National Library of Energy BETA

Sample records for industrial output growth

  1. AEO2014: Preliminary Industrial Output

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Elizabeth Sendich, Analyst, and Kay Smith, Team Leader Macroeconomic Analysis Team ... Macro-Industrial Working Group, Sendich & Smith, 92613 DO NOT CITE OR DISTRIBUTE ...

  2. 2015 NREL Industry Growth Forum

    Broader source: Energy.gov [DOE]

    During NREL’s 2015 Industry Growth Forum, 30 competitively selected clean energy startups will pitch their businesses to investors and compete to win the NREL Best Venture Award.  One of the...

  3. EIA Energy Efficiency-Table 4e. Gross Output by Selected Industries...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    e Page Last Modified: May 2010 Table 4e. Gross Output1by Selected Industries, 1998, 2002, and 2006 (Billion 2000 Dollars 2) MECS Survey Years NAICS Subsector and Industry 1998 2002...

  4. EIA Energy Efficiency-Table 3e. Gross Output by Selected Industries...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    e Page Last Modified: May 2010 Table 3e. Gross Output1 by Selected Industries, 1998, 2002, and 2006 (Current Billion Dollars) MECS Survey Years NAICS Subsector and Industry 1998...

  5. Rising U.S. oil output leads world oil supply growth

    U.S. Energy Information Administration (EIA) Indexed Site

    Rising U.S. oil output leads world oil supply growth U.S. crude oil production reached 7 million barrels per day at the end of 2012 for the first time in two decades and is well on its way to topping 8 million barrels per day by 2014. In its new monthly forecast, the U.S. Energy Information Administration expects daily oil output will average 7.3 million barrels this year and then increase to 8.1 million barrels next year. The increase in U.S. and other North American oil production will account

  6. Apparatus for silicon web growth of higher output and improved growth stability

    DOE Patents [OSTI]

    Duncan, Charles S.; Piotrowski, Paul A.

    1989-01-01

    This disclosure describes an apparatus to improve the web growth attainable from prior web growth configurations. This apparatus modifies the heat loss at the growth interface in a manner that minimizes thickness variations across the web, especially regions of the web adjacent to the two bounding dendrites. In the unmodified configuration, thinned regions of web, adjacent to the dendrites, were found to be the origin of crystal degradation which ultimately led to termination of the web growth. According to the present invention, thinning adjacent to the dendrites is reduced and the incidence of crystal degradation is similarly reduced.

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Useful Thermal Output by Energy Source: Industrial Sector Combined Heat and Power, 2004 - 2014 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas ...

  8. NREL Industry Growth Forum Attracts Clean Energy Startups and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Industry Growth Forum Attracts Clean Energy Startups and Investors Forum to feature business presentations from 30 clean energy startups, networking opportunities, panels and...

  9. NREL Industry Growth Forum Attracts Clean Energy Entrepreneurs and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investors - News Releases | NREL Industry Growth Forum Attracts Clean Energy Entrepreneurs and Investors Forum to feature business presentations from 30 clean energy startups, networking opportunities, compelling panels and speakers September 19, 2014 Thirty clean energy companies will present their business cases to a panel of investors and industry experts Oct. 28 and 29 in Denver, as the Energy Department's National Renewable Energy Laboratory (NREL) hosts its annual Industry Growth

  10. NREL's Industry Growth Forum Brings Together Energy Innovators - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL's Industry Growth Forum Brings Together Energy Innovators Event Highlights Clean Energy Technologies and Startup Businesses November 10, 2011 The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) 24th Industry Growth Forum this week attracted more than 500 investors, entrepreneurs, scientists and policymakers to Denver. The three-day forum highlighted clean energy industry technology and business developments. As part of the forum, NREL also hosted

  11. Geothermal Energy Growth Continues, Industry Survey Reports

    Broader source: Energy.gov [DOE]

    A survey released by the Geothermal Energy Association (GEA) shows continued growth in the number of new geothermal power projects under development in the United States, a 20% increase since January of this year.

  12. The US Geothermal Industry: Three Decades of Growth | Open Energy...

    Open Energy Info (EERE)

    Three Decades of Growth Abstract Over the last three decades the U.S. geothermal power-generation industry has grown to be the largest in the world,with over 2700 MW of...

  13. NREL's Industry Growth Forum Brings Together Energy Innovators - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL's Industry Growth Forum Brings Together Energy Innovators Event recognizes the top clean energy technologies and startup businesses October 30, 2014 The Industry Growth Forum hosted by the Energy Department's National Renewable Energy Laboratory (NREL) this week attracted nearly 400 investors, entrepreneurs, scientists and thought leaders to Denver. Last night, three companies where honored with Best Venture and Outstanding Venture Awards. The two-day forum highlighted

  14. NREL's Industry Growth Forum Attracts Clean Energy Investors - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL's Industry Growth Forum Attracts Clean Energy Investors 22nd Forum to Feature 34 Clean Energy Companies October 9, 2008 Thirty-four clean energy companies will present their business cases to a panel of investors and industry experts in Denver Nov. 3-5 as the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) hosts the 22nd NREL Industry Growth Forum. The 34 companies were selected through an application and review process and will compete for the

  15. NREL's Industry Growth Forum Attracts Clean Energy Investors - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL's Industry Growth Forum Attracts Clean Energy Investors 25th Forum to Feature 30 Clean Energy Companies September 17, 2012 Thirty clean energy companies will present their business cases to a panel of investors and industry experts in Denver Oct. 23-24 as the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) hosts the 25th NREL Industry Growth Forum. The 30 companies were selected through an application and review process and will compete for the

  16. 1979 revenue growth belies utility industry problems

    SciTech Connect (OSTI)

    Lincicome, R.

    1980-06-01

    Despite growth in revenues during 1979, electric utilities are greatly troubled by high inflation, restricted capital, and the lack of rate relief from utility commissions. The growth, although smaller than normal, will likely convince commissions to respond to rate increase requests by authorizing only the smallest possible increases. With inflationary pressures eroding utility companies' financial base, the benefits of rate increases are wiped out after a year or so, necessitating a return to the commissions for futher adjustments. This up-down cycling is reflected in the report of the performances of the top one hundred utility companies. Earning growth statistics, sales data, financial statistics, and company performances (electric sales, customers served, revenues, and after-tax net income) of top one hundred electric utilities are given in separate tables for 1979. Overall, kWh sales were up 2.9%; revenues were up 13.4%; net income was up 8.1%; and overall earnings performance was a weak increase of 9.4%. (SAC)

  17. Venezuela`s gas industry poised for long term growth

    SciTech Connect (OSTI)

    Croft, G.D.

    1995-06-19

    Venezuela`s enormous gas resource, combined with a new willingness to invite outside investment, could result in rapid growth in that industry into the next century. The development of liquefied natural gas exports will depend on the future course of gas prices in the US and Europe, but reserves are adequate to supply additional projects beyond the proposed Cristobal Colon project. Venezuela`s gas reserves are likely to increase if exploration for nonassociated gas is undertaken on a larger scale. The paper discusses gas reserves in Venezuela, internal gas markets, the potential for exports, competition from Trinidad, LNG export markets, and the encouragement of foreign investment in the gas industry of Venezuela.

  18. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Landfill Gas: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,158 0 415 5 738 2005 994 0 519 212 263 2006 1,034 0 267 549 218 2007 985 0 226 532 228 2008 552 0 271 211 70 2009 440 0 313 91 37 2010 847 0 643 174 30 2011 1,635 0 1,422 165 48 2012 1,630 0 1,441 156 32 2013 414 0 132 206 76 2014 852 88 266 326 173

  19. Looking Ahead - Biofuels, H2, & Vehicles: 21st Industry Growth Forum

    SciTech Connect (OSTI)

    Gardner, D.

    2008-10-28

    This presentation on the future of biofuels, hydrogen, and hybrid vehicles was presented at NREL's 21st Industry Growth Forum in Denver, Colorado, on October 28, 2008.

  20. 22nd NREL Industry Growth Forum Opening Remarks - Day 2 (Presentation)

    SciTech Connect (OSTI)

    Perry, T.

    2009-11-04

    A presentation at the 22nd Industry Growth Forum by Tod Perry that provides information and statistics about the presenting companies.

  1. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Coal: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 24,275 0 3,809 1,540 18,926 2005 23,833 0 3,918 1,544 18,371 2006 23,227 0 3,834 1,539 17,854 2007 22,810 0 3,795 1,566 17,449 2008 22,168 0 3,689 1,652 16,827 2009 20,507 0 3,935 1,481 15,091 2010 21,727 0 3,808 1,406 16,513 2011 21,532 0 3,628 1,321 16,584

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Coal: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 564,497 0 87,981 34,538 441,978 2005 548,666 0 88,364 34,616 425,685 2006 532,561 0 84,335 34,086 414,140 2007 521,717 0 83,838 34,690 403,189 2008 503,096 0 81,416 36,163 385,517 2009 462,674 0 90,867 32,651 339,156 2010 490,931 0 90,184 30,725 370,022 2011

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Petroleum Liquids: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Barrels) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 20,654 0 1,501 1,203 17,951 2005 20,494 0 1,392 1,004 18,097 2006 14,077 0 1,153 559 12,365 2007 13,462 0 1,303 441 11,718 2008 7,533 0 1,311 461 5,762 2009 8,128 0 1,301 293 6,534 2010 4,866 0 1,086 212 3,567 2011 3,826 0 1,004 168 2,654 2012

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Petroleum Liquids: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 124,809 0 8,592 7,219 108,997 2005 125,689 0 8,134 6,145 111,410 2006 87,137 0 6,740 3,481 76,916 2007 82,768 0 7,602 2,754 72,412 2008 45,481 0 7,644 2,786 35,051 2009 48,912 0 7,557 1,802 39,552 2010 29,243 0 6,402 1,297 21,545 2011 22,799 0 5,927

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Petroleum Coke: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,043 0 237 8 798 2005 783 0 206 8 568 2006 1,259 0 195 9 1,055 2007 1,262 0 162 11 1,090 2008 897 0 119 9 769 2009 1,007 0 126 8 873 2010 1,059 0 98 11 950 2011 1,080 0 112 6 962 2012 1,346 0 113 11 1,222 2013 1,486 0 96 11 1,379 2014 1,283 3 90 16

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Petroleum Coke: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 29,342 0 6,768 226 22,347 2005 22,224 0 5,935 228 16,061 2006 38,169 0 5,672 236 32,262 2007 38,033 0 4,710 303 33,019 2008 27,100 0 3,441 243 23,416 2009 29,974 0 3,652 213 26,109 2010 31,303 0 2,855 296 28,152 2011 31,943 0 3,244 153 28,546 2012

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Natural Gas: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,052,100 0 388,424 39,233 624,443 2005 984,340 0 384,365 34,172 565,803 2006 942,817 0 330,878 33,112 578,828 2007 872,579 0 339,796 35,987 496,796 2008 793,537 0 326,048 32,813 434,676 2009 816,787 0 305,542 41,275 469,970 2010 821,775 0 301,769

  8. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Natural Gas: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,085,191 0 398,476 40,122 646,593 2005 1,008,404 0 392,842 35,037 580,525 2006 968,574 0 339,047 33,928 595,599 2007 894,272 0 347,181 36,689 510,402 2008 813,794 0 333,197 33,434 447,163 2009 836,863 0 312,553 42,032 482,279 2010 841,521 0 308,246 47,001

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Wood / Wood Waste Biomass: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,016,124 0 14,968 1,493 999,663 2005 997,331 0 19,193 1,028 977,111 2006 1,049,161 0 18,814 1,045 1,029,303 2007 982,486 0 21,435 1,756 959,296 2008 923,889 0 18,075 1,123 904,690 2009 816,285 0 19,587 1,135 795,563 2010 876,041 0 18,357

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Landfill Gas: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 2,174 0 735 10 1,429 2005 1,923 0 965 435 522 2006 2,051 0 525 1,094 433 2007 1,988 0 386 1,102 501 2008 1,025 0 454 433 138 2009 793 0 545 176 72 2010 1,623 0 1,195 370 58 2011 3,195 0 2,753 351 91 2012 3,189 0 2,788 340 61 2013 831 0 261 423 147

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 19,991 0 4,746 12,295 2,950 2005 20,296 0 4,551 11,991 3,754 2006 21,729 0 5,347 12,654 3,728 2007 16,174 0 5,683 8,350 2,141 2008 18,272 0 6,039 12,174 59 2009 18,785 0 6,229 11,535 1,021 2010 17,502 0 6,031 10,333 1,138 2011 16,766 0

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Other Waste Biomass: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 30,228 0 12,055 2,627 15,547 2005 38,010 0 10,275 2,086 25,649 2006 36,966 0 8,561 2,318 26,087 2007 41,757 0 10,294 2,643 28,820 2008 41,851 0 9,674 1,542 30,635 2009 41,810 0 10,355 1,638 29,817 2010 47,153 0 8,436 1,648 37,070 2011 43,483 0

  13. New Model Demonstrates Offshore Wind Industry's Job Growth Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at relatively conservative levels of deployment and domestic supply chain growth. ... The Wind Program is also working with the Bureau of Ocean Energy Management to advance a ...

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities ...

  15. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    C. Natural Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) ...

  16. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    F. Other Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) ...

  17. SAS Output

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    F. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all ...

  18. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    F. Natural Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric ...

  19. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Barrels) Electric Power Sector Period Total (all sectors) ...

  20. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    F. Wood Wood Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all ...

  1. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all ...

  2. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    F. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric ...

  3. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    F. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) ...

  4. SAS Output

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    C. Coal: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric ...

  5. SAS Output

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    C. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) ...

  6. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    F. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric ...

  7. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    C. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) ...

  8. SAS Output

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    F. Coal: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities ...

  9. Effects of Deployment Investment on the Growth of the Biofuels Industry

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Effects of Deployment Investment on the Growth of the Biofuels Industry Citation Details In-Document Search Title: Effects of Deployment Investment on the Growth of the Biofuels Industry In support of the national goals for biofuel use in the United States, numerous technologies have been developed that convert biomass to biofuels. Some of these biomass to biofuel conversion technology pathways are operating at commercial scales, while others are in

  10. NREL's 23rd Industry Growth Forum Attracts Clean Energy Investors - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL's 23rd Industry Growth Forum Attracts Clean Energy Investors Forum to Feature 34 Clean Energy Companies September 23, 2010 Thirty-four clean energy companies will present their business cases to a panel of investors and industry experts in Denver Oct. 19-21 as the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) hosts the 23rd NREL Industry Growth Forum. The 34 companies were selected through an application and review process and will compete for

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Energy Efficiency Category, by Sector, 2013 through 2014 Year Residential Commercial Industrial Transportation Total Incremental Annual Savings - Energy Savings (MWh) 2013 ...

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Energy Efficiency - Life Cycle Category, by Sector, 2013 through 2014 Year Residential Commercial Industrial Transportation Total Life Cycle Savings - Energy Savings (MWh) 2013 ...

  13. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1. Total Electric Power Industry Summary Statistics, 2014 and 2013 Net Generation and Consumption of Fuels for ... Solar Thermal and Photovoltaic Utility Scale Facilities 17,691 ...

  14. Comparisons of four categories of waste recycling in China's paper industry based on physical input-output life-cycle assessment model

    SciTech Connect (OSTI)

    Liang Sai; Zhang, Tianzhu; Xu Yijian

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Using crop straws and wood wastes for paper production should be promoted. Black-Right-Pointing-Pointer Bagasse and textile waste recycling should be properly limited. Black-Right-Pointing-Pointer Imports of scrap paper should be encouraged. Black-Right-Pointing-Pointer Sensitivity analysis, uncertainties and policy implications are discussed. - Abstract: Waste recycling for paper production is an important component of waste management. This study constructs a physical input-output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China's paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for paper production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment.

  15. MAP: Watch 30 Years of U.S. Solar Industry Growth | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MAP: Watch 30 Years of U.S. Solar Industry Growth MAP: Watch 30 Years of U.S. Solar Industry Growth January 30, 2015 - 10:25am Addthis 1984 Start Slow Stop Year Solar Plants Homes Powered 682 Solar Plants Online. Enough to Power 1.7 M Homes Source: Preliminary data from the 2013 EIA-860 report. Daniel Wood Daniel Wood Data Visualization and Cartographic Specialist, Office of Public Affairs This week the Energy Department announced a new SunShot Technology-to-Market funding opportunity, providing

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    mile. Some structures were designed and then built to carry future transmission circuits in order to handle expected growth in new capability requirements. Lines are taken...

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Residential Commercial Industrial Transportation Total Energy Efficiency - Energy Savings (Thousand MWh) 2004 17,185 24,290 11,137 50 52,663 2005 18,894 28,073 11,986 47 ...

  18. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Residential Commercial Industrial Transportation Total Energy Efficiency - Energy Savings (Thousand MWh) 2004 1,827 1,812 894 -- 4,532 2005 2,249 2,559 1,071 -- 5,879 2006 ...

  19. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Net Generation by Energy Source: Industrial Sector, 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Distributed Generation Net Generation From Utility Scale Facilities and Distributed Generation Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Nuclear Hydroelectric Conventional Solar Renewable Sources Excluding Hydroelectric and Solar Hydroelectric Pumped Storage Other Total Generation at Utility Scale Facilities Estimated Distributed Solar

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Net Generation from Renewable Sources: Industrial Sector, 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Distributed Generation Net Generation From Utility Scale Facilities and Distributed Generation Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Generation at Utility Scale Facilities Estimated Distributed Solar

  1. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Useful Thermal Output by Energy Source: Total Combined Heat and Power (All Sectors), 2004 - 2014 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2004 351,871 80,824 16,659 654,242 126,157 667,341 45,456 1,942,550 2005 341,806 79,362 13,021 624,008 138,469 664,691 41,400 1,902,757 2006 332,548 54,224 24,009 603,288 126,049 689,549 49,308 1,878,973 2007 326,803 50,882 25,373 554,394 116,313 651,230 46,822 1,771,816

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Useful Thermal Output by Energy Source: Electric Power Sector Combined Heat and Power, 2004 - 2014 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2004 39,014 5,731 2,486 239,416 18,200 17,347 3,822 326,017 2005 39,652 5,571 2,238 239,324 36,694 18,240 3,884 345,605 2006 38,133 4,812 2,253 207,095 22,567 17,284 4,435 296,579 2007 38,260 5,294 1,862 212,705 20,473 19,166 4,459 302,219 2008 37,220 5,479 1,353 204,167

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Useful Thermal Output by Energy Source: Commercial Sector Combined Heat and Power, 2004 - 2014 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2004 22,450 4,118 165 21,851 0 8,936 6,350 63,871 2005 22,601 3,518 166 20,227 0 8,647 5,921 61,081 2006 22,186 2,092 172 19,370 0.22 9,359 6,242 59,422 2007 22,595 1,640 221 20,040 0 6,651 3,983 55,131 2008 22,991 1,822 177 20,183 0 8,863 6,054 60,091 2009 20,057 1,095 155

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    . Number of Ultimate Customers Served by Sector, by Provider, 2004 through 2014 Year Residential Commercial Industrial Transportation Total Total Electric Industry 2004 118,763,768 16,606,783 747,600 1,025 136,119,176 2005 120,760,839 16,871,940 733,862 518 138,367,159 2006 122,471,071 17,172,499 759,604 791 140,403,965 2007 123,949,916 17,377,219 793,767 750 142,121,652 2008 125,037,837 17,582,382 774,808 726 143,395,753 2009 125,208,829 17,562,235 757,537 704 143,529,305 2010 125,717,935

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Sales and Direct Use of Electricity to Ultimate Customers by Sector, by Provider, 2004 through 2014 (Megawatthours) Year Residential Commercial Industrial Transportation Total Direct Use Total End Use Total Electric Industry 2004 1,291,981,578 1,230,424,731 1,017,849,532 7,223,642 3,547,479,483 168,470,002 3,715,949,485 2005 1,359,227,107 1,275,079,020 1,019,156,065 7,506,321 3,660,968,513 150,015,531 3,810,984,044 2006 1,351,520,036 1,299,743,695 1,011,297,566 7,357,543 3,669,918,840

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Revenue from Sales of Electricity to Ultimate Customers by Sector, by Provider, 2004 through 2014 (Million Dollars) Year Residential Commercial Industrial Transportation Total Total Electric Industry 2004 115,577 100,546 53,477 519 270,119 2005 128,393 110,522 58,445 643 298,003 2006 140,582 122,914 62,308 702 326,506 2007 148,295 128,903 65,712 792 343,703 2008 155,496 137,036 70,231 820 363,583 2009 157,044 132,747 62,670 828 353,289 2010 166,778 135,554 65,772 814 368,918 2011 166,714

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Net Metering Customers and Capacity by Technology Type, by End Use Sector, 2004 through 2014 Capacity (MW) Customers Year Residential Commercial Industrial Transportation Total Residential Commercial Industrial Transportation Total Historical Data 2004 N/A N/A N/A N/A N/A 14,114 1,494 215 3 15,826 2005 N/A N/A N/A N/A N/A 19,244 1,565 337 -- 21,146 2006 N/A N/A N/A N/A N/A 30,689 2,553 376 -- 33,618 2007 N/A N/A N/A N/A N/A 44,450 3,513 391 -- 48,354 2008 N/A N/A N/A N/A N/A 64,400 5,305 304

  8. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Utility Scale Facility Net Generation by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change Year 2014 Year 2013

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Utility Scale Facility Net Generation from Coal by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change Year 2014

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Utility Scale Facility Net Generation from Petroleum Coke by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Utility Scale Facility Net Generation from Natural Gas by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change Year

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Utility Scale Facility Net Generation from Other Gases by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change Year

  13. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Utility Scale Facility Net Generation from Nuclear Energy by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Utility Scale Facility Net Generation from Hydroelectric (Conventional) Power by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Utility Scale Facility Net Generation from Renewable Sources Excluding Hydroelectric by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Utility Scale Facility Net Generation from Other Energy Sources by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Utility Scale Facility Net Generation from Wind by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change Year 2014

  18. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Utility Scale Facility Net Generation from Biomass by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change Year 2014

  19. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    . Receipts, Average Cost, and Quality of Fossil Fuels for the Electric Power Industry, 2004 through 2014 Coal Petroleum Natural Gas All Fossil Fuels Average Cost Average Cost Average Cost Average Cost Period Receipts (Thousand Tons) Average Sulfur Percent by Weight (Dollars per MMBtu) (Dollars per Ton) Receipts (Thousand Barrels) Average Sulfur Percent by Weight (Dollars per MMBtu) (Dollars per Barrel) Receipts (Thousand Mcf) (Dollars per MMBtu) (Dollars per MMBtu) 2004 1,002,032 0.97 1.36 27.42

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Weighted Average Cost of Fossil Fuels for the Electric Power Industry, 2004 through 2014 Coal Petroleum Natural Gas Total Fossil Bituminous Subbituminous Lignite All Coal Ranks Period Receipts (Trillion Btu) Average Cost (Dollars per MMBtu) Receipts (Trillion Btu) Average Cost (Dollars per MMBtu) Receipts (Trillion Btu) Average Cost (Dollars per MMBtu) Receipts (Trillion Btu) Average Cost (Dollars per MMBtu) Receipts (Trillion Btu) Average Cost (Dollars per MMBtu) Receipts (Trillion Btu)

  1. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Receipts, Average Cost, and Quality of Fossil Fuels: Industrial Sector, 2004 - 2014 (continued) Petroleum Coke Natural Gas All Fossil Fuels Receipts Average Cost Receipts Average Cost Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMbtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Mcf) (Dollars per MMBtu) (Dollars per Mcf) Percentage of Consumption (Dollars per MMBtu) Annual Totals 2004 14,876 540 0.98 27.01 5.59 40.4

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Consumption of Petroleum Coke for Electricity Generation by State, by Sector, 2014 and 2013 (Thousand Tons) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2014 Year 2013 Percentage Change Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 New England 0 0 -- 0 0 0 0 0 0 0 0 Connecticut 0 0 -- 0 0 0 0 0 0 0 0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts 0 0 -- 0 0 0 0

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Consumption of Nautral Gas for Electricity Generation by State, by Sector, 2014 and 2013 (Million Cubic Feet) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2014 Year 2013 Percentage Change Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 New England 356,658 388,323 -8.2% 3,585 2,587 330,872 354,489 9,416 8,407 12,786 22,839 Connecticut 108,833 115,211 -5.5% 121

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    . Receipts and Quality of Coal Delivered for the Electric Power Industry, 2004 through 2014 Bituminous Subbituminous Lignite Period Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight 2004 470,619 1.52 10.4 445,603 0.36 6.0 78,268 1.05 14.2 2005 480,179 1.56 10.5 456,856 0.36 6.2 77,677

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Receipts, Average Cost, and Quality of Fossil Fuels: Industrial Sector, 2004 - 2014 Coal Petroleum Liquids Receipts Average Cost Receipts Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMBtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Barrels) (Dollars per MMBtu) (Dollars per Barrel) Average Sulfur Percent by Weight Percentage of Consumption Annual Totals 2004 326,495 15,324 1.63 34.79 1.43 57.6 25,491 4,107 4.98 30.93

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Receipts of Petroleum Coke Delivered for Electricity Generation by State, 2014 and 2013 (Thousand Tons) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2014 Year 2013 Percentage Change Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 New England 0 0 -- 0 0 0 0 0 0 0 0 Connecticut 0 0 -- 0 0 0 0 0 0 0 0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts 0 0 -- 0 0 0 0 0 0

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Demand Response - Program Costs Category, by Sector, 2013 through 2014 Year Residential Commercial Industrial Transportation Total Customer Incentives (thousand dollars) 2013 398,598 286,057 421,208 6,919 1,112,782 2014 345,894 345,435 514,751 11,716 1,217,796 All Other Costs (thousand dollars) 2013 338,353 95,748 50,982 50 485,133 2014 301,389 101,127 45,028 115 447,659

