Sample records for industrial organic chemicals

  1. Organic Rankine Cycles for the Petro-Chemical Industry 

    E-Print Network [OSTI]

    Rose, R. K.; Colosimo, D. D.

    1979-01-01T23:59:59.000Z

    Under a cooperatively funded DOE/MTI program, a packaged organic Rankine power recovery system is being developed specifically to meet the needs of the petroleum refining and chemical industries. Program objectives include an actual in...

  2. Carbon Emissions: Chemicals Industry

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic Feet) Cameron,Chemicals

  3. Three Essays on Industrial Organization

    E-Print Network [OSTI]

    Lee, Yang Seung

    2008-12-18T23:59:59.000Z

    The dissertation discusses issues in the field of industrial organization. When the government provides better infrastructure to competing firms for innovation, private firms' R&D expenditures are affected. When the ...

  4. Reporting Conservation Results in the Chemical Industry

    E-Print Network [OSTI]

    Doerr, R. E.

    1979-01-01T23:59:59.000Z

    In 1974, the Manufacturing Chemists Association (MCA) developed an energy rate method for reporting the energy conservation results of the chemical industry to the Federal Energy Administration. The MCA Energy Rate Method has served as a model...

  5. Methods in Industrial Biotechnology for Chemical Engineers

    E-Print Network [OSTI]

    W. B. Vasantha Kandasamy; Florentin Smarandache

    2008-07-13T23:59:59.000Z

    In keeping with the definition that biotechnology is really no more than a name given to a set of techniques and processes, the authors apply some set of fuzzy techniques to chemical industry problems such as finding the proper proportion of raw mix to control pollution, to study flow rates, to find out the better quality of products. We use fuzzy control theory, fuzzy neural networks, fuzzy relational equations, genetic algorithms to these problems for solutions. When the solution to the problem can have certain concepts or attributes as indeterminate, the only model that can tackle such a situation is the neutrosophic model. The authors have also used these models in this book to study the use of biotechnology in chemical industries. This book has six chapters. First chapter gives a brief description of biotechnology. Second chapter deals will proper proportion of mix of raw materials in cement industries to minimize pollution using fuzzy control theory. Chapter three gives the method of determination of temperature set point for crude oil in oil refineries. Chapter four studies the flow rates in chemical industries using fuzzy neutral networks. Chapter five gives the method of minimization of waste gas flow in chemical industries using fuzzy linear programming. The final chapter suggests when in these studies indeterminancy is an attribute or concept involved, the notion of neutrosophic methods can be adopted.

  6. Feasibility of Organizations -A Refinement of Chemical Organization Theory

    E-Print Network [OSTI]

    Hinze, Thomas

    Feasibility of Organizations - A Refinement of Chemical Organization Theory with Application to P a theorem providing a criteria for an unfeasible organization. This is a refinement of organization theory organization. Key words: reaction networks, constructive dynamical systems, chem- ical organization theory

  7. Biomedical | Chemical & Biomolecular | Civil & Environmental | Electrical & Computer | Industrial | Mechanical | Petroleum Careers in Industrial Engineering

    E-Print Network [OSTI]

    Glowinski, Roland

    | Mechanical | Petroleum Careers in Industrial Engineering Manufacturing, service and retail industries hireBiomedical | Chemical & Biomolecular | Civil & Environmental | Electrical & Computer | Industrial a significant number of industrial engineers. Specific industries include automobile manufacturers, electronics

  8. Supply chain network optimization : low volume industrial chemical product

    E-Print Network [OSTI]

    Dacha, Fred (Frederick Omondi)

    2013-01-01T23:59:59.000Z

    The chemical industry is a highly competitive and low margin industry. Chemical transportation faces stringent safety regulations meaning that Cost-To-Serve (C2S), costs associated with products net flow from manufacturers ...

  9. Biomedical | Chemical & Biomolecular | Civil & Environmental | Electrical & Computer | Industrial | Mechanical | Petroleum Careers in Chemical Engineering

    E-Print Network [OSTI]

    Azevedo, Ricardo

    | Mechanical | Petroleum Careers in Chemical Engineering Career opportunities in chemical engineering that new chemical engineering graduates have an average starting salary of $67,600. The University from industry professionals and participate in activities that promote engineering. Chemical

  10. Green alternatives to toxic release inventory (TRI) chemicals in the process industry

    SciTech Connect (OSTI)

    Ahmed, I.; Baron, J.; Hamilton, C. [Booz-Allen & Hamilton Inc., McLean, VA (United States)

    1995-12-01T23:59:59.000Z

    Driven by TRI reporting requirements, the chemical process industry is searching for innovative ways to reduce pollution at the source. Distinct environmental advantages of biobased green chemicals (biochemicals) mean are attractive alternatives to petrochemicals. Biochemicals are made from renewable raw materials in biological processes, such as aerobic and anaerobic fermentation, that operate at ambient temperatures and pressures, and produce only nontoxic waste products. Key TRI chemicals and several classes of commodity and intermediate compounds, used on consumer end-products manufacturing, are examined and alternatives are suggested. Specific substitution options for chlorofluorocarbons, industrial solvents, and commodity organic and inorganic chemicals are reviewed. Currently encouraged pollution prevention alternatives in the manufacturing sector are briefly examined for their long-term feasibility such as bioalternatives to bleaching in the pulp & paper industry, solvent cleaning in the electronics and dry cleaning industries, and using petroleum-based feedstocks in the plastics industry. Total life cycle and cost/benefit analyses are employed to determine whether biochemicals are environmentally feasible and commercially viable as pollution prevention tools. Currently available green chemicals along with present and projected costs and premiums are also presented. Functional compatibility of biochemicals with petrochemicals and bioprocessing systems with conventional chemical processing methods are explored. This review demonstrates that biochemicals can be used cost effectively in certain industrial chemical operations due to their added environmental benefits.

  11. Federal agencies active in chemical industry-related research and development

    SciTech Connect (OSTI)

    NONE

    1995-09-29T23:59:59.000Z

    The Energy Policy Act of 1992 calls for a program to further the commercialization of renewable energy and energy efficient technologies for the industrial sector.. The primary objective of the Office of Industrial Technologies Chemical Industry Team is to work in partnership with the US chemical industry to maximize economic, energy, and environmental benefits through research and development of innovative technologies. This document was developed to inventory organizations within the federal government on current chemical industry-related research and development. While an amount of funding or number of projects specifically relating to chemical industry research and development was not defined in all organizations, identified were about 60 distinct organizations representing 7 cabinet-level departments and 4 independent agencies, with research efforts exceeding $3.5 billion in fiscal year 1995. Effort were found to range from less than $500 thousand per year at the Departments of Agriculture and the Interior to over $100 million per year at the Departments of Commerce, Defense, Energy, and Health and Human Services and the National Aeronautics and Space Administration. The total number of projects in these programs exceeded 10,000. This document is complete to the extent that agencies volunteered information. Additions, corrections, and changes are encouraged and will be incorporated in future revisions.

  12. Organization-Oriented Chemical Programming Peter Dittrich and Naoki Matsumaru

    E-Print Network [OSTI]

    Dittrich, Peter

    organization theory, which defines a chemical organization as a closed and self- maintaining set of molecular such tool is chemical organization theory [9]. The theory allows to relate reaction rules to the po- tential). A central con- cept of the theory is the chemical organization, which is a set of molecular species

  13. Adapting to contradiction : competing models of organization in the United States organic foods industry

    E-Print Network [OSTI]

    Haedicke, Michael Anthony

    2008-01-01T23:59:59.000Z

    foods that many industry members felt were not compatible with organic agriculture, including ingredients made from genetically modified plants, irradiation

  14. Radio Frequency & Microwave Energy for the Petro Chemical Industry

    E-Print Network [OSTI]

    Raburn, R.

    Electro-Magnetic Energy has finally made its way into the Petro-Chemical market twenty-five years after market acceptance in the Food Processing Industry. Major factors influencing this change are tighter environmental regulations, price competition...

  15. STATEMENT OF CONSIDERATIONS REQUEST BY CHEMICAL INDUSTRY ENVIRONMENTAL...

    Broader source: Energy.gov (indexed) [DOE]

    Air Products and Chemicals, Akzo Nobel, Battelle, DuPont, NL Industries, OxyChem, and Praxair. With the exception of Battelle, all of the Petitioner's member companies are major...

  16. TMVOC, simulator for multiple volatile organic chemicals

    SciTech Connect (OSTI)

    Pruess, Karsten; Battistelli, Alfredo

    2003-03-25T23:59:59.000Z

    TMVOC is a numerical simulator for three-phase non-isothermal flow of water, soil gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous media. It is an extension of the TOUGH2 general-purpose simulation program developed at the Lawrence Berkeley National Laboratory. TMVOC is designed for applications to contamination problems that involve hydrocarbon fuel or organic solvent spills in saturated and unsaturated zones. It can model contaminant behavior under ''natural'' environmental conditions, as well as for engineered systems, such as soil vapor extraction, groundwater pumping, or steam-assisted source remediation. TMVOC is upwards compatible with T2VOC (Falta et al., 1995) and can be initialized from T2VOC-style initial conditions. The main enhancements in TMVOC relative to T2VOC are as follows: a multicomponent mixture of volatile organic chemicals can be modeled; any and all combinations of the three phases water-oil-gas are treated; several non-condensible gases may be present; diffusion is treated in all phases in a manner that is fully coupled with phase partitioning. This paper gives a brief summary of the methodology used in TMVOC as well as highlighting some implementation issues. Simulation of a NAPL spill and subsequent remediation is discussed for a 2-D vertical section of a saturated-unsaturated flow problem.

  17. Olefin Recovery from Chemical Industry Waste Streams

    SciTech Connect (OSTI)

    A.R. Da Costa; R. Daniels; A. Jariwala; Z. He; A. Morisato; I. Pinnau; J.G. Wijmans

    2003-11-21T23:59:59.000Z

    The objective of this project was to develop a membrane process to separate olefins from paraffins in waste gas streams as an alternative to flaring or distillation. Flaring these streams wastes their chemical feedstock value; distillation is energy and capital cost intensive, particularly for small waste streams.

  18. Energy Management in a Multi-Industry Organization

    E-Print Network [OSTI]

    Lawrence, J.

    1981-01-01T23:59:59.000Z

    Tenneco operates in seven of the nation's ten most energy intensive industries: Petroleum Refining, Chemicals Manufacturing, Pulp and Paper, Transportation Equipment, Primary Metals, Food Processing, and Machinery. This diversification...

  19. Sanyo Chemical Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBYSaltonSprings, California:Santon GmbH Jump

  20. Federal/Industry Development of Energy-Conserving Technologies for the Chemical and Petroleum Refining Industries 

    E-Print Network [OSTI]

    Alston, T. G.; Humphrey, J. L.

    1981-01-01T23:59:59.000Z

    Argonne National Laboratory has started a program to identify future RD&D projects that (i) promise cost-effective savings of scarce fuels in the chemical and petroleum refining industries, (ii) are not likely to be pursued by industry alone...

  1. Chemicals Industry Profile | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof EnergyAdministration-DesertofSuccessTroy A.Chemical Sciences

  2. Economics of Energy Conservation in the Chemical and Petrochemical Industries

    E-Print Network [OSTI]

    Nachod, J. E. Jr.

    ECONOMIC. OF ENERGY CONSERVATION IN THE CHEMICAL AND PETROCHEMICAL INDUSTRIES by J. Ernest Nachod, Jr., Consultant, Houston, TX ABSTRACT Capital allocated to energy savings projects competes with that for new or revised plants. Thus, it must... show the same or better rate of return. Usually the risk factor in energy savings projects is less than allocations for other uses. The categories of energy consumption on a chemical or petrochemical plant are defined. Distillation is often...

  3. Global Intermodal Tank Container Management for the Chemical Industry

    E-Print Network [OSTI]

    Erera, Alan

    transport multiple cargoes. Tank containers, also referred to as ISO tanks, intermodal tanks, or IMOGlobal Intermodal Tank Container Management for the Chemical Industry Alan L. Erera, Juan C on asset management problems faced by tank container operators, and formulates an operational tank

  4. Process Control Systems in the Chemical Industry: Safety vs. Security

    SciTech Connect (OSTI)

    Jeffrey Hahn; Thomas Anderson

    2005-04-01T23:59:59.000Z

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nation’s critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  5. Chemical Analysis of Complex Organic Mixtures Using Reactive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    possessing these groups in complex mixtures. Citation: Laskin J, PA Eckert, PJ Roach, BS Heath, SA Nizkorodov, and A Laskin.2012."Chemical Analysis of Complex Organic...

  6. Enhanced formulations for neutralization of chemical, biological and industrial toxants

    DOE Patents [OSTI]

    Tucker, Mark D. (Albuqueque, NM) [Albuqueque, NM

    2008-06-24T23:59:59.000Z

    An enhanced formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The enhanced formulation according to the present invention is non-toxic and non-corrosive and can be delivered by a variety of means and in different phases. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator and water.

  7. Reactive formulations for a neutralization of toxic industrial chemicals

    DOE Patents [OSTI]

    Tucker, Mark D. (Albuqueruqe, NM); Betty, Rita G. (Rio Rancho, NM)

    2006-10-24T23:59:59.000Z

    Decontamination formulations for neutralization of toxic industrial chemicals, and methods of making and using same. The formulations are effective for neutralizing malathion, hydrogen cyanide, sodium cyanide, butyl isocyanate, carbon disulfide, phosgene gas, capsaicin in commercial pepper spray, chlorine gas, anhydrous ammonia gas; and may be effective at neutralizing hydrogen sulfide, sulfur dioxide, formaldehyde, ethylene oxide, methyl bromide, boron trichloride, fluorine, tetraethyl pyrophosphate, phosphorous trichloride, arsine, and tungsten hexafluoride.

  8. Adapting to contradiction : competing models of organization in the United States organic foods industry

    E-Print Network [OSTI]

    Haedicke, Michael Anthony

    2008-01-01T23:59:59.000Z

    European market to genetically modified foods. She arguesfoods that many industry members felt were not compatible with organic agriculture, including ingredients made from genetically modifiedgenetically modified crops. Below, I discuss the distinction that co-op leaders make between food-

  9. Chemical production from industrial by-product gases: Final report

    SciTech Connect (OSTI)

    Lyke, S.E.; Moore, R.H.

    1981-04-01T23:59:59.000Z

    The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

  10. Initial Placement of BS Chemical Engineers, `00-01 Industry 55.9%

    E-Print Network [OSTI]

    Haile, Sossina M.

    Initial Placement of BS Chemical Engineers, `00-01 Industry 55.9% Other 1.8% Graduate.8% Initial placement of Chemical Engineering Graduates, Academic Year `00-'01, AIChE Career Services Department #12;Breakdown of Industrial Employment for BS Chemical Engineers Chemical 23.3% Fuels 15

  11. High-lift chemical heat pump technologies for industrial processes

    SciTech Connect (OSTI)

    Olszewski, M.; Zaltash, A.

    1995-03-01T23:59:59.000Z

    Traditionally industrial heat pumps (IHPs) have found applications on a process specific basis with reject heat from a process being upgraded and returned to the process. The IHP must be carefully integrated into a process since improper placement may result in an uneconomic application. Industry has emphasized a process integration approach to the design and operation of their plants. Heat pump applications have adopted this approach and the area of applicability was extended by utilizing a process integrated approach where reject heat from one process is upgraded and then used as input for another process. The DOE IHP Program has extended the process integration approach of heat pump application with a plant utility emphasis. In this design philosophy, reject heat from a process is upgraded to plant utility conditions and fed into the plant distribution system. This approach has the advantage that reject heat from any pr@s can be used as input and the output can be used at any location within the plant. Thus the approach can be easily integrated into existing industrial applications and all reject heat streams are potential targets of opportunity. The plant utility approach can not be implemented without having heat pumps with high-lift capabilities (on the order of 65{degree}C). Current heat pumps have only about half the lift capability required. Thus the current emphasis for the DOE IHP Program is the development of high lift chemical heat pumps that can deliver heat more economically to higher heat delivery temperatures. This is achieved with innovative cooling (refrigeration) and heating technologies which are based on advanced cycles and advanced working fluids or a combination of both. This paper details the plan to develop economically competitive, environmentally acceptable heat pump technologies that are capable of providing the delivery temperature and lift required to supply industrial plant utility-grade process heating and/or cooling.

  12. AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report

    SciTech Connect (OSTI)

    Petersen, G.; Bair, K.; Ross, J. [eds.

    1994-03-01T23:59:59.000Z

    The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

  13. Membrane-Organized Chemical Photoredox Systems

    SciTech Connect (OSTI)

    Hurst, James K.

    2014-09-18T23:59:59.000Z

    This project has three interrelated goals relevant to solar water photolysis, which are to develop: (1) vesicle-organized assemblies for H2 photoproduction that utilize pyrylium and structurally related compounds as combined photosensitizers and cyclic electroneutral transmembrane electron carriers; (2) transmembrane redox systems whose reaction rates can be modulated by light; and (3) homogeneous catalysts for water oxidation. . In area (1), initial efforts to photogenerate H2 from vectorially-organized vesicles containing occluded colloidal Pt and commonly available pyrylium ions as transmembrane redox mediators were unsuccessful. New pyrylium compounds with significantly lower reduction potentials have been synthesized to address this problem, their apparent redox potentials in functioning systems have been now evaluated by using a series of occluded viologens, and H2 photoproduction has been demonstrated in continuous illumination experiments. In area (2), spirooxazine-quinone dyads have been synthesized and their capacity to function as redox mediators across bilayer membranes has been evaluated through continuous photolysis and transient spectrophotometric measurements. Photoisomerization of the spiro moiety to the ring-open mero form caused net quantum yields to decrease significantly, providing a basis for photoregulation of transmembrane redox. Research on water oxidation (area 3) has been directed at understanding mechanisms of catalysis by cis,cis-[(bpy)2Ru(OH2)]2O4+ and related polyimine complexes. Using a variety of physical techniques, we have: (i) identified the redox state of the complex ion that is catalytically active; (ii) shown using 18O isotopic labeling that there are two reaction pathways, both of which involve participation of solvent H2O; and (iii) detected and characterized by EPR and resonance Raman spectroscopies new species which may be key intermediates in the catalytic cycle.

  14. Sponsors of CIEEDAC: Environment Canada, Natural Resources Canada, Canadian Industry Program for Energy Conservation, Aluminium Industry Association, Canadian Chemical Producers' Association, Canadian Electricity

    E-Print Network [OSTI]

    for Energy Conservation, Aluminium Industry Association, Canadian Chemical Producers' Association, Canadian Data: Canadian Iron and Steel and Ferro-Alloy Manufacturing Industries, published by CIEEDAC annually

  15. Reference: Dittrich, P., P. Speroni di Fenizio (2005), Chemical Organization Theory, arXiv:q-bio.MN/0501016 Chemical organization theory: Towards a theory of con-

    E-Print Network [OSTI]

    Dittrich, Peter

    2005-01-01T23:59:59.000Z

    Reference: Dittrich, P., P. Speroni di Fenizio (2005), Chemical Organization Theory, arXiv:q-bio.MN/0501016 Chemical organization theory: Towards a theory of con- structive dynamical systems Peter Dittrich. The theory consists of two parts. The first part introduces the concept of a chemical organization

  16. Organizing Global Knowledge Networks in the Electronics Industry

    E-Print Network [OSTI]

    Dedrick, Jason; Kraemer, Kenneth L; Linden, Greg; Brown, Claire; Murtha, Tom

    2007-01-01T23:59:59.000Z

    Knowledge Networks in the Electronics Industry 1 Jasonusing studies from the electronics industry. We examine theanalysis to the overall electronics industry to illustrate

  17. Boundary control for an industrial under-actuated tubular chemical reactor

    E-Print Network [OSTI]

    Boundary control for an industrial under-actuated tubular chemical reactor D. Del Vecchio a , N and studied for an industrial under-actuated tubular chemical reactor. This work presents a case-study of the performance of a decentralized versus centralized control strategy. The tubular reactor under consideration

  18. Chemical resistance determination test scheme and rating system development for industrial glove evaluation

    E-Print Network [OSTI]

    Cornils, William Joseph

    1981-01-01T23:59:59.000Z

    CHEMICAL RESISTANCE DETERMINATION TEST SCHEME AND RATING SYSTEM DEVELOPMENT FOR INDUSTRIAL GLOVE EVALUATION A Thesis by WILLIAM JOSEPH CORNILS Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1981 Major Subject: Industrial Hygiene CHEMICAL RESISTANCE DETERMINATION TEST SCHEME AND RATING SYSTEM DEVELOPMENT FOR INDUSTRIAL GLOVE EVALUATION A Thesis by WILLIAM JOSEPH CORNILS Approved...

  19. Changing Trends in the Bulk Chemicals and Pulp and Paper Industries (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    Compared with the experience of the 1990s, rising energy prices in recent years have led to questions about expectations of growth in industrial output, particularly in energy-intensive industries. Given the higher price trends, a review of expected growth trends in selected industries was undertaken as part of the production of Annual Energy Outlook 2005 (AEO). In addition, projections for the industrial value of shipments, which were based on the Standard Industrial Classification (SIC) system in AEO2004, are based on the North American Industry Classification System (NAICS) in AEO2005. The change in industrial classification leads to lower historical growth rates for many industrial sectors. The impacts of these two changes are highlighted in this section for two of the largest energy-consuming industries in the U.S. industrial sector-bulk chemicals and pulp and paper.

  20. Apparatus for sensing volatile organic chemicals in fluids

    DOE Patents [OSTI]

    Hughes, Robert C.; Manginell, Ronald P.; Jenkins, Mark W.; Kottenstette, Richard; Patel, Sanjay V.

    2005-06-07T23:59:59.000Z

    A chemical-sensing apparatus is formed from the combination of a chemical preconcentrator which sorbs and concentrates particular volatile organic chemicals (VOCs) and one or more chemiresistors that sense the VOCs after the preconcentrator has been triggered to release them in concentrated form. Use of the preconcentrator and chemiresistor(s) in combination allows the VOCs to be detected at lower concentration than would be possible using the chemiresistor(s) alone and further allows measurements to be made in a variety of fluids, including liquids (e.g. groundwater). Additionally, the apparatus provides a new mode of operation for sensing VOCs based on the measurement of decay time constants, and a method for background correction to improve measurement precision.

  1. Profile of the chemicals industry in California: Californiaindustries of the future program

    SciTech Connect (OSTI)

    Galitsky, Christina; Worrell, Ernst

    2004-06-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Office of Industrial Technologies (OIT) established the Industries of the Future (IOF) program to increase energy efficiency, reduce waste production and to improve competitiveness, currently focusing on nine sectors. The IOF is a partnership strategy involving industry, the research community and the government, working together to identify technology needs, promote industrial partnerships and implement joint measures with all partners involved. The State Industries of the Future (SIOF) program delivers the accomplishments of the national Industries of the Future strategy to the local level, to expand the technology opportunities to a larger number of partners and reach smaller businesses and manufacturers that were not initially involved in the IOF effort. The state programs bring together industry, academia, and state agencies to address the important issues confronting industry in the state. These public-private coalitions facilitate industry solutions locally and enhance economic development. California has started a State Industries of the Future effort, in collaboration with the U.S. Department of Energy. The California Energy Commission (CEC) is leading the SIOF program in California, as part of many other programs to improve the energy efficiency and performance of industries in California. The California State IOF program aims to build a network of participants from industry, academia and government in four selected industrial sectors as a basis for the development of a strategic partnership for industrial energy efficient technology in the state. In California the IOF effort focuses petroleum refining, chemical processing, food processing and electronics. As part of this effort, the SIOF program will develop roadmaps for technology development for the selected sectors. On the basis of the roadmap, the program will develop successful projects with co-funding from state and federal government, and promote industry-specific energy-efficiency. An important element of the SIOF-program is the preparation of R&D roadmaps for each of the selected industries. The roadmap will help to identify priority needs for the participating industries to meet their energy challenges. The roadmap effort builds on the roadmaps developed by DOE, and on the conditions specific for the industry in California. Key to the successful preparation of a roadmap in the selected industries is the development of a profile of the industries. The profile provides a basis for the participants in the roadmap-effort, especially as the structure of the industries in California can be different than in the nation. The sector profiles describe the current economic and energy situation of these industries in California, the processes and energy uses, and the potential future developments in each industry. The profiles are an integral part of the roadmap, to help working group partners to evaluate the industry's R&D needs for their industry in California. In this report, we focus on the chemicals industry. The industry is an important economic factor in the state, providing over 82,300 jobs directly, and more in indirect employment. Value of shipments in 2001 was just under $25.7 Billion, or 6% of all manufacturing in California. There are over 1,500 chemical plants in California, of which 52% are pharmaceutical companies. Many companies operate chemical plants in California. The industry consumes 8% of the electricity and 5% of the natural gas in California. In this report, we start with a description of the chemical industry in the United States and California. This is followed by a discussion of the energy consumption and energy intensity of the Californian chemical industry. Chapter 3 focuses on the main sub-sectors. For each of the sub-sectors a general process description is provided in Chapter 4. Based on this analysis, in Chapter 5, we discuss potential technology developments that can contribute to further improving the energy efficiency in chemical plants, with a focus on the situation in California.

  2. Charge transport and chemical sensing properties of organic thin-films

    E-Print Network [OSTI]

    Yang, Dengliang

    2007-01-01T23:59:59.000Z

    low Drift in Organic Thin-film Transistor Chemical Sensors”,emitting diodes and thin-film transistors. The electricalLOW DRIFT IN ORGANIC THIN-FILM TRANSISTOR CHEMICAL SENSORS

  3. Organic Rankine Cycles for the Petro-Chemical Industry

    E-Print Network [OSTI]

    Rose, R. K.; Colosimo, D. D.

    1979-01-01T23:59:59.000Z

    and economically convert this type of heat flow into useful power. The system under development by MTI is one based on a conventional fluorocarbon refrigerant to generate a nominal 1000 kW from typical liquid and vapor streams in the process plant. The 220 F...

  4. A Case Study of Chemical Organization Theory Applied to Virus Dynamics

    E-Print Network [OSTI]

    Dittrich, Peter

    A Case Study of Chemical Organization Theory Applied to Virus Dynamics Naoki Matsumaru1 , Pietro, Venezia, Italia * corresponding author Abstract. Chemical organization theory has been proposed to provide and Horn [10]. Here, we introduce chemical organization theory [11, 12] as another method to analyse

  5. Developing system-based leading indicators for proactive risk management in the chemical processing industry

    E-Print Network [OSTI]

    Khawaji, Ibrahim A. (Ibrahim Abdullah)

    2012-01-01T23:59:59.000Z

    The chemical processing industry has faced challenges with achieving improvements in safety performance, and accidents continue to occur. When accidents occur, they usually have a confluence of multiple factors, suggesting ...

  6. Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial

    E-Print Network [OSTI]

    Boyer, Edmond

    Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial ainsi que des exemples d'applications industrielles. Abstract -- Transformation of Sorbitol to Biofuels and biodiesel production led to first generation biofuels. Nowadays, research is focused on lignocellulosic

  7. The Quantitative Assessment of Risk Caused By Fire and Explosion in Chemical Process Industry

    E-Print Network [OSTI]

    Boyer, Edmond

    The Quantitative Assessment of Risk Caused By Fire and Explosion in Chemical Process Industry Farid by the domino effect are the most destructive accidents related to industrial plants. Fire and explosion; Quantitative risk assessment; Explosions; Fires; Storage areas. 1. Introduction The accidents caused

  8. Industry - Specific Energy Conservation Opportunities in Chemical Plants

    E-Print Network [OSTI]

    McBride, R. B.

    1979-01-01T23:59:59.000Z

    During the second and third quarters of 1978, the process design function of Union Carbide's Chemicals and Plastics Division's Engineering Department prepared project energy statements for eight major capital projects. These eight statements listed...

  9. An internship in the agricultural chemical industry: Miles Inc.

    E-Print Network [OSTI]

    Adams, Sharla K

    1994-01-01T23:59:59.000Z

    in Arlington. They beat the Yankees 10 to 9. 6/8 CONTACTS: Dennis Horak, Mike McGinn (Boyce Gin, Waxahachie), Mrs. Roebuck (Roebuck Grain), Dwight Duncan (Avalon), Glenn Sheppard (Helena, Italy), Ted Moore (Williams Gin, Frost), Jerry George (Terra... Divin next week. 6/10 CONTACTS: Ronnie Smith (Terra, Waco), Estes Chemical (Waco), Terry Mechell (CVC, Elm Mott), T. M. Harper (Palmer) Barry Adams (Rocket). RE~S: Dropped off pheremone for Ronnie, met the guys at Estes, took Terry to lunch, put up 3...

  10. Technical & Biosystems Engineering, Industrial Technology, and Packaging Services Organizations Hiring Students in Technical & Biosystems Engineering, Industrial Technology, and Packaging

    E-Print Network [OSTI]

    Faurecia FCA Packaging Fischer Controls Fusion PKG Gavilon, LLC General Motors George W. Auch Geotex,000 57,000 12 Engineer, General 56,513 33,000 80,000 34 Equipment Test Technician 46,000 32,000 60,000 510 Technical & Biosystems Engineering, Industrial Technology, and Packaging Services Organizations

  11. Improving Process Control Immunity to Supply Voltage Sags in Petroleum and Chemical Industries

    E-Print Network [OSTI]

    Mansoor, A.; Dorr, D.; Olson, G.

    IMPROVING PROCESS CONTROL IMMUNITY TO SUPPLY VOLTAGE SAGS IN PETROLEUM AND CHEMICAL INDUSTRIES Douglas Dorr and Arshad Mansoor EPRI Power Electronics Applications Center Knoxville, TN ABSTRACT In the modem industrial facility, many... by EPRI's Power Quality Test Facility clearly shows that CVT's are an excellent solution for voltage sag problems when they are sized properly. The optimum sizing is achieved when the CVT is loaded to no more than about 40 Figure 3. Batteryless UPS...

  12. Industrially challenging separations via adsorption in metal-organic frameworks : a computational exploration 

    E-Print Network [OSTI]

    Lennox, Matthew James

    2015-06-29T23:59:59.000Z

    In recent years, metal-organic frameworks (MOFs) have been identified as promising adsorbents in a number of industrially relevant, yet challenging, separations, including the removal of propane from propane/propylene ...

  13. "On a Level with Dentists?" Reflections on the Evolution of Industrial Organization

    E-Print Network [OSTI]

    Schmalensee, Richard

    This essay provides a brief overview of the evolution of the field of industrial organization from its emergence to the present, and it offers some observations about the present state of the field. While there has been ...

  14. The aging of organic aerosol in the atmosphere : chemical transformations by heterogeneous oxidation

    E-Print Network [OSTI]

    Kessler, Sean Herbert

    2013-01-01T23:59:59.000Z

    The immense chemical complexity of atmospheric organic particulate matter ("aerosol") has left the general field of condensed-phase atmospheric organic chemistry relatively under-developed when compared with either gas-phase ...

  15. Biotechnology Industry Organization 1201 Maryland Avenue SW, Suite 900

    E-Print Network [OSTI]

    -- often referred to as biobased products -- are virtually the same as their petroleum-based counterparts instead of petroleum. Biobased products can supplement or replace a wide variety of petroleum petroleum deriva- tive industries1 . As production moved to other countries, so did jobs. Total U

  16. Adapting to contradiction : competing models of organization in the United States organic foods industry

    E-Print Network [OSTI]

    Haedicke, Michael Anthony

    2008-01-01T23:59:59.000Z

    Social movements and organization theory (pp. 4-40). NewSocial movements and organization theory (pp. 41-68).Social movements and organization theory (pp. 351-365). New

  17. Benzene is an important industrial chemical (> 2 billion gallons produced annually in the

    E-Print Network [OSTI]

    California at Berkeley, University of

    Benzene is an important industrial chemical (> 2 billion gallons produced annually in the United leukemia (Snyder 2002). However, the mechanisms of benzene-induced hematotoxicity and leukemo- genesis further light on these mechanisms and better understand the risk benzene poses, we examined the effects

  18. APPLICATION OF STIR BAR SORPTIVE EXTRACTION TO ANALYSIS OF VOLATILE AND SEMIVOLATILE ORGANIC CHEMICALS OF POTENTIAL CONCERN IN SOLIDS AND AQUEOUS SAMPLES FROM THE HANFORD SITE

    SciTech Connect (OSTI)

    FRYE JM; KUNKEL JM

    2009-03-05T23:59:59.000Z

    Stir bar sorptive extraction was applied to aqueous and solid samples for the extraction and analysis of organic compounds from the Hanford chemicals of potential concern list, as identified in the vapor data quality objectives. The 222-S Laboratory analyzed these compounds from vapor samples on thermal desorption tubes as part of the Hanford Site industrial hygiene vapor sampling effort.

  19. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01T23:59:59.000Z

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  20. United Nations Industrial Development Organization (UNIDO) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtleCooperative Place: Beaver Dam,

  1. Energy use and energy intensity of the U.S. chemical industry

    SciTech Connect (OSTI)

    Worrell, E.; Phylipsen, D.; Einstein, D.; Martin, N.

    2000-04-01T23:59:59.000Z

    The U.S. chemical industry is the largest in the world, and responsible for about 11% of the U.S. industrial production measured as value added. It consumes approximately 20% of total industrial energy consumption in the U.S. (1994), and contributes in similar proportions to U.S. greenhouse gas emissions. Surprisingly, there is not much information on energy use and energy intensity in the chemical industry available in the public domain. This report provides detailed information on energy use and energy intensity for the major groups of energy-intensive chemical products. Ethylene production is the major product in terms of production volume of the petrochemical industry. The petrochemical industry (SIC 2869) produces a wide variety of products. However, most energy is used for a small number of intermediate compounds, of which ethylene is the most important one. Based on a detailed assessment we estimate fuel use for ethylene manufacture at 520 PJ (LHV), excluding feedstock use. Energy intensity is estimated at 26 GJ/tonne ethylene (LHV), excluding feedstocks.The nitrogenous fertilizer production is a very energy intensive industry, producing a variety of fertilizers and other nitrogen-compounds. Ammonia is the most important intermediate chemical compound, used as basis for almost all products. Fuel use is estimated at 268 PJ (excluding feedstocks) while 368 PJ natural gas is used as feedstock. Electricity consumption is estimated at 14 PJ. We estimate the energy intensity of ammonia manufacture at 39.3 GJ/tonne (including feedstocks, HHV) and 140 kWh/tonne, resulting in a specific primary energy consumption of 40.9 GJ/tonne (HHV), equivalent to 37.1 GJ/tonne (LHV). Excluding natural gas use for feedstocks the primary energy consumption is estimated at 16.7 GJ/tonne (LHV). The third most important product from an energy perspective is the production of chlorine and caustic soda. Chlorine is produced through electrolysis of a salt-solution. Chlorine production is the main electricity consuming process in the chemical industry, next to oxygen and nitrogen production. We estimate final electricity use at 173 PJ (48 TWh) and fuel use of 38 PJ. Total primary energy consumption is estimated at 526 PJ (including credits for hydrogen export). The energy intensity is estimated at an electricity consumption of 4380 kWh/tonne chlorine and fuel consumption of 3.45 GJ/tonne chlorine, where all energy use is allocated to chlorine production. Assuming an average power generation efficiency of 33% the primary energy consumption is estimated at 47.8 GJ/tonne chlorine (allocating all energy use to chlorine).

