Applications: Indian Scenario  

Science Journals Connector (OSTI)

Abstract Urban wastewater management has become a challenge in many countries because infrastructure development and regulations have not kept pace with population growth and urbanization. This chapter focuses on urban wastewater management and the possible use of treated water for industrial applications in India. The figures on India’s annual urban population are rising and expected to reach about 600 million by 2030, making India more peri-urban than rural. It is realised that Indian industry has not taken a neutral stance on the required quality and quantity of water. The current national water share for Indian industry is only about 8%, which is far lower than in developed countries with respect to higher reuse and recycling applications. However, the water share of Indian industry will be growing along with the growing GDP. According to a recent Industry/Commerce & Government assessment, the water requirement for industrial use will increase from the current 30 billion m3 to-120 billion m3 by 2025. India is already an almost water-stressed country. The huge water demand of industry can be balanced by recycling and reusing urban wastewater, which would also provide an opportunity for the growth of Indian industry should this type of program be adopted. It would be possible to reuse 40–50% of secondary sewage for industrial and indirect potable use. If the sustainability of resources was maintained in light of increasing industrial water demand, the present reuse of less than 8% would be increased to 30–40% toward the projected water demand of 2030. Industrial water production from secondary sewage of urban and semi-urban areas can increase the water availability to Indian industrial sectors by establishing a joint municipal–industrial collaboration.

R. Saravanane; Vivek V. Ranade; Vinay M. Bhandari; A. Seshagiri Rao

2014-01-01T23:59:59.000Z

476

Implementation of SPC with FMEA in less-developed industries with a case study in car battery manufactory  

Science Journals Connector (OSTI)

Continuous improvement is an important aspect for companies to maintain their position in today's market, and process control can provide this capability for them. This study aims to facilitate implementing statistical process control (SPC) in less-developed industries. Due to reaching this goal, failure mode and effect analysis (FMEA) has been employed. FMEA helps the SPC implementation either in process selection or output analysis. Also, this integration has been applied in a car battery industry that is a less-developed industry as a case study. As a result, this paper provides an innovation to use engineering tools in some places which are not mature adequately.

Hadi Akbarzade Khorshidi; Indra Gunawan; Fathollah Esmaeilzadeh

2013-01-01T23:59:59.000Z

477

Techno-Economic Design Tools Used in Selecting Industrial Energy Recovery Systems  

E-Print Network (OSTI)

cost. output (245 kW) by the high-efficiency turb' ne. Assuming a $2.3-million installed cost differ The 38% rate of return after 5 years (47% aft 10 ential between the organic Rankine cycle/compressor years) is quite acceptable for companies looki.... These tools are the industrial heat pump program (IHOP) and the Rankine cycle power program (RANKCYCLE). IHOP is used if industrial process steam is the de sired energy form and if available heat sources consist either of hot water at 130-200 o F...

Hanus, N.

1982-01-01T23:59:59.000Z

478

Residential Commercial Industrial Year  

Gasoline and Diesel Fuel Update (EIA)

4 4 Residential Commercial Industrial Year and State Volume (million cubic feet) Consumers Volume (million cubic feet) Consumers Volume (million cubic feet) Consumers 2000 Total ................... 4,996,179 59,252,728 3,182,469 5,010,817 8,142,240 220,251 2001 Total ................... 4,771,340 60,286,364 3,022,712 4,996,446 7,344,219 217,026 2002 Total ................... 4,888,816 61,107,254 3,144,169 5,064,384 7,507,180 205,915 2003 Total ................... R 5,079,351 R 61,871,450 R 3,179,493 R 5,152,177 R 7,150,396 R 205,514 2004 Total ................... 4,884,521 62,469,142 3,141,653 5,135,985 7,250,634 212,191 Alabama ...................... 43,842 806,175 26,418 65,040 169,135 2,800 Alaska.......................... 18,200 104,360 18,373 13,999 46,580 10 Arizona ........................

479

Productivity of the U.S. freight rail industry: a review of the past and prospects for the future  

E-Print Network (OSTI)

Productivity growth in the U.S. freight rail industry has slowed in recent years, raising the issue of the sustainability of the significant improvements achieved during the past three decades. Indeed, between 1979 and ...

Kriem, Youssef

2011-01-01T23:59:59.000Z

480

Building A New Biofuels Industry  

Science Journals Connector (OSTI)

Building A New Biofuels Industry ... It may be another five years or more before the fledgling industry catches up to the lofty goals called for in the Renewable Fuel Standard (RFS)—a federal-government-mandated schedule of yearly biofuel production targets. ...