  8. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Average Price of Electricity to Ultimate Customers by End-Use Sectors 2004 through 2014 (Cents per kilowatthour) Year Residential Commercial Industrial Transportation Total Total Electric Industry 2004 8.95 8.17 5.25 7.18 7.61 2005 9.45 8.67 5.73 8.57 8.14 2006 10.40 9.46 6.16 9.54 8.90 2007 10.65 9.65 6.39 9.70 9.13 2008 11.26 10.26 6.96 10.71 9.74 2009 11.51 10.16 6.83 10.66 9.82 2010 11.54 10.19 6.77 10.56 9.83 2011 11.72 10.24 6.82 10.46 9.90 2012 11.88 10.09 6.67 10.21 9.84 2013 12.13

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Supply and Disposition of Electricity, 2004 through 2014 (From Chapter 2.) Supply (Million Megawatthours) Generation Year Electric Utilities IPP (Non-CHP) IPP (CHP) Commercial Sector Industrial Sector Total Imports Total Supply 2004 2,505 1,119 184 8 154 34 4,005 2005 2,475 1,247 180 8 145 44 4,099 2006 2,484 1,259 165 8 148 43 4,107 2007 2,504 1,324 177 8 143 51 4,208 2008 2,475 1,332 167 8 137 57 4,176 2009 2,373 1,278 159 8 132 52 4,003 2010 2,472 1,339 162 9 144 45 4,170 2011 2,461 1,331

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Sales of Electricity to Ultimate Customers: Total by End-Use Sector, 2004 - December 2014 (Thousand Megawatthours) Period Residential Commercial Industrial Transportation All Sectors Annual Totals 2004 1,291,982 1,230,425 1,017,850 7,224 3,547,479 2005 1,359,227 1,275,079 1,019,156 7,506 3,660,969 2006 1,351,520 1,299,744 1,011,298 7,358 3,669,919 2007 1,392,241 1,336,315 1,027,832 8,173 3,764,561 2008 1,380,662 1,336,133 1,009,516 7,653 3,733,965 2009 1,364,758 1,306,853 917,416 7,768

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Revenue from Sales of Electricity to Ultimate Customers: Total by End-Use Sector, 2004 - December 2014 (Million Dollars) Period Residential Commercial Industrial Transportation All Sectors Annual Totals 2004 115,577 100,546 53,477 519 270,119 2005 128,393 110,522 58,445 643 298,003 2006 140,582 122,914 62,308 702 326,506 2007 148,295 128,903 65,712 792 343,703 2008 155,496 137,036 70,231 820 363,583 2009 157,044 132,747 62,670 828 353,289 2010 166,778 135,554 65,772 814 368,918 2011 166,714

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Electric Power Industry - Electricity Purchases, 2004 through 2014 (Thousand Megawatthours) Year Electric Utilities Energy-Only Providers Independent Power Producers Combined Heat and Power U.S. Total 2005 2,760,043 3,250,298 12,201 69,744 6,092,285 2006 2,605,315 2,793,288 26,628 77,353 5,502,584 2007 2,504,002 2,805,833 24,942 76,646 5,411,422 2008 2,483,927 3,024,730 25,431 78,693 5,612,781 2009 2,364,648 2,564,407 27,922 71,669 5,028,647 2010 2,353,086 3,319,211 23,976 73,861 5,770,134

  13. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Electric Power Industry - Electricity Sales for Resale, 2004 through 2014 (Thousand Megawatthours) Year Electric Utilities Energy-Only Providers Independent Power Producers Combined Heat and Power U.S. Total 2004 1,923,440 3,756,175 1,053,364 25,996 6,758,975 2005 1,925,710 2,867,048 1,252,796 26,105 6,071,659 2006 1,698,389 2,446,104 1,321,342 27,638 5,493,473 2007 1,603,179 2,476,740 1,368,310 31,165 5,479,394 2008 1,576,976 2,718,661 1,355,017 30,079 5,680,733 2009 1,495,636 2,240,399

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Electric Power Industry - U.S. Electricity Imports from and Electricity Exports to Canada and Mexico, 2004-2014 (Megawatthours) Canada Mexico U.S. Total Year Imports from Exports to Imports from Exports to Imports Exports 2004 33,007,487 22,482,109 1,202,576 415,754 34,210,063 22,897,863 2005 42,332,039 18,680,237 1,597,275 470,731 43,929,314 19,150,968 2006 41,544,052 23,405,387 1,147,258 865,948 42,691,310 24,271,335 2007 50,118,056 19,559,417 1,277,646 584,175 51,395,702 20,143,592 2008

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    . Count of Electric Power Industry Power Plants, by Sector, by Predominant Energy Sources within Plant, 2004 through 2014 Year Coal Petroleum Natural Gas Other Gases Nuclear Hydroelectric Conventional Other Renewables Hydroelectric Pumped Storage Other Energy Sources Total (All Sectors) 2004 625 1,143 1,670 46 66 1,425 749 39 28 2005 619 1,133 1,664 44 66 1,422 781 39 29 2006 616 1,148 1,659 46 66 1,421 843 39 29 2007 606 1,163 1,659 46 66 1,424 929 39 25 2008 598 1,170 1,655 43 66 1,423 1,076

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Coal: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,020,523 772,224 240,235 377 7,687 2005 1,041,448 761,349 272,218 377 7,504 2006 1,030,556 753,390 269,412 347 7,408 2007 1,046,795 764,765 276,581 361 5,089 2008 1,042,335 760,326 276,565 369 5,075 2009 934,683 695,615 234,077 317 4,674 2010 979,684 721,431

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    D. Coal: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 20,375,751 15,610,335 4,606,584 8,251 150,581 2005 20,801,716 15,397,688 5,250,824 8,314 144,889 2006 20,527,410 15,211,077 5,166,001 7,526 142,807 2007 20,841,871 15,436,110 5,287,202 7,833 110,727 2008 20,548,610 15,189,050 5,242,194 8,070 109,296 2009

  18. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Petroleum Liquids: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Thousand Barrels) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 165,107 103,793 56,342 760 4,212 2005 165,137 98,223 62,154 580 4,180 2006 73,821 53,529 17,179 327 2,786 2007 82,433 56,910 22,793 250 2,480 2008 53,846 38,995 13,152 160 1,538 2009 43,562 31,847 9,880 184 1,652 2010 40,103 30,806 8,278 164 855

  19. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    D. Petroleum Liquids: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,031,954 651,712 350,093 4,544 25,606 2005 1,035,045 618,811 387,355 3,469 25,410 2006 459,392 335,130 105,312 1,963 16,987 2007 512,423 355,999 139,977 1,505 14,942 2008 332,367 242,379 79,816 957 9,215 2009 266,508 196,346 59,277 1,101 9,784 2010

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Petroleum Coke: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 7,677 4,150 2,985 1 541 2005 8,330 4,130 3,746 1 452 2006 7,363 3,619 3,286 1 456 2007 6,036 2,808 2,715 2 512 2008 5,417 2,296 2,704 1 416 2009 4,821 2,761 1,724 1 335 2010 4,994 3,325 1,354 2 313 2011 5,012 3,449 1,277 1 286 2012 3,675 2,105 756 1

  1. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    D. Petroleum Coke: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 216,047 116,086 83,979 33 15,949 2005 234,217 115,727 105,163 33 13,295 2006 208,518 102,117 92,643 33 13,726 2007 170,166 77,941 77,135 45 15,045 2008 152,933 64,843 76,416 37 11,638 2009 136,474 77,919 48,776 32 9,747 2010 141,774 94,331 38,235 44

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Natural Gas: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 5,674,580 1,809,443 3,265,896 32,839 566,401 2005 6,036,370 2,134,859 3,349,921 33,785 517,805 2006 6,461,615 2,478,396 3,412,826 34,623 535,770 2007 7,089,342 2,736,418 3,765,194 34,087 553,643 2008 6,895,843 2,730,134 3,612,197 33,403 520,109 2009

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    D. Natural Gas: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 5,827,470 1,857,247 3,351,469 33,623 585,132 2005 6,212,116 2,198,098 3,444,875 34,645 534,498 2006 6,643,926 2,546,169 3,508,597 35,473 553,687 2007 7,287,714 2,808,500 3,872,646 34,872 571,697 2008 7,087,191 2,803,283 3,712,872 34,138 536,899 2009

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    D. Wood / Wood Waste Biomass: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 344,134 19,973 130,248 168 193,745 2005 355,250 27,373 138,407 207 189,263 2006 350,074 27,455 135,546 269 186,803 2007 353,025 31,568 132,953 284 188,220 2008 338,786 29,150 130,122 287 179,227 2009 320,444 29,565 130,894 274 159,712 2010

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Landfill Gas: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 143,844 11,250 125,848 4,081 2,665 2005 141,899 11,490 123,064 4,797 2,548 2006 160,033 16,617 136,108 6,644 664 2007 166,774 17,442 144,104 4,598 630 2008 195,777 20,465 169,547 5,235 530 2009 206,792 19,583 180,689 5,931 589 2010 218,331 19,975

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    D. Landfill Gas: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 69,331 5,373 60,514 2,093 1,351 2005 67,902 5,650 58,624 2,360 1,269 2006 75,970 8,287 63,950 3,388 345 2007 79,712 8,620 68,432 2,344 316 2008 94,215 10,242 81,029 2,668 276 2009 99,821 9,748 86,773 2,999 301 2010 105,835 10,029 92,763 2,837 205 2011

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    D. Biogenic Municipal Solid Waste: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 141,577 3,705 124,815 12,909 146 2005 144,339 4,724 126,529 12,923 164 2006 146,987 4,078 129,779 12,964 165 2007 146,308 4,557 127,826 13,043 881 2008 148,452 4,476 130,041 13,934 0 2009 146,971 3,989 126,649 16,333 0 2010 144,934

  8. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    D. Other Waste Biomass: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 19,215 2,014 9,240 4,308 3,654 2005 17,852 2,485 7,365 4,677 3,325 2006 17,727 2,611 7,788 4,436 2,893 2007 19,083 2,992 8,861 4,049 3,181 2008 24,288 3,409 12,745 3,684 4,450 2009 24,847 3,679 13,231 3,760 4,177 2010 29,996 3,668 14,449 3,790

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Average Quality of Fossil Fuel Receipts for the Electric Power Industry, 2004 through 2014 Coal Petroleum Natural Gas Period Average Btu per Pound Average Sulfur Percent by Weight Average Ash Percent by Weight Average Btu per Gallon Average Sulfur Percent by Weight Average Ash Percent by Weight Average Btu per Cubic Foot 2004 10,074 0.97 9.0 147,286 1.66 0.2 1,027 2005 10,107 0.98 9.0 146,481 1.61 0.2 1,028 2006 10,063 0.97 9.0 143,883 2.31 0.2 1,027 2007 10,028 0.96 8.8 144,546 2.10 0.1

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Demand Response - Yearly Energy and Demand Savings Category, by Sector, 2013 through 2014 Year Residential Commercial Industrial Transportation Total Number of Customers Enrolled 2013 8,419,233 611,826 155,893 398 9,187,350 2014 8,603,402 605,094 57,129 4 9,265,629 Energy Savings (MWh) 2013 799,743 486,348 115,895 1 1,401,987 2014 881,563 462,337 92,549 -- 1,436,449 Potential Peak Demand Savings (MW) 2013 7,003 5,124 14,800 168 27,095 2014 8,118 6,215 16,505 353 31,191 Actual Peak Demand

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Advanced Metering Count by Technology Type, 2007 through 2014 Year Residential Commercial Industrial Transportation Total Automated Meter Reading (AMR) 2007 25,785,782 2,322,329 44,015 109 28,152,235 2008 36,425,943 3,529,985 77,122 13 40,033,063 2009 41,462,111 4,239,531 107,033 11 45,808,686 2010 43,913,225 4,611,877 159,315 626 48,685,043 2011 41,451,888 4,341,105 172,692 77 45,965,762 2012 43,455,437 4,691,018 185,862 125 48,330,822 2013 42,491,242 4,632,744 196,132 1,202 47,321,320 2014

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Average Price of Electricity to Ultimate Customers: Total by End-Use Sector, 2004 - December 2014 (Cents per Kilowatthour) Period Residential Commercial Industrial Transportation All Sectors Annual Totals 2004 8.95 8.17 5.25 7.18 7.61 2005 9.45 8.67 5.73 8.57 8.14 2006 10.40 9.46 6.16 9.54 8.90 2007 10.65 9.65 6.39 9.70 9.13 2008 11.26 10.26 6.96 10.71 9.74 2009 11.51 10.16 6.83 10.66 9.82 2010 11.54 10.19 6.77 10.56 9.83 2011 11.72 10.24 6.82 10.46 9.90 2012 11.88 10.09 6.67 10.21 9.84 2013

  13. Table 8.6c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu Commercial Sector 11<//td> 1989 711,212 202,091 600,653 – –

  14. Measuring industrial energy efficiency: Physical volume versus economic value

    SciTech Connect (OSTI)

    Freeman, S.L.; Niefer, M.J.; Roop, J.M.

    1996-12-01

    This report examines several different measures of industrial output for use in constructing estimates of industrial energy efficiency and discusses some reasons for differences between the measures. Estimates of volume-based measures of output, as well as 3 value-based measures of output (value of production, value of shipments, and value added), are evaluated for 15 separate 4-digit industries. Volatility, simple growth rate, and trend growth rate estimates are made for each industry and each measure of output. Correlations are made between the volume- and value-based measures of output. Historical energy use data are collected for 5 of the industries for making energy- intensity estimates. Growth rates in energy use, energy intensity, and correlations between volume- and value-based measures of energy intensity are computed. There is large variability in growth trend estimates both long term and from year to year. While there is a high correlation between volume- and value-based measures of output for a few industries, typically the correlation is low, and this is exacerbated for estimates of energy intensity. Analysis revealed reasons for these low correlations. It appears that substantial work must be done before reliable measures of trends in the energy efficiency of industry can be accurately characterized.

  15. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  16. Impact of Flow Control and Tax Reform on Ownership and Growth in the U.S. Waste-to-Energy Industry

    Reports and Publications (EIA)

    1994-01-01

    This article analyzes two key issues that could be influencing growth and ownership (both public and private) in the waste to energy (WTE) industry.

  17. Table 8.3c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Billion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 Commercial Sector 8<//td> 1989 13,517 3,896 9,920 102 27,435 145 10,305 10,450 – 37,885 1990 14,670 5,406 15,515 118 35,709 387 10,193 10,580 – 46,289 1991 15,967 3,684 20,809 118 40,578 169 8,980 9,149 1 49,728 1992

  18. AEO2016 Preliminary Industrial Output Results

    U.S. Energy Information Administration (EIA) Indexed Site

    December 3, 2015 | Washington, DC By Kay Smith, Macro Team Leader, Elizabeth Sendich, ... OR DISTRIBUTE For more information Kay Smith | 6-1132 | kay.smith@eia.gov Elizabeth ...

  19. A Survey of the U.S. ESCO Industry: Market Growth and Development from 2008 to 2011

    SciTech Connect (OSTI)

    Satchwell, Andrew; Goldman, Charles; Larsen, Peter; Gilligan, Donald; Singer, Terry

    2010-06-08

    In this study, LBNL analyzes the current size of the Energy Service Company (ESCO) industry, industry growth projections to 2011, and market trends in order to provide policymakers with a more indepth understanding of energy efficiency activity among private sector firms. We draw heavily on information from interviews with ESCOs conducted from October 2009 to February 2010 and from our review of publicly available financial information regarding individual ESCOs. A significant ramp-up in energy efficiency activities is occurring at the local, state, and federal level. These activities include the establishment in {approx}18 states of statewide energy savings goals to be obtained from adoption of an Energy Efficiency Resource Standard (EERS), legislative or state regulatory directives to obtain all cost-effective demand-side resources (Barbose et al 2009), and a significant increase in federal funding for energy efficiency programs as part of the American Recovery and Reinvestment Act (ARRA). As part of this increased focus on energy efficiency, policymakers are evaluating the role of private sector companies, including ESCOs, in delivering cost-effective energy savings to end-users. The U.S. ESCO industry has long been recognized for its role in successfully delivering comprehensive energy projects in the public sector. This study analyzes the current size of the ESCO industry, industry growth projections, and market trends in order to provide policymakers with a more in-depth understanding of energy efficiency activity among private sector firms. This study may also be of interest to policymakers abroad who are exploring options to encourage development of a private-sector energy services industry in their own countries. This study draws heavily on information from interviews with ESCOs conducted from October 2009 to February 2010 and is part of a series of ESCO industry reports prepared by Lawrence Berkeley National Laboratory (LBNL) in collaboration with the

  20. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    SciTech Connect (OSTI)

    Sathaye, Jayant; de la Rue du Can, Stephane; Iyer, Maithili; McNeil, Michael; Kramer, Klaas Jan; Roy, Joyashree; Roy, Moumita; Chowdhury, Shreya Roy

    2011-04-15

    This report analyzed the potential for increasing energy efficiency and reducing greenhouse gas emissions (GHGs) in the non-residential building and the industrial sectors in India. The first two sections describe the research and analysis supporting the establishment of baseline energy consumption using a bottom up approach for the non residential sector and for the industry sector respectively. The third section covers the explanation of a modeling framework where GHG emissions are projected according to a baseline scenario and alternative scenarios that account for the implementation of cleaner technology.

  1. Changing Trends in the Bulk Chemicals and Pulp and Paper Industries (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    Compared with the experience of the 1990s, rising energy prices in recent years have led to questions about expectations of growth in industrial output, particularly in energy-intensive industries. Given the higher price trends, a review of expected growth trends in selected industries was undertaken as part of the production of Annual Energy Outlook 2005 (AEO). In addition, projections for the industrial value of shipments, which were based on the Standard Industrial Classification (SIC) system in AEO2004, are based on the North American Industry Classification System (NAICS) in AEO2005. The change in industrial classification leads to lower historical growth rates for many industrial sectors. The impacts of these two changes are highlighted in this section for two of the largest energy-consuming industries in the U.S. industrial sector-bulk chemicals and pulp and paper.

  2. Effects of Deployment Investment on the Growth of the Biofuels Industry

    SciTech Connect (OSTI)

    Vimmerstedt, L. J.; Bush, B. W.

    2013-12-01

    In support of the national goals for biofuel use in the United States, numerous technologies have been developed that convert biomass to biofuels. Some of these biomass to biofuel conversion technology pathways are operating at commercial scales, while others are in earlier stages of development. The advancement of a new pathway toward commercialization involves various types of progress, including yield improvements, process engineering, and financial performance. Actions of private investors and public programs can accelerate the demonstration and deployment of new conversion technology pathways. These investors (both private and public) will pursue a range of pilot, demonstration, and pioneer scale biorefinery investments; the most cost-effective set of investments for advancing the maturity of any given biomass to biofuel conversion technology pathway is unknown. In some cases, whether or not the pathway itself will ultimately be technically and financially successful is also unknown. This report presents results from the Biomass Scenario Model -- a system dynamics model of the biomass to biofuels system -- that estimate effects of investments in biorefineries at different maturity levels and operational scales. The report discusses challenges in estimating effects of such investments and explores the interaction between this deployment investment and a volumetric production incentive. Model results show that investments in demonstration and deployment have a substantial positive effect on the development of the biofuels industry. Results also show that other conditions, such as supportive policies, have major impacts on the effectiveness of such investments.

  3. Climate Model Output Rewriter

    Energy Science and Technology Software Center (OSTI)

    2004-06-21

    CMOR comprises a set of FORTRAN 90 dunctions that can be used to produce CF-compliant netCDF files. The structure of the files created by CMOR and the metadata they contain fulfill the requirements of many of the climate community’s standard model experiments (which are referred to here as "MIPS", which stands for "model intercomparison project", including, for example, AMIP, CMIP, CFMIP, PMIP, APE, and IPCC scenario runs), CMOR was not designed to serve as anmore » all-purpose wfiter of CF-compliant netCDF files, but simply to reduce the effort required to prepare and manage MIP data. Although MIPs encourage systematic analysis of results across models, this is only easy to do if the model output is written in a common format with files structured similarly and with sufficient metadata uniformly stored according to a common standard. Individual modeling groups store their data in different ways. but if a group can read its own data with FORTRAN, then it should easily be able to transform the data, using CMOR, into the common format required by the MIPs, The adoption of CMOR as a standard code for exchanging climate data will facilitate participation in MIPs because after learning how to satisfy the output requirements of one MIP, it will be easy to prepare output for the other MIPs.« less

  4. Industry Economists

    U.S. Energy Information Administration (EIA) Indexed Site

    Industry Economists The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the Industry Economist, whose work is associated with the performance of economic analyses using economic techniques. Responsibilities: Industry Economists perform or participate in one or more of the following

  5. Enhanced performance CCD output amplifier

    DOE Patents [OSTI]

    Dunham, Mark E.; Morley, David W.

    1996-01-01

    A low-noise FET amplifier is connected to amplify output charge from a che coupled device (CCD). The FET has its gate connected to the CCD in common source configuration for receiving the output charge signal from the CCD and output an intermediate signal at a drain of the FET. An intermediate amplifier is connected to the drain of the FET for receiving the intermediate signal and outputting a low-noise signal functionally related to the output charge signal from the CCD. The amplifier is preferably connected as a virtual ground to the FET drain. The inherent shunt capacitance of the FET is selected to be at least equal to the sum of the remaining capacitances.

  6. Igniter and actuator output testing

    SciTech Connect (OSTI)

    Evans, N.A.

    1988-01-01

    Closed system mechanical work output measurements were made for five types of thermal battery igniters and one type of valve actuator. Each unit was fired into a high-precision fit piston/cylinder arrangement, and the work output was determined from measuring the rise of a known weight. The results showed that work output for an individual igniter type varied over a considerable range while the mean work output values of the various igniter types appeared to depend principally on the type of closure disc and the details of the charge mix. The large variability in igniter output was the principal inducement to build a second apparatus, with approximately 10 times the capacity of the first, to investigate the output actuators. Compared with igniters, the actuator work output was appropriately in scale, but the variability was considerably reduced (R=1.5), and was attributed to increase in scale. Motion picture photography at 8000 to 9000 frames per second was used to determine the motion of the rising weight and the associated output pressure, which exhibited three distinct phases. Initially, the average acceleration of the weight was of the order of 100 g during the first half-millisecond of weight rise and corresponded to average pressures of 15,000 to 37,000 psi, depending principally on the mass of the weight. This was followed by a significant weight rise at a constant pressure of approximately 150 to 450 psi. Finally, the weight decelerated to rest under gravity to reach the maximum recorded height. 2 refs., 9 figs., 2 tabs.

  7. Overload protection circuit for output driver

    DOE Patents [OSTI]

    Stewart, Roger G.

    1982-05-11

    A protection circuit for preventing excessive power dissipation in an output transistor whose conduction path is connected between a power terminal and an output terminal. The protection circuit includes means for sensing the application of a turn on signal to the output transistor and the voltage at the output terminal. When the turn on signal is maintained for a period of time greater than a given period without the voltage at the output terminal reaching a predetermined value, the protection circuit decreases the turn on signal to, and the current conduction through, the output transistor.

  8. Using Economic Input/Output Tables to Predict a Countrys Nuclear Status

    SciTech Connect (OSTI)

    Weimar, Mark R.; Daly, Don S.; Wood, Thomas W.

    2010-07-15

    Both nuclear power and nuclear weapons programs should have (related) economic signatures which are detectible at some scale. We evaluated this premise in a series of studies using national economic input/output (IO) data. Statistical discrimination models using economic IO tables predict with a high probability whether a country with an unknown predilection for nuclear weapons proliferation is in fact engaged in nuclear power development or nuclear weapons proliferation. We analyzed 93 IO tables, spanning the years 1993 to 2005 for 37 countries that are either members or associates of the Organization for Economic Cooperation and Development (OECD). The 2009 OECD input/output tables featured 48 industrial sectors based on International Standard Industrial Classification (ISIC) Revision 3, and described the respective economies in current country-of-origin valued currency. We converted and transformed these reported values to US 2005 dollars using appropriate exchange rates and implicit price deflators, and addressed discrepancies in reported industrial sectors across tables. We then classified countries with Random Forest using either the adjusted or industry-normalized values. Random Forest, a classification tree technique, separates and categorizes countries using a very small, select subset of the 2304 individual cells in the IO table. A nations efforts in nuclear power, be it for electricity or nuclear weapons, are an enterprise with a large economic footprint -- an effort so large that it should discernibly perturb coarse country-level economics data such as that found in yearly input-output economic tables. The neoclassical economic input-output model describes a countrys or regions economy in terms of the requirements of industries to produce the current level of economic output. An IO table row shows the distribution of an industrys output to the industrial sectors while a table column shows the input required of each industrial sector by a given

  9. High natural gas output and inventories contribute to lower prices

    U.S. Energy Information Administration (EIA) Indexed Site

    High natural gas output and inventories contribute to lower prices High natural gas production and ample gas inventories are expected to keep natural gas prices relatively low for the rest of 2015. In its new monthly forecast, the U.S. Energy Information Administration says that while expected production growth is slowing from last year's torrid pace, domestic natural gas production in 2015 is still expected to be almost 6 percent above the 2014 level. Higher production has pushed U.S. natural

  10. Energy efficiency opportunities in China. Industrial equipment and small cogeneration

    SciTech Connect (OSTI)

    1995-02-01

    A quick glance at comparative statistics on energy consumption per unit of industrial output reveals that China is one of the least energy efficient countries in the world. Energy waste not only impedes economic growth, but also creates pollution that threatens human health, regional ecosystems, and the global climate. China`s decision to pursue economic reform and encourage technology transfer from developed countries has created a window of opportunity for significant advances in energy efficiency. Policy changes, technical training, public education, and financing can help China realize its energy conservation potential.

