Powered by Deep Web Technologies
Note: This page contains sample records for the topic "industrial inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Inorganic membranes: The new industrial revolution  

SciTech Connect (OSTI)

Separation systems are a vital part of most industrial processes. These systems account for a large fraction of the capital equipment used and the operating costs of industrial processes. Inorganic membranes have the potential for providing separation systems that can significantly reduce both the capital equipment and operating costs. These separation processes include waste management and recycle as well as the primary production of raw materials and products. The authors are rapidly learning to understand the effect of physical and chemical properties on the different transport mechanisms that occur in inorganic membranes. Such understanding can be expected to provide the information needed to design, engineer and manufacture inorganic membranes to produce very high separation factors for almost any separation function. To implement such a revolution, the authors need to organize a unique partnership between the national laboratories, and industry. The university can provide research to understand the materials and transport mechanisms that produce various separations, the national laboratories the development of an economical fabrication and manufacturing capability, and industry the practical understanding of the operational problems required to achieve inplementation.

Fain, D.E. [Martin Merietta Energy Systems, Oak Ridge, TN (United States)

1994-12-31T23:59:59.000Z

2

Chemically stabilized ionomers containing inorganic fillers  

DOE Patents [OSTI]

Ionomeric polymers that are chemically stabilized and contain inorganic fillers are prepared, and show reduced degradation. The ionomers care useful in membranes and electrochemical cells.

Roelofs, Mark Gerrit

2013-12-31T23:59:59.000Z

3

Thermal and chemical degradation of inorganic membrane materials. Topical report  

SciTech Connect (OSTI)

This report describes the results of a literature review to evaluate the long-term thermal and chemical degradation of inorganic membranes that are being developed to separate gaseous products produced by the gasification or combustion of coal in fixed-, fluidized-, and entrained-bed gasifiers, direct coal-fired turbines, and pressurized-fluidized-bed combustors. Several impurities, such as H{sub 2}S, NH{sub 3}, SO{sub 2}, NO{sub x}, and trace metal compounds are generated during coal conversion, and they must be removed from the coal gas or the combustor flue gas to meet environmental standards. The use of membranes to separate these noxious gases is an attractive alternative to their removal by sorbents such as zinc titanate or calcium oxide. Inorganic membranes that have a high separation efficiency and exhibit both thermal and chemical stability would improve the economics of power generation from coal. The U.S. Department of Energy is supporting investigations to develop inorganic membranes for separating hydrogen from coal gas streams and noxious impurities from hot coal- and flue-gas streams. Membrane materials that have been investigated in the past include glass (silica), alumina, zirconia, carbon, and metals (Pd and Pt).

Krishnan, G.N.; Sanjurjo, A.; Wood, B.J.; Lau, K.H.

1994-04-01T23:59:59.000Z

4

The chemical industry, by country  

SciTech Connect (OSTI)

As part of its ACHEMA coverage, Hydrocarbon Processing contacted executives of petrochemical/chemical industry trade associations in 11 countries, seeking views of on the state of the industry. These reports thus provide an added dimension to feature articles in this issue that focus on petrochemical/chemical-product supply/demand trends, economic forecasts, etc. The nations represented here were chosen for commentary because collectively they contain most of the world's petrochemical capacity. Space limitations prohibit the publishing of commentaries from all countries that have petrochemical/chemical capacity. The countries are: Belgium, China, France, Germany, India, Italy, Japan, Korea, The Netherlands, United Kingdom, and the United States.

Not Available

1994-05-01T23:59:59.000Z

5

The chemical industry, by country  

SciTech Connect (OSTI)

Beijing will be the site for the third ACHEMASIA, international petrochemical and chemical exhibition and conference, May 15--20, 1995. In preparation for this conference, Hydrocarbon Processing contacted executives of petrochemical/chemical industries and trade associations, seeking views on the state of the industry. The Asia-Pacific region is the center of new construction and expanded capacity and also a mixture of mature, developing and emerging petrochemical industries. Established countries must mold and grow with emerging economies as the newcomers access natural resources and develop their own petrochemical infrastructures. The following nation reports focus on product supply/demand trends, economic forecasts, new construction, etc. Space limitations prohibit publishing commentaries from all countries that have petrochemical/chemical capacity. Reports are published from the following countries: Australia, China, Japan, Korea, Malaysia, Philippines, Thailand, and Vietnam.

Not Available

1995-03-01T23:59:59.000Z

6

Thermal and chemical degradation of inorganic membrane materials. Final report, August 1992--May 1995  

SciTech Connect (OSTI)

SRI International conducted a theoretical and experimental program to evaluate the long-term thermal and chemical degradation of inorganic membranes that are being developed to separate the gaseous products of coal gasification. A variety of developmental efforts are underway, including a number of projects sponsored by the US Department of Energy (DOE), to improve the selectivity and permeability of porous inorganic membranes. DOE is also sponsoring efforts to extend the use of metallic membranes to new applications. Most developmental efforts have focused on hydrogen separation by inorganic membranes, which may be used to maximize hydrogen production from coal gas or to remove H{sub 2}S and NH{sub 3} contaminants via thermal or catalytic decomposition in integrated-gasification combined-cycle (IGCC) systems. Inorganic membranes that have a high separation efficiency and exhibit both thermal and chemical stability would improve the economics of power generation from coal. Membrane materials that have been investigated include glass (silica), alumina, carbon, and metals (Pd and Pt). This report describes inorganic membrane materials, long term membrane exposure tests, membrane permeation tests, coal gasifier exposure tests, conclusions, and recommendations.

Damle, A.S.; Krishnan, G.N.; Sanjurjo, A.; Wood, B.J.; Lau, K.H.

1995-05-01T23:59:59.000Z

7

Methods in Industrial Biotechnology for Chemical Engineers  

E-Print Network [OSTI]

In keeping with the definition that biotechnology is really no more than a name given to a set of techniques and processes, the authors apply some set of fuzzy techniques to chemical industry problems such as finding the proper proportion of raw mix to control pollution, to study flow rates, to find out the better quality of products. We use fuzzy control theory, fuzzy neural networks, fuzzy relational equations, genetic algorithms to these problems for solutions. When the solution to the problem can have certain concepts or attributes as indeterminate, the only model that can tackle such a situation is the neutrosophic model. The authors have also used these models in this book to study the use of biotechnology in chemical industries. This book has six chapters. First chapter gives a brief description of biotechnology. Second chapter deals will proper proportion of mix of raw materials in cement industries to minimize pollution using fuzzy control theory. Chapter three gives the method of determination of temperature set point for crude oil in oil refineries. Chapter four studies the flow rates in chemical industries using fuzzy neutral networks. Chapter five gives the method of minimization of waste gas flow in chemical industries using fuzzy linear programming. The final chapter suggests when in these studies indeterminancy is an attribute or concept involved, the notion of neutrosophic methods can be adopted.

W. B. Vasantha Kandasamy; Florentin Smarandache

2008-07-13T23:59:59.000Z

8

Chemicals Industry Profile | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuels Chemical Kinetic ModelingChemicals Industry

9

Green alternatives to toxic release inventory (TRI) chemicals in the process industry  

SciTech Connect (OSTI)

Driven by TRI reporting requirements, the chemical process industry is searching for innovative ways to reduce pollution at the source. Distinct environmental advantages of biobased green chemicals (biochemicals) mean are attractive alternatives to petrochemicals. Biochemicals are made from renewable raw materials in biological processes, such as aerobic and anaerobic fermentation, that operate at ambient temperatures and pressures, and produce only nontoxic waste products. Key TRI chemicals and several classes of commodity and intermediate compounds, used on consumer end-products manufacturing, are examined and alternatives are suggested. Specific substitution options for chlorofluorocarbons, industrial solvents, and commodity organic and inorganic chemicals are reviewed. Currently encouraged pollution prevention alternatives in the manufacturing sector are briefly examined for their long-term feasibility such as bioalternatives to bleaching in the pulp & paper industry, solvent cleaning in the electronics and dry cleaning industries, and using petroleum-based feedstocks in the plastics industry. Total life cycle and cost/benefit analyses are employed to determine whether biochemicals are environmentally feasible and commercially viable as pollution prevention tools. Currently available green chemicals along with present and projected costs and premiums are also presented. Functional compatibility of biochemicals with petrochemicals and bioprocessing systems with conventional chemical processing methods are explored. This review demonstrates that biochemicals can be used cost effectively in certain industrial chemical operations due to their added environmental benefits.

Ahmed, I.; Baron, J.; Hamilton, C. [Booz-Allen & Hamilton Inc., McLean, VA (United States)

1995-12-01T23:59:59.000Z

10

STATEMENT OF CONSIDERATIONS REQUEST BY CHEMICAL INDUSTRY ENVIRONMENTAL...  

Broader source: Energy.gov (indexed) [DOE]

up the Petitioner's company are major chemical manufacturing companies, and includes Air Products and Chemicals, Akzo Nobel, Battelle, DuPont, NL Industries, OxyChem, and...

11

Supply chain network optimization : low volume industrial chemical product  

E-Print Network [OSTI]

The chemical industry is a highly competitive and low margin industry. Chemical transportation faces stringent safety regulations meaning that Cost-To-Serve (C2S), costs associated with products net flow from manufacturers ...

Dacha, Fred (Frederick Omondi)

2013-01-01T23:59:59.000Z

12

The Chemical and Pharmaceutical Industry Susan Brench (1984)  

E-Print Network [OSTI]

The Chemical and Pharmaceutical Industry Susan Brench (1984) If you have any questions, or would:alumnae@murrayedwards.cam.ac.uk The products and services of the chemical and pharmaceutical industry deliver clean water, vital medicines? · Chemical and pharmaceutical businesses in the UK are a £60 billion industry. · Every day for the past

Goldschmidt, Christina

13

Reporting Conservation Results in the Chemical Industry  

E-Print Network [OSTI]

REPORTING CONSERVATION RESULTS IN THE CHEMICAL INDUSTRY Ray E. Doerr Monsanto Company St. Louis, Missouri In 1974, the Manufacturing Chemists Association (MCA) developed an energy rate method for reporting the energy conservation results... % Reduction Total Energy Base Period Energy Production Input Energy Consumption 9 Plant (x10 6 1bs) (x10 Btu) (x10 9 Btu) Rate 1 2 3 4* Fulton 23.3 183.6 216.0 15.0% -.~ Grace 26.7 98.0 120.0 18.3 St. James 33.0 210.0 260.0 19.2 Total 83.0 491. 6...

Doerr, R. E.

1979-01-01T23:59:59.000Z

14

Biomedical | Chemical & Biomolecular | Civil & Environmental | Electrical & Computer | Industrial | Mechanical | Petroleum Careers in Chemical Engineering  

E-Print Network [OSTI]

| Mechanical | Petroleum Careers in Chemical Engineering Career opportunities in chemical engineering that new chemical engineering graduates have an average starting salary of $67,600. The University from industry professionals and participate in activities that promote engineering. Chemical

Azevedo, Ricardo

15

Oxygen Enrichment in the Process and Chemical Industries  

E-Print Network [OSTI]

The rapid escalation in energy prices during recent years has resulted in a resurgence of interest in the energy-saving aspects of oxygen enrichment techniques available to the process and chemical industries. Important side benefits which may...

Milne, R. T.

1984-01-01T23:59:59.000Z

16

Radio Frequency & Microwave Energy for the Petro Chemical Industry  

E-Print Network [OSTI]

Electro-Magnetic Energy has finally made its way into the Petro-Chemical market twenty-five years after market acceptance in the Food Processing Industry. Major factors influencing this change are tighter environmental regulations, price competition...

Raburn, R.

17

A Mechanistic Study of Chemically Modified Inorganic Membranes for Gas and Liquid Separations  

SciTech Connect (OSTI)

This final report will summarize the progress made during the period August 1, 1993 - October 31, 2010 with support from DOE grant number DE-FG03-93ER14363. The objectives of the research have been to investigate the transport mechanisms in micro- and mesoporous, metal oxide membranes and to examine the relationship between the microstructure of the membrane, the membrane surface chemistry, and the separation performance of the membrane. Examples of the membrane materials under investigation are the microporous silica hollow fiber membrane manufactured by PPG Industries, chemically modified mesoporous oxide membranes, and polymer membranes containing microporous oxides (mixed matrix membranes). Analytical techniques such as NMR, FTIR and Raman spectroscopy, thermal analysis, and gas adsorption were used to investigate membrane microstructure and to probe the chemical interactions occurring at the gas-membrane interface.

Way, J Douglas

2011-01-21T23:59:59.000Z

18

Olefin Recovery from Chemical Industry Waste Streams  

SciTech Connect (OSTI)

The objective of this project was to develop a membrane process to separate olefins from paraffins in waste gas streams as an alternative to flaring or distillation. Flaring these streams wastes their chemical feedstock value; distillation is energy and capital cost intensive, particularly for small waste streams.

A.R. Da Costa; R. Daniels; A. Jariwala; Z. He; A. Morisato; I. Pinnau; J.G. Wijmans

2003-11-21T23:59:59.000Z

19

Independent Demand Models Non Linear (Chemical Industry -take or pay)  

E-Print Network [OSTI]

casesshippedperweek #12;High Variability Between Forecast and Actual · Demand in relation to the forecast means almostIndependent Demand Models · Non Linear (Chemical Industry - take or pay) · Deterministic Simulation (make to stock - lumpy demand) · Mathematical Programming (family structure - near optimum) · Heuristic

Brock, David

20

Global Intermodal Tank Container Management for the Chemical Industry  

E-Print Network [OSTI]

Global Intermodal Tank Container Management for the Chemical Industry Alan L. Erera, Juan C on asset management problems faced by tank container operators, and formulates an operational tank modes: pipeline, bulk tankers, parcel tankers, tank containers, or drums. Pipeline and bulk tankers

Erera, Alan

Note: This page contains sample records for the topic "industrial inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Enhanced formulations for neutralization of chemical, biological and industrial toxants  

DOE Patents [OSTI]

An enhanced formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The enhanced formulation according to the present invention is non-toxic and non-corrosive and can be delivered by a variety of means and in different phases. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator and water.

Tucker, Mark D. (Albuqueque, NM) [Albuqueque, NM

2008-06-24T23:59:59.000Z

22

Reactive formulations for a neutralization of toxic industrial chemicals  

DOE Patents [OSTI]

Decontamination formulations for neutralization of toxic industrial chemicals, and methods of making and using same. The formulations are effective for neutralizing malathion, hydrogen cyanide, sodium cyanide, butyl isocyanate, carbon disulfide, phosgene gas, capsaicin in commercial pepper spray, chlorine gas, anhydrous ammonia gas; and may be effective at neutralizing hydrogen sulfide, sulfur dioxide, formaldehyde, ethylene oxide, methyl bromide, boron trichloride, fluorine, tetraethyl pyrophosphate, phosphorous trichloride, arsine, and tungsten hexafluoride.

Tucker, Mark D. (Albuqueruqe, NM); Betty, Rita G. (Rio Rancho, NM)

2006-10-24T23:59:59.000Z

23

Chemical production from industrial by-product gases: Final report  

SciTech Connect (OSTI)

The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

Lyke, S.E.; Moore, R.H.

1981-04-01T23:59:59.000Z

24

High-lift chemical heat pump technologies for industrial processes  

SciTech Connect (OSTI)

Traditionally industrial heat pumps (IHPs) have found applications on a process specific basis with reject heat from a process being upgraded and returned to the process. The IHP must be carefully integrated into a process since improper placement may result in an uneconomic application. Industry has emphasized a process integration approach to the design and operation of their plants. Heat pump applications have adopted this approach and the area of applicability was extended by utilizing a process integrated approach where reject heat from one process is upgraded and then used as input for another process. The DOE IHP Program has extended the process integration approach of heat pump application with a plant utility emphasis. In this design philosophy, reject heat from a process is upgraded to plant utility conditions and fed into the plant distribution system. This approach has the advantage that reject heat from any pr@s can be used as input and the output can be used at any location within the plant. Thus the approach can be easily integrated into existing industrial applications and all reject heat streams are potential targets of opportunity. The plant utility approach can not be implemented without having heat pumps with high-lift capabilities (on the order of 65{degree}C). Current heat pumps have only about half the lift capability required. Thus the current emphasis for the DOE IHP Program is the development of high lift chemical heat pumps that can deliver heat more economically to higher heat delivery temperatures. This is achieved with innovative cooling (refrigeration) and heating technologies which are based on advanced cycles and advanced working fluids or a combination of both. This paper details the plan to develop economically competitive, environmentally acceptable heat pump technologies that are capable of providing the delivery temperature and lift required to supply industrial plant utility-grade process heating and/or cooling.

Olszewski, M.; Zaltash, A.

1995-03-01T23:59:59.000Z

25

Boundary control for an industrial under-actuated tubular chemical reactor  

E-Print Network [OSTI]

Ltd. All rights reserved. Keywords: Polystyrene; Tubular reactor; Control; Optimization; IndustrialBoundary control for an industrial under-actuated tubular chemical reactor D. Del Vecchio a , N and studied for an industrial under-actuated tubular chemical reactor. This work presents a case

26

Biomedical | Chemical & Biomolecular | Civil & Environmental | Electrical & Computer | Industrial | Mechanical | Petroleum Careers in Industrial Engineering  

E-Print Network [OSTI]

| Mechanical | Petroleum Careers in Industrial Engineering Manufacturing, service and retail industries hire a significant number of industrial engineers. Specific industries include automobile manufacturers, electronics to the US Bureau of Labor Statistics, the 2012 average annual wage for industrial engineers is $82

Glowinski, Roland

27

Changing Trends in the Bulk Chemicals and Pulp and Paper Industries (released in AEO2005)  

Reports and Publications (EIA)

Compared with the experience of the 1990s, rising energy prices in recent years have led to questions about expectations of growth in industrial output, particularly in energy-intensive industries. Given the higher price trends, a review of expected growth trends in selected industries was undertaken as part of the production of Annual Energy Outlook 2005 (AEO). In addition, projections for the industrial value of shipments, which were based on the Standard Industrial Classification (SIC) system in AEO2004, are based on the North American Industry Classification System (NAICS) in AEO2005. The change in industrial classification leads to lower historical growth rates for many industrial sectors. The impacts of these two changes are highlighted in this section for two of the largest energy-consuming industries in the U.S. industrial sector-bulk chemicals and pulp and paper.

2005-01-01T23:59:59.000Z

28

Profile of the chemicals industry in California: Californiaindustries of the future program  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Industrial Technologies (OIT) established the Industries of the Future (IOF) program to increase energy efficiency, reduce waste production and to improve competitiveness, currently focusing on nine sectors. The IOF is a partnership strategy involving industry, the research community and the government, working together to identify technology needs, promote industrial partnerships and implement joint measures with all partners involved. The State Industries of the Future (SIOF) program delivers the accomplishments of the national Industries of the Future strategy to the local level, to expand the technology opportunities to a larger number of partners and reach smaller businesses and manufacturers that were not initially involved in the IOF effort. The state programs bring together industry, academia, and state agencies to address the important issues confronting industry in the state. These public-private coalitions facilitate industry solutions locally and enhance economic development. California has started a State Industries of the Future effort, in collaboration with the U.S. Department of Energy. The California Energy Commission (CEC) is leading the SIOF program in California, as part of many other programs to improve the energy efficiency and performance of industries in California. The California State IOF program aims to build a network of participants from industry, academia and government in four selected industrial sectors as a basis for the development of a strategic partnership for industrial energy efficient technology in the state. In California the IOF effort focuses petroleum refining, chemical processing, food processing and electronics. As part of this effort, the SIOF program will develop roadmaps for technology development for the selected sectors. On the basis of the roadmap, the program will develop successful projects with co-funding from state and federal government, and promote industry-specific energy-efficiency. An important element of the SIOF-program is the preparation of R&D roadmaps for each of the selected industries. The roadmap will help to identify priority needs for the participating industries to meet their energy challenges. The roadmap effort builds on the roadmaps developed by DOE, and on the conditions specific for the industry in California. Key to the successful preparation of a roadmap in the selected industries is the development of a profile of the industries. The profile provides a basis for the participants in the roadmap-effort, especially as the structure of the industries in California can be different than in the nation. The sector profiles describe the current economic and energy situation of these industries in California, the processes and energy uses, and the potential future developments in each industry. The profiles are an integral part of the roadmap, to help working group partners to evaluate the industry's R&D needs for their industry in California. In this report, we focus on the chemicals industry. The industry is an important economic factor in the state, providing over 82,300 jobs directly, and more in indirect employment. Value of shipments in 2001 was just under $25.7 Billion, or 6% of all manufacturing in California. There are over 1,500 chemical plants in California, of which 52% are pharmaceutical companies. Many companies operate chemical plants in California. The industry consumes 8% of the electricity and 5% of the natural gas in California. In this report, we start with a description of the chemical industry in the United States and California. This is followed by a discussion of the energy consumption and energy intensity of the Californian chemical industry. Chapter 3 focuses on the main sub-sectors. For each of the sub-sectors a general process description is provided in Chapter 4. Based on this analysis, in Chapter 5, we discuss potential technology developments that can contribute to further improving the energy efficiency in chemical plants, with a focus on the situation in California.

Galitsky, Christina; Worrell, Ernst

2004-06-01T23:59:59.000Z

29

Developing system-based leading indicators for proactive risk management in the chemical processing industry  

E-Print Network [OSTI]

The chemical processing industry has faced challenges with achieving improvements in safety performance, and accidents continue to occur. When accidents occur, they usually have a confluence of multiple factors, suggesting ...

Khawaji, Ibrahim A. (Ibrahim Abdullah)

2012-01-01T23:59:59.000Z

30

Adjustable Speed Drives in the U.S. Petroleum Refining, Petrochemical, and Chemical Industries  

E-Print Network [OSTI]

This paper describes applications and incentives for the use of variable frequency drivers (VFD) in the petroleum refining, petrochemical, and chemical industries. VFDs are a particular type of adjustable speed driver (ASD) found prevalently...

Foley, D. J.; Chodorowski, A.

31

Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial  

E-Print Network [OSTI]

Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial ainsi que des exemples d'applications industrielles. Abstract -- Transformation of Sorbitol to Biofuels and biodiesel production led to first generation biofuels. Nowadays, research is focused on lignocellulosic

Boyer, Edmond

32

Industry - Specific Energy Conservation Opportunities in Chemical Plants  

E-Print Network [OSTI]

During the second and third quarters of 1978, the process design function of Union Carbide's Chemicals and Plastics Division's Engineering Department prepared project energy statements for eight major capital projects. These eight statements listed...

McBride, R. B.

1979-01-01T23:59:59.000Z

33

2009Asia-Pacific International Chemical Industry Exhibition PACIFIC INTERNATIONAL EXHIBITION (BEIJING) CO., LTD.  

E-Print Network [OSTI]

The Sixth Sino-US Chemical Engineering Forum Exhibition Chemical Industry Achievement Exhibition to remember, and the relevant local societies in various provinces and cities. Overseas Organizations to Support Exhibition of energy commodities and resourses in the world marketplace has appeared the trend to decrease, which could

Jayaram, Bhyravabotla

34

Sponsors of CIEEDAC: Environment Canada, Natural Resources Canada, Canadian Industry Program for Energy Conservation, Aluminium Industry Association, Canadian Chemical Producers' Association, Canadian Electricity  

E-Print Network [OSTI]

for Energy Conservation, Aluminium Industry Association, Canadian Chemical Producers' Association, Canadian for Energy Conservation and Environment Canada who support the work of CIEEDAC though their sponsorship

35

Federal agencies active in chemical industry-related research and development  

SciTech Connect (OSTI)

The Energy Policy Act of 1992 calls for a program to further the commercialization of renewable energy and energy efficient technologies for the industrial sector.. The primary objective of the Office of Industrial Technologies Chemical Industry Team is to work in partnership with the US chemical industry to maximize economic, energy, and environmental benefits through research and development of innovative technologies. This document was developed to inventory organizations within the federal government on current chemical industry-related research and development. While an amount of funding or number of projects specifically relating to chemical industry research and development was not defined in all organizations, identified were about 60 distinct organizations representing 7 cabinet-level departments and 4 independent agencies, with research efforts exceeding $3.5 billion in fiscal year 1995. Effort were found to range from less than $500 thousand per year at the Departments of Agriculture and the Interior to over $100 million per year at the Departments of Commerce, Defense, Energy, and Health and Human Services and the National Aeronautics and Space Administration. The total number of projects in these programs exceeded 10,000. This document is complete to the extent that agencies volunteered information. Additions, corrections, and changes are encouraged and will be incorporated in future revisions.

NONE

1995-09-29T23:59:59.000Z

36

An internship in the agricultural chemical industry: Miles Inc.  

E-Print Network [OSTI]

?' Mslonekg city 310 A Den? Dawso Aquise 6 ( Hubbard West, Mount 31 ~ Cal r Cocllda Elm MO Xv +PI iep iab 7886'% , CreSt ' Cc nea& art. parker I 0 knn Bkyrcr mT, uQ, Reer d Mart 4 ~ ~ C I 0 Ao er 148 Grays I 47 198 ? I M 3 72 Co I la I ttonwccd... B APPENDIX C APPENDIX D Daily Log of Activities . Territory Map . Internship Manual Outline Functional Linkages . . 10 21 22 24 . 25 DEFINITION OF TERMS SCOUTING: To examine a field for insects to determine the need for chemical...

Adams, Sharla K

1994-01-01T23:59:59.000Z

37

1 INTRODUCTION Industry has become an essentialpart of modem society,and waste production is  

E-Print Network [OSTI]

Food Processing and Dairy Products Ink Formulation Inorganic Chemicals Synthetics Inorganic Pigments1 INTRODUCTION Industry has become an essentialpart of modem society,and waste production and environmental threats, contaminated sites can contribute to the long-term contaminationof the ambient air, soils

Ma, Lena

38

Industry  

SciTech Connect (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

39

Energy use and energy intensity of the U.S. chemical industry  

SciTech Connect (OSTI)

The U.S. chemical industry is the largest in the world, and responsible for about 11% of the U.S. industrial production measured as value added. It consumes approximately 20% of total industrial energy consumption in the U.S. (1994), and contributes in similar proportions to U.S. greenhouse gas emissions. Surprisingly, there is not much information on energy use and energy intensity in the chemical industry available in the public domain. This report provides detailed information on energy use and energy intensity for the major groups of energy-intensive chemical products. Ethylene production is the major product in terms of production volume of the petrochemical industry. The petrochemical industry (SIC 2869) produces a wide variety of products. However, most energy is used for a small number of intermediate compounds, of which ethylene is the most important one. Based on a detailed assessment we estimate fuel use for ethylene manufacture at 520 PJ (LHV), excluding feedstock use. Energy intensity is estimated at 26 GJ/tonne ethylene (LHV), excluding feedstocks.The nitrogenous fertilizer production is a very energy intensive industry, producing a variety of fertilizers and other nitrogen-compounds. Ammonia is the most important intermediate chemical compound, used as basis for almost all products. Fuel use is estimated at 268 PJ (excluding feedstocks) while 368 PJ natural gas is used as feedstock. Electricity consumption is estimated at 14 PJ. We estimate the energy intensity of ammonia manufacture at 39.3 GJ/tonne (including feedstocks, HHV) and 140 kWh/tonne, resulting in a specific primary energy consumption of 40.9 GJ/tonne (HHV), equivalent to 37.1 GJ/tonne (LHV). Excluding natural gas use for feedstocks the primary energy consumption is estimated at 16.7 GJ/tonne (LHV). The third most important product from an energy perspective is the production of chlorine and caustic soda. Chlorine is produced through electrolysis of a salt-solution. Chlorine production is the main electricity consuming process in the chemical industry, next to oxygen and nitrogen production. We estimate final electricity use at 173 PJ (48 TWh) and fuel use of 38 PJ. Total primary energy consumption is estimated at 526 PJ (including credits for hydrogen export). The energy intensity is estimated at an electricity consumption of 4380 kWh/tonne chlorine and fuel consumption of 3.45 GJ/tonne chlorine, where all energy use is allocated to chlorine production. Assuming an average power generation efficiency of 33% the primary energy consumption is estimated at 47.8 GJ/tonne chlorine (allocating all energy use to chlorine).

Worrell, E.; Phylipsen, D.; Einstein, D.; Martin, N.

2000-04-01T23:59:59.000Z

40

Waste processing and pollution in the chemical and petrochemical industries. (Latest citations from the NTIS database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning techniques and equipment used for pollution control in the chemical and petrochemical industries. Topics include emissions investigations, recycling and materials recovery studies, and standards for specific industries. Sources, site hazard evaluations, and the toxicity of specific chemicals are also discussed. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Waste processing and pollution in the chemical and petrochemical industries. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning techniques and equipment used for pollution control in the chemical and petrochemical industries. Topics include emissions investigations, recycling and materials recovery studies, and standards for specific industries. Sources, site hazard evaluations, and the toxicity of specific chemicals are also discussed. (Contains 250 citations and includes a subject term index and title list.)

NONE

1995-02-01T23:59:59.000Z

42

Waste processing and pollution in the chemical and petrochemical industries. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning techniques and equipment used for pollution control in the chemical and petrochemical industries. Topics include emissions investigations, recycling and materials recovery studies, and standards for specific industries. Sources, site hazard evaluations, and the toxicity of specific chemicals are also discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-04-01T23:59:59.000Z

43

Document: P1332 Category: Physical Sciences, Chemical/Materials License Status: Available for licensing Texas Industry Cluster: Petroleum Refining & Chemical Products  

E-Print Network [OSTI]

for licensing Texas Industry Cluster: Petroleum Refining & Chemical Products Lower-cost fuel cells ProblemInventors Document: P1332 Category: Physical Sciences, Chemical/Materials License Status: Available effective strategies government can pursue for cutting air emissions, responding to climate change, reducing

Lightsey, Glenn

44

Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries: Main Report  

SciTech Connect (OSTI)

This report assesses steam generation and use in the pulp and paper, chemical, and petroleum refining industries, and estimates the potential for energy savings from implementation of steam system performance and efficiency improvements.

Not Available

2002-10-01T23:59:59.000Z

45

ARM - Measurement - Inorganic chemical composition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearch Related InformationAciddroplet

46

AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report  

SciTech Connect (OSTI)

The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

Petersen, G.; Bair, K.; Ross, J. [eds.

1994-03-01T23:59:59.000Z

47

Industry  

E-Print Network [OSTI]

SHIP - Solar heat for industrial processes. Internationalsolar power could be used to provide process heat for

Bernstein, Lenny

2008-01-01T23:59:59.000Z

48

applied inorganic chemistry: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bus.Admin.Public Admin. Chemical Engineering Chem. Eng.Comp. Sci. Chemistry Civil Engineering Heller, Barbara 6 Role of inorganic chemistry on nuclear energy examined...

49

E-Print Network 3.0 - aqueous chemical growth Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WASTE DISPOSAL AUTHORIZATION Summary: Solvent (Halogenated) BasesCaustic Inorganic Solid Inorganic (Aqueous) Photo Processing Chemicals Paints... Risk & Safety Services...

50

Coupled Physical/Chemical and Biofiltration Technologies to Reduce Air Emissions from Forest Products Industries  

SciTech Connect (OSTI)

The research is a laboratory and bench-scale investigation of a system to concentrate and destroy volatile organic compounds (VOCs), including hazardous air pollutants, formed from the drying of wood and the manufacture of wood board products (e.g., particle board and oriented strandboard). The approach that was investigated involved concentrating the dilute VOCs (<500 ppmv) with a physical/chemical adsorption unit, followed by the treatment of the concentrated voc stream (2,000 to 2,500 ppmv) with a biofiltration unit. The research program lasted three years, and involved three research organizations. Michigan Technological University was the primary recipient of the financial assistance, the USDA Forest Products Laboratory (FPL) and Mississippi State University (MSU) were subcontractors to MTU. The ultimate objective of this research was to develop a pilot-scale demonstration of the technology with sufficient data to provide for the design of an industrial system. No commercialization activities were included in this project.

Gary D. McGinnis

2001-12-31T23:59:59.000Z

51

Industry  

E-Print Network [OSTI]

of its electricity requirements in the USA (US DOE, 2002)USA, where motor-driven systems account for 63% of industrial electricity

Bernstein, Lenny

2008-01-01T23:59:59.000Z

52

Industry  

E-Print Network [OSTI]

Air bottoming cycle Black liquor gasification combined cycleCEPI, 2001), and that use continues to grow. Black liquorgasification: Black liquor is the residue from chemical

Bernstein, Lenny

2008-01-01T23:59:59.000Z

53

Industry  

E-Print Network [OSTI]

options for combined heat and power in Canada. Office ofpolicies to promote combined heat and power in US industry.with fuel inputs in combined heat and power plants being

Bernstein, Lenny

2008-01-01T23:59:59.000Z

54

Industry  

E-Print Network [OSTI]

EJ of primary energy, 40% of the global total of 227 EJ. Bytotal energy use by industry and on the fraction of electricity use consumed by motor driven systems was taken as representative of global

Bernstein, Lenny

2008-01-01T23:59:59.000Z

55

Carbon emissions reduction potential in the US chemicals and pulp and paper industries by applying CHP technologies  

SciTech Connect (OSTI)

The chemical and the pulp/paper industries combined provide 55% of CHP generation in the US industry. Yet, significant potential for new CHP capacities exists in both industries. From the present steam consumption data, the authors estimate about 50 GW of additional technical potential for CHP in both industries. The reduced carbon emissions will be equivalent to 44% of the present carbon emissions in these industries. They find that most of the carbon emissions reductions can be achieved at negative costs. Depending on the assumptions used in calculations, the economic potential of CHP in these industries can be significantly lower, and carbon emissions mitigation costs can be much higher. Using sensitivity analyses, they determine that the largest effect on the CHP estimate have the assumptions in the costs of CHP technology, in the assumed discount rates, in improvements in efficiency of CHP technologies, and in the CHP equipment depreciation periods. Changes in fuel and electricity prices and the growth in the industries' steam demand have less of an effect. They conclude that the lowest carbon mitigation costs are achieved with the CHP facility is operated by the utility and when industrial company that owns the CHP unit can sell extra electricity and steam to the open wholesale market. Based on the results of the analyses they discuss policy implications.

Khrushch, M.; Worrell, E.; Price, L.; Martin, N.; Einstein, D.

1999-07-01T23:59:59.000Z

56

Development and Field Trial of Dimpled-Tube Technology for Chemical Industry Process Heaters  

SciTech Connect (OSTI)

Most approaches to increasing heat transfer rates in the convection sections of gas-fired process heaters involve the incorporation of fins, baffles, turbulizers, etc. to increase either the heat transfer surface area or turbulence or both. Although these approaches are effective in increasing the heat transfer rates, this increase is invariably accompanied by an associated increase in convection section pressure drop as well as, for heaters firing dirty fuel mixtures, increased fouling of the tubes both of which are highly undesirable. GTI has identified an approach that will increase heat transfer rates without a significant increase in pressure drop or fouling rate. Compared to other types of heat transfer enhancement approaches, the proposed dimpled tube approach achieves very high heat transfer rates at the lowest pressure drops. Incorporating this approach into convection sections of chemical industry fired process heaters may increase energy efficiency by 3-5%. The energy efficiency increase will allow reducing firing rates to provide the required heating duty while reducing the emissions of CO2 and NOx.