  2. Final Report - Chemical Industry Corrosion Management - A Comprehensive Information System (ASSET 2)

    SciTech Connect (OSTI)

    Randy C. John, Arthur L. Young, Arthur D. Pelton, William T. Thompson adn Ian G. Wright

    2008-10-10T23:59:59.000Z

    The research sponsored by this project has greatly expanded the ASSET corrosion prediction software system to produce a world-class technology to assess and predict engineering corrosion of metals and alloys corroding by exposure to hot gases. The effort included corrosion data compilation from numerous industrial sources and data generation at Shell Oak Ridge National Laboratory and several other companies for selected conditions. These data were organized into groupings representing various combinations of commercially available alloys and corrosion by various mechanisms after acceptance via a critical screening process to ensure the data were for alloys and conditions, which were adequately well defined, and of sufficient repeatability. ASSET is the largest and most capable, publicly-available technology in the field of corrosion assessment and prediction for alloys corroding by high temperature processes in chemical plants, hydrogen production, energy conversion processes, petroleum refining, power generation, fuels production and pulp/paper processes. The problems addressed by ASSET are: determination of the likely dominant corrosion mechanism based upon information available to the chemical engineers designing and/or operating various processes and prediction of engineering metal losses and lifetimes of commercial alloys used to build structural components. These assessments consider exposure conditions (metal temperatures, gas compositions and pressures), alloy compositions and exposure times. Results of the assessments are determination of the likely dominant corrosion mechanism and prediction of the loss of metal/alloy thickness as a function of time, temperature, gas composition and gas pressure. The uses of these corrosion mechanism assessments and metal loss predictions are that the degradation of processing equipment can be managed for the first time in a way which supports efforts to reduce energy consumption, ensure structural integrity of equipment with the goals to avoid premature failure, to quantitatively manage corrosion over the entire life of high temperature process equipment, to select alloys for equipment and to assist in equipment maintenance programs. ASSET software operates on typical Windows-based (Trademark of Microsoft Corporation) personal computers using operating systems such as Windows 2000, Windows NT and Vista. The software is user friendly and contains the background information needed to make productive use of the software in various help-screens in the ASSET software. A graduate from a university-level curriculum producing a B.S. in mechanical/chemical/materials science/engineering, chemistry or physics typically possesses the background required to make appropriate use of ASSET technology. A training/orientation workshop, which requires about 3 hours of class time was developed and has been provided multiple times to various user groups of ASSET technology. Approximately 100 persons have been trained in use of the technology. ASSET technology is available to about 65 companies representing industries in petroleum/gas production and processing, metals/alloys production, power generation, and equipment design.

  3. Degradation of organic chemicals with titanium ceramic membranes

    DOE Patents [OSTI]

    Anderson, Marc A. (Madison, WI); Tunesi, Simonetta (Madison, WI); Xu, Qunyin (Madison, WI)

    1991-01-01T23:59:59.000Z

    Complex organic molecules, such as polychlorinated biphenyls can be degraded on porous titanium ceramic membranes by photocatalysis under ultraviolet light.

  4. applying organic chemicals: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: .edu; cheriek@us.ibm.com Shrinking the device dimensions of polycrystalline thin film organic transistors films were formed by first spin-coating and then thermally...

  5. Degradation of organic chemicals with titanium ceramic membranes

    DOE Patents [OSTI]

    Anderson, M.A.; Tunesi, S.; Xu, Q.

    1991-07-30T23:59:59.000Z

    Complex organic molecules, such as polychlorinated biphenyls can be degraded on porous titanium ceramic membranes by photocatalysis under ultraviolet light. 3 figures.

  6. Frequently Asked Questions about Organic Food The organic food industry is one of the fastest growing markets in the U.S. With the

    E-Print Network [OSTI]

    Frequently Asked Questions about Organic Food The organic food industry is one of the fastest growing markets in the U.S. With the establishment of organic food standards by the U.S. Department choosing organic food, know the answers to consumer's most frequently asked questions. Q: What is meant

  7. Polymer and carbon nanotube materials for chemical sensors and organic electronics

    E-Print Network [OSTI]

    Wang, Fei, Ph. D. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    This thesis details the development of new materials for high-performance chemical sensing as well as organic electronic applications. In Chapter 2, we develop a chemiresistive material based on single-walled carbon nanotubes ...

  8. Chemical characterization of dissolved organic matter (DOM) in seawater : structure, cycling, and the role of biology

    E-Print Network [OSTI]

    Quan, Tracy M. (Tracy Michelle), 1977-

    2005-01-01T23:59:59.000Z

    The goal of this thesis is to investigate three different areas relating to the characterization of dissolved organic matter (DOM): further determination of the chemical compounds present in high molecular weight DOM ...

  9. Analysis of the atmospheric distribution, sources, and sinks of oxygenated volatile organic chemicals based on

    E-Print Network [OSTI]

    Jacob, Daniel J.

    chemicals based on measurements over the Pacific during TRACE-P H. B. Singh,1 L. J. Salas,1 R. B. Chatfield measurements of a large number of oxygenated volatile organic chemicals (OVOC) were carried out in the Pacific of OVOC is comparable to that of methane and far exceeds that of NMHC. A comparison of these data

  10. Organic chemical aging mechanisms: An annotated bibliography. Waste Tank Safety Program

    SciTech Connect (OSTI)

    Samuels, W.D.; Camaioni, D.M.; Nelson, D.A.

    1993-09-01T23:59:59.000Z

    An annotated bibliography has been compiled of the potential chemical and radiological aging mechanisms of the organic constituents (non-ferrocyanide) that would likely be found in the UST at Hanford. The majority of the work that has been conducted on the aging of organic chemicals used for extraction and processing of nuclear materials has been in conjunction with the acid or PUREX type processes. At Hanford the waste being stored in the UST has been stabilized with caustic. The aging factors that were used in this work were radiolysis, hydrolysis and nitrite/nitrate oxidation. The purpose of this work was two-fold: to determine whether or not research had been or is currently being conducted on the species associated with the Hanford UST waste, either as a mixture or as individual chemicals or chemical functionalities, and to determine what areas of chemical aging need to be addressed by further research.

  11. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    SHIP - Solar heat for industrial processes. Internationalsolar power could be used to provide process heat for

  12. High-Resolution Desorption Electrospray Ionization Mass Spectrometry for Chemical Characterization of Organic Aerosols

    SciTech Connect (OSTI)

    Laskin, Julia; Laskin, Alexander; Roach, Patrick J.; Slysz, Gordon W.; Anderson, Gordon A.; Nizkorodov, Serguei; Bones, David L.; Nguyen, Lucas

    2010-03-01T23:59:59.000Z

    Characterization of the chemical composition and chemical transformations of secondary organic aerosol (SOA) is both a major challenge and the area of greatest uncertainty in current aerosol research. This study presents the first application of desorption electrospray ionization combined with high-resolution mass spectrometry (DESI-MS) for detailed chemical characterization and studies of chemical aging of OA collected on Teflon substrates. DESI-MS offers unique advantages both for detailed characterization of chemically labile components in OA that cannot be detected using more traditional electrospray ionization mass spectrometry (ESI-MS) and for studying chemical aging of OA. DESI-MS enables rapid characterization of OA samples collected on substrates by eliminating the sample preparation stage. In addition, it enables detection and structural characterization of chemically labile molecules in OA samples by minimizing the residence time of analyte in the solvent. SOA produced by the ozonolysis of limonene (LSOA) was allowed to react with gaseous ammonia. Chemical aging resulted in measurable changes in the optical properties of LSOA observed using UV- visible spectroscopy. DESI-MS combined with tandem mass spectrometry experiments (MS/MS) enabled identification of species in aged LSOA responsible for absorption of the visible light. Detailed analysis of the experimental data allowed us to identify chemical changes induced by reactions of LSOA constituents with ammonia and distinguish between different mechanisms of chemical aging.

  13. Measuring indigenous photosynthetic organisms to detect chemical warefare agents in water

    DOE Patents [OSTI]

    Greenbaum, Elias; Sanders, Charlene A.

    2005-11-15T23:59:59.000Z

    A method of testing water to detect the presence of a chemical or biological warfare agent is disclosed. The method is carried out by establishing control data by providing control water containing indigenous organisms but substantially free of a chemical and a biological warfare agent. Then measuring photosynthetic activity of the control water with a fluorometer to obtain control data to compare with test data to detect the presence of the chemical or agent. The test data is gathered by providing test water comprising the same indigenous organisms as contained in the control water. Further, the test water is suspected of containing the chemical or agent to be tested for. Photosynthetic activity is also measured by fluorescence induction in the test water using a fluorometer.

  14. Volatile organic chemical emissions from carpets. Final report

    SciTech Connect (OSTI)

    Hodgson, A.T.; Wooley, J.D.; Daisey, J.M.

    1992-04-01T23:59:59.000Z

    The primary objective of this research, was to measure the emission rates of selected individual VOC, including low molecular-weight aldehydes, released by samples of four new carpets that are typical of the major types of carpets used in residences, schools and offices. The carpet samples were collected directly from the manufacturers` mills and packaged to preserve their chemical integrity. The measurements of the concentrations and emission rates of these compounds were made under simulated indoor conditions in a 20-M{sup 3} environmental chamber designed specifically for investigations of VOC. The measurements were conducted over a period of one week following the installation of the carpet samples in the chamber. Duplicate experiments were conducted for one carpet. In addition, the concentrations and emission rates of VOC resulting from the installation of a new carpet in a residence were measured over a period of seven weeks. The stabilities of the week-long ventilation rates and temperatures were one percent relative standard deviation. The four carpets emitted a variety of VOC, 40 of which were positively identified. Eight of these were considered to be dominant. They were (in order of chromatographic retention time) formaldehyde, vinyl acetate, 2,2,4-trimethylpentane (isooctane), 1,2-propanediol (propylene glycol), styrene, 2-ethyl-l-hexanol, 4-phenylcyclohexene (4-PCH), and 2,6 di-tert-butyl-4-methylphenol (BHT). With the exception of formaldehyde, only limited data are available on the toxicity and irritancy of these compounds at low concentrations. Therefore, it is difficult to determine at this time the potential magnitude of the health and comfort effects that may occur among the population from exposures to emissions from new carpets. The concentrations and emission rates of most compounds decreased rapidly over the first 12 h of the experiments.

  15. Document: P1332 Category: Physical Sciences, Chemical/Materials License Status: Available for licensing Texas Industry Cluster: Petroleum Refining & Chemical Products

    E-Print Network [OSTI]

    Lightsey, Glenn

    for licensing Texas Industry Cluster: Petroleum Refining & Chemical Products Lower-cost fuel cells Problem, and they offer an alternative to petroleum-burning internal combustion engines. The U.S. Environ- mental and as a replacement for off-grid small power and grid production power plants. Development Stage/IP Status Lab

  16. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    oil, starch and corn refining, since these can be a source of fuel products. The sugar cane industry

  17. Environmental impacts of petroleum production: Fate of inorganic and organic chemicals in

    E-Print Network [OSTI]

    Environmental impacts of petroleum production: Fate of inorganic and organic chemicals in produced%, respectively (1). Exploration for and production of petroleum typically involves activities such as road water from the Osage-Skiatook Petroleum Environmental Research sites, Osage County, Oklahoma Yousif K

  18. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    of its electricity requirements in the USA (US DOE, 2002)USA, where motor-driven systems account for 63% of industrial electricity

  19. Energy use and energy intensity of the U.S. chemical industry

    E-Print Network [OSTI]

    Worrell, Ernst; Phylipsen, Dian; Einstein, Dan; Martin, Nathan

    2000-01-01T23:59:59.000Z

    H.L. , et al. , 1985, “Energy Analysis of 108 IndustrialOTA), 1993. "Industrial Energy Efficiency," Washington, DC:on International Comparisons of Energy Efficiency in the

  20. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    Air bottoming cycle Black liquor gasification combined cycleCEPI, 2001), and that use continues to grow. Black liquorgasification: Black liquor is the residue from chemical

  1. Carbon emissions reduction potential in the US chemicals and pulp and paper industries by applying CHP technologies

    SciTech Connect (OSTI)

    Khrushch, M.; Worrell, E.; Price, L.; Martin, N.; Einstein, D.

    1999-07-01T23:59:59.000Z

    The chemical and the pulp/paper industries combined provide 55% of CHP generation in the US industry. Yet, significant potential for new CHP capacities exists in both industries. From the present steam consumption data, the authors estimate about 50 GW of additional technical potential for CHP in both industries. The reduced carbon emissions will be equivalent to 44% of the present carbon emissions in these industries. They find that most of the carbon emissions reductions can be achieved at negative costs. Depending on the assumptions used in calculations, the economic potential of CHP in these industries can be significantly lower, and carbon emissions mitigation costs can be much higher. Using sensitivity analyses, they determine that the largest effect on the CHP estimate have the assumptions in the costs of CHP technology, in the assumed discount rates, in improvements in efficiency of CHP technologies, and in the CHP equipment depreciation periods. Changes in fuel and electricity prices and the growth in the industries' steam demand have less of an effect. They conclude that the lowest carbon mitigation costs are achieved with the CHP facility is operated by the utility and when industrial company that owns the CHP unit can sell extra electricity and steam to the open wholesale market. Based on the results of the analyses they discuss policy implications.

  2. Development and Field Trial of Dimpled-Tube Technology for Chemical Industry Process Heaters

    SciTech Connect (OSTI)

    Yaroslav Chudnovsky; Aleksandr Kozlov

    2006-10-12T23:59:59.000Z

    Most approaches to increasing heat transfer rates in the convection sections of gas-fired process heaters involve the incorporation of fins, baffles, turbulizers, etc. to increase either the heat transfer surface area or turbulence or both. Although these approaches are effective in increasing the heat transfer rates, this increase is invariably accompanied by an associated increase in convection section pressure drop as well as, for heaters firing ‘dirty’ fuel mixtures, increased fouling of the tubes – both of which are highly undesirable. GTI has identified an approach that will increase heat transfer rates without a significant increase in pressure drop or fouling rate. Compared to other types of heat transfer enhancement approaches, the proposed dimpled tube approach achieves very high heat transfer rates at the lowest pressure drops. Incorporating this approach into convection sections of chemical industry fired process heaters may increase energy efficiency by 3-5%. The energy efficiency increase will allow reducing firing rates to provide the required heating duty while reducing the emissions of CO2 and NOx.

  3. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    iron and steel production. IEA Greenhouse Gas R&D Programme,tempera- ture range. IEA/Caddet, Sittard, The Netherlands.industry. Cheltenham, UK, IEA Greenhouse Gas R&D Programme,

  4. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    process residual like bagasse are now available (Cornland etsugar in- dustry uses bagasse and the edible oils industrySection 7.4.7. ). The use of bagasse for energy is likely to

  5. Real-time monitoring of volatile organic compounds using chemical ionization mass spectrometry

    DOE Patents [OSTI]

    Mowry, Curtis Dale (Albuquerque, NM); Thornberg, Steven Michael (Peralta, NM)

    1999-01-01T23:59:59.000Z

    A system for on-line quantitative monitoring of volatile organic compounds (VOCs) includes pressure reduction means for carrying a gaseous sample from a first location to a measuring input location maintained at a low pressure, the system utilizing active feedback to keep both the vapor flow and pressure to a chemical ionization mode mass spectrometer constant. A multiple input manifold for VOC and gas distribution permits a combination of calibration gases or samples to be applied to the spectrometer.

  6. Incremental Integration Tools for Chemical Engineering: An Industrial Application of Triple Graph

    E-Print Network [OSTI]

    Westfechtel, Bernhard

    and the components of the chemical plant, simulation models for steady-state and dynamic simulations, etc. Design representations of a chemical plant have to be kept consistent with each other. Incremental integration tools). In chemical engineering design, a chemical plant is described from different per- spectives by a set

  7. Establishing and Implementing a Waste Minimization Program in the Chemical and Oil Industries

    E-Print Network [OSTI]

    Hollod, G. J.; Marton, R. J.

    chemicals and chemical processes, and are the best equipped to manage and reduce waste. It is the responsibility of all companies that manufacture a product or generate a waste to understand the meaning of proper waste management hierarchy, waste...

  8. Micromorphological and (bio)chemical organic matter changes in a formerly cutover peat bog : Le Russey, Jura Mountains, France.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Micromorphological and (bio)chemical organic matter changes in a formerly cutover peat bog : Le. In order to moniter peat reaccumulation and hence long-term carbon sequestration in peatlands which have ([1]). Among these indicators, it has previously been shown that physico-chemical properties of peat

  9. III-nitride quantum cascade detector grown by metal organic chemical vapor deposition

    SciTech Connect (OSTI)

    Song, Yu, E-mail: yusong@princeton.edu; Huang, Tzu-Yung; Badami, Pranav; Gmachl, Claire [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540 (United States); Bhat, Rajaram; Zah, Chung-En [Corning Incorporated, Corning, New York 14831 (United States)

    2014-11-03T23:59:59.000Z

    Quantum cascade (QC) detectors in the GaN/Al{sub x}Ga{sub 1?x}N material system grown by metal organic chemical vapor deposition are designed, fabricated, and characterized. Only two material compositions, i.e., GaN as wells and Al{sub 0.5}Ga{sub 0.5}N as barriers are used in the active layers. The QC detectors operates around 4??m, with a peak responsivity of up to ?100??A/W and a detectivity of up to 10{sup 8} Jones at the background limited infrared performance temperature around 140?K.

  10. How Soil Organic Matter Composition Controls Hexachlorobenzene-Soil-Interactions: Adsorption Isotherms and Quantum Chemical Modelling

    E-Print Network [OSTI]

    Ahmed, Ashour; Kühn, Oliver

    2013-01-01T23:59:59.000Z

    Hazardous persistent organic pollutants (POPs) interact in soil with the soil organic matter (SOM) but this interaction is insufficiently understood at the molecular level. We investigated the adsorption of hexachlorobenzene (HCB) on soil samples with systematically modified SOM. These samples included the original soil, the soil modified by adding a hot water extract (HWE) fraction (soil+3 HWE and soil+6 HWE), and the pyrolyzed soil. The SOM contents increased in the order pyrolyzed soil soil soil+3 HWE soil+6 HWE. For the latter three samples this order was also valid for the HCB adsorption. The pyrolyzed soil adsorbed more HCB than the other samples at low initial concentrations, but at higher concentrations the HCB adsorption became weaker than in the samples with HWE addition. This adsorption behaviour combined with the differences in the chemical composition between the soil samples suggested that alkylated aromatic, phenol, and lignin monomer compounds contributed most to the HC...

  11. Rate of Industrial Conservation - Petroleum Refining, Chemicals and Pulp and Paper Manufacture

    E-Print Network [OSTI]

    Prengle, H. W. Jr.; Golden, S. A.

    1979-01-01T23:59:59.000Z

    are the goals and expectations for decreases in industrial energy use during the next 10-20 years? The specific energy consumption (SEC) of a plant or industry, measured in BTU of fuel used/ton of product produced, can be used to monitor the energy conserved...

  12. Chemical Composition of Gas-Phase Organic Carbon Emissions from Motor Vehicles and Implications for Ozone Production

    E-Print Network [OSTI]

    Cohen, Ronald C.

    Chemical Composition of Gas-Phase Organic Carbon Emissions from Motor Vehicles and Implications, United States *S Supporting Information ABSTRACT: Motor vehicles are major sources of gas-phase organic the two methods except for products of incomplete combustion, which are not present in uncombusted fuels

  13. Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics (SMC'97) . Orlando, FL . Oct. 1215, 1997 DATA REPRESENTATION AND ORGANIZATION FOR AN INDUSTRIAL MULTISENSOR

    E-Print Network [OSTI]

    Naish, Michael D.

    INTEGRATION ARCHITECTURE Michael D. Naish and Elizabeth A. Croft Industrial Automation Laboratory Department) . Orlando, FL . Oct. 12­15, 1997 DATA REPRESENTATION AND ORGANIZATION FOR AN INDUSTRIAL MULTISENSOR@mech.ubc.ca ABSTRACT An open architecture for intelligent multisensor integra­ tion in an industrial environment

  14. Benefits of Industrial Boiler Control and Economic Load Allocation at AMOCO Chemicals, Decatur, Alabama 

    E-Print Network [OSTI]

    Winter, J.

    1998-01-01T23:59:59.000Z

    The objective of this paper is to provide an overview of the economic benefits realized by Amoco's Decatur plant from the utilization of Honeywell's Industrial Boiler Control solution and Turbo Economic Load Allocation packages on an integrated four...

  15. Ways Electricity Can Be Used To Replace Fossil Fuels in The French Chemical Industry 

    E-Print Network [OSTI]

    Mongon, A.

    1982-01-01T23:59:59.000Z

    , heat pumps, filtration, electrolysis . . .) will be given. Emphasis will be put on research and development for new equipment and on the importance of good information and relationship between utilities suppliers, manufacturers and industrial consumers....

  16. Studies on the chemical synthesis and characterization of lead oxide nanoparticles with different organic capping agents

    SciTech Connect (OSTI)

    Arulmozhi, K. T., E-mail: arulsheelphy@gmail.com [Physics Wing (DDE), Annamalai University, Tamil Nadu, India - 608 002 (India); Mythili, N. [Department of Physics, Annamalai University, Tamil Nadu, India - 608 002 (India)] [Department of Physics, Annamalai University, Tamil Nadu, India - 608 002 (India)

    2013-12-15T23:59:59.000Z

    Lead oxide (PbO) nanoparticles were chemically synthesized using Lead (II) acetate as precursor. The effects of organic capping agents such as Oleic acid, Ethylene Diamine Tetra Acetic acid (EDTA) and Cetryl Tri Methyl Butoxide (CTAB) on the size and morphology of the nanoparticles were studied. Characterization techniques such as X-ray diffraction (XRD), Fourier Transform-Infrared spectroscopy (FT-IR), Photoluminescence (PL) Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive Spectroscopy (EDS) and Transmission Electron Microscopy (TEM) were used to analyse the prepared nanoparticles for their physical, structural and optical properties. The characterization studies reveal that the synthesized PbO nanoparticles had well defined crystalline structure and sizes in the range of 25 nm to 36 nm for capping agents used and 40 nm for pure PbO nanoparticles.

  17. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    SciTech Connect (OSTI)

    Apel, Eric; Emmons, L.; Karl, Thomas G.; Flocke, Frank M.; Hills, A. J.; Madronich, Sasha; Lee-Taylor, J.; Fried, Alan; Weibring, P.; Walega, J.; Richter, Dirk; Tie, X.; Mauldin, L.; Campos, Teresa; Weinheimer, Andrew J.; Knapp, David; Sive, B.; Kleinman, Lawrence I.; Springston, S.; Zaveri, Rahul A.; Ortega, John V.; Voss, Paul B.; Blake, D. R.; Baker, Angela K.; Warneke, Carsten; Welsh-Bon, Daniel; de Gouw, Joost A.; Zheng, J.; Zhang, Renyi; Rudolph, Jochen; Junkermann, W.; Riemer, D.

    2010-01-01T23:59:59.000Z

    The volatile organic compound (VOC) distribution in the Mexico City Metropolitan Area (MCMA) and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs) but with a substantial contribution from oxygenated volatile organic compounds (OVOCs), predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry) model and MOZART (Model for Ozone and Related chemical Tracers) were able to reproduce the general features of the daytime cycle of the VOC OH reactivity distribution showing that NMHCs dominate the distribution except in the afternoon hours and that the VOC OH reactivity peaks in the early morning due to high morning emissions from the city into a shallow boundary layer. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height. In addition, a plume was studied in which air was advected out of the MCMA and intercepted downwind with the DOE G1 on March 18 and the NCAR C130 one day later on March 19. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind. Ozone and many OVOCs were photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial and temporal extent of the March 19 plume and to help interpret the OH reactivity in the downwind plume. The model results generally showed good agreement with experimental results for the total VOC OH reactivity downwind and gave insight into the distributions of VOC chemical classes downwind. A box model with detailed gas phase chemistry (NCAR Master Mechanism), initialized with concentrations observed at one of the ground sites in the MCMA, was used to examine the expected evolution of specific VOCs over a 1-2 day period. The models clearly supported the experimental evidence for NMHC oxidation leading to the formation of OVOCs downwind, which then become the primary fuel for ozone production far away from the MCMA.

  18. Fabrication of the ZnO thin films using wet-chemical etching processes on application for organic light emitting diode (OLED) devices

    E-Print Network [OSTI]

    Hong, Byungyou

    - sively used in solar cells, touch panels, heat mirrors, organic electro- luminescence devices (OLED- chemical etching behaviors of ZnO films were also investigated using various chemicals. In order

  19. European Symp. on Computer Application in the Chemical Industry, Erlangen, 23-26 April, 1989

    E-Print Network [OSTI]

    Skogestad, Sigurd

    to implement. 2. Control of distillation columns as a 22 system The control system design is usually simpli ed Modelling and control of distillation columns as a 5 5 system Sigurd Skogestad Chemical Engineering Distillation columns may be viewed as a 5 5 plant. The optimal controller should, based on all available

  20. European Symp. on Computer Application in the Chemical Industry, Erlangen, 23 26 April, 1989

    E-Print Network [OSTI]

    Skogestad, Sigurd

    not be possible to implement. 2. Control of distillation columns as a 2 \\Theta 2 system The control system design Modelling and control of distillation columns as a 5 \\Theta 5 system Sigurd Skogestad Chemical Engineering Summary Distillation columns may be viewed as a 5 \\Theta 5 plant. The optimal controller should, based

  1. Potential for Energy Efficient Motors and Variable Speed Drives in the Petroleum and Chemical Industry

    E-Print Network [OSTI]

    Fendley, K. A.; Pillay, P.

    This paper presents an in-depth survey of motors in a refinery and a chemical plant. The potential for energy and demand savings is then determined and hence the dollar savings using a sliding rate structure currently applicable to the petrochemical...

  2. Improving Cooling System Immunity Supply Voltage Sags in Petroleum and Chemical Industries

    E-Print Network [OSTI]

    Dorr, D. S.

    , it is often an overlooked component in the power quality investigation. The cooling process generally consists of a series of pumps, fans and cooling towers with various controls for temperature and flow rate. The EPRI PEAC Corporation Knoxville, TN... the Twenty-second National Industrial Energy Technology Conference, Houston, TX, April 5-6, 2000 EPRI PEAC BRIEF 46 EXCERPT 3 WlRE CONTROL WITH FUSED CONTROL CIRCUIT TRANSFORMER Background AND CONTROL RELAY Relays, contactors, and motor starters are used...

  3. Risk Measures Constituting Risk Metrics for Decision Making in the Chemical Process Industry 

    E-Print Network [OSTI]

    Prem, Katherine

    2012-02-14T23:59:59.000Z

    risk assessment methods for the safety design measures based on a feedback system of using fault tree for credible accidents. Hasle, Kjelle`n and Haugerud (2008) indicate that the Norwegian offshore facilities have the most experience and know...-how in preventing accidents through the design and implementation of good QRA methodologies. Hasle et al. study the principles used by the industry at different phases of design in two ways, namely, the human centered and the energy barrier perspectives...

  4. Thermoelectric properties of lattice-matched AlInN alloy grown by metal organic chemical vapor deposition

    E-Print Network [OSTI]

    Gilchrist, James F.

    Thermoelectric properties of lattice-matched AlInN alloy grown by metal organic chemical vapor Seebeck coefficient and resistance measurement system for thermoelectric materials in the thin disk geometry Rev. Sci. Instrum. 83, 025101 (2012) High-temperature thermoelectric properties of Cu1­xInTe2

  5. The Development of Dynamic Operational Risk Assessment in Oil/Gas and Chemical Industries

    E-Print Network [OSTI]

    Yang, Xiaole

    2011-08-08T23:59:59.000Z

    by regulations for the use and execution of risk analysis in 1991[16]. QRA became an official requirement for offshore after the Piper Alpha platform disaster that took place in 1988. Lord Cullen in his report recommended QRA as a technique to provide a... than 500,000 people to MIC and other chemicals. It killed at least 3,800 people and caused significant morbidity and premature death for many thousands more. An explosion and resulting fire in the Piper Alpha disaster[4] destroyed the oil production...

  6. A study of chemicals as potential health hazards in the manufacturing industries of Arkansas

    E-Print Network [OSTI]

    Franks, Roye Wendell

    1940-01-01T23:59:59.000Z

    ~ or cuucacxco? tho oreetce Kittxe RaeTc CLeabor of Camoroec. tha krimucan ~eal ~e end ~ the ynhiio houltb ysruannul ia tho health unite of tbo etuto~ ~~so coeds sore- eo~ into industry groans es uoud bF tho Vaktud Gtetoe Bureau of- Canaan, ead groayo oaittod... of tks crcacc in the acnnin8 inansXxge GiXSP fixe Csnnins fsctoxios, , . occrlopio8 @gl puxscns ocxo oaxlrcpoae fg Re 4@5 PeyQatian Canaan fi8aXO Of gpQ, @OXhgm in tha ckuteXkila fna- XOXCOS On@ ~ ~ nnlSX cdanufaahqXin8 Je@uhXiae~ hns bann OXnno fa...

  7. Unrestricted. Siemens AG 2013. All rights reserved.Page 2 October 2013 Corporate Technology Siemens is organized in 4 Sectors: Industry,

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    · Smart Grid · Building Technologies · Osram 2) Corporate functions Corporate Technology Corp. Finance Siemens is organized in 4 Sectors: Industry, Energy, Healthcare and Infrastructure & Cities Siemens: Facts ... Corp. Technology Corp. Development Infrastructure & Cities HealthcareEnergyIndustry ~ 14 bn.1) ~ 18 bn

  8. Improvement of charge injection efficiency in organic-inorganic hybrid solar cells by chemical modification of metal oxides with organic molecules

    SciTech Connect (OSTI)

    Kudo, Naomi; Honda, Satoshi; Shimazaki, Yuta; Ohkita, Hideo; Ito, Shinzaburo; Benten, Hiroaki [Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510 (Japan); International Innovation Center, Kyoto University, Katsura, Nishikyo, Kyoto 615-8520 (Japan)

    2007-04-30T23:59:59.000Z

    The effect of chemical modification of metal oxide surface with dye molecules in organic-inorganic hybrid solid solar cells was studied by using double layered cells consisting of poly(3-hexylthiophene) (P3HT) and a flat layer of dense TiO{sub 2}. The external quantum efficiency of the chemically modified cell was nearly double that expected from the photosensitizing effect of the dye molecules. The additional increase shows that the chemical modification with dye molecules can serve not only as a photosensitizer but mainly as an energy funnel and/or an electronic mediator to significantly improve the electron injection efficiency from P3HT to TiO{sub 2}.

  9. The Northwest Infrared (NWIR) gas-phase spectral database of industrial and environmental chemicals: Recent updates

    SciTech Connect (OSTI)

    Brauer, Carolyn S.; Johnson, Timothy J.; Blake, Thomas A.; Sharpe, Steven W.; Sams, Robert L.; Tonkyn, Russell G.

    2014-05-22T23:59:59.000Z

    With continuing improvements in both standoff- and point-sensing techniques, there is an ongoing need for high-quality infrared spectral databases. The Northwest Infrared Database (NWIR) contains quantitative, gas-phase infrared spectra of nearly 500 pure chemical species that can be used for a variety of applications such as atmospheric monitoring, biomass burning studies, etc. The data, recorded at 0.1 cm-1 resolution, are pressure broadened to one atmosphere (N2) in order to mimic atmospheric conditions. Each spectrum is a composite composed of multiple individual measurements. Recent updates to the database include over 60 molecules that are known or suspected biomass-burning effluents. Examples from this set of measurements will be presented and experimental details will be discussed in the context of the utility of NWIR for environmental applications.

  10. Realistic Industrial Scale Energy Optimization: Part I - Organizing and Executing Energy Conservation Projects

    E-Print Network [OSTI]

    Jones, W. T.

    1982-01-01T23:59:59.000Z

    With increased cost and reduced availability of energy, plant managers are reviewing their options to optimize energy utilization to reduce operating costs. This paper deals with the organization and execution of an energy conservation program which...

  11. Post-Industrial Engineering: Computer Science and the Organization of White-Collar Work, 1945-1975

    E-Print Network [OSTI]

    Mamo, Andrew Benedict

    2011-01-01T23:59:59.000Z

    automation, and industrial engineering. Looking over thePost-Industrial Engineering: Computer Science and theSpring 2011 Post-Industrial Engineering: Computer Science

  12. Post-Industrial Engineering: Computer Science and the Organization of White-Collar Work, 1945-1975

    E-Print Network [OSTI]

    Mamo, Andrew Benedict

    2011-01-01T23:59:59.000Z

    and-control, automation, and industrial engineering. LookingA Social History of Industrial Automation. New York: Oxfordthe challenges of industrial automation and the shift toward

  13. Development of the use, and approval testing of duplex stainless steel in the chemical industry

    SciTech Connect (OSTI)

    Smith, R.F. [ICI, Cleveland (United Kingdom); Pennington, A. [ICI Teesside Operations, Cleveland (United Kingdom)

    1994-12-31T23:59:59.000Z

    The application of duplex stainless steels within ICI began in the early 1970`s. At that time Langley 40V the precursor of Ferralium was being introduced into phosphoric acid production as a pump material, which gave a superior corrosion/erosion resistance compared to 316L in such hostile environments. At the same time the UNS S31500 duplex alloy was being introduced as a tube material not so much for its corrosion resistance, but to give enhanced performance over carbon steel with better resistance to chloride SCC compared with austenitic 300 series type stainless steels. Since then duplex alloys have gained increasing use as the product forms have increased and the alloys have developed. In addition to their resistance to chlorides their good corrosion resistance in difficult chemical environments has been exploited. This has necessitated ensuring that welded structures have a corrosion resistance matching the parent plate. This paper gives examples of some of the applications and the development of a test procedure based on ASTM G-48 to approve the integrity of the welds in a corrosive environment.