  11. Industrial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Industrial Manufacturing Buildings Industrialmanufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey...

  12. Save Energy Now in Your Steam Systems; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy used in industrial applications for product output. These systems can be indispensable in delivering the energy needed for process heating, pressure control, mechanical ...

  13. Water Power Calculator Temperature and Analog Input/Output Module Ambient Temperature Testing

    SciTech Connect (OSTI)

    Mark D. McKay

    2011-02-01

    Water Power Calculator Temperature and Analog input/output Module Ambient Temperature Testing A series of three ambient temperature tests were conducted for the Water Power Calculator development using the INL Calibration Laboratorys Tenney Environmental Chamber. The ambient temperature test results demonstrate that the Moore Industries Temperature Input Modules, Analog Input Module and Analog Output Module, ambient temperature response meet or exceed the manufactures specifications

  14. High Energy Output Marx Generator Design

    SciTech Connect (OSTI)

    Monty Lehmann

    2011-07-01

    High Energy Output Marx Generator Design a design of a six stage Marx generator that has a unipolar pulse waveform of 200 kA in a 50500 microsecond waveform is presented. The difficulties encountered in designing the components to withstand the temperatures and pressures generated during the output pulse are discussed. The unique methods and materials used to successfully overcome these problems are given. The steps necessary to increase the current output of this Marx generator design to the meg-ampere region or higher are specified.

  15. PV output smoothing with energy storage.

    SciTech Connect (OSTI)

    Ellis, Abraham; Schoenwald, David Alan

    2012-03-01

    This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.

  16. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users The facility has been used for more than a decade by a virtual Who's Who of the semiconductor industry to simulate the potential failures posed by cosmic-ray-induced neutrons upon miniature electronic devices, such as chips that help control aircraft or complex integrated circuits in automobiles. Industrial User Information The Neutron and Nuclear Science (WNR) Facility welcomes proposals for beam time experiments from industry users. Proprietary and non-proprietary industrial

  17. Multiple output timing and trigger generator

    SciTech Connect (OSTI)

    Wheat, Robert M.; Dale, Gregory E

    2009-01-01

    In support of the development of a multiple stage pulse modulator at the Los Alamos National Laboratory, we have developed a first generation, multiple output timing and trigger generator. Exploiting Commercial Off The Shelf (COTS) Micro Controller Units (MCU's), the timing and trigger generator provides 32 independent outputs with a timing resolution of about 500 ns. The timing and trigger generator system is comprised of two MCU boards and a single PC. One of the MCU boards performs the functions of the timing and signal generation (the timing controller) while the second MCU board accepts commands from the PC and provides the timing instructions to the timing controller. The PC provides the user interface for adjusting the on and off timing for each of the output signals. This system provides 32 output or timing signals which can be pre-programmed to be in an on or off state for each of 64 time steps. The width or duration of each of the 64 time steps is programmable from 2 {micro}s to 2.5 ms with a minimum time resolution of 500 ns. The repetition rate of the programmed pulse train is only limited by the time duration of the programmed event. This paper describes the design and function of the timing and trigger generator system and software including test results and measurements.

  18. Porous radiant burners having increased radiant output

    DOE Patents [OSTI]

    Tong, Timothy W.; Sathe, Sanjeev B.; Peck, Robert E.

    1990-01-01

    Means and methods for enhancing the output of radiant energy from a porous radiant burner by minimizing the scattering and increasing the adsorption, and thus emission of such energy by the use of randomly dispersed ceramic fibers of sub-micron diameter in the fabrication of ceramic fiber matrix burners and for use therein.

  19. Low Capital Photovoltaic Panel Electrical Output-Booster System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Capital Photovoltaic Panel Electrical Output-Booster System Low Capital Photovoltaic Panel Electrical Output-Booster System This presentation summarizes the information given ...

  20. Neutron light output and detector efficiency (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Neutron light output and detector efficiency Citation Details In-Document Search Title: Neutron light output and detector efficiency You are accessing a document from the ...

  1. Neutron light output and detector efficiency (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Neutron light output and detector efficiency Citation Details In-Document Search Title: Neutron light output and detector efficiency Authors: Taddeucci, Terry N 1 + Show Author ...

  2. Error estimates for fission neutron outputs (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Error estimates for fission neutron outputs Citation Details In-Document Search Title: Error estimates for fission neutron outputs You are accessing a document from the...

  3. Major challenges loom for natural gas industry, study says

    SciTech Connect (OSTI)

    O'Driscoll, M.

    1994-01-28

    The 1994 edition of Natural Gas Trends, the annual joint study by Cambridge Energy Research Associates and Arthur Anderson Co., says that new oil-to-gas competition, price risks and the prospect of unbundling for local distribution companies loom as major challenges for the natural gas industry. With a tighter supply-demand balance in the past two years compounded by the fall in oil prices, gas is in head-to-head competition with oil for marginal markets, the report states. And with higher gas prices in 1993, industrial demand growth slowed while utility demand for gas fell. Some of this was related to fuel switching, particularly in the electric utility sector. Total electric power demand for gas has risen slightly due to the growth in industrial power generation, but there has yet to be a pronounced surge in gas use during the 1990s - a decade in which many had expected gas to make major inroads into the electric power sector, the report states. And while utilities still have plans to add between 40,000 and 45,000 megawatts of gas-fired generating capacity, gas actually has lost ground in the utility market to coal and nuclear power: In 1993, electricity output from coal and nuclear rose, while gas-fired generation fell to an estimated 250 billion kilowatt-hours - the lowest level since 1986, when gas generated 246 billion kwh.

  4. Multiple-Input Multiple-Output (MIMO) Linear Systems Extreme Inputs/Outputs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smallwood, David O.

    2007-01-01

    A linear structure is excited at multiple points with a stationary normal random process. The response of the structure is measured at multiple outputs. If the autospectral densities of the inputs are specified, the phase relationships between the inputs are derived that will minimize or maximize the trace of the autospectral density matrix of the outputs. If the autospectral densities of the outputs are specified, the phase relationships between the outputs that will minimize or maximize the trace of the input autospectral density matrix are derived. It is shown that other phase relationships and ordinary coherence less than one willmore » result in a trace intermediate between these extremes. Least favorable response and some classes of critical response are special cases of the development. It is shown that the derivation for stationary random waveforms can also be applied to nonstationary random, transients, and deterministic waveforms.« less

  5. The methanol industry`s missed opportunities

    SciTech Connect (OSTI)

    Stokes, C.A.

    1995-12-31

    Throughout its history the methanol industry has been backward in research and development and in industry cooperation on public image and regulatory matters. It has been extremely reticent as to the virtue of its product for new uses, especially for motor fuel. While this is perhaps understandable looking back, it is inexcusable looking forward. The industry needs to cooperate on a worldwide basis in research and market development, on the one hand, and in image-building and political influence, on the other, staying, of course, within the US and European and other regional antitrust regulations. Unless the industry develops the motor fuel market, and especially the exciting new approach through fuel cell operated EVs, to siphon off incremental capacity and keep plants running at 90% or more of capacity, it will continue to live in a price roller-coaster climate. A few low-cost producers will do reasonably well and the rest will just get along or drop out here and there along the way, as in the past. Having come so far from such a humble beginning, it is a shame not to realize the full potential that is clearly there: a potential to nearly double sales dollars without new plants and to produce from a plentiful resource, at least for the next half-century, all the methanol that can be imagined to be needed. Beyond that the industry can turn to renewable energy--the sun--via biomass growth, to make their product. In so doing, it can perhaps apply methanol as a plant growth stimulant, in effect making the product fully self-sustainable. The world needs to know what methanol can do to provide--economically and reliably--the things upon which a better life rests.

  6. Off-set stabilizer for comparator output

    DOE Patents [OSTI]

    Lunsford, James S.

    1991-01-01

    A stabilized off-set voltage is input as the reference voltage to a comparator. In application to a time-interval meter, the comparator output generates a timing interval which is independent of drift in the initial voltage across the timing capacitor. A precision resistor and operational amplifier charge a capacitor to a voltage which is precisely offset from the initial voltage. The capacitance of the reference capacitor is selected so that substantially no voltage drop is obtained in the reference voltage applied to the comparator during the interval to be measured.

  7. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the National Pollutant Discharge Elimination System. October 15, 2012 Outfall from the Laboratory's Data Communications Center cooling towers Intermittent flow of discharged water from the Laboratory's Data Communications Center eventually reaches perennial segment of Sandia Canyon during storm events (Outfall 03A199). Contact Environmental Communication & Public

  8. OTHER INDUSTRIES

    Broader source: Energy.gov [DOE]

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  9. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users - Media Publications and Information The Invisible Neutron Threat Neutron-Induced Failures in Semiconductor Devices Nuclear Science Research at the LANSCE-WNR...

  10. World crude output overcomes Persian Gulf disruption

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    Several OPEC producers made good on their promises to replace 2.7 MMbpd of oil exports that vanished from the world market after Iraq took over Kuwait. Even more incredibly, they accomplished this while a breathtaking 1.2- MMbopd reduction in Soviet output took place during the course of 1991. After Abu Dhabi, Indonesia, Iran, Libya, Nigeria, Saudi Arabia and Venezuela turned the taps wide open, their combined output rose 2.95 MMbopd. Put together with a 282,000-bopd increase by Norway and contributions from smaller producers, this enabled world oil production to remain within 400,000 bopd of its 1990 level. The 60.5-MMbopd average was off by just 0.7%. This paper reports that improvement took place in five of eight regions. Largest increases were in Western Europe and Africa. Greatest reductions occurred in Eastern Europe and the Middle East. Fifteen nations produced 1 MMbopd or more last year, compared with 17 during 1990.

  11. Energy's contribution to the growth of employment in Texas, 1972-1982

    SciTech Connect (OSTI)

    Hill, J.K.

    1986-05-01

    Input-output analyses of energy's contribution to employment growth in Texas during the 1972-82 period suggest that growth in the oil and gas extraction and oil field machinery manufacturing industries accounted for as much as 45% of the increase in total state employment. However, the analysis does not explain a significant portion of the state's growth, particularly in manufacturing. It may not be reasonable to expect the 2% growth of manufacturing to persist. The energy price increases of the 1970s hastened the obsolescence of energy-inefficient plants, providing an enlarged pool of relocation candidates. The fact that many owners of manufacturing facilities chose Texas as a location site suggests that other locational attributes, such as low union activity or a large supply of immigrant labor, also contributed. 9 references, 3 figures, 2 tables.

  12. Room-return scattering in fission neutron outputs (Conference...

    Office of Scientific and Technical Information (OSTI)

    Room-return scattering in fission neutron outputs Citation Details In-Document Search Title: Room-return scattering in fission neutron outputs You are accessing a document from...

  13. Industry Perspective

    Broader source: Energy.gov [DOE]

    Fuel cell and biogas industries perspectives. Presented by Mike Hicks, Fuel Cell and Hydrogen Energy Association, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

  14. Industry @ ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry @ ALS Industry @ ALS Hewlett Packard Labs Gains Insights with Innovative ALS Research Tools Print Thursday, 05 May 2016 11:21 For the past eight years, Hewlett Packard Labs, the central research organization of Hewlett Packard Enterprise, has been using cutting-edge ALS techniques to advance some of their most promising technological research, including vanadium dioxide phase transitions and atomic movement during memristor operation. Summary Slide Read more... ALS, Molecular Foundry,

  15. NREL Growth Forum Brings Together Clean Energy Innovators - News...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Growth Forum Brings Together Clean Energy Innovators Event recognizes the top startup businesses and clean energy technologies November 5, 2015 The Industry Growth Forum, hosted by...

  16. Geothermal Energy Growth Continues, Industry Survey Reports ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of these new projects will provide significant economic benefits, according to GEA. "These new projects will result in the infusion of roughly 15 billion in capital ...

  17. Industry Growth Forum Cultivates Clean Energy Entrepreneurship...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From left: Michael Knotek, Deputy Undersecretary for Science and Energy, DOE; Tom Morehouse, Principal Deputy Asst. Secretary of Defense, Operational Energy Plans and Programs, DOD...

  18. Commercial / Industrial Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Commercial & Industrial Lighting Efficiency Program The Commercial & Industrial...

  19. Method and apparatus for varying accelerator beam output energy

    DOE Patents [OSTI]

    Young, Lloyd M.

    1998-01-01

    A coupled cavity accelerator (CCA) accelerates a charged particle beam with rf energy from a rf source. An input accelerating cavity receives the charged particle beam and an output accelerating cavity outputs the charged particle beam at an increased energy. Intermediate accelerating cavities connect the input and the output accelerating cavities to accelerate the charged particle beam. A plurality of tunable coupling cavities are arranged so that each one of the tunable coupling cavities respectively connect an adjacent pair of the input, output, and intermediate accelerating cavities to transfer the rf energy along the accelerating cavities. An output tunable coupling cavity can be detuned to variably change the phase of the rf energy reflected from the output coupling cavity so that regions of the accelerator can be selectively turned off when one of the intermediate tunable coupling cavities is also detuned.

  20. Halbach array generator/motor having mechanically regulated output voltage and mechanical power output

    DOE Patents [OSTI]

    Post, Richard F.

    2005-06-14

    A motor/generator has its stationary portion, i.e., the stator, positioned concentrically within its rotatable element, i.e., the rotor, along the axis of rotation of the rotor. The rotor includes a Halbach array of magnets. The voltage and power outputs are regulated by varying the radial gap in between the stator windings and the rotating Halbach array. The gap is varied by extensible and retractable supports attached to the stator windings that can move the windings in a radial direction.

  1. Factors Affecting Power Output by Photovoltaic Cells Lesson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Factors Affecting Power Output by Photovoltaic Cells Grade Level(s): IB 2 (Senior - 3 ... C.8 Photovoltaic cells and dye-sensitized solar cells (DSSC) Understandings: * Solar ...

  2. Compact waveguide power divider with multiple isolated outputs

    DOE Patents [OSTI]

    Moeller, Charles P. (Del Mar, CA)

    1987-01-01

    A waveguide power divider (10) for splitting electromagnetic microwave power and directionally coupling the divided power includes an input waveguide (21) and reduced height output waveguides (23) interconnected by axial slots (22) and matched loads (25) and (26) positioned at the unused ends of input and output guides (21) and (23) respectively. The axial slots are of a length such that the wave in the input waveguide (21) is directionally coupled to the output waveguides (23). The widths of input guide (21) and output guides (23) are equal and the width of axial slots (22) is one half of the width of the input guide (21).

  3. Output-Based Error Estimation and Adaptation for Uncertainty...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Output-Based Error Estimation and Adaptation for Uncertainty Quantification Isaac M. Asher and Krzysztof J. Fidkowski University of Michigan US National Congress on Computational...

  4. US cement industry

    SciTech Connect (OSTI)

    Nisbet, M.A.

    1997-12-31

    This paper describes the cement and concrete industry, and provides data on energy use and carbon dioxide emissions. The potential impact of an energy tax on the industry is briefly assessed. Opportunities identified for reducing carbon dioxide emissions include improved energy efficiency, alternative fuels, and alternative materials. The key factor in determining CO{sub 2} emissions is the level of domestic production. The projected improvement in energy efficiency and the relatively slow growth in domestic shipments indicate that CO{sub 2} emissions in 2000 should be about 5% above the 1990 target. However, due to the cyclical nature of cement demand, emissions will probably be above target levels during peak demand and below target levels during demand troughs. 7 figs., 2 tabs.

  5. Glass needs for a growing photovoltaics industry

    SciTech Connect (OSTI)

    Burrows, Keith; Fthenakis, Vasilis

    2015-01-01

    With the projected growth in photovoltaics, the demand for glass for the solar industry will far exceed the current supply, and thousands of new float-glass plants will have to be built to meet its needs over the next 20 years. Such expansion will provide an opportunity for the solar industry to obtain products better suited to their needs, such as low-iron glass and borosilicate glass at the lowest possible price. While there are no significant technological hurdles that would prevent the flat glass industry from meeting the solar industrys projected needs, to do so will require advance planning and substantial investments.

  6. Industry Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    idatech.com info@idatech.com 63065 NE 18 th Street Bend, OR 97701 541.383.3390 Industry Perspective Biogas and Fuel Cell Workshop National Renewable Energy Laboratory June 11 - 13, 2012 Mike Hicks Chairman of the Board of Directors, FCHEA Treasurer of the Board of Directors, FCS&E Engineering Manager, Technology Development & Integration, IdaTech Outline 1. Critical Factors * Fuel Purity * Fuel Cost 2. Natural Gas - The Wild Card & Competition 3. IdaTech's Experience Implementing

  7. Solar Trackers Market - Global Industry Analysis, Size, Share...

    Open Energy Info (EERE)

    Solar Trackers Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2010 - 2020 Home > Groups > Increase Natural Gas Energy Efficiency John55364's picture...

  8. The Production Tax Credit is Key to a Strong U.S. Wind Industry

    Broader source: Energy.gov [DOE]

    New report finds the production tax credit has been critical to the growth of the U.S. wind industry.

  9. Process modeling and industrial energy use

    SciTech Connect (OSTI)

    Howe, S O; Pilati, D A; Sparrow, F T

    1980-11-01

    How the process models developed at BNL are used to analyze industrial energy use is described and illustrated. Following a brief overview of the industry modeling program, the general methodology of process modeling is discussed. The discussion highlights the important concepts, contents, inputs, and outputs of a typical process model. A model of the US pulp and paper industry is then discussed as a specific application of process modeling methodology. Case study results from the pulp and paper model illustrate how process models can be used to analyze a variety of issues. Applications addressed with the case study results include projections of energy demand, conservation technology assessment, energy-related tax policies, and sensitivity analysis. A subsequent discussion of these results supports the conclusion that industry process models are versatile and powerful tools for energy end-use modeling and conservation analysis. Information on the current status of industry models at BNL is tabulated.

  10. China develops natural gas industry

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    As of 1981, more than 60 natural gas fields with a total annual output of 12.74 billion cu m have been discovered in China, placing the country among the top 12 gas producers in the world. In addition, there are prospects for natural gas in the Bohai-North China Basin and the Qaidam Basin, NW. China, providing a base for further expansion of the gas industry. Gas reservoirs have been found in 9 different geologic ages: Sinian, Cambrian, Ordovician, Carboniferous, Permian, Triassic, Jurassic, Tertiary, and Quaternary. Of the 60 gas field now being exploited, there are more than 40 fields in Sichuan. The Sichuan Basin gas industry is described in detail.

  11. Dual output acoustic wave sensor for molecular identification

    DOE Patents [OSTI]

    Frye, Gregory C.; Martin, Stephen J.

    1991-01-01

    A method of identification and quantification of absorbed chemical species by measuring changes in both the velocity and the attenuation of an acoustic wave traveling through a thin film into which the chemical species is sorbed. The dual output response provides two independent sensor responses from a single sensing device thereby providing twice as much information as a single output sensor. This dual output technique and analysis allows a single sensor to provide both the concentration and the identity of a chemical species or permits the number of sensors required for mixtures to be reduced by a factor of two.

  12. Device for frequency modulation of a laser output spectrum

    DOE Patents [OSTI]

    Beene, James R.; Bemis, Jr., Curtis E.

    1986-01-01

    A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the transducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When such a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.

  13. Device for frequency modulation of a laser output spectrum

    DOE Patents [OSTI]

    Beene, J.R.; Bemis, C.E. Jr.

    1984-07-17

    A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the tranducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.

  14. Community Climate System Model (CCSM) Experiments and Output Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The CCSM web makes the source code of various versions of the model freely available and provides access to experiments that have been run and the resulting output data.

  15. Bayesian approaches for combining computational model output and physical

    Office of Scientific and Technical Information (OSTI)

    observations (Conference) | SciTech Connect Bayesian approaches for combining computational model output and physical observations Citation Details In-Document Search Title: Bayesian approaches for combining computational model output and physical observations Authors: Higdon, David M [1] ; Lawrence, Earl [1] ; Heitmann, Katrin [2] ; Habib, Salman [2] + Show Author Affiliations Los Alamos National Laboratory ANL Publication Date: 2011-07-25 OSTI Identifier: 1084581 Report Number(s):

  16. Low Capital Photovoltaic Panel Electrical Output-Booster System |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Low Capital Photovoltaic Panel Electrical Output-Booster System Low Capital Photovoltaic Panel Electrical Output-Booster System This presentation summarizes the information given during the DOE SunShot Grand Challenge: Summit and Technology Forum, June 13-14, 2012. ssgrandchallenge_finance_schrag.pdf (63.07 KB) More Documents & Publications The SunShot Vision Study SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency & Renewable Energy (EERE)

  17. PROJECT PROFILE: Advanced Thermal Management for Higher Module Power Output

    Broader source: Energy.gov [DOE]

    Higher temperatures of photovoltaic (PV) modules are causing lower than projected module performance. For example, a free-standing Si PV module has 0.4% decrease in efficiency per degree Celsius. Reducing the module temperature to near ambient levels will increase yearly energy output by 8%. This project will enable lower operating temperatures for modules, resulting in higher module power output and lower levelized cost of electricity (LCOE).

  18. Industrial Carbon Management Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Industrial Assessment Centers (IAC) Update -- July 2015 Industrial Assessment Centers (IAC) Update -- July 2015 Read the Industrial Assessment Centers (IAC) Update -- July 2015 Industrial Assessment Centers Quarterly Update, July 2015 (845.58 KB) More Documents & Publications Industrial Assessment Centers Update, Fall 2015 Industrial Assessment Centers Quarterly Update, Spring 2014 IAC Factsheet

    Industrial Assessment Centers Update, Fall 2015 Industrial Assessment Centers

  19. The Industrial Technologies Program: Meeting the Challenge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Technologies Program: Meeting the Challenge STEAB Meeting October 17, 2007 Douglas E. Kaempf Program Manager Industry: Critical to U.S. Energy Security & Economy The U.S. manufacturing sector * Consumes more energy than any sector of the economy * Makes highest contribution to GDP (12%) * Produces nearly 1/4 th of world manufacturing output * Supplies >60% of US exports, worth $50 billion/month 2004 Nominal GDP, $ Billions 15,000 Ranks as 12,000 eighth largest 9,000 economy

  20. Partnerships For Industry - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    115.jpg Partnerships For Industry Connect With JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP Connect with JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP partnerships for industry JCAP has established an Industrial Partnership Program. For more information on Industrial Partnership Program or to learn more about other modes of industrial interactions with JCAP, please contact: California Institute of Technology Office of

  1. Method for separating FEL output beams from long wavelength radiation

    DOE Patents [OSTI]

    Neil, George; Shinn, Michelle D.; Gubeli, Joseph

    2016-04-26

    A method for improving the output beam quality of a free electron laser (FEL) by reducing the amount of emission at wavelengths longer than the electron pulse length and reducing the amount of edge radiation. A mirror constructed of thermally conductive material and having an aperture therein is placed at an oblique angle with respect to the beam downstream of the bending magnet but before any sensitive use of the FEL beam. The aperture in the mirror is sized to deflect emission longer than the wavelength of the FEL output while having a minor impact on the FEL output beam. A properly sized aperture will enable the FEL radiation, which is coherent and generally at a much shorter wavelength than the bending radiations, to pass through the aperture mirror. The much higher divergence bending radiations will subsequently strike the aperture mirror and be reflected safely out of the way.

  2. Motor vehicle output and GDP, 1968-2007.

    SciTech Connect (OSTI)

    Santini, D. J.; Poyer, D. A.

    2008-01-01

    In this paper, we assess the performance of the BEA series 'value of motor vehicle output' as an indicator of the business cycle over the period 1968-2007. We statistically assess the causal relationship between real motor vehicle output (RMVO) and real gross domestic product (RGDP). This is accomplished by standard estimation and statistical methods used to assess vector autoregressive models. This assessment represents the initial results of a more encompassing research project, the intent of which is to determine the dynamic interaction of the transport sector with the overall economy. It's a start to a more comprehensive assessment of how transport and economic activity interrelate.

  3. System for monitoring an industrial or biological process

    DOE Patents [OSTI]

    Gross, K.C.; Wegerich, S.W.; Vilim, R.B.; White, A.M.

    1998-06-30

    A method and apparatus are disclosed for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT. 49 figs.

  4. System for monitoring an industrial or biological process

    DOE Patents [OSTI]

    Gross, Kenneth C.; Wegerich, Stephan W.; Vilim, Rick B.; White, Andrew M.

    1998-01-01

    A method and apparatus for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT.

  5. Carbon Emissions: Food Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct....

  6. Chemicals Industry Vision

    SciTech Connect (OSTI)

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  7. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  8. Uranium industry annual 1997

    SciTech Connect (OSTI)

    1998-04-01

    This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

  9. Chemical Industry Corrosion Management

    SciTech Connect (OSTI)

    2003-02-01

    Improved Corrosion Management Could Provide Significant Cost and Energy Savings for the Chemical Industry. In the chemical industry, corrosion is often responsible for significant shutdown and maintenance costs.

  10. Industrial | Open Energy Information

    Open Energy Info (EERE)

    Trends Despite a 54-percent increase in industrial shipments, industrial energy consumption increases by only 19 percent from 2009 to 2035 in the AEO2011 Reference case....

  11. LS Industrial Systems Co Ltd formerly LG Industrial Systems ...

    Open Energy Info (EERE)

    LS Industrial Systems Co Ltd formerly LG Industrial Systems Jump to: navigation, search Name: LS Industrial Systems Co Ltd (formerly LG Industrial Systems) Place: Anyang,...