MELODY M. BOMGARDNER

2013-01-28T23:59:59.000Z

Note: This page contains sample records for the topic "industrial output growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

The Wool Industries Research Association  

Science Journals Connector (OSTI)

... THE report of the Director of Research of Wool Industries Research Association briefly summarizes some of the research during the year in ... Industries Research Association briefly summarizes some of the research during the year in scouring and combing, woollen carding and spinning, worsted drawing and spinning and weaving (Publication ...

1963-06-15T23:59:59.000Z

482

Oklahoma Industrial Energy Management Program  

E-Print Network (OSTI)

The need for sound energy management is no longer worthy of debate. Action is necessary and much is being done by U.S. industry. Unfortunately, however, the majority of the work is being done by the few large energy intensive industries throughout...

Turner, W. C.; Webb, R. E.; Phillips, J. M.; Viljoen, T. A.

1979-01-01T23:59:59.000Z

483

College of Engineering Industrial Engineering  

E-Print Network (OSTI)

College of Engineering Industrial Engineering Core 2.0 Completion Checklist Industrial Engineering) 6 Research and Creative Experience R EIND 499R (I&ME 444 R and I&ME 445 R) Note: Courses completed Social Sciences; * EGEN 310 (ENGR 310), Multidisciplinary Engineering Design, may be substituted

Dyer, Bill

484

Industrial Use of Infrared Inspections  

E-Print Network (OSTI)

, but in the final analysis it comes down to the fact that the industrial management responsible for the operations and production budgets did not, and in many cases, still does not understand the economic benefits to the company that infrared industrial inspections...

Duch, A. A.

1979-01-01T23:59:59.000Z

485

Redesigning Process Cooling Systems in the Plastics Industry  

E-Print Network (OSTI)

REDESIGNING PROCESS COOLING SYSTEMS IN THE PLASTICS INDUSTRY Glen R Anderson - Senior Energy Analyst - etc Group, Inc - Salt Lake City, UT ABSTRACT Lifetime Products grew their plastics division rapidly starting in the mid 1990’s.... During this growth, their support systems were designed with one thing in mind – ensuring adequate capacity. Energy consumption was a much lower priority with their process cooling systems, resulting in inefficient chillers, oversized pumps...

Anderson, G. R.

2006-01-01T23:59:59.000Z

486

Minerals yearbook, Volume 3. Mineral industries of the Middle East. 1993 international review  

SciTech Connect

The production and processing of crude petroleum and natural gas are the dominant economic sectors of the Middle East. Development of downstream petrochemical and fertilizer industries continues as a major investment area. In 1993, the 15 countries that constituted the region accounted for 29% of world crude petroleum output, 19% of world natural gas plant liquid production, and 6% of world dry natural gas production. Only Cyprus and Lebanon were not crude petroleum producers.

NONE

1993-12-31T23:59:59.000Z

487

The effect of small field output factor measurements on IMRT dosimetry  

SciTech Connect

Purpose: To evaluate how changes in the measured small field output factors affect the doses in intensity-modulated treatment planning. Methods: IMRT plans were created using Philips Pinnacle treatment planning system. The plans were optimized to treat a cylindrical target 2 cm in diameter and 2 cm in length. Output factors for 2 Multiplication-Sign 2 and 3 Multiplication-Sign 3 cm{sup 2} field sizes were changed by {+-}5%, {+-}10%, and {+-}20% increments from the baseline measurements and entered into the planning system. The treatment units were recommissioned in the treatment planning system after each modification of the output factors and treatment plans were reoptimized. All plans were delivered to a solid water phantom and dose measurements were made using an ionization chamber. The percentage differences between measured and computed doses were calculated. An Elekta Synergy and a Varian 2300CD linear accelerator were separately evaluated. Results: For the Elekta unit, decreasing the output factors resulted in higher measured than computed doses by 0.8% for -5%, 3.6% for -10%, and 8.7% for -20% steps. Increasing the output factors resulted in lower doses by 2.9% for +5%, 5.4% for +10%, and 8.3% for +20% steps. For the Varian unit no changes were observed for either increased or decreased output factors. Conclusions: The measurement accuracy of small field output factors are of importance especially when the treatment plan consists of small segments as in IMRT. The method proposed here could be used to verify the accuracy of the measured small field output factors for certain linear accelerators as well as to test the beam model. The Pinnacle treatment planning system model uses output factors as a function of jaw setting. Consequently, plans using the Elekta unit, which conforms the jaws to the segments, are sensitive to small field measurement accuracy. On the other hand, for the Varian unit, jaws are fixed and segments are modeled as blocked fields hence, the impact of small field output factors on IMRT monitor unit calculation is not evaluable by this method.