  14. Photocatalytic and chemical oxidation of organic compounds in supercritical carbon dioxide. Progress report for FY97

    SciTech Connect (OSTI)

    Blake, D.M.; Bryant, D.L.; Reinsch, V.

    1997-09-30T23:59:59.000Z

    'The background for the project is briefly reviewed and the work done during the nine months since funding was received is documented. Work began in January, 1997. A post doctoral fellow joined the team in April. The major activities completed this fiscal year were: staffing the project, design of the experimental system, procurement of components, assembly of the system. preparation of the Safe Operating Procedure and ES and H compliance, pressure testing, establishing data collection and storage methodology, and catalyst preparation. Objective The objective of the project is to develop new chemistry for the removal of organic contaminants from supercritical carbon dioxide. This has application in processes used for continuous cleaning and extraction of parts and waste materials. A secondary objective is to increase the fundamental understanding of photocatalytic chemistry. Cleaning and extraction using supercritical carbon dioxide (scCO{sub 2}) can be applied to the solution of a wide range of environmental and pollution prevention problems in the DOE complex. Work is being done that explores scCO{sub 2} in applications ranging from cleaning contaminated soil to cleaning components constructed from plutonium. The rationale for use of scCO{sub 2} are based on the benign nature, availability and low cost, attractive solvent properties, and energy efficient separation of the extracted solute from the solvent by moderate temperature or pressure changes. To date, R and D has focussed on the methods and applications of the extraction steps of the process. Little has been done that addresses methods to polish the scCO{sub 2} for recycle in the cleaning or extraction operations. In many applications it will be desirable to reduce the level of contamination from that which would occur at steady state operation of a process. This proposal addresses chemistry to achieve that. This would be an alternative to removing a fraction of the contaminated scCO{sub 2} for disposal and using makeup scCO{sub 2}. A chemical polishing operation can reduce the release of CO{sub 2} from the process. It can also reduce the consumption of reagents that may be used in the process to enhance extraction and cleaning. A polishing operation will also reduce or avoid formation of an additional waste stream. Photocatalytic and other photochemical oxidation chemistry have not been investigated in scCO{sub 2}. The large base of information for these reactions in water, organic solvents, or air suggest that the chemistry will work in carbon dioxide. There are compelling reasons to believe that the properties of scCO{sub 2} should increase the performance of photocatalytic chemistry over that found in more conventional fluid phases.'

  15. How to prevent a Normal Accident in a High Reliable Organisation? The art of resilience, a case study in the chemical industry.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    How to prevent a Normal Accident in a High Reliable Organisation? The art of resilience, a case.dupre@ish-lyon.cnrs.fr Abstract: The trend in France in the chemical industry following the Toulouse accident in 2001 has created the safety and accident field) some dimensions, for example the level of resilience (or reliability

  16. NREL builds community and industry support by addressing concerns voiced by key standards organizations.

    E-Print Network [OSTI]

    standards to account for materials with potential to creep. The study tested experimental materials. (February 2012)."Testing Protocol for Module Encapsulant Creep."NREL/PR-5200-54583. http organizations. Photovoltaic (PV) manufacturers in the United States test the safety of their products using

  17. The breakthrough time and permeation rate of three organic chemicals for selected glove combinations

    E-Print Network [OSTI]

    Binion, Pete Edwin

    1992-01-01T23:59:59.000Z

    rates and breakthrough times were determined for the five different glove combinations versus three test chemicals using the Miran-lA infrared analyzer in a closed loop system. The polymers tested were natural rubber (NR), polyvinyl chloride (PVC... time and permeation rate when tested against three different challenge chemicals. PVC gloves with nitrile liners appeared to provide the most protection time against breakthrough for all three chemicals. The PVC gloves showed excellent resistance...

  18. Charge transport and chemical sensing properties of organic thin-films

    E-Print Network [OSTI]

    Yang, Dengliang

    2007-01-01T23:59:59.000Z

    gate pulsing. (a) 20 minute DIMP pulses with 60 minute (i),ii). (b). Chemical response to the DIMP pulses shown in (diisopropyl methylphosphonate (DIMP), nitrobenzene (NB) and

  19. The removal kinetics of industrial organic compounds in natural and synthetic systems

    E-Print Network [OSTI]

    Petrasek, Albert Charles

    1970-01-01T23:59:59.000Z

    on the value of the 1ndependent variable, and those data in which the dependent variable 1s a function of the 1ndependent variable. This program has wide appl1cation whenever data analysis is necessary, and the volume dictates more rapid', processing.... Lineprinter 'listing of dissolved oxygen unit rate curve parameters. 131 xii LI. ST OF TABLES (CONTINUED) Table Ul-10. Computer listing of NLSS values computed from the approximation function. UI-ll. List of computed total organic carbon concentrations...

  20. The evaluation of two extraction procedures for the recovery of organic chemicals from spiked soils

    E-Print Network [OSTI]

    Huebner, Henry Joseph

    1993-01-01T23:59:59.000Z

    (a)pyrene, pentachlorophenol, and naphthalene at three concentration levels. Each test sample contained either an individual chemical or a 1: 1: I mixture of all three chemicals. Phase three consisted of extractions performed on a silt-loam soil spiked with a coal tar...

  1. ITP Chemicals: Chemical Bandwidth Study - Energy Analysis: A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Bandwidth Study - Energy Analysis: A Powerful Tool for Identifying Process Inefficiencies in the U.S. Chemical Industry, Industrial Technologies Program, DRAFT Summary...

  2. Oxidative chemical vapor deposition of semiconducting polymers and their use In organic photovoltaics

    E-Print Network [OSTI]

    Borrelli, David Christopher

    2014-01-01T23:59:59.000Z

    Organic photovoltaics (OPVs) have received significant interest for their potential low cost, high mechanical flexibility, and unique functionalities. OPVs employing semiconducting polymers in the photoactive layer have ...

  3. A study of the tropospheric oxidation of volatile organic compounds using chemical ionization mass spectrometry

    E-Print Network [OSTI]

    Broekhuizen, Keith Edward, 1974-

    2002-01-01T23:59:59.000Z

    The mechanisms and kinetics of reactions important to the troposphere have been investigated using a high pressure, turbulent, discharge-flow technique coupled to a chemical ionization mass spectrometer. The ability to ...

  4. Polymers via chemical vapor deposition and their application to organic photovoltaics

    E-Print Network [OSTI]

    Barr, Miles Clark

    2012-01-01T23:59:59.000Z

    There is emerging interest in the ability to fabricate organic photovoltaics (OPVs) on flexible, lightweight substrates, which could lower the cost of installation and enable new form factors for deployment. However, ...

  5. Oxidative and initiated chemical vapor deposition for application to organic electronics

    E-Print Network [OSTI]

    Im, Sung Gap

    2009-01-01T23:59:59.000Z

    Since the first discovery of polymeric conductors in 1977, the research area of "organic electronics" has grown dramatically. However, methods for forming thin films comprised solely of conductive polymers are limited by ...

  6. Methods of chemical analysis for organic waste constituents in radioactive materials: A literature review

    SciTech Connect (OSTI)

    Clauss, S.A.; Bean, R.M.

    1993-02-01T23:59:59.000Z

    Most of the waste generated during the production of defense materials at Hanford is presently stored in 177 underground tanks. Because of the many waste treatment processes used at Hanford, the operations conducted to move and consolidate the waste, and the long-term storage conditions at elevated temperatures and radiolytic conditions, little is known about most of the organic constituents in the tanks. Organics are a factor in the production of hydrogen from storage tank 101-SY and represent an unresolved safety question in the case of tanks containing high organic carbon content. In preparation for activities that will lead to the characterization of organic components in Hanford waste storage tanks, a thorough search of the literature has been conducted to identify those procedures that have been found useful for identifying and quantifying organic components in radioactive matrices. The information is to be used in the planning of method development activities needed to characterize the organics in tank wastes and will prevent duplication of effort in the development of needed methods.

  7. Ultra-narrow ferromagnetic resonance in organic-based thin films grown via low temperature chemical vapor deposition

    SciTech Connect (OSTI)

    Yu, H.; Harberts, M.; Adur, R.; Hammel, P. Chris; Johnston-Halperin, E., E-mail: ejh@physics.osu.edu, E-mail: epstein@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210-1117 (United States); Lu, Y. [Department of Chemistry, The Ohio State University, Columbus, Ohio 43210-1173 (United States); Epstein, A. J., E-mail: ejh@physics.osu.edu, E-mail: epstein@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210-1117 (United States); Department of Chemistry, The Ohio State University, Columbus, Ohio 43210-1173 (United States)

    2014-07-07T23:59:59.000Z

    We present the growth of thin films of the organic-based ferrimagnetic semiconductor V[TCNE]{sub x} (x???2, TCNE: tetracyanoethylene) via chemical vapor deposition. Under optimized growth conditions, we observe a significant increase in magnetic homogeneity, as evidenced by a Curie temperature above 600?K and sharp magnetization switching. Further, ferromagnetic resonance studies reveal a single resonance with full width at half maximum linewidth of 1.4?G, comparable to the narrowest lines measured in inorganic magnetic materials and in contrast to previous studies that showed multiple resonance features. These characteristics are promising for the development of high frequency electronic devices that take advantage of the unique properties of this organic-based material, such as the potential for low cost synthesis combined with low temperature and conformal deposition on a wide variety of substrates.

  8. Final Technical Report - High-Performance, Oxide-Dispersion-Strengthened Tubes for Production of Ethylene adn Other Industrial Chemicals

    SciTech Connect (OSTI)

    McKimpson, Marvin G.

    2006-04-06T23:59:59.000Z

    This project was undertaken by Michigan Technological University and Special Metals Corporation to develop creep-resistant, coking-resistant oxide-dispersion-strengthened (ODS) tubes for use in industrial-scale ethylene pyrolysis and steam methane reforming operations. Ethylene pyrolysis tubes are exposed to some of the most severe service conditions for metallic materials found anywhere in the chemical process industries, including elevated temperatures, oxidizing atmospheres and high carbon potentials. During service, hard deposits of carbon (coke) build up on the inner wall of the tube, reducing heat transfer and restricting the flow of the hydrocarbon feedstocks. About every 20 to 60 days, the reactor must be taken off-line and decoked by burning out the accumulated carbon. This decoking costs on the order of $9 million per year per ethylene plant, accelerates tube degradation, and requires that tubes be replaced about every 5 years. The technology developed under this program seeks to reduce the energy and economic cost of coking by creating novel bimetallic tubes offering a combination of improved coking resistance, creep resistance and fabricability not available in current single-alloy tubes. The inner core of this tube consists of Incoloy(R) MA956, a commercial ferritic Fe-Cr-Al alloy offering a 50% reduction in coke buildup combined with improved carburization resistance. The outer sheath consists of a new material - oxide dispersion strengthened (ODS) Alloy 803(R) developed under the program. This new alloy retains the good fireside environmental resistance of Alloy 803, a commercial wrought alloy currently used for ethylene production, and provides an austenitic casing to alleviate the inherently-limited fabricability of the ferritic Incoloy(R) MA956 core. To provide mechanical compatibility between the two alloys and maximize creep resistance of the bimetallic tube, both the inner Incoloy(R) MA956 and the outer ODS Alloy 803 are oxide dispersion strengthened materials produced using mechanical alloying technology. To minimize cost, the bimetallic tube is produced by direct powder co-extrusion. This technology has potential for domestic energy savings of up to 4.1 trillion BTU/year (4.3 x 1015J/year) and a reduction of 370,000 tons (340,000 tonnes) of CO2 emissions in short-residence-time ethylene furnaces. This represents an energy savings and CO2 emissions reduction of about 3.3%. If the technology is also applied to other types of ethylene pyrolysis furnaces, total energy savings and CO2 emissions reductions could increase by up to five times. The work involved: Developing powder and consolidation processing protocols to produce an oxide-dispersion strengthened variant of Alloy 803 exhibiting creep strength comparable to Incoloy? Alloy MA956, Developing a direct powder co-extrusion protocol for fabricating co-extruded bimetallic Incoloy? Alloy MA956 / ODS Alloy 803 tubes, Characterizing the properties of the ODS Alloy 803 material, the welding characteristics of the bimetallic tubes, and the coking characteristics of the Incoloy? MA956 alloy, and Documenting the potential energy savings and user requirements for these bimetallic pyrolysis furnace tubes. The project demonstrated that oxide dispersion strengthened Alloy 803 can be produced successfully using conventional mechanical alloying technology. The oxide dispersion strengthened bimetallic radiant coil technology explored under this program has significant potential for energy savings and productivity improvements for domestic ethylene producers. In today's competitive market, however, domestic furnace manufacturers and ethylene producers appear reluctant to pay any cost premium for higher-performance coil materials offering either higher temperature capabilities or longer service life. Interest in oxide dispersion strengthened radiant coils is likely to increase if furnace and ethylene producers begin to focus more on increasing tube wall temperatures to improve productivity.

  9. THE DIFFUSION OF VOLUNTARY INTERNATIONAL MANAGEMENT STANDARDS: RESPONSIBLE CARE, ISO 9000 and ISO 14001 IN THE CHEMICAL INDUSTRY

    E-Print Network [OSTI]

    Delmas, Magali A; Montiel, Ivan

    2007-01-01T23:59:59.000Z

    Uzbekistan Venezuela* Vietnam Yemen, Rep. Zambia # ISO14001 # ISO Chemical *Countries included in Models 4 to 62001. "International diffusion of ISO 14000 certification."

  10. Influence of Wetting and Mass Transfer Properties of Organic Chemical Mixtures in Vadose Zone Materials on Groundwater Contamination by Nonaqueous Phase Liquids

    SciTech Connect (OSTI)

    Charles J Werth; Albert J Valocchi, Hongkyu Yoon

    2011-05-21T23:59:59.000Z

    Previous studies have found that organic acids, organic bases, and detergent-like chemicals change surface wettability. The wastewater and NAPL mixtures discharged at the Hanford site contain such chemicals, and their proportions likely change over time due to reaction-facilitated aging. The specific objectives of this work were to (1) determine the effect of organic chemical mixtures on surface wettability, (2) determine the effect of organic chemical mixtures on CCl4 volatilization rates from NAPL, and (3) accurately determine the migration, entrapment, and volatilization of organic chemical mixtures. Five tasks were proposed to achieve the project objectives. These are to (1) prepare representative batches of fresh and aged NAPL-wastewater mixtures, (2) to measure interfacial tension, contact angle, and capillary pressure-saturation profiles for the same mixtures, (3) to measure interphase mass transfer rates for the same mixtures using micromodels, (4) to measure multiphase flow and interphase mass transfer in large flow cell experiments, all using the same mixtures, and (5) to modify the multiphase flow simulator STOMP in order to account for updated P-S and interphase mass transfer relationships, and to simulate the impact of CCl4 in the vadose zone on groundwater contamination. Results and findings from these tasks and summarized in the attached final report.

  11. Development of a computer-aided fault tree synthesis methodology for quantitative risk analysis in the chemical process industry 

    E-Print Network [OSTI]

    Wang, Yanjun

    2005-02-17T23:59:59.000Z

    There has been growing public concern regarding the threat to people and environment from industrial activities, thus more rigorous regulations. The investigation of almost all the major accidents shows that we could ...

  12. ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition

    SciTech Connect (OSTI)

    Xu, W.Z.; Ye, Z.Z.; Zeng, Y.J.; Zhu, L.P.; Zhao, B.H.; Jiang, L.; Lu, J.G.; He, H.P.; Zhang, S.B. [State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

    2006-04-24T23:59:59.000Z

    We report a breakthrough in fabricating ZnO homojunction light-emitting diode by metal organic chemical vapor deposition. Using NO plasma, we are able to grow p-type ZnO thin films on n-type bulk ZnO substrates. The as-grown films on glass substrates show hole concentration of 10{sup 16}-10{sup 17} cm{sup -3} and mobility of 1-10 cm{sup 2} V{sup -1} s{sup -1}. Room-temperature photoluminescence spectra reveal nitrogen-related emissions. A typical ZnO homojunction shows rectifying behavior with a turn-on voltage of about 2.3 V. Electroluminescence at room temperature has been demonstrated with band-to-band emission at I=40 mA and defect-related emissions in the blue-yellow spectrum range.

  13. The Statistical Evolution of Multiple Generations of Oxidation Products in the Photochemical Aging of Chemically Reduced Organic Aerosol

    SciTech Connect (OSTI)

    Wilson, Kevin R.; Smith, Jared D.; Kessler, Sean; Kroll, Jesse H.

    2011-10-03T23:59:59.000Z

    The heterogeneous reaction of hydroxyl radicals (OH) with squalane and bis(2-ethylhexyl) sebacate (BES) particles are used as model systems to examine how distributions of reactionproducts evolve during the oxidation of chemically reduced organic aerosol. A kinetic model of multigenerational chemistry, which is compared to previously measured (squalane) and new(BES) experimental data, reveals that it is the statistical mixtures of different generations of oxidation products that control the average particle mass and elemental composition during thereaction. The model suggests that more highly oxidized reaction products, although initially formed with low probability, play a large role in the production of gas phase reaction products.In general, these results highlight the importance of considering atmospheric oxidation as a statistical process, further suggesting that the underlying distribution of molecules could playimportant roles in aerosol formation as well as in the evolution of key physicochemical properties such as volatility and hygroscopicity.

  14. INDUSTRIAL ENGINEERING Industrial engineering is concerned

    E-Print Network [OSTI]

    INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. The focus of industrial engineering is on process improvement

  15. INDUSTRIAL ENGINEERING Industrial engineering is concerned

    E-Print Network [OSTI]

    INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. Industrial engineers design and run the factories and systems

  16. Chemical Analysis of Complex Organic Mixtures Using Reactive Nanospray Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect (OSTI)

    Laskin, Julia; Eckert, Peter A.; Roach, Patrick J.; Heath, Brandi S.; Nizkorodov, Sergey A.; Laskin, Alexander

    2012-08-21T23:59:59.000Z

    Reactive nanospray desorption electrospray ionization (nano-DESI) combined with high-resolution mass spectrometry was utilized for the analysis of secondary organic aerosol produced through ozonolysis of limonene (LSOA). Previous studies showed that LSOA constituents are multifunctional compounds containing aldehyde and ketone groups. In this study, we used the selectivity of the Girard T (GT) reagent towards carbonyl compounds to examine the utility of reactive nano-DESI for the analysis of complex organic mixtures. In these experiments, 1-100 {micro}M GT solution was used as a working solvent for reactive nano-DESI analysis. Abundant products of a single addition of GT to LSOA constituents were observed at GT concentrations in excess of 10 {micro}M. We found that LSOA compounds with 18-20 carbon atoms (dimers) and 27-30 carbon atoms (trimers) react with GT through a simple addition reaction resulting in formation of the carbinolamine derivative. In contrast, reactions of GT with monomeric species result in formation of both the carbinolamine and the hydrazone derivatives. In addition, several monomers did not react with GT on the timescale of our experiment. These molecules were characterized by relatively high values of the double bond equivalent (DBE) and low oxygen content. Furthermore, because addition of a charged GT tag to a neutral molecule eliminates the discrimination against the low proton affinity compounds in the ionization process, reactive nano-DESI analysis enables quantification of individual compounds in the complex mixture. For example, we were able to estimate for the first time the amounts of dimers and trimers in the LSOA mixture. Specifically, we found that the most abundant LSOA dimer was detected at ca. 0.5 pg level and the total amount of dimers and trimers in the analyzed sample was just around 11 pg. Our results indicate that reactive nano-DESI is a valuable approach for examining the presence of specific functional groups and quantification of compounds possessing these groups in complex mixtures.

  17. Chemical oxidation of volatile and semi-volatile organic compounds in soil

    SciTech Connect (OSTI)

    Gates, D.D.; Siegrist, R.L.; Cline, S.R.

    1995-06-01T23:59:59.000Z

    Subsurface contamination with fuel hydrocarbons or chlorinated hydrocarbons is prevalent throughout the Department of Energy (DOE) complex and in many sites managed by the Environmental Protection Agency (EPA) Superfund program. The most commonly reported chlorinated hydrocarbons (occurring > 50% of DOE contaminated sites) were trichloroethylene (TCE), 1, 1, 1,-trichloroethane (TCA), and tetrachloroethylene (PCE) with concentrations in the range of 0.2 {mu}g/kg to 12,000 mg/kg. The fuel hydrocarbons most frequently reported as being present at DOE sites include aromatic compounds and polyaromatic compounds such as phenanthrene, pyrene, and naphthalene. The primary sources of these semi-volatile organic compounds (SVOCs) are coal waste from coal fired electric power plants used at many of these facilities in the past and gasoline spills and leaks. Dense non-aqueous phase liquids (DNAPLs) can migrate within the subsurface for long periods of time along a variety of pathways including fractures, macropores, and micropores. Diffusion of contaminants in the non-aqueous, aqueous, and vapor phase can occur from the fractures and macropores into the matrix of fine-textured media. As a result of these contamination processes, removal of contaminants from the subsurface and the delivery of treatment agents into and throughout contaminated regions are often hindered, making rapid and extensive remediation difficult.

  18. Quick, portable toxicity testing of marine or terrigenous fluids, sediments, or chemicals with bioluminescent organism

    SciTech Connect (OSTI)

    Sabate, R.W.; Stiffey, A.V.; Dewailly, E.L. [Lumitox Gulf L.C., New Orleans, LA (United States)

    1995-12-31T23:59:59.000Z

    A hand-held, battery-operated instrument, which measures bioluminescence inhibition of the microscopic marine dinoflagellate Pyrocystis lunula, is capable of field-testing substances for toxicity. The organism is sensitive to ppb of strong toxicants. It tolerates some solvents in concentrations necessary for testing lipophylic samples. A test consumes only micrograms of sample. This method requires no adjustments for salinity, pH, color, or turbidity. It has been used successfully to test oil-well drilling fluids, brines produced with oil, waters and sediments from streams and lakes and petroleum-plant effluents containing contaminants such as benzene. The test is non-specific; however, if the substance is known, the end-point effects a direct measurement of its concentration. One-hour toxicity screening tests in the field produce results comparable to the standard four-hour laboratory test. Keeping the sample in the dark during incubation and testing, together with shortness of the overall procedure, eliminates anomalies from light-sensitive substances. Day-to-day variation, as well as among test replicates, is less than 10%. This quick method yields results comparable with a quick test that uses Photobacterium phosphoria, and with 96-hour tests that use Mysidopsis bahia, Artemia salina, Gonyaulax polyedra, Pimephales promelas, Ceriodaphnia dubia, and Cyprinodon variegatus.

  19. ALDEHYDE AND OTHER VOLATILE ORGANIC CHEMICAL EMISSIONS IN FOUR FEMA TEMPORARY HOUSING UNITS ? FINAL REPORT

    SciTech Connect (OSTI)

    Salazar, Olivia; Maddalena, Randy L.; Russell, Marion; Sullivan, Douglas P.; Apte, Michael G.

    2008-05-04T23:59:59.000Z

    Four unoccupied FEMA temporary housing units (THUs) were studied to assess their indoor emissions of volatile organic compounds including formaldehyde. Measurement of whole-THU VOC and aldehyde emission factors (mu g h-1 per m2 of floor area) for each of the four THUs were made at FEMA's Purvis MS staging yard using a mass balance approach. Measurements were made in the morning, and again in the afternoon in each THU. Steady-state indoor formaldehyde concentrations ranged from 378 mu g m-3 (0.31ppm) to 632 mu g m-3 (0.52 ppm) in the AM, and from 433 mu g m-3 (0.35 ppm) to 926 mu g m-3 (0.78 ppm) in the PM. THU air exchange rates ranged from 0.15 h-1 to 0.39 h-1. A total of 45 small (approximately 0.025 m2) samples of surface material, 16 types, were collected directly from the four THUs and shipped to Lawrence Berkeley Laboratory. The material samples were analyzed for VOC and aldehyde emissions in small stainless steel chambers using a standard, accurate mass balance method. Quantification of VOCs was done via gas chromatography -- mass spectrometry and low molecular weight aldehydes via high performance liquid chromatography. Material specific emission factors (mu g h-1 per m2 of material) were quantified. Approximately 80 unique VOCs were tentatively identified in the THU field samples, of which forty-five were quantified either because of their toxicological significance or because their concentrations were high. Whole-trailer and material specific emission factors were calculated for 33 compounds. The THU emission factors and those from their component materials were compared against those measured from other types of housing and the materials used in their construction. Whole THU emission factors for most VOCs were typically similar to those from comparative housing. The three exceptions were exceptionally large emissions of formaldehyde and TMPD-DIB (a common plasticizer in vinyl products), and somewhat elevated for phenol. Of these three compounds, formaldehyde was the only one with toxicological significance at the observed concentrations. Whole THU formaldehyde emissions ranged from 173 to 266 mu g m-2 h 1 in the morning and 257 to 347 mu g m-2 h-1 in the afternoon. Median formaldehyde emissions in previously studied site-built and manufactured homes were 31 and 45 mu g m-2 h-1, respectively. Only one of the composite wood materials that was tested appeared to exceed the HUD formaldehyde emission standard (430 mu g/m2 h-1 for particleboard and 130 mu g/m2 h-1 for plywood). The high loading factor (material surface area divided by THU volume) of composite wood products in the THUs and the low fresh air exchange relative to the material surface area may be responsible for the excessive concentrations observed for some of the VOCs and formaldehyde.

  20. The conversion of solar energy to the chemical energy of organic compounds is a complex process that includes electron transport and

    E-Print Network [OSTI]

    Ehleringer, Jim

    The conversion of solar energy to the chemical energy of organic compounds is a complex process energy or photon units. Irradiance is the amount of energy that falls on a flat sensor of known area per and energy units for sunlight can be intercon- verted relatively easily, provided that the wavelength

  1. Fabrication of the ZnO thin films using wet-chemical etching processes on application for organic light emitting diode (OLED) devices

    E-Print Network [OSTI]

    Boo, Jin-Hyo

    - sively used in solar cells, touch panels, heat mirrors, organic electro- luminescence devices (OLED), for example, has been commercially used in OLEDs. However, because of the cost and the scarcity of indium reactants and produce new species. Wet-chemical etching has great advantages such as low cost

  2. Chromatographic separations of soil organic matter for purposes of investigating the physico-chemical role of organic matter in soil aggregation

    E-Print Network [OSTI]

    Gerard, C. J.

    1955-01-01T23:59:59.000Z

    ....................50 CHROMATOGRAPHIC SEPARATIONS OP SOIL ORGANIC MATTER FOR PURPOSES OP INVESTIGATING THE PHYSICOCHEMICAL ROLE OP ORGANIC MATTER IN SOIL AGGREGATION INTRODUCTION In recent years soil scientists have observed that many fertile soils fail to produce yields...CHROMATOGRAPHIC SEPARATIONS OP SOIL ORGANIC MATTER POR PURPOSES OP INVESTIGATING THE PHYSICOCHEMICAL ROLE OP ORGANIC MATTER IN SOIL AGGREGATION A Dissertation *>y Cleveland Joseph Gerard May 1955 L IB R AR Y A&M COLLEGE OF TEXAS...

  3. The physical separation and recovery of metals from wastes. Process engineering for the chemical, metals and minerals industries, Volume 1

    SciTech Connect (OSTI)

    Veasey, T.J.; Wilson, R.J. (eds.) (Univ. of Birmingham (United Kingdom). School of Chemical Engineering); Squires, D.M. (ed.) (Newell Engineering Ltd., Redditch (United Kingdom))

    1993-01-01T23:59:59.000Z

    This book deals with the physical processes used for the separation of secondary metals from waste sources. The introduction briefly considers the history of the secondary metals industries, defines the terms used in materials recycling and discusses the potential for resource recovery and improved processing. A comprehensive survey is given of the unit operations employed for metals recovery and reclamation, and this is followed by detailed descriptions of processes used to treat fragmentized metal wastes and granulated metal wastes. The final chapter reviews the processing of urban wastes for metals recovery, and gives details of modern plant and practices. The volume aims to bring together technical information on metals recovery from a wide range of sources in order to give a unified review of an important engineering and environmental topic. Topics include: general definitions used in materials recycling; the potential for resource recovery; secondary metals; ranking of scrap; the potential for improved processing; comminution; physical separation methods; the scrap industry; automobile composition; shredders; non-magnetic processing; metal reclamation processes; waste tire processing; battery processing; thermal processing systems; composition of urban waste; and material recovery.

  4. The Industrial Electrification Program

    E-Print Network [OSTI]

    Harry, I. L.

    1982-01-01T23:59:59.000Z

    EPRI's role as the research organization of the electric power industry, in coordination with potential user industries, is to 1) define the viability of candidate electrification technologies by monitoring the state-of-the-art and continuously...

  5. Kent and Riegel's Handbook of industrial chemistry and biotechnology. 11th ed.

    SciTech Connect (OSTI)

    Kent, James A. (ed.)

    2007-07-01T23:59:59.000Z

    This handbook provides extensive information on plastics, rubber, adhesives, textile fibers, pharmaceutical chemistry, synthetic organic chemicals, soaps and detergents, as well as various other major classes of industrial chemistry. There is detailed coverage of coal utilization technology, dyes and dye intermediates, chlor-alkali and heavy chemicals, paints and pigments, chemical explosives, propellants, petroleum and petrochemicals, natural gas, industrial gases, synthetic nitrogen products, fats and oils, sulfur and sulfuric acid, phosphorous and phosphates, wood products, and sweeteners. The chapter on coal is entitled: coal technology for power, liquid fuels and chemicals. 100 ills.

  6. Presentations for Industry

    Broader source: Energy.gov [DOE]

    Learn energy-saving strategies from leading manufacturing companies and energy experts. The presentations are organized below by topic area. In addition, industrial energy managers, utilities, and...

  7. TREATMENT OF HYDROCARBON, ORGANIC RESIDUE AND PRODUCTION CHEMICAL DAMAGE MECHANISMS THROUGH THE APPLICATION OF CARBON DIOXIDE IN NATURAL GAS STORAGE WELLS

    SciTech Connect (OSTI)

    Lawrence J. Pekot; Ron Himes

    2004-05-31T23:59:59.000Z

    Core specimens and several material samples were collected from two natural gas storage reservoirs. Laboratory studies were performed to characterize the samples that were believed to be representative of a reservoir damage mechanism previously identified as arising from the presence of hydrocarbons, organic residues or production chemicals. A series of laboratory experiments were performed to identify the sample materials, use these materials to damage the flow capacity of the core specimens and then attempt to remove or reduce the induced damage using either carbon dioxide or a mixture of carbon dioxide and other chemicals. Results of the experiments showed that pure carbon dioxide was effective in restoring flow capacity to the core specimens in several different settings. However, in settings involving asphaltines as the damage mechanism, both pure carbon dioxide and mixtures of carbon dioxide and other chemicals provided little effectiveness in damage removal.

  8. TREATMENT OF HYDROCARBON, ORGANIC RESIDUE AND PRODUCTION CHEMICAL DAMAGE MECHANISMS THROUGH THE APPLICATION OF CARBON DIOXIDE IN NATURAL GAS STORAGE WELLS

    SciTech Connect (OSTI)

    Lawrence J. Pekot

    2004-06-30T23:59:59.000Z

    Two gas storage fields were studied for this project. Overisel field, operated by Consumer's Energy, is located near the town of Holland, Michigan. Huntsman Storage Unit, operated by Kinder Morgan, is located in Cheyenne County, Nebraska near the town of Sidney. Wells in both fields experienced declining performance over several years of their annual injection/production cycle. In both fields, the presence of hydrocarbons, organic materials or production chemicals was suspected as the cause of progressive formation damage leading to the performance decline. Core specimens and several material samples were collected from these two natural gas storage reservoirs. Laboratory studies were performed to characterize the samples that were believed to be representative of a reservoir damage mechanism previously identified as arising from the presence of hydrocarbons, organic residues or production chemicals. A series of laboratory experiments were performed to identify the sample materials, use these materials to damage the flow capacity of the core specimens and then attempt to remove or reduce the induced damage using either carbon dioxide or a mixture of carbon dioxide and other chemicals. Results of the experiments showed that pure carbon dioxide was effective in restoring flow capacity to the core specimens in several different settings. However, in settings involving asphaltines as the damage mechanism, both pure carbon dioxide and mixtures of carbon dioxide and other chemicals provided little effectiveness in damage removal.

  9. J. Environ. Monit., DOI:10.1039/C1EM10730E Polar organic chemical integrative sampler (POCIS): application for monitoring organic

    E-Print Network [OSTI]

    Boyer, Edmond

    changes in the way water management policy addresses pollution, one key trend being the continuing have been specified for priority chemical pollutants, notably with the Water Framework Directive (WFD in the thousands ­ and possibly more. Micropollutants can exert toxic effects even at very low concentrations, down

  10. Air quality model evaluation data for organics. 1. Bulk chemical composition and gas/particle distribution factors

    SciTech Connect (OSTI)

    Fraser, M.P.; Cass, G.R. [California Inst. of Technology, Pasadena, CA (United States)] [California Inst. of Technology, Pasadena, CA (United States); Grosjean, D.; Grosjean, E. [DGA, Inc., Ventura, CA (United States)] [DGA, Inc., Ventura, CA (United States); Rasmussen, R.A. [Oregon Graduate Inst. of Science and Technology, Beaverton, OR (United States)] [Oregon Graduate Inst. of Science and Technology, Beaverton, OR (United States)

    1996-05-01T23:59:59.000Z

    During the period of September 8-9, 1993, the South Coast Air Basin that surrounds Los Angeles experienced the worst photochemical smog episode in recent years; ozone concentrations exceeded 0.29 ppm 1-h average, and NO{sub 2} concentrations peaked at 0.21 ppm 1-h average. Field measurements were conducted at a five-station air monitoring network to obtain comprehensive data on the identity and concentration of the individual organic compounds present in both the gas and particle phases during that episode. The data will also serve to support future tests of air quality models designed to study organic air pollutant transport and reaction. Air samples taken in stainless steel canisters were analyzed for 141 volatile organic compounds by GC/ECD, GC/FID, and GC/MS; PAN and PPN were measured by GC/ECD; particulate organics collected by filtration were analyzed for total organics and elemental carbon by thermal evolution and combustion and for individual organic compounds by GC/ MS; semivolatile organics were analyzed by GC/MS after collection on polyurethane foam cartridges. The present paper describes this experiment and present the concentrations of major organic compound classes and their relationship to the inorganic pollutants present. 104 refs., 9 figs.