  12. Industrial ecology Prosperity Game{trademark}

    SciTech Connect (OSTI)

    Beck, D.; Boyack, K.; Berman, M.

    1998-03-01

    Industrial ecology (IE) is an emerging scientific field that views industrial activities and the environment as an interactive whole. The IE approach simultaneously optimizes activities with respect to cost, performance, and environmental impact. Industrial Ecology provides a dynamic systems-based framework that enables management of human activity on a sustainable basis by: minimizing energy and materials usage; insuring acceptable quality of life for people; minimizing the ecological impact of human activity to levels that natural systems can sustain; and maintaining the economic viability of systems for industry, trade and commerce. Industrial ecology applies systems science to industrial systems, defining the system boundary to incorporate the natural world. Its overall goal is to optimize industrial activities within the constraints imposed by ecological viability, globally and locally. In this context, Industrial systems applies not just to private sector manufacturing and services but also to government operations, including provision of infrastructure. Sandia conducted its seventeenth Prosperity Game{trademark} on May 23--25, 1997, at the Hyatt Dulles Hotel in Herndon, Virginia. The primary sponsors of the event were Sandia National Laboratories and Los Alamos National Laboratory, who were interested in using the format of a Prosperity Game to address some of the issues surrounding Industrial Ecology. Honorary game sponsors were: The National Science Foundation; the Committee on Environmental Improvement, American Chemical Society; the Industrial and Engineering Chemistry Division, American Chemical Society; the US EPA--The Smart Growth Network, Office of Policy Development; and the US DOE-Center of Excellence for Sustainable Development.

  13. Output-Based Regulations: A Handbook for Air Regulators (U.S. EPA), August 2004

    Office of Energy Efficiency and Renewable Energy (EERE)

    Handbook providing practical information to help regulators decide if they want to use output-based regulations and explains how to develop an output-based emission standard

  14. Aluminum industry applications for OTEC

    SciTech Connect (OSTI)

    Jones, M.S.; Leshaw, D.; Sathyanarayana, K.; Sprouse, A.M.; Thiagarajan, V.

    1980-12-01

    The objective of the program is to study the integration issues which must be resolved to realize the market potential of ocean thermal energy conversion (OTEC) power for the aluminum industry. The study established, as a baseline, an OTEC plant with an electrical output of 100 MWe which would power an aluminum reduction plant. The reduction plant would have a nominal annual output of about 60,000 metric tons of aluminum metal. Three modes of operation were studied, viz: 1. A reduction plant on shore and a floating OTEC power plant moored offshore supplying energy by cable. 2. A reduction plant on shore and a floating OTEC power plant at sea supplying energy by means of an ''energy bridge.'' 3. A floating reduction plant on the same platform as the OTEC power plant. For the floating OTEC/aluminum plantship, three reduction processes were examined. 1. The conventional Hall process with prebaked anodes. 2. The drained cathode Hall cell process. 3. The aluminum chloride reduction process.

  15. A 350 MHz, 200 kW CW, Multiple Beam Inductive Output Tube - Final Report

    SciTech Connect (OSTI)

    R.Lawrece Ives; George Collins; David Marsden Michael Read; Edward Eisen; Takuchi Kamura, Philipp Borchard

    2012-11-28

    This program developed a 200 kW CW, 350 MHz, multiple beam inductive output tube (MBIOT) for driving accelerator cavities. The MBIOT operates at 30 kV with a gain of 23 dB. The estimated efficiency is 70%. The device uses seven electron beams, each transmitting 1.4 A of current. The tube is approximately six feet long and weighs approximately 400 lbs. The prototype device will be evaluated as a potential RF source for the Advanced Photon Source at Argonne National Laboratory (ANL). Because of issues related to delivery of the electron guns, it was not possible to complete assembly and test of the MBIOT during the Phase II program. The device is being completed with support from Calabazas Creek Research, Inc., Communications & Power Industries, LLC. and the Naval Surface Weapons Center (NSWC) in Dahlgren, VA. The MBIOT will be initially tested at NSWC before delivery to ANL. The testing at NSWC is scheduled for February 2013.

  16. Autonomic Intelligent Cyber Sensor to Support Industrial Control Network Awareness

    SciTech Connect (OSTI)

    Vollmer, Todd; Manic, Milos; Linda, Ondrej

    2013-06-01

    The proliferation of digital devices in a networked industrial ecosystem, along with an exponential growth in complexity and scope, has resulted in elevated security concerns and management complexity issues. This paper describes a novel architecture utilizing concepts of Autonomic computing and a SOAP based IF-MAP external communication layer to create a network security sensor. This approach simplifies integration of legacy software and supports a secure, scalable, self-managed framework. The contribution of this paper is two-fold: 1) A flexible two level communication layer based on Autonomic computing and Service Oriented Architecture is detailed and 2) Three complementary modules that dynamically reconfigure in response to a changing environment are presented. One module utilizes clustering and fuzzy logic to monitor traffic for abnormal behavior. Another module passively monitors network traffic and deploys deceptive virtual network hosts. These components of the sensor system were implemented in C++ and PERL and utilize a common internal D-Bus communication mechanism. A proof of concept prototype was deployed on a mixed-use test network showing the possible real world applicability. In testing, 45 of the 46 network attached devices were recognized and 10 of the 12 emulated devices were created with specific Operating System and port configurations. Additionally the anomaly detection algorithm achieved a 99.9% recognition rate. All output from the modules were correctly distributed using the common communication structure.

  17. Autonomic Intelligent Cyber Sensor to Support Industrial Control Network Awareness

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vollmer, Todd; Manic, Milos; Linda, Ondrej

    2013-06-01

    The proliferation of digital devices in a networked industrial ecosystem, along with an exponential growth in complexity and scope, has resulted in elevated security concerns and management complexity issues. This paper describes a novel architecture utilizing concepts of Autonomic computing and a SOAP based IF-MAP external communication layer to create a network security sensor. This approach simplifies integration of legacy software and supports a secure, scalable, self-managed framework. The contribution of this paper is two-fold: 1) A flexible two level communication layer based on Autonomic computing and Service Oriented Architecture is detailed and 2) Three complementary modules that dynamically reconfiguremore » in response to a changing environment are presented. One module utilizes clustering and fuzzy logic to monitor traffic for abnormal behavior. Another module passively monitors network traffic and deploys deceptive virtual network hosts. These components of the sensor system were implemented in C++ and PERL and utilize a common internal D-Bus communication mechanism. A proof of concept prototype was deployed on a mixed-use test network showing the possible real world applicability. In testing, 45 of the 46 network attached devices were recognized and 10 of the 12 emulated devices were created with specific Operating System and port configurations. Additionally the anomaly detection algorithm achieved a 99.9% recognition rate. All output from the modules were correctly distributed using the common communication structure.« less

  18. Optical device with conical input and output prism faces

    DOE Patents [OSTI]

    Brunsden, Barry S.

    1981-01-01

    A device for radially translating radiation in which a right circular cylinder is provided at each end thereof with conical prism faces. The faces are oppositely extending and the device may be severed in the middle and separated to allow access to the central part of the beam. Radiation entering the input end of the device is radially translated such that radiation entering the input end at the perimeter is concentrated toward the output central axis and radiation at the input central axis is dispersed toward the output perimeter. Devices are disclosed for compressing beam energy to enhance drilling techniques, for beam manipulation of optical spatial frequencies in the Fourier plane and for simplification of dark field and color contrast microscopy. Both refracting and reflecting devices are disclosed.

  19. An Advanced simulation Code for Modeling Inductive Output Tubes

    SciTech Connect (OSTI)

    Thuc Bui; R. Lawrence Ives

    2012-04-27

    During the Phase I program, CCR completed several major building blocks for a 3D large signal, inductive output tube (IOT) code using modern computer language and programming techniques. These included a 3D, Helmholtz, time-harmonic, field solver with a fully functional graphical user interface (GUI), automeshing and adaptivity. Other building blocks included the improved electrostatic Poisson solver with temporal boundary conditions to provide temporal fields for the time-stepping particle pusher as well as the self electric field caused by time-varying space charge. The magnetostatic field solver was also updated to solve for the self magnetic field caused by time changing current density in the output cavity gap. The goal function to optimize an IOT cavity was also formulated, and the optimization methodologies were investigated.

  20. Light-operated proximity detector with linear output

    DOE Patents [OSTI]

    Simpson, M.L.; McNeilly, D.R.

    1984-01-01

    A light-operated proximity detector is described in which reflected light intensity from a surface whose proximity to the detector is to be gauged is translated directly into a signal proportional to the distance of the detector from the surface. A phototransistor is used to sense the reflected light and is connected in a detector circuit which maintains the phtotransistor in a saturated state. A negative feedback arrangement using an operational amplifier connected between the collector and emitter of the transistor provides an output at the output of the amplifier which is linearly proportional to the proximity of the surface to the detector containing the transistor. This direct proportional conversion is true even though the light intensity is varying with the proximity in proportion to the square of the inverse of the distance. The detector may be used for measuring the distance remotely from any target surface.

  1. Light-operated proximity detector with linear output

    DOE Patents [OSTI]

    Simpson, Marc L.; McNeilly, David R.

    1985-01-01

    A light-operated proximity detector is described in which reflected light intensity from a surface whose proximity to the detector is to be gauged is translated directly into a signal proportional to the distance of the detector from the surface. A phototransistor is used to sense the reflected light and is connected in a detector circuit which maintains the phototransistor in a saturated state. A negative feedback arrangement using an operational amplifier connected between the collector and emitter of the transistor provides an output at the output of the amplifier which is linearly proportional to the proximity of the surface to the detector containing the transistor. This direct proportional conversion is true even though the light intensity is varying with the proximity in proportion to the square of the inverse of the distance. The detector may be used for measuring the distance remotely from any target surface.

  2. Development of a high-output dual-fuel engine

    SciTech Connect (OSTI)

    Danyluk, P.R. . Fairbanks Morse Engineering Division)

    1993-10-01

    This paper presents the results of a new dual-fuel engine development program. The engine is the largest commercially available in terms of power output (650 hp/cyl) and features very low emissions (1 g/hp-hr NO[sub x]) and excellent fuel consumption (43 percent thermal efficiency). A two-cylinder turbocharged prototype was designed and built for the initial development. Results from testing on 18-cylinder production versions are also reported.

  3. Development of output user interface software to support analysis

    SciTech Connect (OSTI)

    Wahanani, Nursinta Adi Natsir, Khairina Hartini, Entin

    2014-09-30

    Data processing software packages such as VSOP and MCNPX are softwares that has been scientifically proven and complete. The result of VSOP and MCNPX are huge and complex text files. In the analyze process, user need additional processing like Microsoft Excel to show informative result. This research develop an user interface software for output of VSOP and MCNPX. VSOP program output is used to support neutronic analysis and MCNPX program output is used to support burn-up analysis. Software development using iterative development methods which allow for revision and addition of features according to user needs. Processing time with this software 500 times faster than with conventional methods using Microsoft Excel. PYTHON is used as a programming language, because Python is available for all major operating systems: Windows, Linux/Unix, OS/2, Mac, Amiga, among others. Values that support neutronic analysis are k-eff, burn-up and mass Pu{sup 239} and Pu{sup 241}. Burn-up analysis used the mass inventory values of actinide (Thorium, Plutonium, Neptunium and Uranium). Values are visualized in graphical shape to support analysis.

  4. Ring laser having an output at a single frequency

    DOE Patents [OSTI]

    Hackell, Lloyd A.

    1991-01-01

    A ring laser is disclosed that produces a single frequency of laser radiation in either the pulsed mode of operation or the continuous waveform (cw) mode of operation. The laser comprises a ring laser in a bowtie configuration, a birefringent gain material such as Nd:YLF, an improved optical diode that supports laser oscillation having a desired direction of travel and linear polarization, and a Q-switch. An output coupler (mirror) having a high reflectivity, such as 94%, is disclosed. Also disclosed is a self-seeded method of operation in which the laser can provide a pulse or a series of pulses of high power laser radiation at a consistent single frequency with a high degree of amplitude stability and temporal stability. In operation, the laser is operated in continuous waveform (cw) at a low power output with the Q-switch introducing a loss into the resonating cavity. Pumping is continued at a high level, causing the gain material to store energy. When a pulse is desired, the Q-switch is actuated to substantially reduce the losses so that a pulse can build up based on the low level cw oscillation. The pulse quickly builds, using the stored energy in the gain medium to provide a high power output pulse. The process may be repeated to provide a series of high power pulses of a consistent single frequency.

  5. Glass needs for a growing photovoltaics industry

    SciTech Connect (OSTI)

    Burrows, Keith; Fthenakis, Vasilis

    2014-10-18

    With the projected growth in photovoltaics, the demand for glass for the solar industry will far exceed the current supply, and thousands of new float-glass plants will have to be built to meet its needs over the next 20 years. Such expansion will provide an opportunity for the solar industry to obtain products better suited to their needs, such as low-iron glass and borosilicate glass at the lowest possible price. While there are no significant technological hurdles that would prevent the flat glass industry from meeting the solar industry’s projected needs, to do so will require advance planning and substantial investments.

  6. Users from Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users from Industry Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, and/or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial

  7. Making Industry Part of the Climate Solution

    SciTech Connect (OSTI)

    Lapsa, Melissa Voss; Brown, Dr. Marilyn Ann; Jackson, Roderick K; Cox, Matthew; Cortes, Rodrigo; Deitchman, Benjamin H

    2011-06-01

    Improving the energy efficiency of industry is essential for maintaining the viability of domestic manufacturing, especially in a world economy where production is shifting to low-cost, less regulated developing countries. Numerous studies have shown the potential for significant cost-effective energy-savings in U.S. industries, but the realization of this potential is hindered by regulatory, information, workforce, and financial obstacles. This report evaluates seven federal policy options aimed at improving the energy efficiency of industry, grounded in an understanding of industrial decision-making and the barriers to efficiency improvements. Detailed analysis employs the Georgia Institute of Technology's version of the National Energy Modeling System and spreadsheet calculations, generating a series of benefit/cost metrics spanning private and public costs and energy bill savings, as well as air pollution benefits and the social cost of carbon. Two of the policies would address regulatory hurdles (Output-Based Emissions Standards and a federal Energy Portfolio Standard with Combined Heat and Power); three would help to fill information gaps and workforce training needs (the Superior Energy Performance program, Implementation Support Services, and a Small Firm Energy Management program); and two would tackle financial barriers (Tax Lien Financing and Energy-Efficient Industrial Motor Rebates). The social benefit-cost ratios of these policies appear to be highly favorable based on a range of plausible assumptions. Each of the seven policy options has an appropriate federal role, broad applicability across industries, utilizes readily available technologies, and all are administratively feasible.

  8. EERE INDUSTRY DAY

    Office of Energy Efficiency and Renewable Energy (EERE)

    On September 23-24, 2015 the inaugural EERE Industry Day was held at Oak Ridge National Laboratory to foster relationships and encourage dialog among researchers, industry representatives, and U.S. Department of Energy representatives.

  9. Minerals Yearbook, 1988 international review. The mineral industries of Bolivia, Ecuador, and Peru

    SciTech Connect (OSTI)

    Torres, I.E.; Gurmendi, A.C.; Velasco, P.

    1988-01-01

    All three countries in this Andean group have diversified mineral industries that play an important role in their respective domestic economies. Peru, as the largest country with a population of over 21 million, is the most diversified mineral producer with the highest value of total output. The values added by the mineral industries in 1988 were $2.78 billion for Peru, $1.98 billion for Ecuador, and $0.64 billion for Bolivia. Each value encompasses production of petroleum, natural gas, metals, and industrial minerals. During the period 1980-88, Ecuador's mineral output in terms of value expanded while that of Bolivia and Peru contracted.

  10. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  11. Industrial Strength Pipes

    Energy Science and Technology Software Center (OSTI)

    2006-01-23

    Industrial Strength Pipes (ISP) is a toolkit for construction pipeline applications using the UNIX pipe and filter model.

  12. Photovoltaics industry profile

    SciTech Connect (OSTI)

    1980-10-01

    A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

  13. Industrial Energy Efficiency Assessments

    Broader source: Energy.gov (indexed) [DOE]

    Energy Efficiency Assessments Lynn Price Staff Scientist China Energy Group Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Industrial Energy Efficiency Assessments - Definition and overview of key components - International experience - Chinese situation and recommendations - US-China collaboration Industrial Energy Efficiency Assessments - Analysis of the use of energy and potential for energy efficiency in an industrial facility *

  14. Industrial Dojo Program Fosters Industrial Internet Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SAN RAMON, CA-May 11, 2015-GE Software (NYSE: GE) today announced its 'Industrial Dojo,' ... The Cloud Foundry Dojo program allows software developers to immerse themselves in open ...

  15. Energy Department Reports Highlight Trends of Growing U.S. Wind Energy Industry

    Broader source: Energy.gov [DOE]

    Reports show wind energy industry continued impressive growth in 2014, solidifying America’s position as a global leader in wind energy.

  16. Nine Colorado Clean Energy Company CEOs to Present at NREL Industry...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nine Colorado Clean Energy Company CEOs to Present at NREL Industry Growth Forum October ... "We are honored to have such high caliber clean energy companies represent Colorado at ...

  17. Method and system for managing an electrical output of a turbogenerator

    DOE Patents [OSTI]

    Stahlhut, Ronnie Dean; Vuk, Carl Thomas

    2010-08-24

    The system and method manages an electrical output of a turbogenerator in accordance with multiple modes. In a first mode, a direct current (DC) bus receives power from a turbogenerator output via a rectifier where turbogenerator revolutions per unit time (e.g., revolutions per minute (RPM)) or an electrical output level of a turbogenerator output meet or exceed a minimum threshold. In a second mode, if the turbogenerator revolutions per unit time or electrical output level of a turbogenerator output are less than the minimum threshold, the electric drive motor or a generator mechanically powered by the engine provides electrical energy to the direct current bus.

  18. Method and system for managing an electrical output of a turbogenerator

    DOE Patents [OSTI]

    Stahlhut, Ronnie Dean; Vuk, Carl Thomas

    2009-06-02

    The system and method manages an electrical output of a turbogenerator in accordance with multiple modes. In a first mode, a direct current (DC) bus receives power from a turbogenerator output via a rectifier where turbogenerator revolutions per unit time (e.g., revolutions per minute (RPM)) or an electrical output level of a turbogenerator output meet or exceed a minimum threshold. In a second mode, if the turbogenerator revolutions per unit time or electrical output level of a turbogenerator output are less than the minimum threshold, the electric drive motor or a generator mechanically powered by the engine provides electrical energy to the direct current bus.

  19. Uranium industry annual 1994

    SciTech Connect (OSTI)

    1995-07-05

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

  20. Uranium industry annual 1998

    SciTech Connect (OSTI)

    1999-04-22

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

  1. High lumen compact fluorescents boost light output in new fixtures

    SciTech Connect (OSTI)

    1992-12-31

    Some compact fluorescent lamps aren`t so compact. General Electric (GE), OSRAM, and Philips have been expanding offerings in longer, more powerful, hard wired CFLs that generate enough light to serve applications once limited to conventional fluorescents and metal halide systems. All three of these manufacturers have for some time offered 18- to 40-watt high-output CFLs, which use a fluorescent tube doubled back on itself to produce a lot of light in a compact source. Now GE has introduced an even larger, more powerful 50-watt unit, and OSRAM is soon to follow suit with a 55-watt lamp. These new entries to the field of turbocharged CFLs can provide general lighting at ceiling heights of 12 feet or more as well as indirect lighting, floodlighting, and wall washing. They are such a concentrated source of light that they can provide the desired illumination using fewer lamps and fixtures than would be needed with competing sources.

  2. New trends in industrial energy efficiency in the Mexico iron and steel industry

    SciTech Connect (OSTI)

    Ozawa, Leticia; Martin, Nathan; Worrell, Ernst; Price, Lynn; Sheinbaum, Claudia

    1999-07-31

    Energy use in the Mexican industrial sector experienced important changes in the last decade related to changes in the Mexican economy. In previous studies, we have shown that a real change in energy-intensity was the most important factor in the overall decline of energy use and CO2 emissions in the Mexican industrial sector. Real changes in energy intensity were explained by different factors, depending on the industrial sub-sector. In this paper, we analyze the factors that influenced energy use in the Mexican iron and steel industry, the largest energy consuming and energy-intensive industry in the country. To understand the trends in this industry we used a decomposition analysis based on physical indicators to decompose the changes in intra-sectoral structural changes and efficiency improvements. Also, we use a structure-efficiency analysis for international comparisons, considering industrial structure and the best available technology. In 1995, Mexican iron and steel industry consumed 17.7 percent of the industrial energy consumption. Between 1970 and 1995, the steel production has increased with an annual growth rate of 4.7 percent, while the specific energy consumption (SEC) has decreased from 28.4 to 23.8 GJ/tonne of crude steel. This reduction was due to energy efficiency improvements (disappearance of the open hearth production, increase of the share of the continuous casting) and to structural changes as well (increase of the share of scrap input in the steelmaking).

  3. Output-Based Regulations: A Handbook for Air Regulators (U.S...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Output-Based Regulations: A Handbook for Air Regulators (U.S. EPA), August 2004 Output-Based Regulations: A Handbook for Air Regulators (U.S. EPA), August 2004 The U.S. ...

  4. Uranium industry annual, 1987

    SciTech Connect (OSTI)

    Not Available

    1988-09-29

    This report provides current statistical data on the US uranium industry for the Congress, federal and state agencies, the uranium and utility industries, and the public. It utilizes data from the mandatory ''Uranium Industry Annual Survey,'' Form EIA-858; historical data collected by the Energy Information Administration (EIA) and by the Grand Junction (Colorado) Project Office of the Idaho Operations Office of the US Department of Energy (DOE); and other data from federal agencies that preceded the DOE. The data provide a comprehensive statistical characterization of the industry's annual activities and include some information about industry plans and commitments over the next several years. Where these data are presented in aggregate form, care has been taken to protect the confidentiality of company-specific data while still conveying an accurate and complete statistical representation of the industry data.

  5. Systems and Industry Analyses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems and industry analyses Go to the NETL Gasification Systems Program's Systems and Industry Analyses Studies Technology & Cost/Performance Studies NETL Gasification Systems Program's Systems and Industry Analyses Studies provide invaluable information, and help to ensure that the technologies being developed are the best ones to develop. System studies are often used to compare competing technologies, determine the best way to integrate a technology with other technologies, and predict

  6. Presentations for Industry

    Office of Energy Efficiency and Renewable Energy (EERE)

    Learn energy-saving strategies from leading manufacturing companies and energy experts. The presentations are organized below by topic area. In addition, industrial energy managers, utilities, and...

  7. Appendix C - Industrial technologies

    SciTech Connect (OSTI)

    None, None

    2002-12-20

    This report describes the results, calculations, and assumptions underlying the GPRA 2004 Quality Metrics results for all Planning Units within the Office of Industrial Technologies.

  8. Window Industry Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2000-04-01

    The Window Industry Technology Roadmap looks at the trends in window design and installation in 2000 and projects trends for the future.

  9. Baytown Industrial Park

    SciTech Connect (OSTI)

    2005-06-01

    This is a combined heat and power (CHP) project profile on an 830 MW combined-cycle CHP application at Baytown Industrial Park in Baytown, Texas.

  10. About Industrial Distributed Energy

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office's (AMO's) Industrial Distributed Energy activities build on the success of predecessor DOE programs on distributed energy and combined heat and power (CHP) while...

  11. Commercial & Industrial Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  12. Keystone coal industry manual

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The 1994 Keystone Coal Industry Manual is presented. Keystone has served as the one industry reference authority for the many diverse organizations concerned with the supply and utilization of coal in the USA and Canada. Through the continuing efforts of coal producers, buyers, users, sellers, and equipment designers and manufacturers, the coal industry supplies an abundant and economical fuel that is indispensable in meeting the expanding energy needs of North America. The manual is divided into the following sections: coal sales companies, coal export, transportation of coal, consumer directories, coal associations and groups, consulting and financial firms, buyers guide, industry statistics and ownership, coal preparation, coal mine directory, and coal seams.

  13. Sustainable Nanomaterials Industry Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Perspective U.S. Department of Energy Advanced Manufacturing Office Sustainable ... Uses renewable resources grown with sustainable forestry practices Encourages ...

  14. Industrial Green | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Green Industrial Green Industrial Green - This giant bag may not look green, but it keeps a potent greenhouse gas from being released into the atmosphere. It's part of a system at the Free-Electron Laser that retains sulfur hexafluoride gas when it isn't being used in the FEL's gun test stand. The concept received a 2011 Virginia Governor's Environmental Excellence Program Gold Award. Industrial Green On behalf of work done by Kevin Jordan, a senior engineer in the Free-Electron Laser

  15. Users from Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, andor...

  16. Industries & Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aluminum Chemicals Forest Products Glass Metal Casting Mining Other Industries Petroleum ... Information & Communications Technology Data Centers Materials for Industrial Use ...

  17. Midwest Industrial Energy Efficiency Handbook

    SciTech Connect (OSTI)

    2010-06-25

    This Industrial Technologies Program handbook connects industry with the various energy efficiency resources available in the midwest.

  18. Pacific Rim Summit on Industrial Biotechnology & Bioenergy

    Broader source: Energy.gov [DOE]

    The ninth annual Pacific Rim Summit on Industrial Biotechnology and Bioenergy will be held from December 7–9, 2014, in San Diego, California, at the Westin Gaslamp Quarter. Bringing together representatives from various countries all around the Pacific Rim, this event will focus on the growth of the industrial biotechnology and bioenergy sectors in North America and the Asia-Pacific region. Glenn Doyle, BETO's Deployment & Demonstration Technology Manager, will be moderating and speaking at a session on entitled "Utilizing Strategic Partnerships to Grow Your Business" on December 9.