Yaroslav Chudnovsky; Aleksandr Kozlov

2006-10-12T23:59:59.000Z

57

Waste processing and pollution in the chemical and petrochemical industries. January 1984-October 1991 (Citations from the NTIS Data Base). Rept. for Jan 84-Oct 91  

SciTech Connect (OSTI)

The bibliography contains citations concerning techniques and equipment used for pollution control in the chemical and petrochemical industries. Topics include emissions investigations, recycling and materials recovery studies, and standards for specific industries. Sources, site hazard evaluations, and the toxicity of specific chemicals are also discussed. (Contains 151 citations with title list and subject index.)

Not Available

1991-09-01T23:59:59.000Z

58

Final Report - Chemical Industry Corrosion Management - A Comprehensive Information System (ASSET 2)  

SciTech Connect (OSTI)

The research sponsored by this project has greatly expanded the ASSET corrosion prediction software system to produce a world-class technology to assess and predict engineering corrosion of metals and alloys corroding by exposure to hot gases. The effort included corrosion data compilation from numerous industrial sources and data generation at Shell Oak Ridge National Laboratory and several other companies for selected conditions. These data were organized into groupings representing various combinations of commercially available alloys and corrosion by various mechanisms after acceptance via a critical screening process to ensure the data were for alloys and conditions, which were adequately well defined, and of sufficient repeatability. ASSET is the largest and most capable, publicly-available technology in the field of corrosion assessment and prediction for alloys corroding by high temperature processes in chemical plants, hydrogen production, energy conversion processes, petroleum refining, power generation, fuels production and pulp/paper processes. The problems addressed by ASSET are: determination of the likely dominant corrosion mechanism based upon information available to the chemical engineers designing and/or operating various processes and prediction of engineering metal losses and lifetimes of commercial alloys used to build structural components. These assessments consider exposure conditions (metal temperatures, gas compositions and pressures), alloy compositions and exposure times. Results of the assessments are determination of the likely dominant corrosion mechanism and prediction of the loss of metal/alloy thickness as a function of time, temperature, gas composition and gas pressure. The uses of these corrosion mechanism assessments and metal loss predictions are that the degradation of processing equipment can be managed for the first time in a way which supports efforts to reduce energy consumption, ensure structural integrity of equipment with the goals to avoid premature failure, to quantitatively manage corrosion over the entire life of high temperature process equipment, to select alloys for equipment and to assist in equipment maintenance programs. ASSET software operates on typical Windows-based (Trademark of Microsoft Corporation) personal computers using operating systems such as Windows 2000, Windows NT and Vista. The software is user friendly and contains the background information needed to make productive use of the software in various help-screens in the ASSET software. A graduate from a university-level curriculum producing a B.S. in mechanical/chemical/materials science/engineering, chemistry or physics typically possesses the background required to make appropriate use of ASSET technology. A training/orientation workshop, which requires about 3 hours of class time was developed and has been provided multiple times to various user groups of ASSET technology. Approximately 100 persons have been trained in use of the technology. ASSET technology is available to about 65 companies representing industries in petroleum/gas production and processing, metals/alloys production, power generation, and equipment design.

Randy C. John, Arthur L. Young, Arthur D. Pelton, William T. Thompson adn Ian G. Wright

2008-10-10T23:59:59.000Z

59

Incremental Integration Tools for Chemical Engineering: An Industrial Application of Triple Graph  

E-Print Network [OSTI]

and the components of the chemical plant, simulation models for steady-state and dynamic simulations, etc. Design representations of a chemical plant have to be kept consistent with each other. Incremental integration tools). In chemical engineering design, a chemical plant is described from different per- spectives by a set

Westfechtel, Bernhard

60

Energy use and energy intensity of the U.S. chemical industry  

E-Print Network [OSTI]

23 5.3 Energy Use and Energy Intensity of Chlorine44314 Energy Use and Energy Intensity of the U.S. ChemicalEnergy Use and Energy Intensity of the U.S. Chemical

Worrell, Ernst; Phylipsen, Dian; Einstein, Dan; Martin, Nathan

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Establishing and Implementing a Waste Minimization Program in the Chemical and Oil Industries  

E-Print Network [OSTI]

chemicals and chemical processes, and are the best equipped to manage and reduce waste. It is the responsibility of all companies that manufacture a product or generate a waste to understand the meaning of proper waste management hierarchy, waste...

Hollod, G. J.; Marton, R. J.

62

PEGylated Inorganic Nanoparticles  

SciTech Connect (OSTI)

Application of inorganic nanoparticles in diagnosis and therapy has become a critical component in targeted treatment of diseases. The surface modification of inorganic oxides is important for providing diversity in size, shape, solubility, long term stability and attachment of selective functional groups. PEGylation of surfaces is a key strategic approach for providing stealth characteristics to nanomaterials otherwise identified as foreign materials by human body. The current review describes the role of surface modification of oxides by polyethylene glycol (PEG) in providing versatile characteristics to inorganic oxide nanoparticles with a focus on their biomedical applications. The role of PEG as structure directing agent in synthesis of oxides is also captured in this short review.

Karakoti, Ajay S.; Das, Soumya; Thevuthasan, Suntharampillai; Seal, Sudipta

2011-02-25T23:59:59.000Z

63

Efficient Nonlinear Optimization with Rigorous Models for Large Scale Industrial Chemical Processes  

E-Print Network [OSTI]

successfully applied to solve many optimization problems, the focus of both academia and industry on larger and more complicated problems requires further development of numerical algorithms which can provide improved computational efficiency. The primary...

Zhu, Yu

2011-08-08T23:59:59.000Z

64

Benefits of Industrial Boiler Control and Economic Load Allocation at AMOCO Chemicals, Decatur, Alabama  

E-Print Network [OSTI]

The objective of this paper is to provide an overview of the economic benefits realized by Amoco's Decatur plant from the utilization of Honeywell's Industrial Boiler Control solution and Turbo Economic Load Allocation packages on an integrated four...

Winter, J.

65

Research and development of hydrogen separation technology with inorganic membranes  

SciTech Connect (OSTI)

Inorganic membrane technology has long been expected to provide new economical methods for industrial and waste management processes. At this time, the only commercially valuable inorganic membranes are the ultra filters derived from the French process that was used to produce the barrier for the French Gaseous Diffusion Plants. But these membranes are very expensive and have limited areas of application. Over the past fifteen years, scientists now in the Inorganic Membrane Technology Laboratory (IMTL) in Oak Ridge, Tennessee have developed theories and processes for inorganic membranes that can be used to design and produce inorganic membranes for a very broad range of applications. A part of the fabrication process is an adaptive spinoff from the still classified process used to manufacture barriers for the U.S. Gaseous Diffusion Process. Although that part of the process is classified, it is a very flexible and adaptable process and it can be used with a broad range of materials. With the theories and design capabilities developed in the last fifteen years, this new adaptive manufacturing technology can be used to manufacture commercial inorganic membranes that are not useful for the separation of uranium isotopes and they have little or no relation to the barriers that were used to separate uranium isotopes. The development and deployment of such inorganic membranes can be very beneficial to U.S. industry. Inorganic membranes can be specifically designed and manufactured for a large number of different applications. Such membranes can greatly improve the efficiency of a broad range of industrial processes and provide new technology for waste management. These inorganic membranes have the potential for major energy savings and conservation of energy. They can provide the means for significant improvements in the competitiveness of US Industry and improve the economy and health and welfare of the nation.

Fain, D.E.

1999-07-01T23:59:59.000Z

66

Crystallization and functionality of inorganic materials  

SciTech Connect (OSTI)

In this article, we briefly summarized our recent work on the studies of crystallization and functionality of inorganic materials. On the basis of the chemical bonding theory of single crystal growth, we can quantitatively simulate Cu{sub 2}O crystallization processes in solution system. We also kinetically controlled Cu{sub 2}O crystallization process in the reduction solution route. Lithium ion battery and supercapacitor performances of some oxides such as Co{sub 3}O{sub 4} and MnO{sub 2} were shown to elucidate the important effect of crystallization on functionality of inorganic materials. This work encourages us to create novel functionalities through the study of crystallization of inorganic materials, which warrants more chances in the field of functional materials.

Xue, Dongfeng, E-mail: dongfeng@ciac.jl.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China) [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Li, Keyan [School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China)] [School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Liu, Jun [Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, Faculty of Materials, Optoelectronics and Physics, Xiangtan University, 411105 (China)] [Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, Faculty of Materials, Optoelectronics and Physics, Xiangtan University, 411105 (China); Sun, Congting; Chen, Kunfeng [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China) [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China)

2012-10-15T23:59:59.000Z

67

Biomedical | Chemical & Biomolecular | Civil & Environmental | Electrical & Computer | Industrial | Mechanical | Petroleum Careers in Electrical Engineering  

E-Print Network [OSTI]

of Houston is well-positioned in the energy capital, near the world's largest medical center, NASA, the Port industrial demands for electrical engineering include devices focused on power generation, wireless communications and energy storage. Students pursuing the Bachelor of Science in Electrical Engineering must

Azevedo, Ricardo

68

Potential for Energy Efficient Motors and Variable Speed Drives in the Petroleum and Chemical Industry  

E-Print Network [OSTI]

This paper presents an in-depth survey of motors in a refinery and a chemical plant. The potential for energy and demand savings is then determined and hence the dollar savings using a sliding rate structure currently applicable to the petrochemical...

Fendley, K. A.; Pillay, P.

69

2007 Society of Chemical Industry and John Wiley & Sons, Ltd Pretreatment: the key to  

E-Print Network [OSTI]

presents important opportunities to achieve very low costs, pretreatment of naturally resistant cellulosic materials is essential if we are to achieve high yields from biological operations; this operation biological, chemical, physical, and thermal approaches have been investigated over the years, but only those

California at Riverside, University of

70

Improving Cooling System Immunity Supply Voltage Sags in Petroleum and Chemical Industries  

E-Print Network [OSTI]

links in automated processes. During a common voltage sag, the coils in these devices may de-energize long enough to cause the contacts to open and connected equipment to shut down. Recognizing this Achilles' heel of the process industry, some... not interfere with emergency-stop operations because it supports only the coil of a contactor or relay and allows the coil to de-energize when the voltage is removed. It is small and can be easily installed next to a relay, contactor, or motor starter...

Dorr, D. S.

71

Sponsors of CIEEDAC: Environment Canada Natural Resources Canada, Canadian Industry Program for Energy Conservation, Aluminium Industry Association, Canadian Chemical Producers' Association, Canadian Electricity  

E-Print Network [OSTI]

. This includes the oil and gas extraction industries and the coal mining industry. To analyze changes in GHG; technology innovations; transparency of data availability; location of production facilities; international political dynamics; nuclear development initiatives; frontier exploration initiatives; Canada's Clean Air

72

Supported inorganic membranes  

DOE Patents [OSTI]

Supported inorganic membranes capable of molecular sieving, and methods for their production, are provided. The subject membranes exhibit high flux and high selectivity. The subject membranes are substantially defect free and less than about 100 nm thick. The pores of the subject membranes have an average critical pore radius of less than about 5 .ANG., and have a narrow pore size distribution. The subject membranes are prepared by coating a porous substrate with a polymeric sol, preferably under conditions of low relative pressure of the liquid constituents of the sol. The coated substrate is dried and calcined to produce the subject supported membrane. Also provided are methods of derivatizing the surface of supported inorganic membranes with metal alkoxides. The subject membranes find use in a variety of applications, such as the separation of constituents of gaseous streams, as catalysts and catalyst supports, and the like.

Sehgal, Rakesh (Albuquerque, NM); Brinker, Charles Jeffrey (Albuquerque, NM)

1998-01-01T23:59:59.000Z

73

The Northwest Infrared (NWIR) gas-phase spectral database of industrial and environmental chemicals: Recent updates  

SciTech Connect (OSTI)

With continuing improvements in both standoff- and point-sensing techniques, there is an ongoing need for high-quality infrared spectral databases. The Northwest Infrared Database (NWIR) contains quantitative, gas-phase infrared spectra of nearly 500 pure chemical species that can be used for a variety of applications such as atmospheric monitoring, biomass burning studies, etc. The data, recorded at 0.1 cm-1 resolution, are pressure broadened to one atmosphere (N2) in order to mimic atmospheric conditions. Each spectrum is a composite composed of multiple individual measurements. Recent updates to the database include over 60 molecules that are known or suspected biomass-burning effluents. Examples from this set of measurements will be presented and experimental details will be discussed in the context of the utility of NWIR for environmental applications.

Brauer, Carolyn S.; Johnson, Timothy J.; Blake, Thomas A.; Sharpe, Steven W.; Sams, Robert L.; Tonkyn, Russell G.

2014-05-22T23:59:59.000Z

74

Development of the use, and approval testing of duplex stainless steel in the chemical industry  

SciTech Connect (OSTI)

The application of duplex stainless steels within ICI began in the early 1970`s. At that time Langley 40V the precursor of Ferralium was being introduced into phosphoric acid production as a pump material, which gave a superior corrosion/erosion resistance compared to 316L in such hostile environments. At the same time the UNS S31500 duplex alloy was being introduced as a tube material not so much for its corrosion resistance, but to give enhanced performance over carbon steel with better resistance to chloride SCC compared with austenitic 300 series type stainless steels. Since then duplex alloys have gained increasing use as the product forms have increased and the alloys have developed. In addition to their resistance to chlorides their good corrosion resistance in difficult chemical environments has been exploited. This has necessitated ensuring that welded structures have a corrosion resistance matching the parent plate. This paper gives examples of some of the applications and the development of a test procedure based on ASTM G-48 to approve the integrity of the welds in a corrosive environment.

Smith, R.F. [ICI, Cleveland (United Kingdom); Pennington, A. [ICI Teesside Operations, Cleveland (United Kingdom)

1994-12-31T23:59:59.000Z

75

ITP Chemicals: Chemical Bandwidth Study - Energy Analysis: A Powerful Tool for Identifying Process Inefficiencies in the U.S. Chemical Industry, Industrial Technologies Program, DRAFT Summary Report, December 2006  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department ofIOWA1999) | Department ofWorld |Industrial

76

Method of dye removal for the textile industry  

DOE Patents [OSTI]

The invention comprises a method of processing a waste stream containing dyes, such as a dye bath used in the textile industry. The invention comprises using an inorganic-based polymer, such as polyphosphazene, to separate dyes and/or other chemicals from the waste stream. Membranes comprising polyphosphazene have the chemical and thermal stability to survive the harsh, high temperature environment of dye waste streams, and have been shown to completely separate dyes from the waste stream. Several polyphosplhazene membranes having a variety of organic substituent have been shown effective in removing color from waste streams.

Stone, Mark L. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

77

How to prevent a Normal Accident in a High Reliable Organisation? The art of resilience, a case study in the chemical industry.  

E-Print Network [OSTI]

How to prevent a Normal Accident in a High Reliable Organisation? The art of resilience, a case.dupre@ish-lyon.cnrs.fr Abstract: The trend in France in the chemical industry following the Toulouse accident in 2001 has created the safety and accident field) some dimensions, for example the level of resilience (or reliability

Paris-Sud XI, Université de

78

Prediction of heat of melting and heat capacity of inorganic liquids by the method of group contributions  

SciTech Connect (OSTI)

Complex salts and salt/oxide combinations are being considered for the immobilization and storage or disposal of hazardous or radioactive wastes. There is very little information concerning such fundamental properties as heat of fusion and heat capacities for many of these inorganic materials. This work focuses on the use of elements or simple functional groups to estimate some of these fundamental thermodynamic properties for a variety of inorganic compounds. The major emphasis will be on properties for a variety of inorganic compounds. The major emphasis will be on properties for which some ancillary information may be easily measured, but which may be very difficult to measure directly. An example of such a property is the heat of fusion (or melting). The melting temperature for most pure materials is relatively easy to measure. However, the actual amount of energy required to liquefy, or conversely, the amount of energy which must be removed to solidify those same materials has not been measured. Similarly, important properties such as heat capacities of liquids are unavailable for many compounds. Such information is essential in the chemical industry and are paramount for chemical engineers if they are to design, build and operate plants and facilities in an economical and efficient manner.

Williams, J.D. [Los Alamos National Lab., NM (United States); Eakman, J.M. [University of Nebraska, Lincoln, NE (United States); Montoya, M.M. [New Mexico State Univ., Las Cruces, NM (United States)

1997-11-17T23:59:59.000Z

79

Carbon Emissions: Chemicals Industry  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,64397 272 522 542Peru (Million

80

ITP Chemicals: Chemical Bandwidth Study - Energy Analysis: A...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chemical Bandwidth Study - Energy Analysis: A Powerful Tool for Identifying Process Inefficiencies in the U.S. Chemical Industry, Industrial Technologies Program, DRAFT Summary...

Note: This page contains sample records for the topic "industrial inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Formation of semivolatile inorganic aerosols in the Mexico City Metropolitan Area during the MILAGRO campaign  

E-Print Network [OSTI]

One of the most challenging tasks for chemical transport models (CTMs) is the prediction of the formation and partitioning of the major semi-volatile inorganic aerosol components (nitrate, chloride, ammonium) between the ...

Karydis, V. A.

82

Extracting inorganics from scrap tires  

SciTech Connect (OSTI)

Scrap tires contain several inorganic moieties in abundances >0.5% which are impregnated into their carbonaceous matrix. These inorganic species are known to produce acid rain, toxic aerosols, and boiler scale and could produce unwanted catalytic effects as well. It is our position that the potential of recycling scrap tires would be considerably enhanced if the inorganics in question - S, Ca, and Zn - were removed prior to attempts to upgrade the carbonaceous matrix. Using non-mechanical methods, we are attempting to cleave the adherence between the co-polymer matrix and to extract the inorganics. The efficiency of our methods is being measured by wavelength dispersive x-ray spectrometry and by other methods.

Cummings, R.; Wertz, D.L. [Univ. of Southern Mississippi, Hattiesburg, MS (United States)

1995-12-31T23:59:59.000Z

83

Inorganic-Organic Hybrid Thermoelectrics  

Broader source: Energy.gov [DOE]

Large-scale synthesis of inorganic and organic nanomaterials (single-crystalline nanowires and functionalized conducting polymer thin films) together with strategies for large-scale assembly are discussed

84

Final Technical Report - High-Performance, Oxide-Dispersion-Strengthened Tubes for Production of Ethylene adn Other Industrial Chemicals  

SciTech Connect (OSTI)

This project was undertaken by Michigan Technological University and Special Metals Corporation to develop creep-resistant, coking-resistant oxide-dispersion-strengthened (ODS) tubes for use in industrial-scale ethylene pyrolysis and steam methane reforming operations. Ethylene pyrolysis tubes are exposed to some of the most severe service conditions for metallic materials found anywhere in the chemical process industries, including elevated temperatures, oxidizing atmospheres and high carbon potentials. During service, hard deposits of carbon (coke) build up on the inner wall of the tube, reducing heat transfer and restricting the flow of the hydrocarbon feedstocks. About every 20 to 60 days, the reactor must be taken off-line and decoked by burning out the accumulated carbon. This decoking costs on the order of $9 million per year per ethylene plant, accelerates tube degradation, and requires that tubes be replaced about every 5 years. The technology developed under this program seeks to reduce the energy and economic cost of coking by creating novel bimetallic tubes offering a combination of improved coking resistance, creep resistance and fabricability not available in current single-alloy tubes. The inner core of this tube consists of Incoloy(R) MA956, a commercial ferritic Fe-Cr-Al alloy offering a 50% reduction in coke buildup combined with improved carburization resistance. The outer sheath consists of a new material - oxide dispersion strengthened (ODS) Alloy 803(R) developed under the program. This new alloy retains the good fireside environmental resistance of Alloy 803, a commercial wrought alloy currently used for ethylene production, and provides an austenitic casing to alleviate the inherently-limited fabricability of the ferritic Incoloy(R) MA956 core. To provide mechanical compatibility between the two alloys and maximize creep resistance of the bimetallic tube, both the inner Incoloy(R) MA956 and the outer ODS Alloy 803 are oxide dispersion strengthened materials produced using mechanical alloying technology. To minimize cost, the bimetallic tube is produced by direct powder co-extrusion. This technology has potential for domestic energy savings of up to 4.1 trillion BTU/year (4.3 x 1015J/year) and a reduction of 370,000 tons (340,000 tonnes) of CO2 emissions in short-residence-time ethylene furnaces. This represents an energy savings and CO2 emissions reduction of about 3.3%. If the technology is also applied to other types of ethylene pyrolysis furnaces, total energy savings and CO2 emissions reductions could increase by up to five times. The work involved: Developing powder and consolidation processing protocols to produce an oxide-dispersion strengthened variant of Alloy 803 exhibiting creep strength comparable to Incoloy? Alloy MA956, Developing a direct powder co-extrusion protocol for fabricating co-extruded bimetallic Incoloy? Alloy MA956 / ODS Alloy 803 tubes, Characterizing the properties of the ODS Alloy 803 material, the welding characteristics of the bimetallic tubes, and the coking characteristics of the Incoloy? MA956 alloy, and Documenting the potential energy savings and user requirements for these bimetallic pyrolysis furnace tubes. The project demonstrated that oxide dispersion strengthened Alloy 803 can be produced successfully using conventional mechanical alloying technology. The oxide dispersion strengthened bimetallic radiant coil technology explored under this program has significant potential for energy savings and productivity improvements for domestic ethylene producers. In today's competitive market, however, domestic furnace manufacturers and ethylene producers appear reluctant to pay any cost premium for higher-performance coil materials offering either higher temperature capabilities or longer service life. Interest in oxide dispersion strengthened radiant coils is likely to increase if furnace and ethylene producers begin to focus more on increasing tube wall temperatures to improve productivity.

McKimpson, Marvin G.

2006-04-06T23:59:59.000Z

85

THE DIFFUSION OF VOLUNTARY INTERNATIONAL MANAGEMENT STANDARDS: RESPONSIBLE CARE, ISO 9000 and ISO 14001 IN THE CHEMICAL INDUSTRY  

E-Print Network [OSTI]

Uzbekistan Venezuela* Vietnam Yemen, Rep. Zambia # ISO14001 # ISO Chemical *Countries included in Models 4 to 62001. "International diffusion of ISO 14000 certification."

Delmas, Magali A; Montiel, Ivan

2007-01-01T23:59:59.000Z

86

Industry Alliance Industry Alliance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century October, 2010...

87

Combinatorial screening of inorganic and organometallic materials  

DOE Patents [OSTI]

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

2002-01-01T23:59:59.000Z

88

Combinatorial synthesis of inorganic or composite materials  

DOE Patents [OSTI]

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials or, alternatively, allowing the components to interact to form at least two different materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, nonbiological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Goldwasser, Isy (Palo Alto, CA); Ross, Debra A. (Mountain Ranch, CA); Schultz, Peter G. (La Jolla, CA); Xiang, Xiao-Dong (Danville, CA); Briceno, Gabriel (Baldwin Park, CA); Sun, Xian-Dong (Fremont, CA); Wang, Kai-An (Cupertino, CA)

2010-08-03T23:59:59.000Z

89

Preparation and screening of crystalline inorganic materials  

DOE Patents [OSTI]

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Schultz, Peter G. (La Jolla, CA); Xiang, Xiaodong (Danville, CA); Goldwasser, Isy (Palo Alto, CA); Brice{hacek over (n)}o, Gabriel (Baldwin Park, CA); Sun, Xiao-Dong (Fremont, CA); Wang, Kai-An (Cupertino, CA)

2008-10-28T23:59:59.000Z

90

Role of inorganic chemistry on nuclear energy examined  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July Role of inorganic chemistry on nuclear energy examined Role of inorganic chemistry on nuclear energy examined Inorganic chemistry can provide insight and improve technical...

91

Recycling of cleach plant filtrates by electrodialysis removal of inorganic non-process elements.  

SciTech Connect (OSTI)

Water use in the pulp and paper industry is very significant, and the U.S. pulp and paper industries as well as other processing industries are actively pursuing water conservation and pollution prevention by in-process recycling of water. Bleach plant effluent is a large portion of the water discharged from a typical bleached kraft pulp mill. The recycling of bleach plant effluents to the kraft recovery cycle is widely regarded as an approach to low effluent bleached kraft pulp production. The focus of this work has been on developing an electrodialysis process for recycling the acidic bleach plant effluent of bleached Kraft pulp mills. Electrodialysis is uniquely suited as a selective kidney to remove non-process elements (NPEs) from bleach plant effluent before they reach the chemical recovery cycle. Using electrodialysis for selective NPE removal can prevent the problems caused by accumulation of inorganic NPEs in the pulping cycle and recovery boiler. In this work, acidic bleach plant filtrates from three mills using different bleaching sequences based on chlorine dioxide were characterized. The analyses showed no fundamental differences in the inorganic NPE composition or other characteristics among these filtrates. The majority of total dissolved solids in the effluents were found to be inorganic NPEs. Chloride and nitrate were present at significant levels in all effluent samples. Sodium was the predominant metal ion, while calcium and magnesium were also present at considerable levels. The feasibility of using electrodialysis to selectively remove inorganic NPEs from the acidic bleach effluent was successfully demonstrated in laboratory experiments with effluents from all these three mills. Although there were some variations in these effluents, chloride and potentially harmful cations, such as potassium, calcium, and magnesium, were removed efficiently from the bleach effluents into a small-volume, concentrated purge stream. This effective removal of inorganic NPEs can enable the mills to recycle bleach effluents to reduce water consumption. The electrodialysis process also effectively retained up to 98% of the organics and can reduce the organic discharge in the mill wastewater. By using suitable commercially available electrodialysis membranes, there were no indications of rapid or irreversible membrane fouling or scale formation, even in extended laboratory scale operations up to 100 hours. Results of laboratory experiments also showed that commercially available membranes properly selected for this process would have good stability to withstand the potentially oxidative conditions of the filtrate. A pilot-scale field demonstration was also conducted at a southern mill, using the D0 filtrate from the bleach plant. During the field demonstration we found serious membrane 2 stack clogging problems, which apparently were caused by fine fibers that escaped through the 5-micron pre-filters, although such a pre-filtration method had been satisfactory in the laboratory tests. Additional R&D is recommended to address this pre-filtration or clogging issue with systems approaches integrating pre-filtration, other separation methods, and stack design. After the pre-filtration/clogging issue is overcome, laboratory development and pilot demonstration are recommended to optimize the process parameters and to evaluate the long-term process parameters. The key technical issues here include membrane lives, control and mitigation of fouling and scaling, and cleaning-in-place protocols. From the data collected in this work, a preliminary process design and economic evaluations were performed for a model mill with 1,000-ton/day pulp production that uses a bleaching sequence based on chlorine dioxide. Assuming 3 m{sup 3} acidic effluents to be treated per ton of pulp produced, the electrodialysis process would require a membrane area of about 361 m{sup 2} for this model mill. The energy consumption of the electrodialytic stack for separation is estimated to be about $160/day, and the estimated capital cost of the electrodia

Tsai, S. P.; Pfromm, P.; Henry, M. P.; Fracaro, A. T.; Swanstrom, C. P.; Moon, P.; Energy Systems; Inst. of Paper Science and Tech.

2000-11-01T23:59:59.000Z

92

Chemistry 411/611 Inorganic Chemistry (2011)  

E-Print Network [OSTI]

1 Chemistry 411/611 Inorganic Chemistry (2011) Instructor: Assistant Professor Mathew M. Maye Chemistry", 5th Edition, Freeman Press. Available at SU bookstore. The solution manual is optional. (Suggested for CHE611 Students pursuing Inorganic) Huheey, "Inorganic Chemistry: Principles of Structure

Mather, Patrick T.

93

The American Chemical Industry --A Perspective from an Academic Richard N. Zare, Department of Chemistry, Stanford University, Stanford,  

E-Print Network [OSTI]

Carbide Air Products 1998 R&D Spending as % of Sales: Dow is 4.4 %; Rohm and Haas is 5.6 %; Union Carbide is 2.5 %; Air Products is 2.3 %. #12;Vu-graph 6. R&D SPENDING Pharmaceuticals; $ Millions 0 500 1000 manufacturer of chemical products by a substantial margin with a balance of trade surplus in excess of $15

Zare, Richard N.

94

Inorganic Nanocrystal Bulk Heterojunctions - Energy Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Inorganic Nanocrystal Bulk Heterojunctions Brookhaven National Laboratory Contact BNL About This...

95

Hierarchical Assembly of Inorganic Nanostructure Building Blocks...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanostructure Building Blocks to Octahedral Superstructures A True Template-Free Self Hierarchical Assembly of Inorganic Nanostructure Building Blocks to Octahedral...

96

Interfacial Coatings for Inorganic Composite Insulation Systems  

SciTech Connect (OSTI)

Inorganic (ceramic) insulation materials are known to have good radiation resistance and desirable electrical and mechanical properties at cryogenic and elevated temperatures. In addition, ceramic materials can withstand the high-temperature reaction cycle used with Nb3Sn superconductor materials, allowing the insulation to be co-processed with the superconductor in a wind-and-react fabrication process. A critical aspect in the manufacture of ceramic-based insulation systems is the deposition of suitable fiber-coating materials that prevent chemical reaction of the fiber and matrix materials, and thus provide a compliant interface between the fiber and matrix, which minimizes the impact of brittle failure of the ceramic matrix. Ceramic insulation produced with CTD-FI-202 fiber interfaces have been found to exhibit very high shear and compressive strengths. However, this material is costly to produce. Thus, the goal of the present work is to evaluate alternative, lower-cost materials and processes. A variety of oxide and polyimide coatings were evaluated, and one commercially available polyimide coating has been shown to provide some improvement as compared to uncoated and de-sized S2 glass.

Hooker, M. W.; Fabian, P. E.; Stewart, M. W.; Grandlienard, S. D.; Kano, K. S. [Composite Technology Development, Inc., Lafayette, CO, 80026 (United States)

2006-03-31T23:59:59.000Z

97

materials analysis of inorganic, organic, and bioma-terials. See ELECTRON MICROSCOPE.  

E-Print Network [OSTI]

28 Plaster materials analysis of inorganic, organic, and bioma- terials. See ELECTRON MICROSCOPE: The next chip-scale technology, Mater. Today, 9:20­27, 2006. Plaster A plastic mixture of solids and water plaster is also used in the industry to designate plaster of paris. Plaster is usually applied in one

Anderson, Peter M.

98

DESCRIPTIVE TEXT SEA WATER INORGANIC CARBON DATABASE  

E-Print Network [OSTI]

DESCRIPTIVE TEXT SEA WATER INORGANIC CARBON DATABASE for the CARBON DIOXIDE INFORMATION OF OCEANOGRAPHY (SIO) I. GENERAL DESCRIPTION The database consists of tables presenting oceanic inorganic carbon, titration (total) alkalinity (database abbreviation: "ALK"), and the 13 C / 12 C isotopic ratio

99

A History of Chemical Engineering at North Carolina State University  

E-Print Network [OSTI]

, Forge Shop, Lathe Shop Hydraulics, Steam Engine, Dynamo Machinery Chemistry ­ Inorganic, QualitativeE degrees 1901 Handbook of Chemical Engineering #12;Origins of Chemical Engineering at NC State 1895

Velev, Orlin D.

100

Inorganic Chemistry in Hydrogen Storage and Biomass Catalysis  

SciTech Connect (OSTI)

Making or breaking C-H, B-H, C-C bonds has been at the core of catalysis for many years. Making or breaking these bonds to store or recover energy presents us with fresh challenges, including how to catalyze these transformations in molecular systems that are 'tuned' to minimize energy loss and in molecular and material systems present in biomass. This talk will discuss some challenging transformations in chemical hydrogen storage, and some aspects of the inorganic chemistry we are studying in the development of catalysts for biomass utilization.

Thorn, David [Los Alamos National Laboratory

2012-06-13T23:59:59.000Z

Note: This page contains sample records for the topic "industrial inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

ITP Chemicals: Energy and Environmental Profile of the U.S. Chemical...  

Broader source: Energy.gov (indexed) [DOE]

Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries ITP Chemicals: Chemical Bandwidth Study - Energy Analysis: A Powerful Tool...

102

Organic-Inorganic Hetero Junction White Light Emitting Diode.  

E-Print Network [OSTI]

?? The purpose of this thesis work is to design and fabricates organic-inorganic hetero junction White Light Emitting Diode (WLED). In this WLED, inorganic material (more)

Lubuna Beegum, Shafeek

2008-01-01T23:59:59.000Z

103

acids inorganic: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for inorganic synthesis MIT - DSpace Summary: Thin film nanocomposites consisting of inorganic matter embedded within a soft polymeric matrix on the nanometer length scale are an...

104

Project Profile: Heat Transfer and Latent Heat Storage in Inorganic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for CSP Plants Project Profile: Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for CSP Plants...

105

Multifunctional, Inorganic-Filled Separators for Large Format...  

Broader source: Energy.gov (indexed) [DOE]

& Publications Multifunctional, Inorganic-Filled Separators for Large Format, Li-ion Batteries Multifunctional, Inorganic-Filled Separators for Large Format, Li-ion Batteries...

106

Multifunctional, Inorganic-Filled Separators for Large Format...  

Broader source: Energy.gov (indexed) [DOE]

Multifunctional, Inorganic-Filled Separators for Large Format, Li-ion Batteries Multifunctional, Inorganic-Filled Separators for Large Format, Li-ion Batteries 2012 DOE Hydrogen...

107

All-Boron Aromatic Clusters as Potential New Inorganic Ligands...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Boron Aromatic Clusters as Potential New Inorganic Ligands and Building Blocks in Chemistry. All-Boron Aromatic Clusters as Potential New Inorganic Ligands and Building Blocks in...

108

Role of inorganic chemistry on nuclear energy examined  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Role of inorganic chemistry on nuclear energy examined Inorganic chemistry can provide insight and improve technical issues surrounding nuclear power production and waste...

109

NSF/DOE Thermoelectric Partnership: Inorganic-Organic Hybrid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Inorganic-Organic Hybrid Thermoelectrics NSFDOE Thermoelectric Partnership: Inorganic-Organic Hybrid Thermoelectrics 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

110

TCD-IISc Symposium "Chemistry & Chemical Biology"  

E-Print Network [OSTI]

actinide chemistry, with a focus on coordination and organometallic uranium chemistry. Paula ColavitaTCD-IISc Symposium "Chemistry & Chemical Biology" Trinity College Clive Williams, Dean of Chemistry. Research areas include supramolecular organic and inorganic chemistry and medicinal chemistry

O'Mahony, Donal E.

111

Energy considerations for steam plasma gasification of black liquor and chemical recovery  

SciTech Connect (OSTI)

This paper investigates the energy economics of using a hybrid steam plasma process to gasify black liquor. In the pulp and paper industry, gasification is gaining credibility as an incremental method to supplement the standard Kraft process, which bums the black liquor in large furnaces to recover energy and inorganic chemicals (sodium and sulfur) that are recycled back into the wood pulping process. This paper shows that despite the energy intensive nature of steam plasma processing, several fortuitous conditions arise that make it a viable technology for the gasification of black liquor.

Grandy, J.D.; Kong, P.C.

1995-10-01T23:59:59.000Z

112

Energy considerations for steam plasma gasification of black liquor and chemical recovery  

SciTech Connect (OSTI)

This paper investigates the energy economics of using a hybrid steam plasma process to gasify black liquor. In the pulp and paper industry, gasification is gaining credibility as an incremental method to supplement the standard Kraft process, which burns the black liquor in large furnaces to recover energy and inorganic chemicals (sodium and sulfur) that are recycled back into the wood pulping process. This paper shows that despite the energy intensive nature of steam plasma processing, several fortuitous conditions arise that make it a viable technology for the gasification of black liquor.