  11. Relating Aerosol Absorption due to Soot, Organic Carbon, and Dust to Emission Sources Determined from In-situ Chemical Measurements

    SciTech Connect (OSTI)

    Cazorla, Alberto; Bahadur, R.; Suski, Kaitlyn; Cahill, John F.; Chand, Duli; Schmid, Beat; Ramanathan, V.; Prather, Kimberly

    2013-09-17T23:59:59.000Z

    Estimating the aerosol contribution to the global or regional radiative forcing can take advantage of the relationship between the spectral aerosol optical properties and the size and chemical composition of aerosol. Long term global optical measurements from observational networks or satellites can be used in such studies, and using in-situ chemical mixing state measurements can help us to constrain the limitations of such an estimation. In this study, the Absorption Ångström Exponent (AAE) and the Scattering Ångström Exponent (SAE) are used to develop a new methodology for deducing chemical speciation based on wavelength dependence of the optical properties. In addition, in-situ optical properties and single particle chemical composition measured during three aircraft field campaigns are combined in order to validate the methodology for the estimation of aerosol composition using spectral optical properties. Results indicate a dominance of mixed types in the classification leading to an underestimation of the primary sources, however secondary sources are better classified. The distinction between carbonaceous aerosols from fossil fuel and biomass burning origins is not clear. On the other hand, the knowledge of the aerosol sources in California from chemical studies help to identify other misclassification such as the dust contribution.

  12. Energy Efficiency Improvement Opportunities for the Cement Industry

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    solid waste from the chemical industry, some paints, solvents and waste sludge from water treatment (

  13. Elemental diffusion during the droplet epitaxy growth of In(Ga)As/GaAs(001) quantum dots by metal-organic chemical vapor deposition

    SciTech Connect (OSTI)

    Chen, Z. B.; Chen, B.; Wang, Y. B.; Liao, X. Z., E-mail: xiaozhou.liao@sydney.edu.au [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Lei, W. [School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, WA 6009 (Australia); Tan, H. H.; Jagadish, C. [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Zou, J. [Materials Engineering and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD 4072 (Australia); Ringer, S. P. [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia)

    2014-01-13T23:59:59.000Z

    Droplet epitaxy is an important method to produce epitaxial semiconductor quantum dots (QDs). Droplet epitaxy of III-V QDs comprises group III elemental droplet deposition and the droplet crystallization through the introduction of group V elements. Here, we report that, in the droplet epitaxy of InAs/GaAs(001) QDs using metal-organic chemical vapor deposition, significant elemental diffusion from the substrate to In droplets occurs, resulting in the formation of In(Ga)As crystals, before As flux is provided. The supply of As flux suppresses the further elemental diffusion from the substrate and promotes surface migration, leading to large island formation with a low island density.

  14. Influence of vicinal sapphire substrate on the properties of N-polar GaN films grown by metal-organic chemical vapor deposition

    SciTech Connect (OSTI)

    Lin, Zhiyu; Zhang, Jincheng, E-mail: jchzhang@xidian.edu.cn; Xu, Shengrui; Chen, Zhibin; Yang, Shuangyong; Tian, Kun; Hao, Yue [Key Lab of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an, Shaanxi 710071 (China); Su, Xujun [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123 (China); Shi, Xuefang [School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi 710071 (China)

    2014-08-25T23:59:59.000Z

    The influence of vicinal sapphire substrates on the growth of N-polar GaN films by metal-organic chemical vapor deposition is investigated. Smooth GaN films without hexagonal surface feature are obtained on vicinal substrate. Transmission electron microscope results reveal that basal-plane stacking faults are formed in GaN on vicinal substrate, leading to a reduction in threading dislocation density. Furthermore, it has been found that there is a weaker yellow luminescence in GaN on vicinal substrate than that on (0001) substrate, which might be explained by the different trends of the carbon impurity incorporation.

  15. Chemical inducible promoter used to obtain transgenic plants with a silent marker and organisms and cells and methods of using same for screening for mutations

    DOE Patents [OSTI]

    Zuo, Jianru (New York, NY); Chua, Nam-Hai (Scarsdale, NY)

    2007-06-12T23:59:59.000Z

    Disclosed is a chemically inducible promoter for transforming plants or plant cells with genes which are regulatable by adding the plants or cells to a medium containing an inducer or by removing them from such medium. The promoter is inducible by a glucocorticoid, estrogen or inducer not endogenous to plants. Such promoters may be used with any plant genes that can promote shoot regeneration and development to induce shoot formation in the presence of a glucocorticoid, estrogen or inducer. The promoter may be used with antibiotic or herbicide resistance genes or other genes which are regulatable by the presence or absence of a given inducer. Also presented are organisms or cells comprising a gene wherein the natural promoter of the gene is disrupted and the gene is placed under the control of a transgenic inducible promoter. These organisms and cells and their progeny are useful for screening for conditional gain of function and loss of function mutations.

  16. Evaluation of a robust, diimide-based, porous organic polymer (POP) as a high-capacity sorbent for representative chemical

    E-Print Network [OSTI]

    -acid forming substances, while octane is used to assess physical adsorption capacity. Experiments were carried to their well-defined crystalline structure. However, many MOFs lack the chemical stability required is characterized by pores ranging in width from 3.5to8 angstroms and a total surface area of ca. 950 m2 / g (i

  17. Temperature dependent photoluminescence of lateral polarity junctions of metal organic chemical vapor deposition grown GaN

    E-Print Network [OSTI]

    Nabben, Reinhard

    implantation of Cu, Li and Ag into silicon doped GaN films grown by Metalorganic Chemical Vapor Deposition temperature (700-900°C) annealing. Low temperature (6K) photoluminescence (PL) for Cu-implanted GaN showed recovery of standard crystalline GaN features. Additional donor-acceptor pair features are observed below 3

  18. Double-sided reel-to-reel metal-organic chemical vapor deposition system of YBa{sub 2}Cu{sub 3}O{sub 7-?} thin films

    SciTech Connect (OSTI)

    Zhang, Fei; Xiong, Jie, E-mail: jiexiong@uestc.edu.cn; Liu, Xin; Zhao, Ruipeng; Zhao, Xiaohui; Tao, Bowan; Li, Yanrong [State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2014-07-01T23:59:59.000Z

    Two-micrometer thick YBa{sub 2}Cu{sub 3}O{sub 7-?} (YBCO) films have been successfully deposited on both sides of LaAlO{sub 3} single crystalline substrates by using a home-made reel-to-reel metal-organic chemical vapor deposition (MOCVD) system, which has two opposite symmetrical shower heads and a special-designed heater. This technique can simultaneously fabricate double-sided films with high deposition rate up to 500?nm/min, and lead to doubling current carrying capability of YBCO, especially for coated conductors (CCs). X-ray diffraction analysis showed that YBCO films were well crystallized and highly epitaxial with the full width at half maximum values of 0.2°???0.3° for the rocking curves of (005) YBCO and 1.0° for ?-scans of (103) YBCO. Scanning electron microscope revealed dense, crack-free, slightly rough surface with Ba-Cu-O precipitates. The films showed critical current density (J{sub c}, 77?K, 0?T) of about 1 MA/cm{sup 2}, and overall critical current of 400?A/cm, ascribed to the double-sided structure. Our results also demonstrated that the temperature and composition in the deposition zone were uniform, which made MOCVD preparation of low cost and high performance double-sided YBCO CCs more promising for industrialization.

  19. The Online Ecosystem Promoting a Healthy IT Industry Microsoft and the Ecosystem In many ways, the Internet is an ecosystem. Just as organisms in a natural ecosystem coexist in complex

    E-Print Network [OSTI]

    Narasayya, Vivek

    The Online Ecosystem Promoting a Healthy IT Industry Microsoft and the Ecosystem In many ways, the Internet is an ecosystem. Just as organisms in a natural ecosystem coexist in complex interrelationships, participants in the online ecosystem are deeply interdependent. These participants include consumers; online

  20. Integrated Finance Organization Balancing Risk and Performance with an

    E-Print Network [OSTI]

    and Petroleum Industry CFOs IBM GLOBAL BusIness seRvICes #12;Expanding the Innovation Horizon #12; Balancing of the earth's population is now engaged." ­ Ben Bernanke, Chairman, U.S. Federal Reserve, quoted in The New York Times In the globally interdependent marketplace, Chemical and Petroleum (C&P) organizations need

  1. Sponsors of CIEEDAC: Natural Resources Canada, Environment Canada, Aluminium Industry Association, Canadian Chemical Producers' Association, Canadian Foundry Association, Canadian Gas Association, Canadian Petroleum

    E-Print Network [OSTI]

    on energy in the industrial sector or publications by NRCan that reflect energy consumption in various des ressources naturelles, Québec. Ministry of Energy Mines and Petroleum Resource, BC. CIEEDAC An Inventory of Industrial Energy and Emissions Databases in Canada, 2007 Prepared for Natural Resources Canada

  2. Canada's Voluntary Industrial Energy Conservation Program

    E-Print Network [OSTI]

    Wolf, C. A., Jr.

    1980-01-01T23:59:59.000Z

    Industrial Energy Conservation in Canada is organized and promoted through a voluntary program that is administered by industry. Industry is divided into fifteen sectors, each of which is represented by a Voluntary Task Force. Information exchange...

  3. Future scenarios for green chemical supply chains

    E-Print Network [OSTI]

    Arora, Vibhu, M. Eng. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    We live in an age where industrial chemicals are central to the modem economy serving as the basis for all man-made fibers, life-science chemicals and consumer products. Owing to globalization, the industry has grown to ...

  4. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition

    SciTech Connect (OSTI)

    Dutta, P., E-mail: pdutta2@central.uh.edu; Rathi, M.; Gao, Y.; Yao, Y.; Selvamanickam, V. [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States); Zheng, N.; Ahrenkiel, P. [Department of Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701 (United States); Martinez, J. [Materials Evaluation Laboratory, NASA Johnson Space Center, Houston, Texas 77085 (United States)

    2014-09-01T23:59:59.000Z

    We demonstrate heteroepitaxial growth of single-crystalline-like n and p-type doped GaAs thin films on inexpensive, flexible, and light-weight metal foils by metal-organic chemical vapor deposition. Single-crystalline-like Ge thin film on biaxially textured templates made by ion beam assisted deposition on metal foil served as the epitaxy enabling substrate for GaAs growth. The GaAs films exhibited strong (004) preferred orientation, sharp in-plane texture, low grain misorientation, strong photoluminescence, and a defect density of ?10{sup 7?}cm{sup ?2}. Furthermore, the GaAs films exhibited hole and electron mobilities as high as 66 and 300?cm{sup 2}/V-s, respectively. High mobility single-crystalline-like GaAs thin films on inexpensive metal substrates can pave the path for roll-to-roll manufacturing of flexible III-V solar cells for the mainstream photovoltaics market.

  5. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection Obeying Environmental Laws Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the...

  6. Removal of organic and inorganic sulfur from Ohio coal by combined physical and chemical process. Final report

    SciTech Connect (OSTI)

    Attia, Y.A.; Zeky, M.El.; Lei, W.W.; Bavarian, F.; Yu, S. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1989-04-28T23:59:59.000Z

    This project consisted of three sections. In the first part, the physical cleaning of Ohio coal by selective flocculation of ultrafine slurry was considered. In the second part, the mild oxidation process for removal of pyritic and organic sulfur.was investigated. Finally, in-the third part, the combined effects of these processes were studied. The physical cleaning and desulfurization of Ohio coal was achieved using selective flocculation of ultrafine coal slurry in conjunction with froth flotation as flocs separation method. The finely disseminated pyrite particles in Ohio coals, in particular Pittsburgh No.8 seam, make it necessary to use ultrafine ({minus}500 mesh) grinding to liberate the pyrite particles. Experiments were performed to identify the ``optimum`` operating conditions for selective flocculation process. The results indicated that the use of a totally hydrophobic flocculant (FR-7A) yielded the lowest levels of mineral matters and total sulfur contents. The use of a selective dispersant (PAAX) increased the rejection of pyritic sulfur further. In addition, different methods of floc separation techniques were tested. It was found that froth flotation system was the most efficient method for separation of small coal flocs.

  7. Survey Questionnaire on Environmental Management Practices: Summary of Results by Industry and practices

    E-Print Network [OSTI]

    Delmas, Magali A; Toffel, Michael W.

    2008-01-01T23:59:59.000Z

    the majority of the automotive industry respondents haverespondents in the automotive industry have successfullyElectrical Chemicals Automotive Machinery Industry Figure 3:

  8. ITP Chemicals: Energy and Environmental Profile of the U.S. Chemical...

    Broader source: Energy.gov (indexed) [DOE]

    profilefull.pdf More Documents & Publications Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries ITP Chemicals:...

  9. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01T23:59:59.000Z

    energy efficiency in the petrochemical industry,” Chapter 3steel, petroleum and petrochemical, chemical, non-ferrousintensive process in the petrochemical industry with an

  10. Thermal treatment of organic radioactive waste

    SciTech Connect (OSTI)

    Chrubasik, A.; Stich, W. [NUKEM GmbH, Alzenau (Germany)

    1993-12-31T23:59:59.000Z

    The organic radioactive waste which is generated in nuclear and isotope facilities (power plants, research centers and other) must be treated in order to achieve a waste form suitable for long term storage and disposal. Therefore the resulting waste treatment products should be stable under influence of temperature, time, radioactivity, chemical and biological activity. Another reason for the treatment of organic waste is the volume reduction with respect to the storage costs. For different kinds of waste, different treatment technologies have been developed and some are now used in industrial scale. The paper gives process descriptions for the treatment of solid organic radioactive waste of low beta/gamma activity and alpha-contaminated solid organic radioactive waste, and the pyrolysis of organic radioactive waste.

  11. Appendix G. Chemicals Appendix G. Chemicals G-3

    E-Print Network [OSTI]

    Pennycook, Steve

    of chemicals such as pharmaceuticals, building materials, housewares, pesticides, and industrial chemicals chemicals result from the direct or indirect actions of humans. Build- ing materials used for the construction of homes may contain chemicals such as formaldehyde (in some insulation materials), asbestos

  12. Appendix H. Chemicals Appendix H. Chemicals H-3

    E-Print Network [OSTI]

    Pennycook, Steve

    of chemicals such as pharmaceuticals, building materials, housewares, pesticides, and industrial chemicals chemicals result from the direct or indirect actions of humans. Build- ing materials used for the construction of homes may contain chemicals such as formaldehyde (in some insulation materials), asbestos

  13. Energy conservation guide for industrial processes

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    Th Energy Conservation Guide for industrial processes has simple instructions to survey energy use areas at Navy industrial activities like shipyards, Naval air rework facilities and government owned, contractor operated (GOCO) plants. This guide includes information and procedures on: organizing and conducting an industrial energy survey; evaluating purchased energy data; descriptions of industrial systems; and evaluation of industrial processes for conservation.

  14. Method of dye removal for the textile industry

    DOE Patents [OSTI]

    Stone, Mark L. (Idaho Falls, ID)

    2000-01-01T23:59:59.000Z

    The invention comprises a method of processing a waste stream containing dyes, such as a dye bath used in the textile industry. The invention comprises using an inorganic-based polymer, such as polyphosphazene, to separate dyes and/or other chemicals from the waste stream. Membranes comprising polyphosphazene have the chemical and thermal stability to survive the harsh, high temperature environment of dye waste streams, and have been shown to completely separate dyes from the waste stream. Several polyphosplhazene membranes having a variety of organic substituent have been shown effective in removing color from waste streams.

  15. 11 2011 Society of Chemical Industry and John Wiley & Sons, Ltd | Greenhouse Gas Sci Technol. 1:1120 (2011); DOI: 10.1002/ghg3 Perspective

    E-Print Network [OSTI]

    Zhou, Quanlin

    2011-01-01T23:59:59.000Z

    Online Library (wileyonlinelibrary.com). DOI: 10.1002/ghg3.001 On scale and magnitude of pressure build-up, such as oil produc- tion. Large-scale pressure build-up in response to the injection may limit the dynamic of pressure build-up induced by industrial-scale CO2 storage projects is presented. Also dis- cussed

  16. Analysis of the optical coupling of wavelength-shifting fibers to organic liquid scintillator filled fluoropolymer tubes for industrial and nuclear security applications

    E-Print Network [OSTI]

    Schools, Chad C

    2014-01-01T23:59:59.000Z

    Industrial and nuclear security applications continue to push radiation detection development into new and exciting frontiers. In this work, an innovative detection module is developed and tested for use in a cosmic ray ...

  17. Guidebook for Using the Tool BEST Cement: Benchmarking and Energy Savings Tool for the Cement Industry

    E-Print Network [OSTI]

    Galitsky, Christina

    2009-01-01T23:59:59.000Z

    solid waste from the chemical industry, some paints, solvents and waste sludge from water treatment.

  18. As-grown deep-level defects in n-GaN grown by metal-organic chemical vapor deposition on freestanding GaN

    SciTech Connect (OSTI)

    Chen Shang; Ishikawa, Kenji; Hori, Masaru [Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Honda, Unhi; Shibata, Tatsunari; Matsumura, Toshiya; Tokuda, Yutaka [Aichi Institute of Technology, Yakusa, Toyota 470-0392 (Japan); Ueda, Hiroyuki; Uesugi, Tsutomu; Kachi, Tetsu [Toyota Central R and D Laboratories, Inc., Yokomichi, Nagakute 480-1192 (Japan)

    2012-09-01T23:59:59.000Z

    Traps of energy levels E{sub c}-0.26 and E{sub c}-0.61 eV have been identified as as-grown traps in n-GaN grown by metal-organic chemical vapor deposition by using deep level transient spectroscopy of the Schottky contacts fabricated by resistive evaporation. The additional traps of E{sub c}-0.13 and E{sub c}-0.65 eV have been observed in samples whose contacts are deposited by electron-beam evaporation. An increase in concentration of the E{sub c}-0.13 and E{sub c}-0.65 eV traps when approaching the interface between the contact and the GaN film supports our argument that these traps are induced by electron-beam irradiation. Conversely, the depth profiles of as-grown traps show different profiles between several samples with increased or uniform distribution in the near surface below 50 nm. Similar profiles are observed in GaN grown on a sapphire substrate. We conclude that the growth process causes these large concentrations of as-grown traps in the near-surface region. It is speculated that the finishing step in the growth process should be an essential issue in the investigation of the surface state of GaN.

  19. Industrial Engineering Industrial Advisory Board

    E-Print Network [OSTI]

    Gelfond, Michael

    Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

  20. Waste Heat-to-Power in Small Scale Industry Using Scroll Expander...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Small Scale Industry Using Scroll Expander for Organic Rankine Bottoming Cycle Waste Heat-to-Power in Small Scale Industry Using Scroll Expander for Organic Rankine...

  1. A BRIEF HISTORY OF INDUSTRIAL CATALYSIS

    E-Print Network [OSTI]

    Heinemann, Heinz

    2013-01-01T23:59:59.000Z

    greater in chemical and petrochemical applications than inMonomers Olefin Petrochemicals Bimetallic reformingsales and values; for the Petrochemical Industry (Table B) X

  2. Assessment of Replicable Innovative Industrial Cogeneration Applicatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Research & Development Roadmap: Next-Generation Appliances Cooling, Heating, and Power for...

  3. Polybrominated dibenzo-p-dioxins/dibenzofurans and polybrominated diphenyl ethers in soil, vegetation, workshop-floor dust, and electronic shredder residue from an electronic waste recycling facility and in soils from a chemical industrial complex in eastern China

    SciTech Connect (OSTI)

    Jing Ma; Rudolf Addink; Sehun Yun; Jinping Cheng; Wenhua Wang; Kurunthachalam Kannan [Shanghai Jiao Tong University, Shanghai (China). School of Environmental Science and Engineering

    2009-10-01T23:59:59.000Z

    In this study, 11 2,3,7,8-substituted PBDD/Fs and 10 polybrominated diphenyl ether (PBDE) congeners were determined in electronic shredder waste, workshop-floor dust, soil, and leaves (of plants on the grounds of the facility) from a large-scale electronic wastes (e-waste) recycling facility and in surface soil from a chemical-industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) as well as agricultural areas in eastern China. Total PBDD/F concentrations in environmental samples were in the range of 113-818 pg/g dry wt (dw) for leaves, 392-18,500 pg/g dw for electronic shredder residues, 716-80,0000 pg/g dw for soil samples, and 89,600-14,3000 pg/g dw for workshop-floor dust from the e-waste recycling facility and in a range from nondetect (ND) to 427 pg/g dw in soil from the chemical-industrial complex. The highest mean concentrations of total PBDD/Fs were found in soil samples and workshop-floor dust from the e-waste recycling facility. The dioxin-like toxic equivalent (measured as TEQ) concentrations of PBDD/Fs were greater than the TEQs of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) reported in our previous study for the same set of samples. The concentrations of PBDFs were several orders of magnitude higher than the concentrations of PBDDs in samples from the e-waste facility or from soil from the chemical-industrial complex. A significant correlation was found between the concentrations of {Sigma}PBDD/Fs and {Sigma}PBDEs (r = 0.769, p < 0.01) and between SPBDD/Fs and the previously reported SPCDD/F concentrations (r = 0.805, p < 0.01). The estimated daily human intakes of TEQs contributed by PBDD/Fs via soil/dust ingestion and dermal exposures in e-waste recycling facilities were higher than the intakes of TEQs contributed by PCDD/Fs, calculated in our previous study. 45 refs., 2 figs., 2 tabs.

  4. accidents industrial: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    role. This paper plans to probe the industry synergetic evolution mechanism based on industry convergence and technology progress. Firstly, we use self-organization method and...

  5. Comparing the Effects of Mutualism and Competition on Industrial Districts

    E-Print Network [OSTI]

    Hoyle, Rebecca B.

    stations. The diversity of industries situated in the region include food processing industries, oil refining, chemical and bio-chemical produc- tion facilities, as well as heavy industrial facilitiesComparing the Effects of Mutualism and Competition on Industrial Districts Christopher J.K. Knighta

  6. Determination of Thermal-Degradation Rates of Some Candidate Rankine-Cycle Organic Working Fluids for Conversion of Industrial Waste Heat Into Power

    E-Print Network [OSTI]

    Jain, M. L.; Demirgian, J.; Krazinski, J. L.; Bushby, H.; Mattes, H.; Purcell, J.

    1984-01-01T23:59:59.000Z

    Intersociety Energy ConJersion Engineering ConL, Paper No. 689054, ppl. 398 406 (1968). 678 ESL-IE-84-04-118 Proceedings from the Sixth Annual Industrial Energy Technology Conference Volume II, Houston, TX, April 15-18, 1984 Table 1 Working-Fluid Parameters...

  7. Determination of Thermal-Degradation Rates of Some Candidate Rankine-Cycle Organic Working Fluids for Conversion of Industrial Waste Heat Into Power 

    E-Print Network [OSTI]

    Jain, M. L.; Demirgian, J.; Krazinski, J. L.; Bushby, H.; Mattes, H.; Purcell, J.

    1984-01-01T23:59:59.000Z

    performance and economic on system performance, reliability, and overall considerations (rate of return on investment economics have impeded widespread development and [ROI]), six organic fluids were identified to deployment of organic Rankine-cycle power... included with the GC unit inte grates the peaks and produc s a report consisting of retention time, peak area, and area percent. The detector's analog output is connected via an A/D converter to a Perkin Elmer (PE) Sigma 15 chromatography data station...

  8. Faculty of Engineering Industrial and Manufacturing

    E-Print Network [OSTI]

    Faculty of Engineering Industrial and Manufacturing Systems Engineering Industrial engineers answer the needs of organizations to operate efficiently and cost effectively. As an industrial engineer, you may of Windsor is one of only a few institutions in Ontario to offer industrial engineering. Your education

  9. Appendix G. Chemicals Appendix G. Chemicals G-3

    E-Print Network [OSTI]

    Pennycook, Steve

    actions of humans. Building materials used for the construction of homes may contain chemicals such as pharmaceuticals, building materials, housewares, pesticides, and industrial chemicals. Through the use of chemicals, we can increase food production, cure diseases, build more efficient houses, and send people

  10. Appendix G: Chemicals Appendix G: Chemicals G-3

    E-Print Network [OSTI]

    Pennycook, Steve

    actions of humans. Building materials used for the construction of homes may contain chemicals such as pharmaceuticals, building materials, housewares, pesticides, and industrial chemicals. Through the use of chemicals, we can increase food production, cure diseases, build more efficient houses, and send people

  11. Appendix H: Chemicals Appendix H: Chemicals H-3

    E-Print Network [OSTI]

    Pennycook, Steve

    actions of humans. Building materials used for the construction of homes may contain chemicals such as pharmaceuticals, building materials, housewares, pesticides, and industrial chemicals. Through the use of chemicals, we can increase food production, cure diseases, build more efficient houses, and send people

  12. Appendix B: Chemicals Appendix B: Chemicals B-3

    E-Print Network [OSTI]

    Pennycook, Steve

    such as pharmaceuticals, building materials, housewares, pesticides, and industrial chemicals. Through the use materials used for the construction of homes may contain chemicals such as formaldehyde (in some insulation of chemicals, we can increase food production, cure diseases, build more efficient houses, and send people

  13. Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions

    SciTech Connect (OSTI)

    Viswanathan, Vish V.; Davies, Richard W.; Holbery, Jim D.

    2006-04-01T23:59:59.000Z

    United States industry consumed 32.5 Quads (34,300 PJ) of energy during 2003, which was 33.1% of total U.S. energy consumption (EIA 2003 Annual Energy Review). The U.S. industrial complex yields valuable goods and products. Through its manufacturing processes as well as its abundant energy consumption, it supports a multi-trillion dollar contribution to the gross domestic product and provides millions of jobs in the U.S. each year. Industry also yields waste products directly through its manufacturing processes and indirectly through its energy consumption. These waste products come in two forms, chemical and thermal. Both forms of waste have residual energy values that are not routinely recovered. Recovering and reusing these waste products may represent a significant opportunity to improve the energy efficiency of the U.S. industrial complex. This report was prepared for the U.S. Department of Energy Industrial Technologies Program (DOE-ITP). It analyzes the opportunity to recover chemical emissions and thermal emissions from U.S. industry. It also analyzes the barriers and pathways to more effectively capitalize on these opportunities. A primary part of this analysis was to characterize the quantity and energy value of the emissions. For example, in 2001, the industrial sector emitted 19% of the U.S. greenhouse gases (GHG) through its industrial processes and emitted 11% of GHG through electricity purchased from off-site utilities. Therefore, industry (not including agriculture) was directly and indirectly responsible for emitting 30% of the U.S. GHG. These emissions were mainly comprised of carbon dioxide (CO2), but also contained a wide-variety of CH4 (methane), CO (carbon monoxide), H2 (hydrogen), NMVOC (non-methane volatile organic compound), and other chemicals. As part of this study, we conducted a survey of publicly available literature to determine the amount of energy embedded in the emissions and to identify technology opportunities to capture and reuse this energy. As shown in Table E-1, non-CO2 GHG emissions from U.S. industry were identified as having 2180 peta joules (PJ) or 2 Quads (quadrillion Btu) of residual chemical fuel value. Since landfills are not traditionally considered industrial organizations, the industry component of these emissions had a value of 1480 PJ or 1.4 Quads. This represents approximately 4.3% of the total energy used in the United States Industry.

  14. Sources and production of organic aerosol in Mexico City: insights from the combination of a chemical transport model (PMCAMx-2008) and measurements

    E-Print Network [OSTI]

    Tsimpidi, A. P.

    Urban areas are large sources of organic aerosols and their precursors. Nevertheless, the contributions of primary (POA) and secondary organic aerosol (SOA) to the observed particulate matter levels have been difficult to ...

  15. Industrial hygiene report: preliminary plant visit of formaldehyde-production facilities at Tenneco Chemicals, Inc. , Fords, New Jersey, October 1, 1981

    SciTech Connect (OSTI)

    Not Available

    1982-04-12T23:59:59.000Z

    A preliminary hygiene survey was conducted at Tenneco Chemicals, Inc., Fords, New Jersey to evaluate worker exposure to formaldehyde and the safety with which silver and metal oxide catalysts were used at the site. The facility had an active safety program. Workers wore safety glasses, hard hats, and safety shoes. A manual existed on respiratory protection, safety and emergency procedures. The medical program consisted of yearly physical exams for all employees including a pulmonary function test, hearing test, eye examination, chest x-ray, blood test and a medical-history questionnaire. Area air samples taken indicated less than 1 part per million (ppm) formaldehyde as a time-weighted average. Control methods at the methanol unloading and handling area, control areas, process areas, storage areas, and at the truck-loading facility were described. Problem areas in the silver unit included the use of packed seals for the volatile formaldehyde solution, and the interior storage tank in the silver catalyst unit. It is recommended that a greater effort be made to control formaldehyde vapors in the silver unit by improving housekeeping and maintenance or replacing equipment.

  16. Survey of Alternative Feedstocks for Commodity Chemical Manufacturing

    SciTech Connect (OSTI)

    McFarlane, Joanna [ORNL; Robinson, Sharon M [ORNL

    2008-02-01T23:59:59.000Z

    The current high prices for petroleum and natural gas have spurred the chemical industry to examine alternative feedstocks for the production of commodity chemicals. High feedstock prices have driven methanol and ammonia production offshore. The U.S. Chemical Industry is the largest user of natural gas in the country. Over the last 30 years, alternatives to conventional petroleum and natural gas feedstocks have been developed, but have limited, if any, commercial implementation in the United States. Alternative feedstocks under consideration include coal from unconventional processing technologies, such as gasification and liquefaction, novel resources such as biomass, stranded natural gas from unconventional reserves, and heavy oil from tar sands or oil shale. These feedstock sources have been evaluated with respect to the feasibility and readiness for production of the highest volume commodity chemicals in the United States. Sources of organic compounds, such as ethanol from sugar fermentation and bitumen-derived heavy crude are now being primarily exploited for fuels, rather than for chemical feedstocks. Overall, government-sponsored research into the use of alternatives to petroleum feedstocks focuses on use for power and transportation fuels rather than for chemical feedstocks. Research is needed to reduce cost and technical risk. Use of alternative feedstocks is more common outside the United States R&D efforts are needed to make these processes more efficient and less risky before becoming more common domestically. The status of alternative feedstock technology is summarized.

  17. "A High Speed Laser Profiling Device for Refractory Lininig Thickness Measurements In a Gasifier with Cross-Cut to the Metals, Forest Products, Chemical and Power Generation Industries"

    SciTech Connect (OSTI)

    Michel Bonin; Tom Harvill; Jared Hoog; Don Holve; Alan Alsing; Bob Clark; Steve Hrivnak

    2007-11-01T23:59:59.000Z

    Process Metrix began this project with the intent of modifying an existing ranging system and combining the same with a specially designed optical scanner to yield three dimensional range images that could be used to determine the refractory lining thickness in a gasifier. The goal was to make these measurements during short outages while the gasifier was at or near operating temperature. Our initial estimates of the photon counts needed for the modulation-based range finder were optimistic, and we were forced to undertake a redesign of the range finder portion of the project. This ultimately created significant and unanticipated time delays that were exacerbated when Acuity Technologies, the subcontractor responsible for delivering the redesigned range finder, failed to deliver electrical components capable of meeting the specific range error requirements needed for accurate lining thickness measurement. An extensive search for an alternate, off-the-shelf solution was unsuccessful, and Process Metrix was forced to undertake the electronics development internally without project funds. The positive outcome of this effort is a documented set of range finder electronics that have exceptional accuracy, simplicity, temperature stability and detection limit; in sum a package perfectly suited to the measurement requirements and within our control. It is unfortunate yet understandable, given the time delays involved in reaching this milestone, that the Department of Energy decided not to continue the project to completion. The integration of this electronics set into the optomechanical hardware also developed within the scope of the project remains as follow-on project that Process Metrix will finish within the calendar year 2008. Testing in the gasifier is, at this point, not certain pending the award of additional funding needed for field trials. Eastman, our industrial partner in this project, remains interested in evaluating a finished system, and working together we will attempt to secure funding from alternate sources that have been referenced by our contract monitor. It remains our hope and goal to follow this project through to completion, thereby achieving the objectives outlined at the start of our effort.

  18. The Chemical Engineer's Role in Economic Recovery

    E-Print Network [OSTI]

    Felch, D. E.; Stine, L. O.; Vickers, A. G.

    1984-01-01T23:59:59.000Z

    Chemical engineers must lead industry to a clearer view of the thermodynamic potential of existing plants and more realistic expectations for emerging new technologies...

  19. Climate VISION: Private Sector Initiatives: Chemical Manufacturing

    Office of Scientific and Technical Information (OSTI)

    American Chemistry Council (ACC), representing 85% of the chemical industry production in the U.S., has agreed American Chemistry Council Logo to an overall greenhouse gas...

  20. Conjugated Polymer Design and Engineering for Organic Electronics

    E-Print Network [OSTI]

    Woo, Claire Hoi Kar

    2011-01-01T23:59:59.000Z

    Design and Engineering for Organic Electronics By Claire Hoi Kar Woo Doctor of Philosophy in Chemical

  1. Low trap states in in situ SiN{sub x}/AlN/GaN metal-insulator-semiconductor structures grown by metal-organic chemical vapor deposition

    SciTech Connect (OSTI)

    Lu, Xing; Ma, Jun; Jiang, Huaxing; Liu, Chao; Lau, Kei May, E-mail: eekmlau@ust.hk [Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2014-09-08T23:59:59.000Z

    We report the use of SiN{sub x} grown in situ by metal-organic chemical vapor deposition as the gate dielectric for AlN/GaN metal-insulator-semiconductor (MIS) structures. Two kinds of trap states with different time constants were identified and characterized. In particular, the SiN{sub x}/AlN interface exhibits remarkably low trap state densities in the range of 10{sup 11}–10{sup 12?}cm{sup ?2}eV{sup ?1}. Transmission electron microscopy and X-ray photoelectron spectroscopy analyses revealed that the in situ SiN{sub x} layer can provide excellent passivation without causing chemical degradation to the AlN surface. These results imply the great potential of in situ SiN{sub x} as an effective gate dielectric for AlN/GaN MIS devices.

  2. OTHER INDUSTRIES

    Broader source: Energy.gov [DOE]

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  3. Installation and Operation of Sorbathene Solvent Vapor Recovery Units to Recover and Recycle Volatile Organic Compounds at Operating Sites within the Dow Chemical Company

    E-Print Network [OSTI]

    Hall, T. L.; Larrinaga, L.

    the SORBATHENE vacuum swing adsorption as an economical alternative for the recovery of volatile organic compounds (VOC's) from storage, loading, and process vents streams. This paper discusses the application of the technology on nineteen units to collect...