  19. The industrial ecology of steel

    SciTech Connect (OSTI)

    Considine, Timothy J.; Jablonowski, Christopher; Considine, Donita M.M.; Rao, Prasad G.

    2001-03-26

    This study performs an integrated assessment of new technology adoption in the steel industry. New coke, iron, and steel production technologies are discussed, and their economic and environmental characteristics are compared. Based upon detailed plant level data on cost and physical input-output relations by process, this study develops a simple mathematical optimization model of steel process choice. This model is then expanded to a life cycle context, accounting for environmental emissions generated during the production and transportation of energy and material inputs into steelmaking. This life-cycle optimization model provides a basis for evaluating the environmental impacts of existing and new iron and steel technologies. Five different plant configurations are examined, from conventional integrated steel production to completely scrap-based operations. Two cost criteria are used to evaluate technology choice: private and social cost, with the latter including the environmental damages associated with emissions. While scrap-based technologies clearly generate lower emissions in mass terms, their emissions of sulfur dioxide and nitrogen oxides are significantly higher. Using conventional damage cost estimates reported in the literature suggests that the social costs associated with scrap-based steel production are slightly higher than with integrated steel production. This suggests that adopting a life-cycle viewpoint can substantially affect environmental assessment of new technologies. Finally, this study also examines the impacts of carbon taxes on steel production costs and technology choice.

  20. Fail safe controllable output improved version of the Electromechanical battery

    DOE Patents [OSTI]

    Post, Richard F.

    1999-01-01

    Mechanical means are provided to control the voltages induced in the windings of a generator/motor. In one embodiment, a lever is used to withdraw or insert the entire stator windings from the cavity where the rotating field exists. In another embodiment, voltage control and/or switching off of the output is achievable with a variable-coupling generator/motor. A stator is made up of two concentric layers of windings, with a larger number of turns on the inner layer of windings than the outer layer of windings. The windings are to be connected in series electrically, that is, their voltages add vectorially. The mechanical arrangement is such that one or both of the windings can be rotated with respect to the other winding about their common central axis. Another improved design for the stator assembly of electromechanical batteries provides knife switch contacts that are in electrical contact with the stator windings. The operation of this embodiment depends on the fact that an abnormally large torque will be exerted on the stator structure during any short-circuit condition.

  1. Fail safe controllable output improved version of the electromechanical battery

    DOE Patents [OSTI]

    Post, R.F.

    1999-01-19

    Mechanical means are provided to control the voltages induced in the windings of a generator/motor. In one embodiment, a lever is used to withdraw or insert the entire stator windings from the cavity where the rotating field exists. In another embodiment, voltage control and/or switching off of the output is achievable with a variable-coupling generator/motor. A stator is made up of two concentric layers of windings, with a larger number of turns on the inner layer of windings than the outer layer of windings. The windings are to be connected in series electrically, that is, their voltages add vectorially. The mechanical arrangement is such that one or both of the windings can be rotated with respect to the other winding about their common central axis. Another improved design for the stator assembly of electromechanical batteries provides knife switch contacts that are in electrical contact with the stator windings. The operation of this embodiment depends on the fact that an abnormally large torque will be exerted on the stator structure during any short-circuit condition. 4 figs.

  2. Geothermal industry assessment

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    An assessment of the geothermal industry is presented, focusing on industry structure, corporate activities and strategies, and detailed analysis of the technological, economic, financial, and institutional issues important to government policy formulation. The study is based principally on confidential interviews with executives of 75 companies active in the field. (MHR)

  3. Method for optimizing the mechanical output of a fluid pressure free piston engine

    SciTech Connect (OSTI)

    Dibrell, E.W.; Schaich, W.A.

    1988-07-05

    The method is described for minimizing rotational speed variations of a centrifugal piston expander engine comprising the steps of: (1) supplying a pressured gas to a centrifugal piston expander engine having a rotatable output element and a discharge conduit for cooled exhaust gas; (2) expanding and cooling the pressured gas in the centrifugal piston expander engine to produce cyclically varying oppositely directed, positive and negative torques on the rotatable output shaft; (3) driving a rotary load in the positive torque direction by the rotatable output element through one rotatable element of a unidirectional clutch having two rotating elements relatively movable in only the negative torque direction; and (4) connecting a battery operated motor-generator unit to the rotatable output shaft to supplement the rotary speed of the output shaft during periods of negative torque output by the centrifugal piston expander engine and to recharge the battery during periods of maximum positive torque output of the centrifugal expander engine.

  4. Uranium industry annual 1996

    SciTech Connect (OSTI)

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  5. Uranium industry annual 1995

    SciTech Connect (OSTI)

    1996-05-01

    The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

  6. Long-Term Nuclear Industry Outlook - 2004

    SciTech Connect (OSTI)

    Reichmuth, Barbara A.; Wood, Thomas W.; Johnson, Wayne L.

    2004-09-30

    The nuclear industry has become increasingly efficient and global in nature, but may now be poised at a crossroads between graceful decline and profound growth as a viable provider of electrical energy. Predicted population and energy-demand growth, an increased interest in global climate change, the desire to reduce the international dependence on oil as an energy source, the potential for hydrogen co-generation using nuclear power reactors, and the improved performance in the nuclear power industry have raised the prospect of a “nuclear renaissance” in which nuclear power would play an increasingly more important role in both domestic and international energy market. This report provides an assessment of the role nuclear-generated power will plan in the global energy future and explores the impact of that role on export controls.

  7. New runners to boost peak output at Niagara Falls

    SciTech Connect (OSTI)

    Reason, J.

    1990-01-01

    Retrofitted Francis turbines will improve the value of power generated from Niagara Falls by increasing the peak output of the hydroturbine units at the Robert Moses hydroelectric plant. The computer-designed runners are expected to add 330 MW to the peak capacity of the 28-yr-old plant and significantly increase the efficiency at high flow rates. Next year, the first new runner will be retrofit to the highly instrumented Unit 4. If the retrofit unit meets it increased-performance expectations, the other 12 units will be upgraded between 1993 and 1998. The work is part of an overall expansion of the Niagara Power Project designed to made better use of the power value of Niagara river water, within the constraints of a treaty with Canada and the scenic value of the falls. These constraints, together with varying flows and heads, introduced enormous complexities into the selection and design of the new runners. The alterations being made to Unit 4, in addition to replacing the turbine runner, include modifying the draft tube-liners, increasing the wicket-gate stroke, replacing the turbine discharge ring (to accommodate longer blades), making various electrical modifications to the generator, and replacing the transformer. But the key to the retrofit is the computer-designed runner. Charles Grose, senior project manager, New York Power Authority, White Plains, NY, emphasizes that such computer design techniques were not available a few years ago; neither were the computer-controlled machining techniques necessary to manufacture the new runners. Other aspects of the upgrading that were analyzed include runner stability, resonance, shaft torsional stress, and runaway speed.

  8. Glass needs for a growing photovoltaics industry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burrows, Keith; Fthenakis, Vasilis

    2014-10-18

    With the projected growth in photovoltaics, the demand for glass for the solar industry will far exceed the current supply, and thousands of new float-glass plants will have to be built to meet its needs over the next 20 years. Such expansion will provide an opportunity for the solar industry to obtain products better suited to their needs, such as low-iron glass and borosilicate glass at the lowest possible price. While there are no significant technological hurdles that would prevent the flat glass industry from meeting the solar industry’s projected needs, to do so will require advance planning and substantialmore » investments.« less

  9. Industrial process surveillance system

    DOE Patents [OSTI]

    Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

    1998-06-09

    A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

  10. CASL Industry Council Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 CASL Industry Council Meeting March 26-27, 2013 - Cranberry Township, PA Minutes The sixth meeting of the Industry Council (IC) for the Consortium for Advanced Simulation of Light Water Reactors (CASL) was held on March 26-27, 2013 at Westinghouse in Cranberry Township, PA. The first day of the Industry Council was chaired by John Gaertner and the second day was chaired by Heather Feldman. The meeting attendees and their affiliations are listed on Attachment 1 to these minutes. Attendance was

  11. CASL Industry Council Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Council Meeting 4 - 5 November 2015 Meeting Minutes The autumn 2015 meeting of the Industry Council (IC) for the Consortium for Advanced Simulation of Light Water Reactors (CASL) was held on 4 - 5 November 2015 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN. The first day of meeting was a joint meeting of the CASL Industry and Science Councils and was held at the Spallation Neutron Source (SNS) facility at ORNL. An independent IC meeting was held the morning of the second

  12. Industrial Process Surveillance System

    DOE Patents [OSTI]

    Gross, Kenneth C.; Wegerich, Stephan W; Singer, Ralph M.; Mott, Jack E.

    2001-01-30

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  13. Industrial process surveillance system

    DOE Patents [OSTI]

    Gross, Kenneth C.; Wegerich, Stephan W.; Singer, Ralph M.; Mott, Jack E.

    1998-01-01

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  14. New Model Demonstrates Offshore Wind Industry's Job Growth Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and number of jobs associated with fixed-bottom offshore wind development, applies to ... The fixed-bottom offshore wind JEDI is one of several user-friendly NREL models that ...

  15. Industry Growth Forum Fosters Cleantech Companies - News Feature...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... After the two made their presentation, the judges pointed out areas they should research further, including how the addition of a Sistine Solar film would affect the warranty on ...

  16. Understanding the Growth of the Cellulosic Ethanol Industry

    SciTech Connect (OSTI)

    Sandor, D.; Wallace, R.; Peterson, S.

    2008-04-01

    Report identifies and documents plausible scenarios for producing significant quantities of lignocellulosic ethanol in 2017 as a guide for setting government policy and targeting government investment to areas with greatest potential impact.

  17. Understanding the Growth of the Cellulosic Ethanol Industry

    SciTech Connect (OSTI)

    Sandor, D.; Wallace, R.; Peterson, S.

    2008-04-01

    This report identifies, outlines, and documents a set of plausible scenarios for producing significant quantities of lignocellulosic ethanol in 2017. These scenarios can provide guidance for setting government policy and targeting government investment to the areas with greatest potential impact.

  18. Community Climate System Model (CCSM) Experiments and Output Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    -limited" experiment, in which emissions are assumed to be constrained, so that the concentration of carbon dioxide levels off at 550 parts per million by volume (ppmv) shortly after 2100. The CCSM web makes the source code of various versions of the model freely available and provides access to experiments that have been run and the resulting output data.

  19. Caraustar Industries Energy Assessment

    SciTech Connect (OSTI)

    2010-06-25

    This plant-wide assessment case study is about commissioned energy assessments by the U.S. Department of Energy Industrial Technologies Program at two of Caraustar's recycled paperboard mills.

  20. Presentations for Industry

    Office of Energy Efficiency and Renewable Energy (EERE)

    Industrial energy managers, utilities, and energy management professionals can find online trainings and information dissemination at no-cost. AMO has provided these energy-saving strategies from leading manufacturing companies and energy experts through several different presentation series.

  1. Uranium Industry Annual, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-28

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  2. Steel Industry Profile

    Broader source: Energy.gov [DOE]

    The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of manufacturing, construction, transportation, and various consumer products. Traditionally...

  3. Macro Industrial Working Group

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 22 Industrial Team Washington DC, September 29, 2014 Macro Team: Kay Smith (lead) (202) 586-1132 | kay.smith@eia.gov Vipin Arora (202) 586-1048 | vipin.arora@eia.gov Russell ...

  4. Industrial Fuel Flexibility Workshop

    SciTech Connect (OSTI)

    none,

    2006-09-01

    On September 28, 2006, in Washington, DC, ITP and Booz Allen Hamilton conducted a fuel flexibility workshop with attendance from various stakeholder groups. Workshop participants included representatives from the petrochemical, refining, food and beverage, steel and metals, pulp and paper, cement and glass manufacturing industries; as well as representatives from industrial boiler manufacturers, technology providers, energy and waste service providers, the federal government and national laboratories, and developers and financiers.

  5. Industrial Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers to Industrial Energy Efficiency Report to Congress June 2015 United States Department of Energy Washington, DC 20585 Department of Energy | June 2015 Message from the Assistant Secretary The industrial sector has shown steady progress in improving energy efficiency over the past few decades and energy efficiency improvements are expected to continue. Studies suggest, however, that there is potential to accelerate the rate of adopting energy efficient technologies and practices that

  6. Industrial Energy Efficiency Assessments

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Cassie Mills Communications Associate in the Advanced

  7. CASL Industry Council Members:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CASL Industry Council Members: We are looking forward to hosting you at the upcoming CASL Industry Council Meeting on Tuesday, April 12, 2016 through Wednesday, April 13, 2016 at the following location: ALOFT Greenville Downtown Converge Conference Room 5 North Laurens Street Greenville, SC 29601 864-297-6100 Meeting Contact: Lorie Fox (865) 548-5178 Lodging: ALOFT Greenville Downtown: http://www.aloftgreenvilledowntown.com/ Hotel Information * Check-in time: 4 PM * Checkout time: 12 PM * Fast

  8. Development of a 402.5 MHz 140 kW Inductive Output Tube (Technical...

    Office of Scientific and Technical Information (OSTI)

    The SBIR effort was refocused on improving the IOT design codes to more accurately simulate the time dependent behavior of the input cavity, electron gun, output cavity, and ...

  9. Double Power Output for GaAs Solar Cells Embedded in Luminescent...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Double power output of bifacial thin-film GaAs microscale solar cells is achieved by embedding in luminescent waveguides (LSCs) with light- trapping backside reflectors (BSRs). ...

  10. Industry Cluster Development Grant winners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Cluster Development Grant winners Community Connections: Your link to news and ... All Issues submit Industry Cluster Development Grant winners Recipients include Picuris ...

  11. Eolica Industrial | Open Energy Information

    Open Energy Info (EERE)

    Industrial Jump to: navigation, search Name: Eolica Industrial Place: Sao Paulo, Sao Paulo, Brazil Zip: 01020-901 Sector: Wind energy Product: Brazil based wind turbine steel...

  12. Jumpstarting the carbon capture industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jumpstarting the carbon capture industry: Science on the Hill Jumpstarting the carbon capture industry: Science on the Hill Carbon capture, utilization, and storage can provide a...

  13. Agile Biomanufacturing Industry Listening Workshop

    Broader source: Energy.gov [DOE]

    A consortium of nine national laboratories is holding the Agile Biomanufacturing Industry Listening Workshop on March 15, 2016 in Berkeley, California, to increase understanding of industry needs...

  14. Guardian Industries | Open Energy Information

    Open Energy Info (EERE)

    Industries Jump to: navigation, search Name: Guardian Industries Place: Auburn Hills, MI Website: www.guardian.com References: Results of NREL Testing (Glass Magazine)1 Guardian...

  15. Autonomic Intelligent Cyber-Sensor to Support Industrial Control Network Awareness

    SciTech Connect (OSTI)

    Denis T. Vollmer; Milos Manic; O. Linda

    2014-05-01

    The proliferation of digital devices in a networked industrial ecosystem, along with an exponential growth in complexity and scope, has resulted in elevated security concerns and management complexity issues. This paper describes a novel architecture utilizing concepts of autonomic computing and a simple object access protocol (SOAP)-based interface to metadata access points (IF-MAP) external communication layer to create a network security sensor. This approach simplifies integration of legacy software and supports a secure, scalable, and self-managed framework. The contribution of this paper is twofold: 1) A flexible two-level communication layer based on autonomic computing and service oriented architecture is detailed and 2) three complementary modules that dynamically reconfigure in response to a changing environment are presented. One module utilizes clustering and fuzzy logic to monitor traffic for abnormal behavior. Another module passively monitors network traffic and deploys deceptive virtual network hosts. These components of the sensor system were implemented in C++ and PERL and utilize a common internal D-Bus communication mechanism. A proof of concept prototype was deployed on a mixed-use test network showing the possible real-world applicability. In testing, 45 of the 46 network attached devices were recognized and 10 of the 12 emulated devices were created with specific operating system and port configurations. In addition, the anomaly detection algorithm achieved a 99.9% recognition rate. All output from the modules were correctly distributed using the common communication structure.

  16. Industrial Applications for Micropower: A Market Assessment, November 1999

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Applications for Micropower: A Market Assessment, November 1999 Industrial Applications for Micropower: A Market Assessment, November 1999 Micropower (defined here as electricity generation equipment less than 1 MW) such as microturbines, fuel cells, and reciprocating engines offers promise to renew growth in the U.S. industrial sector. Based on the analysis conducted for this 1999 study, these technologies can cost-effectively provide thermal and electric energy,

  17. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial ...

  18. Industrial Energy Efficiency Assessments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Energy Efficiency Assessments Industrial Energy Efficiency Assessments Details about the Industrial Energy Efficiency Assessments program and its implementation in...

  19. Emulsified industrial oils recycling

    SciTech Connect (OSTI)

    Gabris, T.

    1982-04-01

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  20. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  1. Estimating Solar PV Output Using Modern Space/Time Geostatistics (Presentation)

    SciTech Connect (OSTI)

    Lee, S. J.; George, R.; Bush, B.

    2009-04-29

    This presentation describes a project that uses mapping techniques to predict solar output at subhourly resolution at any spatial point, develop a methodology that is applicable to natural resources in general, and demonstrate capability of geostatistical techniques to predict the output of a potential solar plant.

  2. ARM: ARSCL: multiple outputs from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Karen Johnson; Michael Jensen

    ARSCL: multiple outputs from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  3. ARM: ARSCL: multiple outputs from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    SciTech Connect (OSTI)

    Karen Johnson; Michael Jensen

    1996-11-08

    ARSCL: multiple outputs from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  4. Method for leveling the power output of an electromechanical battery as a function of speed

    DOE Patents [OSTI]

    Post, R.F.

    1999-03-16

    The invention is a method of leveling the power output of an electromechanical battery during its discharge, while at the same time maximizing its power output into a given load. The method employs the concept of series resonance, employing a capacitor the parameters of which are chosen optimally to achieve the desired near-flatness of power output over any chosen charged-discharged speed ratio. Capacitors are inserted in series with each phase of the windings to introduce capacitative reactances that act to compensate the inductive reactance of these windings. This compensating effect both increases the power that can be drawn from the generator before inductive voltage drops in the windings become dominant and acts to flatten the power output over a chosen speed range. The values of the capacitors are chosen so as to optimally flatten the output of the generator over the chosen speed range. 3 figs.

  5. Method for leveling the power output of an electromechanical battery as a function of speed

    DOE Patents [OSTI]

    Post, Richard F.

    1999-01-01

    The invention is a method of leveling the power output of an electromechanical battery during its discharge, while at the same time maximizing its power output into a given load. The method employs the concept of series resonance, employing a capacitor the parameters of which are chosen optimally to achieve the desired near-flatness of power output over any chosen charged-discharged speed ratio. Capacitors are inserted in series with each phase of the windings to introduce capacitative reactances that act to compensate the inductive reactance of these windings. This compensating effect both increases the power that can be drawn from the generator before inductive voltage drops in the windings become dominant and acts to flatten the power output over a chosen speed range. The values of the capacitors are chosen so as to optimally flatten the output of the generator over the chosen speed range.

  6. System for adjusting frequency of electrical output pulses derived from an oscillator

    DOE Patents [OSTI]

    Bartholomew, David B.

    2006-11-14

    A system for setting and adjusting a frequency of electrical output pulses derived from an oscillator in a network is disclosed. The system comprises an accumulator module configured to receive pulses from an oscillator and to output an accumulated value. An adjustor module is configured to store an adjustor value used to correct local oscillator drift. A digital adder adds values from the accumulator module to values stored in the adjustor module and outputs their sums to the accumulator module, where they are stored. The digital adder also outputs an electrical pulse to a logic module. The logic module is in electrical communication with the adjustor module and the network. The logic module may change the value stored in the adjustor module to compensate for local oscillator drift or change the frequency of output pulses. The logic module may also keep time and calculate drift.

  7. Technique for enhancing the power output of an electrostatic generator employing parametric resonance

    DOE Patents [OSTI]

    Post, Richard F.

    2016-02-23

    A circuit-based technique enhances the power output of electrostatic generators employing an array of axially oriented rods or tubes or azimuthal corrugated metal surfaces for their electrodes. During generator operation, the peak voltage across the electrodes occurs at an azimuthal position that is intermediate between the position of minimum gap and maximum gap. If this position is also close to the azimuthal angle where the rate of change of capacity is a maximum, then the highest rf power output possible for a given maximum allowable voltage at the minimum gap can be attained. This rf power output is then coupled to the generator load through a coupling condenser that prevents suppression of the dc charging potential by conduction through the load. Optimized circuit values produce phase shifts in the rf output voltage that allow higher power output to occur at the same voltage limit at the minimum gap position.

  8. UAIEE and Industrial Assessment Centers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    55-62011| Industrial Assessment Centers * Started in 1976 * Currently 26 Centers across the US * Almost...

  9. Industry Partners Panel

    Office of Energy Efficiency and Renewable Energy (EERE)

    Industry Panel presenters include: Michael G. Andrew, Director - Academic and Technical Programs, Advanced Products and Materials, Johnson Controls Power Solutions Michael A. Fetcenko, Vice President and Managing Director, BASF Battery Materials – Ovonic, BASF Corporation Adam Kahn, Founder and CEO, AKHAN Technologies, Inc. Stephen E. Zimmer, Executive Director, United States Council for Automotive Research (USCAR)

  10. INTERMOUNTAIN INDUSTRIAL ASSESSMENT CENTER

    SciTech Connect (OSTI)

    MELINDA KRAHENBUHL

    2010-05-28

    The U. S. Department of Energy’s Intermountain Industrial Assessment Center (IIAC) at the University of Utah has been providing eligible small- and medium-sized manufacturers with no-cost plant assessments since 2001, offering cost-effective recommendations for improvements in the areas of energy efficiency, pollution prevention, and productivity improvement.

  11. Petroleum industry in Iran

    SciTech Connect (OSTI)

    Farideh, A.

    1981-01-01

    This study examines the oil industry in Iran from the early discovery of oil nearly two hundred years ago in Mazandaran (north part) to the development of a giant modern industry in the twentieth century. Chapter I presents a brief historical setting to introduce the reader to the importance of oil in Iran. It focuses on the economic implications of the early oil concessions in the period 1901 to 1951. Chapter II discusses the nationalization of the Iranian oil industry and creation of NIOC in 1951 and the international political and economic implication of these activities. Chapter III explains the activities of NIOC in Iran. Exploration and drilling, production, exports, refineries, natural gas, petrochemicals and internal distributions are studied. Chapter IV discusses the role of the development planning of Iran. A brief presentation of the First Development Plan through the Fifth Development Plan is given. Sources and uses of funds by plan organization during these Five Plans is studied. The Iran and Iraq War is also studied briefly, but the uncertainty of its resolution prevents any close analysis of its impact on the Iranian oil industry. One conclusion, however, is certain; oil has been a vital resource in Iran's past and it will remain the lifetime of its economic development in the future.

  12. Workshop proceeding of the industrial building energy use

    SciTech Connect (OSTI)

    Akbari, H.; Gadgil, A.

    1988-01-01

    California has a large number of small and medium sized industries which have a major impact on the demand growth of California utilities. Energy use in building services (lighting, HVAC, office equipment, computers, etc.). These industries constitute an important but largely neglected fraction of the total site energy use. The ratio of energy use in building service to the total site energy use is a function of the industrial activity, its size, and the climate at the site of the facility. Also, energy use in building services is more responsive to weather and occupant schedules than the traditional base-load'' industrial process energy. Industrial energy use is considered as a base-load'' by utility companies because it helps to increase the utilities' load factor. To increase this further, utilities often market energy at lower rates to industrial facilities. Presently, the energy use in the building services of the industrial sector is often clubbed together with industrial process load. Data on non-process industrial energy use are not readily available in the literature. In cases where the major portion of the energy is used in the building services (with daily and seasonal load profiles that in fact peak at the same time as systemwide load peaks), the utility may be selling below cost at peak power times. These cases frequently happen with electric utilities. 30 figs., 6 tabs.

  13. X-ray source assembly having enhanced output stability, and fluid stream analysis applications thereof

    DOE Patents [OSTI]

    Radley, Ian; Bievenue, Thomas J.; Burdett, John H.; Gallagher, Brian W.; Shakshober, Stuart M.; Chen, Zewu; Moore, Michael D.

    2008-06-08

    An x-ray source assembly and method of operation are provided having enhanced output stability. The assembly includes an anode having a source spot upon which electrons impinge and a control system for controlling position of the anode source spot relative to an output structure. The control system can maintain the anode source spot location relative to the output structure notwithstanding a change in one or more operating conditions of the x-ray source assembly. One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.

  14. X-ray source assembly having enhanced output stability, and fluid stream analysis applications thereof

    DOE Patents [OSTI]

    Radley, Ian; Bievenue, Thomas J.; Burdett Jr., John H.; Gallagher, Brian W.; Shakshober, Stuart M.; Chen, Zewu; Moore, Michael D.

    2007-04-24

    An x-ray source assembly (2700) and method of operation are provided having enhanced output stability. The assembly includes an anode (2125) having a source spot upon which electrons (2120) impinge and a control system (2715/2720) for controlling position of the anode source spot relative to an output structure. The control system can maintain the anode source spot location relative to the output structure (2710) notwithstanding a change in one or more operating conditions of the x-ray source assembly. One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.

  15. Coal industry annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  16. Coal industry annual 1997

    SciTech Connect (OSTI)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  17. Industrial Analytics Corporation

    SciTech Connect (OSTI)

    Industrial Analytics Corporation

    2004-01-30

    The lost foam casting process is sensitive to the properties of the EPS patterns used for the casting operation. In this project Industrial Analytics Corporation (IAC) has developed a new low voltage x-ray instrument for x-ray radiography of very low mass EPS patterns. IAC has also developed a transmitted visible light method for characterizing the properties of EPS patterns. The systems developed are also applicable to other low density materials including graphite foams.