Grandy, J.D.; Kong, P.C. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

1995-07-01T23:59:59.000Z

113

Abbreviations: As(V) Arsenate; As(III) Arsenite; MS Murashige and Skoog; PC Phytochelatin; SOD Superoxide dismutase Fig. 1 Inorganic forms of arsenic most prevalent in the  

E-Print Network [OSTI]

with metal ores of copper, lead and gold. Arsenate (AsV) and arsenite (AsIII) are the most common inorganic smeltering, coal combustion, mine tailings, hide tanning waste, dyes, chemical weapons and arsenic pesticides

Ma, Lena

114

Polygonal model for layered inorganic nanotubes  

E-Print Network [OSTI]

Multiwalled inorganic nanotubes with circular cross sections must have either an incoherent interface or a large amount of strain. However, nanotubes with a polygonal cross section can have a coherent interface with ...

Tibbetts, Kevin

115

February 11, 1987 I Inorganic Chemistry  

E-Print Network [OSTI]

Volume 26 Number 3 February 11, 1987 I Inorganic Chemistry 0 Copyright 1987 by the American uranium phthalocyanine derivatives have been crystallographically (I) (a) Kasuga, K.; Tsutsui, M. Coord

Girolami, Gregory S.

116

Inorganic nanotubes and electro-fluidic devices fabricated therefrom  

DOE Patents [OSTI]

Nanofluidic devices incorporating inorganic nanotubes fluidly coupled to channels or nanopores for supplying a fluid containing chemical or bio-chemical species are described. In one aspect, two channels are fluidly interconnected with a nanotube. Electrodes on opposing sides of the nanotube establish electrical contact with the fluid therein. A bias current is passed between the electrodes through the fluid, and current changes are detected to ascertain the passage of select molecules, such as DNA, through the nanotube. In another aspect, a gate electrode is located proximal the nanotube between the two electrodes thus forming a nanofluidic transistor. The voltage applied to the gate controls the passage of ionic species through the nanotube selected as either or both ionic polarities. In either of these aspects the nanotube can be modified, or functionalized, to control the selectivity of detection or passage.

Yang, Peidong (Kensington, CA); Majumdar, Arunava (Orinda, CA); Fan, Rong (Pasadena, CA); Karnik, Rohit (Cambridge, MA)

2011-03-01T23:59:59.000Z

117

2010 INORGANIC CHEMISTRY GORDON RESEARCH CONFERENCE JUNE 20 - 25, 2010  

SciTech Connect (OSTI)

The Inorganic Chemistry GRC is one of the longest-standing of the GRCs, originating in 1951. Over the years, this conference has played a role in spawning many other GRCs in specialized fields, due to the involvement of elements from most of the periodic table. These include coordination, organometallic, main group, f-element, and solid state chemistries; materials science, catalysis, computational chemistry, nanotechnology, bioinorganic, environmental, and biomedical sciences just to name a few. The 2010 Inorganic Chemistry GRC will continue this tradition, where scientists at all levels from academic, industrial, and national laboratories meet to define the important problems in the field and to highlight emerging opportunities through exchange of ideas and discussion of unpublished results. Invited speakers will present on a wide variety of topics, giving attendees a look at areas both inside and outside of their specialized areas of interest. In addition to invited speakers, the poster sessions at GRCs are a key feature of the conference. All conferees at the Inorganic Chemistry GRC are invited to present a poster on their work, and here the informal setting promotes the free exchange of ideas and fosters new relationships. As in previous years, we will offer poster presenters the opportunity to compete for one of several program spots in which they can give an oral presentation based on the subject matter of their poster. This is a great way to get your work noticed by the scientists attending the meeting, especially for those early in their career path such as junior faculty members, postdoctoral fellows, and those at comparable ranks. Anyone interested in participating in the poster competition should bring an electronic slide presentation and a small hard copy of their poster to submit to the committee.

JOHN LOCKEMEYER

2010-06-25T23:59:59.000Z

118

Industrial Permit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Protection Obeying Environmental Laws Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the...

119

or ChemiCal engineering?  

E-Print Network [OSTI]

Chemistry or ChemiCal engineering? Do both at Wits! www.wits.ac.za #12;Chemistry or ChemiCal by a BScEng (Chem Eng)! Which should I choose: Chemistry or Chemical Engineering? Because the chemist and the chemical engineer work so closely in industry, there is little doubt that the chemical engineer who has

Wagner, Stephan

120

Future scenarios for green chemical supply chains  

E-Print Network [OSTI]

We live in an age where industrial chemicals are central to the modem economy serving as the basis for all man-made fibers, life-science chemicals and consumer products. Owing to globalization, the industry has grown to ...

Arora, Vibhu, M. Eng. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alkoxide routes to Inorganic Materials  

SciTech Connect (OSTI)

An all alkoxide solution chemistry utilizing metal 2-methoxyethoxide complexes in 2-methoxyethanol was used to deposit thin-films of metal oxides on single-crystal metal oxide substrates and on biaxially textured metal substrates. This same chemistry was used to synthesize complex metal oxide nanoparticles. Nuclear Magnetic Resonance spectroscopy was used to study precursor solutions of the alkaline niobates and tantalates. Film crystallization temperatures were determined from x-ray diffraction patterns of powders derived from the metal oxide precursor solutions. Film structure was determined via x-ray diffraction. Film morphology was studied using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Epitaxial thin-films of strontium bismuth tantalate (SrBi{sub 2}Ta{sub 2}O{sub 9}, SBT) and strontium bismuth niobate (SrBi{sub 2}Nb{sub 2}O{sub 9}, SBN) were deposited on single crystal [1 0 0] magnesium oxide (MgO) buffered with lanthanum manganate (LaMnO{sub 3}, LMO). Epitaxial thin films of LMO were deposited on single crystal [100] MgO via Rf-magnetron sputtering and on single crysal [100] lanthanum aluminate (LaAlO{sub 3}) via the chemical solution deposition technique. Epitaxial thin-films of sodium potassium tantalate (na{sub 0.5}K{sub 0.5}TaO{sub 3}, NKT), sodium potassium niobate (Na{sub 0.5}K{sub 0.5}NbO{sub 3}, NKN) and sodium potassium tantalum niobate (Na{sub 0.5}K{sub 0.5}Ta{sub 0.5}O{sub 3}, NKTN) were deposited on single crystal [1 0 0] lanthanum aluminate and [1 0 0] MgO substrates (NKT and NKN) and biaxially textured metal substrates via the chemical solution deposition technique. Epitaxial growth of thin-films of NKT, NKN and NKTN was observed on LAO and Ni-5% W. Epitaxial growth of thin-films of NKN and the growth of c-axis aligned thin-films of NKT was observed on MgO. Nanoparticles of SBT, SBN, NKT and NKN were synthesized in reverse micelles from alkoxide precursor solutions. X-ray diffraction and transmission electron spectroscopy investigations reveal that amorphous nanoparticles ({approx} 5 nm) of SBT and SBN were synthesized. X-ray diffraction investigations reveal that nanoparticles ({approx} nm) of NKT and NKN were also synthesized by this method.

Thomas, George H [ORNL

2007-12-01T23:59:59.000Z

122

Inorganic Plant Nutrients: Nitrogen, Phosphorus, Silicate Introduction  

E-Print Network [OSTI]

Lab 3: Inorganic Plant Nutrients: Nitrogen, Phosphorus, Silicate Introduction Compounds of nitrogen. Silicate can play a regulating role in the growth of such organisms that carry shells of silicate. Most important are diatoms, which may form phytoplankton blooms under conditions of sufficient silicate

Jochem, Frank J.

123

The Mork Family Department of Chemical  

E-Print Network [OSTI]

in automotive and space-related industries to materials used in the biomedical and electronics elds. Chemical

Zhou, Chongwu

124

FACULTY POSITION IN INORGANIC CHEMISTRY Department of Chemistry  

E-Print Network [OSTI]

FACULTY POSITION IN INORGANIC CHEMISTRY Department of Chemistry Syracuse University The Department of Chemistry at Syracuse University invites applications for a tenure track faculty position at the Assistant Professor level in inorganic chemistry with specialization in materials chemistry (broadly defined

Doyle, Robert

125

Role of inorganic chemistry on nuclear energy examined  

E-Print Network [OSTI]

- 1 - Role of inorganic chemistry on nuclear energy examined July 31, 2013 The journal Inorganic Chemistry published a special Forum issue on the role of inorganic chemistry in nuclear energy. John Gordon and Argonne National Laboratory collaborated on the work. The DOE Office of Nuclear Energy and the Office

126

Impact of the revised OSHA exposure standard on evaluation and control of benzene and other volatile organic chemicals in the liquid petroleum pipeline industry  

SciTech Connect (OSTI)

The primary purpose of this study was to determine the benzene exposure potential of workers in the liquid petroleum pipeline industry and to assess the impact of compliance with the revised standard on this industry. In addition, exposure to ethylene dibromide (EDB), and ethylene dichloride (EDC), which have toxicological profiles similar to that of benzene and are routinely found in this industry, were evaluated and appropriate control protocols were recommended. Exposure potential to benzene in excess of the 0.5 ppm (8-hour TWA) OSHA action level was shown to be limited to three free product handling operations, and that this increased exposure potential was dependent on the length of time necessary to perform the operations. The incidence and magnitude of benzene overexposure was not severe and control could be accomplished with engineering methods, along with work practice controls and personal protective equipment. Through application of a risk assessment model it was shown that 14 excess leukemia deaths per one thousand workers could be expected in the employee population that routinely performs those operation having maximum benzene exposure potential. This compares to less than on excess leukemia death per one thousand workers in the total work population. The evaluation of EDB and EDC indicated that exposure potential to EDB was of greatest concern. Even though exposure could be limited through application of standard industrial hygiene methods, any control protocol short of total elimination of EDB from the product stream may be not sufficient to reduce exposure to accepted levels.

Mercer, D.O.

1989-01-01T23:59:59.000Z

127

Industrial Engineering Industrial Advisory Board  

E-Print Network [OSTI]

Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

Gelfond, Michael

128

Transformations of inorganic coal constituents in combustion systems  

SciTech Connect (OSTI)

The inorganic constituents or ash contained in pulverized coal significantly increase the environmental and economic costs of coal utilization. For example, ash particles produced during combustion may deposit on heat transfer surfaces, decreasing heat transfer rates and increasing maintenance costs. The minimization of particulate emissions often requires the installation of cleanup devices such as electrostatic precipitators, also adding to the expense of coal utilization. Despite these costly problems, a comprehensive assessment of the ash formation and had never been attempted. At the start of this program, it was hypothesized that ash deposition and ash particle emissions both depended upon the size and chemical composition of individual ash particles. Questions such as: What determines the size of individual ash particles What determines their composition Whether or not particles deposit How combustion conditions, including reactor size, affect these processes remained to be answered. In this 6-year multidisciplinary study, these issues were addressed in detail. The ambitious overall goal was the development of a comprehensive model to predict the size and chemical composition distributions of ash produced during pulverized coal combustion. Results are described.

Helble, J.J. (ed.); Srinivasachar, S.; Wilemski, G.; Boni, A.A. (PSI Technology Co., Andover, MA (United States)); Kang, Shin-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M. (Massachusetts Inst. of Tech., Cambridge, MA (United States)); Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L. (Arizona Univ., Tucson, AZ (United States)); Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A. (Kentucky Univ., Lexingt

1992-11-01T23:59:59.000Z

129

Electrified Separation Processes in Industry  

E-Print Network [OSTI]

For any separation procedure in the chemical industry, a certain amount of reversible work in the form of free energy is required, as dictated by the second law of thermodynamics. Classical techniques for effecting liquid-phase separations...

Appleby, A. J.

1983-01-01T23:59:59.000Z

130

Polybrominated dibenzo-p-dioxins/dibenzofurans and polybrominated diphenyl ethers in soil, vegetation, workshop-floor dust, and electronic shredder residue from an electronic waste recycling facility and in soils from a chemical industrial complex in eastern China  

SciTech Connect (OSTI)

In this study, 11 2,3,7,8-substituted PBDD/Fs and 10 polybrominated diphenyl ether (PBDE) congeners were determined in electronic shredder waste, workshop-floor dust, soil, and leaves (of plants on the grounds of the facility) from a large-scale electronic wastes (e-waste) recycling facility and in surface soil from a chemical-industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) as well as agricultural areas in eastern China. Total PBDD/F concentrations in environmental samples were in the range of 113-818 pg/g dry wt (dw) for leaves, 392-18,500 pg/g dw for electronic shredder residues, 716-80,0000 pg/g dw for soil samples, and 89,600-14,3000 pg/g dw for workshop-floor dust from the e-waste recycling facility and in a range from nondetect (ND) to 427 pg/g dw in soil from the chemical-industrial complex. The highest mean concentrations of total PBDD/Fs were found in soil samples and workshop-floor dust from the e-waste recycling facility. The dioxin-like toxic equivalent (measured as TEQ) concentrations of PBDD/Fs were greater than the TEQs of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) reported in our previous study for the same set of samples. The concentrations of PBDFs were several orders of magnitude higher than the concentrations of PBDDs in samples from the e-waste facility or from soil from the chemical-industrial complex. A significant correlation was found between the concentrations of {Sigma}PBDD/Fs and {Sigma}PBDEs (r = 0.769, p < 0.01) and between SPBDD/Fs and the previously reported SPCDD/F concentrations (r = 0.805, p < 0.01). The estimated daily human intakes of TEQs contributed by PBDD/Fs via soil/dust ingestion and dermal exposures in e-waste recycling facilities were higher than the intakes of TEQs contributed by PCDD/Fs, calculated in our previous study. 45 refs., 2 figs., 2 tabs.

Jing Ma; Rudolf Addink; Sehun Yun; Jinping Cheng; Wenhua Wang; Kurunthachalam Kannan [Shanghai Jiao Tong University, Shanghai (China). School of Environmental Science and Engineering

2009-10-01T23:59:59.000Z

131

Chemical and Biochemical  

E-Print Network [OSTI]

carrying out two experi- ments each semester. Graduates find careers at hospitals, nuclear plants, research how plastics, petrochemicals, or certain foods are made? Chemical engineers develop ways of converting to a variety of industries including the chemical and petrochemical fields and the pharmaceutical and biotech

Neimark, Alexander V.

132

Chemical Science and Technology Laboratory Page 1 Technical Activities Report  

E-Print Network [OSTI]

Chemical Science and Technology Laboratory Page 1 Technical Activities Report Physical & Chemical Properties Division TABLE OF CONTENTS I. PHYSICAL & CHEMICAL PROPERTIES DIVISION (838.................................................................................................9 1. The NIST WebBook: NIST Chemical Reference Data for Industry

Magee, Joseph W.

133

SciTech Connect: Metal-Organic Framework Templated Inorganic...  

Office of Scientific and Technical Information (OSTI)

Metal-Organic Framework Templated Inorganic Sorbents for Rapid and Efficient Extraction of Heavy Metals Citation Details In-Document Search Title: Metal-Organic Framework Templated...

134

Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

Not Available

2008-12-01T23:59:59.000Z

135

Chemical Safety Program - Related Links | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

of incidents. American Chemical Society (ACS) American Conference of Government Industrial Hygienists (ACGIH) American Institute of Chemical Engineers (AIChE) American...

136

Inorganic Nanotubes DOI: 10.1002/anie.200803447  

E-Print Network [OSTI]

Angewandte Chemie Inorganic Nanotubes DOI: 10.1002/anie.200803447 Core­Shell PbI2@WS2 Inorganic Nanotubes from Capillary Wetting** Ronen Kreizman, Sung You Hong, Jeremy Sloan, Ronit Popovitz-Biro, Ana cavity. Capillarity has been shown to drive the wetting and filling of multiwalled carbon nanotubes

Davis, Ben G.

137

Determination of organic inorganic associations of trace elements in New Albany shale kerogen  

SciTech Connect (OSTI)

The inorganic and organic trace element associations in the kerogen isolated from the New Albany shale were studied by analysis of kerogen fractions and a mineral residue obtained using density separations. Elemental mass balance data from these fractions indicate a predominantly inorganic association with pyrite and marcasite for several elements (As, Co, Ga, Mn, Ni, Sb and Se). The degree of inorganic association of these elements was determined by treatment of the mineral residue ({approximately}85% FeS{sub 2}) with dilute HNO{sub 3} to remove pyrite and marcasite. The association of several other elements in minerals which are insoluble in dilute HNO{sub 3} (rutile, zircon, etc.) were also determined. The results of these studies indicate an essentially total organic association for V and approximately 95% organic association for Ni in New Albany kerogen. The determination of organically combined elements is very difficult for those elements which are predominantly concentrated in the mineral fraction. Correction methods based on low temperature ashing, chemical removal of pyrite, and physical methods of separation are compared.

Mercer, G.E.; Filby, R.H. (Washington State Univ., Pullman (USA))

1989-03-01T23:59:59.000Z

138

Toward High-Performance Organic-Inorganic Hybrid Solar Cells: Bringing Conjugated Polymers and Inorganic Nanocrystals in Close  

E-Print Network [OSTI]

to traditional silicon solar cells due to the capacity of producing high- efficiency solar energy in a cost these advantages and progress, organic-inorganic hybrid solar cells still exhibit much lower PCEs (iToward High-Performance Organic-Inorganic Hybrid Solar Cells: Bringing Conjugated Polymers

Lin, Zhiqun

139

Industrial Hygienist  

Broader source: Energy.gov [DOE]

A successful candidate in this position wil l serve as an Industrial Hygienist in the Operations Division, providing technical oversight of the Pacific Northwest National Laboratory contractors...

140

Organic Molecule Functionalized Zn3P2 Nanowire Inorganic-Organic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Organic Molecule Functionalized Zn3P2 Nanowire Inorganic-Organic Hybrid Thermoelectrics Organic Molecule Functionalized Zn3P2 Nanowire Inorganic-Organic Hybrid Thermoelectrics...

Note: This page contains sample records for the topic "industrial inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Industrial Decision Making  

E-Print Network [OSTI]

-05-30 Proceedings from the Thirtieth Industrial Energy Technology Conference, New Orleans, LA, May 6-9, 2008. Figure 1. Average Monthly Industrial Energy Prices (2) - 5 10 15 20 25 J an- 0 0 Ju l -0 0 Ja n- 0 1 Ju l -0 1 Ja n - 02 Ju l -0 2 Ja n - 0 3 Ju l - 0 3... Ja n - 0 4 J u l-04 Ja n - 0 5 Jul - 0 5 J an- 0 6 Jul - 0 6 Ja n- 07 Jul - 0 7 Ener gy Pr ic e ($ /MB t u) Electricity Fuel Oil Natural Gas Coal External market forces also drive industrial investment cycles. In the organic chemical...

Elliott, R. N.; McKinney, V.; Shipley, A.

2008-01-01T23:59:59.000Z

142

Industrial Energy Management: Doing More with Less  

E-Print Network [OSTI]

during the course of business with energy-intensive operations such as aluminum and chemical processing plants experiencing energy costs between five and 10 times higher than industry averages (Source: Department of Energy, Office of Industrial... INDUSTRIAL ENERGY MANAGEMENT: DOING MORE WITH LESS Jason Sheppard, Industrial Market Segment Manager Anthony Tisot, Communications Manager Power Monitoring and Control SCHNEIDER ELECTRIC Victoria, BC, Canada ABSTRACT The cost of doing...

Sheppard, J.; Tisot, A.

2006-01-01T23:59:59.000Z

143

Thermal properties of organic and inorganic aerogels  

SciTech Connect (OSTI)

Aerogels are open-cell foams that have already been shown to be among the best thermal insulating solid materials known. This paper examines the three major contributions to thermal transport through porous materials; solid, gaseous, and radiative, to identify how to reduce the thermal conductivity of air-filled aerogels. We find that significant improvements in the thermal insulation property of aerogels are possible by; (i) employing materials with a low intrinsic solid conductivity, (ii) reducing the average pore size within aerogels, and (iii) affecting an increase of the infrared extinction in aerogels. Theoretically, polystyrene is the best of the organic materials and zirconia is the best inorganic material to use for the lowest achievable conductivity. Significant reduction of the thermal conductivity for all aerogel varieties is predicted with only a modest decrease of the average pore size. This might be achieved by modifying the sol-gel chemistry leading to aerogels. For example, a thermal resistance value of [ital R]=20 per inch would be possible for an air-filled resorcinol-formaldehyde aerogel at a density of 156 kg/m[sup 3], if the average pore size was less than 35 nm. An equation is included which facilitates the calculation of the optimum density for the minimum total thermal conductivity, for all varieties of aerogels.

Hrubesh, L.W.; Pekala, R.W. (Chemistry and Material Science Department, Lawrence Livermore National Laboratory, Livermore, California 94551-9900 (United States))

1994-03-01T23:59:59.000Z

144

Combinatorial Measurement Methods for Inorganic Materials  

E-Print Network [OSTI]

) devices, or the Seebeck coefficients of thermoelectric materials for vehicular waste heat recovery devices such as Intel and Micron, as well as GM and Honda for the use of thermoelectrics for vehicular waste heat will be generated for materials systems identified as high priority by the microelectronics industry. In addition

145

Lithium-based inorganic-organic framework materials  

E-Print Network [OSTI]

This dissertation describes research into lithium-based inorganic-organic frameworks, which has led to an increased understanding of the structural diversity and properties of these materials. The crystal structures of 11 new forms of lithium...

Yeung, Hamish Hei-Man

2013-01-01T23:59:59.000Z

146

Polyelectrolyte multilayers as nanostructured templates for inorganic synthesis  

E-Print Network [OSTI]

Thin film nanocomposites consisting of inorganic matter embedded within a soft polymeric matrix on the nanometer length scale are an important class of materials with potential application in optoelectronics and photonics, ...

Wang, Tom Chih-Hung, 1973-

2002-01-01T23:59:59.000Z

147

Nanoporous Metal-Inorganic Materials for Storage and Capture...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicles and Fuels Vehicles and Fuels Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Nanoporous Metal-Inorganic Materials for Storage and...

148

ITP Chemicals: Industrial Feedstock Flexibility Workshop Results...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3323197.pdf Bioenergy Technologies Office Multi-Year Program Plan: May 2013 Update Roadmap for Bioenergy and Biobased Products in the United States Advanced Manufacturing Home...

149

ITP Chemicals: Industrial Feedstock Flexibility Workshop Results...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a second key R&D focus area. Specific opportunities that the group recognized include oil shale in situ production, followed by stranded gas technology to liquefy it in situ, and...

150

Sanyo Chemical Industries | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRooseveltVISanton GmbH Jump to: navigation, search

151

ITP Chemicals: Chemical Industry of the Future: New Biocatalysts: Essential  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department ofIOWA1999) | Department ofWorld

152

Advanced Mechanical Heat Pump Technologies for Industrial Applications  

E-Print Network [OSTI]

, advanced chemical and mechanical heat pump technologies are being developed for industrial application. Determining which technologies are appropriate for particular industrial applications and then developing those technologies is a stepped process which...

Mills, J. I.; Chappell, R. N.

153

E-Print Network 3.0 - australian sugar industry Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Royal Australian Chemical... Graduates of Macquarie University Biotechnology industry Pharmaceutical ... Source: Williamson, Jane - Department of Biological...

154

Inorganic Nanoarchitectures by Organic Self Assembly  

E-Print Network [OSTI]

. . . . . . . . . . . . 43 3.2 Photonic device architectures for enhanced light absorption . . . . . . . . . . . . . . . 48 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4 Experimental and analytical techniques 59 4... T 1 T 2 T 3 T c T 5 fr e e e n e rg y ? G f A f A f A b 5 ?m C C Figure 1.2: Phase separation of polymer blends. a) Schematic of two chemically distinct ho- mopolymer chains. b) Atomic force microscopy image of a phase separated polymer film...

Guldin, Stefan

2014-05-27T23:59:59.000Z

155

Department of Chemical and Petroleum Engineering  

E-Print Network [OSTI]

Real World Process from Inception to Pre-construction ­ Apply Concepts Learned in Class to Industrial Quality and Air Pollution Control Chemical Engineering Energy & Env. Specialization #12;CHEMICAL World-Class Industry ­ Oil and Gas Exploration & Recovery ­ Heavy Oil & Bitumen ­ Natural Gas, Coal Bed

Habib, Ayman

156

Industrial Low Temperature Waste Heat Utilization  

E-Print Network [OSTI]

In this paper, some common and emerging techniques to better utilize energy in the chemical process industries are discussed. Temperature levels of waste heat available are pointed out. Emerging practices for further economical utilization of waste...

Altin, M.

1981-01-01T23:59:59.000Z

157

Industrial Heat Pumps: Where and When  

E-Print Network [OSTI]

pump analysis. INDUSTRIAL HEAT PUMPS: WHAT NEXT? There is definitely a need to develop heat pump systems with higher delivery temperatures. Chemical heat pumps (based on two-step endothermic/exothermic reactions) seem promising in this regard...

Ranade, S. M.; Chao, Y. T.

158

Technology transfer in the petrochemical industry  

SciTech Connect (OSTI)

The paper deals with the development of the Japanese petrochemical industry from the 1950s through the 1960s solely from the standpoint of the process of technology transplantation. The Japanese petrochemical industry in this period is interesting as it relates to technology transfer to Japan because: (1) It was an industry at the core of the heavy and chemical industries, which were an important pillar of Japan's industrial policy; (2) It was a new technical field with no past history; and (3) Unraveling of technology was successfully pursued, with the result that Japan became a petrochemical technology-exporting country in the 1960s.

Tanaka, M.

1994-01-01T23:59:59.000Z

159

Chemical enterprise model and decision-making framework for sustainable chemical product design  

E-Print Network [OSTI]

Chemical enterprise model and decision-making framework for sustainable chemical product design, LGC (Laboratoire de Ge´nie Chimique), F-31432 Toulouse Cedex 04, France 1. Introduction The chemical often strongly impact the environment and people's health and safety. Indeed chemical industries

Paris-Sud XI, Université de

160

Heterostructures based on inorganic and organic van der Waals systems  

SciTech Connect (OSTI)

The two-dimensional limit of layered materials has recently been realized through the use of van der Waals (vdW) heterostructures composed of weakly interacting layers. In this paper, we describe two different classes of vdW heterostructures: inorganic vdW heterostructures prepared by co-lamination and restacking; and organic-inorganic hetero-epitaxy created by physical vapor deposition of organic molecule crystals on an inorganic vdW substrate. Both types of heterostructures exhibit atomically clean vdW interfaces. Employing such vdW heterostructures, we have demonstrated various novel devices, including graphene/hexagonal boron nitride (hBN) and MoS{sub 2} heterostructures for memory devices; graphene/MoS{sub 2}/WSe{sub 2}/graphene vertical p-n junctions for photovoltaic devices, and organic crystals on hBN with graphene electrodes for high-performance transistors.

Lee, Gwan-Hyoung [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Chul-Ho [KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701 (Korea, Republic of); Zande, Arend M. van der [Energy Frontier Research Center (EFRC), Columbia University, New York, New York 10027 (United States); Han, Minyong [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Cui, Xu; Arefe, Ghidewon; Hone, James [Department of Mechanical Engineering, Columbia University, New York, New York 10027 (United States); Nuckolls, Colin [Department of Chemistry, Columbia University, New York, New York 10027 (United States); Heinz, Tony F. [Department of Electrical Engineering, Columbia University, New York, New York 10027 (United States); Department of Physics, Columbia University, New York, New York 10027 (United States); Kim, Philip, E-mail: pk2015@columbia.edu [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Department of Physics, Columbia University, New York, New York 10027 (United States)

2014-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Devices for collecting chemical compounds  

DOE Patents [OSTI]

A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from a fixed surface so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

Scott, Jill R; Groenewold, Gary S

2013-12-24T23:59:59.000Z

162

Cellular morphology of organic-inorganic hybrid foams based on alkali alumino-silicate matrix  

SciTech Connect (OSTI)

Organic-inorganic hybrid foams based on an alkali alumino-silicate matrix were prepared by using different foaming methods. Initially, the synthesis of an inorganic matrix by using aluminosilicate particles, activated through a sodium silicate solution, was performed at room temperature. Subsequently the viscous paste was foamed by using three different methods. In the first method, gaseous hydrogen produced by the oxidization of Si powder in an alkaline media, was used as blowing agent to generate gas bubbles in the paste. In the second method, the porous structure was generated by mixing the paste with a meringue type of foam previously prepared by whipping, under vigorous stirring, a water solution containing vegetal proteins as surfactants. In the third method, a combination of these two methods was employed. The foamed systems were consolidated for 24 hours at 40C and then characterized by FTIR, X-Ray diffraction, scanning electron microscopy (SEM) and compression tests. Low density foams (?500 Kg/m{sup 3}) with good cellular structure and mechanical properties were obtained by combining the meringue approach with the use of the chemical blowing agent based on Si.

Verdolotti, Letizia; Capasso, Ilaria; Lavorgna, Marino [Institute of Composite and Biomedical Materials, National Research Council, Naples (Italy); Liguori, Barbara; Caputo, Domenico [Department of Chemical, Materials and Industrial Engineering, University of Naples Federico II, Naples (Italy); Iannace, Salvatore [Institute of Composite and Biomedical Materials, National Research Council, Naples, Italy and IMAST SCRAL, Piazza Bovio 22 Napoli 80133 (Italy)

2014-05-15T23:59:59.000Z

163

Technology and apparatus for solidification of radioactive wastes from nuclear fuel cycle by high temperature adsorption of metals on inorganic matrices  

SciTech Connect (OSTI)

This study deals with the investigation of high-level waste (HLW) solidification by high-temperature adsorption of radionuclides on porous inorganic matrices. An appropriate drum-type apparatus using magnetic gear drive was designed and tested. The report contains the test results of the solidification process of high-level radioactive raffinate from the first regeneration extraction cycle of irradiated fuel elements from nuclear power plants. Industrial-scale tests of the HLW solidification process (technology and equipment) are planned.

Nardova, A.K.; Philipov, E.A.; Kudriavtsev, Y.G.; Dzekun, E.G.; Parfanovitch, B.N. [Russian Research Inst. of Chemical Technology, Moscow (Russian Federation)

1993-12-31T23:59:59.000Z

164

Appendix F. Chemicals Annual Site Environmental Report--2011  

E-Print Network [OSTI]

, pesticides, and industrial chemicals. Through the use of chemicals, we can increase food production, cure are exposed to chemicals by inhalation (breathing air), ingestion (eating exposed plants and animalsAppendix F. Chemicals #12;#12;Annual Site Environmental Report--2011 Appendix F. Chemicals F-3

Pennycook, Steve

165

Photocurable Inorganic-Organic Hydrogels for Biomedical Applications  

E-Print Network [OSTI]

............................................. 4 1.3 Hydrogels as Sensor Membranes ............................................. 6 II PHOTO-CROSSLINKED PDMSstar-PEG HYDROGELS: SYNTHESIS, CHARACTERIZATION, AND POTENTIAL APPLICATION FOR TISSUE ENGINEERING SCAFFOLD........... 9........................................................... 5 1.2 Sequence of events that leads to formation of fibrous capsules around implanted biosesors .................................................................................... 8 2.1 Synthesis of: (top) inorganic PDMS star -MA (A...

Hou, Yaping

2011-02-22T23:59:59.000Z

166

Phonon Confinement Effects in Hybrid Virus-Inorganic Nanotubes for  

E-Print Network [OSTI]

Phonon Confinement Effects in Hybrid Virus-Inorganic Nanotubes for Nanoelectronic Applications as nanotemplates, viruses can actually improve the electron transport properties in semiconductor nanotubes grown nanotubes deposited on tobacco mosaic viruses, the confined acoustic phonons are found to be redistributed

Fonoberov, Vladimir

167

Industrial Users  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planningtoA Journey Inside the Complex andIndustrial

168

Industry Economists  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planningtoA Journey Inside the ComplexIndustry

169

Industry @ ALS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portaldefault Sign In AboutIn theIndustry @ ALS

170

Biomonitoring for the photovoltaics industry  

SciTech Connect (OSTI)

Biomonitoring often is used as a method for estimating the dose to an individual. Therefore, a parameter of measurement, or biomarkers must be identified. The purpose of this paper is to give an overview of biomonitoring protocols for metals used in the photovoltaics industry. Special attention is given to areas that often are skimmed over, to gain insights into some of the problems that may arise when these tasks are carried out. Biological monitoring can be used to determine current human exposures to chemicals, as well as to detect past exposures, and the effects that these exposures may have on human health. It is used in conjunction with environmental monitoring to describe more completely worker`s exposures to, and absorption of, chemicals in the workplace. Biological specimens (e.g., blood, hair or urine) are analyzed for chemical agents, metabolites, or for some specific effect on the person (Lowry 1994). Biomonitoring can assess a workers exposure to industrial chemicals by all routes including skin absorption and ingestion. Although the methodology still is in its infancy, in cases where the procedures have been developed, it can be an invaluable component of an ongoing program of industrial hygiene monitoring. Like any technology, there are limitations to its effectiveness because of a lack of knowledge, contamination of specimens, and the introduction of errors.

Bernholc, N.M.; Moskowitz, P.D.

1995-07-01T23:59:59.000Z

171

Industrial ecology Prosperity Game{trademark}  

SciTech Connect (OSTI)

Industrial ecology (IE) is an emerging scientific field that views industrial activities and the environment as an interactive whole. The IE approach simultaneously optimizes activities with respect to cost, performance, and environmental impact. Industrial Ecology provides a dynamic systems-based framework that enables management of human activity on a sustainable basis by: minimizing energy and materials usage; insuring acceptable quality of life for people; minimizing the ecological impact of human activity to levels that natural systems can sustain; and maintaining the economic viability of systems for industry, trade and commerce. Industrial ecology applies systems science to industrial systems, defining the system boundary to incorporate the natural world. Its overall goal is to optimize industrial activities within the constraints imposed by ecological viability, globally and locally. In this context, Industrial systems applies not just to private sector manufacturing and services but also to government operations, including provision of infrastructure. Sandia conducted its seventeenth Prosperity Game{trademark} on May 23--25, 1997, at the Hyatt Dulles Hotel in Herndon, Virginia. The primary sponsors of the event were Sandia National Laboratories and Los Alamos National Laboratory, who were interested in using the format of a Prosperity Game to address some of the issues surrounding Industrial Ecology. Honorary game sponsors were: The National Science Foundation; the Committee on Environmental Improvement, American Chemical Society; the Industrial and Engineering Chemistry Division, American Chemical Society; the US EPA--The Smart Growth Network, Office of Policy Development; and the US DOE-Center of Excellence for Sustainable Development.

Beck, D.; Boyack, K.; Berman, M.

1998-03-01T23:59:59.000Z

172

Inorganic soil and groundwater chemistry near Paducah Gaseous Diffusion Plant, Paducah, Kentucky  

SciTech Connect (OSTI)

Near-surface soils, boreholes, and sediments near the Paducah Gaseous Diffusion Plant (PGDP) were sampled in 1989-91 as were monitoring wells, TVA wells, and privately-owned wells. Most wells were sampled two or three times. The resulting chemical analyses have been published in previous reports and have been previously described (CH2M HILL 1991, 1992; Clausen et al. 1992). The two reports by CH2M HILL are controversial, however, because, the concentrations of some constituents were reported to exceed background levels or drinking water standards and because both on-site (within the perimeter fence at PGDP) and off-site pollution was reported to have occurred. The groundwater samples upon which these interpretations were based may not be representative, however. The CH2M HILL findings are discussed in the report. The purpose of this report is to characterize the inorganic chemistry of groundwater and soils near PGDP, using data from the CH2M HILL reports (1991, 1992), and to determine whether or not any contamination has occurred. The scope is limited to analysis and interpretation of data in the CH2M HILL reports because previous interpretations of these data may not be valid, because samples were collected in a relatively short period of time at several hundred locations, and because the chemical analyses are nearly complete. Recent water samples from the same wells were not considered because the characterization of inorganic chemistry for groundwater and soil requirements only one representative sample and an accurate analysis from each location.