  4. Program of technical assistance to the Organization for the Prohibition of Chemical Weapons - lessons learned from the U.S. program of technical assistance to IAEA safeguards. Final report

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    The Defense Nuclear Agency is sponsoring a technical study of the requirements of a vehicle to meet the OPCW`s future needs for enhanced chemical weapons verification capabilities. This report provides information about the proven mechanisms by which the U.S. provided both short- and long-term assistance to the IAEA to enhance its verification capabilities. Much of the technical assistance has generic application to international organizations verifying compliance with disarmament treaties or conventions. In addition, some of the equipment developed by the U.S. under the existing arrangements can be applied in the verification of other disarmament treaties or conventions. U.S. technical assistance to IAEA safeguards outside of the IAEA`s regular budget proved to be necessary. The U.S. technical assistance was successful in improving the effectiveness of IAEA safeguards for its most urgent responsibilities and in providing the technical elements for increased IAEA {open_quotes}readiness{close_quotes} for the postponed responsibilities deemed important for U.S. policy objectives. Much of the technical assistance was directed to generic subjects and helped to achieve a system of international verification. It is expected that the capabilities of the Organization for the Prohibition of Chemical Weapons (OPCW) to verify a state`s compliance with the {open_quotes}Chemical Weapons Convention{close_quotes} will require improvements. This report presents 18 important lessons learned from the experience of the IAEA and the U.S. Program of Technical Assistance to IAEA Safeguards (POTAS), organized into three tiers. Each lesson is presented in the report in the context of the difficulty, need and history in which the lesson was learned. Only the most important points are recapitulated in this executive summary.

  5. The Texas Industrial Energy Conservation Program 

    E-Print Network [OSTI]

    Waldrop, T.

    1982-01-01T23:59:59.000Z

    cesses listed. Chart1-lndustrial Target Groups SIC CODE INDUSTRY 201 Meat Products 204 Feed and Grain 207 Fats and Oils 26 Paper and Allied Products 28 Chemicals and Allied Products 30 Rubber and Plastics 33 Primary Metals 34 Fabricated Metals... industry seminars. In the preparation of workbooks for industrial processes, a screening of engineering firms was 763 ESL-IE-82-04-139 Proceedings from the Fourth Industrial Energy Technology Conference, Houston, TX, April 4-7, 1982 conducted in order...

  6. Evaluation of physical-chemical and biological treatment of shale oil retort water

    SciTech Connect (OSTI)

    Mercer, B.W.; Mason, M.J.; Spencer, R.R.; Wong, A.L.; Wakamiya, W.

    1982-09-01T23:59:59.000Z

    Bench scale studies were conducted to evaluate conventional physical-chemical and biological treatment processes for removal of pollutants from retort water produced by in situ shale oil recovery methods. Prior to undertaking these studies, very little information had been reported on treatment of retort water. A treatment process train patterned after that generally used throughout the petroleum refining industry was envisioned for application to retort water. The treatment train would consist of processes for removing suspended matter, ammonia, biodegradable organics, and nonbiodegradable or refractory organics. The treatment processes evaluated include anaerobic digestion and activated sludge for removal of biodegradable organics and other oxidizable substances; activated carbon adsorption for removal of nonbiodegradable organics; steam stripping for ammonia removal; and chemical coagulation, sedimentation and filtration for removal of suspended matter. Preliminary cost estimates are provided.

  7. OVERVIEW OF MUNICIPAL AND INDUSTRIAL LAND APPLICATION

    E-Print Network [OSTI]

    Balser, Teri C.

    biosolids NR 214 ­ Industrial by-products NR 518 ­ Solid waste SITES MUST BE APPROVED AND PERMITTED PRIOR,000 80,000 Biosolids 210,000 70,000 Industrial wastes 1,146,000 345,000 Solid waste na na Source: Fred on material Biosolids: 25 % of organic-N + 100% of NH4-N. Second and third year credits Industrial

  8. aspergillus fumigatus organisms: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (who; Ginette Goulet (canada). Maristela 166 Discussion Paper Industrial Organization of Energy Storage, Conversion and Utilization Websites Summary: Discussion Paper Industrial...

  9. Classification of fossil fuels according to structural-chemical characteristics

    SciTech Connect (OSTI)

    A.M. Gyul'maliev; G.S. Golovin; S.G. Gagarin [Institute for Fossil Fuels, Moscow (Russian Federation)

    2007-10-15T23:59:59.000Z

    On the basis of a set of linear equations that relate the amount of major elements n{sub E} (E = C, H, O, N, S) in the organic matter of fossil fuels to structural characteristics, such as the number of cycles R, the number of atoms n{sub E}, the number of mutual chemical bonds, the degree of unsaturation of the structure {delta}, and the extent of its reduction B, a structural-chemical classification of fossil coals that is closely related to the parameters of the industrial-genetic classification (GOST 25543-88) is proposed. Structural-chemical classification diagrams are constructed for power-generating coals of Russia; coking coals; and coals designed for nonfuel purposes including the manufacture of adsorbents, synthetic liquid fuel, ion exchangers, thermal graphite, and carbon-graphite materials.

  10. EPRI's Industrial Energy Management Program

    E-Print Network [OSTI]

    Mergens, E.; Niday, L.

    EPRI's INDUSTRIAL ENERGY MANAGEMENT PROGRAM ED MERGENS MANAGER EPRI's CHEMICALS & PETROLEUM OFFICE HOUSTON, TEXAS ABSTRACT The loss of American industry jobs to foreign competition is made worse by national concerns over fuels combustion... are funded at a level in excess of SlO million annually. By providing technical guidance and sponsoring research and development projects, these Centers and Offices are a key element in EPRI's role of improving the value of electricity to consumers...

  11. T. Larsson, S. Skogestad Control of a industrial heat integrated distillation column Control of a industrial

    E-Print Network [OSTI]

    Skogestad, Sigurd

    T. Larsson, S. Skogestad Control of a industrial heat integrated distillation column Control of a industrial heat integrated distillation column Truls Larsson Sigurd Skogestad ÝDepartment of Chemical. Larsson, S. Skogestad Control of a industrial heat integrated distillation column The process QH column

  12. T. Larsson, S. Skogestad Control of a industrial heat integrated distillation column Control of a industrial

    E-Print Network [OSTI]

    Skogestad, Sigurd

    T. Larsson, S. Skogestad Control of a industrial heat integrated distillation column Control of a industrial heat integrated distillation column Truls Larsson Sigurd Skogestad y Department of Chemical. Larsson, S. Skogestad Control of a industrial heat integrated distillation column The process Q H column

  13. Survey Questionnaire on Environmental Management Practices: Summary of Results by Industry and practices

    E-Print Network [OSTI]

    Delmas, Magali A; Toffel, Michael W.

    2008-01-01T23:59:59.000Z

    and Engineering-Design Departments Management Utilities Refining Industry Paper Metals Machinery Electronics/Electrical ChemicalsEngineering - Design Department Utilities Refining Industry Paper Metals Machinery Electronics/Electrical Chemicals

  14. ITP Chemicals: Industrial Feedstock Flexibility Workshop Results...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for low-cost separation technologies and processes. Improved separation could improve carbon dioxide sequestration, improve process performance, and reduce capital expenses....

  15. ITP Chemicals: Chemical Industry of the Future: New Biocatalysts: Essential

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGENDDepartmentSeptember 2009 |TechnologyTools for

  16. ReprintedfromTheJournalof OrganicChemistry,1981,46,4622. CopyrightO 1981by the AmericanChemicalSocietyandreprintedb-',-permissionof the copyrightowner

    E-Print Network [OSTI]

    Prentiss, Mara

    Methyl Viologen and Flavoenzymes Summary; A procedure for enzyme-catalyzed organic synthesisis of oxidized to reducedmethyl viologen (MV2+-' MVl*) followed by flavoenzyme NADP via re- action with FDR has been reported previously,6'7appli- cation of this redox cycleto

  17. Department of Chemical and Petroleum Engineering

    E-Print Network [OSTI]

    Habib, Ayman

    Real World Process from Inception to Pre-construction ­ Apply Concepts Learned in Class to Industrial Quality and Air Pollution Control Chemical Engineering Energy & Env. Specialization #12;CHEMICAL World-Class Industry ­ Oil and Gas Exploration & Recovery ­ Heavy Oil & Bitumen ­ Natural Gas, Coal Bed

  18. Conservation in a Gulf Coast Chemical Plant

    E-Print Network [OSTI]

    Murray, F.

    1983-01-01T23:59:59.000Z

    The MCA reports chemical industry energy compared to 1972 to be 24.2% (1981 data). This paper will describe the activity of one Gulf Coast chemical industry plant which has reduced consumption by 41%. Improvements have been made via energy...

  19. Advanced Mechanical Heat Pump Technologies for Industrial Applications

    E-Print Network [OSTI]

    Mills, J. I.; Chappell, R. N.

    , advanced chemical and mechanical heat pump technologies are being developed for industrial application. Determining which technologies are appropriate for particular industrial applications and then developing those technologies is a stepped process which...

  20. Aggregate Production Planning for Process Industries under Competition

    E-Print Network [OSTI]

    Karmarkar, U. S.; Rajaram, K.

    2008-01-01T23:59:59.000Z

    as petro- refining, petrochemicals, basic chemicals, cement,the context of the petrochemical industry, these producerscorrespond to the ten major petrochemical refining companies

  1. Devices for collecting chemical compounds

    DOE Patents [OSTI]

    Scott, Jill R; Groenewold, Gary S

    2013-12-24T23:59:59.000Z

    A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from a fixed surface so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

  2. Industrial Low Temperature Waste Heat Utilization

    E-Print Network [OSTI]

    Altin, M.

    1981-01-01T23:59:59.000Z

    In this paper, some common and emerging techniques to better utilize energy in the chemical process industries are discussed. Temperature levels of waste heat available are pointed out. Emerging practices for further economical utilization of waste...

  3. Biological and chemical technologies research. FY 1995 annual summary report

    SciTech Connect (OSTI)

    None

    1996-03-01T23:59:59.000Z

    The annual summary report presents the fiscal year (FY) 1995 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1995 (ASR 95) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1995; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents; and awards arising from work supported by the BCTR.

  4. Electrified Separation Processes in Industry

    E-Print Network [OSTI]

    Appleby, A. J.

    1983-01-01T23:59:59.000Z

    distillation, in the chemical and related industries is very considerable. The majority of the energy used for these separations is thermal input in the form of the low heating-value of oil or gas. From the national viewpoint, it would be advantageous...

  5. Desorption efficiencies of toluene and n-butanol in an organic vapor monitor

    E-Print Network [OSTI]

    Heaney, Mary Ann

    1979-01-01T23:59:59.000Z

    ) ~ ~ ? Experimental Volume versus Theoretical Volume for n-Butanol (liquid phase). . . . . . . 13. Conceptual Adsorption of Vapor Molecules;. . . . 41 IXI'RODDCTI 019 In 1970, the Occupational Safety and Health Adminj- strstion adopted permissible human exposure...&jards has become one of the most important industrial hygiene f unct i one e The levei of exposure to many organic vapor;=, is det r- mined by co' lecting the chemical on some type o solid sor- bent. Of the various adsorbents available {silica gel...

  6. Appendix G. Chemicals Annual Site Environmental Report

    E-Print Network [OSTI]

    Pennycook, Steve

    by the development of chemicals such as pharmaceuticals, building materials, housewares, pesticides, and industrial more hazardous chemicals result from the direct or indirect actions of humans. Building materials used for the construction of homes may contain chemicals such as formaldehyde (in some insulation materials), asbestos

  7. Hierarchical production scheduling in the process industry

    E-Print Network [OSTI]

    Hierarchical production scheduling in the process industry Anna Lindholm Nils-Petter Nytz are handled. The activities are are denoted production scheduling (PS) and detailed production scheduling (DPS. The focus is on production scheduling for chemical process industries with continuous production

  8. Essays on Merger Simulation in Industrial Organization

    E-Print Network [OSTI]

    Kim, Mee Yeon

    2012-01-01T23:59:59.000Z

    mergers as Coke and Dr. Pepper (rejected), Pepsi and 7–Up (withdrawn), and Coke and Pepsi (hypothetical). Nevo (2000)

  9. Industrial Heat Recovery with Organic Rankine Cycles

    E-Print Network [OSTI]

    Hnat, J. G.; Patten, J. S.; Cutting, J. C.; Bartone, L. M.

    1982-01-01T23:59:59.000Z

    to examine a specific application of the use of an ORC heat recovery system and compare it to a stear), Rankine cycle heat recovery system. The particular application ~ssumed is heat recovery from diesel engine exhaust gas at a temPErature of 700F. Figure...,vaporized and superheated ina flue gas heat recovery su bsystem. he super heated fluid is expanded through a turbine for power p oduction, condensed in a water cooled condenser and return d to the vaporizer via feed pu mps. In the steam cycle, a port n of the Figure 1...

  10. Clean Technology Sustainable Industries Organization | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClay ElectricClean Edge IncInformation

  11. MIT and Life Sciences & Health Care Industries MIT Industry Brief

    E-Print Network [OSTI]

    Polz, Martin

    the interface between inorganic and organic materials for applications to energy, medicine, electronics have been used in applications as varied as solar cells, batteries, medical diagnostics and basic. The Institute for Soldier Nanotechnologies (ISN) is a team of MIT, U.S. Army, and industry partners working

  12. BCTR: Biological and Chemical Technologies Research 1994 annual summary report

    SciTech Connect (OSTI)

    Petersen, G.

    1995-02-01T23:59:59.000Z

    The annual summary report presents the fiscal year (FY) 1994 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). Although the OIT was reorganized in 1991 and AICD no longer exists, this document reports on efforts conducted under the former structure. The annual summary report for 1994 (ASR 94) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1994; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents, and awards arising from work supported by BCTR.

  13. MIT and Automotive Industries MIT Industry Brief

    E-Print Network [OSTI]

    Ceder, Gerbrand

    MIT and Automotive Industries MIT Industry Brief MIT's Industrial Liaison Program (ILP) can bring@ilp.mit.edu, or visit http://ilp-www.mit.edu. MIT and Automotive Industries The Massachusetts Institute of Technology (MIT) is a leading center of research and education on topics important to the automotive industry

  14. Emission Zone Control in Blue Organic Electrophosphorescent Devices...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zone Control in Blue Organic Electrophosphorescent Devices Through Chemical Modification of Host Materials . Emission Zone Control in Blue Organic Electrophosphorescent Devices...

  15. Biomonitoring for the photovoltaics industry

    SciTech Connect (OSTI)

    Bernholc, N.M.; Moskowitz, P.D.

    1995-07-01T23:59:59.000Z

    Biomonitoring often is used as a method for estimating the dose to an individual. Therefore, a parameter of measurement, or biomarkers must be identified. The purpose of this paper is to give an overview of biomonitoring protocols for metals used in the photovoltaics industry. Special attention is given to areas that often are skimmed over, to gain insights into some of the problems that may arise when these tasks are carried out. Biological monitoring can be used to determine current human exposures to chemicals, as well as to detect past exposures, and the effects that these exposures may have on human health. It is used in conjunction with environmental monitoring to describe more completely worker`s exposures to, and absorption of, chemicals in the workplace. Biological specimens (e.g., blood, hair or urine) are analyzed for chemical agents, metabolites, or for some specific effect on the person (Lowry 1994). Biomonitoring can assess a workers exposure to industrial chemicals by all routes including skin absorption and ingestion. Although the methodology still is in its infancy, in cases where the procedures have been developed, it can be an invaluable component of an ongoing program of industrial hygiene monitoring. Like any technology, there are limitations to its effectiveness because of a lack of knowledge, contamination of specimens, and the introduction of errors.

  16. Industrial ecology Prosperity Game{trademark}

    SciTech Connect (OSTI)

    Beck, D.; Boyack, K.; Berman, M.

    1998-03-01T23:59:59.000Z

    Industrial ecology (IE) is an emerging scientific field that views industrial activities and the environment as an interactive whole. The IE approach simultaneously optimizes activities with respect to cost, performance, and environmental impact. Industrial Ecology provides a dynamic systems-based framework that enables management of human activity on a sustainable basis by: minimizing energy and materials usage; insuring acceptable quality of life for people; minimizing the ecological impact of human activity to levels that natural systems can sustain; and maintaining the economic viability of systems for industry, trade and commerce. Industrial ecology applies systems science to industrial systems, defining the system boundary to incorporate the natural world. Its overall goal is to optimize industrial activities within the constraints imposed by ecological viability, globally and locally. In this context, Industrial systems applies not just to private sector manufacturing and services but also to government operations, including provision of infrastructure. Sandia conducted its seventeenth Prosperity Game{trademark} on May 23--25, 1997, at the Hyatt Dulles Hotel in Herndon, Virginia. The primary sponsors of the event were Sandia National Laboratories and Los Alamos National Laboratory, who were interested in using the format of a Prosperity Game to address some of the issues surrounding Industrial Ecology. Honorary game sponsors were: The National Science Foundation; the Committee on Environmental Improvement, American Chemical Society; the Industrial and Engineering Chemistry Division, American Chemical Society; the US EPA--The Smart Growth Network, Office of Policy Development; and the US DOE-Center of Excellence for Sustainable Development.

  17. Sandia National Laboratories: New Energy and Indus-trial Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy and Indus-trial Technology Development Organization Mesa del Sol Project Is Finalist for International Smart Grid Action Network 2014 Award of Excellence On July 31, 2014,...

  18. Reactive Distillation for Esterification of Bio-based Organic Acids

    SciTech Connect (OSTI)

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23T23:59:59.000Z

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential Equilibrium and Dynamics) method.

  19. Carbon Emissions Reduction Potential in the US Chemicals and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies, June 1999 Carbon Emissions Reduction Potential in the US...

  20. analysis quantitative chemical: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deals, including the following: ENERGY: Chemical engineers work in all aspects of the energy industry developing Firestone, Jeremy 6 Conservation biology Quantitative analysis...

  1. Emissions of volatile organic compounds from stationary combustion sources: Numerical modeling capabilities

    SciTech Connect (OSTI)

    Seebold, J.G. [Chevron Research and Technology Co., Richmond, CA (United States); Kee, R.J.; Lutz, A.J. [Sandia National Labs., Albuquerque, NM (United States); Pitz, W.J.; Westbrook, C.K. [Lawrence Livermore National Lab., CA (United States); Senkan, S. [California Univ., Los Angeles, CA (United States)

    1992-09-01T23:59:59.000Z

    A collaborative research program initiated to study the emissions of a wide variety of chemical species from stationary combustion systems. These product species have been included in the Clean Air act legislation and their emissions must be rigidly controlled, but there is a need for much better understanding of the physical and chemical mechanisms that produce and consume them. We are using numerical modeling study the chemical reactions and fluid mechanical factors that occur in industrial processes: we are examining systems including premixed and diffusion flames, stirred reactors and plug flow reactors in these modeling studies to establish the major factors leading to emissions of these chemicals. In addition, we are applying advanced laser diagnostic techniques to validate the model predictions and to study the possibilities of developing sophisticated sensors to detect emissions of undesirable species in real time. This paper will discuss the organization of this collaborative effort and its results to date.

  2. Scale-up of continuous chemical synthesis systems

    E-Print Network [OSTI]

    Heider, Patrick Louis

    2013-01-01T23:59:59.000Z

    Continuous flow systems for chemical synthesis have become increasingly important in the pharmaceutical and fine chemical industry in the past decade. Initially, this work was confined primarily to microfluidic systems, ...

  3. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center at CornellOf SmartIndustrial Users The

  4. Industry @ ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center at CornellOf SmartIndustrial Users

  5. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFP »summerlectures [ICO]default Sign InIndustrial

  6. Mechanical & Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board October 15, 2010 #12;Mechanical & Industrial Engineering 2 MIE Dorothy Adams Undergraduate/Graduate Secretary David Schmidt Associate Professor & Graduate Program Director #12;Mechanical & Industrial Engineering 3 MIE James Rinderle

  7. Industrial Decision Making 

    E-Print Network [OSTI]

    Elliott, R. N.; McKinney, V.; Shipley, A.

    2008-01-01T23:59:59.000Z

    and industrial investment decision-making. The paper will also address several important questions: • Why has industrial investment declined? • What is the outlook for industrial investment? • How can programs engage industry for future opportunities?...

  8. Electric Power Reliability in Chemical Plants

    E-Print Network [OSTI]

    Cross, M. B.

    The quality and reliability of utility-generated electric power is presently receiving a great deal of attention from the chemical and refining industry. What changes have taken place to make electric power reliability a major topic of discussion...

  9. Climate VISION: Private Sector Initiatives: Chemical Manufacturing...

    Office of Scientific and Technical Information (OSTI)

    target for the U.S. (7%) and the EU (8%). During the same period, chemical industry production rose 41%. As a result, GHG emissions intensity improved 38%. Indirect greenhouse gas...

  10. Climate VISION: Private Sector Initiatives: Chemical Manufacturing...

    Office of Scientific and Technical Information (OSTI)

    Technology Pathways U.S. chemical producers recognize that energy efficiency offers a competitive edge in world markets. In 1996 the U.S. industry entered into partnership with ITP...

  11. Tools for chemical synthesis in microsystems

    E-Print Network [OSTI]

    Jensen, Klavs F.

    Chemical synthesis in microsystems has evolved from simple proof-of-principle examples to become a general technique in academia and industry. Numerous such “flow chemistry” applications are now found in pharmaceutical and ...

  12. Molecular Characterization of Organic Aerosols Using Nanospray...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in OA, which is important for understanding chemical aging phenomena. Citation: Roach PJ, J Laskin, and A Laskin.2010."Molecular Characterization of Organic Aerosols Using...

  13. Superfund Record of Decision (EPA Region 2): Industrial Latex, Bergen County, Wallington, NJ. (First remedial action), September 1992

    SciTech Connect (OSTI)

    Not Available

    1992-09-30T23:59:59.000Z

    The 9.67-acre Industrial Latex site is a chemical adhesives and natural and synthetic rubber compounds manufacturer in Wallington, Bergen County, New Jersey. From 1951 to 1980, the Industrial Latex Corporation manufactured both chemical adhesives and natural and synthetic rubber compounds. Adhesives were initially formmulated using vegetable protein in a solvent base. The ROD addresses the final remedy for the contamination present in the soil, sediment, buildings and equipment, drums, sludge, septic system, and hardened latex, as the first of two operable units. The primary contaminants of concern affecting the soil, sediment, sludge, and debris are VOCs including PCE, TCE, toluene, and xylenes; other organics, including PAHs, PCBs, pesticides, and phenols; and metals, including arsenic and lead.

  14. Biological Solutions to Industrial Energy Reduction

    E-Print Network [OSTI]

    Fox, J. L.

    1981-01-01T23:59:59.000Z

    . Applications now under development include, besides biomedical applications, the production of organic chemicals and the recovery of specific metal ions from waste waters; preliminary experiments for gold and silver recovery are very promising....

  15. Industrial applications of electron accelerators

    E-Print Network [OSTI]

    Cleland, M R

    2006-01-01T23:59:59.000Z

    This paper addresses the industrial applications of electron accelerators for modifying the physical, chemical or biological properties of materials and commercial products by treatment with ionizing radiation. Many beneficial effects can be obtained with these methods, which are known as radiation processing. The earliest practical applications occurred during the 1950s, and the business of radiation processing has been expanding since that time. The most prevalent applications are the modification of many different plastic and rubber products and the sterilization of single-use medical devices. Emerging applications are the pasteurization and preservation of foods and the treatment of toxic industrial wastes. Industrial accelerators can now provide electron energies greater than 10 MeV and average beam powers as high as 700 kW. The availability of high-energy, high-power electron beams is stimulating interest in the use of X-rays (bremsstrahlung) as an alternative to gamma rays from radioactive nuclides.

  16. Engineering Organization Chart Assistant Dean

    E-Print Network [OSTI]

    Delene, David J.

    Engineering Organization Chart Fall `12 Assistant Dean Outreach & Recruiting Matthew Cavalli and Geological Engineering Joseph Hartman Chair, Petroleum Engineering Steve Benson Chair, Electrical Engineering Forrest Ames (interim) Chair, Mechanical Engineering Matthew Cavalli Chair, Chemical Engineering Mike Mann

  17. Transition Metal Catalyzed Reactions of Carbohydrates: a Nonoxidative Approach to Oxygenated Organics

    SciTech Connect (OSTI)

    Andrews, Mark

    1997-01-08T23:59:59.000Z

    There is a critical need for new environmentally friendly processes in the United States chemical industry as legislative and economic pressures push the industry to zero-waste and cradle-to-grave responsibility for the products they produce. Carbohydrates represent a plentiful, renewable resource, which for some processes might economically replace fossil feedstocks. While the conversion of biomass to fuels, is still not generally economical, the selective synthesis of a commodity or fine chemical, however, could compete effectively if appropriate catalytic conversion systems can be found. Oxygenated organics, found in a variety of products such as nylon and polyester, are particularly attractive targets. We believe that with concerted research efforts, homogeneous transition metal catalyzed reactions could play a significant role in bringing about this future green chemistry technology.

  18. DOE handbook: Guide to good practices for training and qualification of chemical operators

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The purpose of this Handbook is to provide contractor training organizations with information that can be used as a reference to refine existing chemical operator training programs, or develop new training programs where no program exists. This guide, used in conjunction with facility-specific job analyses, will provide a framework for training and qualification programs for chemical operators at DOE reactor and nonreactor facilities. Recommendations for qualification are made in four areas: education, experience, physical attributes, and training. Contents include: initial qualification; administrative training; industrial safety training; specialized skills training; on-the-job training; trainee evaluation; continuing training; training effectiveness evaluation; and program records. Two appendices describe Fundamentals training and Process operations. This handbook covers chemical operators in transportation of fuels and wastes, spent fuel receiving and storage, fuel disassembly, fuel reprocessing, and both liquid and solid low-level waste processing.

  19. New environmental regulation for the aerospace industry: The aerospace NESHAP

    SciTech Connect (OSTI)

    Bauer, J.P.; Gampper, B.P. [Brusn and McDonnell Waste Consultants, Inc., Kansas City, MO (United States); Baker, J.M. [Raytheon Aircraft Co., Wichita, KS (United States)

    1997-12-31T23:59:59.000Z

    40 CFR Part 63, Subpart GG, the National Emission Standard for Hazardous Air Pollutants for Aerospace Manufacturing and Rework Facilities, commonly referred to as the Aerospace NESHAP, was issued on September 1, 1995 and requires compliance by September 1, 1998. The regulation affects any facility that manufactures or reworks commercial, civil, or military aircraft vehicles or components and is a major source of Hazardous Air Pollutants (HAPs). The regulation targets reducing Volatile Organic Compound (VOC) and Hazardous Air Pollutant (HAP) emissions to the atmosphere. Processes affected by the new regulation include aircraft painting, paint stripping, chemical milling masking, solvent cleaning, and spray gun cleaning. Regulatory requirements affecting these processes are summarized, and different compliance options compared in terms of cost-effectiveness and industry acceptance. Strategies to reduce compliance costs and minimize recordkeeping burdens are also presented.

  20. Organic electroanalysis with chemically modified electrodes

    SciTech Connect (OSTI)

    Guadalupe, A.R.; Abruna, H.D.

    1986-01-01T23:59:59.000Z

    The analytical utility of electrodes modified with functionalized polymer films for the determination of aromatic amines is demonstrated. The analysis is based on the preconcentration of the protonated amines into a functionalized polymer film that contains styrene sulfonate groups. Good sensitivity and high reproducibility were obtained for concentrations down to 10/sup -5/ M. Aliphatic amines do not interfere in the determination.

  1. Organic solvent topical report

    SciTech Connect (OSTI)

    Cowley, W.L.

    1998-04-30T23:59:59.000Z

    This report is the technical basis for the accident and consequence analyses used in the Hanford Tank Farms Basis for Interim Operation. The report also contains the scientific and engineering information and reference material needed to understand the organic solvent safety issue. This report includes comments received from the Chemical Reactions Subcommittee of the Tank Advisory Panel.

  2. Department of Energy, Environmental & Chemical Engineering

    E-Print Network [OSTI]

    Subramanian, Venkat

    Department of Energy, Environmental & Chemical Engineering Opportunities for Undergraduate Students laboratory is a good way to expand your classroom experience. department of energy, environmental & chemicalIndustryPlantTour.Thedepartmentoffers twoplanttourseachfall. Cover: International Experience Brazil 2012 in sugar can mill, Usina Ester, Campina, Brazil #12

  3. Excellence in biotechnology for fuels and chemicals

    SciTech Connect (OSTI)

    Neufeld, S.

    1999-04-23T23:59:59.000Z

    The Biotechnology Center for Fuels and Chemicals (BCFC) leads a national effort, in cooperation with industry, to develop innovative, market-driven biotechnologies for producing fuels and chemicals from renewable resources. The BCFC researchers focus on using bioprocesses to convert renewable biomass feedstocks into valuable products.

  4. Development of an analytical model for organic-fluid fouling

    SciTech Connect (OSTI)

    Panchal, C.B.; Watkinson, A.P.

    1994-10-01T23:59:59.000Z

    The research goal of this project is to determine ways to effectively mitigate fouling in organic fluids: hydrocarbons and derived fluids. The fouling research focuses on the development of methodology for determining threshold conditions for fouling. Initially, fluid containing chemicals known to produce foulant is analyzed; subsequently, fouling of industrial fluids is investigated. The fouling model developed for determining the effects of physical parameters is the subject of this report. The fouling model is developed on the premise that the chemical reaction for generation of precursor can take place in the bulk fluid, in the thermal-boundary layer, or at the fluid/wall interface, depending upon the interactive effects of fluid dynamics, heat and mass transfer, and the controlling chemical reaction. In the analysis, the experimental data are examined for fouling deposition of polyperoxide produced by autoxidation of indene in kerosene. The effects of fluid and wall temperatures for two flow geometries are analyzed. The results show that the relative effects of physical parameters on the fouling rate differ for the three fouling mechanisms. Therefore, to apply the closed-flow-loop data to industrial conditions, the controlling mechanism must be identified.

  5. Regulation Retrieval Using Industry Specific Abstract Increasingly, taxonomies are being developed and used by industry practitioners

    E-Print Network [OSTI]

    Stanford University

    1 Regulation Retrieval Using Industry Specific Taxonomies Abstract Increasingly, taxonomies, it will be much desirable if industry practitioners are able to easily locate and browse regulations of interest. In practice, multiple sources of government regulations exist and they are often organized and classified

  6. Emerging Opportunities in Industrial Electrification Technologies 

    E-Print Network [OSTI]

    Schmidt, P. S.

    1989-01-01T23:59:59.000Z

    in the manufacturing sector. Nearly half of manufacturing energy use was in the process industries, which include chemicals, petroleum products, pulp and paper, foods, textiles, and tobacco. Metals production, primarily aluminum and steel, accounted for about 21... %, and metals fabrication, including transportation, machinery, instrumentation and electronics, and other metal products, about 19%. The balance of about 14% was used in other non-metals industries, such as stone, clay, and glass, rubber and plastics...

  7. Measurement and prediction of aerosol formation for thesafe utilization of industrial fuids

    E-Print Network [OSTI]

    Krishna, Kiran

    2004-09-30T23:59:59.000Z

    Mist or aerosol explosions present a serious hazard to process industries. Heat transfer fluids are widely used in the chemical process industry, are flammable above their flash points, and can cause aerosol explosions. Though the possibility...

  8. Measurement and prediction of aerosol formation for thesafe utilization of industrial fuids 

    E-Print Network [OSTI]

    Krishna, Kiran

    2004-09-30T23:59:59.000Z

    Mist or aerosol explosions present a serious hazard to process industries. Heat transfer fluids are widely used in the chemical process industry, are flammable above their flash points, and can cause aerosol explosions. ...

  9. Superfund record of decision (EPA Region 2): Imperial Oil/Champion Chemicals, Monmouth County, NJ. (Second remedial action), September 1992

    SciTech Connect (OSTI)

    Not Available

    1992-09-01T23:59:59.000Z

    The 9.67-acre Industrial Latex site is a chemical adhesives and natural and synthetic rubber compounds manufacturer in Wallington, Bergen County, New Jersey. From 1951 to 1980, the Industrial Latex Corporation manufactured both chemical adhesives and natural and synthetic rubber compounds. Adhesives were initially formulated using vegetable protein in a solvent base. The ROD addresses the final remedy for the contamination present in the soil, sediment, buildings and equipment, drums, sludge, septic system, and hardened latex, as the first of two operable units. The primary contaminants of concern affecting the soil, sediment, sludge, and debris are VOCs including PCE, TCE, toluene, and xylenes; other organics, including PAHs, PCBs, pesticides, and phenols; and metals, including arsenic and lead.

  10. Life Cycle Assessment and Sustainability of Chemical Products 

    E-Print Network [OSTI]

    Sahnoune, A.

    2014-01-01T23:59:59.000Z

    Energy Technology Conference New Orleans, LA. May 20-23, 2014 Chemicals Manufacturing & Industry Energy Industry Other Quadrillion BTUs 1990 2015 2040 0 50 100 150 200 250 Industry energy demand increases ExxonMobil 2014 Outlook for Energy ESL-IE-14...

  11. Chemical Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Science Compton double ionization of helium in the region of the cross-section maximum B. Krssig, R.W. Dunford, D.S. Gemmell, S. Hasegawa, E.P. Kanter, H....

  12. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  13. Uranium industry annual 1997

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

  14. CASL Industry Council Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IndustryCouncil.shtml The new members that joined the Industry Council include NPP owneroperators with analysis capability: Tyrone Stevens of Exelon, and SMR vendors:...

  15. Non-Chemical Control of Plant Diseases in the Home Garden

    E-Print Network [OSTI]

    Philley, George L.; Kaufman, Harold W.

    2000-02-16T23:59:59.000Z

    Plant diseases can be caused by certain organisms or by environmental factors. This publication discusses non-chemical methods that suppress disease-causing organisms....