  18. Recent developments: Industry briefs

    SciTech Connect (OSTI)

    1992-06-01

    This article is the `Industry Briefs` portion of Nuexco`s June 1992 `Recent Developments` section. Specific items mentioned in this article include: (1) a new fuel fabrication facility in South Korea, (2) use of mixed-oxide fuel in Belgium, (3) privatization of nuclear plants in Argentina, (4) startup of Ohi-4 in Japan, (5) purchase of uranium properties in Wyoming, and (6) formation of an international utilities forum.

  19. Fermilab | Resources | Industrial Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Navbar Toggle About Quick Info Science History Leadership and Organization Leadership Organizational chart Committees and Councils Photo and Video Gallery Diversity Education Safety Sustainability and Environment Contact Related Links DOE FRA UChicago URA Newsroom Spotlight Press releases Fact sheets and brochures symmetry Interactions.org Photo and video archive Resources for ... Employees Researchers, postdocs and graduate students Job seekers Neighbors Industry K-12 students,

  20. wave energy industry research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    industry research - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  1. Natural Gas Industrial Price

    U.S. Energy Information Administration (EIA) Indexed Site

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  2. Automotive Turbocharging: Industrial Requirements and Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbocharging: Industrial Requirements and Technology Developments Automotive Turbocharging: Industrial Requirements and Technology Developments Significant improvements in ...

  3. Career Map: Industrial Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Engineer Career Map: Industrial Engineer Two industrial engineers analyze data on a computer. Industrial Engineer Position Title Industrial Engineer Alternate Title(s) Production Engineer, Process Engineer, Manufacturing Engineer, Industrial Production Manager Education & Training Level Advanced, Bachelors required, prefer graduate degree Education & Training Level Description Industrial engineers should have a bachelor's degree in industrial engineering. Employers also value

  4. Continuing consolidation in the coal industry

    SciTech Connect (OSTI)

    Gaalaas, T.

    2006-08-15

    Extensive consolidation has occurred in the coal industry over the past decade. The greatest degree of consolidation has occurred in Northern Appalachia, the Illinois Basin, and the Wyoming portion of the Powder River Basin (PRB), which are the coal supply regions where most observers expect the greatest growth in coal production over the next decade. In addition to reducing the number of alternative suppliers, high level of concentration also tend to result in higher prices, more volatile spot markets, and lower levels of reliability. Therefore, coal-fired generators purchasing in these regions need to respond proactively and strategically to these market trends. 2 figs.

  5. Summary Slides of ALS Industry Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Highlights Print No. Slide Beamline Full Web Highlight ALSNews Volume 19 HP Gains Insight with Innovative ALS Tools 11.0.2, 5.3.2.2 05.11.2016 Vol. 372 18 Collaboration Produces World's Best Metrology Tool 6.1.2 01.27.2016 Vol. 369 17 Takeda Advances Diabetes Research at ALS 5.0.2, 5.0.3 06.02.2015 Vol. 364 16 Metrology for Next-Generation Nanopatterning 7.3.3, 11.0.1 01.28.2015 Vol. 360 15 Caribou Biosciences Has Roots at ALS - 09.24.2014 Vol. 357 13 Lithium-Battery Dendrite Growth: A

  6. Industrial Dojo Program Fosters Industrial Internet Development | GE Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Launches Cloud Foundry 'Industrial Dojo,' Contributes to Open Source to Foster Continued Development of the Industrial Internet Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Launches Cloud Foundry 'Industrial Dojo,' Contributes to Open Source to Foster Continued Development of the Industrial Internet

  7. New Research Center to Increase Safety and Power Output of U...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors New Research ... at a fraction of the cost of building new reactors, while providing continued ...

  8. Examining the Variability of Wind Power Output in the Regulation Time Frame: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Shedd, S.; Florita, A.

    2012-08-01

    This work examines the distribution of changes in wind power for different time scales in the regulation time frame as well as the correlation of changes in power output for individual wind turbines in a wind plant.

  9. Phasing surface emitting diode laser outputs into a coherent laser beam

    DOE Patents [OSTI]

    Holzrichter, John F.

    2006-10-10

    A system for generating a powerful laser beam includes a first laser element and at least one additional laser element having a rear laser mirror, an output mirror that is 100% reflective at normal incidence and <5% reflective at an input beam angle, and laser material between the rear laser mirror and the output mirror. The system includes an injector, a reference laser beam source, an amplifier and phase conjugater, and a combiner.

  10. Summary of the Output from the VTP Advanced Materials Workshop | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy the Output from the VTP Advanced Materials Workshop Summary of the Output from the VTP Advanced Materials Workshop 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vtpn04_lm_schutte_2012_o.pdf (461.49 KB) More Documents & Publications Materials Lightweight Materials Overview Overview of Lightweight Materials

  11. Deaerators in Industrial Steam Systems

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on deaerators in industrial steam systems provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  12. Reid Industries | Open Energy Information

    Open Energy Info (EERE)

    Reid Industries Jump to: navigation, search Name: Reid Industries Address: PO Box 503 Place: San Francisco, CA Zip: 94104 Phone Number: 415-947-1050 Coordinates: 37.7923058,...

  13. Industrial Process Heating - Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Process Heating - Technology Assessment 1 2 Contents 3 4 1. Introduction to the Technology/System ............................................................................................... 2 5 1.1. Industrial Process Heating Overview ............................................................................................ 2 6 2. Technology Assessment and Potential ................................................................................................. 6 7 2.1. Status

  14. Forest Products Industry Technology Roadmap

    SciTech Connect (OSTI)

    none,

    2010-04-01

    This document describes the forest products industry's research and development priorities. The original technology roadmap published by the industry in 1999 and was most recently updated in April 2010.

  15. Enviromech Industries | Open Energy Information

    Open Energy Info (EERE)

    search Name: Enviromech Industries Place: Thousands Palms, California Zip: 92276 Product: Alternative fuel system design and integration company. References: Enviromech...

  16. Industry Interactive Procurement System (IIPS)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interactive Industry Interactive Procurement System Procurement System (IIPS) (IIPS) Douglas Baptist, Project Manager Information Management Systems Division US Department of ...

  17. CEMI Industrial Efficiency (text version)

    Broader source: Energy.gov [DOE]

    Below is the text version for the Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video.  

  18. Industry outreach a status report

    SciTech Connect (OSTI)

    Surek, D.; Sen, R.

    1995-09-01

    The Outreach Project was initiated in October 1994 with the objective of developing a multi-year plan for the U.S. Department of Energy (DOE) for targeted outreach activities for stakeholders in industry and the general public. This status report summarizes the work on industry outreach that has been completed since the inception of the project in October 1994. A three-pronged approach was taken to ascertain issues related to industry outreach. First, there was a review of on-going and past industry outreach activities at DOE and NHA. Next, a series of meetings with industry decision makers was arranged to get a better understanding of industry interests and concerns, and to discuss how DOE and industry could work collaboratively to develop hydrogen energy systems. Third, a workshop is scheduled where representatives from industry, DOE and other federal agencies can identify issues that would enhance partnering between the federal government and industry in the development of hydrogen energy systems. At this tiny, the review of on-going and past activities has been completed. Industry interviews are in progress and a majority of meetings have been held. Analysis of the information gained is in progress. The preliminary analysis of this information indicates that for appropriate near-term demonstration-type projects, the level of interest for collaboration between DOE and industry is high. The data also identifies issues industry is concerned with which impact the commercialization of hydrogen energy systems.

  19. Energy and materials flows in the copper industry

    SciTech Connect (OSTI)

    Gaines, L.L.

    1980-12-01

    The copper industry comprises both the primary copper industry, which produces 99.9%-pure copper from copper ore, and the secondary copper industry, which salvages and recycles copper-containing scrap metal to extract pure copper or copper alloys. The United States uses about 2 million tons of copper annually, 60% of it for electrical applications. Demand is expected to increase less than 4% annually for the next 20 years. The primary copper industry is concentrated in the Southwest; Arizona produced 66% of the 1979 total ore output. Primary production uses about 170 x 10/sup 12/ Btu total energy annually (about 100 x 10/sup 6/ Btu/ton pure copper produced from ore). Mining and milling use about 60% of the total consumption, because low-grade ore (0.6% copper) is now being mined. Most copper is extracted by smelting sulfide ores, with concomitant production of sulfur dioxide. Clean air regulations will require smelters to reduce sulfur emissions, necessitating smelting process modifications that could also save 20 x 10/sup 12/ Btu (10 x 10/sup 6/ Btu/ton of copper) in smelting energy. Energy use in secondary copper production averages 20 x 10/sup 6/ Btu/ton of copper. If all copper products were recycled, instead of the 30% now salvaged, the energy conservation potential would be about one-half the total energy consumption of the primary copper industry.

  20. Coal Industry Annual 1995

    SciTech Connect (OSTI)

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  1. Coal industry annual 1996

    SciTech Connect (OSTI)

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  2. Recent developments: Industry briefs

    SciTech Connect (OSTI)

    1990-04-01

    Recent nuclear industry briefs are presented. These briefs include: Soviet Union to build Iran nuclear plant; Dension announces cuts in Elliot Lake production; Soviet environmental study delays Rostov startup; Cogema closes two mines; Namibian sanctions lifted by USA and Canada; US Energy and Kennecott restructors joint venture; Australians reelect Hawke; China to buy Soviet nuclear plant; Olympic Dam`s first sale of concentrates to USA; Uranevz buys one-third of Cogema`s Rabbit Lake operations; East and West Germany forming joint nuclear law; and Nova Scotia extends uranium exploration plan.

  3. CASL Industry Council Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meeting 12-13 April 2016 Meeting Minutes Page | 1 The spring 2016 meeting of the Industry Council (IC) for the Consortium for Advanced Simulation of Light Water Reactors (CASL) was held on April 12-13, 2016 at the Aloft Hotel in Greenville, South Carolina and was led by the CASL IC Chairman Scott Thomas of Duke Energy and the new CASL IC Executive Director Erik Mader from the EPRI Fuel Reliability Program. The meeting location and logistics were excellent and the group profusely thanked Lorie

  4. Electric power industry in Korea: Past, present, and future

    SciTech Connect (OSTI)

    Lee, Hoesung

    1994-12-31

    Electrical power is an indispensable tool in the industrialization of a developing country. An efficient, reliable source of electricity is a key factor in the establishment of a wide range of industries, and the supply of energy must keep pace with the increasing demand which economic growth creates in order for that growth to be sustained. As one of the most successful of all developing countries, Korea has registered impressive economic growth over the last decade, and it could be said that the rapid growth of the Korean economy would not have been possible without corresponding growth in the supply of electric power. Power producers in Korea, and elsewhere in Asia, are to be commended for successfully meeting the challenge of providing the necessary power to spur what some call an economic miracle. The future continues to hold great potential for participants in the electrical power industry, but a number of important challenges must be met in order for that potential to be fully realized. Demand for electricity continues to grow at a staggering rate, while concerns over the environmental impact of power generating facilities must not be ignored. As it becomes increasingly difficult to finance the rapid, and increasingly larger-scale expansion of the power industry through internal sources, the government must find resources to meet the growing demand at least cost. This will lead to important opportunities for the private sector. It is important, therefore, for those interested in participating in the power production industry and taking advantage of the newly emerging opportunities that lie in the Korean market, and elsewhere in Asia, to discuss the relevant issues and become informed of the specific conditions of each market.

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Coal Production by State and Mining Method, 2014" "(thousand short tons)" "Coal-Producing State and Region1","Continuous2","Conventional and","Longwall4","Total" ,,"Other3" "Alabama",435,"-",12081,12516 "Arkansas",87,"-","-",87 "Colorado",971,10,17142,18123 "Illinois",16944,1634,34136,52713

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Average Sales Price of Coal by State, County, and Number of Mines, 2014" "Coal-Producing State and County","Number of Mines","Sales","Average Sales Price" ,,"(thousand short tons)","(dollars per short ton)" "Alabama",32,17359,87.17 " Bibb",1,"w","w" " Franklin",2,"w","w" " Jefferson",9,5764,103.31 " Shelby",2,"w","w"

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Average Sales Price of U.S. Coal by State and Disposition, 2014" "(dollars per short ton)" "Coal-Producing State","Open Market1","Captive2","Total3" "Alabama",84.48,"-",87.17 "Alaska","w","-","w" "Arizona","w","-","w" "Arkansas","w","w","w" "Colorado",35.68,44.28,38.64

  8. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Production by Coalbed Thickness and Mine Type, 2014" "(thousand short tons)" "Coal Thickness (inches)","Underground","Surface","Total" "Under 7","-",922,922 "7 - Under 13","-",2518,2518 "13 - Under 19",343,6236,6579 "19 - Under 25",197,11075,11273 "25 - Under 31",2693,10632,13324 "31 - Under 37",15604,14557,30161 "37 - Under 43",20075,13504,33580

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Production and Number of Mines by State and Coal Rank, 2014" "(thousand short tons)" ,"Bituminous",,"Subbituminous",,"Lignite",,"Anthracite",,"Total" "Coal-Producing","Number of Mines","Production","Number of Mines","Production","Number of Mines","Production","Number of Mines","Production","Number of

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    . Coal Production by State, Mine Type, and Union Status, 2014" "(thousand short tons)" ,"Union",,"Nonunion",,"Total" "Coal-Producing","Underground","Surface","Underground","Surface","Underground","Surface" "State and Region1" "Alabama",12081,327,435,3486,12516,3813 "Alaska","-",1502,"-","-","-",1502

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Disposition by State, 2014" "(thousand short tons)" "Coal-Producing State","Open Market Sales1","Captive Sales / Transactions2","Exports3","Total" "Alabama",5310,"-",12049,17359 "Alaska",954,"-",554,1508 "Arizona",8182,"-","-",8182 "Arkansas",1,104,9,114 "Colorado",10602,11844,2089,24536 "Illinois",39533,6139,10170,55842

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Major U.S. Coal Mines, 2014" "Rank","Mine Name / Operating Company","Mine Type","State","Production (short tons)" 1,"North Antelope Rochelle Mine / Peabody Powder River Mining LLC","Surface","Wyoming",117965515 2,"Black Thunder / Thunder Basin Coal Company LLC","Surface","Wyoming",101016860 3,"Cordero Mine / Cordero Mining

  13. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    5. Revenue and Expense Statistics for U.S. Cooperative Borrower-Owned Electric Utilities, 2003 through 2013 (Million Dollars) Description 2003 2004 2005 2006 2007 2008 Operating...

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    State","Continuous1","Conventional and","Longwall3","Total" ,,"Other2" "Alabama","w","-","w",89.68 "Arkansas","w","-","-","w" "Colorado","w","-","w",37.28 "Illinois",44.23,"w",4...

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Average Sales Price of Coal by State and Coal Rank, 2014" "(dollars per short ton)" "Coal-Producing State","Bituminous","Subbituminous","Lignite","Anthracite","Total" ...

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. U.S. Transformer Outages by Type and NERC region, 2013 Outage Type Eastern Interconnection TRE WECC Contiguous U.S. Circuit Outage Counts Automatic Outages (Sustained) 59.00 --...

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. U.S. Transformer Sustained Automatic Outage Counts and Hours by High-Voltage Size and NERC Region, 2013 Sustained Automatic Outage Counts High-Side Voltage (kV) Eastern...

  18. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. U.S. Transmission Circuit Sustained Automatic Outage Counts and Hours by High-Voltage Size and NERC Region, 2013 Sustained Automatic Outage Counts Voltage Region Type Operating...

  19. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    ... equal to Internal Demand less Direct Control Load Management and Interruptible Demand. ... Capacity Margin is the amount of unused available capability of an electric power system at ...

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    ...nation",2016,2015,2015,,,"Change" "North America Total",294.8,204.63,276.27,294.8,276.27,6...,355.59,611.72,791.78,611.72,29.4 "South America Total",501.14,"-",702.17,501.14,702.17,-2...

  1. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    ...nation",2016,2015,2015,,,"Change" "North America Total",72167,239165,99293,72167,99293,-27... Other**",215,167,303,215,303,-29 "South America Total",21,"-",78,21,78,-73.1 " ...

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    -- -- -- -- -- -- -- 1.00 1.00 Fire -- -- -- -- -- -- -- -- -- Vandalism, Terrorism, or Malicious Acts -- -- -- -- 2.00 -- -- -- 2.00 Failed AC Substation Equipment --...

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    28.00 2.00 2.00 23.00 89.00 Fire 1.00 -- 1.00 1.00 3.00 -- -- 50.00 56.00 Vandalism, Terrorism, or Malicious Acts -- -- -- -- 7.00 -- -- -- 7.00 Failed AC Substation Equipment...

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Flue Gas Desulfurization Systems Electrostatic Precipitators Baghouses Select Catalytic and Non-Catalytic Reduction Systems Activated Carbon Injection Systems Direct Sorbent ...

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Biogenic Municipal Solid Waste: Consumption for Electricity Generation, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric ...

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Demand-Side Management Program Incremental Effects by Program Category, 2004 through 2012 (Table Discontinued) Energy Efficiency Load Management Total Year Energy Savings (Thousand ...

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Management Program Direct and Indirect Costs, 2004 through 2012 (Thousand Dollars) (Table Discontinued) Year Energy Efficiency Load Management Direct Cost Indirect Cost ...

  8. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    . Demand-Side Management Program Annual Effects by Program Category, 2004 through 2012 (Table Discontinued) Energy Efficiency Load Management Total Year Energy Savings (Thousand ...

  9. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    Notes: NERC region and reliability assessment area maps are provided on EIA's Electricity Reliability web page: http:www.eia.govcneafelectricitypageeia411eia411.html Net ...

  10. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    Notes: NERC region and reliability assessment area maps are provided on EIA's Electricity Reliability web page: http:www.eia.govcneafelectricitypageeia411eia411.html Circuit ...

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Production and Number of Mines by State and Mine Type, 2014 and 2013" "(thousand short tons)" ,2014,,2013,,"Percent Change" "Coal-Producing","Number of Mines","Production","Number of Mines","Production","Number of Mines","Production" "State and Region1" "Alabama",36,16363,39,18620,-7.7,-12.1 " Underground",7,12516,8,13515,-12.5,-7.4 "

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Major U.S. Coal Producers, 2014" "Rank","Controlling Company Name","Production (thousand short tons)","Percent of Total Production" 1,"Peabody Energy Corp",189531,19 2,"Arch Coal Inc",135801,13.6 3,"Cloud Peak Energy",85794,8.6 4,"Alpha Natural Resources",80153,8 5,"Murray Energy Corp",62815,6.3 6,"Alliance Resource Partners LP",40964,4.1 7,"Westmoreland Coal Company",35580,3.6

  13. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Productive Capacity of Coal Mines by State, 2014 and 2013" "(thousand short tons)" ,2014,,,2013,,,"Percent Change" "Coal-Producing","Underground","Surface","Total","Underground","Surface","Total","Underground","Surface","Total" "State" "Alabama",13915,5530,19445,15121,7633,22754,-8,-27.6,-14.5

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity Utilization of Coal Mines by State, 2014 and 2013" "(percent)" ,2014,,,2013 "Coal-Producing","Underground","Surface","Total","Underground","Surface","Total" "State" "Alabama",89.95,68.96,83.98,89.38,66.73,81.78 "Alaska","-",50.06,50.06,"-",54.39,54.39 "Arizona","-",94.71,94.71,"-",89.44,89.44

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Productive Capacity and Capacity Utilization of Underground Coal Mines by State and Mining Method, 2014" "(thousand short tons)" ,"Continuous1",,"Conventional and Other2",,"Longwall3",,"Total" "Coal-Producing","Productive","Capacity","Productive","Capacity","Productive","Capacity","Productive","Capacity"

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Recoverable Coal Reserves and Average Recovery Percentage at Producing Mines by State, 2014 and 2013" "(million short tons)" ,2014,,2013 "Coal-Producing","Recoverable Coal","Average Recovery","Recoverable Coal","Average Recovery","Percent Change" "State","Reserves","Percentage","Reserves","Percentage","Recoverable Coal" ,,,,,"Reserves"

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve Base by Mining Method, 2014" "(million short tons)" ,"Underground - Minable Coal",,,"Surface - Minable Coal",,,"Total"

  18. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, 2014" "(million short tons)" ,"Continuous1",,"Conventional and Other2",,"Longwall3",,"Total" "Coal-Producing","Recoverable","Average Recovery","Recoverable","Average Recovery","Recoverable","Average Recovery","Recoverable","Average

  19. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Recoverable Coal Reserves and Average Recovery Percentage at Producing U.S. Mines by Mine Production Range and Mine Type, 2014" "(million short tons)" ,"Underground",,"Surface",,"Total" "Mine Production Range","Recoverable Coal","Average Recovery","Recoverable Coal","Average Recovery","Recoverable Coal","Average Recovery" "(thousand short

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Average Number of Employees by State and Mine Type, 2014 and 2013" ,2014,,,2013,,,"Percent Change" "Coal-Producing","Underground","Surface","Total","Underground","Surface","Total","Underground","Surface","Total" "State and Region1" "Alabama",2852,842,3694,3077,1135,4212,-7.3,-25.8,-12.3

  1. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Number of Employees at Underground and Surface Mines by State and Mine Production Range, 2014" ,"Mine Production Range (thousand short tons)" "Coal-Producing State, Region1","Above 1,000","Above 500","Above 200","Above 100","Above 50","Above 10","Above 0","Zero2","Total Number" "and Mine Type",,"to 1,000","to 500","to 200","to

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    and Number of Mines by State, County, and Mine Type, 2014" "(thousand short tons)" ,"Underground",,"Surface",,"Total" "Coal-Producing","Number of Mines","Production","Number of Mines","Production","Number of Mines","Production" "State and County" "Alabama",7,12516,29,3847,36,16363 " Bibb","-","-",1,72,1,72 "

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Average Number of Employees at Underground and Surface Mines by State and Union Status, 2014" ,"Union",,"Nonunion" "Coal-Producing State","Underground","Surface","Underground","Surface" "and Region1" "Alabama",2653,57,199,743 "Alaska","-",120,"-","-" "Arizona","-",387,"-","-"

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Productivity by State and Mine Type, 2014 and 2013" ,"Number of Mining Operations2",,,"Number of Employees3",,,"Average Production per Employee Hour" ,,,,,,,"(short tons)4" "Coal-Producing State, Region1",2014,2013,"Percent",2014,2013,"Percent",2014,2013,"Percent" "and Mine Type",,,"Change",,,"Change",,,"Change"

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Underground Coal Mining Productivity by State and Mining Method, 2014" "(short tons produced per employee hour)" "Coal-Producing State, Region1 and Mine Type","Continuous2","Conventional and","Longwall4","Total" ,,"Other3" "Alabama",0.92,"-",1.92,1.84 "Arkansas",0.49,"-","-",0.49 "Colorado",3.44,"-",6.49,6.19 "Illinois",4.43,6.73,7.6,6.16

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Coal Mining Productivity by State, Mine Type, and Mine Production Range, 2014" "(short tons produced per employee hour)" ,"Mine Production Range (thousand short tons)" "Coal-Producing State,","Above 1,000","Above 500","Above 200","Above 100","Above 50","Above 10","10 or Under","Total2" "Region1 and Mine Type",,"to 1,000","to 500","to

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Coal Mining Productivity by State, Mine Type, and Union Status, 2014" "(short tons produced per employee hour)" ,"Union",,"Nonunion" "Coal-Producing State and Region1","Underground","Surface","Underground","Surface" "Alabama",1.92,2.31,0.85,2 "Alaska","-",5.43,"-","-" "Arizona","-",8.06,"-","-"

  8. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Coal Consumers in the Manufacturing and Coke Sectors, 2014" "Company Name","Plant Location" "Top Ten Manufacturers" "American Crystal Sugar Co","MN, ND" "Archer Daniels Midland","IA, IL, MN, NE" "Carmeuse Lime Stone Inc","AL, IN, KY, MI, OH, PA, TN, WI" "Cemex Inc","AL, CA, CO, FL, GA, KY, OH, TN, TX" "Dakota Gasification Company","ND" "Eastman Chemical

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    6. U.S. Coal Consumption by End Use Sector, Census Division, and State, 2014 and 2013" "(thousand short tons)" ,2014,,,,2013,,,,"Total" "Census Division","Electric","Other","Coke","Commercial","Electric","Other","Coke","Commercial",2014,2013,"Percent" "and

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Year-End Coal Stocks by Sector, Census Division, and State, 2014 and 2013" "(thousand short tons)" ,2014,,,,,2013,,,,,"Total" "Census Division","Electric","Other","Coke","Commercial","Producer","Electric","Other","Coke","Commercial","Producer",2014,2013,"Percent" "and

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Average Sales Price of Coal by State and Mine Type, 2014 and 2013" "(dollars per short ton)" ,2014,,,2013,,,"Percent Change" "Coal-Producing","Underground","Surface","Total","Underground","Surface","Total","Underground","Surface","Total" "State" "Alabama",89.68,79.42,87.17,88.19,88.24,88.2,1.7,-10,-1.2

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    the former utility members joined RFC. Reliability First Corporation (RFC) came into existence on January 1, 2006. RFC submitted a consolidated filing covering the historical NERC...

  13. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    9.B. Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Assessment Area, 2013 Actual, 2014-2018 Projected Net...

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    8.B. Summer Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Assessment Area, 2013 Actual, 2014-2018 Projected Net...