Moore, G.K. [Tennessee Univ., Knoxville, TN (United States)

1995-03-01T23:59:59.000Z

173

Comparing the Effects of Mutualism and Competition on Industrial Districts  

E-Print Network [OSTI]

refining, chemical and bio-chemical produc- tion facilities, as well as heavy industrial facilities the industrial economy of the Humber region. Obviously such an intricate network of relationships is not unique to the Humber region. In fact, any economy which has a regional component could be represented by a complicated

Hoyle, Rebecca B.

174

Rapid extraction of dissolved inorganic carbon from seawater and groundwater samples for radiocarbon dating  

E-Print Network [OSTI]

The focus of this thesis is the design and development of a system for rapid extraction of dissolved inorganic carbon from seawater and groundwater samples for radiocarbon dating. The Rapid Extraction of Dissolved Inorganic ...

Gospodinova, Kalina Doneva

2012-01-01T23:59:59.000Z

175

Catalyst for splitting water &Catalyst for splitting water & Synthetic Modeling of InorganicSynthetic Modeling of Inorganic  

E-Print Network [OSTI]

Importance Hydrogen technology in fuel cellsHydrogen technology in fuel cells As a combustion fuel, it producesCatalyst for splitting water &Catalyst for splitting water & Synthetic Modeling of Inorganic of evolution ·Optimized catalyst for water splitting in all oxygenic phototrophs S0 S4 S1 S2 S3 O2 2 H O2 e- e

Petta, Jason

176

Mechanical & Industrial Engineering  

E-Print Network [OSTI]

Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board October 15, 2010 #12;Mechanical & Industrial Engineering 2 MIE Dorothy Adams Undergraduate/Graduate Secretary David Schmidt Associate Professor & Graduate Program Director #12;Mechanical & Industrial Engineering 3 MIE James Rinderle

Mountziaris, T. J.

177

Hybrid Core-Shell Nanowire Forests as Self-Selective Chemical Connectors  

E-Print Network [OSTI]

Hybrid Core-Shell Nanowire Forests as Self-Selective Chemical Connectors Hyunhyub Ko,,,§,| Jongho are presented that limit their successful operation. Here, we report unisex, chemical connectors based on hybridW bonding interactions of hybrid inorganic/organic NW forests. The weak vdW bond strengths result in the low

Javey, Ali

178

Engineering Industrial & Systems  

E-Print Network [OSTI]

Industrial Engineering Department of Industrial & Systems Engineering Leslie Monplaisir, Ph powerful tool sets used in industry today. -Brent Gillett, BSIE 2007 Advanced Planning Engineer at BMW I is available at: http://ise.wayne.edu/bs-industrial/index What is Industrial Engineering? The industrial

Berdichevsky, Victor

179

INDUSTRIAL ENGINEERING Industrial engineering is concerned  

E-Print Network [OSTI]

INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. Industrial engineers design and run the factories and systems

180

INDUSTRIAL ENGINEERING Industrial engineering is concerned  

E-Print Network [OSTI]

INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. The focus of industrial engineering is on process improvement

Note: This page contains sample records for the topic "industrial inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

analysis quantitative chemical: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

deals, including the following: ENERGY: Chemical engineers work in all aspects of the energy industry developing Firestone, Jeremy 6 Conservation biology Quantitative analysis...

182

Steam System Opportunity Assessment for the Pulp and Paper, Chemical...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Steam System Opportunity Assessment for the Pulp and Paper,...

183

Carbon Emissions Reduction Potential in the US Chemicals and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies, June 1999 Carbon Emissions Reduction Potential in the US...

184

Effects of composted dairy manure on soil chemical properties and forage yield and nutritive value of coastal Bermudagrass [Cynodon dactylon (L.) Pers.  

E-Print Network [OSTI]

Research was conducted to compare the effects of composted dairy manure and raw dairy manure alone, or in combination with supplemental inorganic fertilizer, on soil chemical properties and Coastal bermudagrass [Cynodon dactylon (L.) Pers.] yield...

Helton, Thomas J.

2005-02-17T23:59:59.000Z

185

Scale-up of continuous chemical synthesis systems  

E-Print Network [OSTI]

Continuous flow systems for chemical synthesis have become increasingly important in the pharmaceutical and fine chemical industry in the past decade. Initially, this work was confined primarily to microfluidic systems, ...

Heider, Patrick Louis

2013-01-01T23:59:59.000Z

186

Use of carbonates for biological and chemical synthesis  

DOE Patents [OSTI]

A system of using carbonates, especially water-insoluble or sparing soluble mineral carbonates, for maintaining or increasing dissolved inorganic carbon concentrations in aqueous media. In particular, the system generates concentrated dissolve inorganic carbon substrates for photosynthetic, chemosynthetic, or abiotic chemical production of carbonaceous or other compounds in solution. In some embodiments, the invention can also enhance the dissolution and retention of carbon dioxide in aqueous media, and can produce pH buffering capacity, metal ions, and heat, which can be beneficial to the preceding syntheses.

Rau, Gregory Hudson

2014-09-09T23:59:59.000Z

187

Inorganic metal oxide/organic polymer nanocomposites and method thereof  

DOE Patents [OSTI]

A synthetic method for preparation of hybrid inorganic/organic energetic nanocomposites is disclosed herein. The method employs the use of stable metal inorganic salts and organic solvents as well as an organic polymer with good solubility in the solvent system to produce novel nanocomposite energetic materials. In addition, fuel metal powders (particularly those that are oxophillic) can be incorporated into composition. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N.sub.2 adsoprtion/desorption methods, and Fourier-Transform (FT-IR) spectroscopy. According to these characterization methods the organic polymer phase fills the nanopores of the composite material, providing superb mixing of the component phases in the energetic nanocomposite.

Gash, Alexander E.; Satcher, Joe H.; Simpson, Randy

2004-03-30T23:59:59.000Z

188

Survey of electrochemical production of inorganic compounds. Final report  

SciTech Connect (OSTI)

The electrochemical generation of inorganic compounds, excluding chlorine/caustic, has been critically reviewed. About 60 x 10/sup 12/ Btu/y fossil fuel equivalent will be used in the year 2000 for the electrosynthesis of inorganic compounds. Significant energy savings in chlorate production can result from the development of suitable electrocatalysts for lowering the cathodic overpotential. Perchlorates, electrolytic hypochlorite, electrolytic manganese dioxide, fluorine and other miscellaneous compounds use relatively small amounts of electrical energy. Implementation of caustic scrubber technology for stack gas cleanup would result in appreciable amounts of sodium sulfate which could be electrolyzed to regenerate caustic. Hydrogen peroxide, now produced by the alkyl anthraquinone process, could be made electrolytically by a new process coupling anodic oxidation of sulfate with cathodic reduction of oxygen in alkaline solution. Ozone is currently manufactured using energy-inefficient silent discharge equipment. A novel energy-efficient approach which uses an oxygen-enhanced anodic reaction is examined.

Not Available

1980-10-01T23:59:59.000Z

189

Size and Crystallinity in Protein-Templated Inorganic Nanoparticles  

SciTech Connect (OSTI)

Protein cages such as ferritins and virus capsids have been used as containers to synthesize a wide variety of protein-templated inorganic nanoparticles. While identification of the inorganic crystal phase has been successful in some cases, very little is known about the detailed nanoscale structure of the inorganic component. We have used pair distribution function analysis of total X-ray scattering to measure the crystalline domain size in nanoparticles of ferrihydrite, {gamma}-Fe{sub 2}O{sub 3}, Mn{sub 3}O{sub 4}, CoPt, and FePt grown inside 24-meric ferritin cages from H. sapiens and P. furiosus. The material properties of these protein-templated nanoparticles are influenced by processes at a variety of length scales: the chemistry of the material determines the precise arrangement of atoms at very short distances, while the interior volume of the protein cage constrains the maximum nanoparticle size attainable. At intermediate length scales, the size of coherent crystalline domains appears to be constrained by the arrangement of crystal nucleation sites on the interior of the cage. On the basis of these observations, some potential synthetic strategies for the control of crystalline domain size in protein-templated nanoparticles are suggested.

Jolley, Craig C.; Uchida, Masaki; Reichhardt, Courtney; Harrington, Richard; Kang, Sebyung; Klem, Michael T.; Parise, John B.; Douglas, Trevor (SBU); (Montana)

2010-12-01T23:59:59.000Z

190

Inorganic arsenic exposure and type 2 diabetes mellitus in Mexico  

SciTech Connect (OSTI)

Inorganic arsenic exposure in drinking water has been recently related to diabetes mellitus. To evaluate this relationship the authors conducted in 2003, a case-control study in an arseniasis-endemic region from Coahuila, a northern state of Mexico with a high incidence of diabetes. The present analysis includes 200 cases and 200 controls. Cases were obtained from a previous cross-sectional study conducted in that region. Diagnosis of diabetes was established following the American Diabetes Association criteria, with two fasting glucose values {>=}126 mg/100 ml ({>=}7.0 mmol/l) or a history of diabetes treated with insulin or oral hypoglycemic agents. The next subject studied, subsequent to the identification of a case in the cross-sectional study was taken as control. Inorganic arsenic exposure was measured through total arsenic concentrations in urine, measured by hydride-generation atomic absorption spectrophotometry. Subjects with intermediate total arsenic concentration in urine (63.5-104 {mu}g/g creatinine) had two-fold higher risk of having diabetes (odds ratio=2.16; 95% confidence interval: 1.23, 3.79), but the risk was almost three times greater in subjects with higher concentrations of total arsenic in urine (odds ratio=2.84; 95% confidence interval: 1.64, 4.92). This data provides additional evidence that inorganic arsenic exposure may be diabetogenic.

Coronado-Gonzalez, Jose Antonio [Clinical Epidemiologic Research Unit, General Regional Hospital 1 'Gabriel Mancera', Mexican Institute of the Social Security, Mexico, D.F. (Mexico); Razo, Luz Maria del [Toxicology Departament, Cinvestav, Mexico D.F. (Mexico); Garcia-Vargas, Gonzalo [School of Medicine, Durango State Juarez University, Gomez Palacio, Durango (Mexico); Biomedical Research Center, Coahuila, Autonomous University, Torreon, Coahuila (Mexico); Sanmiguel-Salazar, Francisca [Biomedical Research Center, Coahuila, Autonomous University, Torreon, Coahuila (Mexico); Escobedo-de la Pena, Jorge [Clinical Epidemiologic Research Unit, General Regional Hospital 1 'Gabriel Mancera', Mexican Institute of the Social Security, Mexico, D.F. (Mexico)]. E-mail: jorgeep@servidor.unam.mx

2007-07-15T23:59:59.000Z

191

Tools for chemical synthesis in microsystems  

E-Print Network [OSTI]

Chemical synthesis in microsystems has evolved from simple proof-of-principle examples to become a general technique in academia and industry. Numerous such flow chemistry applications are now found in pharmaceutical and ...

Jensen, Klavs F.

192

Chemical and Petroleum Engineering Petroleum Engineering Minor  

E-Print Network [OSTI]

Chemical and Petroleum Engineering Petroleum Engineering Minor Students their skills by taking a minor in petroleum engineering. Energy is the largest global industry at $3 trillion annually, and petroleum supplies 60 percent

Calgary, University of

193

Transformations of inorganic coal constituents in combustion systems. Volume 1, sections 1--5: Final report  

SciTech Connect (OSTI)

The inorganic constituents or ash contained in pulverized coal significantly increase the environmental and economic costs of coal utilization. For example, ash particles produced during combustion may deposit on heat transfer surfaces, decreasing heat transfer rates and increasing maintenance costs. The minimization of particulate emissions often requires the installation of cleanup devices such as electrostatic precipitators, also adding to the expense of coal utilization. Despite these costly problems, a comprehensive assessment of the ash formation and had never been attempted. At the start of this program, it was hypothesized that ash deposition and ash particle emissions both depended upon the size and chemical composition of individual ash particles. Questions such as: What determines the size of individual ash particles? What determines their composition? Whether or not particles deposit? How combustion conditions, including reactor size, affect these processes? remained to be answered. In this 6-year multidisciplinary study, these issues were addressed in detail. The ambitious overall goal was the development of a comprehensive model to predict the size and chemical composition distributions of ash produced during pulverized coal combustion. Results are described.

Helble, J.J. [ed.; Srinivasachar, S.; Wilemski, G.; Boni, A.A. [PSI Technology Co., Andover, MA (United States); Kang, Shin-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L. [Arizona Univ., Tucson, AZ (United States); Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A. [Kentucky Univ., Lexington, KY (United States)

1992-11-01T23:59:59.000Z

194

Inorganic origin of carbon dioxide during low temperature thermal recovery of bitumen: Chemical and isotopic evidence  

SciTech Connect (OSTI)

Carbon dioxide, produced at low temperatures, is the dominant gaseous species evolved during steam-assisted thermal recovery of bitumen at the Tucker Lake pilot, Cold Lake, Alberta. Two possible sources for the produced CO{sub 2} are considered: pyrolysis of bitumen and dissolution of carbonate minerals. Data from natural systems and experiments by other authors suggest that clay-carbonate reactions are the dominant source of CO{sub 2}. Bitumen pyrolysis may contribute small amounts of CO{sub 2}, probably by decarboxylation, early in the production cycle but cannot contribute significant volumes. The recognition of production of CO{sub 2} by reactive calcite destruction at temperatures between 70 and 220{degree}C suggests that this process may be responsible for the production of large quantities of CO{sub 2} in natural systems, particularly in lithofeldspathic sands and shales with high carbonate content and abundant clays. Organic acids have been suggested to be the source of CO{sub 2} in diagenetic fluids, but the results presented here suggest that this hypothesis requires more complete investigation.

Hutcheon, I.; Abercrombia, H.J.; Krouse, H.R. (Univ. of Calgary, Alberta (Canada))

1990-01-01T23:59:59.000Z

195

Environmental impacts of petroleum production: Fate of inorganic and organic chemicals in  

E-Print Network [OSTI]

in USA, and forecasts indicate that by 2020 natural gas and oil consumption will increase by 40% and 29 and inactive tank batteries. Results to date show that the produced water source is a Na-Ca-Cl brine (~150 `A' site, 35 water samples were obtained from an asphaltic pit and an adjacent weathered-oil pit

196

China's industrial sector in an international context  

SciTech Connect (OSTI)

The industrial sector accounts for 40% of global energy use. In 1995, developing countries used an estimated 48 EJ for industrial production, over one-third of world total industrial primary energy use (Price et al., 1998). Industrial output and energy use in developing countries is dominated by China, India, and Brazil. China alone accounts for about 30 EJ (National Bureau of Statistics, 1999), or about 23% of world industrial energy use. China's industrial sector is extremely energy-intensive and accounted for almost 75% of the country's total energy use in 1997. Industrial energy use in China grew an average of 6.6% per year, from 14 EJ in 1985 to 30 EJ in 1997 (Sinton et al., 1996; National Bureau of Statistics, 1999). This growth is more than three times faster than the average growth that took place in the world during the past two decades. The industrial sector can be divided into light and heavy industry, reflecting the relative energy-intensity of the manufacturing processes. In China, about 80% of the energy used in the industrial sector is consumed by heavy industry. Of this, the largest energy-consuming industries are chemicals, ferrous metals, and building materials (Sinton et al., 1996). This paper presents the results of international comparisons of production levels and energy use in six energy-intensive subsectors: iron and steel, aluminum, cement, petroleum refining, ammonia, and ethylene. The sectoral analysis results indicate that energy requirements to produce a unit of raw material in China are often higher than industrialized countries for most of the products analyzed in this paper, reflecting a significant potential to continue to improve energy efficiency in heavy industry.

Price, Lynn; Worrell, Ernst; Martin, Nathan; Lehman, Bryan; Sinton, Jonathan

2000-05-01T23:59:59.000Z

197

Industrial properties of lignitic and lignocellulosic fly ashes from Turkish sources  

SciTech Connect (OSTI)

Fly ash is an inorganic matter from combustion of the carbonaceous solid fuels. More than half the electricity in Turkey is produced from lignite-fired power plants. This energy production has resulted in the formation of more than 13 million tons of fly ash waste annually. The presence of carbon in fly ash inducing common faults include adding unwanted black color and adsorbing process or product materials such as water and chemicals. One of the reasons for not using fly ash directly is its carbon content. For some uses carbon must be lower than 3%. Fly ash has been used for partial replacement of cement, aggregate, or both for nearly 70 years, and it is still used on a very limited scale in Turkey. The heavy metal content of industrial wastewaters is an important source of environmental pollution. Each of the three major oxides (SiO{sub 2} + Al{sub 2}O{sub 3} + Fe{sub 2}O{sub 3}) in fly ash can be ideal as a metal adsorbent.

Demirbas, A.; Cetin, S. [Selcuk University, Konya (Turkey)

2006-01-21T23:59:59.000Z

198

Industrial and Systems engineering  

E-Print Network [OSTI]

Industrial and Systems engineering COLLEGE of ENGINEERING DepartmentofIndustrialandSystemsEngineering EDGE Engineering Entrepreneur Certificate Program is a great addition to an industrial and systems to expert clinical recommendations. engineering.wayne.edu/isefaculty Industrial and systems engineering

Berdichevsky, Victor

199

CASL Industry Council Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IndustryCouncil.shtml The new members that joined the Industry Council include NPP owneroperators with analysis capability: Tyrone Stevens of Exelon, and SMR vendors:...

200

Uranium industry annual 1997  

SciTech Connect (OSTI)

This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

NONE

1998-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Electric Utility Industry Update  

Broader source: Energy.gov [DOE]

Presentationgiven at the April 2012 Federal Utility Partnership Working Group (FUPWG) meetingcovers significant electric industry trends and industry priorities with federal customers.

202

Review Article Clay and non-clay minerals in the pharmaceutical and cosmetic industries  

E-Print Network [OSTI]

Review Article Clay and non-clay minerals in the pharmaceutical and cosmetic industries Part II Pharmaceutical industry Cosmetic industry Active ingredients Physical and physico-chemical properties A wide range and variety of minerals are used in the pharmaceutical industry as active ingredients

Ahmad, Sajjad

203

Solid state radioluminescent sources: Mixed organic/inorganic hybrids  

SciTech Connect (OSTI)

This concept brings a condensed source of tritium into close proximity with an inorganic phosphor. That source may thus become the equivalent of many atmospheres of tritium gas pressure. If both phosphor and tritium source material are optically clear, then a lamp's brightness may be made to scale with optical path length. Proof of principle of this concept has been demonstrated and will be described. A theoretical treatment is presented for the results here and for results from aerogel experiments. 12 refs., 2 figs., 1 tab.

Gill, J.T. (EG and G Mound Applied Technologies, Miamisburg, OH (USA)); Renschler, C.L. (Sandia National Labs., Albuquerque, NM (USA)); Shepodd, T.J. (Sandia National Labs., Livermore, CA (USA)); Smith, H.M. (Allied-Signal, Inc., Kansas City, MO (USA))

1990-01-01T23:59:59.000Z

204

Automated process for solvent separation of organic/inorganic substance  

DOE Patents [OSTI]

There is described an automated process for the solvent separation of organic/inorganic substances that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In the process, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control apparatus. The mixture in the filter is agitated by ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process. 4 figs.

Schweighardt, F.K.

1986-07-29T23:59:59.000Z

205

Automated process for solvent separation of organic/inorganic substance  

DOE Patents [OSTI]

There is described an automated process for the solvent separation of organic/inorganic substances that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In the process, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control apparatus. The mixture in the filter is agitated by ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process.

Schweighardt, Frank K. (Upper Macungie, PA)

1986-01-01T23:59:59.000Z

206

Engineering the Interface Between Inorganic Materials and Cells  

SciTech Connect (OSTI)

To further optimize cell function in hybrid living materials, it would be advantageous to render mammalian cells responsive to novel orthogonal cues, i.e. signals they would not ordinarily respond to but that can be engineered to feed into defined intracellular signaling pathways. We recently developed an optogenetic method, based on A. thaliana Cry2, for rapid and reversible protein oligomerization in response to blue light. We also demonstrated the ability to use this method to channel the light input into several defined signaling pathways, work that will enhance communication between inorganic devices and living systems.

Schaffer, David

2014-05-31T23:59:59.000Z

207

Inorganic-Organic Hybrid Thermoelectrics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.Indianaof Energy Innovative TechniqueInorganic-Organic

208

Excellence in biotechnology for fuels and chemicals  

SciTech Connect (OSTI)

The Biotechnology Center for Fuels and Chemicals (BCFC) leads a national effort, in cooperation with industry, to develop innovative, market-driven biotechnologies for producing fuels and chemicals from renewable resources. The BCFC researchers focus on using bioprocesses to convert renewable biomass feedstocks into valuable products.

Neufeld, S.

1999-04-23T23:59:59.000Z

209

Industrial energy-efficiency-improvement program  

SciTech Connect (OSTI)

Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

Not Available

1980-12-01T23:59:59.000Z

210

ATOMISTIC MODELING OF OIL SHALE KEROGENS AND ASPHALTENES ALONG WITH THEIR INTERACTIONS WITH THE INORGANIC MINERAL MATRIX  

SciTech Connect (OSTI)

The goal of this project is to obtain and validate three dimensional atomistic models for the organic matter in both oil shales and oil sands. In the case of oil shales the modeling was completed for kerogen, the insoluble portion of the organic matter; for oil sands it was for asphaltenes, a class of molecules found in crude oil. The three dimensional models discussed in this report were developed starting from existing literature two dimensional models. The models developed included one kerogen, based on experimental data on a kerogen isolated from a Green River oil shale, and a set of six representative asphaltenes. Subsequently, the interactions between these organic models and an inorganic matrix was explored in order to gain insight into the chemical nature of this interaction, which could provide vital information in developing efficient methods to remove the organic material from inorganic mineral substrate. The inorganic substrate used to model the interaction was illite, an aluminum silicate oxide clay. In order to obtain the feedback necessary to validate the models, it is necessary to be able to calculate different observable quantities and to show that these observables both reproduce the results of experimental measurements on actual samples as well as that the observables are sensitive to structural differences between models. The observables that were calculated using the models include 13C NMR spectra, the IR vibrational spectra, and the atomic pair wise distribution function; these were chosen as they are among the methods for which both experimental and calculated values can be readily obtained. Where available, comparison was made to experiment results. Finally, molecular dynamic simulations of pyrolysis were completed on the models to gain an understanding into the nature of the decomposition of these materials when heated.

Facelli, Julio; Pugmire, Ronald; Pimienta, Ian

2011-03-31T23:59:59.000Z

211

E-Print Network 3.0 - analytical chemistry inorganic Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: analytical chemistry inorganic Page: << < 1 2 3 4 5 > >> 1 Department of Chemistry Three Year Projection...

212

Catalyzed CO.sub.2-transport membrane on high surface area inorganic support  

DOE Patents [OSTI]

Disclosed are membranes and methods for making the same, which membranes provide improved permeability, stability, and cost-effective manufacturability, for separating CO.sub.2 from gas streams such as flue gas streams. High CO.sub.2 permeation flux is achieved by immobilizing an ultra-thin, optionally catalyzed fluid layer onto a meso-porous modification layer on a thin, porous inorganic substrate such as a porous metallic substrate. The CO.sub.2-selective liquid fluid blocks non-selective pores, and allows for selective absorption of CO.sub.2 from gas mixtures such as flue gas mixtures and subsequent transport to the permeation side of the membrane. Carbon dioxide permeance levels are in the order of 1.0.times.10.sup.-6 mol/(m.sup.2sPa) or better. Methods for making such membranes allow commercial scale membrane manufacturing at highly cost-effective rates when compared to conventional commercial-scale CO.sub.2 separation processes and equipment for the same and such membranes are operable on an industrial use scale.

Liu, Wei

2014-05-06T23:59:59.000Z

213

INDUSTRIAL ENGINEERING GRADUATE PROGRAMS  

E-Print Network [OSTI]

INDUSTRIAL ENGINEERING GRADUATE PROGRAMS The Master of Science in Industrial Engineering (M Systems and Engineering (M.S.M.S.E.), the Doctor of Philosophy in Industrial Engineering, and the Doctor of Philosophy in Systems and Engineering Management programs prepare competent industrial engineers

Gelfond, Michael

214

Mechanical & Industrial Engineering  

E-Print Network [OSTI]

Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board May 5th, 2011 #12;Mechanical & Industrial Engineering 2 IAB 2010-2011 · David K. Anderson ­ Alden Research Laboratory, Inc went on for three weeks Mechanical & Industrial Engineering 6 #12;Reza Shahbazian Yassar Mechanical

Mountziaris, T. J.

215

Industry Analysis February 2013  

E-Print Network [OSTI]

technology ­ Clean tech/ clean technology #12;7 Industry Studies · IbisWorld ­ U.S. and global industry-Industries · Biodiesel ­ Biofuel ­ Alternate fuels ­ Green fuels ­ Renewable fuels/energy ­ Green energy ­ Green Canada, Census, Industry Canada, the OECD, European Union, IMF, World Bank, UN . . . Never pay for stats

Abolmaesumi, Purang

216

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network [OSTI]

Biomass Gasification Technologies for Fuels, Chemicals andEnergy, National Energy Technology Laboratory. CO ? Solution01GO10621. Industrial Technologies Progarm (ITP). 2006e.

Kong, Lingbo

2014-01-01T23:59:59.000Z

217

Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry  

E-Print Network [OSTI]

Green with FCC Expander Technology, Chemical EngineeringCONCAWE 2008, Refinery Technology Support Group, Impact ofEnergy, Industrial Technologies Program, Nov. 2007.

Morrow III, William R.

2014-01-01T23:59:59.000Z

218

The Analysis and Development of Large Industrial Steam Systems  

E-Print Network [OSTI]

Chemicals, petroleum, pulp and paper, and many other industries depend heavily on extensive complex steam systems for thermal and mechanical energy delivery. Steam's versatility and desirable characteristics as both a heat transfer medium and a...

Waterland, A. F.

1980-01-01T23:59:59.000Z

219

A Low Cost Energy Management Program at Engelhard Industries Division  

E-Print Network [OSTI]

in technology related to precious metals and nonmetallic minerals. It manufactures high-performance chemical and precious metals products, including catalysts for the petroleum and automotive industries. Engelhard's energy costs have risen dramatically over...

Brown, T. S.; Michalek, R.; Reiter, S.

1982-01-01T23:59:59.000Z

220

Preliminary Results from the Industrial Steam System Market Assessment  

E-Print Network [OSTI]

This paper discusses fuel use and potential energy savings in the steam systems of three steam intensive industries: pulp and paper, chemical manufacturing, and petroleum refining. To determine the energy consumption to generate steam...

McGrath, G. P.; Wright, A. L.

Note: This page contains sample records for the topic "industrial inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

IPST: Enabling the Forest Bioproducts Industry  

E-Print Network [OSTI]

and new forest products, renewable energy, chemicals, advanced materials and pharmaceuticals. MissionIPST: Enabling the Forest Bioproducts Industry Strategic Directions and Capabilities September 10 for the cost-competitive transformation of forest biomaterials into value-added products, including traditional

222

Appendix F. Chemicals Oak Ridge Reservation Annual Site Environmental Report--2013  

E-Print Network [OSTI]

, housewares, pesticides, and industrial chemicals. Use of chemicals allows us to increase food production with a chemical substance. Chemicals released to the air may remain suspended for long periods, or they may effluents, which can enter streams and rivers. People are exposed to chemicals by inhalation (breathing air

Pennycook, Steve

223

Industry strengths open new services opportunities  

SciTech Connect (OSTI)

The environmental service industry is in a state of transition in which innovative technologies are increasingly playing a critical role. These changes play to the strengths of the chemical industry, and several firms are effectively growing environmental businesses. At the same time, chemical companies, which are among the largest buyers of environmental services, are making decisions that reflect the changes. Du Pont, for example, has decided to rethink its involvement with the controversial Waste Technologies Industries (WTI) hazardous waste incinerator in East Liverpool, OH. Initially expecting a shortage of incineration capacity, Du Pont had signed a contract - along with BASF and Chemical Waste Management - for a share of capacity at the 60,000-tons/year WTI unit. A number of chemical firms are leveraging their strengths. Air Products and Chemicals (Allentown, PA), for one, has partnerships in the waste-to-energy and flue-gas desulfurization businesses. The company runs cogeneration plants that can burn a combination of coal and natural gas to make both steam and electricity. Air Products assorted businesses can be strong at different times, says Hinman. The flue-gas desulfurization business, for example, was active during the first phase of enforcement of the 1990 Clean Air Act requirements for lower sulfur dioxide (SO[sub 2]) emissions.

Heller, K.

1993-03-10T23:59:59.000Z

224

Electronic properties of 2D and 3D hybrid organic/inorganic perovskites for optoelectronic  

E-Print Network [OSTI]

Electronic properties of 2D and 3D hybrid organic/inorganic perovskites for optoelectronic, optoelectronic properties, photovoltaic, exciton 1. Introduction Over the past decade, Hybrid Organic/inorganic Perovskites (HOP) have attracted increasing interest in the field of optoelectronics (Mitzi et al. 1995

Paris-Sud XI, Université de

225

Identifying Optimal Inorganic Nanomaterials for Hybrid Solar Cells Hongjun Xiang* and Su-Huai Wei  

E-Print Network [OSTI]

Identifying Optimal Inorganic Nanomaterials for Hybrid Solar Cells Hongjun Xiang* and Su-Huai Wei and Department of Physics, Fudan UniVersity, Shanghai 200433, China ReceiVed: August 17, 2009 As a newly developed photovoltaic technology, organic-inorganic hybrid solar cells have attracted great interest

Gong, Xingao

226

Properties of Mutants of Synechocystis sp. Strain PCC 6803 Lacking Inorganic Carbon Sequestration Systems  

E-Print Network [OSTI]

Properties of Mutants of Synechocystis sp. Strain PCC 6803 Lacking Inorganic Carbon SequestrationA is the only active inorganic carbon sequestration system showed low activity of HCO3 ­ uptake and grew under the significance of carbon sequestration in dissipating excess light energy. Keywords: CO2 and HCO3 ? uptake -- CO2

Roegner, Matthias

227

Elucidation of the inorganic chemistry of hydrotreating catalysts  

SciTech Connect (OSTI)

New environmental regulations are making it necessary to developed improved hydrotreating catalysts for the removal of sulfur, nitrogen and aromatics from refinery streams. In order to develop better catalysts, the authors must gain a more detailed understanding of the inorganic chemistry of these catalysts. Commercial catalysts typically contain ca. 15 wt% molybdenum or tungsten oxides and ca. 4 wt% nickel or cobalt. Additives, such as phosphate and fluoride, are often added to improve the catalytic activity. However, the role of these additives is not fully understood. The authors have, therefore, carried out studies on alumina supported phosphate and flouride materials using FT-IR, powder x-ray diffraction, and solid-state NMR ({sup 31}P, {sup 27}Al, and {sup 1}H). The results of this work have enabled the authors to determine the structures of the various compounds formed on the alumina system when fluoride or phosphate is present.

DeCanio, E.C.; Edwards, J.C.; Storm, D.A. [Texaco, Inc., Beacon, NY (United States); Bruno, J.W. [Wesleyan Univ., Middletown, CT (United States)

1993-12-31T23:59:59.000Z

228

Inorganic Metal Oxide/Organic Polymer Nanocomposites And Method Thereof  

DOE Patents [OSTI]

A synthetic method for preparation of hybrid inorganic/organic energetic nanocomposites is disclosed herein. The method employs the use of stable metal in organic salts and organic solvents as well as an organic polymer with good solubility in the solvent system to produce novel nanocomposite energetic materials. In addition, fuel metal powders (particularly those that are oxophilic) can be incorporated into composition. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N.sub.2 adsoprtion/desorption methods, and Fourier-Transform (FT-IR) spectroscopy. According to these characterization methods the organic polymer phase fills the nanopores of the material, providing superb mixing of the component phases in the energetic nanocomposite.

Gash, Alexander E. (Livermore, CA); Satcher, Joe H. (Patterson, CA); Simpson, Randy (Livermore, CA)

2004-11-16T23:59:59.000Z

229

OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS  

SciTech Connect (OSTI)

The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

1998-04-01T23:59:59.000Z

230

Transformations of inorganic coal constituents in combustion systems  

SciTech Connect (OSTI)

The technical objectives of this project are: (a) To (1) define the partitioning of inorganic constituents associated with raw coal particles among products (including vapors, aerosols, and residual char/ash particles) formed under conditions representative of pulverized coal flames as a function of the specific (intrinsic and extrinsic) characteristics of the raw coal and the environment in which the transformations occur; and (2) to characterize the resultant spectrum of products in detail; (b) To elucidate and quantify the fundamental processes (involving basic principles of physics, chemistry, thermodynamics) by which transformations of the inorganic constituents occur; and (c) To develop, based on the information required in a. and b. above, a tractable process model capable of predicting the significant features of the transformation process, most importantly, the distribution and nature of products. This report represents work accomplished in the tenth quarter of performance on the contract. The authors specifically highlight work accomplished: at the California Institute of Technology (CalTech) on developing and constructing a thermophoretic sampling probe, for submicron fume particle sampling; at MIT on (1) completion of the baseline ash particle size distribution measurements for seven program coals (five US and two Australian), and (2) analysis of the fragmentation model results in terms of a closed-form solution for a simplified case; at the University of Arizona, on obtaining detailed ash particle and submicron fume chemistry for four program coals; and at PSI Technology Company (PSIT) on concluding data analysis and describing mineral interaction trends observed during combustion of two program coals. Individual progress reports have been indexed separately for inclusion on the data base.

Boni, A.A.; Helble, J.J.; Srinivasachar, S. (PSI Technology Co., Andover, MA (USA)); Flagan, R.C. (California Inst. of Tech., Pasadena, CA (USA)); Huffman, G.P.; Huggins, F.E. (Kentucky Univ., Lexington, KY (USA)); Peterson, T.W.; Wendt, J.O.L. (Arizona Univ., Tucson, AZ (USA)); Sarofim, A.F. (Massachusetts Inst. of Tech., Cambridge, MA (USA))

1989-05-01T23:59:59.000Z

231

Organic/inorganic nanocomposites, methods of making, and uses as a permeable reactive barrier  

DOE Patents [OSTI]

Nanocomposite materials having a composition including an inorganic constituent, a preformed organic polymer constituent, and a metal ion sequestration constituent are disclosed. The nanocomposites are characterized by being single phase, substantially homogeneous materials wherein the preformed polymer constituent and the inorganic constituent form an interpenetrating network with each other. The inorganic constituent may be an inorganic oxide, such as silicon dioxide, formed by the in situ catalyzed condensation of an inorganic precursor in the presence of the solvated polymer and metal ion sequestration constituent. The polymer constituent may be any hydrophilic polymer capable of forming a type I nanocomposite such as, polyacrylonitrile (PAN), polyethyleneoxide (PEO), polyethylene glycol (PEG), polyvinyl acetate (PVAc), polyvinyl alcohol (PVA), and combinations thereof. Nanocomposite materials of the present invention may be used as permeable reactive barriers (PRBs) to remediate contaminated groundwater. Methods for making nanocomposite materials, PRB systems, and methods of treating groundwater are also disclosed.