  16. Measurements and Models for Hazardous chemical and Mixed Wastes

    SciTech Connect (OSTI)

    Laurel A. Watts; Cynthia D. Holcomb; Stephanie L. Outcalt; Beverly Louie; Michael E. Mullins; Tony N. Rogers

    2002-08-21T23:59:59.000Z

    Mixed solvent aqueous waste of various chemical compositions constitutes a significant fraction of the total waste produced by industry in the United States. Not only does the chemical process industry create large quantities of aqueous waste, but the majority of the waste inventory at the DOE sites previously used for nuclear weapons production is mixed solvent aqueous waste. In addition, large quantities of waste are expected to be generated in the clean-up of those sites. In order to effectively treat, safely handle, and properly dispose of these wastes, accurate and comprehensive knowledge of basic thermophysical properties is essential. The goal of this work is to develop a phase equilibrium model for mixed solvent aqueous solutions containing salts. An equation of state was sought for these mixtures that (a) would require a minimum of adjustable parameters and (b) could be obtained from a available data or data that were easily measured. A model was developed to predict vapor composition and pressure given the liquid composition and temperature. It is based on the Peng-Robinson equation of state, adapted to include non-volatile and salt components. The model itself is capable of predicting the vapor-liquid equilibria of a wide variety of systems composed of water, organic solvents, salts, nonvolatile solutes, and acids or bases. The representative system o water + acetone + 2-propanol + NaNo3 was selected to test and verify the model. Vapor-liquid equilibrium and phase density measurements were performed for this system and its constituent binaries.

  17. Industrial energy-efficiency-improvement program

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

  18. A Low Cost Energy Management Program at Engelhard Industries Division 

    E-Print Network [OSTI]

    Brown, T. S.; Michalek, R.; Reiter, S.

    1982-01-01T23:59:59.000Z

    in technology related to precious metals and nonmetallic minerals. It manufactures high-performance chemical and precious metals products, including catalysts for the petroleum and automotive industries. Engelhard's energy costs have risen dramatically over...

  19. A Low Cost Energy Management Program at Engelhard Industries Division

    E-Print Network [OSTI]

    Brown, T. S.; Michalek, R.; Reiter, S.

    1982-01-01T23:59:59.000Z

    in technology related to precious metals and nonmetallic minerals. It manufactures high-performance chemical and precious metals products, including catalysts for the petroleum and automotive industries. Engelhard's energy costs have risen dramatically over...

  20. Design of regulated velocity flow assurance device for petroleum industry 

    E-Print Network [OSTI]

    Yardi, Chaitanya Narendra

    2005-02-17T23:59:59.000Z

    The petroleum industry faces problems in transportation of crude petroleum be- cause of the deposition of paraffins, hydrates and asphaltenes on the insides of the pipeline. These are conventionally removed using either chemical inhibitors...

  1. The Analysis and Development of Large Industrial Steam Systems

    E-Print Network [OSTI]

    Waterland, A. F.

    1980-01-01T23:59:59.000Z

    Chemicals, petroleum, pulp and paper, and many other industries depend heavily on extensive complex steam systems for thermal and mechanical energy delivery. Steam's versatility and desirable characteristics as both a heat transfer medium and a...

  2. Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)

    E-Print Network [OSTI]

    Zhiping, L.

    2010-01-01T23:59:59.000Z

    Plans Organization and Implementation of Energy ConservationIndustrial Energy Conservation Investment Funding 3.Case Studies of Energy Conservation Investments by Industry

  3. Evaluating the DSM Potential for Industrial Electrotechnologies and Management Practices

    E-Print Network [OSTI]

    Harrell, P. J.; Pavone, A.

    -side management (DSM) program. This paper outlines the procedures used to evaluate technologies that may impact oil refining, pulp & paper production, and 26 major chemical processes of industrial customers within HL&P's service area. Each technology... practices (technologies) for possible inclusion in an industrial demand-side management (DSM) program. This paper outlines the procedures used to evaluate technologies that may impact oil refining, pulp & paper production, and 26 major chemical processes...

  4. Benchmarks for industrial energy efficiency

    SciTech Connect (OSTI)

    Amarnath, K.R. [Electric Power Research Inst., Palo Alto, CA (United States); Kumana, J.D. [Linnhoff March, Inc., Houston, TX (United States); Shah, J.V. [Electric Power Research Inst., Pittsburgh, PA (United States). Chemicals and Petroleum Center

    1996-12-31T23:59:59.000Z

    What are the standards for improving energy efficiency for industries such as petroleum refining, chemicals, and glass manufacture? How can different industries in emerging markets and developing accelerate the pace of improvements? This paper discusses several case studies and experiences relating to this subject emphasizing the use of energy efficiency benchmarks. Two important benchmarks are discussed. The first is based on a track record of outstanding performers in the related industry segment; the second benchmark is based on site specific factors. Using energy use reduction targets or benchmarks, projects have been implemented in Mexico, Poland, India, Venezuela, Brazil, China, Thailand, Malaysia, Republic of South Africa and Russia. Improvements identified through these projects include a variety of recommendations. The use of oxy-fuel and electric furnaces in the glass industry in Poland; reconfiguration of process heat recovery systems for refineries in China, Malaysia, and Russia; recycling and reuse of process wastewater in Republic of South Africa; cogeneration plant in Venezuela. The paper will discuss three case studies of efforts undertaken in emerging market countries to improve energy efficiency.

  5. Industry Analysis February 2013

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    technology ­ Clean tech/ clean technology #12;7 Industry Studies · IbisWorld ­ U.S. and global industry-Industries · Biodiesel ­ Biofuel ­ Alternate fuels ­ Green fuels ­ Renewable fuels/energy ­ Green energy ­ Green Canada, Census, Industry Canada, the OECD, European Union, IMF, World Bank, UN . . . Never pay for stats

  6. INDUSTRIAL ENGINEERING GRADUATE PROGRAMS

    E-Print Network [OSTI]

    Gelfond, Michael

    : Occupational biomechanics, work physiology, industrial ergonomics, environmental hygiene, cognitive engineeringINDUSTRIAL ENGINEERING GRADUATE PROGRAMS The Master of Science in Industrial Engineering (M Systems and Engineering (M.S.M.S.E.), the Doctor of Philosophy in Industrial Engineering, and the Doctor

  7. Computers and Chemical Engineering 26 (2002) 10771085 Backstepping control of chemical tubular reactors

    E-Print Network [OSTI]

    Krstic, Miroslav

    of the system using boundary control of temperature and concentration on the inlet side of the reactor. We that globally stabi- lizes an unstable steady state is designed for a chemical tubular reactor. The control industrial applications for chemical tubular reactors, the problem of monitoring and controlling them

  8. Institute for Atom-Efficient Chemical Transformations Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    provides links to each partner's participating organizations. Argonne National Laboratory Chemical Sciences and Engineering Division Center for Nanoscale Materials Energy Systems...

  9. aqueous chemical environment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chemical, and physical principles to the physical environment, and subjects such as pollution control includes a broad knowledge of organisms (including plants, animals, and...

  10. Industry strengths open new services opportunities

    SciTech Connect (OSTI)

    Heller, K.

    1993-03-10T23:59:59.000Z

    The environmental service industry is in a state of transition in which innovative technologies are increasingly playing a critical role. These changes play to the strengths of the chemical industry, and several firms are effectively growing environmental businesses. At the same time, chemical companies, which are among the largest buyers of environmental services, are making decisions that reflect the changes. Du Pont, for example, has decided to rethink its involvement with the controversial Waste Technologies Industries (WTI) hazardous waste incinerator in East Liverpool, OH. Initially expecting a shortage of incineration capacity, Du Pont had signed a contract - along with BASF and Chemical Waste Management - for a share of capacity at the 60,000-tons/year WTI unit. A number of chemical firms are leveraging their strengths. Air Products and Chemicals (Allentown, PA), for one, has partnerships in the waste-to-energy and flue-gas desulfurization businesses. The company runs cogeneration plants that can burn a combination of coal and natural gas to make both steam and electricity. Air Products assorted businesses can be strong at different times, says Hinman. The flue-gas desulfurization business, for example, was active during the first phase of enforcement of the 1990 Clean Air Act requirements for lower sulfur dioxide (SO[sub 2]) emissions.

  11. attenuates major organic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resources, Built environment, Hospitality and the organization which contribute in Tourism industry. The cross sectional data from three different group i.e. foreign tourist,...

  12. Chemical Additive Selection in Matrix Acidizing

    E-Print Network [OSTI]

    Weidner, Jason 1981-

    2011-05-09T23:59:59.000Z

    This work proposes to survey new chemical knowledge, developed since 1984, on fluid additives used in matrix stimulation treatments of carbonate and sandstone petroleum reservoirs and describes one method of organizing this new knowledge in a...

  13. TCD-IISc Symposium "Chemistry & Chemical Biology"

    E-Print Network [OSTI]

    O'Mahony, Donal E.

    actinide chemistry, with a focus on coordination and organometallic uranium chemistry. Paula ColavitaTCD-IISc Symposium "Chemistry & Chemical Biology" Trinity College Clive Williams, Dean of Chemistry. Research areas include supramolecular organic and inorganic chemistry and medicinal chemistry

  14. Chemical Occurrences

    Broader source: Energy.gov [DOE]

    Classification of Chemical Occurrence Reports into the following four classes: Occurrences characterized by serious energy release, injury or exposure requiring medical treatment, or severe environmental damage, Occurrences characterized by minor injury or exposure, or reportable environmental release, Occurrences that were near misses including notable safety violations and Minor occurrences.

  15. Polychlorinated biphenyls in water, sediment and selected organisms of Galveston Bay, Texas: environmental levels and bioaccumulation

    E-Print Network [OSTI]

    Stahl, Ralph Garner

    1980-01-01T23:59:59.000Z

    organisms of Galveston Bay, Texas was conducted at 8 locations in the Bay during 1978-1979. PCB contaudnation was greater in water and ~t samples fr?xn sites proximal to petro- chemical industry. These sites were associated with the Houston and the Te...~s City Ship Channels. Values in water were less than 1 ug/L while values in sediment were less than 100 ng/g. PCB contami"ation cf Atlantic croaker, blue crab, and laughing gull was similar in magnitude to ~t conation. Laughing gulls contained slightly...

  16. Industrial fouling: problem characterization, economic assessment, and review of prevention, mitigation, and accommodation techniques

    SciTech Connect (OSTI)

    Garrett-Price, B.A.; Smith, S.A.; Watts, R.L.

    1984-02-01T23:59:59.000Z

    A comprehensive overview of heat exchanger fouling in the manufacturing industries is provided. Specifically, this overview addresses: the characteristics of industrial fouling problems; the mitigation and accommodation techniques currently used by industry; and the types and magnitude of costs associated with industrial fouling. A detailed review of the fouling problems, costs and mitigation techniques is provided for the food, textile, pulp and paper, chemical, petroleum, cement, glass and primary metals industries.

  17. Polymorphism control and the formation of organic molecular nanocrystals

    E-Print Network [OSTI]

    Yang, Xiaochuan, Ph. D. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    The formation of organic molecular nanocrystals is a topic of great interest in the pharmaceutical industry because of the potential increase in dissolution rate and solubility of organic crystals below 1 ptm and their ...

  18. China’s Space Industry in 2009: A Year in Review

    E-Print Network [OSTI]

    Pollpeter, Kevin

    2010-01-01T23:59:59.000Z

    challenges. As China’s leading space industry organization,particular, Pollpeter focuses on the Chinese space program.10 September 2010 China’s Space Industry in 2009: A Year in

  19. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    SciTech Connect (OSTI)

    Aden, Nathaniel T.; Zheng, Nina; Fridley, David G.

    2009-07-01T23:59:59.000Z

    Urbanization has re-shaped China's economy, society, and energy system. Between 1990 and 2007 China added 290 million new urban residents, bringing the total urbanization rate to 45%. This population adjustment spurred energy demand for construction of new buildings and infrastructure, as well as additional residential use as rural biomass was replaced with urban commercial energy services. Primary energy demand grew at an average annual rate of 10% between 2000 and 2007. Urbanization's effect on energy demand was compounded by the boom in domestic infrastructure investment, and in the export trade following World Trade Organization (WTO) accession in 2001. Industry energy consumption was most directly affected by this acceleration. Whereas industry comprised 32% of 2007 U.S. energy use, it accounted for 75% of China's 2007 energy consumption. Five sub-sectors accounted for 78% of China's industry energy use in 2007: iron and steel, energy extraction and processing, chemicals, cement, and non-ferrous metals. Ferrous metals alone accounted for 25% of industry and 18% of total primary energy use. The rapid growth of heavy industry has led China to become by far the world's largest producer of steel, cement, aluminum, and other energy-intensive commodities. However, the energy efficiency of heavy industrial production continues to lag world best practice levels. This study uses scenario analysis to quantify the impact of urbanization and trade on industrial and residential energy consumption from 2000 to 2025. The BAU scenario assumed 67% urbanization, frozen export amounts of heavy industrial products, and achievement of world best practices by 2025. The China Lightens Up (CLU) scenario assumed 55% urbanization, zero net exports of heavy industrial products, and more aggressive efficiency improvements by 2025. The five dominant industry sub-sectors were modeled in both scenarios using a LEAP energy end-use accounting model. The results of this study show that a CLU-style development path would avoid 430 million tonnes coal-equivalent energy use by 2025. More than 60% of these energy savings would come from reduced activity and production levels. In carbon terms, this would amount to more than a billion-tonne reduction of energy-related carbon emissions compared with the BAU scenario in 2025, though the absolute level of emissions rises in both scenarios. Aside from the energy and carbon savings related to CLU scenario development, this study showed impending saturation effects in commercial construction, urban appliance ownership, and fertilizer application. The implication of these findings is that urbanization will have a direct impact on future energy use and emissions - policies to guide urban growth can play a central role in China's efforts to mitigate emissions growth.

  20. Rohm and Haas: Furnace Replacement Project Saves Energy and Improves Production at a Chemical Plant

    SciTech Connect (OSTI)

    Not Available

    2006-02-01T23:59:59.000Z

    This DOE Industrial Technologies Program spotlight describes how Rohm and Haas's Deer Park, Texas, chemical plant reduced natural gas usage and energy costs by replacing inefficient furnace equipment.

  1. Electrotechnologies in Process Industries

    E-Print Network [OSTI]

    Amarnath, K. R.

    The Industrial Program at the Electric Power Research Institute (EPRI) promotes the efficient use of electricity to improve the competitive position of the American industry. Electrotechnologies that improve productivity, improve quality...

  2. and Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    technologicalandlogisticssystemsbygathering, structuring, and managing information. Indus- trial engineers apply their knowledge not only45 Mechanical and Industrial Engineering 220 Engineering Lab Degrees: Bachelor of Science in Mechanical Engineering Bachelor of Science in Industrial Engineering Contact: James R. Rinderle

  3. Demographics and industry returns

    E-Print Network [OSTI]

    Pollet, Joshua A.; DellaVigna, Stefano

    2007-01-01T23:59:59.000Z

    Industry category Child care Children’s books Children’s clothing Toysindustry Child care Children’s books Children’s clothing ToysIndustries are associated with high demand by children (child care, toys) and

  4. INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY

    E-Print Network [OSTI]

    Pohl, Karsten

    INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY SUMMER 2013 Industrial Engineering COOP Student needed-Fri, for summer 2013. Student must be enrolled in BS Engineering program. (Preferably completed 2-3 yrs

  5. Industry Analysis October 2010

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    Different regulations for some industries in Canada, the U.S. and Europe ie. telecommunications, energy of energy, materials, industrial waste, byproducts #12;Contact Constance Adamson Stauffer Library adamsonc

  6. Organic aerogel microspheres

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Kong, Fung-Ming (Pleasanton, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1999-01-01T23:59:59.000Z

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  7. Organic aerogel microspheres

    DOE Patents [OSTI]

    Mayer, S.T.; Kong, F.M.; Pekala, R.W.; Kaschmitter, J.L.

    1999-06-01T23:59:59.000Z

    Organic aerogel microspheres are disclosed which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonstick gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  8. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  9. Distributed Wind - Economical, Clean Energy for Industrial Facilities 

    E-Print Network [OSTI]

    Trapanese, A.; James, F.

    2011-01-01T23:59:59.000Z

    Distributed wind energy works for industrial clients. Corporations and other organizations are choosing to add Distributed Wind energy to their corporate goals for a numerous reasons: economic, environmental, marketing, values, and attracting new...

  10. Incremental Implementation of Energy Management at Industrial Facilities

    E-Print Network [OSTI]

    Brown, M.; Key, G.

    2005-01-01T23:59:59.000Z

    The essential elements of a sustainable energy management program at industrial facilities are defined in the ANSI/MSE 2000 Management System for Energy standard document. Although many organizations have expressed interest in improving their energy...

  11. Utilizing Industrial Engineers to Implement "Lean Enterprise" at Company A

    E-Print Network [OSTI]

    Stein, Jean D'Ann

    2012-12-14T23:59:59.000Z

    in the implementation of continuous improvement and lean thinking. This skillset has recently allowed IEs to work outside their normal realm of manufacturing, and focus on areas more closely related to service organizations. At Company A, Industrial Engineers...

  12. Distributed Wind - Economical, Clean Energy for Industrial Facilities

    E-Print Network [OSTI]

    Trapanese, A.; James, F.

    2011-01-01T23:59:59.000Z

    Distributed wind energy works for industrial clients. Corporations and other organizations are choosing to add Distributed Wind energy to their corporate goals for a numerous reasons: economic, environmental, marketing, values, and attracting new...

  13. Identifying, examining, and validating a description of the agriculture industry 

    E-Print Network [OSTI]

    Romero, Edward Wayne

    2009-05-15T23:59:59.000Z

    .................................................................. 20 Occupational Outlook Handbook ................................................... 22 Career Guide to Industries .............................................................. 24 National FFA Organization Career Explorer... ................................. 139 xii Page APPENDIX E FIRST ROUND QUESTIONS ....................................................... 141 APPENDIX F ROUND TWO ? EMAIL COVER LETTER ................................ 143 APPENDIX G SECOND ROUND QUESTIONS...

  14. Mechanical & Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical & Industrial Engineering Mario A. Rotea Professor and Department Head #12;2Mechanical & Industrial Engineering Outline · Undergraduate Degree Programs · Graduate Degree Programs · The Faculty · The Research · Summary #12;3Mechanical & Industrial Engineering Undergraduate Programs ­ BSME & BSIE 0 20 40 60

  15. Review of tribological sinks in six major industries

    SciTech Connect (OSTI)

    Imhoff, C.H.; Brown, D.R.; Hane, G.J.; Hutchinson, R.A.; Erickson, R.; Merriman, T.; Gruber, T.; Barber, S.

    1985-09-01T23:59:59.000Z

    Friction and material wear occur throughout all industries and are involved in many processes within each industry. These conditions make assessing tribological activity overall in industry very complex and expensive. Therefore, a research strategy to obtain preliminary information on only the most significant industrial tribological sinks was defined. The industries examined were selected according to both the magnitude of overall energy consumption (particularly machine drive) and the known presence of significant tribological sinks. The six industries chosen are as follows: mining, agriculture, primary metals, chemicals/refining, food, and pulp and paper. They were reviewed to identify and characterize the major tribology sinks. It was concluded that wear losses are greater than friction losses, and that reducing wear rates would improve industrial productivity.

  16. Polyethylene passive samplers for measuring hydrophobic organic chemical concentrations in sediment porewaters and their use in predicting bioaccumulation in soft-shell clams (Mya arenaria) from sites near Boston, MA

    E-Print Network [OSTI]

    Fernandez, Loretta A. (Loretta Ana)

    2010-01-01T23:59:59.000Z

    In order to determine the hazards posed by hydrophobic organic compounds (HOCs) in sediment beds, the following areas of research were explored: (1) the use of polyethylene (PE) sheets as passive sampling devices in ...

  17. Industrial Dojo Program Fosters Industrial Internet Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Launches Cloud Foundry 'Industrial Dojo,' Contributes to Open Source to Foster Continued...

  18. Industrial policy and the Indian electronics industry

    E-Print Network [OSTI]

    Love, Robert (Robert Eric)

    2008-01-01T23:59:59.000Z

    Recently, production within India's Electronics sector amounted to a low $12 billion when compared to the global output of $1400 billion. The slow growth in the local industry is often judged to be the result of late ...

  19. LANSCE | Lujan Center | Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users The Lujan Neutron Scattering Center offers a diverse set of capabilities and instruments for industrial projects. Industrial users are invited to contact Fredrik...

  20. Exposure Levels for Chemical Threat Compounds; Information to Facilitate Chemical Incident Response

    SciTech Connect (OSTI)

    Hauschild, Veronique [U.S. Army Public Health Command] [U.S. Army Public Health Command; Watson, Annetta Paule [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Exposure Standards, Limits and Guidelines for Chemical Threat Compunds ABSTRACT Exposure criteria for chemical warfare (CW) agents and certain toxic industrial chemicals (TICs) used as CW agents (such as chlorine fill in an improvised explosive device) have been developed for protection of the civilian general public, civilian employees in chemical agent processing facilities and deployed military populations. In addition, compound-specific concentrations have been developed to serve as how clean is clean enough clearance criteria guiding facility recovery following chemical terrorist or other hazardous release events. Such criteria are also useful to verify compound absence, identify containment boundaries and expedite facility recovery following chemical threat release. There is no single right value or concentration appropriate for all chemical hazard control applications. It is acknowledged that locating and comparing the many sources of CW agent and TIC exposure criteria has not been previously well-defined. This paper summarizes many of these estimates and assembles critical documentation regarding their derivation and use.

  1. Chemical Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms AboutRESEARCH CAPABILITIES Thematerials | Center forChemical

  2. Faculty for Factory: A University-Industry Link Program in Jordan

    E-Print Network [OSTI]

    , mining, cement, and inorganic chemicals · Industrial production growth rate is about 1% #12;Challenges for mechatronics in Jordan · The size of the "production, automation, and manufacturing" industry is small and rubber 9. Construction 10. Wood industry and furniture #12;FFF Projects over the years 0 20 40 60 80 100

  3. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Neelis, Maarten; Worrell, Ernst; Masanet, Eric

    2008-09-01T23:59:59.000Z

    Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  4. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    chemicals, light industry (iron foundries, cold storage andindustry ? Use of CHP ? Debottlenecking ? Increased production capacity ? Better use of production capacity ? Energy management Cold storage

  5. Uranium industry annual 1998

    SciTech Connect (OSTI)

    NONE

    1999-04-22T23:59:59.000Z

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

  6. Uranium industry annual 1994

    SciTech Connect (OSTI)

    NONE

    1995-07-05T23:59:59.000Z

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

  7. INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering

    E-Print Network [OSTI]

    Rohs, Remo

    78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take of industries including consulting, technology development, software, supply chain manufacturing, engineering

  8. External research and energy efficiency in the process industries

    SciTech Connect (OSTI)

    Kaarsberg, T.M.; Foust, T.D.

    1997-07-01T23:59:59.000Z

    The process industries in the US are under enormous pressure. These industries, even more than US industry on average, face skyrocketing environmental costs, a rapidly changing electricity market, potential climate change policies, aging infrastructure and strong international competition. To be profitable they must reduce their costs and environmental impacts while increasing their product quality, turnaround time, productivity and output. Most of these industries have already cut costs and labor as much as possible. Therefore, to survive, these industries must innovate. History shows that industries that are the most innovative are the most successful. These industries are vital to the US economy. For example, the metals, pulp and paper, chemicals and the petroleum refining industries account for more than $800 billion in products shipped and employ more than three million workers. Although the US has shifted dramatically toward services with 77% of workers and 74% of GDP now in the service sector, what many have missed is that the process industries are important customers for many of these new services. ServOnly the last two years of NSF industrial R and D data provide any breakout of non-manufacturing R and D. This paper discusses the past, current and possible future role of eternal research and development (R and D)--much of which is now in the service sector--in fostering innovation and thus energy efficiency in these industries. The authors suggest that these industries are more innovative than previously thought because of external research.

  9. Characterization of Stem Growth and Chemical Composition in Sorghum Bicolor

    E-Print Network [OSTI]

    Anderson Jr, Robert Taylor

    2014-03-31T23:59:59.000Z

    Sorghum bicolor is a subtropical grass grown throughout the world for human consumption, animal feed and for the growing biofuels industry. In this thesis I characterize sorghum stem growth and chemical composition, and identify QTL and candidate...

  10. Decision support tools for environmentally conscious chemical process design

    E-Print Network [OSTI]

    Cano Ruiz, José Alejandro, 1969-

    1999-01-01T23:59:59.000Z

    The environment has emerged as an important determinant of the performance of the modern chemical industry. Process engineering in the 21st century needs to evolve to include environmental issues as part of the design ...

  11. Robust model-based fault diagnosis for chemical process systems

    E-Print Network [OSTI]

    Rajaraman, Srinivasan

    2006-08-16T23:59:59.000Z

    Fault detection and diagnosis have gained central importance in the chemical process industries over the past decade. This is due to several reasons, one of them being that copious amount of data is available from a large number of sensors...

  12. Robust model-based fault diagnosis for chemical process systems 

    E-Print Network [OSTI]

    Rajaraman, Srinivasan

    2006-08-16T23:59:59.000Z

    Fault detection and diagnosis have gained central importance in the chemical process industries over the past decade. This is due to several reasons, one of them being that copious amount of data is available from a large ...

  13. MC-CAM Research Topics Organic LEDs

    E-Print Network [OSTI]

    Bigelow, Stephen

    materials with highly- controlled microstructures Next generation optical storage media Products based applications Novel conjugated polymers and high-conductivity organics Nanostructured materials with unique electronic, magnetic, and optical properties Chemically modified fullerenes and fullerene devices Materials

  14. Introduction to the proceedings of the sixteenth symposium on biotechnology for fuels and chemicals

    SciTech Connect (OSTI)

    Davison, B.H. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

    1994-12-31T23:59:59.000Z

    Biotechnology can be defined as the use of biologically derived materials and biocatalysts to carry out desired transformations from one material to another. These biocatalysts can be enzymes or microorganisms. The transformation may be of raw materials into useful compounds or for the destruction of industrial wastes. One use of biotechnology is for the production of fuels and chemicals. This has been the broad area focused on by this Symposium for the past 16 years. The Symposium on Biotechnology for Fuels and Chemicals presents both applied and fundamental work in this area performed by universities, industries, and government institutions. The goal, whether near term or long term, is to find and demonstrate efficient, economical methods for the use of biotechnology to supply society`s needs for fuels and chemicals. The Symposium allows interactions among the researchers in an intimate setting to foster the interactions that will be necessary to commercialize and use these technologies. Efforts presented include all aspects of the process: the pretreatment and beneficiation of the raw material, the biological conversion in some reactor, the separation and recovery of the desired product, and the treatment of the waste streams from this and earlier legacy processes. There are also efforts of the sensing, monitoring, and control of the process and well and the economic analysis to estimate the overall utility and impact. The Sixteenth Symposium on Biotechnology for Fuels and Chemicals provided a forum for the exchange of ideas. There were 34 oral presentations and 81 poster presentations. These were organized into sessions of thermal, chemical, and biological processing; bioprocessing research; process economics and commercialization; and environmental biotechnology.

  15. Life Cycle Assessment and Sustainability of Chemical Products

    E-Print Network [OSTI]

    Sahnoune, A.

    2014-01-01T23:59:59.000Z

    Life Cycle Assessment & Sustainability of Chemical Products Abdelhadi Sahnoune ExxonMobil Chemical Company Industrial Energy Technology Conference (IETC 2014) New Orleans, May 20-23, 2014 ESL-IE-14-05-38 Proceedings of the Thrity-Sixth Industrial... Energy Technology Conference New Orleans, LA. May 20-23, 2014 Products in our daily lives Plastics Packaging - Protects and extends shelf life Building & Construction – Insulation, design, flooring Plastics in Automotive Applications - Light weighting...

  16. Leadership, Organizations

    E-Print Network [OSTI]

    Palmeri, Thomas

    Leadership, Policy & Organizations #12;2 At Peabody students have the opportunity to develop new College, in the Department of Leadership, Policy and Organizations (LPO). The faculty believes Patricia and Rodes Hart Chair, and Professor of Education Policy and Leadership, Ellen Goldring also serves

  17. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01T23:59:59.000Z

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  18. Insect Controls for Organic Gardeners.

    E-Print Network [OSTI]

    Lewis, Kenneth R.; Turney, H.A.

    1979-01-01T23:59:59.000Z

    ) ............................................ 7 Praying Mantid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 Lady Beetles ........................................................... 7 CHEMICAL CONTROL METHODS... plant varieties which exhibit less insect damage when compared to other varieties under similar grow ing conditions. Some varieties may be less tasty to Figure 1. Managing and protecting the organic garden can be an enjoyable family project. 3...

  19. Industry-wide studies report of an in-depth survey at Firestone Synthetic Rubber and Latex Company, Lake Charles, Louisiana

    SciTech Connect (OSTI)

    Krishnan, E.R.; Ungers, L.J.; Fajen, J.M.

    1987-02-02T23:59:59.000Z

    In order to assess worker exposure to 1,3-butadiene at a polymer production facility, an in-depth industrial-hygiene survey was conducted at Firestone Synthetic Rubber and Latex Company, Lake Charles, Louisiana. This facility incorporated a number of controls designed to prevent the release of chemical intermediates and products into the air. Personal protective equipment included rubber, cotton, or vinyl gloves depending on the job performed. Respirators were required for field lab samplers and maintenance personnel performing specific tasks. Half-face organic vapor respirators were used. The authors recommend that consideration be given to converting to a closed-loop sampling system for obtaining quality control samples.

  20. Sources and Formation of OrganicSources and Formation of Organic Aerosols in our AtmosphereAerosols in our Atmosphere

    E-Print Network [OSTI]

    Einat, Aharonov

    Sources and Formation of OrganicSources and Formation of Organic Aerosols in our AtmosphereAerosols Department of Chemical Engineering University of Patras, Greece #12;Sources of Organic AerosolSources of Organic Aerosol Primary Secondary Anthropogenic ·Gasoline ·Diesel ·Biomass burning ·Meat Cooking Biogenic

  1. Energy Management at Dow Chemical Co.

    E-Print Network [OSTI]

    Almaguer, J.

    2008-01-01T23:59:59.000Z

    As one of the largest industrial consumers of energy in the world, The Dow Chemical Company and its 46,000 employees have put energy efficiency at the very core of its business – both as a cost savings initiative and as a primary corporate social...

  2. ISTUM PC: industrial sector technology use model for the IBM-PC

    SciTech Connect (OSTI)

    Roop, J.M.; Kaplan, D.T.

    1984-09-01T23:59:59.000Z

    A project to improve and enhance the Industrial Sector Technology Use Model (ISTUM) was originated in the summer of 1983. The project had dix identifiable objectives: update the data base; improve run-time efficiency; revise the reference base case; conduct case studies; provide technical and promotional seminars; and organize a service bureau. This interim report describes which of these objectives have been met and which tasks remain to be completed. The most dramatic achievement has been in the area of run-time efficiency. From a model that required a large proportion of the total resources of a mainframe computer and a great deal of effort to operate, the current version of the model (ISTUM-PC) runs on an IBM Personal Computer. The reorganization required for the model to run on a PC has additional advantages: the modular programs are somewhat easier to understand and the data base is more accessible and easier to use. A simple description of the logic of the model is given in this report. To generate the necessary funds for completion of the model, a multiclient project is proposed. This project will extend the industry coverage to all the industrial sectors, including the construction of process flow models for chemicals and petroleum refining. The project will also calibrate this model to historical data and construct a base case and alternative scenarios. The model will be delivered to clients and training provided. 2 references, 4 figures, 3 tables.

  3. Industrial Retrofits are Possible

    E-Print Network [OSTI]

    Stobart, E. W.

    . In April of 1987, the provincial government initiated a program to assist industrial energy users to reduce their energy usage. This program was designed to concentrate on an in-depth analysis of the complete operations of industrial plants... with the analyses being performed by specialist, private sector, engineering consultants. The program is in 3 phases providing an Ontario industrial plant with an Energy Analysis, a Feasibility Analysis Grant and a Project Engineering Design Grant...

  4. Chemical Hygiene and Safety Plan

    E-Print Network [OSTI]

    Ricks Editor, R.

    2009-01-01T23:59:59.000Z

    Patty. F.A.. Industrial Hygiene and Tox/colow. John Wiley &information. Industrial Hygiene Dept. , Bldg. 26 Bldg. 2626 Library Industrial Hygiene Dept. , Bldg. 26 Industrial

  5. Advanced Industrial Materials (AIM) Program annual progress report, FY 1997

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    The Advanced Industrial Materials (AIM) Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The mission of AIM is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. OIT has embarked on a fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrating on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans, some of which have been completed. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support.

  6. About Industrial Distributed Energy

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office's (AMO's) Industrial Distributed Energy activities build on the success of predecessor DOE programs on distributed energy and combined heat and power (CHP) while...

  7. Industrial Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    Boiler, Steam, and Cogeneration (BSC) Component. The BSC Component satisfies the steam demand from the PA and BLD Components. In some industries, the PA Component produces...

  8. The American nuclear power industry. A handbook

    SciTech Connect (OSTI)

    Pearman, W.A.; Starr, P.

    1984-01-01T23:59:59.000Z

    This book presents an overview of the history and current organization of the American nuclear power industry. Part I focuses on development of the industry, including the number, capacity, and type of plants in commercial operation as well as those under construction. Part II examines the safety, environmental, antitrust, and licensing issues involved in the use of nuclear power. Part III presents case studies of selected plants, such as Three Mile Island and Seabrook, to illustrate some of the issues discussed. The book also contains a listing of the Nuclear Regulatory Commission libraries and a subject index.

  9. Co-op and Internship Program Department of Chemical Engineering and Materials Science

    E-Print Network [OSTI]

    Janssen, Michel

    Co-op and Internship Program Department of Chemical Engineering and Materials Science June 2013 Engineering and Materials Science (CEMS) supports both Industrial Internships and Co-op Industrial Assignments for qualified upper division students in the Chemical Engineering (ChEn) and Materials Science and Engineering

  10. Measurement and Model for Hazardous Chemical and Mixed Waste

    SciTech Connect (OSTI)

    Michael E. Mullins; Tony N. Rogers; Stephanie L. Outcalt; Beverly Louie; Laurel A. Watts; Cynthia D. Holcomb

    2002-07-30T23:59:59.000Z

    Mixed solvent aqueous waste of various chemical compositions constitutes a significant fraction of the total waste produced by industry in the United States. Not only does the chemical process industry create large quantities of aqueous waste, but the majority of the waste inventory at the Department of Energy (DOE) sites previously used for nuclear weapons production is mixed solvent aqueous waste. In addition, large quantities of waste are expected to be generated in the clean-up of those sites. In order to effectively treat, safely handle, and properly dispose of these wastes, accurate and comprehensive knowledge of basic thermophysical properties is essential. The goal of this work is to develop a phase equilibrium model for mixed solvent aqueous solutions containing salts. An equation of state was sought for these mixtures that (a) would require a minimum of adjustable parameters and (b) could be obtained from a available data or data that were easily measured. A model was developed to predict vapor composition and pressure given the liquid composition and temperature. It is based on the Peng-Robinson equation of state, adapted to include non-volatile and salt components. The model itself is capable of predicting the vapor-liquid equilibria of a wide variety of systems composed of water, organic solvents, salts, nonvolatile solutes, and acids or bases. The representative system of water + acetone + 2-propanol + NaNO3 was selected to test and verify the model. Vapor-liquid equilibrium and phase density measurements were performed for this system and its constituent binaries.