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Average Price of U.S. Steam Coal Exports" "(dollars per short ton)" ,,,,"Year to Date" "Continent and Country","January - March","October - December","January - March",2016,2015,"Percent" "of Destination",2016,2015,2015,,,"Change" "North America Total",40.85,44.62,71.22,40.85,71.22,-42.6 " Canada*",85.43,69.79,74.16,85.43,74.16,15.2 " Dominican

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Metallurgical Coal Exports" "(short tons)" ,,,,"Year to Date" "Continent and Country","January - March","October - December","January - March",2016,2015,"Percent" "of Destination",2016,2015,2015,,,"Change" "North America Total",586002,1478020,446185,586002,446185,31.3 " Canada*",440922,1341068,339057,440922,339057,30 "

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Average Price of U.S. Metallurgical Coal Exports" "(dollars per short ton)" ,,,,"Year to Date" "Continent and Country","January - March","October - December","January - March",2016,2015,"Percent" "of Destination",2016,2015,2015,,,"Change" "North America Total",91.86,102.82,92.36,91.86,92.36,-0.5 " Canada*",88.1,104.16,87.3,88.1,87.3,0.9 "

  18. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Coal Exports by Customs District" "(short tons)" ,,,,"Year to Date" "Customs District","January - March","October - December","January - March",2016,2015,"Percent" ,2016,2015,2015,,,"Change" "Eastern Total",9472145,9165858,13595691,9472145,13595691,-30.3 " Baltimore, MD",3850539,2991709,4886468,3850539,4886468,-21.2 " Buffalo, NY",3381,570146,96786,3381,96786,-96.5 " New

  19. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Metallurgical Coal Exports by Customs District" "(short tons)" ,,,,"Year to Date" "Customs District","January - March","October - December","January - March",2016,2015,"Percent" ,2016,2015,2015,,,"Change" "Eastern Total",7922195,7044057,10183046,7922195,10183046,-22.2 " Baltimore, MD",2990819,1811937,3344676,2990819,3344676,-10.6 " Buffalo, NY",196,566999,95591,196,95591,-99.8

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Coal Imports" "(short tons)" ,,,,"Year to Date" "Continent and Country","January - March","October - December","January - March",2016,2015,"Percent" "of Origin",2016,2015,2015,,,"Change" "North America Total",240168,341205,171698,240168,171698,39.9 " Canada",239440,341189,171631,239440,171631,39.5 " Mexico",728,16,67,728,67,"NM" "South America

  1. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Price of U.S. Coal Imports" "(dollars per short ton)" ,,,,"Year to Date" "Continent and Country","January - March","October - December","January - March",2016,2015,"Percent" "of Origin",2016,2015,2015,,,"Change" "North America Total",71.92,104.33,107.02,71.92,107.02,-32.8 " Canada",71.93,104.32,107.01,71.93,107.01,-32.8 " Mexico",66.79,360.25,113.43,66.79,113.43,-41.1

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Production, 2010 - 2016" "(thousand short tons)" "Year","January - March","April - June","July - September","October - December","Total" 2010,265702,264982,277505,276180,1084368 2011,273478,264291,275006,282853,1095628 2012,266865,241047,258956,249591,1016458 2013,244867,243211,257595,239169,984842 2014,245271,245844,255377,253557,1000049 2015,240189,211130,237263,207355,895936

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Imports by Customs District" "(short tons)" ,,,,"Year to Date" "Customs District","January - March","October - December","January - March",2016,2015,"Percent" ,2016,2015,2015,,,"Change" "Eastern Total",312200,225584,520059,312200,520059,-40 " Baltimore, MD","-",10410,"-","-","-","-" " Boston,

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    1. U.S. Coke Imports" "(short tons)" ,,,,"Year to Date" "Continent and Country","January - March","October - December","January - March",2016,2015,"Percent" "of Origin",2016,2015,2015,,,"Change" "North America Total",2763,52115,2035,2763,2035,35.8 " Canada",2763,52115,2035,2763,2035,35.8 "Europe Total",1056,1156,14,1056,14,"NM" "

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Average Price of U.S. Coke Imports" "(dollars per short ton)" ,,,,"Year to Date" "Continent and Country","January - March","October - December","January - March",2016,2015,"Percent" "of Origin",2016,2015,2015,,,"Change" "North America Total",181.85,113.11,213.82,181.85,213.82,-15 " Canada",181.85,113.11,213.82,181.85,213.82,-15 "Europe

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    by State" "(thousand short tons)" ,,,,"Year to Date" "Coal-Producing Region","January - March","October - December","January - March",2016,2015,"Percent" "and State",2016,2015,2015,,,"Change" "Alabama",2446,2298,4022,2446,4022,-39.2 "Alaska",310,328,265,310,265,16.7 "Arizona",1335,1376,1755,1335,1755,-23.9 "Arkansas",11,18,21,11,21,-48

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Coal Exports and Imports, 2010 - 2016" "(thousand short tons)" ,"January - March",,"April - June",,"July - September",,"October - December",,"Total" "Year","Exports","Imports","Exports","Imports","Exports","Imports","Exports","Imports","Exports","Imports" 2010,17807,4803,21965,5058,21074,4680,20870,4811,81716,19353

  8. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Average Price of U.S. Coal Exports and Imports, 2010 - 2016" "(dollars per short ton)" ,"January - March",,"April - June",,"July - September",,"October - December",,"Total" "Year","Exports","Imports","Exports","Imports","Exports","Imports","Exports","Imports","Exports","Imports"

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Quantity and Average Price of U.S. Coal Imports by Origin, 2010 - 2016" "(short tons and dollars per short ton)" "Year and Quarter","Australia","Canada","Colombia","Indonesia","China","Venezuela","Other","Total" ,,,,,,,"Countries" 2010,380404,1766896,14583950,1904040,52869,581700,82828,19352687 2011,61745,1680490,9500387,856038,22128,778887,187931,13087606

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Coal Exports" "(short tons)" ,,,,"Year to Date" "Continent and Country","January - March","October - December","January - March",2016,2015,"Percent" "of Destination",2016,2015,2015,,,"Change" "North America Total",1373100,2359203,1865247,1373100,1865247,-26.4 " Canada*",608869,1671121,715703,608869,715703,-14.9 " Dominican Republic",19,"-",1745,19,1745,-98.9

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Average Price of U.S. Coal Exports" "(dollars per short ton)" ,,,,"Year to Date" "Continent and Country","January - March","October - December","January - March",2016,2015,"Percent" "of Destination",2016,2015,2015,,,"Change" "North America Total",62.62,81.09,76.28,62.62,76.28,-17.9 " Canada*",87.37,97.37,80.39,87.37,80.39,8.7 " Dominican

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Steam Coal Exports" "(short tons)" ,,,,"Year to Date" "Continent and Country","January - March","October - December","January - March",2016,2015,"Percent" "of Destination",2016,2015,2015,,,"Change" "North America Total",787098,881183,1419062,787098,1419062,-44.5 " Canada*",167947,330053,376646,167947,376646,-55.4 " Dominican

  13. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Net Generation by Energy Source: Total (All Sectors), 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Distributed Generation Net Generation From Utility Scale Facilities and Distributed Generation Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Nuclear Hydroelectric Conventional Solar Renewable Sources Excluding Hydroelectric and Solar Hydroelectric Pumped Storage Other Total Generation at Utility Scale Facilities Estimated Distributed Solar

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Net Generation from Renewable Sources: Total (All Sectors), 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Distributed Generation Net Generation From Utility Scale Facilities and Distributed Generation Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Generation at Utility Scale Facilities Estimated Distributed Solar

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Net Generation by Energy Source: Electric Utilities, 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Nuclear Hydroelectric Conventional Solar Renewable Sources Excluding Hydroelectric and Solar Hydroelectric Pumped Storage Other Total Annual Totals 2004 1,513,641 62,196 11,498 199,662 374 475,682 245,546 6 3,686 -7,526 467 2,505,231 2005 1,484,855 58,572 11,150 238,204 10 436,296 245,553 16 4,930

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Net Generation from Renewable Sources: Electric Utilities, 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Distributed Generation Net Generation From Utility Scale Facilities and Distributed Generation Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Generation at Utility Scale Facilities Estimated Distributed Solar

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Net Generation by Energy Source: Commercial Sector, 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Distributed Generation Net Generation From Utility Scale Facilities and Distributed Generation Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Nuclear Hydroelectric Conventional Solar Renewable Sources Excluding Hydroelectric and Solar Hydroelectric Pumped Storage Other Total Generation at Utility Scale Facilities Estimated Distributed Solar

  18. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Net Generation from Renewable Sources: Commercial Sector, 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Distributed Generation Net Generation From Utility Scale Facilities and Distributed Generation Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Generation at Utility Scale Facilities Estimated Distributed Solar

  19. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Net Generation by Energy Source: Residential Sector, 2014 (Thousand Megawatthours) Distributed Generation Period Estimated Distributed Solar Photovoltaic Generation Annual Totals 2014 4,243 Year 2014 January 226 February 238 March 328 April 361 May 402 June 410 July 431 August 431 September 404 October 382 November 319 December 311 See Glossary for definitions. Values are final. See Technical Notes for a discussion of the sample design for the Form EIA-923 and predecessor forms. Totals may

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Existing Net Summer Capacity by Energy Source and Producer Type, 2004 through 2014 (Megawatts) Year Coal Petroleum Natural Gas Other Gases Nuclear Hydroelectric Conventional Other Renewable Sources Hydroelectric Pumped Storage Other Energy Sources Total Total (All Sectors) 2004 313,020.0 59,119.0 371,011.0 2,296.0 99,628.0 77,641.0 18,717.0 20,764.0 746.0 962,942.0 2005 313,380.0 58,548.0 383,061.0 2,063.0 99,988.0 77,541.0 21,205.0 21,347.0 887.0 978,020.0 2006 312,956.0 58,097.0 388,294.0

  1. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Existing Net Summer Capacity of Other Renewable Sources by Producer Type, 2004 through 2014 (Megawatts) Year Wind Solar Thermal and Photovoltaic Wood and Wood-Derived Fuels Geothermal Other Biomass Total (Other Renewable Sources) Total (All Sectors) 2004 6,456.0 398.0 6,182.0 2,152.0 3,529.0 18,717.0 2005 8,706.0 411.0 6,193.0 2,285.0 3,609.0 21,205.0 2006 11,329.0 411.0 6,372.0 2,274.0 3,727.0 24,113.0 2007 16,515.0 502.0 6,704.0 2,214.0 4,134.0 30,069.0 2008 24,651.0 536.0 6,864.0 2,229.0

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Existing Capacity by Energy Source, 2014 (Megawatts) Energy Source Number of Generators Generator Nameplate Capacity Net Summer Capacity Net Winter Capacity Coal 1,145 325,831.5 299,094.2 300,699.8 Petroleum 3,573 46,897.8 41,135.4 44,739.7 Natural Gas 5,727 495,120.2 432,150.3 464,784.7 Other Gases 93 2,227.6 1,914.3 1,889.9 Nuclear 99 103,860.4 98,569.3 100,610.3 Hydroelectric Conventional 4,029 78,792.9 79,677.3 79,090.6 Wind 1,032 65,300.1 64,231.5 64,325.1 Solar Thermal and Photovoltaic

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Existing Capacity by Producer Type, 2014 (Megawatts) Producer Type Number of Generators Generator Nameplate Capacity Net Summer Capacity Net Winter Capacity Electric Power Sector Electric Utilities 9,510 675,675.4 616,631.5 637,857.0 Independent Power Producers, Non-Combined Heat and Power Plants 6,975 423,782.6 387,561.6 401,581.5 Independent Power Producers, Combined Heat and Power Plants 559 37,890.2 33,362.6 35,972.8 Total 17,044 1,137,348.2 1,037,555.7 1,075,411.3 Commercial and

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Planned Generating Capacity Changes, by Energy Source, 2015-2019 Generator Additions Generator Retirements Net Capacity Additions Energy Source Number of Generators Net Summer Capacity Number of Generators Net Summer Capacity Number of Generators Net Summer Capacity Year 2015 U.S. Total 704 21,965.9 234 18,351.4 470 3,614.5 Coal 2 52.2 95 13,325.5 -93 -13,273.3 Petroleum 24 24.2 44 902.8 -20 -878.6 Natural Gas 76 6,192.8 61 3,964.2 15 2,228.6 Other Gases -- -- -- -- -- -- Nuclear 1 1,122.0 --

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Capacity Additions, Retirements and Changes by Energy Source, 2014 (Count, Megawatts) Generator Additions Generator Retirements Energy Source Number of Generators Generator Nameplate Capacity Net Summer Capacity Net Winter Capacity Number of Generators Generator Nameplate Capacity Net Summer Capacity Net Winter Capacity Coal 1 106.2 52.0 52.0 53 5,083.4 4,489.7 4,552.3 Petroleum 28 62.2 62.0 62.0 55 1,261.0 1,018.6 1,120.0 Natural Gas 92 9,275.2 8,300.8 8,849.5 87 4,184.5 3,834.4 3,918.8

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    7.A. Net Summer Capacity of Utility Scale Units by Technology and by State, 2014 and 2013 (Megawatts) Census Division and State Renewable Sources Fossil Fuels Hydroelectric Pumped Storage Other Energy Storage Nuclear All Other Sources All Sources Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 New England 4,577.6 4,403.4 22,853.0 23,564.2 1,775.4 1,753.4 3.0 3.0 4,046.3 4,645.4 52.9 52.9 33,308.2 34,422.3

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Net Summer Capacity Using Primarily Renewable Energy Sources and by State, 2014 and 2013 (Megawatts) Summer Capacity at Utility Scale Facilities Distributed Capacity Summer Capacity From Utility Scale Facilities and Distributed Capacity Census Division and State Wind Solar Photovoltaic Solar Thermal Conventional Hydroelectric Biomass Sources Geothermal Total Renewable Sources Estimated Distributed Solar Photovoltaic Capacity Estimated Total Solar Photovoltaic Capacity Estimated Total Solar

  8. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    7.C. Net Summer Capacity of Utility Scale Units Using Primarily Fossil Fuels and by State, 2014 and 2013 (Megawatts) Census Division and State Natural Gas Fired Combined Cycle Natural Gas Fired Combustion Turbine Other Natural Gas Coal Petroleum Coke Petroleum Liquids Other Gases Total Fossil Fuels Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 New England 11,742.0 11,720.9 1,110.1

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Capacity Factors for Utility Scale Generators Primarily Using Fossil Fuels, January 2013-December 2014 Coal Natural Gas Petroleum Period Natural Gas Fired Combined Cycle Natural Gas Fired Combustion Turbine Steam Turbine Internal Combustion Engine Steam Turbine Petroleum Liquids Fired Combustion Turbine Internal Combustion Engine Annual Factors 2013 59.7% 48.2% 4.9% 10.6% 6.1% 12.1% 0.8% 2.2% 2014 61.0% 48.3% 5.2% 10.4% 8.5% 12.5% 1.1% 1.4% Year 2013 January 61.2% 46.3% 3.6% 7.3% 4.6% 10.0%

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Total Capacity of Distributed and Dispersed Generators by Technology Type, 2005 through 2014 Capacity (MW) Year Internal Combustion Combustion Turbine Steam Turbine Hydro Wind Photovoltaic Storage Other Wind and Other Total Number of Generators Distributed Generators 2005 4,025.0 1,917.0 1,830.0 999.0 -- -- -- -- 995.0 9,766.0 17,371 2006 3,646.0 1,298.0 2,582.0 806.0 -- -- -- -- 1,081.0 9,411.0 5,044 2007 4,624.0 1,990.0 3,596.0 1,051.0 -- -- -- -- 1,441.0 12,702.0 7,103 2008 5,112.0 1,949.0

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Fuel-Switching Capacity of Operable Generators Reporting Natural Gas as the Primary Fuel, by Producer Type, 2014 (Megawatts, Percent) Fuel-Switchable Part of Total Producer Type Total Net Summer Capacity of All Generators Reporting Natural Gas as the Primary Fuel Net Summer Capacity of Natural Gas-Fired Generators Reporting the Ability to Switch to Petroleum Liquids Fuel Switchable Capacity as Percent of Total Maximum Achievable Net Summer Capacity Using Petroleum Liquids Fuel Switchable Net

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel-Switching Capacity of Operable Generators Reporting Petroleum Liquids as the Primary Fuel, by Producer Type, 2014 (Megawatts, Percent) Fuel-Switchable Part of Total Producer Type Total Net Summer Capacity of All Generators Reporting Petroleum Liquids as the Primary Fuel Net Summer Capacity of Petroleum Liquids-Fired Generators Reporting the Ability to Switch to Natural Gas Fuel Switchable Capacity as Percent of Total Maximum Achievable Net Summer Capacity Using Natural Gas Electric

  13. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Fuel-Switching Capacity of Operable Generators Reporting Natural Gas as the Primary Fuel, by Type of Prime Mover, 2014 (Megawatts, Percent) Prime Mover Type Number of Natural Gas-Fired Generators Reporting the Ability to Switch to Petroleum Liquids Net Summer Capacity of Natural Gas-Fired Generators Reporting the Ability to Switch to Petroleum Liquids Fuel Switchable Net Summer Capacity Reported to Have No Factors that Limit the Ability to Switch to Petroleum Liquids Steam Generator 178

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel-Switching Capacity of Operable Generators Reporting Natural Gas as the Primary Fuel, by Year of Initial Commercial Operation, 2014 (Megawatts, Percent) Year of Initial Commercial Operation Number of Natural Gas-Fired Generators Reporting the Ability to Switch to Petroleum Liquids Net Summer Capacity of Natural Gas-Fired Generators Reporting the Ability to Switch to Petroleum Liquids Fuel Switchable Net Summer Capacity Reported to Have No Factors that Limit the Ability to Switch to

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Stocks of Coal, Petroleum Liquids, and Petroleum Coke: Electric Power Sector, 2004 - 2014 Electric Power Sector Electric Utilities Independent Power Producers Period Coal (Thousand Tons) Petroluem Liquids (Thousand Barrels) Petroleum Coke (Thousand Tons) Coal (Thousand Tons) Petroluem Liquids (Thousand Barrels) Petroleum Coke (Thousand Tons) Coal (Thousand Tons) Petroluem Liquids (Thousand Barrels) Petroleum Coke (Thousand Tons) End of Year Stocks 2004 106,669 46,750 937 84,917 29,144 627

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Stocks of Coal, Petroleum Liquids, and Petroleum Coke: Electric Power Sector, by Census Divison, 2014 and 2013 Electric Power Sector Electric Utilities Independent Power Producers Census Division December 2014 December 2013 Percentage Change December 2014 December 2013 December 2014 December 2013 Coal (Thousand Tons) New England 1,611 1,129 42.7% W W W W Middle Atlantic 8,079 5,973 35.3% W 0 W 5,973 East North Central 33,839 28,279 19.7% 23,394 22,076 10,446 6,203 West North Central 20,648

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Stocks of Coal by Coal Rank: Electric Power Sector, 2004 - 2014 Electric Power Sector Period Bituminous Coal Subbituminous Coal Lignite Coal Total End of Year Stocks 2004 49,022 53,618 4,029 106,669 2005 52,923 44,377 3,836 101,137 2006 67,760 68,408 4,797 140,964 2007 63,964 82,692 4,565 151,221 2008 65,818 91,214 4,556 161,589 2009 91,922 92,448 5,097 189,467 2010 81,108 86,915 6,894 174,917 2011 82,056 85,151 5,179 172,387 2012 86,437 93,833 4,846 185,116 2013 73,113 69,720 5,051 147,884

  18. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Receipts, Average Cost, and Quality of Fossil Fuels: Electric Utilities, 2004 - 2014 Coal Petroleum Liquids Receipts Average Cost Receipts Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMBtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Barrels) (Dollars per MMBtu) (Dollars per Barrel) Average Sulfur Percent by Weight Percentage of Consumption Annual Totals 2004 15,440,681 758,557 1.34 27.30 0.91 98.2 592,478 93,034 4.80

  19. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Receipts, Average Cost, and Quality of Fossil Fuels: Electric Utilities, 2004 - 2014 (continued) Petroleum Coke Natural Gas All Fossil Fuels Receipts Average Cost Receipts Average Cost Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMbtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Mcf) (Dollars per MMBtu) (Dollars per Mcf) Percentage of Consumption (Dollars per MMBtu) Annual Totals 2004 107,985 3,817 0.89 25.15 5.10

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Receipts, Average Cost, and Quality of Fossil Fuels: Independent Power Producers, 2004 - 2014 Coal Petroleum Liquids Receipts Average Cost Receipts Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMBtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Barrels) (Dollars per MMBtu) (Dollars per Barrel) Average Sulfur Percent by Weight Percentage of Consumption Annual Totals 2004 4,410,775 227,700 1.41 27.27 1.13 93.3 337,011

  1. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Receipts, Average Cost, and Quality of Fossil Fuels: Independent Power Producers, 2004 - 2014 (continued) Petroleum Coke Natural Gas All Fossil Fuels Receipts Average Cost Receipts Average Cost Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMbtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Mcf) (Dollars per MMBtu) (Dollars per Mcf) Percentage of Consumption (Dollars per MMBtu) Annual Totals 2004 73,745 2,609 0.72 20.30

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Receipts, Average Cost, and Quality of Fossil Fuels: Commercial Sector, 2004 - 2014 Coal Petroleum Liquids Receipts Average Cost Receipts Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMBtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Barrels) (Dollars per MMBtu) (Dollars per Barrel) Average Sulfur Percent by Weight Percentage of Consumption Annual Totals 2004 10,682 451 2.08 49.32 2.48 23.5 3,066 527 6.19 35.96 0.20

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Receipts, Average Cost, and Quality of Fossil Fuels: Commerical Sector, 2004 - 2014 (continued) Petroleum Coke Natural Gas All Fossil Fuels Receipts Average Cost Receipts Average Cost Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMbtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Mcf) (Dollars per MMBtu) (Dollars per Mcf) Percentage of Consumption (Dollars per MMBtu) Annual Totals 2004 0 0 -- -- -- 0.0 16,176 15,804

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    8.1. Average Operating Heat Rate for Selected Energy Sources, 2004 through 2014 (Btu per Kilowatthour) Year Coal Petroleum Natural Gas Nuclear 2004 10331 10571 8647 10428 2005 10373 10631 8551 10436 2006 10351 10809 8471 10435 2007 10375 10794 8403 10489 2008 10378 11015 8305 10452 2009 10414 10923 8160 10459 2010 10415 10984 8185 10452 2011 10444 10829 8152 10464 2012 10498 10991 8039 10479 2013 10459 10713 7948 10449 2014 10428 10814 7907 10459 Coal includes anthracite, bituminous,

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Average Tested Heat Rates by Prime Mover and Energy Source, 2007 - 2014 (Btu per Kilowatthour) Prime Mover Coal Petroluem Natural Gas Nuclear 2007 Steam Generator 10,158 10,398 10,440 10,489 Gas Turbine -- 13,217 11,632 -- Internal Combustion -- 10,447 10,175 -- Combined Cycle W 10,970 7,577 -- 2008 Steam Generator 10,138 10,356 10,377 10,452 Gas Turbine -- 13,311 11,576 -- Internal Combustion -- 10,427 9,975 -- Combined Cycle W 10,985 7,642 -- 2009 Steam Generator 10,150 10,349 10,427 10,459

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Revenue and Expense Statistics for Major U.S. Investor-Owned Electric Utilities, 2004 through 2014 (Million Dollars) Description 2004 2005 2006 2007 2008 2009 Utility Operating Revenues 238,759 265,652 275,501 270,964 298,962 276,124 ......Electric Utility 213,012 234,909 246,736 240,864 266,124 249,303 ......Other Utility 25,747 30,743 28,765 30,100 32,838 26,822 Utility Operating Expenses 206,960 236,786 245,589 241,198 267,263 244,243 ......Electric Utility 183,121 207,830 218,445 213,076

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Average Power Plant Operating Expenses for Major U.S. Investor-Owned Electric Utilities, 2004 through 2014 (Mills per Kilowatthour) Operation Maintenance Year Nuclear Fossil Steam Hydro-electric Gas Turbine and Small Scale Nuclear Fossil Steam Hydro-electric Gas Turbine and Small Scale 2004 8.97 3.13 3.83 4.27 5.38 2.96 2.76 2.14 2005 8.26 3.21 3.95 3.69 5.27 2.98 2.73 1.89 2006 9.03 3.57 3.76 3.51 5.69 3.19 2.70 2.16 2007 9.54 3.63 5.44 3.26 5.79 3.37 3.87 2.42 2008 9.89 3.72 5.78 3.77 6.20

  8. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Emissions from Energy Consumption at Conventional Power Plants and Combined-Heat-and-Power Plants 2004 through 2014 (Thousand Metric Tons) Year Carbon Dioxide (CO2) Sulfur Dioxide (SO2) Nitrogen Oxides (NOx) 2004 2,486,982 10,309 4,143 2005 2,543,838 10,340 3,961 2006 2,488,918 9,524 3,799 2007 2,547,032 9,042 3,650 2008 2,484,012 7,830 3,330 2009 2,269,508 5,970 2,395 2010 2,388,596 5,400 2,491 2011 2,287,071 4,845 2,406 2012 2,156,875 3,704 2,148 2013 2,172,355 3,609 2,188 2014 2,166,603

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Quantity and Net Summer Capacity of Operable Cooling Systems, by Energy Source and Cooling System Type, 2004 - 2014 Once-Through Cooling Systems Recirculating Cooling Systems Cooling Ponds Dry Cooling Systems Hybrid Wet and Dry Cooling Systems Other Cooling System Types Energy Source Quantity Associated Net Summer Capacity (MW) Quantity Associated Net Summer Capacity (MW) Quantity Associated Net Summer Capacity (MW) Quantity Associated Net Summer Capacity (MW) Quantity Associated Net Summer

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Average Costs of Existing Flue Gas Desulfurization Units Operating in Electric Power Sector, 2004 - 2014 Year Average Operation and Maintenance Costs (Dollars per Megawatthour) Average Installed Capital Costs (Dollars per Kilowatt) 2004 1.25 43.25 2005 1.37 142.67 2006 -- 149.62 2007 1.26 240.68 2008 1.44 265.83 2009 1.44 357.46 2010 1.52 360.69 2011 1.79 410.62 2012 1.87 275.49 2013 1.74 235.42 2014 1.84 227.29 Notes: Average Installed Capital Costs reflect units which began operating in the

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Sulfur Dioxide Uncontrolled Emission Factors Fuel, Code, Source and Emission Units Combustion System Type / Firing Configuration Fuel EIA Fuel Code Source and Tables (As Appropriate) Emissions Units Lbs = Pounds MMCF = Million Cubic Feet MG = Thousand Gallons Cyclone Firing Boiler Fluidized Bed Firing Boiler Stoker Boiler Tangential Firing Boiler All Other Boiler Types Combustion Turbine Internal Combustion Engine Distillate Fuel Oil* DFO Source: 2, Table 3.1-2a, 3.4-1 & 1.3-1 Lbs per MG

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Nitrogen Oxides Uncontrolled Emission Factors Fuel, Code, Source and Emission Units Combustion System Type / Firing Configuration Tangential Boiler All Other Boiler Types Fuel EIA Fuel Code Source and Tables (As Appropriate) Emissions Units Lbs = Pounds MMCF = Million Cubic Feet MG = Thousand Gallons Cyclone Firing Boiler Fluidized Bed Firing Boiler Stoker Boiler Dry-Bottom Boilers Wet-Bottom Boilers Dry-Bottom Boilers Wet-Bottom Boilers Combustion Turbine Internal Combustion Engine

  13. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Carbon Dioxide Uncontrolled Emission Factors Fuel EIA Fuel Code Factor (Kilograms of CO2 Per Million Btu)*** Notes Bituminous Coal BIT 93.3 Distillate Fuel Oil DFO 73.16 Geothermal GEO 7.71 Jet Fuel JF 70.9 Kerosene KER 72.3 Lignite Coal LIG 97.7 Municipal Solid Waste MSW 41.69 Natural Gas NG 53.07 Petroleum Coke PC 102.1 Propane Gas PG 63.07 Residual Fuel Oil RFO 78.79 Coal-Derived Synthesis Gas SGC 53.07 Assumed to have emissions similar to Natural Gas Synthesis Gas from Petroleum Coke SGP

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Nitrogen Oxides Control Technology Emissions Reduction Factors Reduction Factor Nitrogen Oxides Control Technology EIA Code Coal Residual Fuel Oil and Distallate Fuel Oil Natural Gas Wood Other Solids Other Liquids Other Gases Other Fuels Burner Out of Service BO 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 Low Excess Air LA 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 Biased Firing (Alternative Burners) BF 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 Overfire Air OV 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Unit of Measure Equivalents Unit Equivalent Kilowatt (kW) 1,000 (One Thousand) Watts Megawatt (MW) 1,000,000 (One Million) Watts Gigawatt (GW) 1,000,000,000 (One Billion) Watts Terawatt (TW) 1,000,000,000,000 (One Trillion) Watts Gigawatt 1,000,000 (One Million) Kilowatts Thousand Gigawatts 1,000,000,000 (One Billion) Kilowatts Kilowatthours (kWh) 1,000 (One Thousand) Watthours Megawatthours (MWh) 1,000,000 (One Million) Watthours Gigawatthours (GWh) 1,000,000,000 (One Billion) Watthours

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Reliability web page: http:www.eia.govcneafelectricitypageeia411eia411.html Projected data are updated annually. Net Energy for Load represents net Balancing...