Harrup, Mason K. (Idaho Falls, ID); Stewart, Frederick F. (Idaho Falls, ID)

2007-05-15T23:59:59.000Z

232

Chemical wellbore plug for zone isolation in horizontal wells  

E-Print Network [OSTI]

of chemicals that could be used to make wellbore plugs with sufficiently high holding pressures. Three chemicals, used in the oil industry for gas and/or water shut-off, were selected for the study. The commercial names of these chemicals were SEAL, PERMASEAL...

Saavedra, Nestor Fernando

1996-01-01T23:59:59.000Z

233

Industrial fouling: problem characterization, economic assessment, and review of prevention, mitigation, and accommodation techniques  

SciTech Connect (OSTI)

A comprehensive overview of heat exchanger fouling in the manufacturing industries is provided. Specifically, this overview addresses: the characteristics of industrial fouling problems; the mitigation and accommodation techniques currently used by industry; and the types and magnitude of costs associated with industrial fouling. A detailed review of the fouling problems, costs and mitigation techniques is provided for the food, textile, pulp and paper, chemical, petroleum, cement, glass and primary metals industries.

Garrett-Price, B.A.; Smith, S.A.; Watts, R.L.

1984-02-01T23:59:59.000Z

234

Computers and Chemical Engineering 26 (2002) 10771085 Backstepping control of chemical tubular reactors  

E-Print Network [OSTI]

of the system using boundary control of temperature and concentration on the inlet side of the reactor. We that globally stabi- lizes an unstable steady state is designed for a chemical tubular reactor. The control industrial applications for chemical tubular reactors, the problem of monitoring and controlling them

Krstic, Miroslav

235

Endocrine Active Chemicals, Pharmaceuticals, and Other Chemicals of Concern in Surface Water, Wastewater-  

E-Print Network [OSTI]

, Wastewater- Treatment Plant Effluent, and Bed Sediment, and Biological Characteristics in Selected Streams Chemicals, Pharmaceuticals, and Other Chemicals of Concern in Surface Water, Wastewater- Treatment Plant, and Data, 2009 #12;Front cover. Industrial wastewater-treatment plant outflow in Worthington, Minnesota

236

INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY  

E-Print Network [OSTI]

INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY SUMMER 2013 Industrial Engineering COOP Student needed-Fri, for summer 2013. Student must be enrolled in BS Engineering program. (Preferably completed 2-3 yrs

Pohl, Karsten

237

Demographics and industry returns  

E-Print Network [OSTI]

Industry category Child care Childrens books Childrens clothing Toysindustry Child care Childrens books Childrens clothing ToysIndustries are associated with high demand by children (child care, toys) and

Pollet, Joshua A.; DellaVigna, Stefano

2007-01-01T23:59:59.000Z

238

Electrotechnologies in Process Industries  

E-Print Network [OSTI]

The Industrial Program at the Electric Power Research Institute (EPRI) promotes the efficient use of electricity to improve the competitive position of the American industry. Electrotechnologies that improve productivity, improve quality...

Amarnath, K. R.

239

The Industrial Electrification Program  

E-Print Network [OSTI]

EPRI's role as the research organization of the electric power industry, in coordination with potential user industries, is to 1) define the viability of candidate electrification technologies by monitoring the state-of-the-art and continuously...

Harry, I. L.

1982-01-01T23:59:59.000Z

240

Chemical Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheck In &Chemical LabelChemical

Note: This page contains sample records for the topic "industrial inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Geothermal Industry Partnership Opportunities  

Broader source: Energy.gov [DOE]

Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

242

MESTRADO EM MICROBIOLOGIA SEGURANA E HIGIENE INDUSTRIAL Instituto Superior Tcnico  

E-Print Network [OSTI]

MESTRADO EM MICROBIOLOGIA SEGURAN?A E HIGIENE INDUSTRIAL ­ Instituto Superior Técnico Objectivos for Engineers, 2º Ed, 2006 John Wiley & Sons, Inc. -D.A. Crowl, J.F. Louvar, Chemical Process Safety, 2ª Ed, 1989 -T. Klets, Still Going Wrong, Elsevier, USA, 2003 #12;-R.E. Sanders, Chemical process Safety

Instituto de Sistemas e Robotica

243

Physical and chemical parameters in wastewater and at the water-sediment interface in sewer network  

E-Print Network [OSTI]

Physical and chemical parameters in wastewater and at the water- sediment interface in sewer parameters and concentrations of major ions, trace metals and sulphur species in wastewater but also, to the biogeochemical transformation of inorganic and organic compounds present in the wastewater (Ashley et al., 2004

Paris-Sud XI, Université de

244

Photovoltaics industry profile  

SciTech Connect (OSTI)

A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

None

1980-10-01T23:59:59.000Z

245

Mechanical & Industrial Engineering  

E-Print Network [OSTI]

Mechanical & Industrial Engineering Mario A. Rotea Professor and Department Head #12;2Mechanical & Industrial Engineering Outline · Undergraduate Degree Programs · Graduate Degree Programs · The Faculty · The Research · Summary #12;3Mechanical & Industrial Engineering Undergraduate Programs ­ BSME & BSIE 0 20 40 60

Mountziaris, T. J.

246

INDUSTRIAL AND BIOMEDICAL APPLICATIONS  

E-Print Network [OSTI]

INDUSTRIAL AND BIOMEDICAL APPLICATIONS Frank Smith, Nicholas Ovenden and Richard Purvis University are described, one industrial on violent water-air interaction during an impact process and the other biomedical: industrial, biomedical, impacts, networks, theory, computation, scales. 1. INTRODUCTION It is a pleasure

Purvis, Richard

247

Hydrogen Selective Inorganic membranes for Gas Separations under High Pressure Intermediate Temperature Hydrocarbonic Envrionment  

SciTech Connect (OSTI)

In this project, we have successfully developed a full scale commercially ready carbon molecular sieve (CMS) based membrane for applications in H{sub 2} recovery from refinery waste and other aggressive gas streams. Field tests at a refinery pilot plant and a coal gasification facility have successfully demonstrated its ability to recovery hydrogen from hydrotreating and raw syngas respectively. High purity H{sub 2} and excellent stability of the membrane permeance and selectivity were obtained in testing conducted over >500 hours at each site. The results from these field tests as well as laboratory testing conclude that the membranes can be operated at high pressures (up to 1,000 psig) and temperatures (up to 300 C) in presence of aggressive contaminants, such as sulfur and nitrogen containing species (H{sub 2}S, CO{sub 2}, NH{sub 3}, etc), condensable hydrocarbons, tar-like species, heavy metals, etc. with no observable effect on membrane performance. By comparison, similar operating conditions and/or environments would rapidly destroy competing membranes, such as polymeric, palladium, zeolitic, etc. Significant cost savings can be achieved through recovering H{sub 2} from refinery waste gas using this newly developed CMS membrane. Annual savings of $2 to 4MM/year (per 20,000 scfd of waste gas) can be realized by recovering the H{sub 2} for reuse (versus fuel). Projecting these values over the entire US market, potential H{sub 2} savings from refinery waste gases on the order of 750 to 1,000MM scfd and $750 to $1,000MM per year are possible. In addition to the cost savings, potential energy savings are projected to be ca. 150 to 220 tBTU/yr and CO{sub 2} gas emission reductions are projected to be ca. 5,000 to 6,500MMtons/year. The full scale membrane bundle developed as part of this project, i.e., 85 x 30 inch ceramic membrane tubes packaged into a full ceramic potting, is an important accomplishment. No comparable commercial scale product exists in the inorganic membrane field. Further, this newly developed full scale bundle concept can be extended to other thin film inorganic membrane technology (Pd, zeolite, etc), providing a potential commercialization pathway for these membrane materials that demonstrate high potential in a variety of separation applications yet remain a laboratory 'novelty' for lack of a full scale support. Overall, the project has been highly successful and all of the project objectives have been met. We have developed the first of its kind commercial scale carbon molecular sieve membrane and demonstrated its performance in field testing under aggressive operating conditions and in the presence of chemical contaminants that would rapidly destroy alternative organic and inorganic membranes. This innovative membrane permits H{sub 2} recovery from gas streams that up until now have not been successfully treated with membrane or conventional technology. Our end user participant is currently pursuing the field demonstration of this membrane for hydrogen recovery at its refinery site.

Rich Ciora; Paul KT Liu

2012-06-27T23:59:59.000Z

248

Chemical Occurrences  

Broader source: Energy.gov [DOE]

Classification of Chemical Occurrence Reports into the following four classes: Occurrences characterized by serious energy release, injury or exposure requiring medical treatment, or severe environmental damage, Occurrences characterized by minor injury or exposure, or reportable environmental release, Occurrences that were near misses including notable safety violations and Minor occurrences.

249

Chemical Evolution  

E-Print Network [OSTI]

In this series of lectures we first describe the basic ingredients of galactic chemical evolution and discuss both analytical and numerical models. Then we compare model results for the Milky Way, Dwarf Irregulars, Quasars and the Intra-Cluster- Medium with abundances derived from emission lines. These comparisons allow us to put strong constraints on the stellar nucleosynthesis and the mechanisms of galaxy formation.

Francesca Matteucci

2007-04-05T23:59:59.000Z

250

SUPPORTING CHEMICALS  

E-Print Network [OSTI]

The High Production Volume (HPV) Challenge Program 1 was conceived as a voluntary initiative aimed at developing and making publicly available screening-level health and environmental effects information on chemicals manufactured in or imported into the United States in quantities greater than one million pounds per year. In the Challenge Program, producers and importers of HPV chemicals voluntarily sponsored chemicals; sponsorship entailed the identification and initial assessment of the adequacy of existing toxicity data/information, conducting new testing if adequate data did not exist, and making both new and existing data and information available to the public. Each complete data submission contains data on 18 internationally agreed to SIDS (Screening Information Data Set 1,2) endpoints that are screening-level indicators of potential hazards (toxicity) for humans or the environment. The Environmental Protection Agencys Office of Pollution Prevention and Toxics (OPPT) is evaluating the data submitted in the HPV Challenge Program on approximately 1400 sponsored chemicals by developing hazard characterizations (HCs). These HCs consist of an evaluation of the quality and completeness of the data set provided in the Challenge Program submissions. They are not intended to be definitive statements regarding the possibility of unreasonable risk of

See Section

251

Industrial policy and the Indian electronics industry  

E-Print Network [OSTI]

Recently, production within India's Electronics sector amounted to a low $12 billion when compared to the global output of $1400 billion. The slow growth in the local industry is often judged to be the result of late ...

Love, Robert (Robert Eric)

2008-01-01T23:59:59.000Z

252

Interacting With the Pharmaceutical Industry  

E-Print Network [OSTI]

INTERACTING WITH THE PHARMACEUTICAL INDUSTRY Stephen R.to interactions with the pharmaceutical industry! This is ancome from the pharmaceutical industry. It is also reality

Hayden, Stephen R

2003-01-01T23:59:59.000Z

253

Review of tribological sinks in six major industries  

SciTech Connect (OSTI)

Friction and material wear occur throughout all industries and are involved in many processes within each industry. These conditions make assessing tribological activity overall in industry very complex and expensive. Therefore, a research strategy to obtain preliminary information on only the most significant industrial tribological sinks was defined. The industries examined were selected according to both the magnitude of overall energy consumption (particularly machine drive) and the known presence of significant tribological sinks. The six industries chosen are as follows: mining, agriculture, primary metals, chemicals/refining, food, and pulp and paper. They were reviewed to identify and characterize the major tribology sinks. It was concluded that wear losses are greater than friction losses, and that reducing wear rates would improve industrial productivity.

Imhoff, C.H.; Brown, D.R.; Hane, G.J.; Hutchinson, R.A.; Erickson, R.; Merriman, T.; Gruber, T.; Barber, S.

1985-09-01T23:59:59.000Z

254

Uranium industry annual 1994  

SciTech Connect (OSTI)

The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

NONE

1995-07-05T23:59:59.000Z

255

INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering  

E-Print Network [OSTI]

78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take of industries including consulting, technology development, software, supply chain manufacturing, engineering

Rohs, Remo

256

Design Considerations for Industrial Heat Recovery Systems  

E-Print Network [OSTI]

in U. S. industry. Consider the following ways that industry uses energy resources today: Process Steam 40% Feedstock for Chemicals 9% Direct Process Heat 28% Electrolytic Processes 3% Electric Drive 19% Other 1% It should be clear from these data... is in dispersed flow streams at temperatures less than 200?F. These streams are referred to in the thermo dynamic sense as "low quality" energy streams because their potential to do useful work or to provide useful process heat is relatively small. The "high...

Bywaters, R. P.

1979-01-01T23:59:59.000Z

257

Asphalt roofing industry Fourier transform infrared spectroscopy modified bitumen  

SciTech Connect (OSTI)

A Request for Emissions Testing at Four Asphalt Roofing and Processing Facilities was submitted by the US EPA Emission Standards Division (ESD), Minerals and Inorganic Chemicals Group (MICG) to the Emission Measurement Center (EMC). The Emission Measurement Center directed Midwest Research Institute (MRI) to conduct emissions testing at asphalt roofing plants. This report presents results of MRI`s FTIR and Method 25A testing conducted at US Intec in Port Arthur, Texas. The field measurements were performed in September 1997 under several test conditions for both controlled and uncontrolled emissions.

NONE

1999-07-01T23:59:59.000Z

258

The Periodic Table as a Part of the Periodic Table of Chemical Compounds  

E-Print Network [OSTI]

The numbers of natural chemical elements, minerals, inorganic and organic chemical compounds are determined by 1, 2, 3 and 4-combinations of a set 95 and are respectively equal to 95, 4,465, 138,415 and 3,183,545. To explain these relations it is suggested the concept of information coefficient of proportionality as mathematical generalization of the proportionality coefficient for any set of positive numbers. It is suggested a hypothesis that the unimodal distributions of the sets of information coefficients of proportionality for atomic weights of chemical elements of minerals and chemical compounds correspond to unimodal distributions of the above sets for combination of 2, 3 and 4 atomic weights of 95 natural chemical elements. The expected values of symmetrized distributions of information coefficients of proportionality sets for atomic weights of minerals and chemical compounds are proposed to be used to define chemical compounds, like atomic weights define chemical elements. Variational series of the e...

Labushev, Mikhail M

2011-01-01T23:59:59.000Z

259

Organic and inorganic hazardous waste stabilization using combusted oil shale  

SciTech Connect (OSTI)

A laboratory study was conducted at the Western Research Institute to evaluate the ability of combusted oil shale to stabilize organic and inorganic constituents of hazardous wastes. The oil shale used in the research was a western oil shale retorted in an inclined fluidized-bed reactor. Two combustion temperatures were used, 1550{degrees}F and 1620{degrees}F (843{degrees}C and 882{degrees}C). The five wastes selected for experimentation were an API separator sludge, creosote-contaminated soil, mixed metal oxide/hydroxide waste, metal-plating sludge, and smelter dust. The API separator sludge and creosote-contaminated soil are US EPA-listed hazardous wastes and contain organic contaminants. The mixed metal oxide/hydroxide waste, metal-plating sludge (also an EPA-listed waste), and smelter dust contain high concentrations of heavy metals. The smelter dust and mixed metal oxide/hydroxide waste fail the Toxicity Characteristic Leaching Procedure (TCLP) for cadmium, and the metalplating sludge fails the TCLP for chromium. To evaluate the ability of the combusted oil shales to stabilize the hazardous wastes, mixtures involving varying amounts of each of the shales with each of the hazardous wastes were prepared, allowed to equilibrate, and then leached with deionized, distilled water. The leachates were analyzed for the hazardous constituent(s) of interest.

Sorini, S.S.; Lane, D.C.

1991-04-01T23:59:59.000Z

260

HPI's role in chemicals' future  

SciTech Connect (OSTI)

The hydrocarbon processing industry (HPI) concerns manufacturing of products from natural gas and crude petroleum oils. Also included are those other natural raw materials such as coal, kerogen and shale oil that are sources of fuels called ''synfuels,'' denoting these products are made from raw materials other than natural gas or crude petroleum oil. So the HPI is a major producer and consumer of thousands of different chemicals. Gathering supporting statistics remains largely a problem of definition and convention. Whether one chemical or another is included in a specific list often depends on the way its manufacturer is classified. To judge HPI's potential impact on worldwide chemical manufacturing, the authors reviewed all listings of petrochemical projects included in the ''HPI Construction Boxscore'' during the past few years. From the total, they selected those that had been announced in 1986 or later. Once the list was established, they added 1985 counts to help establish trends. This article discusses the resulting list.

Hoffman, H.L.; Riddle, L.

1988-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network [OSTI]

chemicals, light industry (iron foundries, cold storage andindustry ? Use of CHP ? Debottlenecking ? Increased production capacity ? Better use of production capacity ? Energy management Cold storage

Price, Lynn

2010-01-01T23:59:59.000Z

262

Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic  

E-Print Network [OSTI]

1 Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic, optoelectronics, titanateoxyde, density functional theory Photovoltaic (PV) solar electricity is one of the key

Boyer, Edmond

263

First principles study of structure and lithium storage in inorganic nanotubes  

E-Print Network [OSTI]

The exact structure of layered inorganic nanotubes is difficult to determine, but this information is vital to using atomistic calculations to predict nanotube properties. A multi-walled nanotube with a circular cross ...

Tibbetts, Kevin (Kevin Joseph)

2009-01-01T23:59:59.000Z

264

FRED E. WOOD University of California, Davis, Ph.D., Inorganic and Bioinorganic Chemistry, 1984  

E-Print Network [OSTI]

FRED E. WOOD EDUCATION University of California, Davis, Ph.D., Inorganic and Bioinorganic Chemistry scholarship and $1 million for endowed reentry student scholarships. #12;FRED E. WOOD Page 2 Obtained over

Amin, S. Massoud

265

Salmon Carcasses Increase Stream Productivity More than Inorganic Fertilizer Pellets: A Test on Multiple Trophic Levels  

E-Print Network [OSTI]

Salmon Carcasses Increase Stream Productivity More than Inorganic Fertilizer Pellets: A Test experiment, we examined the short-term (6 weeks) comparative effects of artificial nutrient pellets pellet treatment was soluble reactive phosphorus (SRP) concentration. Ammonium-nitrogen concentration

Wagner, Diane

266

Fundamental Studies on Polymer and Organic-Inorganic Hybrid Nanoparticles Reinforced Silica Aerogels.  

E-Print Network [OSTI]

??The objective of this research was to reinforce silica aerogels using functional organic-inorganic hybrid nanoparticles, silane end-capped polyurethane oligomer and chain extended polymer, and self-crosslinkable (more)

Duan, Yannan

2012-01-01T23:59:59.000Z

267

Organic-inorganic nanocomposite membranes from highly ordered mesoporous thin films for solubility-based separations  

E-Print Network [OSTI]

properties. In this study, we synthesized the organic-inorganic nanocomposite membranes by decorating the surfaces of commercially available mesoporous alumina substrates, and surfactant-templated highly ordered mesoporous silicate thin films placed...

Yoo, Suk Joon

2009-05-15T23:59:59.000Z

268

Removal of inorganic trace contaminants by electrodialysis in a remote Australian community  

E-Print Network [OSTI]

Water provision for developing countries is a critical issue as a vast number of lives are lost annually due to lack of access to safe drinking water. The presence and fate of inorganic trace contaminants is of particular ...

Banasiak, Laura J.; Schfer, Andrea

2009-01-01T23:59:59.000Z

269

Inorganic Chemistry, "01. 13,No. 7, 1974 exchange resin using acetonitrile as eluent. The acetonitrile was  

E-Print Network [OSTI]

Inorganic Chemistry, "01. 13,No. 7, 1974 exchange resin using acetonitrile as eluent. The acetonitrile was removed in vacuo and the residue sublimed at 40-45" to obtain 0.764 g (4.3 5% yield, mp 145

Bodner, George M.

270

Industrial Security Specialst  

Broader source: Energy.gov [DOE]

A successful candidate in this position will serve in a developmental capacity assisting senior specialists in carrying out a variety of industrial security and oversight functions.

271

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Boiler, Steam, and Cogeneration (BSC) Component. The BSC Component satisfies the steam demand from the PA and BLD Components. In some industries, the PA Component produces...

272

Chemical Management  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuels Chemical Kinetic Modeling of1 DOEKinetics

273

Exfoliation of self-assembled 2D organic-inorganic perovskite semiconductors  

E-Print Network [OSTI]

Exfoliation of self-assembled 2D organic-inorganic perovskite semiconductors Wendy Niu,1,a) Anna-inorganic perovskite (C6H9C2H4NH3)2PbI4 are produced using micromechanical exfoliation. Mono- and few-layer areas microme- chanical exfoliation of 2D PbI perovskites and explore the few-layer behaviour of such systems

Steiner, Ullrich

274

Fouling of ceramic filters and thin-film composite reverse osmosis membranes by inorganic and bacteriological constituents  

SciTech Connect (OSTI)

Two significant problems have been identified during the first three years of operating the Savannah River Site Effluent Treatment Facility. These problems encompass two of the facility`s major processing areas: the microfiltration and reverse osmosis steps. The microfilters (crossflow ceramic filters {minus}0.2{mu} nominal pore size) have been prone to pluggage problems. The presence of bacteria and bacteria byproducts in the microfilter feed, along with small quantities of colloidal iron, silica, and aluminum, results in a filter foulant that rapidly deteriorates filter performance and is difficult to remove by chemical cleaning. Processing rates through the filters have dropped from the design flow rate of 300 gpm after cleaning to 60 gpm within minutes. The combination of bacteria (from internal sources) and low concentrations of inorganic species resulted in substantial reductions in the reverse osmosis system performance. The salt rejection has been found to decrease from 99+% to 97%, along with a 50% loss in throughput, within a few hours of cleaning. Experimental work has led to implementation of several changes to plant operation and to planned upgrades of existing equipment. It has been shown that biological control in the influent is necessary to achieve design flowrates. Experiments have also shown that the filter performance can be optimized by the use of efficient filter backpulsing and the addition of aluminum nitrate (15 to 30 mg/L Al{sup 3+}) to the filter feed. The aluminum nitrate assists by controlling adsorption of colloidal inorganic precipitates and biological contaminants. In addition, improved cleaning procedures have been identified for the reverse osmosis units. This paper provides a summary of the plant problems and the experimental work that has been completed to understand and correct these problems.

Siler, J.L.; Poirier, M.R.; McCabe, D.J.; Hazen, T.C.

1991-12-31T23:59:59.000Z

275

Fouling of ceramic filters and thin-film composite reverse osmosis membranes by inorganic and bacteriological constituents  

SciTech Connect (OSTI)

Two significant problems have been identified during the first three years of operating the Savannah River Site Effluent Treatment Facility. These problems encompass two of the facility's major processing areas: the microfiltration and reverse osmosis steps. The microfilters (crossflow ceramic filters {minus}0.2{mu} nominal pore size) have been prone to pluggage problems. The presence of bacteria and bacteria byproducts in the microfilter feed, along with small quantities of colloidal iron, silica, and aluminum, results in a filter foulant that rapidly deteriorates filter performance and is difficult to remove by chemical cleaning. Processing rates through the filters have dropped from the design flow rate of 300 gpm after cleaning to 60 gpm within minutes. The combination of bacteria (from internal sources) and low concentrations of inorganic species resulted in substantial reductions in the reverse osmosis system performance. The salt rejection has been found to decrease from 99+% to 97%, along with a 50% loss in throughput, within a few hours of cleaning. Experimental work has led to implementation of several changes to plant operation and to planned upgrades of existing equipment. It has been shown that biological control in the influent is necessary to achieve design flowrates. Experiments have also shown that the filter performance can be optimized by the use of efficient filter backpulsing and the addition of aluminum nitrate (15 to 30 mg/L Al{sup 3+}) to the filter feed. The aluminum nitrate assists by controlling adsorption of colloidal inorganic precipitates and biological contaminants. In addition, improved cleaning procedures have been identified for the reverse osmosis units. This paper provides a summary of the plant problems and the experimental work that has been completed to understand and correct these problems.

Siler, J.L.; Poirier, M.R.; McCabe, D.J.; Hazen, T.C.

1991-01-01T23:59:59.000Z

276

Dialkylenecarbonate-Bridged Polysilsesquioxanes. Hybrid Organic-Inorganic Sol-Gels with a Thermally Labile Bridging Group  

SciTech Connect (OSTI)

In this paper, we introduce a new approach for altering the properties of bridged polysilsesquioxane xerogels using post-processing mobilization of the polymeric network. The bridging organic group contains latent functionalities that can be liberated thermally, photochemically, or by chemical means after the gel has been processed to a xerogel. These modifications can produce changes in density, volubility, porosity, and or chemical properties of the material. Since every monomer possesses two latent functional groups, the technique allows for the introduction of high levels of functionality in hybrid organic-inorganic materials. Dialkylenecarbonate-bridged polysilsesquioxane gels were prepared by the sol-gel polymerization of bis(triethoxysilylpropyl)carbonate (1) and bis(triethoxysilylisobutyl)-carbonate (2). Thermal treatment of the resulting non-porous xerogels and aerogels at 300-350 C resulted in quantitative decarboxylation of the dialkylenecarbonate bridging groups to give new hydroxyalkyl and olefinic substituted polysilsesquioxane monolithic xerogels and aerogels that can not be directly prepared through direct sol-gel polymerization of organotrialkoxysilanes.

Assink, Roger A.; Baugher, Brigitta M.; Beach, James V.; Loy, Douglas A.; Shea, Kenneth J.; Small, James H.; Tran, Joseph

1999-07-20T23:59:59.000Z

277

Decision support tools for environmentally conscious chemical process design  

E-Print Network [OSTI]

The environment has emerged as an important determinant of the performance of the modern chemical industry. Process engineering in the 21st century needs to evolve to include environmental issues as part of the design ...

Cano Ruiz, Jos Alejandro, 1969-

1999-01-01T23:59:59.000Z

278

Advanced Industrial Materials (AIM) Program annual progress report, FY 1997  

SciTech Connect (OSTI)

The Advanced Industrial Materials (AIM) Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The mission of AIM is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. OIT has embarked on a fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrating on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans, some of which have been completed. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support.

NONE

1998-05-01T23:59:59.000Z

279

Reactions of inorganic nitrogen species in supercritical water  

SciTech Connect (OSTI)

Redox reactions of nitrate salts with NH3 and methanol were studied in near-critical and supercritical water at 350 to 530 C and constant pressure of 302 bar. Sodium nitrate decomposition reactions were investigated at similar conditions. Reactions were conducted in isothermal tubular reactor under plug flow. For kinetic modeling, nitrate and nitrite reactants were lumped into an NO{sub x}{sup -} reactant; kinetic expressions were developed for MNO{sub 3}/NH{sub 4}X and sodium nitrate decomposition reactions. The proposed elementary reaction mechanism for MNO{sub 3}/NH{sub 4}X reaction indicated that NO{sub 2} was the primary oxidizing species and that N{sub 2}/N{sub 2}O selectivities could be determined by the form of MNO{sub 3} used. This suggest a nitrogen control strategy for use in SCWO (supercritical water oxidation) processes; nitrate or NH3 could be used to remove the other, at reaction conditions far less severe than required by other methods. Reactions of nitrate with methanol indicated that nitrate was a better oxidant than oxygen in supercritical water. Nitrogen reaction products included NH3 and nitrite, while inorganic carbon was the major carbon reaction product. Analysis of excess experiments indicated that the reaction at 475 C was first order in methanol concentration and second order in NO{sub x}{sup -} concentration. In order to determine phase regimes for these reactions, solubility of sodium nitrate was determined for some 1:1 nitrate electrolytes. Solubilities were measured at 450 to 525 C, from 248 to 302 bar. A semi-empirical solvation model was shown to adequately describe the experimental sodium nitrate solubilities. Solubilities of Li, Na, and K nitrates revealed with cations with smaller ionic radii had greater solubilities with nitrate.

Dell`Orco, P.C. [Texas Univ., Austin, TX (United States)] [Texas Univ., Austin, TX (United States)

1994-12-31T23:59:59.000Z

280

Geothermal industry assessment  

SciTech Connect (OSTI)

An assessment of the geothermal industry is presented, focusing on industry structure, corporate activities and strategies, and detailed analysis of the technological, economic, financial, and institutional issues important to government policy formulation. The study is based principally on confidential interviews with executives of 75 companies active in the field. (MHR)

Not Available

1980-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Growing Hawaii's agriculture industry,  

E-Print Network [OSTI]

Program Overview Growing Hawaii's agriculture industry, one business at a time Website: http-3547 agincubator@ctahr.hawaii.edu Grow Your Business If you are looking to start an agriculture-related business with our program · Positively impact the agriculture industry in Hawaii with their success

282

and Industrial Engineering  

E-Print Network [OSTI]

45 Mechanical and Industrial Engineering 220 Engineering Lab Degrees: Bachelor of Science in Mechanical Engineering Bachelor of Science in Industrial Engineering Contact: James R. Rinderle, Undergraduate Program Director Office: 207C Engineering Lab Building Phone: (413) 545-2505 Head of Department

Mountziaris, T. J.

283

Industrial Optimization Compact Course  

E-Print Network [OSTI]

Industrial Optimization Compact Course and Challenge Workshop Optimization plays a crucial role of the processes are typically nonlinear and dyna- mic. Thus, complex dynamic optimization or optimal control in industrial optimization. February 17­20, 2014 ·9.00­17.00 IWR ·Im Neuenheimer Feld 368 ·69120 Heidelberg www

Kirches, Christian

284

Uranium industry annual 1996  

SciTech Connect (OSTI)

The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

NONE

1997-04-01T23:59:59.000Z

285

Posted 3/2/13 Medline Industries Industrial Engineer  

E-Print Network [OSTI]

Posted 3/2/13 Medline Industries ­ Industrial Engineer Medline Industries, Inc. has an immediate opening for an Industrial Engineer for our SPT Division located in Waukegan, IL. We are seeking a hard-working, detail-oriented professional with experience in industrial engineering and lean manufacturing within

Heller, Barbara

286

INDUSTRIAL&SYSTEMS Industrial and Systems engineers use  

E-Print Network [OSTI]

78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take · Industrial and Systems Engineering Bachelor of Science 128 units · Industrial and Systems Engineering

Rohs, Remo

287

INDUSTRIAL & SYSTEMS Industrial and Systems engineers use engineering  

E-Print Network [OSTI]

78 INDUSTRIAL & SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in todays global marketplace. The Industrial and Systems engineers task is to take limited Industrial and Systems Engineering Bachelor of Science 128 units Industrial and Systems Engineering

Rohs, Remo

288

INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering  

E-Print Network [OSTI]

78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take · Industrial and Systems Engineering Bachelor of Science 128 units · Industrial and Systems Engineering

Rohs, Remo

289

CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING  

E-Print Network [OSTI]

CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING Objective Chemical Engineers manufacturing, etc. Now that students have a background on Chemical Engineers, it is time for the activity. Blue frosting e. Green frosting f. Pink frosting g. Purple frosting h. Sprinkle sorting i. Sprinkle

Provancher, William

290

Organic chemical contaminants in Biosolids Sally Brown  

E-Print Network [OSTI]

under the general classification "dioxins." Dioxins are one of the well known dangerous organic chemicals. Dioxins had commercial uses, primarily in the pulp and paper industry, but have been outlawed due. There are many types of dioxins. "Dioxin" is actually a general term for a large number of compounds that contain

Brown, Sally

291

JOINT SEMINAR Chemical and Biological Engineering  

E-Print Network [OSTI]

in the failure of oil capture from the dome placed on top of the flowing well. In one very large natural gas. The energy industry uses large quantities of aromatic solvents to change bulk phase properties to avoidJOINT SEMINAR Chemical and Biological Engineering and Wanger Institute for Sustainable Energy

Saniie, Jafar

292

Energy Management at Dow Chemical Co.  

E-Print Network [OSTI]

As one of the largest industrial consumers of energy in the world, The Dow Chemical Company and its 46,000 employees have put energy efficiency at the very core of its business both as a cost savings initiative and as a primary corporate social...

Almaguer, J.

2008-01-01T23:59:59.000Z

293

Catalyzing innovations for sustainable chemicals & fuels for  

E-Print Network [OSTI]

2013 2003 2012 2011 2010 2009 2004 2005 2006 2007 2008 years Catalyzing innovations for sustainable 8 Students & Postdocs 9 Recent Publications 10 Simple and Safer Processes Broad Industrial Impact(CEBC)bringstogetherchemistsandchemical engineerstodevelopcleanerandmoreefficient processes for making fuels and chemicals from bothtraditionalandrenewablefeedstocks

294

New environmental concepts in the chemical and coke industries  

SciTech Connect (OSTI)

We know that environmentally pure technologies do not exist. Coke production is no exception to the rule. The article considers the logic of environmental decision making. Attention focuses on a new bank of ecologically appropriate materials whose release to the biosphere must be considered solely in quantititative terms. Qualitativily all these materials are familiar; they are assimilated by populations of microorganisms and tar thus compatible with the biosphere.

A.Yu. Naletov; V.A. Naletov [Mendeleev Russian Chemical-Engineering University (Russian Federation)

2007-05-15T23:59:59.000Z

295

DEPARTMENT OF CHEMICAL ENGINEERING DEPARTMENT OF MECHANICAL AND INDUSTRIAL ENGINEERING  

E-Print Network [OSTI]

-oxide-semiconductor field effect transistor (MOSFET) o Light emitting diodes (LEDs): principles and characteristics o

Massachusetts at Amherst, University of

296

WA_97_032_CHEMICAL_INDUSTRY_ENVIROMENTAL_TECHNOLOGY_PROJECTS...  

Broader source: Energy.gov (indexed) [DOE]

2CHEMICALINDUSTRYENVIROMENTALTECHNOLOGYPROJECTS.pdf WA97032CHEMICALINDUSTRYENVIROMENTALTECHNOLOGYPROJECTS.pdf WA97032CHEMICALINDUSTRYENVIROMENTALTECHNOLOGYPROJEC...

297

Economics of Energy Conservation in the Chemical and Petrochemical Industries  

E-Print Network [OSTI]

to $2.3 million dollars giving a five month return on the investment I Extensive modification of distillation equipment should be carefully examined in light of the relative escalation in fuel prices versus the escalation in the cost of process... the local utility. There have been cases where the other utility can pay a higher price to the cogenerator than the rate extended by the original utility, which essentially means that the user can purchase power cheaper from the local utility than...

Nachod, J. E. Jr.

298

Metal Hydride Chemical Heat Pumps for Industrial Use  

E-Print Network [OSTI]

Hydriding alloys are intermetallic absorbent compounds which have the remarkable quality of absorbing very large quantities of hydrogen gas per unit volume of metallic powder. The absorption and desorption of hydrogen are exothermic and endothermic...

Ally, M. R.; Rebello, W. J.; Rosso, M. J., Jr.

1984-01-01T23:59:59.000Z

299

ITP Chemicals: Industrial Feedstock Flexibility Workshop Results, December  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department ofIOWA1999) | Department2009 | Department of

300

Organic Rankine Cycles for the Petro-Chemical Industry  

E-Print Network [OSTI]

and economically convert this type of heat flow into useful power. The system under development by MTI is one based on a conventional fluorocarbon refrigerant to generate a nominal 1000 kW from typical liquid and vapor streams in the process plant. The 220 F...