  11. Organic Superconductors

    SciTech Connect (OSTI)

    Charles Mielke

    2009-02-27T23:59:59.000Z

    Intense magnetic fields are an essential tool for understanding layered superconductors. Fundamental electronic properties of organic superconductors are revealed in intense (60 tesla) magnetic fields. Properties such as the topology of the Fermi surface and the nature of the superconducting order parameter are revealed. With modest maximum critical temperatures~13K the charge transfer salt organic superconductors prove to be incredibly valuable materials as their electronically clean nature and layered (highly anisotropic) structures yield insights to the high temperature superconductors. Observation of de Haas-van Alphen and Shubnikov-de Haas quantum oscillatory phenomena, magnetic field induced superconductivity and re-entrant superconductivity are some of the physical phenomena observed in the charge transfer organic superconductors. In this talk, I will discuss the nature of organic superconductors and give an overview of the generation of intense magnetic fields; from the 60 tesla millisecond duration to the extreme 1000 tesla microsecond pulsed magnetic fields.

  12. Growing Hawaii's agriculture industry,

    E-Print Network [OSTI]

    Program Overview Growing Hawaii's agriculture industry, one business at a time Website: http-3547 agincubator@ctahr.hawaii.edu Grow Your Business If you are looking to start an agriculture-related business with our program · Positively impact the agriculture industry in Hawaii with their success

  13. Geothermal industry assessment

    SciTech Connect (OSTI)

    Not Available

    1980-07-01T23:59:59.000Z

    An assessment of the geothermal industry is presented, focusing on industry structure, corporate activities and strategies, and detailed analysis of the technological, economic, financial, and institutional issues important to government policy formulation. The study is based principally on confidential interviews with executives of 75 companies active in the field. (MHR)

  14. Industrial Optimization Compact Course

    E-Print Network [OSTI]

    Kirches, Christian

    Industrial Optimization Compact Course and Challenge Workshop Optimization plays a crucial role of the processes are typically nonlinear and dyna- mic. Thus, complex dynamic optimization or optimal control in industrial optimization. February 17­20, 2014 ·9.00­17.00 IWR ·Im Neuenheimer Feld 368 ·69120 Heidelberg www

  15. The U.S. cable television industry : the multi-service operator organizational structure as a bundle of competencies

    E-Print Network [OSTI]

    Moorthy, Satish K. (Satish Kumar)

    2009-01-01T23:59:59.000Z

    The United States cable television industry is experiencing fierce competition from telephone companies and content providers, as well as new and possibly unknown entrants. As organizations in the industry are currently ...

  16. DEPARTMENT OF CHEMICAL ENGINEERING DEPARTMENT OF MECHANICAL AND INDUSTRIAL ENGINEERING

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    -oxide-semiconductor field effect transistor (MOSFET) o Light emitting diodes (LEDs): principles and characteristics o

  17. Metal Hydride Chemical Heat Pumps for Industrial Use 

    E-Print Network [OSTI]

    Ally, M. R.; Rebello, W. J.; Rosso, M. J., Jr.

    1984-01-01T23:59:59.000Z

    Hydriding alloys are intermetallic absorbent compounds which have the remarkable quality of absorbing very large quantities of hydrogen gas per unit volume of metallic powder. The absorption and desorption of hydrogen are exothermic and endothermic...

  18. New environmental concepts in the chemical and coke industries

    SciTech Connect (OSTI)

    A.Yu. Naletov; V.A. Naletov [Mendeleev Russian Chemical-Engineering University (Russian Federation)

    2007-05-15T23:59:59.000Z

    We know that environmentally pure technologies do not exist. Coke production is no exception to the rule. The article considers the logic of environmental decision making. Attention focuses on a new bank of ecologically appropriate materials whose release to the biosphere must be considered solely in quantititative terms. Qualitativily all these materials are familiar; they are assimilated by populations of microorganisms and tar thus compatible with the biosphere.

  19. Industry - Specific Energy Conservation Opportunities in Chemical Plants 

    E-Print Network [OSTI]

    McBride, R. B.

    1979-01-01T23:59:59.000Z

    an average conversion energy index reduction of 36% when comparing the new facilities to the existing facilities they were replacing or augmenting....

  20. Oxygen Enrichment in the Process and Chemical Industries

    E-Print Network [OSTI]

    Milne, R. T.

    1984-01-01T23:59:59.000Z

    . The gases may also be shipped as pure cryogenic liquids in special insulated transports to customers remote from the plant. The availability of pure oxygen (typically 99.5%) in large quantities at a reasonable cost provided a stimulus..., the average selling price of oxygen has declined steadily as a result of refinements in the production technology, and development of important markets for nitrogen and argon, once regarded as mere by-products of the air separation process. The cost...

  1. Metal Hydride Chemical Heat Pumps for Industrial Use

    E-Print Network [OSTI]

    Ally, M. R.; Rebello, W. J.; Rosso, M. J., Jr.

    1984-01-01T23:59:59.000Z

    Hydriding alloys are intermetallic absorbent compounds which have the remarkable quality of absorbing very large quantities of hydrogen gas per unit volume of metallic powder. The absorption and desorption of hydrogen are exothermic and endothermic...

  2. Nova Chemicals Reliance Industries JV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth AmericaNorthwest Rural PubNova Alinca AgricolaNova

  3. Lee Chung Yung Chemical Industry Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKoreaLaor BatteriesLedong Xinyuan Hydro Power

  4. ITP Chemicals: Industrial Feedstock Flexibility Workshop Results, December

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGENDDepartmentSeptember 20092009 | Department of

  5. Uranium industry annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  6. INDUSTRIAL&SYSTEMS Industrial and Systems engineers use

    E-Print Network [OSTI]

    Rohs, Remo

    78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take · Industrial and Systems Engineering Bachelor of Science 128 units · Industrial and Systems Engineering

  7. Exxon Chemical's Coal-Fired Combined Cycle Power Technology

    E-Print Network [OSTI]

    Guide, J. J.

    EXXON CHEMICAL'S COAL-FIRED COMBINED CYCLE POWER TECHNOLOGY John J. Guide, P.E. Exxon Chemical Company Florham Park, New Jersey ABSTRACT Exxon Chemical's Central Engineering Divi sion has recently developed and patented CAT...-PAC for Industrial Cogeneration and Utility Power Plants. It involves the marriage of a conven tional direct pulverized coal-fired boiler radiant section with a convection section adapted ~rom our furnace experience. In particular, it 1S an open-cycle, hot air...

  8. Uranium industry annual 1995

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

  9. Industrial Demand Module

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    (NAICS 332) Bulk chemicals Machinery (NAICS 333) Inorganic (NAICS 32512- 32518) Computer and electronic products (NAICS 334) Other agricultural production (NAICS 112, 113,...

  10. Analysis of curricular units of a graduate industrial hygiene program 

    E-Print Network [OSTI]

    Collier, Stephen Ward

    1983-01-01T23:59:59.000Z

    of Industrial Hygiene from its concep- tion has been concerned with the industrial hygiene man- power problem. Article II(a) of the AAIH Bylaws states: recruitment and training ? develop and conduct pro- grams of recruitment of graduates in the sciences... complexity, and less direction for the student. The fourth-ranked enabling objective, $8, is concerned with the storage o f hazardous chemicals w' thin th plant. Several respondents commented that the task/activity and requirements of the enabling...

  11. Device for collecting chemical compounds and related methods

    DOE Patents [OSTI]

    Scott, Jill R.; Groenewold, Gary S.; Rae, Catherine

    2013-01-01T23:59:59.000Z

    A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from the fixed surfaces so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

  12. Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources

    SciTech Connect (OSTI)

    Donaldson, T.L.; Culberson, O.L.

    1983-06-01T23:59:59.000Z

    This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

  13. Low Temperature Waste Energy Recovery at Chemical Plants and Refineries

    E-Print Network [OSTI]

    Ferland, K.; papar, R.; Quinn, J.; Kumar, S.

    2013-01-01T23:59:59.000Z

    candidates of waste heat recovery technologies that might have an application in these industries. Four technologies that met the criteria of the Advisory Committee included: organic rankine cycle (ORC), absorption refrigeration and chilling, Kalina cycle...

  14. DuPont Chemical Vapor Technical Report

    SciTech Connect (OSTI)

    MOORE, T.L.

    2003-10-03T23:59:59.000Z

    DuPont Safety Resources was tasked with reviewing the current chemical vapor control practices and providing preventive recommendations on best commercial techniques to control worker exposures. The increased focus of the tank closure project to meet the 2024 Tri-Party Agreement (TPA) milestones has surfaced concerns among some CH2MHill employees and other interested parties. CH2MHill is committed to providing a safe working environment for employees and desires to safely manage the tank farm operations using appropriate control measures. To address worker concerns, CH2MHill has chartered a ''Chemical Vapors Project'' to integrate the activities of multiple CH2MHill project teams, and solicit the expertise of external resources, including an independent Industrial Hygiene expert panel, a communications consultant, and DuPont Safety Resources. Over a three-month time period, DuPont worked with CH2MHill ESH&Q, Industrial Hygiene, Engineering, and the independent expert panel to perform the assessment. The process included overview presentations, formal interviews, informal discussions, documentation review, and literature review. DuPont Safety Resources concluded that it is highly unlikely that workers in the tank farms are exposed to chemicals above established standards. Additionally, the conventional and radiological chemistry is understood, the inherent chemical hazards are known, and the risk associated with chemical vapor exposure is properly managed. The assessment highlighted management's commitment to addressing chemical vapor hazards and controlling the associated risks. Additionally, we found the Industrial Hygiene staff to be technically competent and well motivated. The tank characterization data resides in a comprehensive database containing the tank chemical compositions and relevant airborne concentrations.

  15. Microfluidic chemical reaction circuits

    SciTech Connect (OSTI)

    Lee, Chung-cheng (Irvine, CA); Sui, Guodong (Los Angeles, CA); Elizarov, Arkadij (Valley Village, CA); Kolb, Hartmuth C. (Playa del Rey, CA); Huang, Jiang (San Jose, CA); Heath, James R. (South Pasadena, CA); Phelps, Michael E. (Los Angeles, CA); Quake, Stephen R. (Stanford, CA); Tseng, Hsian-rong (Los Angeles, CA); Wyatt, Paul (Tipperary, IE); Daridon, Antoine (Mont-Sur-Rolle, CH)

    2012-06-26T23:59:59.000Z

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  16. Computational Chemical Materials Engineering

    E-Print Network [OSTI]

    Home Computational Chemical and Materials Engineering Tahir Cagin Chemical Engineering Department through processing for improving their performance for engineering applications · Use and develop with usable ­ Chemical ­ Electronic ­ Optical ­ Magnetic ­ Transport, thermal and mechanical properties

  17. Institute of Chemical Engineering and High Temperature Chemical...

    Open Energy Info (EERE)

    Institute of Chemical Engineering and High Temperature Chemical Processes ICEHT Jump to: navigation, search Name: Institute of Chemical Engineering and High Temperature Chemical...

  18. Micropyrolyzer for chemical analysis of liquid and solid samples

    DOE Patents [OSTI]

    Mowry, Curtis D. (Albuquerque, NM); Morgan, Catherine H. (Ann Arbor, MI); Manginell, Ronald P. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM)

    2006-07-18T23:59:59.000Z

    A micropyrolyzer has applications to pyrolysis, heated chemistry, and thermal desorption from liquid or solid samples. The micropyrolyzer can be fabricated from semiconductor materials and metals using standard integrated circuit technologies. The micropyrolyzer enables very small volume samples of less than 3 microliters and high sample heating rates of greater than 20.degree. C. per millisecond. A portable analyzer for the field analysis of liquid and solid samples can be realized when the micropyrolyzer is combined with a chemical preconcentrator, chemical separator, and chemical detector. Such a portable analyzer can be used in a variety of government and industrial applications, such as non-proliferation monitoring, chemical and biological warfare detection, industrial process control, water and air quality monitoring, and industrial hygiene.

  19. Industrial recreation in Texas: an exploratory study

    E-Print Network [OSTI]

    Kershaw, Deborah Louise

    1982-01-01T23:59:59.000Z

    that a recreation program was not included in their service offerings. Three of these respondents are vendors of recreation services. One is an institute of higher education and another is a municipal park and recreation department. They indicated... the data concerning the number of employees utilized in the administration of the recreation programs. Table 2. Industrial Recreation Program Organization ~Sons or EmpToyee Sponsor Company Sponsor Combinations ALL RESPONDENTS ~F 18 12 10 fftl...

  20. Ames Lab Named an Industry Safety Leader

    ScienceCinema (OSTI)

    Wessels, Tom

    2013-03-01T23:59:59.000Z

    The U.S. Department of Energy's Ames Laboratory has been named a 2010 Industry Leader Award winner by the National Safety Council. The Ames Laboratory was one of only 81 companies/organizations to receive the award for their safety performance and the only DOE national laboratory on the list. The award represents the top 5 percent of members that have qualified for the National Safety Council 2010 Occupational Excellence Achievement Award, based on 2009 calendar year data.

  1. Industrial process surveillance system

    DOE Patents [OSTI]

    Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

    1998-06-09T23:59:59.000Z

    A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

  2. Industrial Partnership Prosperity Game{trademark}

    SciTech Connect (OSTI)

    Boyak, K.; Berman, M.; Beck, D.

    1998-02-01T23:59:59.000Z

    Prosperity Games TM are an outgrowth and adaptation move/countermove and seminar War Games. Prosperity Games TM are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education, and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games TM are unique in that both the game format and the player contributions vary from game to game. This report documents the Industry Partnership Prosperity Game sponsored by the Technology Partnerships and Commercialization Center at Sandia National Laboratories. Players came from the Sandia line organizations, the Sandia business development and technology partnerships organizations, the US Department of Energy, academia, and industry The primary objectives of this game were to: explore ways to increase industry partnerships to meet long-term Sandia goals; improve Sandia business development and marketing strategies and tactics; improve the process by which Sandia develops long-term strategic alliances. The game actions and recommendations of these players provided valuable insights as to what Sandia can do to meet these objectives.

  3. Minimizing sulfur contamination and rinse water volume required following a sulfuric acid/hydrogen peroxide clean by performing a chemically basic rinse

    SciTech Connect (OSTI)

    Clews, P.J.; Nelson, G.C.; Resnick, P.J.; Matlock, C.A.; Adkins, C.L.J.

    1997-08-01T23:59:59.000Z

    Sulfuric acid hydrogen peroxide mixtures (SPM) are commonly used in the semiconductor industry to remove organic contaminants from wafer surfaces. This viscous solution is very difficult to rinse off wafer surfaces. Various rinsing conditions were tested and the resulting residual contamination on the wafer surface was measured. The addition of small amounts of a chemical base such as ammonium hydroxide to the rinse water has been found to be effective in reducing the surface concentration of sulfur and also mitigates the particle growth that occurs on SPM cleaned wafers. The volume of room temperature water required to rinse these wafers is also significantly reduced.

  4. chemical analysis | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chemical analysis chemical analysis Leads No leads are available at this time. Microstructure and Cs Behavior of Ba-Doped Aluminosilicate Pollucite Irradiated with F+ Ions....

  5. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    energy monitoring system Paper and Paperboard industry ? Integrated energy management system ?monitoring was handled by “accredited organizations that certify the energy management systems” (

  6. Task Group report to the Assistant Secretary for Environment, Safety and Health on oversight of chemical safety at the Department of Energy. Volume 2, Appendices

    SciTech Connect (OSTI)

    Not Available

    1992-11-01T23:59:59.000Z

    This report presents the results of a preliminary review of chemical safety within the Department of Energy (DOE). The review was conducted by Chemical Safety Oversight Review (CSOR) Teams composed of Office of Environment, Safety and Health (EH) staff members and contractors. The primary objective of the CSOR was to assess, the safety status of DOE chemical operations and identify any significant deficiencies associated with such operations. Significant was defined as any situation posing unacceptable risk, that is, imminent danger or threat to workers, co-located workers, the general public, or the environment, that requires prompt action by EH or the line organizations. A secondary objective of the CSOR was to gather and analyze technical and programmatic information related to chemical safety to be used in conjunction with the longer-range EH Workplace Chemical Accident Risk Review (WCARR) Program. The WCARR Program is part of the ongoing EH oversight of nonnuclear safety at all DOE facilities. `` The program objective is to analyze DOE and industry chemical safety programs and performance and determine the need for additional or improved safety guidance for DOE. During the period June 6, 1992, through July 31, 1992, EH conducted CSORs at five DOE sites. The sites visited were Los Alamos National Laboratory (LANL), Savannah River Site (SRS), the Y-12 Plant (Y-12), Oak Ridge National Laboratory (ORNL), and Lawrence Livermore National Laboratory (LLNL).

  7. Industrial Decision Making

    E-Print Network [OSTI]

    Elliott, R. N.; McKinney, V.; Shipley, A.

    2008-01-01T23:59:59.000Z

    Domestic industrial investment has declined due to unfavorable energy prices, and external markets. Investment behavior has changed over the past few years, and will continue due to high labor costs, tight markets and an unstable U.S. economy...

  8. AI Industrial Engineering 

    E-Print Network [OSTI]

    Unknown

    2011-08-17T23:59:59.000Z

    This paper describes the California Energy Commission’s (Commission) energy policies and programs that save energy and money for California’s manufacturing and food processing industries to help retain businesses in-state and reduce greenhouse gases...

  9. Uranium Industry Annual, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-28T23:59:59.000Z

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  10. Industrial energy use indices 

    E-Print Network [OSTI]

    Hanegan, Andrew Aaron

    2008-10-10T23:59:59.000Z

    Energy use index (EUI) is an important measure of energy use which normalizes energy use by dividing by building area. Energy use indices and associated coefficients of variation are computed for major industry categories ...

  11. Animal Industries Building 

    E-Print Network [OSTI]

    Unknown

    2011-08-17T23:59:59.000Z

    Plant managers around the world are interested in improving the energy efficiency of their facilities while both growing and modernizing their manufacturing capabilities. Emerging industrial technologies, both at the ...

  12. Animal Industries Building 

    E-Print Network [OSTI]

    Unknown

    2011-08-17T23:59:59.000Z

    Industrial steam users recognize the need to reduce system cost in order to remain internationally competitive. Steam systems are a key utility that influence cost significantly, and represent a high value opportunity ...

  13. Utility and Industrial Partnerships

    E-Print Network [OSTI]

    Sashihara, T. F.

    In the past decade, many external forces have shocked both utilities and their large industrial customers into seeking more effective ways of coping and surviving. One such way is to develop mutually beneficial partnerships optimizing the use...

  14. Engineering Industrial & Systems

    E-Print Network [OSTI]

    Berdichevsky, Victor

    powerful tool sets used in industry today. -Brent Gillett, BSIE 2007 Advanced Planning Engineer at BMW I the skills necessary to be successful in today's global environment. EDGE exposes and trains engineering

  15. Chemical Sciences Division annual report 1994

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    The division is one of ten LBL research divisions. It is composed of individual research groups organized into 5 scientific areas: chemical physics, inorganic/organometallic chemistry, actinide chemistry, atomic physics, and chemical engineering. Studies include structure and reactivity of critical reaction intermediates, transients and dynamics of elementary chemical reactions, and heterogeneous and homogeneous catalysis. Work for others included studies of superconducting properties of high-{Tc} oxides. In FY 1994, the division neared completion of two end-stations and a beamline for the Advanced Light Source, which will be used for combustion and other studies. This document presents summaries of the studies.

  16. Chemically modified graphite for electrochemical cells

    DOE Patents [OSTI]

    Greinke, R.A.; Lewis, I.C.

    1998-05-26T23:59:59.000Z

    This invention relates to chemically modified graphite particles: (a) that are useful in alkali metal-containing electrode of a electrochemical cell comprising: (1) the electrode, (2) a non-aqueous electrolytic solution comprising an organic aprotic solvent which solvent tends to decompose when the electrochemical cell is in use, and an electrically conductive salt of an alkali metal, and (3) a counter electrode; and (b) that are chemically modified with fluorine, chlorine, iodine or phosphorus to reduce such decomposition. This invention also relates to electrodes comprising such chemically modified graphite and a binder and to electrochemical cells containing such electrodes. 3 figs.

  17. Industrial cogeneration optimization program. Final report, September 1979

    SciTech Connect (OSTI)

    Davis, Jerry; McWhinney, Jr., Robert T.

    1980-01-01T23:59:59.000Z

    This study program is part of the DOE Integrated Industry Cogeneration Program to optimize, evaluate, and demonstrate cogeneration systems, with direct participation of the industries most affected. One objective is to characterize five major energy-intensive industries with respect to their energy-use profiles. The industries are: petroleum refining and related industries, textile mill products, paper and allied products, chemicals and allied products, and food and kindred products. Another objective is to select optimum cogeneration systems for site-specific reference case plants in terms of maximum energy savings subject to given return on investment hurdle rates. Analyses were made that define the range of optimal cogeneration systems for each reference-case plant considering technology applicability, economic factors, and energy savings by type of fuel. This study also provides guidance to other parts of the program through information developed with regard to component development requirements, institutional and regulatory barriers, as well as fuel use and environmental considerations. (MCW)

  18. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

  19. NEMS industrial module documentation report

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2010) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of output of industrial activity. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

  20. Industrial Development Fund (North Carolina)

    Broader source: Energy.gov [DOE]

    The Industrial Development Fund provides financing grants and loans through designated municipalities and counties to assist in infrastructure improvements for targeted industrial projects. The...

  1. Chemical Engineering Strategic Plan: Draft 7/5/02 16 A. Biomolecular Engineering

    E-Print Network [OSTI]

    McCready, Mark J.

    Chemical Engineering Strategic Plan: Draft 7/5/02 16 Appendices A. Biomolecular Engineering Rationale for a Biomolecular Engineer (Comments from M. J. McCready, 11/25/01) While BS chemical engineers have long found employment in a diversity of industrial sectors, chemical and petroleum have been

  2. Companies Hiring by Majors Booth # Organization Name Majors Recruited

    E-Print Network [OSTI]

    Azevedo, Ricardo

    Pont Electrical,Mechanical,Chemical 83 Eaton Corporation Electrical,Mechanical #12;Companies Hiring by Majors),Computer & Systems,Industrial,Aerospace 106 BASF Corporation Electrical,Mechanical,Civil,Chemical 86 Bayer Technology Engineering Corporation Engineering 108 Conestoga-Rovers & Associates Engineering 3/4 Conoco

  3. Industrial Energy Efficiency: Designing Effective State Programs...

    Energy Savers [EERE]

    Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector Industrial Energy Efficiency: Designing Effective State Programs for the Industrial...

  4. The Department of Energy's Solar Industrial Program: New ideas for American industry

    SciTech Connect (OSTI)

    Anderson, J.V.; Hauser, S.G.; Clyne, R.J.

    1991-07-01T23:59:59.000Z

    As society becomes more and more sensitive to the environment, and energy supplies become more scarce, the application of solar energy is expanding into new areas. The industrial sector is one of the most difficult for solar energy to impact because of its technical diversity and economic requirements. However, the opportunities are still abundant. The Department of Energy's Solar Industrial Program is dedicated to advancing the applications of solar energy in this sector. Research and technology development activities are currently focused in three areas: solar process heat, advanced materials manufacturing, and destruction of chemical wastes. The Solar Energy Research Institute manages these activities for DOE with close interactions with other federal agencies, private industry, and universities. 7 figs.

  5. Sustainable Development and Globalization: New Challenges and Opportunities for Work Organization

    E-Print Network [OSTI]

    Ashford, Nicholas

    2004-01-01T23:59:59.000Z

    The relationship between industrialization and its effects on the environment has captured the serious attention of national governments and international organizations, especially in light of increasing globalization. ...

  6. Mechanical and Industrial Engineering Industry Advisory Board University of Massachusetts Amherst

    E-Print Network [OSTI]

    Mountziaris, T. J.

    9/13/2007 Mechanical and Industrial Engineering Industry Advisory Board University of Massachusetts Amherst Department of Mechanical and Industrial Engineering About the Mechanical and Industrial Engineering Industry Advisory Board The purpose of the Mechanical and Industrial Engineering Industry Advisory

  7. Federal/Industry Development of Energy-Conserving Technologies for the Chemical and Petroleum Refining Industries

    E-Print Network [OSTI]

    Alston, T. G.; Humphrey, J. L.

    1981-01-01T23:59:59.000Z

    . The search for RD&D projects is currently focusing in the following technology categories: (i) reduction of fouling in cooling water systems, (ii) alternatives to conventional distillation and separation, (iii) low level waste heat recovery, (iv) advanced...

  8. Voltage Sag-Related Upsets of Industrial Process Controls in Petroleum and Chemical Industries

    E-Print Network [OSTI]

    Mansoor, A.; Key, T.; Woinsky, S.

    are cleared by the operation of utility system protective devices. Substation breakers are typically set up with a re-closing relay to open momentarily during a fault condition and allow the fault to clear. The effects of a temporary fault and recloser... trying to minimize the number of events by taking pro-active action in upgrading system protection and maintenance. In the plant it entails understanding the characteristics of the momentary disturbances and taking steps to de-sensitizing the weak...

  9. Profile of the chemicals industry in California: California industries of the future program

    E-Print Network [OSTI]

    Galitsky, Christina; Worrell, Ernst

    2004-01-01T23:59:59.000Z

    simplicity. In the cryogenic air separation process, air isis comparable to cryogenic air separation systems. Argon isof several air separation processes. Cryogenic liquefaction

  10. Guidance Document Reactive Chemicals

    E-Print Network [OSTI]

    showers and chillers. Health Hazards: The reactive chemicals are grouped primarily because of the physical

  11. Chemical Management Contacts

    Broader source: Energy.gov [DOE]

    Contacts for additional information on Chemical Management and brief description on Energy Facility Contractors Group

  12. Chemical Safety Vulnerability Working Group report. Volume 3

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 3 consists of eleven appendices containing the following: Field verification reports for Idaho National Engineering Lab., Rocky Flats Plant, Brookhaven National Lab., Los Alamos National Lab., and Sandia National Laboratories (NM); Mini-visits to small DOE sites; Working Group meeting, June 7--8, 1994; Commendable practices; Related chemical safety initiatives at DOE; Regulatory framework and industry initiatives related to chemical safety; and Chemical inventory data from field self-evaluation reports.

  13. An industrial hygiene survey of acetonitrile using a miniature quadrupole mass spectrometer

    E-Print Network [OSTI]

    Bruss, Stacy M

    1999-01-01T23:59:59.000Z

    Charcoal tubes are an industry standard for the collection and concentration of airborne chemicals in the field for later analysis in a laboratory. There are a few drawbacks in using charcoal tubes, including the time delay before results...

  14. NETL's High-Speed Imaging System Successfully Applied in Medicine, Broad Spectrum of Industry

    Broader source: Energy.gov [DOE]

    A groundbreaking Department of Energy-developed imaging system originally designed to help create cleaner fossil energy processes is finding successful applications in a wide range of medical, chemical processing, energy, and other industries.

  15. NDN, VOLUME TRANSMISSION, AND SELF-ORGANIZATION IN BRAIN DYNAMICS

    E-Print Network [OSTI]

    Freeman, Walter J.

    with neural network theory as proposed by Hebb in his 1949 classic The Organization of Behavior where heNDN, VOLUME TRANSMISSION, AND SELF- ORGANIZATION IN BRAIN DYNAMICS WALTER J FREEMAN Department chemical gradients; and order parameters that control self-organization of large populations of neurons

  16. PINS chemical identification software

    DOE Patents [OSTI]

    Caffrey, Augustine J.; Krebs, Kennth M.

    2004-09-14T23:59:59.000Z

    An apparatus and method for identifying a chemical compound. A neutron source delivers neutrons into the chemical compound. The nuclei of chemical elements constituting the chemical compound emit gamma rays upon interaction with the neutrons. The gamma rays are characteristic of the chemical elements constituting the chemical compound. A spectrum of the gamma rays is generated having a detection count and an energy scale. The energy scale is calibrated by comparing peaks in the spectrum to energies of pre-selected chemical elements in the spectrum. A least-squares fit completes the calibration. The chemical elements constituting the chemical compound can be readily determined, which then allows for identification of the chemical compound.

  17. The Dominican beef industry: organization, and role in economic development.

    E-Print Network [OSTI]

    Mathis, William Kary

    1967-01-01T23:59:59.000Z

    settlement 'n the i@astern m!)ayre Gard, Tn Chisholm rail (N rman, Ctklahoma: University of Oklahoma Press, 1954), p. 4. 3 Qtt SW. h, S t~D, ' !tl Y k: Tt*M 'll. t . p 1918), p. 161. "D '. '* RPMl'P, v~E1 d A ' Vl 9 (N Y k. Encyclopedia Americana... & ''no ~'r ! ica. , " si!!cc. he Ei-?i rati] c pr ?'. : lcd ! he !rly . pen! =h -. " . 1!: s w'ivh lni] k, Ir . . :, !!d nccI. r. Cv!- ?us] y vnouc . , ca!!Lle ccc'e rc] a. ic e] v lc'ss ] rpor! ?n'. i!c ' hc! Oom'n] ca!1 ep' 'l l ". . . ' t 1...

  18. United Nations Industrial Development Organization (UNIDO) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLC Place:UnalakleetInformation United

  19. Tax-Exempt Bond Financing for Nonprofit Organizations and Industries |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23,EnergyChicopee ElectricCommunity-Based EnergyNWSmallTax Incentives ofDepartment

  20. United Nations Industrial Development Organization (UNIDO) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AG UMaAG JumpEurope Jump

  1. United Nations Industrial Development Organization Feed | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AG UMaAG JumpEurope JumpInformation

  2. Clean Technology & Sustainable Industries Organization | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClay ElectricClean Edge IncInformation Clean

  3. Chemical engineers design, control and optimize large-scale chemical,

    E-Print Network [OSTI]

    Rohs, Remo

    , Biochemical, Environmental, Petroleum Engineering and Nantoechnology. CHEMICAL&MATERIALSSCIENCE CHE OVERVIEW of Science 131 units · Chemical Engineering (Petroleum) Bachelor of Science 136 units · Chemical Engineering38 Chemical engineers design, control and optimize large-scale chemical, physicochemical

  4. Significance of Isotopically Labile Organic Hydrogen in Thermal Maturation of Organic Matter

    SciTech Connect (OSTI)

    Arndt Schimmelmann; Maria Mastalerz

    2010-03-30T23:59:59.000Z

    Isotopically labile organic hydrogen in fossil fuels occupies chemical positions that participate in isotopic exchange and in chemical reactions during thermal maturation from kerogen to bitumen, oil and gas. Carbon-bound organic hydrogen is isotopically far less exchangeable than hydrogen bound to nitrogen, oxygen, or sulfur. We explore why organic hydrogen isotope ratios express a relationship with organic nitrogen isotope ratios in kerogen at low to moderate maturity. We develop and apply new techniques to utilize organic D/H ratios in organic matter fractions and on a molecular level as tools for exploration for fossil fuels and for paleoenvironmental research. The scope of our samples includes naturally and artificially matured substrates, such as coal, shale, oil and gas.

  5. Synergies Connecting the Photovoltaics and Solid-State Lighting Industries

    SciTech Connect (OSTI)

    Kurtz, S.

    2003-05-01T23:59:59.000Z

    Recent increases in the efficiencies of phosphide, nitride, and organic light-emitting diodes (LEDs) inspire a vision of a revolution in lighting. If high efficiencies, long lifetimes, and low cost can be achieved, solid-state lighting could save our country many quads of electricity in the coming years. The solid-state lighting (SSL) and photovoltaic (PV) industries share many of the same challenges. This paper explores the similarities between the two industries and how they might benefit by sharing information.

  6. assisted chemical solution: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ray 2012-01-01 47 Study on plasma assisted metal-organic chemical vapor deposition of Zr,,C,N... and Ti,,C,N... thin films and in situ plasma diagnostics with optical Materials...

  7. Chemical vapor deposition of organosilicon and sacrificial polymer thin films

    E-Print Network [OSTI]

    Casserly, Thomas Bryan

    2005-01-01T23:59:59.000Z

    Chemical vapor deposition (CVD) produced films for a wide array of applications from a variety of organosilicon and organic precursors. The structure and properties of thin films were controlled by varying processing ...

  8. Chemical Hygiene and Safety Plan

    E-Print Network [OSTI]

    Ricks Editor, R.

    2009-01-01T23:59:59.000Z

    DC. 10. Patty. F.A.. Industrial Hygiene and Tox/colow. Johneffects information. Industrial Hygiene Dept. , Bldg. 26Library Bldg. 26 Library Industrial Hygiene Dept. , Bldg. 26

  9. Department of Industrial Engineering Spring 2011 Machining Valve Seats

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Industrial Engineering Spring 2011 Machining Valve Seats Overview: The team worked with Quaker Chemical Corporation to machine valve seats using three different lubricants provided-degree chamfer on the valve seats are very specialized and expensive. For this project, the cutting tool

  10. BNL-68198-AB COMPILATION OF INVENTORIES OF INDUSTRIAL EMISSIONS

    E-Print Network [OSTI]

    BNL-68198-AB COMPILATION OF INVENTORIES OF INDUSTRIAL EMISSIONS Carmen M. Benkovitz Atmospheric-5000 March 2001 To be presented at the International Workshop on Emissions ofChemical Species and Aerosols perspectives accurate inventories of emissions of the trace species at the appropriate spatial, temporal

  11. Biological and Chemical Technologies Research at OIT: Annual Summary Report, FY 1997

    SciTech Connect (OSTI)

    Peterson, G.

    1998-03-01T23:59:59.000Z

    The annual summary report presents the fiscal year (FY) 1 997 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1997 (ASR 97) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization; selected technical and programmatic highlights for 1 997; detailed descriptions of individual projects; and a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by the program.