Azimi, Rezvan; Alaei, Parham; Higgins, Patrick [Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

2012-08-15T23:59:59.000Z

488

The effect of performance-based research funding on output of R&D results in the Czech Republic  

Science Journals Connector (OSTI)

We have studied the effects of performance-based research funding introduced to the Czech (CZ) R&D system in 2008 on outputs of R&D results. We have analyzed annual changes in number of various types of publications and applications including ... Keywords: Bibliometrics, Citation analysis, Patent output, Performance-based research funding, R&D results output

Jiri Vanecek

2014-01-01T23:59:59.000Z

489

Advanced Manufacturing Office: Industrial Assessment Centers (IACs)  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Assessment Industrial Assessment Centers (IACs) to someone by E-mail Share Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Facebook Tweet about Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Twitter Bookmark Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Google Bookmark Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Delicious Rank Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Digg Find More places to share Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on AddThis.com... Industrial Assessment Centers (IACs) Learn More Learn how companies have benefited from IAC assessments. Search the IAC Database for recommendations and savings achieved.

490

A method to estimate the size and remaining market potential of the U.S. ESCO (energy service company) industry  

Science Journals Connector (OSTI)

Abstract This study presents a method to estimate the market investment potential for ESPC (energy-saving performance contracts) and annual blended energy savings remaining in buildings typically addressed by U.S. \\{ESCOs\\} (energy service companies). We define \\{ESCOs\\} as companies for whom performance-based contracting is a core business activity. The market potential analysis incorporates market penetration estimates provided by industry experts in late 2012, data on U.S. building stock typically addressed by ESCOs, and typical project investment costs from a database of 4000 + projects. ESCO industry revenue growth significantly outpaced U.S. GDP (gross domestic product) growth during 2009–2011. We estimate that the remaining investment potential in facilities typically addressed by the ESCO industry ranges from ?$71 to $133 billion. Our analysis includes ESCO industry size and growth projections drawing on information from interviews with ESCO executives conducted in late 2012. The U.S. ESCO industry could grow in size from $6 billion in 2013 to ?$7.5 billion by 2014, but this growth is contingent on enabling policies. The U.S. ESCO industry is similar in size to the ESCO industries in Germany, France, and China. Our estimation approach could be adapted for other countries with the caveat that ESCO industry definitions and revenue reporting practices vary across countries.

Elizabeth Stuart; Peter H. Larsen; Charles A. Goldman; Donald Gilligan

2014-01-01T23:59:59.000Z

491

The industrial ecology of the iron casting industry  

E-Print Network (OSTI)

Metal casting is an energy and materials intensive manufacturing process, which is an important U.S. industry. This study analyzes iron casting, in particular, for possible improvements that will result in greater efficiencies ...

Jones, Alissa J. (Alissa Jean)

2007-01-01T23:59:59.000Z

492

Office of Industry Research and Technology Programs Greetings to Industry  

E-Print Network (OSTI)

vehicles. They have a strong research base and are sup- ported by the U. S. Department of Energy. They have. Cheng, Industrial Engineering. 6 Centers/Laboratories Center Targets Reducing Fuel Consumption

Ginzel, Matthew

493

UNDERGRADUATE DEGREES Industrial and Systems Engineering  

E-Print Network (OSTI)

UNDERGRADUATE DEGREES Industrial and Systems Engineering The Bachelor's Degree in Industrial, consulting at amusement parks, analyzing systems, and beyond. SYSTEMS ScIENcE AND INDUSTRIAl ENGINEERING of Engineering in Industrial Engineering (MEng IE) equips graduates to be effective in industry and provides

Suzuki, Masatsugu

494

A numerical method for calculation of power output from ducted vertical axis hydro-current turbines  

Science Journals Connector (OSTI)

Abstract This paper investigates effects of ducting on power output from vertical axis hydro-current turbines. A numerical two-dimensional method based on the potential flow theory is developed for calculation of non-dimensional power output from these turbines. In this method, the blades are represented by vortex filaments. The vortex shedding from the blades is modeled by discrete vortices. A boundary element method is used to incorporate the duct shape which is represented by a series of panels with constant distributions of sources and doublets. The aerodynamic loading on the blades are calculated using a quasi-steady modeling. A time-marching scheme is used for implementation of the numerical method. The results of this method are compared with experimental results for a turbine model. A good correlation between the numerical and experimental results is obtained for tip speed ratios equal and higher than 2.25. However due to a lack of dynamic stall modeling, the numerical method is not able to predict power output accurately at lower tip speed ratios wherein effects of dynamic stall are significant. Both numerical and experimental results also showed that the power output from a turbine can increase significantly when it is enclosed within a well-designed duct. The maximum power output of the turbine model investigated in this paper showed a 74% increase when the turbine is operating within the duct relative to the case it is in free-stream conditions.