Rose, R. K.; Colosimo, D. D.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Interactive toxicity of inorganic mercury and trichloroethylene in rat and human proximal tubules: Effects on apoptosis, necrosis, and glutathione status  

SciTech Connect (OSTI)

Simultaneous or prior exposure to one chemical may alter the concurrent or subsequent response to another chemical, often in unexpected ways. This is particularly true when the two chemicals share common mechanisms of action. The present study uses the paradigm of prior exposure to study the interactive toxicity between inorganic mercury (Hg{sup 2+}) and trichloroethylene (TRI) or its metabolite S-(1,2-dichlorovinyl)-L-cysteine (DCVC) in rat and human proximal tubule. Pretreatment of rats with a subtoxic dose of Hg{sup 2+} increased expression of glutathione S-transferase-{alpha}1 (GST{alpha}1) but decreased expression of GST{alpha}2, increased activities of several GSH-dependent enzymes, and increased GSH conjugation of TRI. Primary cultures of rat proximal tubular (rPT) cells exhibited both necrosis and apoptosis after incubation with Hg{sup 2+}. Pretreatment of human proximal tubular (hPT) cells with Hg{sup 2+} caused little or no changes in GST expression or activities of GSH-dependent enzymes, decreased apoptosis induced by TRI or DCVC, but increased necrosis induced by DCVC. In contrast, pretreatment of hPT cells with TRI or DCVC protected from Hg{sup 2+} by decreasing necrosis and increasing apoptosis. Thus, whereas pretreatment of hPT cells with Hg{sup 2+} exacerbated cellular injury due to TRI or DCVC by shifting the response from apoptosis to necrosis, pretreatment of hPT cells with either TRI or DCVC protected from Hg{sup 2+}-induced cytotoxicity by shifting the response from necrosis to apoptosis. These results demonstrate that by altering processes related to GSH status, susceptibilities of rPT and hPT cells to acute injury from Hg{sup 2+}, TRI, or DCVC are markedly altered by prior exposures.

Lash, Lawrence H. [Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201 (United States)]. E-mail: l.h.lash@wayne.edu; Putt, David A. [Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201 (United States); Hueni, Sarah E. [Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201 (United States); Payton, Scott G. [Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201 (United States); Zwickl, Joshua [Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201 (United States)

2007-06-15T23:59:59.000Z

302

Industrial Heat Pumps Using Solid/Vapor Working Fluids  

E-Print Network [OSTI]

INDUSTRIAL HEAT PUMPS USING SOLID/VAPOR WORKING FLUIDS Uwe Rockenfeller, Desert Research Institute, Boulder City, Nevada ABSTRACT Industrial heat pumps have the potential to reduce the operating costs of chemical and heat treating processes... with vapor re-compression recovery systems. The state-of-the-art heat pump equipment employing liquid/vapor working fluids fulfills the requirements only in some applications. The employment of solid/vapor complex compounds leads to 'nore cost effective...

Rockenfeller, U.

303

Load Management for Industry  

E-Print Network [OSTI]

In the electric utility industry, load management provides the opportunity to control customer loads to beneficially alter a utility's load curve Load management alternatives are covered. Load management methods can be broadly classified into four...

Konsevick, W. J., Jr.

1982-01-01T23:59:59.000Z

304

Utility and Industrial Partnerships  

E-Print Network [OSTI]

In the past decade, many external forces have shocked both utilities and their large industrial customers into seeking more effective ways of coping and surviving. One such way is to develop mutually beneficial partnerships optimizing the use...

Sashihara, T. F.

305

Uranium Industry Annual, 1992  

SciTech Connect (OSTI)

The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

Not Available

1993-10-28T23:59:59.000Z

306

Industrial Assessment Center  

SciTech Connect (OSTI)

The University of Dayton (UD) performed energy assessments, trained students and supported USDOE objectives. In particular, the UD Industrial Assessment Center (IAC) performed 96 industrial energy assessment days for mid-sized manufacturers. The average identified and implemented savings on each assessment were $261,080 per year and $54,790 per year. The assessments served as direct training in industrial energy efficiency for 16 UD IAC students. The assessments also served as a mechanism for the UD IAC to understand manufacturing energy use and improve upon the science of manufacturing energy efficiency. Specific research results were published in 16 conference proceedings and journals, disseminated in 22 additional invited lectures, and shared with the industrial energy community through the UD IAC website.

J. Kelly Kissock; Becky Blust

2007-04-17T23:59:59.000Z

307

Industrial Development Fund (North Carolina)  

Broader source: Energy.gov [DOE]

The Industrial Development Fund provides financing grants and loans through designated municipalities and counties to assist in infrastructure improvements for targeted industrial projects. The...

308

NEMS industrial module documentation report  

SciTech Connect (OSTI)

The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2010) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of output of industrial activity. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

Not Available

1994-01-01T23:59:59.000Z

309

Clean Energy Manufacturing Initiative Industrial Efficiency and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

310

Diverse Applications of Pinch Technology Within the Process Industries  

E-Print Network [OSTI]

design and retrofit processes. The technology offers a new approach to process integration based on the applic?tion of the pinch principle. Early applications were mostly in the petrochemical and bulk chemical industries. In this paper we report... mostly confined to petrochemical or bulk chemical plants. The technology has now been proven in many more successful projects and this paper describes some of the latest results which demonstrate the applicability of pinch technology in a wide range...

Spriggs, H. D.; Ashton, G.

311

Mechanical and Industrial Engineering Industry Advisory Board University of Massachusetts Amherst  

E-Print Network [OSTI]

9/13/2007 Mechanical and Industrial Engineering Industry Advisory Board University of Massachusetts Amherst Department of Mechanical and Industrial Engineering About the Mechanical and Industrial Engineering Industry Advisory Board The purpose of the Mechanical and Industrial Engineering Industry Advisory

Mountziaris, T. J.

312

The retention time of inorganic mercury in the brain A systematic review of the evidence  

SciTech Connect (OSTI)

Reports from human case studies indicate a half-life for inorganic mercury in the brain in the order of yearscontradicting older radioisotope studies that estimated half-lives in the order of weeks to months in duration. This study systematically reviews available evidence on the retention time of inorganic mercury in humans and primates to better understand this conflicting evidence. A broad search strategy was used to capture 16,539 abstracts on the Pubmed database. Abstracts were screened to include only study types containing relevant information. 131 studies of interest were identified. Only 1 primate study made a numeric estimate for the half-life of inorganic mercury (227540 days). Eighteen human mercury poisoning cases were followed up long term including autopsy. Brain inorganic mercury concentrations at death were consistent with a half-life of several years or longer. 5 radionucleotide studies were found, one of which estimated head half-life (21 days). This estimate has sometimes been misinterpreted to be equivalent to brain half-lifewhich ignores several confounding factors including limited radioactive half-life and radioactive decay from surrounding tissues including circulating blood. No autopsy cohort study estimated a half-life for inorganic mercury, although some noted bioaccumulation of brain mercury with age. Modelling studies provided some extreme estimates (69 days vs 22 years). Estimates from modelling studies appear sensitive to model assumptions, however predications based on a long half-life (27.4 years) are consistent with autopsy findings. In summary, shorter estimates of half-life are not supported by evidence from animal studies, human case studies, or modelling studies based on appropriate assumptions. Evidence from such studies point to a half-life of inorganic mercury in human brains of several years to several decades. This finding carries important implications for pharmcokinetic modelling of mercury and potentially for the regulatory toxicology of mercury.

Rooney, James P.K., E-mail: jrooney@rcsi.ie

2014-02-01T23:59:59.000Z

313

Industrial cogeneration optimization program. Final report, September 1979  

SciTech Connect (OSTI)

This study program is part of the DOE Integrated Industry Cogeneration Program to optimize, evaluate, and demonstrate cogeneration systems, with direct participation of the industries most affected. One objective is to characterize five major energy-intensive industries with respect to their energy-use profiles. The industries are: petroleum refining and related industries, textile mill products, paper and allied products, chemicals and allied products, and food and kindred products. Another objective is to select optimum cogeneration systems for site-specific reference case plants in terms of maximum energy savings subject to given return on investment hurdle rates. Analyses were made that define the range of optimal cogeneration systems for each reference-case plant considering technology applicability, economic factors, and energy savings by type of fuel. This study also provides guidance to other parts of the program through information developed with regard to component development requirements, institutional and regulatory barriers, as well as fuel use and environmental considerations. (MCW)

Not Available

1980-01-01T23:59:59.000Z

314

industrial & systems Industrial and Systems engineers use engineering  

E-Print Network [OSTI]

78 industrial & systems Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take s e n G i n e e r i n G ( i s e ) ISE 105 Introduction to Industrial and Systems Engineering (2, Fa

Rohs, Remo

315

industrial & systems Industrial and Systems engineers use engineering  

E-Print Network [OSTI]

78 industrial & systems Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take to introduce the philosophy, subject matter, aims, goals, and techniques of industrial and systems engineering

Rohs, Remo

316

1 Industrial Electron Accelerators type ILU for Industrial Technologies  

E-Print Network [OSTI]

1 Industrial Electron Accelerators type ILU for Industrial Technologies The present work describes industrial electron accelerators of the ILU family. Their main parameters, design, principle of action the pulse linear accelerators type ILU are developed and supplied to the industry. The ILU machines

317

MECH 386 INDUSTRIAL FLUID MECHANICS INDUSTRIAL FLUID MECHANICS  

E-Print Network [OSTI]

MECH 386 ­ INDUSTRIAL FLUID MECHANICS 1 INDUSTRIAL FLUID MECHANICS MECH 386 Contact information Dr This course is an introduction to industrial fluid mechanics. According to J. C. R. Hunt (a famous fluid mechanics specialist): "industrial fluid mechanics broadly covers those aspects of the design, manufacture

318

Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources  

SciTech Connect (OSTI)

This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

Donaldson, T.L.; Culberson, O.L.

1983-06-01T23:59:59.000Z

319

DuPont Chemical Vapor Technical Report  

SciTech Connect (OSTI)

DuPont Safety Resources was tasked with reviewing the current chemical vapor control practices and providing preventive recommendations on best commercial techniques to control worker exposures. The increased focus of the tank closure project to meet the 2024 Tri-Party Agreement (TPA) milestones has surfaced concerns among some CH2MHill employees and other interested parties. CH2MHill is committed to providing a safe working environment for employees and desires to safely manage the tank farm operations using appropriate control measures. To address worker concerns, CH2MHill has chartered a ''Chemical Vapors Project'' to integrate the activities of multiple CH2MHill project teams, and solicit the expertise of external resources, including an independent Industrial Hygiene expert panel, a communications consultant, and DuPont Safety Resources. Over a three-month time period, DuPont worked with CH2MHill ESH&Q, Industrial Hygiene, Engineering, and the independent expert panel to perform the assessment. The process included overview presentations, formal interviews, informal discussions, documentation review, and literature review. DuPont Safety Resources concluded that it is highly unlikely that workers in the tank farms are exposed to chemicals above established standards. Additionally, the conventional and radiological chemistry is understood, the inherent chemical hazards are known, and the risk associated with chemical vapor exposure is properly managed. The assessment highlighted management's commitment to addressing chemical vapor hazards and controlling the associated risks. Additionally, we found the Industrial Hygiene staff to be technically competent and well motivated. The tank characterization data resides in a comprehensive database containing the tank chemical compositions and relevant airborne concentrations.

MOORE, T.L.

2003-10-03T23:59:59.000Z

320

Micropyrolyzer for chemical analysis of liquid and solid samples  

DOE Patents [OSTI]

A micropyrolyzer has applications to pyrolysis, heated chemistry, and thermal desorption from liquid or solid samples. The micropyrolyzer can be fabricated from semiconductor materials and metals using standard integrated circuit technologies. The micropyrolyzer enables very small volume samples of less than 3 microliters and high sample heating rates of greater than 20.degree. C. per millisecond. A portable analyzer for the field analysis of liquid and solid samples can be realized when the micropyrolyzer is combined with a chemical preconcentrator, chemical separator, and chemical detector. Such a portable analyzer can be used in a variety of government and industrial applications, such as non-proliferation monitoring, chemical and biological warfare detection, industrial process control, water and air quality monitoring, and industrial hygiene.

Mowry, Curtis D. (Albuquerque, NM); Morgan, Catherine H. (Ann Arbor, MI); Manginell, Ronald P. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM)

2006-07-18T23:59:59.000Z

Note: This page contains sample records for the topic "industrial inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Device for collecting chemical compounds and related methods  

DOE Patents [OSTI]

A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from the fixed surfaces so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

Scott, Jill R.; Groenewold, Gary S.; Rae, Catherine

2013-01-01T23:59:59.000Z

322

Voltage Sag-Related Upsets of Industrial Process Controls in Petroleum and Chemical Industries  

E-Print Network [OSTI]

by power system faults many miles away from the plant location. The number of upsets is directly related to the number of these events and the sensitivity of process control equipment. This paper describes the sag-related upset problem and explains how...

Mansoor, A.; Key, T.; Woinsky, S.

323

Federal/Industry Development of Energy-Conserving Technologies for the Chemical and Petroleum Refining Industries  

E-Print Network [OSTI]

. Alternatives to aqueous waste incineration. 8. Coal-fired process furnaces. Our conclusions to-date in one of these tech nology areas -- integration of a coal/coke gasifier into a h~pothetical petroleum refinery -- are as follows: 1. Hedium...-btu gasification of coal or petroleum coke in a petroleum refinery can reduce imports to the refinery of scarce natural gas and can provide additional energy supplies through sale of high-btu refinery fuel gas. The potential gain in national energy supplies...

Alston, T. G.; Humphrey, J. L.

1981-01-01T23:59:59.000Z

324

Fermentation and chemical treatment of pulp and paper mill sludge  

DOE Patents [OSTI]

A method of chemically treating partially de-ashed pulp and/or paper mill sludge to obtain products of value comprising taking a sample of primary sludge from a Kraft paper mill process, partially de-ashing the primary sludge by physical means, and further treating the primary sludge to obtain the products of value, including further treating the resulting sludge and using the resulting sludge as a substrate to produce cellulase in an efficient manner using the resulting sludge as the only carbon source and mixtures of inorganic salts as the primary nitrogen source, and including further treating the resulting sludge and using the resulting sludge to produce ethanol.

Lee, Yoon Y; Wang, Wei; Kang, Li

2014-12-02T23:59:59.000Z

325

Microfluidic chemical reaction circuits  

SciTech Connect (OSTI)

New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

Lee, Chung-cheng (Irvine, CA); Sui, Guodong (Los Angeles, CA); Elizarov, Arkadij (Valley Village, CA); Kolb, Hartmuth C. (Playa del Rey, CA); Huang, Jiang (San Jose, CA); Heath, James R. (South Pasadena, CA); Phelps, Michael E. (Los Angeles, CA); Quake, Stephen R. (Stanford, CA); Tseng, Hsian-rong (Los Angeles, CA); Wyatt, Paul (Tipperary, IE); Daridon, Antoine (Mont-Sur-Rolle, CH)

2012-06-26T23:59:59.000Z

326

Chemical and Biomolecular Engineering  

E-Print Network [OSTI]

Chemical and Biomolecular Engineering Combining theory and neutron scattering to understand molecular diffusion in porous materials David Sholl School of Chemical & Biomolecular Engineering Georgia Institute of Technology #12;Chemical and Biomolecular Engineering Porous materials www

Pennycook, Steve

327

Emulsified industrial oils recycling  

SciTech Connect (OSTI)

The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

Gabris, T.

1982-04-01T23:59:59.000Z

328

chemical analysis | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

chemical analysis chemical analysis Leads No leads are available at this time. Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. Abstract: As a...

329

Libyan oil industry  

SciTech Connect (OSTI)

Three aspects of the growth and progress of Libya's oil industry since the first crude oil discovery in 1961 are: (1) relations between the Libyan government and the concessionary oil companies; (2) the impact of Libyan oil and events in Libya on the petroleum markets of Europe and the world; and (3) the response of the Libyan economy to the development of its oil industry. The historical review begins with Libya's becoming a sovereign nation in 1951 and traces its subsequent development into a position as a leading world oil producer. 54 references, 10 figures, 55 tables.

Waddams, F.C.

1980-01-01T23:59:59.000Z

330

Industrial Assessment Center  

SciTech Connect (OSTI)

Since its inception, the University of Florida Industrial Assessment Center has successfully completed close to 400 energy assessments of small to medium manufacturing facilities in Florida, southern Georgia and southern Alabama. Through these efforts, recommendations were made that would result in savings of about $5 million per year, with an implementation rate of 20-25%. Approximately 80 engineering students have worked for the UF-IAC, at least 10 of whom went on to work in energy related fields after graduation. Additionally, through the popular course in Industrial Energy Management, many students have graduated from the University of Florida with a strong understanding and support of energy conservation methods.

Dr. Diane Schaub

2007-03-05T23:59:59.000Z

331

1989 Industry Directory  

SciTech Connect (OSTI)

Solid Waste Power's 1989 Industry Directory is divided into three main sections: the Company Directory, the Service Directory, and the Product Directory. The Company Directory lists all companies involved in the waste-to-energy industry that responded to a survey Solid Waste Power conducted in the fall of 1988. Companies are listed alphabetically. Each of the companies in the Company Directory is further referenced in the Service and Product directories follow. The Service and Product directories are broken down into various categories. Within each category is a list of the names of companies identified themselves as providing the service or product. Preceding the Service and Product directories is the Category Index.

Not Available

1998-12-01T23:59:59.000Z

332

Solar industrial process heat  

SciTech Connect (OSTI)

The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

Lumsdaine, E.

1981-04-01T23:59:59.000Z

333

Development of hybrid organic-inorganic light emitting diodes using conducting polymers deposited by oxidative chemical vapor deposition process  

E-Print Network [OSTI]

Difficulties with traditional methods of synthesis and film formation for conducting polymers, many of which are insoluble, motivate the development of CVD methods. Indeed, conjugated polymers with rigid linear backbones ...

Chelawat, Hitesh

2010-01-01T23:59:59.000Z

334

Removal of organic and inorganic sulfur from Ohio coal by combined physical and chemical process. Final report  

SciTech Connect (OSTI)

This project consisted of three sections. In the first part, the physical cleaning of Ohio coal by selective flocculation of ultrafine slurry was considered. In the second part, the mild oxidation process for removal of pyritic and organic sulfur.was investigated. Finally, in-the third part, the combined effects of these processes were studied. The physical cleaning and desulfurization of Ohio coal was achieved using selective flocculation of ultrafine coal slurry in conjunction with froth flotation as flocs separation method. The finely disseminated pyrite particles in Ohio coals, in particular Pittsburgh No.8 seam, make it necessary to use ultrafine ({minus}500 mesh) grinding to liberate the pyrite particles. Experiments were performed to identify the ``optimum`` operating conditions for selective flocculation process. The results indicated that the use of a totally hydrophobic flocculant (FR-7A) yielded the lowest levels of mineral matters and total sulfur contents. The use of a selective dispersant (PAAX) increased the rejection of pyritic sulfur further. In addition, different methods of floc separation techniques were tested. It was found that froth flotation system was the most efficient method for separation of small coal flocs.

Attia, Y.A.; Zeky, M.El.; Lei, W.W.; Bavarian, F.; Yu, S. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

1989-04-28T23:59:59.000Z

335

NETL's High-Speed Imaging System Successfully Applied in Medicine, Broad Spectrum of Industry  

Broader source: Energy.gov [DOE]

A groundbreaking Department of Energy-developed imaging system originally designed to help create cleaner fossil energy processes is finding successful applications in a wide range of medical, chemical processing, energy, and other industries.

336

Multi-layered, chemically bonded lithium-ion and lithium/air batteries  

SciTech Connect (OSTI)

Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

2014-05-13T23:59:59.000Z

337

BNL-68198-AB COMPILATION OF INVENTORIES OF INDUSTRIAL EMISSIONS  

E-Print Network [OSTI]

BNL-68198-AB COMPILATION OF INVENTORIES OF INDUSTRIAL EMISSIONS Carmen M. Benkovitz Atmospheric-5000 March 2001 To be presented at the International Workshop on Emissions ofChemical Species and Aerosols perspectives accurate inventories of emissions of the trace species at the appropriate spatial, temporal

338

Industrial Energy Use and Energy Efficiency in Developing Countries  

E-Print Network [OSTI]

The industrial sector accounts for over 50% of energy used in developing countries. Growth in this sector has been over 4.5% per year since 1980. Energy intensity trends for four energy-intensive sub-sectors (iron and steel, chemicals, building...

Price, L.; Martin, N.; Levine, M. D.; Worrell, E.

339

Scope for industrial applications of production scheduling models and  

E-Print Network [OSTI]

Computers and Chemical Engineering 62 (2014) 161­ 193 © ABB Group March 18, 2014 | Slide 2 #12 learned and success stories on real industrial scheduling implementations General guidelines and examples and scheduling © ABB Group March 18, 2014 | Slide 5 #12;Where is scheduling "located" Traditional system

Grossmann, Ignacio E.

340

Polygonal model for layered inorganic nanotubes Kevin Tibbetts,* Robert Doe, and Gerbrand Ceder  

E-Print Network [OSTI]

the shape of the cross section. Circular and polygonal nanotubes are compared based on their strain energy of several concentric "single-walled" nanotubes.2,19,20 In this paper we develop a model for the energyPolygonal model for layered inorganic nanotubes Kevin Tibbetts,* Robert Doe, and Gerbrand Ceder

Ceder, Gerbrand

Note: This page contains sample records for the topic "industrial inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Binary inorganic salt mixtures as high conductivity liquid electrolytes for .100 uC fuel cells{  

E-Print Network [OSTI]

Binary inorganic salt mixtures as high conductivity liquid electrolytes for .100 uC fuel cells cations (e.g. ammonium) as electrolytes in fuel cells operating in the temperature range 100­200 uC, where cell operating with optimized electrodes in the same temperature range, while open circuit voltages

Angell, C. Austen

342

Inorganic Surface Nanostructuring by Atmospheric Pressure Plasma-Induced Graft Polymerization  

E-Print Network [OSTI]

Inorganic Surface Nanostructuring by Atmospheric Pressure Plasma-Induced Graft PolymerizationVed February 27, 2007. In Final Form: May 29, 2007 Surface graft polymerization of 1-vinyl-2-pyrrolidone onto by graft polymerization in both N-methyl-2-pyrrolidone (NMP) and in an NMP/water solvent mixture

Hicks, Robert F.

343

INORGANIC NANOPARTICLES AS PHASE-CHANGE MATERIALS FOR LARGE-SCALE THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

INORGANIC NANOPARTICLES AS PHASE-CHANGE MATERIALS FOR LARGE- SCALE THERMAL ENERGY STORAGE Miroslaw storage performance. The expected immediate outcome of this effort is the demonstration of high-energy generation at high efficiency could revolutionize the development of solar energy. Nanoparticle-based phase

Pennycook, Steve

344

Prof. Dr. rer. nat. Karsten Meyer Chair of Inorganic and General Chemistry  

E-Print Network [OSTI]

in Uranium Coordination Chemistry Structure & Bonding 2008, 127, 119 ­ 176. C. Hauser and K. Meyer Uranchemie-Atom Transfer Chemistry Mediated by a Nucleophilic Uranium(V) Imido Complex Angew. Chem. Int. Ed. 2006, 45, 1757Prof. Dr. rer. nat. Karsten Meyer Chair of Inorganic and General Chemistry Department of Chemistry

Meyer, Karsten

345

Application of inorganic-contaminated groundwater to surface soils and compliance with toxicity characteristic (TCLP) regulations  

SciTech Connect (OSTI)

The Westinghouse Savannah River Company (WSRC) is currently implementing a Purged Water Management Program (PWMP) at the Savannah River Site (SRS) near Aiken, South Carolina. A variety of constituents and disposal strategies are being considered. Constituents investigated in the PWMP include radionuclides, organics, and inorganics (As, Ba, Cd, Cr, Pb, Hg, Se, and Ag). One practical disposal alternative is to discharge purged water (all constituents below regulatory levels) to the ground surface near the monitoring well that is being purged. The purpose of this investigation is to determine if long-term application of purged water that contains inorganic constituents (below regulatory levels) to surface soils will result in the accumulation of inorganics such that the soil becomes a hazardous waste according to the Toxicity Characteristic regulations (40 CFR Part 261.24). Two study soils were selected that encompass the range of soils found at the SRS: Lakeland and Orangeburg. Laboratory batch equilibrium studies indicate that the soils, although able to retain a large amount of inorganics, will not exceed Toxicity Characteristic concentrations when subjected to the TCLP. Field studies are underway to confirm this.

Bergren, C.L.; Flora, M.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Jackson, J.L.; Hicks, E.M. [Sirrine Environmental Consultants, Greenville, SC (United States)

1991-12-31T23:59:59.000Z

346

Application of inorganic-contaminated groundwater to surface soils and compliance with toxicity characteristic (TCLP) regulations  

SciTech Connect (OSTI)

The Westinghouse Savannah River Company (WSRC) is currently implementing a Purged Water Management Program (PWMP) at the Savannah River Site (SRS) near Aiken, South Carolina. A variety of constituents and disposal strategies are being considered. Constituents investigated in the PWMP include radionuclides, organics, and inorganics (As, Ba, Cd, Cr, Pb, Hg, Se, and Ag). One practical disposal alternative is to discharge purged water (all constituents below regulatory levels) to the ground surface near the monitoring well that is being purged. The purpose of this investigation is to determine if long-term application of purged water that contains inorganic constituents (below regulatory levels) to surface soils will result in the accumulation of inorganics such that the soil becomes a hazardous waste according to the Toxicity Characteristic regulations (40 CFR Part 261.24). Two study soils were selected that encompass the range of soils found at the SRS: Lakeland and Orangeburg. Laboratory batch equilibrium studies indicate that the soils, although able to retain a large amount of inorganics, will not exceed Toxicity Characteristic concentrations when subjected to the TCLP. Field studies are underway to confirm this.

Bergren, C.L.; Flora, M.A. (Westinghouse Savannah River Co., Aiken, SC (United States)); Jackson, J.L.; Hicks, E.M. (Sirrine Environmental Consultants, Greenville, SC (United States))

1991-01-01T23:59:59.000Z

347

Nano Res (2010) 3: 170173170 Synthesis and Characterization of WS2 Inorganic Nanotubes with  

E-Print Network [OSTI]

Nano Res (2010) 3: 170­173170 Synthesis and Characterization of WS2 Inorganic Nanotubes]. Folding and bonding of edge atoms on the periphery of the quasi two-dimensional planar nano- structure this nanotubular structure is suitable for capillary filling using molten metal halides. Nano Res (2010) 3: 170

Davis, Ben G.

348

Coupling of Organic and Inorganic Vibrational States and Their Thermal Transport in Nanocrystal Arrays  

E-Print Network [OSTI]

) is a close-packed structure of nanocrystals (i.e., inorganic cores 2-20 nm in diameter encapsulated transistors,4 memory devices,5 light-emitting diodes,6 photodetectors,7,8 solar cells,9-11 and thermoelectric

Malen, Jonathan A.

349

Industrial Energy Use Indices  

E-Print Network [OSTI]

of variations for all industry types in warm versus cold regions of the U.S. generally is greater than unity. Data scatter may have several explanations, including climate, plant area accounting, the influence of low cost energy and low cost buildings used...

Hanegan, A.; Heffington, W. M.

2007-01-01T23:59:59.000Z

350

Industry Partners Panel  

Broader source: Energy.gov [DOE]

Industry Panel presenters include: Michael G. Andrew, Director - Academic and Technical Programs, Advanced Products and Materials, Johnson Controls Power Solutions Michael A. Fetcenko, Vice President and Managing Director, BASF Battery Materials Ovonic, BASF Corporation Adam Kahn, Founder and CEO, AKHAN Technologies, Inc. Stephen E. Zimmer, Executive Director, United States Council for Automotive Research (USCAR)

351

INTERMOUNTAIN INDUSTRIAL ASSESSMENT CENTER  

SciTech Connect (OSTI)

The U. S. Department of Energys Intermountain Industrial Assessment Center (IIAC) at the University of Utah has been providing eligible small- and medium-sized manufacturers with no-cost plant assessments since 2001, offering cost-effective recommendations for improvements in the areas of energy efficiency, pollution prevention, and productivity improvement.

MELINDA KRAHENBUHL

2010-05-28T23:59:59.000Z

352

Industrial Retrofits are Possible  

E-Print Network [OSTI]

Ontario is the industrial heartland of Canada and more than 80% of its energy comes from Canadian sources with the remainder from the neighbouring U.S. states. Because of the ever increasing demand for energy relating to increased economic activity...

Stobart, E. W.

353

Petroleum industry in Iran  

SciTech Connect (OSTI)

This study examines the oil industry in Iran from the early discovery of oil nearly two hundred years ago in Mazandaran (north part) to the development of a giant modern industry in the twentieth century. Chapter I presents a brief historical setting to introduce the reader to the importance of oil in Iran. It focuses on the economic implications of the early oil concessions in the period 1901 to 1951. Chapter II discusses the nationalization of the Iranian oil industry and creation of NIOC in 1951 and the international political and economic implication of these activities. Chapter III explains the activities of NIOC in Iran. Exploration and drilling, production, exports, refineries, natural gas, petrochemicals and internal distributions are studied. Chapter IV discusses the role of the development planning of Iran. A brief presentation of the First Development Plan through the Fifth Development Plan is given. Sources and uses of funds by plan organization during these Five Plans is studied. The Iran and Iraq War is also studied briefly, but the uncertainty of its resolution prevents any close analysis of its impact on the Iranian oil industry. One conclusion, however, is certain; oil has been a vital resource in Iran's past and it will remain the lifetime of its economic development in the future.

Farideh, A.

1981-01-01T23:59:59.000Z

354

Chemical Engineering Strategic Plan: Draft 7/5/02 16 A. Biomolecular Engineering  

E-Print Network [OSTI]

Chemical Engineering Strategic Plan: Draft 7/5/02 16 Appendices A. Biomolecular Engineering Rationale for a Biomolecular Engineer (Comments from M. J. McCready, 11/25/01) While BS chemical engineers have long found employment in a diversity of industrial sectors, chemical and petroleum have been

McCready, Mark J.

355

Guidance Document Reactive Chemicals  

E-Print Network [OSTI]

showers and chillers. Health Hazards: The reactive chemicals are grouped primarily because of the physical

356

Chemical Management Contacts  

Broader source: Energy.gov [DOE]

Contacts for additional information on Chemical Management and brief description on Energy Facility Contractors Group

357

Laser Induced Chemical Liquid Phase Deposition (LCLD)  

SciTech Connect (OSTI)

Laser induced chemical deposition (LCLD) of metals onto different substrates attracts growing attention during the last decade. Deposition of metals onto the surface of dielectrics and semiconductors with help of laser beam allows the creation of conducting metal of very complex architecture even in 3D. In the processes examined the deposition occurs from solutions containing metal ions and reducing agents. The deposition happens in the region of surface irradiated by laser beam (micro reactors). Physics -chemical reactions driven by laser beam will be discussed for different metal-substrate systems. The electrical, optical, mechanical properties of created interfaces will be demonstrated also including some practical-industrial applications.

Nanai, Laszlo; Balint, Agneta M. [University of Szeged, JGYPK, Department of General and Environmental Physics H-6725 Szeged, Boldogasszony sgt. 6 (Hungary); West University of Timisoara, Faculty of Physics, Department of Physics, Bulv. V. Parvan 4, Timisoara 300223 (Romania)

2012-08-17T23:59:59.000Z

358

Chemical Safety Vulnerability Working Group report. Volume 3  

SciTech Connect (OSTI)

The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 3 consists of eleven appendices containing the following: Field verification reports for Idaho National Engineering Lab., Rocky Flats Plant, Brookhaven National Lab., Los Alamos National Lab., and Sandia National Laboratories (NM); Mini-visits to small DOE sites; Working Group meeting, June 7--8, 1994; Commendable practices; Related chemical safety initiatives at DOE; Regulatory framework and industry initiatives related to chemical safety; and Chemical inventory data from field self-evaluation reports.

Not Available

1994-09-01T23:59:59.000Z

359

Essays on the industrial organization of the airline industry  

E-Print Network [OSTI]

This thesis analyzes several aspects of the Industrial Organization of the airline industry in three separate chapters. Chapter 1 investigates the effect of air traffic delays on airline prices. The degree to which prices ...

Januszewski, Silke I. (Silke Irene), 1974-

2003-01-01T23:59:59.000Z

360

Controlled binding and assembly of peptides onto inorganic substrates is at the core of bionanotechnology and biological-materials engineering. Peptides offer several  

E-Print Network [OSTI]

inorganic surfaces that are distinguishable by shape, crystallography, mineralogy, and chemistry. Second and theoretical approaches and concepts that will help advance this emerging field. Molecular Design of Inorganic-inorganic materials is dependent upon our understanding of the molecular factors that govern sequence

Samudrala, Ram

Note: This page contains sample records for the topic "industrial inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Chemical engineers design, control and optimize large-scale chemical,  

E-Print Network [OSTI]

, Biochemical, Environmental, Petroleum Engineering and Nantoechnology. CHEMICAL&MATERIALSSCIENCE CHE OVERVIEW of Science 131 units · Chemical Engineering (Petroleum) Bachelor of Science 136 units · Chemical Engineering38 Chemical engineers design, control and optimize large-scale chemical, physicochemical

Rohs, Remo

362

"Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"  

SciTech Connect (OSTI)

ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

2008-06-12T23:59:59.000Z

363

Energy Efficient Industrialized Housing Research Program  

SciTech Connect (OSTI)

Six area reported progress in the Energy Efficient Industrialized Housing Research Program during FY 1991. As part of Industry Guidance, meetings were held with steering and technical committees in computers, housing design and manufacturing. This task area enables the program to benefit from the expertise of industry representatives and communicate research results directly to them. As part of the Design Process performance specifications were being developed for the future housing system designed last year. These house designs coordinate and optimize predicted and desirable advances in computerized design processes, materials, components, and manufacturing automation to achieve energy efficiency at reduced first cost. Energy design software were being developed for CAD systems, stressed skin insulating core panel manufacturers; and a prototype energy sales tool. A prototype design was to be developed to integrate one or more subsystems with the building skin. As part of the Manufacturing Process we are developing a manufacturing process simulation and data base to help current and new entrants to the industrialized housing industry in assessing the impact of implementing new manufacturing techniques. For Evaluation we are developing testing plans for six units of housing on the UO campus and the stressed skin insulating core house to be constructed in Oregon. The DOW Chemical test structure will be retrofitted with a tile roof and retested to compare to the dome and conventional construction structures. Calibration of the wind tunnel will be completed so that laboratory tests can be conducted to simulate the ventilation cooling efficiency of houses in design. Research utilization and program management were either aspects of this program.