  12. Evaluation of the Nephrotoxicity of Complex Mixtures Containing Organics and Metals: Advantages and Disadvantages of the Use of Real-world Complex Mixtures

    E-Print Network [OSTI]

    Jane Ellen Simmons; Raymond S. H. Yang; Ezra Berman

    As part of a multidisciplinary health effects study, the nephrotoxicity of complex industrial waste mixtures was assessed. Adult, male Fischer 344 rats were gavaged with samples of complex industrial waste and nephrotoxicity evaluated 24 hr later. Of the 10 tested samples, 4 produced increased absolute or relative kidney weight, or both, coupled with a statistically significant alteration in at least one of the measured serum parameters (urea nitrogen (BUN), creatinine (CREAT), and BUN/CREAT ratio). Although the waste samples had been analyzed for a number of organic chemicals and 7 of the 10 samples were analyzed also for 12 elemental metals and metalloids, their nephrotoxicity was not readily predicted from the partial chemical characterization data. Because the chemical form or speciation of the metals was unknown, it was not possible to estimate their contribution to the observed biological response. Various experimental approaches, including use of real-world complex mixtures, chemically defined synthetic mixtures, and simple mixtures, will be necessary to adequately determine the potential human health risk from exposure to complex

  13. Policies on Japan's Space Industry

    E-Print Network [OSTI]

    with space emerging countries 3. Step up leading-edge science and technology as an innovation engine (1Policies on Japan's Space Industry Shuichi Kaneko Director, Space Industry Office Manufacturing Industries Bureau Ministry of Economy, Trade and Industry (METI) #12;Japan's Space Policy is based

  14. CHEMICAL ENGINEERING Fall Term Spring Term

    E-Print Network [OSTI]

    Lee, Kelvin H.

    Thermodynamics 3 CHEG 325 Chemical Engineering Thermodynamics 3 CHEM 220 Quantitative Analysis* 3 CHEM 444 Physical Chemistry 3 CHEM 221 Quantitative Analysis Laboratory 1 CHEM 445 Physical Chemistry Laboratory and Risk Analysis 3 CHEG 341 Fluid Mechanics 3 CHEG 342 Heat and Mass Transfer 3 CHEM 331 Organic Chemistry

  15. CHEMICAL ENGINEERING DEPARTMENT TECHNICAL Electives Approved Courses

    E-Print Network [OSTI]

    Lu, Chang

    Biochemistry 1 3114 Biochem. for Biotechnology & Life Sci. 3 4115,4116 General Biochemistry 4,3 Chemical to Polymer Processing 3 4334 Intro to Colloid Interface Sci 3 ChE/BSE 4544 Protein Separation Engineering 3 Compounds 3 4534 Organic Chemistry of Polymers 3 #12;4554 Drug Chemistry 3 4616 Physical Chem. Life Sci. II

  16. Chemical kinetics and oil shale process design

    SciTech Connect (OSTI)

    Burnham, A.K.

    1993-07-01T23:59:59.000Z

    Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

  17. Biogeochemical processes governing exposure and uptake of organic pollutant compounds in aquatic organisms. Environmental Health Perspectives

    E-Print Network [OSTI]

    John W. Farrington

    1991-01-01T23:59:59.000Z

    This paper reviews current knowledge of biogeochemical cycles of pollutant organic chemicals in aquatic ecosystems with a focus on coastal ecosystems. There is a bias toward discussng chemkal and geochemical aspects ofbiogeochemical cycles and an emphasis on hydrophobic organic compounds such as polynuckar aromatic hydrocarbons, polychlorinated biphenyls, and chlorinated organic compounds used as pesticides. The complexity of mixtures of pollutant organic compounds, their various modes of entering ecosystems, and their physical chemical forms are discussed. Important factors that influence bioavailability and disposition (e.g., organism-water partitioning, uptake via food, food meb transfer) are reviewed. These factors include solubilities of chemicals; partitioning of chemicals between solid surfaces, colloids, and soluble phases; variables rates of sorption, desorption; and physiological status of organism. It appears that more emphasis on considering food as a source of uptake and bioaccumulation is important in benthic and epibenthic ecosystems when sediment-associated pollutants are a nt source of input to an aquatic ecosystem. Progress with mathematical models for exposure and uptake of contaminant chemicals is discussed briefly.

  18. Emulsified industrial oils recycling

    SciTech Connect (OSTI)

    Gabris, T.

    1982-04-01T23:59:59.000Z

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  19. Improving the productivity of an R&D organization

    E-Print Network [OSTI]

    Hurtado Schwarck, Armando Miguel

    2013-01-01T23:59:59.000Z

    This research demonstrates through a comprehensive case study, the application of Lean manufacturing techniques, specifically Value Stream Mapping, to a product development organization in the mass consumer products industry. ...

  20. Industrial Assessment Center

    SciTech Connect (OSTI)

    Dr. Diane Schaub

    2007-03-05T23:59:59.000Z

    Since its inception, the University of Florida Industrial Assessment Center has successfully completed close to 400 energy assessments of small to medium manufacturing facilities in Florida, southern Georgia and southern Alabama. Through these efforts, recommendations were made that would result in savings of about $5 million per year, with an implementation rate of 20-25%. Approximately 80 engineering students have worked for the UF-IAC, at least 10 of whom went on to work in energy related fields after graduation. Additionally, through the popular course in Industrial Energy Management, many students have graduated from the University of Florida with a strong understanding and support of energy conservation methods.

  1. Libyan oil industry

    SciTech Connect (OSTI)

    Waddams, F.C.

    1980-01-01T23:59:59.000Z

    Three aspects of the growth and progress of Libya's oil industry since the first crude oil discovery in 1961 are: (1) relations between the Libyan government and the concessionary oil companies; (2) the impact of Libyan oil and events in Libya on the petroleum markets of Europe and the world; and (3) the response of the Libyan economy to the development of its oil industry. The historical review begins with Libya's becoming a sovereign nation in 1951 and traces its subsequent development into a position as a leading world oil producer. 54 references, 10 figures, 55 tables.

  2. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01T23:59:59.000Z

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  3. Industrial Equipment Impacts Infrastructure

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf05 IdentifiedPathways to SustainedIndustrial AssessmentIndustrial

  4. Organizing Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest andOptimize carbon AboutOrganizing Committee

  5. Technology Roadmap Research Program for the Steel Industry

    SciTech Connect (OSTI)

    Joseph R. Vehec

    2010-12-30T23:59:59.000Z

    The steel industry's Technology Roadmap Program (TRP) is a collaborative R&D effort jointly sponsored by the steel industry and the United States Department of Energy. The TRP program was designed to develop new technologies to save energy , increase competitiveness, and improve the environment. TRP ran from July, 1997 to December, 2008, with a total program budget of $38 million dollars. During that period 47 R&D projects were performed by 28 unique research organizations; co-funding was provided by DOE and 60 industry partners. The projects benefited all areas of steelmaking and much know-how was developed and transferred to industry. The American Iron and Steel Institute is the owner of all intellectual property developed under TRP and licenses it at commercial rates to all steelmakers. TRP technologies are in widespread use in the steel industry as participants received royalty-free use of intellectual property in return for taking the risk of funding this research.

  6. Ontario's Industrial Energy Services Program

    E-Print Network [OSTI]

    Ploeger, L. K.

    .8%! ! ! ! OTHER 8.4%! l4.9%! l4.0%! ! ! ! TOTAL 100.0%! 100.0%! 100.0%! ! PROGRAM STRATEGY Ontario's Industrial Energy Services Program was designed to: lead industrial energy consumers to the realization that increased energy efficiency generates... ONTARIO'S INDUSTRIAL ENERGY SERVICES PROGRAM LINDA K. PLOEGER, GENERAL MANAGER, INDUSTRY PROGRAMS ONTARIO MINISTRY OF ENERGY TORONTO, ONTARIO, ABSTRACT The Ontario Ministry of Energy began offering its new Industrial Energy Services Program...

  7. Alternative Fuels and Chemicals from Synthesis Gas

    SciTech Connect (OSTI)

    Peter Tijrn

    2003-01-02T23:59:59.000Z

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  8. Environmental toxicity of complex chemical mixtures 

    E-Print Network [OSTI]

    Gillespie, Annika Margaret

    2009-05-15T23:59:59.000Z

    of the risk associated with remedial contaminants in treated soil and groundwater. Data have been generated to determine if the residual contaminants in soil and groundwater after microbial degradation elicited a genotoxic response in vitro. Data have... to particulate matter may remain on the soil surface, be degraded by chemical, biological or photodegradation, or may be transported by wind or water erosion. Industrial and domestic stacks used to vent particulate and gaseous emissions contribute largely...

  9. Alternative Fuels and Chemicals From Synthesis Gas

    SciTech Connect (OSTI)

    none

    1998-07-01T23:59:59.000Z

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  10. Clay and non-clay minerals in the pharmaceutical industry Part I. Excipients and medical applications

    E-Print Network [OSTI]

    Ahmad, Sajjad

    Clay and non-clay minerals in the pharmaceutical industry Part I. Excipients and medical form 17 July 2009 Accepted 22 July 2009 Available online 29 July 2009 Keywords: Minerals Pharmaceutical industry Excipients Medical applications Physical and physico-chemical properties Minerals are widely used

  11. The Impact of Heat Transfer Enhancement Techniques on Energy Savings in the U.S. Industry

    E-Print Network [OSTI]

    Rebello, W. J.; Peterson, G. R.; Sohal, M.

    : the chemical, petroleum, electrical utility and other industries. The total U.S. sales of all industrial heat exchangers, except boilers and automotive radiators, was approximately $1.6 billion (about 285,000 units) in 1982. About 59% of the total represented...

  12. Dr. John M. Shaw NSERC Industrial Research Chair in Petroleum Thermodynamics

    E-Print Network [OSTI]

    Firestone, Jeremy

    to the hydrocarbon production, transport and refining sectors. Redefining Heavy Oil Characterization: A DissidentDr. John M. Shaw NSERC Industrial Research Chair in Petroleum Thermodynamics Department of Chemical industrial research chair in petroleum thermodynamics. During his career he has developed expertise

  13. U.S. Department of Energy (DOE) Industrial Programs and Their Impacts 

    E-Print Network [OSTI]

    Weakley, S. A.; Roop, J. M.

    2005-01-01T23:59:59.000Z

    with these industries and their supporting industries to improve energy efficiency: • • • • • • • • Aluminum Chemicals Forest Products Glass Metal Casting Mining Steel Supporting Industries: process heating heat treating forging welding... are limited in their choice of fuels because the technologies currently used in specific processes require a certain fuel. For example, aluminum production requires large amounts of electricity to reduce the alumina to metal. Paper pulping leaves a...

  14. Industry Partners Panel

    Broader source: Energy.gov [DOE]

    Industry Panel presenters include: Michael G. Andrew, Director - Academic and Technical Programs, Advanced Products and Materials, Johnson Controls Power Solutions Michael A. Fetcenko, Vice President and Managing Director, BASF Battery Materials – Ovonic, BASF Corporation Adam Kahn, Founder and CEO, AKHAN Technologies, Inc. Stephen E. Zimmer, Executive Director, United States Council for Automotive Research (USCAR)

  15. Industrial Energy Use Indices

    E-Print Network [OSTI]

    Hanegan, A.; Heffington, W. M.

    2007-01-01T23:59:59.000Z

    of variations for all industry types in warm versus cold regions of the U.S. generally is greater than unity. Data scatter may have several explanations, including climate, plant area accounting, the influence of low cost energy and low cost buildings used...

  16. INTERMOUNTAIN INDUSTRIAL ASSESSMENT CENTER

    SciTech Connect (OSTI)

    MELINDA KRAHENBUHL

    2010-05-28T23:59:59.000Z

    The U. S. Department of Energy’s Intermountain Industrial Assessment Center (IIAC) at the University of Utah has been providing eligible small- and medium-sized manufacturers with no-cost plant assessments since 2001, offering cost-effective recommendations for improvements in the areas of energy efficiency, pollution prevention, and productivity improvement.

  17. Carbon tetrachloride contamination, 200 West Area, Hanford Site: Arid Site Integrated Demonstration for remediation of volatile organic compounds

    SciTech Connect (OSTI)

    Last, G.V. (Pacific Northwest Lab., Richland, WA (United States)); Rohay, V.J. (Westinghouse Hanford Co., Richland, WA (United States))

    1991-05-06T23:59:59.000Z

    The Arid State Integrated Demonstration is a US Department of Energy (DOE) program targeted at the acquisition, development, demonstration, and deployment of technologies for evaluation and cleanup of volatile organic and associated contaminants in soils and ground waters. Several DOE laboratories, universities, and industry will participate in the program. Candidate technologies will be demonstrated in the areas of site characterization; performance prediction, monitoring, and evaluations; contaminant extraction and ex situ treatment; in situ remediations; and site closure and monitoring. The performance of these demonstrated technologies will be compared to baseline technologies and documented to promote the transfer of new technologies to industry for use at DOE facilities. The initial host site is the Hanford Site's 200 West Area. The location of the demonstration contains primarily carbon tetrachloride (CCl{sub 4}), chloroform, and a variety of associated mixed waste contaminants. Chemical processes used to recover and purify plutonium at Hanford's plutonium finishing plant (Z Plant) resulted in the production of actinide-bearing waste liquid. Both aqueous and organic liquid wastes were generated, and were routinely discharged to subsurface disposal facilities. The primary radionuclide in the waste streams was plutonium, and the primary organic was CCl{sub 4}. This paper contains brief descriptions of the principal CCl{sub 4} waste disposal facilities in Hanford's 200 West Area, associated hydrogeology, existing information on the extent of soil and ground-water contamination, and a conceptual outline of suspected subsurface CCl{sub 4} distributions.

  18. Carbon tetrachloride contamination, 200 West Area, Hanford Site: Arid Site Integrated Demonstration for remediation of volatile organic compounds

    SciTech Connect (OSTI)

    Last, G.V. [Pacific Northwest Lab., Richland, WA (United States); Rohay, V.J. [Westinghouse Hanford Co., Richland, WA (United States)

    1991-05-06T23:59:59.000Z

    The Arid State Integrated Demonstration is a US Department of Energy (DOE) program targeted at the acquisition, development, demonstration, and deployment of technologies for evaluation and cleanup of volatile organic and associated contaminants in soils and ground waters. Several DOE laboratories, universities, and industry will participate in the program. Candidate technologies will be demonstrated in the areas of site characterization; performance prediction, monitoring, and evaluations; contaminant extraction and ex situ treatment; in situ remediations; and site closure and monitoring. The performance of these demonstrated technologies will be compared to baseline technologies and documented to promote the transfer of new technologies to industry for use at DOE facilities. The initial host site is the Hanford Site`s 200 West Area. The location of the demonstration contains primarily carbon tetrachloride (CCl{sub 4}), chloroform, and a variety of associated mixed waste contaminants. Chemical processes used to recover and purify plutonium at Hanford`s plutonium finishing plant (Z Plant) resulted in the production of actinide-bearing waste liquid. Both aqueous and organic liquid wastes were generated, and were routinely discharged to subsurface disposal facilities. The primary radionuclide in the waste streams was plutonium, and the primary organic was CCl{sub 4}. This paper contains brief descriptions of the principal CCl{sub 4} waste disposal facilities in Hanford`s 200 West Area, associated hydrogeology, existing information on the extent of soil and ground-water contamination, and a conceptual outline of suspected subsurface CCl{sub 4} distributions.

  19. Platform Chemicals from an Oilseed Biorefinery

    SciTech Connect (OSTI)

    Tupy, Mike; Schrodi Yann

    2006-11-06T23:59:59.000Z

    The US chemical industry is $460 billion in size where a $150 billion segment of which is non-oxygenated chemicals that is sourced today via petroleum but is addressable by a renewable feedstock if one considers a more chemically reduced feedstock such as vegetable oils. Vegetable oil, due to its chemical functionality, provides a largely untapped opportunity as a renewable chemical source to replace petroleum-derived chemicals and produce platform chemicals unavailable today. This project examined the fertile intersection between the rich building blocks provided by vegetable oils and the enhanced chemical modification capability provided by metathesis chemistry. The technology advanced in this study is the process of ethylene cross-metathesis (referred to as ethenolysis) with vegetable oil and vegetable oil derivatives to manufacture the platform-chemical 9-decenoic acid (or 9DA) and olefin co-products. The project team meet its goals of demonstrating improved catalyst efficiencies of several multiples, deepening the mechanistic understanding of metathesis, synthesis and screening of dozens of new catalysts, designing and modeling commercial processes, and estimating production costs. One demonstrable result of the study was a step change improvement in catalyst turnover number in the ethenolysis of methyl oleate as reported here. We met our key measurable of producing 100 lbs of 9DA at the pilot-scale, which demonstrated ability to scale-up ethenolysis. DOE Project funding had significant positive impact on development of metathetically modified vegetable oils more broadly as the Cargill/Materia partnership, that was able to initiate primarily due to DOE funding, has succeeded in commercializing products, validating metathesis as a platform technology, and expanding a diverse products portfolio in high value and in large volume markets. Opportunities have expanded and business development has gained considerable momentum and enabled further expansion of the Materia/Cargill relationship. This project exceeded expectations and is having immediate impact on DOE success by replacing petroleum products with renewables in a large volume application today.

  20. Agent-Based Modeling and Computational Experiments in Industrial Organization: Growing Firms and Industries in silico

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    equilibrium either with or without entry barriers, the actual process of firm entry and exit through which-specific factors affect the out-of-equilibrium processes of entry and exit as well as the long-run equilibrium

  1. Annual Report 2000. Chemical Structure and Dynamics

    SciTech Connect (OSTI)

    Colson, Steven D.; McDowell, Robin S.

    2001-04-15T23:59:59.000Z

    This annual report describes the research and accomplishments of the Chemical Structure and Dynamics Program in the year 2000, one of six research programs at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) - a multidisciplinary, national scientific user facility and research organization. The Chemical Structure and Dynamics (CS&D) program is meeting the need for a fundamental, molecular-level understanding by 1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; 2) developing a multidisciplinary capability for describing interfacial chemical processes relevant to environmental chemistry; and 3) developing state-of-the-art research and analytical methods for characterizing complex materials of the types found in natural and contaminated systems.

  2. Capacitive chemical sensor

    DOE Patents [OSTI]

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27T23:59:59.000Z

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  3. Chemistry 455 Chemical Nanotechnology

    E-Print Network [OSTI]

    Rohs, Remo

    Chemistry 455 Chemical Nanotechnology 4 units Prof. Richard Brutchey, Fall 2014 (Lecture = 12:00­12:50 pm MWF) CHEM 455 is an upper-division undergraduate course in Chemical Nanotechnology. The intent

  4. From association to organization

    E-Print Network [OSTI]

    Mandler, George

    2011-01-01T23:59:59.000Z

    S.M. (1978). Organization theory and memory for prose: Aand summarize organization theory and relevant empiricalexplained in terms of organization theory. The hierarchical

  5. Organization Chart - Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LSD Logo About Us People & Organization Research News & Events Safety Internal Resources Organization Chart Departments Scientific Staff Directory Committees Organization Chart...

  6. Methods and systems for chemoautotrophic production of organic compounds

    DOE Patents [OSTI]

    Fischer, Curt R.; Che, Austin J.; Shetty, Reshma P.; Kelly, Jason R.

    2013-01-08T23:59:59.000Z

    The present disclosure identifies pathways, mechanisms, systems and methods to confer chemoautotrophic production of carbon-based products of interest, such as sugars, alcohols, chemicals, amino acids, polymers, fatty acids and their derivatives, hydrocarbons, isoprenoids, and intermediates thereof, in organisms such that these organisms efficiently convert inorganic carbon to organic carbon-based products of interest using inorganic energy, such as formate, and in particular the use of organisms for the commercial production of various carbon-based products of interest.

  7. Energy Efficient Industrialized Housing Research Program

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    Six area reported progress in the Energy Efficient Industrialized Housing Research Program during FY 1991. As part of Industry Guidance, meetings were held with steering and technical committees in computers, housing design and manufacturing. This task area enables the program to benefit from the expertise of industry representatives and communicate research results directly to them. As part of the Design Process performance specifications were being developed for the future housing system designed last year. These house designs coordinate and optimize predicted and desirable advances in computerized design processes, materials, components, and manufacturing automation to achieve energy efficiency at reduced first cost. Energy design software were being developed for CAD systems, stressed skin insulating core panel manufacturers; and a prototype energy sales tool. A prototype design was to be developed to integrate one or more subsystems with the building skin. As part of the Manufacturing Process we are developing a manufacturing process simulation and data base to help current and new entrants to the industrialized housing industry in assessing the impact of implementing new manufacturing techniques. For Evaluation we are developing testing plans for six units of housing on the UO campus and the stressed skin insulating core house to be constructed in Oregon. The DOW Chemical test structure will be retrofitted with a tile roof and retested to compare to the dome and conventional construction structures. Calibration of the wind tunnel will be completed so that laboratory tests can be conducted to simulate the ventilation cooling efficiency of houses in design. Research utilization and program management were either aspects of this program.

  8. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    SciTech Connect (OSTI)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12T23:59:59.000Z

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  9. Optimizing Organ Allocation and Acceptance OGUZHAN ALAGOZ

    E-Print Network [OSTI]

    Schaefer, Andrew

    it is transplanted is called the cold ischemia time (CIT). During this time, organs are bathed in storage solutions J. SCHAEFER Departments of Industrial Engineering and Medicine University of Pittsburgh Pittsburgh of Transplant Recipients states that the acceptable cold ischemia time limit for a liver is 12 to 18 hours [22

  10. EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERNEP/2000121

    E-Print Network [OSTI]

    Boyer, Edmond

    EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN­EP/2000­121 31 March 2000 The Data Acquisition) Fonds pour la Formation `a la Recherche dans l'Industrie et dans l'Agriculture. n) Supported by a grant current (CC) interactions, in a 770 kg nuclear emulsion target located in the experimental setup

  11. Industry and forest wetlands: Cooperative research initiatives

    SciTech Connect (OSTI)

    Shepard, J.P. (National Council of the Paper Industry for Air and Stream Improvement, Gainesville, FL (United States)); Lucier, A.A. (National Council of the Paper Industry for Air and Stream Improvement, New York, NY (United States)); Haines, L.W. (International Paper, Bainbridge, GA (United States))

    1993-05-01T23:59:59.000Z

    In 1989 the forest products industry responded to a challenge of the National Wetlands Policy Forum to initiate a cooperative research program on forest wetlands management organized through the National Council of the Paper Industry for Air and Stream Improvement (NCASI). The objective is to determine how forest landowners can manage wetlands for timber production while protecting other wetland functions such as flood storage, water purification, and food chain/wildlife habitat support. Studies supported by the NCASI in 9 states are summarized. Technical support on wetland regulatory issues to member companies is part of the research program. Since guidelines for recognizing wetlands for regulatory proposed have changed frequently, the NCASI has recommend an explicit link between wetland delineation and a classification system that considers difference among wetland types in vegetation, soils, hydrology, appearance, landscape position, and other factors. 16 refs.

  12. and Chemical Engineering

    E-Print Network [OSTI]

    Prinz, Friedrich B.

    is constructing a new building that will house the Department of Chemical Engineering and the DepartmentBiological and Chemical Engineering Building #12;2 Biological and Chemical Engineering Building sta and Engineering Quad, the new building will be part of a neighborhood of four buildings that house a community

  13. Equilibrium Chemical Engines

    E-Print Network [OSTI]

    Tatsuo Shibata; Shin-ichi Sasa

    1997-10-30T23:59:59.000Z

    An equilibrium reversible cycle with a certain engine to transduce the energy of any chemical reaction into mechanical energy is proposed. The efficiency for chemical energy transduction is also defined so as to be compared with Carnot efficiency. Relevance to the study of protein motors is discussed. KEYWORDS: Chemical thermodynamics, Engine, Efficiency, Molecular machine.

  14. Department of Chemical Engineering

    E-Print Network [OSTI]

    Acton, Scott

    Developing Leaders of Innovation Department of Chemical Engineering #12;At the University of Virginia, we educate students in traditional and nontraditional areas of chemical engineering, giving them.Va. Department of Chemical Engineering benefit from a modern academic curriculum and state

  15. Transforming the Oil Industry into the Energy Industry

    E-Print Network [OSTI]

    Sperling, Daniel; Yeh, Sonia

    2009-01-01T23:59:59.000Z

    Transforming the Oil Industry into the Energy Industry BYculprit. It consumes half the oil used in the world andconsuming two thirds of the oil and causing about one third

  16. Innovative New Industrial Technologies: An Industry/DOE Joint Endeavor

    E-Print Network [OSTI]

    Gross, T. J.

    The Department of Energy’s Office of Industrial Programs supports research and development leading to improved energy efficiency and greater overall productivity in the industrial sector. Its basic strategy is a program of cost-shared R...

  17. INDUSTRIAL ASSOCIATESHIP SCHEME Centre for Industrial Consultancy and Sponsored Research

    E-Print Network [OSTI]

    Bhashyam, Srikrishna

    this scheme: #12;(i) Energy Energy Storage (1990) Strategies for Energy Saving in Industry (1993) Pollution Control Equipment (2001) Acoustics and Noise Control for Industry (2005) Urban Air Quality

  18. Understanding Degradation Pathways in Organic Photovoltaics (Poster)

    SciTech Connect (OSTI)

    Lloyd, M. T.; Olson, D. C.; Garcia, A.; Kauvar, I.; Kopidakis, N.; Reese, M. O.; Berry, J. J.; Ginley, D. S.

    2011-02-01T23:59:59.000Z

    Organic Photovoltaics (OPVs) recently attained power conversion efficiencies that are of interest for commercial production. Consequently, one of the most important unsolved issues facing a new industry is understanding what governs lifetime in organic devices and discovering solutions to mitigate degradation mechanisms. Historically, the active organic components are considered vulnerable to photo-oxidation and represent the primary degradation channel. However, we present several (shelf life and light soaking) studies pointing the relative stability of the active layers and instabilities in commonly used electrode materials. We show that engineering of the hole/electron layer at the electrode can lead to environmentally stable devices even without encapsulation.

  19. PHYSICS DIVISION CHEMICAL HYGIENE PLAN

    E-Print Network [OSTI]

    Kemner, Ken

    PHYSICS DIVISION CHEMICAL HYGIENE PLAN 2008 Prepared by _________________________________________________ T. Mullen Physics Division Chemical Hygiene Officer Reviewed by ___________________________________________________ J. Woodring Site Chemical Hygiene Officer Approved

  20. INDUSTRIAL & SYSTEMS Industrial and Systems engineers use engineering

    E-Print Network [OSTI]

    Rohs, Remo

    78 INDUSTRIAL & SYSTEMS Industrial and Systems engineers use engineering and business principles of physical and human resources. These engineers are involved in developing manufacturing systems to help companies compete in todays global marketplace. The Industrial and Systems engineers task is to take limited

  1. Coal industry annual 1997

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  2. Coal industry annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-06T23:59:59.000Z

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  3. Expansion in a contracting industry

    SciTech Connect (OSTI)

    Prichard, S.L.

    1995-08-01T23:59:59.000Z

    Many organizations have faced the distasteful task of downsizing, but it was probably dressed up in the euphemistic term {open_quotes}rightsizing{close_quotes}. Most of us would agree that our companies are not the correct size, but why is the {open_quotes}right{close_quotes} size always smaller and not larger? Mergers and acquisitions have also had their effects on many of our colleagues, if not us ourselves. Both of these circumstances have led to fundamental changes in organizational structures and power centers. As a business group flattens the hierarchy, there are fewer steps between those who do and those who manage. Work groups may now be constructed into teams based upon products or customers rather than in their functional areas, such as accounting or sales. Employee empowerment may not be the magic pill that many had hoped for, but it has altered how our businesses operate at practically every level. And as our individual businesses change, the very structure of the energy industry is changing as well. I know many people wish for the dust to settle, see who is left to compete with, and put all this uncomfortable change behind us. This is not about to happen any time soon. Utilities will be the next to feel the intense pressure to change.

  4. BTU Accounting for Industry

    E-Print Network [OSTI]

    Redd, R. O.

    1979-01-01T23:59:59.000Z

    , salesmen cars, over the highway trucks, facilities startup, waste used as fuel and fuels received for storage. This is a first step in the DOE's effort to establish usage guidelines for large industrial users and, we note, it requires BTU usage data...-generated electricity, heating, ventilating, air conditioning, in-plant transportation, ore hauling, raw material storage and finished product warehousing. Categories which are excluded are corporate and divisional offices, basic research, distribution centers...

  5. Industrial Waste Heat Recovery

    E-Print Network [OSTI]

    Ward, M. E.; Solomon, N. G.; Tabb, E. S.

    1980-01-01T23:59:59.000Z

    INDUSTRIAL WASTE HEAT RECOVREY M. E. Ward and N. G. Solomon E. S. Tabb Solar Turbines International and Gas Research Institute San Diego, California Chicago, Illinois ABSTRACT i I One hundred fifty reports were reviewed along with interviews... tests, promising low temperature heat exchanger tube alloys and coated surfaces were identified. 1INTROUCTION of advanced technology heat recovery techniques 1_ Recovering waste heat from the flue gases of the pr~ary objective. Specific objectives...

  6. Industrial Energy Efficiency Assessments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIAN COUNTRYBarriers to Industrial

  7. The impact of government policies on industrial evolution : the case of China's automotive industry

    E-Print Network [OSTI]

    Luo, Jianxi

    2006-01-01T23:59:59.000Z

    Governmental industrial policies have great influence on industrial performances and development trajectories. The infant industry theory has been the dominating theoretical foundation of the industrial policies in developing ...

  8. Preliminary overview of innovative industrial-materials processes

    SciTech Connect (OSTI)

    Hane, G.J.; Hauser, S.G.; Blahnik, D.E.; Eakin, D.E.; Gurwell, W.E.; Williams, T.A.; Abarcar, R.; Szekely, J.; Ashton, W.B.

    1983-09-01T23:59:59.000Z

    In evaluating the potential for industrial energy conservation, 45 candidate processes were identified. The chemical and the iron and steel industries presented the most well-developed candidates, whereas those processes identified in the pulp and paper and textiles industries were the most speculative. Examples of the candidate processes identified include direct steelmaking and ore-to-powder systems, which potentially require 30 to 40% less energy, respectively, than conventional steelmaking systems; membrane separations and freeze crystallization, which offer up to 90% reductions in energy use when compared with distillation; the cold processing of cement, which offers a 50% reduction in energy requirements; and the dry forming of paper, which offers a 25% reduction in the energy needed for papermaking. A review of all the industries revealed that the revolutionary alternatives often use similar concepts in avoiding current process inefficiencies. These concepts include using chemical, physical, or biological processes to replace thermally intensive processes; using specific forms of energy to minimize wasteful thermal diffusion; using chemical, biological, or ultrasonic processes to replace physical reduction; combining multiple processing steps into a single reactor; using a dry processing to eliminate energy needed for evaporation; and using sterilization or biotechnology to reduce the need for refrigeration.

  9. Wyss Institute Chemical Hygiene Plan CHEMICAL HYGIENE PLAN

    E-Print Network [OSTI]

    Napp, Nils

    Wyss Institute Chemical Hygiene Plan CHEMICAL HYGIENE PLAN The Wyss Institute for Biologically Inspired Engineering June 2014 #12;Wyss Institute Chemical Hygiene Plan TABLE OF CONTENTS 1.0 POLICY.......................................................................................... 2 2.1 CHEMICAL HYGIENE OFFICER

  10. Industrial Heat Pump Design Options

    E-Print Network [OSTI]

    Gilbert, J. S.

    There are numerous industries that can incorporate heat pumps into their operations to save energy costs and payoff the investment in well under two years. Many of these industries can cut energy costs associated with evaporation by over 75...

  11. Industrial Heat Pump Design Options 

    E-Print Network [OSTI]

    Gilbert, J. S.

    1985-01-01T23:59:59.000Z

    There are numerous industries that can incorporate heat pumps into their operations to save energy costs and payoff the investment in well under two years. Many of these industries can cut energy costs associated with evaporation by over 75...

  12. A National Resource for Industry

    E-Print Network [OSTI]

    alloys, and metal matrix composite products carbon fibe's manufacturing industries. These industries call upon ORNL's expertise in materials synthesis, characterization-efficient manufacturing processes and materials targeting products of the future. The Department of Energy's first

  13. Electrotechnologies and Industrial Pollution Control

    E-Print Network [OSTI]

    Schmidt, P. S.

    The role of electrotechnologies in the control of emissions and effluents from industrial processes is discussed. Matrices are presented identifying those electrotechnologies which impact pollution in various industries. Specific examples...

  14. Deaerators in Industrial Steam Systems

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on deaerators in industrial steam systems provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  15. Modeling the semiconductor industry dynamics

    E-Print Network [OSTI]

    Wu, Kailiang

    2008-01-01T23:59:59.000Z

    The semiconductor industry is an exciting and challenging industry. Strong demand at the application end, plus the high capital intensity and rapid technological innovation in manufacturing, makes it difficult to manage ...

  16. Texas Industries of the Future

    E-Print Network [OSTI]

    Ferland, K.

    The purpose of the Texas Industries of the Future program is to facilitate the development, demonstration and adoption of advanced technologies and adoption of best practices that reduce industrial energy usage, emissions, and associated costs...

  17. Fracking: An Industry Under Pressure

    E-Print Network [OSTI]

    Melville, Jo

    2013-01-01T23:59:59.000Z

    is able to squeeze out of oil and gas wells, it is a hugehugely to the local oil and gas industries, household incomeMore importantly, the oil and gas industry -- mostly through

  18. Photocurable Inorganic-Organic Hydrogels for Biomedical Applications 

    E-Print Network [OSTI]

    Hou, Yaping

    2011-02-22T23:59:59.000Z

    -DA) with tunable chemical and physical properties for use as tissue engineering scaffolds. These inorganic-organic hydrogels provide a useful platform to study the effect of scaffold properties on cell behavior in tissue culture. Twenty compositionally unique...

  19. Innovative Utility Pricing for Industry

    E-Print Network [OSTI]

    Ross, J. A.

    tariffs can re a market for power during the time when it has sult in benefits to industry, to the electric abundant capacity available. From the other rate utility, and to other ratepayers on the electric payers' perspective, there will be a continued...INNOVATIVE UTILITY PRICING FOR INDUSTRY James A. Ross Drazen-Brubaker &Associates, Inc. St. Louis, Missouri ABSTRACT The electric utility industry represents only one source of power available to industry. Al though the monopolistic...

  20. Determination of consumers' knowledge of and preference for organic and natural foods in Collin County, Texas

    E-Print Network [OSTI]

    Carlton, Eunice Jean Hargrave

    1977-01-01T23:59:59.000Z

    , The Organic Directory: Organically-grown, when accurately applied in description of foods and crops, means specifically that these have been raised on soil fertilized by organic methods only. It par- ticularly indicated that no chemical fertilizers... to the lack of chemical fertilizers, additives or preservatives, while 11% of the responses connected organic foods with a lack of the above mentioned e lements. Just as New York consumers differ in their definition of "natural" foods, so, too, do...