Mahmoud Alidadi; Sander Calisal

2014-01-01T23:59:59.000Z

495

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. U.S. Transformer Sustained Automatic Outage Counts B. U.S. Transformer Sustained Automatic Outage Counts and Hours by High-Voltage Size and NERC Region, 2012 Sustained Automatic Outage Counts High-Side Voltage (kV) Eastern Interconnection TRE WECC Contiguous U.S. 100-199 -- -- -- -- 200-299 -- -- 1.00 1.00 300-399 2.00 -- 4.00 6.00 400-599 14.00 -- 11.00 25.00 600+ -- -- -- -- Grand Total 16.00 -- 16.00 32.00 Sustained Automatic Outage Hours High-Side Voltage (kV) Eastern Interconnection TRE WECC Contiguous U.S. 100-199 -- -- -- -- 200-299 -- -- 27.58 27.58 300-399 153.25 -- 15.87 169.12 400-599 3,070.88 -- 258.37 3,329.25 600+ -- -- -- -- Grand Total 3,224.13 -- 301.82 3,525.95 Outage Hours per Outage Incident Eastern Interconnection TRE WECC Contiguous U.S.

496

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

6. Coal Consumption at Commercial and Institutional Users by Census Division and State" 6. Coal Consumption at Commercial and Institutional Users by Census Division and State" "(thousand short tons)" ,,,,"Year to Date" "Census Division","April - June","January - March","April - June",2013,2012,"Percent" "and State",2013,2013,2012,,,"Change" "Middle Atlantic",20,52,24,73,83,-12.4 " Pennsylvania",20,52,24,73,83,-12.4 "East North Central",112,197,127,309,331,-6.8 " Illinois",34,45,29,79,66,18.9 " Indiana","w","w","w","w","w","w" " Michigan","w","w","w","w","w","w"

497

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Employees at Underground and Surface Mines by State and Mine Production Range, 2012" Number of Employees at Underground and Surface Mines by State and Mine Production Range, 2012" ,"Mine Production Range (thousand short tons)" "Coal-Producing State, Region1","Above 1,000","Above 500","Above 200","Above 100","Above 50","Above 10","Above 0","Zero2","Total Number" "and Mine Type",,"to 1,000","to 500","to 200","to 100","to 50","to 10",,"of Employees" "Alabama",3415,97,655,317,160,224,54,105,5041 " Underground",2981,"-","-","-",36,88,"-",81,3190 " Surface",434,97,655,317,124,136,54,24,1851

498

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

8. Average Sales Price of Coal by State and Mine Type, 2012 and 2011" 8. Average Sales Price of Coal by State and Mine Type, 2012 and 2011" "(dollars per short ton)" ,2012,,,2011,,,"Percent Change" "Coal-Producing","Underground","Surface","Total","Underground","Surface","Total","Underground","Surface","Total" "State" "Alabama",107.73,104.51,106.57,100.17,108.71,102.69,7.6,-3.9,3.8 "Alaska","-","w","w","-","w","w","-","w","w" "Arizona","-","w","w","-","w","w","-","w","w" "Arkansas","w","-","w","w","-","w","w","-","w"

499

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Coal Production by State and Mining Method, 2012" Underground Coal Production by State and Mining Method, 2012" "(thousand short tons)" "Coal-Producing State and Region1","Continuous2","Conventional and","Longwall4","Total" ,,"Other3" "Alabama",139,20,12410,12570 "Arkansas",96,"-","-",96 "Colorado",757,"-",22889,23646 "Illinois",18969,"-",23868,42837 "Indiana",15565,"-","-",15565 "Kentucky Total",56179,2018,"-",58198 " Kentucky (East)",22090,2010,"-",24100 " Kentucky (West)",34089,9,"-",34098 "Maryland",797,"-","-",797 "Montana","-","-",5708,5708

500

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Mining Productivity by State, Mine Type, and Union Status, 2012" Coal Mining Productivity by State, Mine Type, and Union Status, 2012" "(short tons produced per employee hour)" ,"Union",,"Nonunion" "Coal-Producing State and Region1","Underground","Surface","Underground","Surface" "Alabama",1.69,"-",0.66,1.8 "Alaska","-",5.98,"-","-" "Arizona","-",7.38,"-","-" "Arkansas","-","-",0.59,"-" "Colorado",4.9,6.09,6.02,4.45 "Illinois",2.09,"-",5.34,4.7 "Indiana","-","-",3.23,5.41 "Kentucky Total",3.02,2.45,2.36,3.06 " Kentucky (East)","-",2.45,1.64,2.65