Not Available

1992-03-01T23:59:59.000Z

364

Coal industry annual 1997  

SciTech Connect (OSTI)

Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

NONE

1998-12-01T23:59:59.000Z

365

Coal industry annual 1993  

SciTech Connect (OSTI)

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

366

SymposiumandIndustrialAffiliatesProgramLightinAction Industrial Affiliates Program  

E-Print Network [OSTI]

SymposiumandIndustrialAffiliatesProgramLightinAction #12;Industrial Affiliates Program Friday, 8 Session I Abstract: Recently Additive Manufacturing (AM) has been hailed as the "third industrial revolution" by Economist magazine [April -2012]. Precision of the product manufactured by AM largely depends

Van Stryland, Eric

367

Recent developments: Industry briefs  

SciTech Connect (OSTI)

This article is the `Industry Briefs` portion of Nuexco`s July 1992 `Recent Developments` section. Specific items mentioned include: (1) the merger of Entergy and Gulf States Utilities, (2) restart of the Sequoyah Fuels facility in Oklahoma, (3) development of the 7th and 8th nuclear units in Taiwan, (4) purchase of interest in Rio Algom, Ltd, and (5) acquisition of the Italian firm AGIP by a Canadian company.

NONE

1992-07-01T23:59:59.000Z

368

Industrial Analytics Corporation  

SciTech Connect (OSTI)

The lost foam casting process is sensitive to the properties of the EPS patterns used for the casting operation. In this project Industrial Analytics Corporation (IAC) has developed a new low voltage x-ray instrument for x-ray radiography of very low mass EPS patterns. IAC has also developed a transmitted visible light method for characterizing the properties of EPS patterns. The systems developed are also applicable to other low density materials including graphite foams.

Industrial Analytics Corporation

2004-01-30T23:59:59.000Z

369

BTU Accounting for Industry  

E-Print Network [OSTI]

, salesmen cars, over the highway trucks, facilities startup, waste used as fuel and fuels received for storage. This is a first step in the DOE's effort to establish usage guidelines for large industrial users and, we note, it requires BTU usage data...-generated electricity, heating, ventilating, air conditioning, in-plant transportation, ore hauling, raw material storage and finished product warehousing. Categories which are excluded are corporate and divisional offices, basic research, distribution centers...

Redd, R. O.

1979-01-01T23:59:59.000Z

370

Hydrogen Production via a Commerically Ready Inorganic membrane Reactor  

SciTech Connect (OSTI)

It has been known that use of the hydrogen selective membrane as a reactor (MR) could potentially improve the efficiency of the water shift reaction (WGS), one of the least efficient unit operations for production of high purity hydrogen from syngas. However, no membrane reactor technology has been reduced to industrial practice thus far, in particular for a large-scale operation. This implementation and commercialization barrier is attributed to the lack of a commercially viable hydrogen selective membrane with (1) material stability under the application environment and (2) suitability for large-scale operation. Thus, in this project, we have focused on (1) the deposition of the hydrogen selective carbon molecular sieve (CMS) membrane we have developed on commercially available membranes as substrate, and (2) the demonstration of the economic viability of the proposed WGS-MR for hydrogen production from coal-based syngas. The commercial stainless steel (SS) porous substrate (i.e., ZrO{sub 2}/SS from Pall Corp.) was evaluated comprehensively as the 1st choice for the deposition of the CMS membrane for hydrogen separation. The CMS membrane synthesis protocol we developed previously for the ceramic substrate was adapted here for the stainless steel substrate. Unfortunately no successful hydrogen selective membranes had been prepared during Yr I of this project. The characterization results indicated two major sources of defect present in the SS substrate, which may have contributed to the poor CMS membrane quality. Near the end of the project period, an improved batch of the SS substrate (as the 2nd generation product) was received from the supplier. Our characterization results confirm that leaking of the crimp boundary no longer exists. However, the thermal stability of the ZrO{sub 2}/SS substrate through the CMS membrane preparation condition must be re-evaluated in the future. In parallel with the SS membrane activity, the preparation of the CMS membranes supported on our commercial ceramic membrane for large-scale applications, such as coal-based power generation/hydrogen production, was also continued. A significant number (i.e., 98) of full-scale membrane tubes have been produced with an on-spec ratio of >76% during the first production trial. In addition, we have verified the functional performance and material stability of this hydrogen selective CMS membrane with a hydrocracker purge gas stream at a refinery pilot testing facility. No change in membrane performance was noted over the >100 hrs of testing conducted in the presence of >30% H{sub 2}S, >5,000 ppm NH{sub 3} (estimated), and heavy hydrocarbons on the order of 25%. The excellent stability of our hydrogen selective CMS membrane opens the door for its use in WGS-MR with a significantly reduced requirement of the feedstock pretreatment.

Paul Liu

2007-06-30T23:59:59.000Z

371

Alternative Fuels and Chemicals from Synthesis Gas  

SciTech Connect (OSTI)

The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

Peter Tijrn

2003-01-02T23:59:59.000Z

372

The impact of government policies on industrial evolution : the case of China's automotive industry  

E-Print Network [OSTI]

Governmental industrial policies have great influence on industrial performances and development trajectories. The infant industry theory has been the dominating theoretical foundation of the industrial policies in developing ...

Luo, Jianxi

2006-01-01T23:59:59.000Z

373

Industrial Heat Pump Design Options  

E-Print Network [OSTI]

There are numerous industries that can incorporate heat pumps into their operations to save energy costs and payoff the investment in well under two years. Many of these industries can cut energy costs associated with evaporation by over 75...

Gilbert, J. S.

374

A National Resource for Industry  

E-Print Network [OSTI]

alloys, and metal matrix composite products carbon fibe's manufacturing industries. These industries call upon ORNL's expertise in materials synthesis, characterization-efficient manufacturing processes and materials targeting products of the future. The Department of Energy's first

375

Electrotechnologies and Industrial Pollution Control  

E-Print Network [OSTI]

The role of electrotechnologies in the control of emissions and effluents from industrial processes is discussed. Matrices are presented identifying those electrotechnologies which impact pollution in various industries. Specific examples...

Schmidt, P. S.

376

Deaerators in Industrial Steam Systems  

SciTech Connect (OSTI)

This revised ITP tip sheet on deaerators in industrial steam systems provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

377

Texas Industries of the Future  

E-Print Network [OSTI]

The purpose of the Texas Industries of the Future program is to facilitate the development, demonstration and adoption of advanced technologies and adoption of best practices that reduce industrial energy usage, emissions, and associated costs...

Ferland, K.

378

Modeling the semiconductor industry dynamics  

E-Print Network [OSTI]

The semiconductor industry is an exciting and challenging industry. Strong demand at the application end, plus the high capital intensity and rapid technological innovation in manufacturing, makes it difficult to manage ...

Wu, Kailiang

2008-01-01T23:59:59.000Z

379

Microfabricated sleeve devices for chemical reactions  

DOE Patents [OSTI]

A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and non-silicon based materials to provide the thermal properties desired. For example, the chamber may combine a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

Northrup, M. Allen (Berkeley, CA)

2003-01-01T23:59:59.000Z

380

Innovative Utility Pricing for Industry  

E-Print Network [OSTI]

INNOVATIVE UTILITY PRICING FOR INDUSTRY James A. Ross Drazen-Brubaker &Associates, Inc. St. Louis, Missouri ABSTRACT The electric utility industry represents only one source of power available to industry. Al though the monopolistic... structure of the electric utility industry may convey a perception that an electric utility is unaffected by competition, this is an erroneous perception with regard to in dustry. Electric utilities face increased compe tition, both from other utilities...

Ross, J. A.

Note: This page contains sample records for the topic "industrial inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

PETROLEUM INDUSTRY INFORMATION REPORTING ACT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION PETROLEUM INDUSTRY INFORMATION REPORTING ACT: RULEMAKING;1 EXECUTIVE SUMMARY In the six months since the new Petroleum Industry Information Reporting Act (PIIRA which is used by the petroleum industry and market trading groups to assess the trends in California

382

Accelerated carbonation treatment of industrial wastes  

SciTech Connect (OSTI)

The disposal of industrial waste presents major logistical, financial and environmental issues. Technologies that can reduce the hazardous properties of wastes are urgently required. In the present work, a number of industrial wastes arising from the cement, metallurgical, paper, waste disposal and energy industries were treated with accelerated carbonation. In this process carbonation was effected by exposing the waste to pure carbon dioxide gas. The paper and cement wastes chemically combined with up to 25% by weight of gas. The reactivity of the wastes to carbon dioxide was controlled by their constituent minerals, and not by their elemental composition, as previously postulated. Similarly, microstructural alteration upon carbonation was primarily influenced by mineralogy. Many of the thermal wastes tested were classified as hazardous, based upon regulated metal content and pH. Treatment by accelerated carbonation reduced the leaching of certain metals, aiding the disposal of many as stable non-reactive wastes. Significant volumes of carbon dioxide were sequestrated into the accelerated carbonated treated wastes.

Gunning, Peter J., E-mail: gunning_peter@hotmail.co [Centre for Contaminated Land Remediation, University of Greenwich, Chatham Maritime (United Kingdom); Hills, Colin D.; Carey, Paula J. [Centre for Contaminated Land Remediation, University of Greenwich, Chatham Maritime (United Kingdom)

2010-06-15T23:59:59.000Z

383

Preliminary overview of innovative industrial-materials processes  

SciTech Connect (OSTI)

In evaluating the potential for industrial energy conservation, 45 candidate processes were identified. The chemical and the iron and steel industries presented the most well-developed candidates, whereas those processes identified in the pulp and paper and textiles industries were the most speculative. Examples of the candidate processes identified include direct steelmaking and ore-to-powder systems, which potentially require 30 to 40% less energy, respectively, than conventional steelmaking systems; membrane separations and freeze crystallization, which offer up to 90% reductions in energy use when compared with distillation; the cold processing of cement, which offers a 50% reduction in energy requirements; and the dry forming of paper, which offers a 25% reduction in the energy needed for papermaking. A review of all the industries revealed that the revolutionary alternatives often use similar concepts in avoiding current process inefficiencies. These concepts include using chemical, physical, or biological processes to replace thermally intensive processes; using specific forms of energy to minimize wasteful thermal diffusion; using chemical, biological, or ultrasonic processes to replace physical reduction; combining multiple processing steps into a single reactor; using a dry processing to eliminate energy needed for evaporation; and using sterilization or biotechnology to reduce the need for refrigeration.

Hane, G.J.; Hauser, S.G.; Blahnik, D.E.; Eakin, D.E.; Gurwell, W.E.; Williams, T.A.; Abarcar, R.; Szekely, J.; Ashton, W.B.

1983-09-01T23:59:59.000Z

384

2013 INORGANIC REACTION MECHANISMS GORDON RESEARCH CONFERENCE (MARCH 3-8, 2013 - HOTEL GALVEZ, GALVESTON TX)  

SciTech Connect (OSTI)

The 2013 Gordon Conference on Inorganic Reaction Mechanisms will present cutting-edge research on the molecular aspects of inorganic reactions involving elements from throughout the periodic table and state-of-the art techniques that are used in the elucidation of reaction mechanisms. The Conference will feature a wide range of topics, such as homogeneous and heterogeneous catalysis, metallobiochemistry, electron-transfer in energy reactions, polymerization, nitrogen fixation, green chemistry, oxidation, solar conversion, alkane functionalization, organotransition metal chemistry, and computational chemistry. The talks will cover themes of current interest including energy, materials, and bioinorganic chemistry. Sections cover: Electron-Transfer in Energy Reactions; Catalytic Polymerization and Oxidation Chemistry; Kinetics and Spectroscopy of Heterogeneous Catalysts; Metal-Organic Chemistry and its Application in Synthesis; Green Energy Conversion;Organometallic Chemistry and Activation of Small Molecules; Advances in Kinetics Modeling and Green Chemistry; Metals in Biology and Disease; Frontiers in Catalytic Bond Activation and Cleavage.

Abu-Omar, Mahdi M.

2012-12-08T23:59:59.000Z

385

Elemental and isotopic analysis of inorganic salts by laser desorption ionization mass spectrometry  

SciTech Connect (OSTI)

Laser desorption ionization mass spectrometry is applied for the analysis of elements as well as their isotopic composition in different inorganic salts. At very low laser energies the inorganic ions are desorbed and ionized from the thin layer of the sample surface. The naturally occurring isotopes of alkali and silver ions are resolved using time of flight mass spectrometer. Further increase in laser energy shows the appearance of Al, Cr, and Fe ions in the mass spectra. This indicates the penetration laser beam beyond the sample surface leading to the ablation of sample target at higher energies. The simultaneous appearance of atomic ions from the sample target at relatively higher laser energies hampers the unambiguous identification of amino acid residues from the biomolecular ions in MALDI-MS.

Jayasekharan, T.; Sahoo, N. K. [Applied Spectroscopy Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

2013-02-05T23:59:59.000Z

386

Industrial Energy Audit Guidebook: Guidelines for Conducting...  

Open Energy Info (EERE)

Industry Resource Type: Guidemanual Website: china.lbl.govsiteschina.lbl.govfilesLBNL-3991E.Industrial%20Energy Industrial Energy Audit Guidebook: Guidelines for Conducting...

387

Colorado Industrial Challenge and Recognition Program | Department...  

Broader source: Energy.gov (indexed) [DOE]

Colorado Industrial Challenge and Recognition Program Colorado Industrial Challenge and Recognition Program This fact sheet offers details of the Colorado Industrial program state...

388

Platform Chemicals from an Oilseed Biorefinery  

SciTech Connect (OSTI)

The US chemical industry is $460 billion in size where a $150 billion segment of which is non-oxygenated chemicals that is sourced today via petroleum but is addressable by a renewable feedstock if one considers a more chemically reduced feedstock such as vegetable oils. Vegetable oil, due to its chemical functionality, provides a largely untapped opportunity as a renewable chemical source to replace petroleum-derived chemicals and produce platform chemicals unavailable today. This project examined the fertile intersection between the rich building blocks provided by vegetable oils and the enhanced chemical modification capability provided by metathesis chemistry. The technology advanced in this study is the process of ethylene cross-metathesis (referred to as ethenolysis) with vegetable oil and vegetable oil derivatives to manufacture the platform-chemical 9-decenoic acid (or 9DA) and olefin co-products. The project team meet its goals of demonstrating improved catalyst efficiencies of several multiples, deepening the mechanistic understanding of metathesis, synthesis and screening of dozens of new catalysts, designing and modeling commercial processes, and estimating production costs. One demonstrable result of the study was a step change improvement in catalyst turnover number in the ethenolysis of methyl oleate as reported here. We met our key measurable of producing 100 lbs of 9DA at the pilot-scale, which demonstrated ability to scale-up ethenolysis. DOE Project funding had significant positive impact on development of metathetically modified vegetable oils more broadly as the Cargill/Materia partnership, that was able to initiate primarily due to DOE funding, has succeeded in commercializing products, validating metathesis as a platform technology, and expanding a diverse products portfolio in high value and in large volume markets. Opportunities have expanded and business development has gained considerable momentum and enabled further expansion of the Materia/Cargill relationship. This project exceeded expectations and is having immediate impact on DOE success by replacing petroleum products with renewables in a large volume application today.

Tupy, Mike; Schrodi Yann

2006-11-06T23:59:59.000Z

389

Chemistry 455 Chemical Nanotechnology  

E-Print Network [OSTI]

Chemistry 455 Chemical Nanotechnology 4 units Prof. Richard Brutchey, Fall 2014 (Lecture = 12:00­12:50 pm MWF) CHEM 455 is an upper-division undergraduate course in Chemical Nanotechnology. The intent

Rohs, Remo

390

Capacitive chemical sensor  

DOE Patents [OSTI]

A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

2014-05-27T23:59:59.000Z

391

Composite Organic Radical - Inorganic Hybrid Cathode for Lithium-ion Batteries  

SciTech Connect (OSTI)

A new organic radical inorganic hybrid cathode comprised of PTMA/LiFePO4 composite system is developed and reported for the first time. The hybrid cathodes demonstrate high pulse power capability resulting in a significant improvement over the pure PTMA or LiFePO4 cathode which is very promising for transportation and other high pulse power applications that require long cycle life and lower cost.

Huang, Qian; Cosimbescu, Lelia; Koech, Phillip K.; Choi, Daiwon; Lemmon, John P.

2013-07-01T23:59:59.000Z

392

Carbons for lithium ion cells prepared using sepiolite as an inorganic template.  

SciTech Connect (OSTI)

Carbon anodes for Li ion cells have been prepared by the in situ polymerization of olefins such as propylene and ethylene in the channels of sepiolite clay mineral. Upon dissolution of the inorganic framework, a disordered carbon was obtained. The carbon was tested as anode in coin cells, yielding a reversible capacity of 633 mAh/g, 1.70 times higher than the capacity delivered by graphitic carbon, assuming 100% efficiency. The coulombic efficiency was higher than 90%.

Sandi, G.

1998-12-09T23:59:59.000Z

393

Inorganic-Organic Molecules and Solids with Nanometer-Sized Pores  

SciTech Connect (OSTI)

We are constructing porous inorganic-organic hybrid molecules and solids, many of which contain coordinatively unsaturated metal centers. In this work, we use multifunctional ???²-diketone ligands as ?¢????building blocks?¢??? to prepare extended-solid and molecular porous materials that are capable of reacting with a variety of guest molecules.

Maverick, Andrew W.

2011-12-17T23:59:59.000Z

394

Industrial energy use indices  

E-Print Network [OSTI]

gas consumption. Data from milder climates appears more scattered than that from colder climates. For example, the ratio of the average of coefficient of variations for all industry types in warm versus cold regions of the U.S. varies from 1....1 to 1.7 depending on the energy sources considered. The large data scatter indicates that predictions of energy use obtained by multiplying standard EUI data by plant area may be inaccurate and are less accurate in warmer than colder climates (warmer...

Hanegan, Andrew Aaron

2008-10-10T23:59:59.000Z

395

Coal Industry Annual 1995  

SciTech Connect (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

NONE

1996-10-01T23:59:59.000Z

396

Carbon Emissions: Food Industry  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,64397 272 522 542Peru (MillionFood Industry

397

Sustainable Nanomaterials Industry Perspective  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4SuperhardSuspect andCoaches Aim Industry Perspective

398

CASL - Industry Council  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science, andAnalysis ofLink to Resources Industry

399

CASL - Industry Council Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science, andAnalysis ofLink to Resources IndustryCASL

400

Industrial Technical Assistance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.Indiana College ProvidesSteam Technical BriefINDUSTRIAL

Note: This page contains sample records for the topic "industrial inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Coal industry annual 1996  

SciTech Connect (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

NONE

1997-11-01T23:59:59.000Z

402

Evolution of the radiation processing industry  

SciTech Connect (OSTI)

Early investigations of the effects of treating materials with ionizing radiations began in 1894 with the irradiation of gases at atmospheric pressure using cathode rays from a Crookes gas-discharge tube, in 1895 with the discovery of X-rays emitted from a Crookes tube, and in 1896 with the discovery of radioactivity in uranium. In 1897, small electrically charged particles were detected and identified in the gas discharges inside Crookes tubes. These particles were then named electrons. During the next three decades, it was found that these novel forms of energy could produce ions to initiate chemical reactions in some gases and liquids. By 1921, it had also been shown that insects, parasites and bacteria could be killed by treatment with ionizing radiation. In 1925, a high-vacuum tube with a thermionic cathode and a thin metallic anode was developed to produce electron beams in air by using accelerating potentials up to 250 kilovolts. That unique apparatus was the precursor of the many types of electron accelerators that have been developed since then for a variety of industrial applications. In 1929, the vulcanization of natural rubber without using any chemical additives was achieved by irradiation with electrons from a 250 kilovolt accelerator. In 1939, several liquid monomers were polymerized by treatment with gamma rays from radioactive nuclides. These early results were not exploited before the end of World War II because intense sources of ionizing radiation were not available then. Shortly after that war, there was increased interest in developing the peaceful uses of atomic energy, which included the chemical and biological effects of radiation exposures. Many uses that have been developed since then are described briefly in this paper. These industrial applications are now producing billions of US dollars in revenue every year.

Cleland, Marshall R. [IBA Industrial, Inc., 151 Heartland Boulevard, Edgewood, NY 11717 (United States)

2013-04-19T23:59:59.000Z

403

Study of Electron Transport in Organic and Inorganic Atomic Monolayer Based MOS/MOSFET  

E-Print Network [OSTI]

The wide research interest for the potential nanoelectronics applications are attracted by the organic and inorganic monolayer materials. In this work, we have studied the organic monolayer such as trichloro (1H,1H,2H,2H-perfluorooctyl)-silane (FOTS), hexamethyldisilazane (HMDS) and inorganic monolayers such as hexagonal - boron nitride (h-BN) and molybdenum disulfide (MoS2) based MOS devices. The organic monolayer based configurations are Au/FOTS/p-Si and Au/HMDS/p-Si. The inorganic monolayer based configurations are Au/MoS2/SiO2/p-Si and Au/h-BN/SiO2/p-Si. These configurations were examined and compared with Au/SiO2/p-Si MOS configuration using the Multi-dielectric Energy Band Diagram Program (MEBDP) and MOSFeT simulation software. The C-V and I-V characteristics of MOS and MOSFET of FOTS, HMDS, h-BN, MoS2 and SiO2 were reported. The results show that the above configurations are suitable for designing MOSFETs with smaller drain induced barrier lowering (DIBL) and reduced threshold voltage. We noted that th...

Azariah, J Cyril Robinson; Devaprakasam, D

2014-01-01T23:59:59.000Z

404

Institute of Chemical Engineering and High Temperature Chemical...  

Open Energy Info (EERE)

Chemical Processes ICEHT Jump to: navigation, search Name: Institute of Chemical Engineering and High Temperature Chemical Processes (ICEHT) Place: Hellas, Greece Zip:...

405

HARVARD UNIVERSITY CHEMICAL BIOLOGY  

E-Print Network [OSTI]

HARVARD UNIVERSITY CHEMICAL BIOLOGY PHD PROGRAM 2013-2014 Student Handbook #12;Program Contacts at the beginning of each semester. Laboratory Rotations Students in the Chemical Biology Program are expected an interest in having Chemical Biology Program Students in their labs. Students may rotate in the labs

Church, George M.

406

CHEMICAL SAFETY Emergency Numbers  

E-Print Network [OSTI]

- 1 - CHEMICAL SAFETY MANUAL 2010 #12;- 2 - Emergency Numbers UNBC Prince George Campus Security Prince George Campus Chemstores 6472 Chemical Safety 6472 Radiation Safety 5530 Biological Safety 5530 use, storage, handling, waste and emergency management of chemicals on the University of Northern

Bolch, Tobias

407

Department of Chemical Engineering  

E-Print Network [OSTI]

Developing Leaders of Innovation Department of Chemical Engineering #12;At the University of Virginia, we educate students in traditional and nontraditional areas of chemical engineering, giving them.Va. Department of Chemical Engineering benefit from a modern academic curriculum and state

Acton, Scott

408

Computational Chemical Materials Engineering  

E-Print Network [OSTI]

: Thermal barrier coatings, wear resistance coatings, radiation resistant materials · Materials for opticalHome Computational Chemical and Materials Engineering Tahir Cagin Chemical Engineering Department to understand behavior and properties of materials as a function of ­ Chemical constitution ­ Composition

409

High yield production of inorganic graphene-like materials (MoS?, WS?, BN) through liquid exfoliation testing key parameters  

E-Print Network [OSTI]

Inorganic graphene-like materials such as molybdenum disulfide (MoS?), tungsten sulfide (WS?), and boron nitride (BN) are known to have electronic properties. When exfoliated into layers and casted onto carbon nanofilms, ...

Pu, Fei, S.B. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

410

Estimation of aboveground biomass and inorganic nutrient content of a 25-year-old loblolly pine (Pinus taeda L.) plantation  

E-Print Network [OSTI]

ESTIMATION OF ABOVEGROUND BIOMASS AND INORGANIC NUTRIENT CONTENT OF A 25-YEAR-OLD LOBLOLLY PINE (PINUS TAEDA L. ) PLANTATION A Thesis by JAMES NELSON MOUSER Submitted to the Graduate College of Texas ARM University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August lqBO Major Si bject: Forestry ESTIMATION OF ABOVEGROUND BIOMASS AND INORGANIC NUTRIENT CONTENT OF A 25-YEAR-OLD LOBLOLLY PINE (PINUS TAEDA L. ) PLANTATION A Thesis by JAMES NELSON HOUSER Approved...

Houser, James Nelson

1980-01-01T23:59:59.000Z

411

Physiological responses of switchgrass (Panicum virgatum L.) to organic and inorganic amended heavy-metal contaminated chat tailings  

SciTech Connect (OSTI)

Study plots established at the Galena subsite of the Cherokee County Superfund Site in Southeastern Kansas by the US Bureau of Mines in 1990 were examined during the summer of 1996 to determine whether physiological criteria could be used to determine suitability of switchgrass for remediation of heavy-metal contaminated substrates. Switchgrass was chosen because it was the most frequently encountered species on these plots. Treatment plots included a treatment control, an organic residue treatment of 89.6 Mg Ha{sup {minus}1} composted cattle manure, and two inorganic fertilizer treatments recommended for either native grass or grass/legume mixtures. Plant response variables were photosynthetic rate, leaf conductance to water vapor, internal concentration of carbon dioxide in leaves, foliar transpiration rate, leaf water-use-efficiency, predawn leaf xylem water potential, and midday leaf xylem water potential. Predawn and midday xylem water potentials were higher for grass/legume inorganic treatment than for the other inorganic treatments. Leaf conductances were lower for organically treated plots than those plots not organically amended and both photosynthesis and transpiration were lower for organically treated plots. Leaf conductances and transpiration were higher for grass/legume treated plots than for plots lacking inorganic treatment. Water-use-efficiency was higher for native grass inorganically treated plots than for other inorganic treatments.

Youngman, A.L. [Wichita State Univ., KS (United States). Dept. of Biological Sciences

1997-12-31T23:59:59.000Z

412

Competitive developments in the electric supply industry  

SciTech Connect (OSTI)

Competition in the electric supply industry is outlined. The following topics are discussed: six impending major developments in the electric industry; recent and projected developments in the industry; where is the industry headed?; and what the future holds.

Bruder, G.F.; Lively, M.

1996-12-31T23:59:59.000Z

413

Whitacre College of Engineering Industrial Engineering Department  

E-Print Network [OSTI]

Whitacre College of Engineering Industrial Engineering Department Department Chair and Professor of Industrial Engineering. The Industrial Engineering Department at Texas Tech University has a distinguished industrial engineering education and provide appropriate service to the department, university

Gelfond, Michael

414

Faculty of Engineering & Design Industrial Placements  

E-Print Network [OSTI]

Faculty of Engineering & Design Industrial Placements A guide for industry #12;Industrial placements The Faculty of Engineering & Design has built close links with engineering companies through research, projects, placements and graduate employees. We know that working with industry ensures our

Burton, Geoffrey R.

415

Research Projects in Industrial Technology.  

SciTech Connect (OSTI)

The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

United States. Bonneville Power Administration. Industrial Technology Section.

1990-06-01T23:59:59.000Z

416

industrial & systems (ISE) Industrial and Systems Engineers use engineering and business principles  

E-Print Network [OSTI]

70 industrial & systems (ISE) Industrial and Systems Engineers use engineering and business systems to help companies compete in today's global marketplace. The Industrial and Systems Engineer. Programs Available · Industrial and Systems Engineering Bachelor of Science 129 units · Industrial

Rohs, Remo

417

industrial & systems (ISE) Industrial and Systems engineers use engineering and business principles  

E-Print Network [OSTI]

74 industrial & systems (ISE) Industrial and Systems engineers use engineering and business to help companies compete in today's global marketplace. The Industrial and Systems engineer's task. Programs Available · Industrial and Systems Engineering Bachelor of Science 128 units · Industrial

Rohs, Remo

418

Office of Industry Research and Technology Programs Greetings to Industry  

E-Print Network [OSTI]

Assistant Vice President, Corporate & Foundation Relations Inside this issue... Greetings to Industry. The founding members are American Axle and Manufacturing, Eaton Corpora- tion and John Deere. This applied

Ginzel, Matthew

419

Chemical Hygiene Plan i January 2013 Chemical Hygiene Plan  

E-Print Network [OSTI]

Chemical Hygiene Plan i January 2013 Chemical Hygiene Plan (CHP) (Appendix C in Lab Safety Manual........................................................................................................................1-1 Chapter 2: Chemical Hazard Communication....................................................................................2-1 Chapter 3: Classes of Hazardous Chemicals

Nizkorodov, Sergey

420

Rebuttal: Interacting With the Pharmaceutical Industry  

E-Print Network [OSTI]

9. 6. Angell M. The pharmaceutical industry: To whom is ithas shown that the pharmaceutical industry has profited some

Stone, Susan; Herbert, Mel

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

ITP Industrial Materials: Development and Commercialization of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Industrial Materials: Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies ITP Industrial Materials: Development and...

422

Academic-Industry Collaboration (AIC) - Synchrophasor Engineering...  

Broader source: Energy.gov (indexed) [DOE]

Academic-Industry Collaboration (AIC) - Synchrophasor Engineering Education Program: Information Exchange Webinar (March 6, 2014) Academic-Industry Collaboration (AIC) -...

423

Effect of chemical mechanical planarization processing conditions on polyurethane pad properties  

E-Print Network [OSTI]

Chemical Mechanical Planarization (CMP) is a vital process used in the semiconductor industry to isolate and connect individual transistors on a chip. However, many of the fundamental mechanisms of the process are yet to ...

Ng, Grace Siu-Yee, 1980-

2003-01-01T23:59:59.000Z

424

Chemical exchange program analysis.  

SciTech Connect (OSTI)

As part of its EMS, Sandia performs an annual environmental aspects/impacts analysis. The purpose of this analysis is to identify the environmental aspects associated with Sandia's activities, products, and services and the potential environmental impacts associated with those aspects. Division and environmental programs established objectives and targets based on the environmental aspects associated with their operations. In 2007 the most significant aspect identified was Hazardous Materials (Use and Storage). The objective for Hazardous Materials (Use and Storage) was to improve chemical handling, storage, and on-site movement of hazardous materials. One of the targets supporting this objective was to develop an effective chemical exchange program, making a business case for it in FY07, and fully implementing a comprehensive chemical exchange program in FY08. A Chemical Exchange Program (CEP) team was formed to implement this target. The team consists of representatives from the Chemical Information System (CIS), Pollution Prevention (P2), the HWMF, Procurement and the Environmental Management System (EMS). The CEP Team performed benchmarking and conducted a life-cycle analysis of the current management of chemicals at SNL/NM and compared it to Chemical Exchange alternatives. Those alternatives are as follows: (1) Revive the 'Virtual' Chemical Exchange Program; (2) Re-implement a 'Physical' Chemical Exchange Program using a Chemical Information System; and (3) Transition to a Chemical Management Services System. The analysis and benchmarking study shows that the present management of chemicals at SNL/NM is significantly disjointed and a life-cycle or 'Cradle-to-Grave' approach to chemical management is needed. This approach must consider the purchasing and maintenance costs as well as the cost of ultimate disposal of the chemicals and materials. A chemical exchange is needed as a mechanism to re-apply chemicals on site. This will not only reduce the quantity of unneeded chemicals and the amount spent on new purchases, but will also avoid disposal costs. If SNL/NM were to realize a 5 percent reduction in chemical inventory and a 10 percent reduction in disposal of unused chemicals the total savings would be $189, 200 per year.

Waffelaert, Pascale

2007-09-01T23:59:59.000Z

425

Development of laboratory and process sensors to monitor particle size distribution of industrial slurries  

SciTech Connect (OSTI)

In this paper we present a novel measurement technique for monitoring particle size distributions of industrial colloidal slurries based on ultrasonic spectroscopy and mathematical deconvolution. An on-line sensor prototype has been developed and tested extensively in laboratory and production settings using mineral pigment slurries. Evaluation to date shows that the sensor is capable of providing particle size distributions, without any assumptions regarding their functional form, over diameters ranging from 0.1 to 100 micrometers in slurries with particle concentrations of 10 to 50 volume percents. The newly developed on-line sensor allows one to obtain particle size distributions of commonly encountered inorganic pigment slurries under industrial processing conditions without dilution.

Pendse, H.P.

1992-10-01T23:59:59.000Z

426

New low toxicity corrosion inhibitors for industrial cleaning operations  

SciTech Connect (OSTI)

Inhibitors are routinely employed in chemical cleaning solvents used for removing scale from electrical power plants and industrial equipment since these cleaning solvents are corrosive to metal surfaces. This paper discusses the development of three new inhibitors developed for the use in hydrochloric acid, ammoniated EDTA or citric acid chemical cleaning solutions. Synthesis procedures used in the production of Mannich derivatives employed in the inhibitors were optimized for maximum corrosion resistance and reduced toxicity. All auxiliary ingredients used in the formulation of final inhibitor products were chosen to give the lowest possible toxicity of these products.

Lindert, A.; Johnston, W.G. [Henkel Surface Technologies, Madison Heights, MI (United States)

1999-11-01T23:59:59.000Z

427

Chemical engineers design, control and optimize large-scale chemical,  

E-Print Network [OSTI]

Emphasis in Nanotechnology · ChemicalEngineering Emphasis in Petroleum Engineering · ChemicalEngineering38 Chemical engineers design, control and optimize large-scale chemical, physicochemical and electronics fields. Chemical Engineers are employed in areas as diverse as the chemical, materials, energy

Rohs, Remo

428

Chemical engineers design, control and optimize large-scale chemical,  

E-Print Network [OSTI]

· ChemicalEngineering (Nanotechnology) Bachelor of Science 131 units · ChemicalEngineering(Petroleum38 Chemical engineers design, control and optimize large-scale chemical, physicochemical and electronics fields. Chemical Engineers are employed in areas as diverse as the chemical, pharmaceutical

Rohs, Remo

429

Chemical engineers design, control and optimize large-scale chemical,  

E-Print Network [OSTI]

in Nanotechnology · ChemicalEngineering Emphasis in Petroleum Engineering · ChemicalEngineering Emphasis in Polymers38 Chemical engineers design, control and optimize large-scale chemical, physicochemical and electronics fields. Chemical Engineers are employed in areas as diverse as the chemical, pharmaceutical

Rohs, Remo

430

Appendix G. Chemicals Appendix G. Chemicals G-3  

E-Print Network [OSTI]

of chemicals, we can increase food production, cure diseases, build more efficient houses, and send people with a chemical substance. Chemicals released to the air may remain suspended for long periods of timeAppendix G. Chemicals #12;#12;Appendix G. Chemicals G-3 Appendix G. Chemicals This appendix

Pennycook, Steve

431

Appendix G: Chemicals Appendix G: Chemicals G-3  

E-Print Network [OSTI]

of chemicals, we can increase food production, cure diseases, build more efficient houses, and send people with a chemical substance. Chemicals released to the air may remain suspended for long periods of timeAppendix G: Chemicals #12;#12;Appendix G: Chemicals G-3 Appendix G: Chemicals This appendix

Pennycook, Steve

432

Appendix H: Chemicals Appendix H: Chemicals H-3  

E-Print Network [OSTI]

of chemicals, we can increase food production, cure diseases, build more efficient houses, and send people with a chemical substance. Chemicals released to the air may remain suspended for long periods of timeAppendix H: Chemicals #12;#12;Appendix H: Chemicals H-3 Appendix H: Chemicals This appendix

Pennycook, Steve

433

EPRI's Industrial Energy Management Program  

E-Print Network [OSTI]

the Electric Power Research Institute has been establishing industry specific Centers and Offices nationwide to assist electric utilities and their customers in managing for a better use of energy. Hundreds of joint industry/utility projects... services thus supporting national objectives for a clean environment and a strong economic future. The Electric Power Research Institute (EPRI) recognizes that the management of energy use and the environmental impacts of industrial activity...