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Weeks Ended" "Coal-Producing Region & State","applicationvnd.ms-excel","applicationvnd.ms-excel","applicationvnd.ms-excel","applicationvnd.ms-excel","application...

  18. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    per short ton)" "Mine Production Range (thousand short tons)","Underground","Surface","Total" "Over 1,000",53.25,18.86,30.21 "Over 500 to 1,000",71.1,54.14,63.75 "Over 200 ...

  19. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    Generation by Energy Source: Independent Power Producers, 2004 - 2014 (Thousand ... Gas Nuclear Hydroelectric Conventional Solar Renewable Sources Excluding Hydroelectric ...

  20. SAS Output

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    from Renewable Sources: Independent Power Producers, 2004 - 2014 (Thousand ... and Distributed Generation Period Wind Solar Photovoltaic Solar Thermal Wood and ...

  1. SAS Output

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    15.1% 5.6% 65.4% 60.8% 75.5% Values are final. NA Not Available Notes: Solar Thermal Capacity Factors include generation from plants using concentrated solar power energy storage

  2. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    A. U.S. Transmission Circuit Outages by Type and NERC region, 2013 Outage Type FRCC MRO NPCC RFC SERC SPP TRE WECC Contiguous U.S. Circuit Outage Counts Automatic Outages...

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    ...1,2730243,2501775,10875372,11870666,-8.4 " Charleston, SC",124,148,1030,563,2223,-74.7 " El Paso, TX",25988,44883,167,122862,7508,"NM" " Houston-Galveston, TX",113426,232428,225146...

  4. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 0 1,518 1,406 Massachusetts 3,491 3,282 3,827 2,521 1,014 2,169 32 47 8,364 8,020 New Hampshire 791 744 640 611 235 225 0 0 1,666 1,579 Rhode Island 527 481 533 474 114 109 4 3 ...

  5. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 0 0 0 0 0 0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts 2 2 -10.6% 0 0 2 2 0 0 0 0 New Hampshire 0 0 -- 0 0 0 0 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 0 0 -- 0 0 0 0 ...

  6. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    0 -- -- 0 -- -- Maine 0 -- -- 0 -- -- 0 -- -- Massachusetts 0 -- -- 0 -- -- 0 -- -- New Hampshire 526 2.29 7.8 0 -- -- 0 -- -- Rhode Island 0 -- -- 0 -- -- 0 -- -- Vermont 0 -- -- ...

  7. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    8,726 2 3 8 9 Maine 3,403 3,675 10 12 8 9 Massachusetts 12,917 14,735 6 11 13 14 New Hampshire 3,458 3,447 3 3 4 5 Rhode Island 2,566 2,838 0.09 1 1 1 Vermont 14 15 0.06 0.07 1 ...

  8. SAS Output

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0 -- -- 0 -- -- Maine 0 -- -- 0 -- -- 0 -- -- Massachusetts 0 -- -- 0 -- -- 0 -- -- New Hampshire 0 -- -- 0 -- -- 0 -- -- Rhode Island 0 -- -- 0 -- -- 0 -- -- Vermont 0 -- -- 0 -- ...

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    W W Maine W W W -- -- W W Massachusetts 18.09 18.16 -0.4% 19.94 21.91 17.75 17.68 New Hampshire W W W 15.16 16.84 W W Rhode Island W W W -- -- W W Vermont -- -- -- -- -- -- -- ...

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    0 0 -- Maine 0 0 -- W W W 0 0 -- Massachusetts W 582 W 1,965 1,496 31.3% 0 0 -- New Hampshire W W W W W W 0 0 -- Rhode Island W 0 W W W W 0 0 -- Vermont 0 0 -- 57 NM NM 0 0 -- ...

  11. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 0 0 0 0 0 0 0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts 0 0 -- 0 0 0 0 0 0 0 0 New Hampshire 0 0 -- 0 0 0 0 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 0 0 -- 0 0 0 0 ...

  12. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    829 3.8% 0 0 860 829 0 0 0 0 Massachusetts 4,233 4,087 3.6% 0 0 4,233 4,087 0 0 0 0 New Hampshire 1,871 1,839 1.7% 0 0 1,195 1,128 676 711 0 0 Rhode Island 3,980 956 316% 0 0 3,980 ...

  13. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -- Maine 85 0.85 8.2 0 -- -- 0 -- -- Massachusetts 1,225 0.72 11.3 0 -- -- 0 -- -- New Hampshire 526 2.29 7.8 0 -- -- 0 -- -- Rhode Island 0 -- -- 254 0.09 2.0 0 -- -- Vermont 0 ...

  14. SAS Output

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    14% 1 1 476 424 6 6 43 30 Massachusetts 1,646 713 131% 240 126 1,324 546 80 39 1 2 New Hampshire 454 187 143% 216 135 222 41 16 11 0.05 0.19 Rhode Island 113 75 50% 21 22 83 38 NM ...

  15. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    19 15 27% 0 0 10 7 0 0 9 8 Massachusetts 1,248 1,723 -28% 0 0 1,244 1,718 0 0 5 5 New Hampshire 544 616 -12% 544 616 0 0 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 0 0 ...

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    -- 0 -- -- Maine 32 0.94 8.4 0 -- -- 0 -- -- Massachusetts 0 -- -- 0 -- -- 0 -- -- New Hampshire 0 -- -- 0 -- -- 0 -- -- Rhode Island 0 -- -- 0 -- -- 0 -- -- Vermont 0 -- -- 0 -- ...

  17. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11.86 Massachusetts 17.39 15.83 14.68 14.23 12.74 13.18 8.76 13.06 15.35 14.51 New Hampshire 17.53 16.33 14.34 13.52 11.93 11.40 -- -- 15.22 14.30 Rhode Island 17.17 15.20 ...

  18. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -- -- -- -- -- -- -- Maine -- -- -- -- -- -- -- Massachusetts -- -- -- -- -- -- -- New Hampshire -- -- -- -- -- -- -- Rhode Island -- -- -- -- -- -- -- Vermont -- -- -- -- -- -- ...

  19. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    W W Connecticut W W W -- -- W W Maine W W W -- -- W W Massachusetts W W W -- -- W W New Hampshire 4.27 4.21 1.4% 4.27 4.21 -- -- Rhode Island W -- W -- -- W -- Vermont -- -- -- -- ...

  20. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    66 30% 0 0 53 38 0 0 32 28 Massachusetts 1,225 1,805 -32% 0 0 1,225 1,805 0 0 0 0 New Hampshire 526 726 -28% 526 726 0 0 0 0 0 0 Rhode Island 254 0 -- 0 0 254 0 0 0 0 0 Vermont 0 ...

  1. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts -458 -368 24.5% 0 0 -458 -368 0 0 0 0 New Hampshire 0 0 -- 0 0 0 0 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 0 0 -- 0 0 0 0 ...

  2. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -- 6.65 6.06 Maine W W W -- -- W W Massachusetts 6.46 5.75 12% 5.54 6.84 6.47 5.74 New Hampshire W W W 6.05 8.85 W W Rhode Island W 5.67 W -- -- W 5.67 Vermont -- -- -- -- -- -- ...

  3. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts 305 105 191.3% 11 4 289 100 5 1 0 0 New Hampshire 0 0 -- 0 0 0 0 0 0 0 0 Rhode Island 10 2 388.5% 0 0 10 2 0 0 0 0 Vermont 24 17 ...

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    " Massachusetts","w","w","-","-","w","w","-","-",-7.4,"s","-","-" " New Hampshire",108.29,"-","-","-",108.33,"-","-","-","s","-","-","-" " Rhode ...

  5. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27.6% 1 1 261 204 2 2 41 32 Massachusetts 1,005 390 157.4% 131 71 793 287 80 31 1 1 New Hampshire 287 105 175.0% 108 62 163 28 16 14 0.07 0.26 Rhode Island 88 51 74.9% 11 11 60 26 ...

  6. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5,409 14,249 Massachusetts 126,810 148,736 -15% 1,544 1,245 125,265 147,491 0 0 0 0 New Hampshire 31,309 29,644 5.6% 424 355 30,885 29,289 0 0 0 0 Rhode Island 44,839 46,035 -2.6% ...

  7. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -- Maine 53 0.80 8.0 0 -- -- 0 -- -- Massachusetts 1,225 0.72 11.3 0 -- -- 0 -- -- New Hampshire 0 -- -- 0 -- -- 0 -- -- Rhode Island 0 -- -- 254 0.09 2.0 0 -- -- Vermont 0 -- -- ...

  8. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11,855 Massachusetts 20,071 20,728 26,076 17,713 7,961 16,463 361 361 54,469 55,265 New Hampshire 4,510 4,554 4,465 4,517 1,969 1,973 0 0 10,944 11,043 Rhode Island 3,070 3,165 ...

  9. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 0 587 873 0 0 50 25 Massachusetts 1,867 1,300 44% 301 154 1,566 1,146 0 0 0 0 New Hampshire 741 354 110% 455 268 287 86 0 0 0 0 Rhode Island 217 31 594% 0 0 217 31 0 0 0 0 ...

  10. SAS Output

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.1% 0 0 112 115 200 196 0 0 Massachusetts 2,071 2,029 2.1% 0 0 2,071 2,029 0 0 0 0 New Hampshire 125 156 -20% 0 0 125 156 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 0 0 ...

  11. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    Peak Load by North American Electric Reliability Corporation Assessment Area, 2004 - ... Notes: NERC region and reliability assessment area maps are provided on EIA's Electricity ...

  12. SAS Output

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Margins by North American Electric Reliability Assessment Area, 2004 - 2014, Actual ... Notes: NERC region and reliability assessment area maps are provided on EIA's Electricity ...

  13. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Receipts of coal include imported coal. NA Not available. ... Dual-fired capacity returned to respective fuel categories ... EIA-767, 'Steam-Electric Plant Operation and Design ...

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    In 2006 the single largest provider of green pricing services in the country discontinued ... Source: U.S. Energy Information Administration, Form EIA-861, "Annual Electric Power ...

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Rosebud","-",12756,12756,250,186,276 "1787 Roland","-",12094,12094,464,384,495 "1701 Smith","-",12069,12069,912,912,912 "0280 Blue Creek",11738,190,11928,50,12,52 "1570 ...

  16. Urban Integrated Industrial Cogeneration Systems Analysis. Phase II final report

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Through the Urban Integrated Industrial Cogeneration Systems Analysis (UIICSA), the City of Chicago embarked upon an ambitious effort to identify the measure the overall industrial cogeneration market in the city and to evaluate in detail the most promising market opportunities. This report discusses the background of the work completed during Phase II of the UIICSA and presents the results of economic feasibility studies conducted for three potential cogeneration sites in Chicago. Phase II focused on the feasibility of cogeneration at the three most promising sites: the Stockyards and Calumet industrial areas, and the Ford City commercial/industrial complex. Each feasibility case study considered the energy load requirements of the existing facilities at the site and the potential for attracting and serving new growth in the area. Alternative fuels and technologies, and ownership and financing options were also incorporated into the case studies. Finally, site specific considerations such as development incentives, zoning and building code restrictions and environmental requirements were investigated.

  17. Industry outreach: DOE and Wave Energy Scotland co-sponsored WEC technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Economists The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the Industry Economist, whose work is associated with the performance of economic analyses using economic techniques. Responsibilities: Industry Economists perform or participate in one or more of the following

  18. Contribution to environmental impact of different uses of industrial districts

    SciTech Connect (OSTI)

    Corti, A.; Carnevale, E.

    2000-05-01

    Industrial districts are highly characteristic of Italian industry structure, with energy implication due to both electrical and thermal energy demand. The present study represents an environmental methodology approach applied to an area in the Tuscany region characterized by the presence of a high net power output cogeneration plant connected to paper mill processes. The cogeneration unit is based on a innovative gas turbine characterized by low atmospheric environmental impact. Additional impact due to cogeneration plant installation was evaluated in comparison with pollutant concentration levels due to existent energy conversion processes, using atmospheric diffusional models. A comparison was also made with respect to pollutant concentration contribute due to ordinary road and highway traffic emissions existent in the area.

  19. Biofuel Industries Group LLC | Open Energy Information

    Open Energy Info (EERE)

    Industries Group LLC Jump to: navigation, search Name: Biofuel Industries Group LLC Place: Adrian, Michigan Zip: 49221 Product: Biofuel Industries Group, LLC owns and operates the...

  20. Energy Intensity Indicators: Industrial Source Energy Consumption

    Broader source: Energy.gov [DOE]

    The industrial sector comprises manufacturing and other nonmanufacturing industries not included in transportation or services. Manufacturing includes 18 industry sectors, generally defined at the...

  1. Assessment of Replicable Innovative Industrial Cogeneration Applicatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Replicable Innovative Industrial Cogeneration Applications, June 2001 Assessment of Replicable Innovative Industrial Cogeneration Applications, June 2001 U.S. industrial facilities ...

  2. Industrial Assessment Centers Update, March 2015 | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Read the Industrial Assessment Centers (IAC) Update -- March 2015 Industrial Assessment Centers Quarterly Update, March 2015 More Documents & Publications Industrial Assessment...

  3. MRL Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    MRL Industries Inc Jump to: navigation, search Name: MRL Industries Inc Place: Sonora, California Zip: 95370 Sector: Solar Product: MRL Industries is a US company committed to...

  4. Advanced Biofuels Industry Roundtable - List of Participants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Industry Roundtable - List of Participants Advanced Biofuels Industry Roundtable - List of Participants List of Participants from the May 18 Advanced Biofuels Industry ...

  5. Meehan s Industrial | Open Energy Information

    Open Energy Info (EERE)

    Meehan s Industrial Jump to: navigation, search Name: Meehan's Industrial Place: Milton, Ontario, Canada Zip: L9T 5C1 Product: Meehan's Industrial is a manufacturer, project...

  6. Local Option- Industrial Facilities and Development Bonds

    Broader source: Energy.gov [DOE]

    Under the Utah Industrial Facilities and Development Act, counties, municipalities, and state universities in Utah may issue Industrial Revenue Bonds (IRBs) or Industrial Development Bonds (IDBs)...

  7. Ternion Bio Industries | Open Energy Information

    Open Energy Info (EERE)

    Ternion Bio Industries Jump to: navigation, search Logo: Ternion Bio Industries Name: Ternion Bio Industries Address: 1060 Minnesota Ave., Suite 6 Place: San Jose, California Zip:...

  8. Lien Hwa Industrial Corporation | Open Energy Information

    Open Energy Info (EERE)

    Lien Hwa Industrial Corporation Jump to: navigation, search Name: Lien Hwa Industrial Corporation Place: Taipei, Taiwan Product: Lien Hwa Industrial Corporation is an agricultural,...

  9. Equity Industrial Partners | Open Energy Information

    Open Energy Info (EERE)

    Equity Industrial Partners Jump to: navigation, search Name Equity Industrial Partners Facility Equity Industrial Partners Sector Wind energy Facility Type Community Wind Facility...

  10. TG Agro Industrial | Open Energy Information

    Open Energy Info (EERE)

    TG Agro Industrial Jump to: navigation, search Name: TG Agro Industrial Place: Brazil Product: Maranhao-based ethanol producer. References: TG Agro Industrial1 This article is a...

  11. A combined compensation method for the output voltage of an insulated core transformer power supply

    SciTech Connect (OSTI)

    Yang, L.; Yang, J. Liu, K. F.; Qin, B.; Chen, D. Z.

    2014-06-15

    An insulated core transformer (ICT) power supply is an ideal high-voltage generator for irradiation accelerators with energy lower than 3 MeV. However, there is a significant problem that the structure of the segmented cores leads to an increase in the leakage flux and voltage differences between rectifier disks. A high level of consistency in the output of the disks helps to achieve a compact structure by improving the utilization of both the rectifier components and the insulation distances, and consequently increase the output voltage of the power supply. The output voltages of the disks which are far away from the primary coils need to be improved to reduce their inhomogeneity. In this study, by investigating and comparing the existing compensation methods, a new combined compensation method is proposed, which increases the turns on the secondary coils and employs parallel capacitors to improve the consistency of the disks, while covering the entire operating range of the power supply. This method turns out to be both feasible and effective during the development of an ICT power supply. The non-uniformity of the output voltages of the disks is less than 3.5% from no-load to full-load, and the power supply reaches an output specification of 350 kV/60 mA.

  12. IMPACTS: Industrial Technologies Program, Summary of Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The CHP system's thermal output displaces the fuel normally consumed in on-site thermal generation in a boiler or other equipment, IMPACTS and the power output displaces the fuel ...

  13. Research Projects in Industrial Technology.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration. Industrial Technology Section.

    1990-06-01

    The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

  14. System and method for cancelling the effects of stray magnetic fields from the output of a variable reluctance sensor

    DOE Patents [OSTI]

    Chen, Chingchi; Degner, Michael W.

    2002-11-19

    A sensor system for sensing a rotation of a sensing wheel is disclosed. The sensor system has a sensing coil in juxtaposition with the sensing wheel. Moreover, the sensing coil has a sensing coil output signal indicative of the rotational speed of the sensing wheel. Further, a cancellation coil is located remotely from the sensing coil and connected in series therewith. Additionally, the cancellation coil has a cancellation coil output signal indicative of an environmental disturbance which is effecting the sensing coil output signal. The cancellation coil output signal operates to cancel the effects of the environmental disturbance on the sensing coil output signal.

  15. Input-output model for MACCS nuclear accident impacts estimation¹

    SciTech Connect (OSTI)

    Outkin, Alexander V.; Bixler, Nathan E.; Vargas, Vanessa N

    2015-01-27

    Since the original economic model for MACCS was developed, better quality economic data (as well as the tools to gather and process it) and better computational capabilities have become available. The update of the economic impacts component of the MACCS legacy model will provide improved estimates of business disruptions through the use of Input-Output based economic impact estimation. This paper presents an updated MACCS model, bases on Input-Output methodology, in which economic impacts are calculated using the Regional Economic Accounting analysis tool (REAcct) created at Sandia National Laboratories. This new GDP-based model allows quick and consistent estimation of gross domestic product (GDP) losses due to nuclear power plant accidents. This paper outlines the steps taken to combine the REAcct Input-Output-based model with the MACCS code, describes the GDP loss calculation, and discusses the parameters and modeling assumptions necessary for the estimation of long-term effects of nuclear power plant accidents.

  16. Energy use and CO2 emissions of China’s industrial sector from a global perspective

    SciTech Connect (OSTI)

    Zhou, Sheng; Kyle, G. Page; Yu, Sha; Clarke, Leon E.; Eom, Jiyong; Luckow, Patrick W.; Chaturvedi, Vaibhav; Zhang, Xiliang; Edmonds, James A.

    2013-07-10

    The industrial sector has accounted for more than 50% of China’s final energy consumption in the past 30 years. Understanding the future emissions and emissions mitigation opportunities depends on proper characterization of the present-day industrial energy use, as well as industrial demand drivers and technological opportunities in the future. Traditionally, however, integrated assessment research has handled the industrial sector of China in a highly aggregate form. In this study, we develop a technologically detailed, service-oriented representation of 11 industrial subsectors in China, and analyze a suite of scenarios of future industrial demand growth. We find that, due to anticipated saturation of China’s per-capita demands of basic industrial goods, industrial energy demand and CO2 emissions approach a plateau between 2030 and 2040, then decrease gradually. Still, without emissions mitigation policies, the industrial sector remains heavily reliant on coal, and therefore emissions-intensive. With carbon prices, we observe some degree of industrial sector electrification, deployment of CCS at large industrial point sources of CO2 emissions at low carbon prices, an increase in the share of CHP systems at industrial facilities. These technological responses amount to reductions of industrial emissions (including indirect emission from electricity) are of 24% in 2050 and 66% in 2095.

  17. Nymex futures, options volumes continue growth

    SciTech Connect (OSTI)

    Thompson, R.P. )

    1990-01-22

    The 1980s has been a decade of learning and growth for the members of the energy futures industry. As the New York Mercantile Exchange introduced new contracts, the energy industry gradually came to understand the value of futures trading to any business plan, especially during turbulent times in the mid-1980s. The result: explosive growth in the latter half of the decade. The author discusses how, as a new decade begins, new challenges are unfolding. Increased liberalization and deregulation of the energy market are trends both at home and abroad. There is increased demand for energy while environmental pressures mount and U.S. production declines. Future production and exports of the energy-rich Soviet Union and consumption patterns of the Eastern Bloc countries are uncertain.

  18. Job and Output Benefits of Stationary Fuel Cells (JOBS FC): An Economic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact Tool Developed for USDOE | Department of Energy and Output Benefits of Stationary Fuel Cells (JOBS FC): An Economic Impact Tool Developed for USDOE Job and Output Benefits of Stationary Fuel Cells (JOBS FC): An Economic Impact Tool Developed for USDOE Presented at the Technology Transition Corporation and U.S. Department of Energy Webinar: Where the Jobs Are: Hydrogen and Fuel Cells in Your Area, July 19, 2011. webinarjul19_mintz.pdf (213.56 KB) More Documents & Publications DOE

  19. High-output microwave detector using voltage-induced ferromagnetic resonance

    SciTech Connect (OSTI)

    Shiota, Yoichi Suzuki, Yoshishige; Miwa, Shinji; Tamaru, Shingo; Nozaki, Takayuki; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji

    2014-11-10

    We investigated the voltage-induced ferromagnetic resonance (FMR) with various DC bias voltage and input RF power in magnetic tunnel junctions. We found that the DC bias monotonically increases the homodyne detection voltage due to the nonlinear FMR originating in an asymmetric magnetization-potential in the free layer. In addition, the linear increase of an output voltage to the input RF power in the voltage-induced FMR is more robust than that in spin-torque FMR. These characteristics enable us to obtain an output voltage more than ten times than that of microwave detectors using spin-transfer torque.

  20. Industrial Hygiene | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hygiene Ames Laboratory's Industrial Hygiene (IH) Program is dedicated to providing employees a workplace free from or protected against recognized hazards that could potentially cause illness or injury. The basic principles of industrial hygiene are applied: Anticipation, recognition, evaluation and control of workplace hazards. The industrial hygienist participates on Readiness Review committees to assist in anticipation and recognition of chemical, physical, biological, or ergonomic hazards.