Mergens, E.; Niday, L.

434

Analysis of the HSEES Chemical Incident Database Using Data and Text Mining Methodologies  

E-Print Network [OSTI]

was established to meet the federal hazardous material transportation regulation. All modes of transportation except for pipeline and bulk marine transportation are covered by the HMIRS database. The process industry should take advantage of these chemical... al., 1999). HSEES HMIRSOSHA RMP Fixed facility Transportation Railroad, Highway, Pipeline, Waterways Residence areas Agricultural areas Public areas Industry 4 Based on the availability of chemical incident database and their evident...

Mahdiyati, -

2012-07-16T23:59:59.000Z

435

Chemical evolution STRUCTURE OF GALAXIES  

E-Print Network [OSTI]

Outline Absorption Chemical evolution STRUCTURE OF GALAXIES 8. Absorption; chemical evolution Piet Piet van der Kruit, Kapteyn Astronomical Institute Absorption; chemical evolution #12;Outline Absorption Chemical evolution Outline Absorption Holmberg's analysis Analysis of Disney et al. Edge

Kruit, Piet van der

436

Energy Efficiency Improvement in the Petroleum RefiningIndustry  

SciTech Connect (OSTI)

Information has proven to be an important barrier inindustrial energy efficiency improvement. Voluntary government programsaim to assist industry to improve energy efficiency by supplyinginformation on opportunities. ENERGY STAR(R) supports the development ofstrong strategic corporate energy management programs, by providingenergy management information tools and strategies. This paper summarizesENERGY STAR research conducted to develop an Energy Guide for thePetroleum Refining industry. Petroleum refining in the United States isthe largest in the world, providing inputs to virtually every economicsector, including the transport sector and the chemical industry.Refineries spend typically 50 percent of the cash operating costs (e.g.,excluding capital costs and depreciation) on energy, making energy amajor cost factor and also an important opportunity for cost reduction.The petroleum refining industry consumes about 3.1 Quads of primaryenergy, making it the single largest industrial energy user in the UnitedStates. Typically, refineries can economically improve energy efficiencyby 20 percent. The findings suggest that given available resources andtechnology, there are substantial opportunities to reduce energyconsumption cost-effectively in the petroleum refining industry whilemaintaining the quality of the products manufactured.

Worrell, Ernst; Galitsky, Christina

2005-05-01T23:59:59.000Z

437

Energy Efficiency and Industrial Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next Generation Nuclear Plant Docs CONTACT US Center for Advanced Energy Studies Energy Efficiency and Industrial Technology The Department conducts research for DOE, other...

438

Industry Supply Chain Development (Ohio)  

Broader source: Energy.gov [DOE]

Supply Chain Development programs are focused on targeted industries that have significant growth opportunities for Ohio's existing manufacturing sector from emerging energy resources and...

439

FAQS Reference Guide Industrial Hygiene  

Broader source: Energy.gov [DOE]

This reference guide addresses the competency statements in the November 2007 edition of DOE-STD-1138-2007, Industrial Hygiene Functional Area Qualification Standard.

440

China's Nuclear Industry After Fukushima  

E-Print Network [OSTI]

s Nuclear Industry After Fukushima Jingdong YUAN SummaryT he March 2011 Fukushima nuclear accident has had aand speedy responses to Fukushima-like and other unexpected

YUAN, Jingdong

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Department of Industrial Engineering Spring 2011 Armstrong World Industries, Inc  

E-Print Network [OSTI]

PENNSTATE Department of Industrial Engineering Spring 2011 Armstrong World Industries, Inc Overview The main objectives were the following: -To reduce wasted space and optimize the Armstrong Marietta plant generate? How did you analyse them? Outcomes Armstrong will save on forklift fuel costs as a result

Demirel, Melik C.

442

Demonstration of Heat Recovery in the Meat Industry  

E-Print Network [OSTI]

products, nut products, edible oils, chemicals, pharmaceuticals, animal and veterinary products, pet foods, detergents, feathers and down. Energy management has played an poultry leather, important rein the company's efforts to remain competikive... Annual Industrial Energy Technology Conference Volume II, Houston, TX, April 15-18, 1984 FIG. 1. THURLEY DIRECT CONTACT RECUPERATOR COOLED FLUE GASES AND WATER VAPOUR TO ATMOSPHERE 30 _ 40 D C HEAT RECUPERATOR I TO BOILER STACK FAN ___ DOMESTIC...

Molczan, T. J.; Scriven, A. P.; Magro, J.

1984-01-01T23:59:59.000Z

443

Co-op and Internship Program Department of Chemical Engineering and Materials Science  

E-Print Network [OSTI]

Co-op and Internship Program Department of Chemical Engineering and Materials Science June 2013 Engineering and Materials Science (CEMS) supports both Industrial Internships and Co-op Industrial Assignments. The Internship program also integrates technical employment and academic studies but it is shorter in length

Janssen, Michel

444

Chemical Rearrangement under Hydrothermal Conditions: Formation of Polymeric Chains (CuX)2(dpiz) and (CuX)3(dpiz) (X ) Cl, Br; dpiz ) Dipyrido[1,2-a:2,3-d]imidazole) and Crystal Structures of  

E-Print Network [OSTI]

rearrangement during the hydrothermal self- assembly process in forming copper dipyrido[1,2-a:2,3-d]imi- dazoleChemical Rearrangement under Hydrothermal Conditions: Formation of Polymeric Chains (CuX)2(dpiz the hydrothermal method7 has been widely applied in the synthesis and crystal growth of many inorganic compounds

Li, Jing

445

Final Technical Report for University of Michigan Industrial Assessment Center  

SciTech Connect (OSTI)

The UM Industrial Assessment Center assisted 119 primary metals, automotive parts, metal casting, chemicals, forest products, agricultural, and glass manufacturers in Michigan, Ohio and Indiana to become more productive and profitable by identifying and recommending specific measures to improve energy efficiency, reduce waste and increase productivity. This directly benefits the environment by saving a total of 309,194 MMBtu of energy resulting in reduction of 0.004 metric tons of carbon emissions. The $4,618,740 implemented cost savings generated also saves jobs that are evaporating from the manufacturing industries in the US. Most importantly, the UM Industrial Assessment Center provided extremely valuable energy education to forty one UM graduate and undergraduate students. The practical experience complements their classroom education. This also has a large multiplier effect because the students take the knowledge and training with them.

Atreya, Arvind

2007-04-17T23:59:59.000Z

446

Biomass pyrolysis for chemicals.  

E-Print Network [OSTI]

??Biomass Pyrolysis for Chemicals The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for (more)

Wild, Paul de

2011-01-01T23:59:59.000Z

447

Chemically Reactive Working Fluids  

Broader source: Energy.gov (indexed) [DOE]

commercial application. Goal: Demonstrate feasibility of employing chemically reacting fluids (CRFW) as heat transfer fluids (HTF) for CSP systems operating at 650C-1200C....

448

EMSL - chemical analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

chemical-analysis en Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. http:www.emsl.pnl.govemslwebpublicationsmagnesium-behavior-and-structural-...

449

Apparatus for chemical synthesis  

DOE Patents [OSTI]

A method and apparatus for forming a chemical hydride is described and which includes a pseudo-plasma-electrolysis reactor which is operable to receive a solution capable of forming a chemical hydride and which further includes a cathode and a movable anode, and wherein the anode is moved into and out of fluidic, ohmic electrical contact with the solution capable of forming a chemical hydride and which further, when energized produces an oxygen plasma which facilitates the formation of a chemical hydride in the solution.

Kong, Peter C. (Idaho Falls, ID); Herring, J. Stephen (Idaho Falls, ID); Grandy, Jon D. (Idaho Falls, ID)

2011-05-10T23:59:59.000Z

450

FGD systems -- Physical deterioration of the chemical plant facility  

SciTech Connect (OSTI)

The Clean Air Act of 1970 established the initial requirements for the control of flue gas emissions from fossil-fuel-fired power plants in the US. Until then, only mechanical collectors and electrostatic precipitators regulated smoke and fly ash emissions from these plants. Now, a new technique for controlling the chemical emissions from a fossil-fuel-fired power plant had to be installed. Since there was practically no time for a research and development program, the power industry had to move quickly to select a compliance system. They chose to modify existing technology from the chemical industry for their specific need. Thus, wet limestone flue gas desulfurization (FGD) systems were born into the power industry and a chemical plant was added between the electrostatic precipitator and the chimney. This paper provides insight on how a program can be implemented to reconcile the materials and corrosion protection techniques available today to the specific areas of an FGD system. This paper focuses on a typical wet limestone FGD process. This type of process constitutes the vast majority of the FGD systems by total megawatt generation in the US. The power industry must learn from its chemical plant experience if it intends to extend the service life of FGD systems to match the design life of the remaining plant power block.

Dille, E.R.; Ridge, J.L. [Sargent and Lundy, Chicago, IL (United States)

1996-10-01T23:59:59.000Z

451

Advanced Industrial Materials (AIM) program. Compilation of project summaries and significant accomplishments FY 1996  

SciTech Connect (OSTI)

In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven {open_quotes}Vision Industries{close_quotes} that use about 80% of industrial energy and generated about 90% of industrial wastes. These are: (1) Aluminum; (2) Chemical; (3) Forest Products; (4) Glass; (5) Metal Casting; (6) Refineries; and (7) Steel. This report is a compilation of project summaries and significant accomplishments on materials.

NONE

1997-04-01T23:59:59.000Z

452

Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature  

SciTech Connect (OSTI)

We report on the quantum confinement of zero-dimensional polaritons in perovskite-based microcavity at room temperature. Photoluminescence of discrete polaritonic states is observed for polaritons localized in symmetric sphere-like defects which are spontaneously nucleated on the top dielectric Bragg mirror. The linewidth of these confined states is found much sharper (almost one order of magnitude) than that of photonic modes in the perovskite planar microcavity. Our results show the possibility to study organic-inorganic cavity polaritons in confined microstructure and suggest a fabrication method to realize integrated polaritonic devices operating at room temperature.

Nguyen, H. S.; Lafosse, X.; Amo, A.; Bouchoule, S.; Bloch, J., E-mail: jacqueline.bloch@lpn.cnrs.fr [Laboratoire de Photonique et de Nanostructures, LPN/CNRS, Route de Nozay, 91460 Marcoussis (France); Han, Z. [Laboratoire de Photonique et de Nanostructures, LPN/CNRS, Route de Nozay, 91460 Marcoussis (France); Laboratoire Aim Cotton, cole Normale Suprieure de Cachan, CNRS, Universit Paris Sud, bat. 505, campus d'Orsay, 91405 Orsay (France); Abdel-Baki, K.; Lauret, J.-S.; Deleporte, E. [Laboratoire Aim Cotton, cole Normale Suprieure de Cachan, CNRS, Universit Paris Sud, bat. 505, campus d'Orsay, 91405 Orsay (France)

2014-02-24T23:59:59.000Z

453

Subsurface Monitor for Dissolved Inorganic Carbon at Geological Sequestration Site Phase 1 SBIR Final Report  

SciTech Connect (OSTI)

Phase I research of this SBIR contract has yielded anticipated results and enable us to develop a practical new instrument to measure the Dissolved Inorganic Carbons (DIC) as well as Supercritical (SC) CO2 in underground brine water at higher sensitivity, lower cost, higher frequency and longer period of time for the Monitoring, Verification & Accounting (MVA) of CO2 sequestration as well as Enhanced Oil Recovery (EOR). We show that reduced cost and improved performance are possible; both future and emerging market exist for the proposed new instrument.

Sheng Wu

2012-08-03T23:59:59.000Z

454

Understanding ligand-centred photoluminescence through flexibility and bonding of anthraquinone inorganic?organic frameworks  

SciTech Connect (OSTI)

Five novel inorganic-organic framework compounds containing the organic chromophore ligand anthraquinone-2,3-dicarboxylic acid (abbreviated H{sub 2}AQDC) and calcium (CaAQDC), zinc (ZnAQDC), cadmium (CdAQDC), manganese (MnAQDC), and nickel (NiAQDC), respectively, have been synthesized. The photoluminescence of these materials is only visible at low temperatures and this behaviour has been evaluated in terms of ligand rigidity. It is proposed that the 2,3 position bonding sites result in luminescence-quenching ligand motion, as supported by X-ray diffraction and temperature-dependent luminescence studies.

Furman, Joshua D.; Burwood, Ryan P.; Tang, Min; Mikhailovsky, Alexander A.; Cheetham, Anthony K. (Cambridge); (UCSB)

2011-11-17T23:59:59.000Z

455

Oklahoma Industrial Energy Management Program  

E-Print Network [OSTI]

The need for sound energy management is no longer worthy of debate. Action is necessary and much is being done by U.S. industry. Unfortunately, however, the majority of the work is being done by the few large energy intensive industries throughout...

Turner, W. C.; Webb, R. E.; Phillips, J. M.; Viljoen, T. A.

1979-01-01T23:59:59.000Z

456

College of Engineering Industrial Engineering  

E-Print Network [OSTI]

College of Engineering Industrial Engineering Core 2.0 Completion Checklist Industrial Engineering) 6 Research and Creative Experience R EIND 499R (I&ME 444 R and I&ME 445 R) Note: Courses completed Social Sciences; * EGEN 310 (ENGR 310), Multidisciplinary Engineering Design, may be substituted

Dyer, Bill

457

Creating Value Wood Products Industry  

E-Print Network [OSTI]

Louisiana Forest Products Development Center #12;2 Louisiana is blessed with quality timberland for the Wood Products Industry The forest industry contributes more than 50 percent of the total value of all for quality information, research and education in forest products in Louisiana, recognized regionally

458

Forschungsschwerpunkt S92 Industrial Geometry  

E-Print Network [OSTI]

Forschungsschwerpunkt S92 Industrial Geometry http://www.ig.jku.at Computational Geometry Robot Kinematics Computer Aided Geometric Design Image Processing INDUSTRIAL GEOMETRY Classical Geometry Computer unwanted branches of the implicitly defined curves. Moreover, it is required for many applications, e

Jüttler, Bert

459

Energy Savings in Industrial Buildings  

E-Print Network [OSTI]

The industrial sector accounts for more than one-third of total energy use in the United States and emits 28.7 percent of the countrys greenhouse gases. Energy use in the industrial sector is largely for steam and process heating systems...

Zhou, A.; Tutterow, V.; Harris, J.

460

Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: October-December 1997  

SciTech Connect (OSTI)

This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period October--December 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included efforts to optimize the processing conditions for Enhanced Sludge Washing of Hanford tank sludge, the testing of candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the Melton Valley Storage Tanks, and attempts to develop a cesium-specific spherical inorganic sorbent for the treatment of acidic high-salt waste solutions. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed and experimental collaborative efforts with Russian scientists to determine the solidification conditions of yttrium barium, and copper oxides from their melts were completed.

Jubin, R.T.

1999-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Chemical Accelerators The phrase "chemical accelerators"  

E-Print Network [OSTI]

bonds, 2 to 10 ev). The methods that have revealed this richness and order of medium- and high-energy, mass spectrometry. While hot-atom studies overcome the energy limitations of thermochemical methods energies of a few electron volts. Most studies of chemical kinetics made by traditional thermochemical

Zare, Richard N.

462

CHEMICAL ABBREVIATION KEY ABBREVIATION CHEMICAL NAME HAZARDS  

E-Print Network [OSTI]

Corrosive - base LiCl Lithium chloride Harmful MeOH Methanol Flammable #12;CHEMICAL ABBREVIATION KEY Irritant destain Methanol,acetic acid,H2O Flammable, Corrosive - acid DI H2O Deionized water DCM FeCl3 Iron(III) chloride Corrosive - acid FeSO4 Iron(II) sulfate Toxic H2O Water HCl Hydrochloric

Pawlowski, Wojtek

463

Subscriber access provided by UNIV OF WISCONSIN -MADISON Journal of the American Chemical Society is published by the American Chemical  

E-Print Network [OSTI]

Throughout most of human history, renewable biomass resources have been the primary industrial and consumer and chemicals are now produced from edible resources, such as starch, sugars, and oils; the challenges imposed needs of humanity and natural gas resources will be increasingly inaccessible.2 Moreover, consumers

Raines, Ronald T.

464

The Pacific Northwest National Laboratory delivers financially attractive systems that use biomass to produce industrial and consumer products.  

E-Print Network [OSTI]

biomass to produce industrial and consumer products. While biomass holds potential for a ready supply from biomass--has stymied government and industry alike. The U.S. Department of Energy's Pacific to using biomass. Our research is focused on producing high-value bioproducts, such as chemicals

465

Chemical Engineering Division research highlights, 1979  

SciTech Connect (OSTI)

In 1979, CEN conducted research and development in the following areas: (1) high-temperature, rechargeable lithium/iron sulfide batteries for electric vehicles and electric utility load leveling; (2) ambient-temperature batteries - improved lead-acid, nickel/zinc, and nickel/iron - for electric vehicles; (3) molten carbonate fuel cells for use by electric utilities; (4) coal technology - mainly fluidized-bed combustion of coal in the presence of SO/sub 2/ sorbent of limestone; (5) heat- and seed- recovery technology for open-cycle magnetohydrodynamic systems; (6) solar energy collectors and thermal energy storage; (7) fast breeder reactor chemistry research - chemical support of reactor safety studies, chemistry of irradiated fuels, and sodium technology; (8) fuel cycle technology - reprocessing of nuclear fuels, management of nuclear wastes, geologic migration studies, and proof-of-breeding studies for the Light Water Breeder Reactor; (9) magnetic fusion research - lithium processing technology and materials research; and (10) basic energy sciences - homogeneous catalysis, thermodynamics of inorganic and organic materials, environmental chemistry, electrochemistry, and physical properties of salt vapors. Separate abstracts were prepared for each of these areas.

Burris, L.; Webster, D. S.; Barney, D. L.; Cafasso, F. A.; Steindler, M. J.

1980-06-01T23:59:59.000Z

466

Chemical Engineering Andrew Zydney  

E-Print Network [OSTI]

;ChE Employment (2003 at PSU) Merck Dow ExxonMob Air Products Amgen PPG Sunoco Kraft Foods NRC Procter, microelectronics, consumer products, biotechnology, fuels / energy, environmental engineering, etc. ·Chemical Engineers focus on the processes involved in making new products, including chemical reactions

Maranas, Costas

467

Uranium industry annual 1993  

SciTech Connect (OSTI)

Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

Not Available

1994-09-01T23:59:59.000Z

468

AVLIS industrial access program  

SciTech Connect (OSTI)

This document deals with the procurements planned for the construction of an Atomic Vapor Laser Isotope Separation (AVLIS) production plant. Several large-scale AVLIS facilities have already been built and tested; a full-scale engineering demonstration facility is currently under construction. The experience gained from these projects provides the procurement basis for the production plant construction and operation. In this document, the status of the AVLIS process procurement is presented from two viewpoints. The AVLIS Production Plant Work Breakdown Structure is referenced at the level of the items to be procured. The availability of suppliers for the items at this level is discussed. In addition, the work that will result from the AVLIS enrichment plant project is broken down by general procurement categories (construction, mechanical equipment, etc.) and the current AVLIS suppliers are listed according to these categories. A large number of companies in all categories are currently providing AVLIS equipment for the Full-Scale Demonstration Facility in Livermore, California. These companies form an existing and expanding supplier network for the AVLIS program. Finally, this document examines the relationship between the AVLIS construction project/operational facility and established commercial suppliers. The goal is to utilize existing industrial capability to meet the needs of the project in a competitive procurement situation. As a result, costs and procurement risks are both reduced because the products provided come from within the AVLIS suppliers' experience base. At the same time, suppliers can benefit by the potential to participate in AVLIS technology spin-off markets. 35 figures.

Not Available

1984-11-15T23:59:59.000Z

469

Tortuous path chemical preconcentrator  

DOE Patents [OSTI]

A non-planar, tortuous path chemical preconcentrator has a high internal surface area having a heatable sorptive coating that can be used to selectively collect and concentrate one or more chemical species of interest from a fluid stream that can be rapidly released as a concentrated plug into an analytical or microanalytical chain for separation and detection. The non-planar chemical preconcentrator comprises a sorptive support structure having a tortuous flow path. The tortuosity provides repeated twists, turns, and bends to the flow, thereby increasing the interfacial contact between sample fluid stream and the sorptive material. The tortuous path also provides more opportunities for desorption and readsorption of volatile species. Further, the thermal efficiency of the tortuous path chemical preconcentrator is comparable or superior to the prior non-planar chemical preconcentrator. Finally, the tortuosity can be varied in different directions to optimize flow rates during the adsorption and desorption phases of operation of the preconcentrator.

Manginell, Ronald P. (Albuquerque, NM); Lewis, Patrick R. (Albuquerque, NM); Adkins, Douglas R. (Albuquerque, NM); Wheeler, David R. (Albuquerque, NM); Simonson, Robert J. (Cedar Crest, NM)

2010-09-21T23:59:59.000Z

470

Influence of inorganic compounds on char formation and quality of fast pyrolysis oils  

SciTech Connect (OSTI)

Inorganic compounds, especially potassium, calcium, sodium, silicon, phosphorus, and chlorine, are the main constituents of ash in biomass feedstocks. The concentrations of ash in biomass feedstocks range from less than 1% in softwoods to 15% in herbaceous biomass and agricultural residues. During biomass pyrolysis, these inorganics, especially potassium and calcium, catalyze both decomposition and char formation reactions. Decomposition reactions may either result in levoglucosan-rich or hydroxyacetaldehyde-rich pyrolysis products depending on the concentration of the ash in the feedstocks. The catalytic effect of the ash levels off at high organic ion concentrations. Chars formed during these reactions invariably end up in the pyrolysis oils (biofuel oils). A high proportion of the alkali metals in the ash are sequestered in the chars. The presence of high concentrations of alkali metals in the biofuel oils make them unsuitable for combustion in boilers, diesel engines, and in turbine operations. The highest concentration of alkali metals are found in herbaceous feedstocks and agricultural residue biofuel oils. Leaching studies conducted on the chars suspended in the oils showed no leaching of the alkali metals from the chars into the oils. Our data suggest that hot gas filtration of the oils can effectively reduce the alkali metals contents of the biofuel oils to acceptable levels to be used as turbine, diesel engine, and boiler fuels.

Agbleyor, F.A.; Besler, S.; Montane, D. [National Renewable Energy Lab., Golden, CO (United States)

1995-12-01T23:59:59.000Z

471

Polymeric media comprising polybenzimidazoles N-substituted with organic-inorganic hybrid moiety  

DOE Patents [OSTI]

A PBI compound includes imidazole nitrogens at least a portion of which are substituted with an organic-inorganic hybrid moiety may be included in a separator medium. At least 85% of the imidazole nitrogens may be substituted. The organic-inorganic hybrid moiety may be an organosilane moiety, for example, (R)Me.sub.2SiCH.sub.2-- where R is selected from among methyl, phenyl, vinyl, and allyl. The separatory medium may exhibit an H.sub.2, Ar, N.sub.2, O.sub.2, CH.sub.3, or CO.sub.2 gas permeability greater than the gas permeability of a comparable separatory medium comprising the PBI compound without substitution. The separatory medium may further include an electronically conductive medium and/or ionically conductive medium. The separatory medium may be used as a membrane (semi-permeable, permeable, and non-permeable), a barrier, an ion exhcange media, a filter, a gas chromatography coating (such as stationary phase coating in affinity chromatography), etc.

Klaehn, John R. (Idaho Falls, ID) [Idaho Falls, ID; Peterson, Eric S. (Idaho Falls, ID) [Idaho Falls, ID; Wertsching, Alan K. (Idaho Falls, ID) [Idaho Falls, ID; Orme, Christopher J. (Shelley, ID) [Shelley, ID; Luther, Thomas A. (Idaho Falls, ID) [Idaho Falls, ID; Jones, Michael G. (Pocatello, ID) [Pocatello, ID

2009-12-15T23:59:59.000Z

472

PhD Chemical Engineering MS Chemical Engineering  

E-Print Network [OSTI]

1 PhD Chemical Engineering MS Chemical Engineering Bylaws Gene and Linda Voiland School of Chemical Engineering and Bioengineering College of Engineering and Architecture Approved by Voiland School facultyD Chemical Engineering, MS Chemical Engineering B. Discipline: Edgar, et al.1 provide a succinct description

Collins, Gary S.

473

Appendix B: Chemicals Appendix B: Chemicals B-3  

E-Print Network [OSTI]

of chemicals, we can increase food production, cure diseases, build more efficient houses, and send people are exposed to chemicals by inhalation (breathing air), ingestion (eating exposed plants and animalsAppendix B: Chemicals #12;Appendix B: Chemicals B-3 Appendix B: Chemicals This appendix presents

Pennycook, Steve

474

Industrial Carbon Management Initiative (ICMI)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heat in a combustion process while producing a concentrated CO 2 stream to facilitate carbon capture. Chemical looping research efforts can be categorized as: modeling tool...

475

Energy conservation guide for industrial processes  

SciTech Connect (OSTI)

Th Energy Conservation Guide for industrial processes has simple instructions to survey energy use areas at Navy industrial activities like shipyards, Naval air rework facilities and government owned, contractor operated (GOCO) plants. This guide includes information and procedures on: organizing and conducting an industrial energy survey; evaluating purchased energy data; descriptions of industrial systems; and evaluation of industrial processes for conservation.

Not Available

1981-01-01T23:59:59.000Z

476

UNDERGRADUATE DEGREES Industrial and Systems Engineering  

E-Print Network [OSTI]

UNDERGRADUATE DEGREES Industrial and Systems Engineering The Bachelor's Degree in Industrial, consulting at amusement parks, analyzing systems, and beyond. SYSTEMS ScIENcE AND INDUSTRIAl ENGINEERING of Engineering in Industrial Engineering (MEng IE) equips graduates to be effective in industry and provides

Suzuki, Masatsugu

477

The industrial ecology of the iron casting industry  

E-Print Network [OSTI]

Metal casting is an energy and materials intensive manufacturing process, which is an important U.S. industry. This study analyzes iron casting, in particular, for possible improvements that will result in greater efficiencies ...

Jones, Alissa J. (Alissa Jean)

2007-01-01T23:59:59.000Z

478

The Effects of Inorganic Solid Particles on Water and Crude Oil Emulsion Stability  

E-Print Network [OSTI]

are found in a variety of industries, from food and pharmaceuticals to petroleum production and refining and refining operations of the petroleum industry. 2. Background 2.1. Surface-Active Species in Petroleum. Emulsions result from the mixing of two immiscible liquids. One of the liquids, the disperse phase

Kilpatrick, Peter K.

479

Alternative Fuels and Chemicals from Synthesis Gas  

SciTech Connect (OSTI)

The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE?s LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

None

1998-12-02T23:59:59.000Z

480

chemical_methods | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storage CleanDiscovery of θ 135a.ComparisonChemical

Note: This page contains sample records for the topic "industrial inorganic chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

A NEW GENERATION CHEMICAL FLOODING SIMULATOR  

SciTech Connect (OSTI)

The premise of this research is that a general-purpose reservoir simulator for several improved oil recovery processes can and should be developed so that high-resolution simulations of a variety of very large and difficult problems can be achieved using state-of-the-art algorithms and computers. Such a simulator is not currently available to the industry. The goal of this proposed research is to develop a new-generation chemical flooding simulator that is capable of efficiently and accurately simulating oil reservoirs with at least a million gridblocks in less than one day on massively parallel computers. Task 1 is the formulation and development of solution scheme, Task 2 is the implementation of the chemical module, and Task 3 is validation and application. In this final report, we will detail our progress on Tasks 1 through 3 of the project.

Gary A. Pope; Kamy Sepehrnoori; Mojdeh Delshad

2005-01-01T23:59:59.000Z

482

Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions  

SciTech Connect (OSTI)

United States industry consumed 32.5 Quads (34,300 PJ) of energy during 2003, which was 33.1% of total U.S. energy consumption (EIA 2003 Annual Energy Review). The U.S. industrial complex yields valuable goods and products. Through its manufacturing processes as well as its abundant energy consumption, it supports a multi-trillion dollar contribution to the gross domestic product and provides millions of jobs in the U.S. each year. Industry also yields waste products directly through its manufacturing processes and indirectly through its energy consumption. These waste products come in two forms, chemical and thermal. Both forms of waste have residual energy values that are not routinely recovered. Recovering and reusing these waste products may represent a significant opportunity to improve the energy efficiency of the U.S. industrial complex. This report was prepared for the U.S. Department of Energy Industrial Technologies Program (DOE-ITP). It analyzes the opportunity to recover chemical emissions and thermal emissions from U.S. industry. It also analyzes the barriers and pathways to more effectively capitalize on these opportunities. A primary part of this analysis was to characterize the quantity and energy value of the emissions. For example, in 2001, the industrial sector emitted 19% of the U.S. greenhouse gases (GHG) through its industrial processes and emitted 11% of GHG through electricity purchased from off-site utilities. Therefore, industry (not including agriculture) was directly and indirectly responsible for emitting 30% of the U.S. GHG. These emissions were mainly comprised of carbon dioxide (CO2), but also contained a wide-variety of CH4 (methane), CO (carbon monoxide), H2 (hydrogen), NMVOC (non-methane volatile organic compound), and other chemicals. As part of this study, we conducted a survey of publicly available literature to determine the amount of energy embedded in the emissions and to identify technology opportunities to capture and reuse this energy. As shown in Table E-1, non-CO2 GHG emissions from U.S. industry were identified as having 2180 peta joules (PJ) or 2 Quads (quadrillion Btu) of residual chemical fuel value. Since landfills are not traditionally considered industrial organizations, the industry component of these emissions had a value of 1480 PJ or 1.4 Quads. This represents approximately 4.3% of the total energy used in the United States Industry.

Viswanathan, Vish V.; Davies, Richard W.; Holbery, Jim D.

2006-04-01T23:59:59.000Z

483

Resolving the ambiguities: An industrial hygiene Indoor Air Quality (IAQ) symposium  

SciTech Connect (OSTI)

Resolving the Ambiguities: An Industrial Hygiene (IAQ) Symposium was a one-day event designed to inform practicing industrial hygienists about highlight presentations made at Indoor Air `93. A broad range of topics was presented by invited speakers. Topics included were attempts to deal with guidelines and standards, questionnaires, odors and sensory irritation, respiratory allergies, neuroses, sick building syndrome (SBS), and multiple chemical sensitivity (MCS).

Gammage, R.B.

1995-01-01T23:59:59.000Z

484

Chemical process hazards analysis  

SciTech Connect (OSTI)

The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

NONE

1996-02-01T23:59:59.000Z

485

Specimen Curriculum for Chemical Engineering Focus Area: Chemical Engineering  

E-Print Network [OSTI]

Chemistry Chem 220B 3 hours Physical Chemistry Chem 230 3 hours Chemical Reactor Engineering ChBE 225 3Specimen Curriculum for Chemical Engineering Focus Area: Chemical Engineering Semester hours SOPHOMORE YEAR FALL SPRING Chem 219A

Bordenstein, Seth

486

Chemical Sciences Project Description  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheck In &Chemical LabelChemicalChemicalModeling

487

Hazardous and Industrial Waste (Minnesota)  

Broader source: Energy.gov [DOE]

This section describes standards that must be met by facilities generating and processing hazardous and industrial waste, as well as required permits for the construction and operation of such a...

488

The steam engine and industrialization  

E-Print Network [OSTI]

Simon Schaffer in York Rail Museum talks to the camera about the relationship between the steam engine and industrialization and whatsteam meant; a regular supply of moving power for workshops and factories....

Dugan, David

2004-08-17T23:59:59.000Z

489

China's Nuclear Industry After Fukushima  

E-Print Network [OSTI]

2013-9 January 2013 Chinas Nuclear Industry After FukushimaMarch 2011 Fukushima nuclear accident has had a significanton the future of Chinas nuclear power. First, it highlights

YUAN, Jingdong

2013-01-01T23:59:59.000Z

490

Uncertainty, investment, and industry evolution  

E-Print Network [OSTI]

We study the effects of aggregate and idiosyncratic uncertainty on the entry of firms, total investment, and prices in a competitive industry with irreversible investment. We first use standard dynamic programming methods ...

Caballero, Ricardo J.

1992-01-01T23:59:59.000Z

491

Big Picture 19912012 other industry  

E-Print Network [OSTI]

% Academic 49% Research 8% Consulting 11% Finance 12% other industry 20% Where are the ORC Ph.D. graduates Semiconductors Lincoln Vale NonAcademic Jobs Small Firms Big Firms ORC Alumni Startups Academic 49% Research 8

492

Integrated Industrial Wood Chip Utilization  

E-Print Network [OSTI]

The sources of supply of wood residues for energy generation are described and the rationale for exploring the potential available from forest harvesting is developed. Details of three industrial-scale projects are presented and the specific...

Owens, E. T.

1984-01-01T23:59:59.000Z

493

Industrial Mathematics and Inverse Problems  

E-Print Network [OSTI]

#12;The Industrial Mathematics Structure in Linz 5 #12;The Blast Furnace Process 6 #12;Aims": Looking for causes of an observed or desired effect! A.Tikhonov ( 1936), geophysical problems. F

Fulmek, Markus

494

Outlook for Industrial Energy Benchmarking  

E-Print Network [OSTI]

The U.S. Environmental Protection Agency is exploring options to sponsor an industrial energy efficiency benchmarking study to identify facility specific, cost-effective best practices and technologies. Such a study could help develop a common...

Hartley, Z.

495

China's Nuclear Industry After Fukushima  

E-Print Network [OSTI]

Brief 2013-9 January 2013 Chinas Nuclear Industry Aftera significant impact on the future of Chinas nuclear power.the importance of safety as China builds more nuclear power

YUAN, Jingdong

2013-01-01T23:59:59.000Z

496

Industrial Plans for AEO2014  

U.S. Energy Information Administration (EIA) Indexed Site

you for your attention 10 Industrial Team Washington DC, July 30, 2013 Macro Team: Kay Smith (202) 586-1132 | kay.smith@eia.gov Vipin Arora (202) 586-1048 | vipin.arora@eia.gov...

497

Industrial Use of Infrared Inspections  

E-Print Network [OSTI]

Infrared is and has been an established technology in the military and aerospace fields. However, only relatively recently has this technology found a "use" in the industrial sector. Many reasons exist why the technology has not been used...

Duch, A. A.

1979-01-01T23:59:59.000Z

498

Electric Utility Industrial Conservation Programs  

E-Print Network [OSTI]

The Alliance to Save Energy conducted a study, funded by the John A. Hartford Foundation, of industrial and commercial electricity conservation opportunities in the service territory of Arkansas Power and Light Company (AP&L). The study determined...

Norland, D. L.

1983-01-01T23:59:59.000Z

499

CALIFORNIA ENERGY PETROLEUM INDUSTRY INFORMATION  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION PETROLEUM INDUSTRY INFORMATION REPORTING ACT (PIIRA) PROGRAM REPORTING PETROLEUM AND NON-PETROLEUM ................................................... 40 PRODUCT DEFINITIONS Major Petroleum Product Storer and Terminal Weekly Report Major petroleum product storers, terminal

500

Three Essays on Industrial Organization  

E-Print Network [OSTI]

The dissertation discusses issues in the field of industrial organization. When the government provides better infrastructure to competing firms for innovation, private firms' R&D expenditures are affected. When the ...

Lee, Yang Seung

2008-12-18T23:59:59.000Z