Powered by Deep Web Technologies
Note: This page contains sample records for the topic "industrial hot water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Solar hot water demonstration project at Red Star Industrial Laundry, Fresno, California  

SciTech Connect (OSTI)

The Final Report of the Solar Hot Water System located at the Red Star Industrial Laundry, 3333 Sabre Avenue, Fresno, California, is presented. The system was designed as an integrated wastewater heat recovery and solar preheating system to supply a part of the hot water requirements. It was estimated that the natural gas demand for hot water heating could be reduced by 56 percent (44 percent heat reclamation and 12 percent solar). The system consists of a 16,500 gallon tube-and-shell wastewater heat recovery subsystem combined with a pass-through 6,528 square foot flat plate Ying Manufacturing Company Model SP4120 solar collector subsystem, a 12,500 gallon fiber glass water storage tank subsystem, pumps, heat exchangers, controls, and associated plumbing. The design output of the solar subsystem is approximately 2.6 x 10/sup 9/ Btu/year. Auxiliary energy is provided by a gas fired low pressure boiler servicing a 4,000 gallon service tank. This project is part of the US Department of Energy's Solar Demonstration Program with DOE sharing $184,841 of the $260,693 construction cost. The system was turned on in July 1977, and acceptance tests completed in September 1977. The demonstration period for this project ends September 2, 1982.

None

1980-07-01T23:59:59.000Z

2

Cornell University Hot Water Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hot Water System Hot Water System The production and delivery of hot water in the CUSD home is technologically advanced, economical, and simple. Hot water is produced primarily by the evacuated solar thermal tube collectors on the roof of the house. The solar thermal tube array was sized to take care of the majority of our heating and hot water needs throughout the course of the year in the Washington, DC climate. The solar thermal tube array also provides heating to the radiant floor. The hot water and radiant floor systems are tied independently to the solar thermal tube array, preventing the radiant floor from robbing the water heater of much needed thermal energy. In case the solar thermal tubes are not able to provide hot water to our system, the hot water tank contains an electric heating

3

Arnold Schwarzenegger WATER HEATERS AND HOT WATER  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor WATER HEATERS AND HOT WATER DISTRIBUTION SYSTEMS;#12;Appendices Appendix A. Multifamily Water Heating Construction Practices, Pricing and Availability Survey Report Appendix B. Multifamily Water Heating Controls Performance Field Report Appendix C. Pipe

4

NREL: Learning - Solar Hot Water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hot Water Hot Water Photo of solar collectors on a roof for a solar hot water system. For solar hot water systems, flat-plate solar collectors are typically installed facing south on a rooftop. The shallow water of a lake is usually warmer than the deep water. That's because the sunlight can heat the lake bottom in the shallow areas, which in turn, heats the water. It's nature's way of solar water heating. The sun can be used in basically the same way to heat water used in buildings and swimming pools. Most solar water heating systems for buildings have two main parts: a solar collector and a storage tank. The most common collector is called a flat-plate collector. Mounted on the roof, it consists of a thin, flat, rectangular box with a transparent cover that faces the sun. Small tubes

5

Commercial Solar Hot Water Financing Program  

Broader source: Energy.gov [DOE]

The Massachusetts Clean Energy Center (MassCEC) and Paradigm Partners are offering a solar hot water financing program in order to meet MassCEC's objective of growing the commercial solar hot water...

6

Continuous Commissioning of a Central Chilled Water & Hot Water System  

E-Print Network [OSTI]

A central chilled water / hot water system provides cooling / heating energy from central utility plants to multiple customers (buildings) through campus distribution loops. To effectively transport the chilled water and hot water to the buildings...

Deng, S.; Turner, W. D.; Batten, T.; Liu, M.

2000-01-01T23:59:59.000Z

7

Solar Hot Water Market Development in Knoxville, TN | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information Resources Solar Hot Water Market Development in Knoxville, TN Solar Hot Water Market Development in Knoxville, TN Assessment of local solar hot water markets, market...

8

Solar Works in Seattle: Domestic Hot Water  

Broader source: Energy.gov [DOE]

Seattle's residential solar hot water workshop. Content also covers general solar resource assessment, siting, and financial incentives.

9

dist_hot_water.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

District Hot Water Usage Form District Hot Water Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed questionnaire is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y our company. a. You may submit a single report for the entire building, or if it i s easier, a separate report for each of several accounts in the building. These will then be aggregated by the survey contractor. b. If you are concerned about your individual account information, you may c

10

Are we putting in hot water?  

E-Print Network [OSTI]

, and habitat loss will increase. And while slightly warmer water may not sound so bad to many of us, its effectAre we putting our fish in hot water? Global warming and the world's fisheries · Hot, hungry, and gasping for air · Shrinking fish and fewer babies? · Global warming puts fish on the run · Warm water

Combes, Stacey A.

11

Solar Hot Water Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of solar hot water (SHW) technologies supplemented by specific information to apply SHW within the Federal sector.

12

Monitoring SERC Technologies Solar Hot Water  

Broader source: Energy.gov [DOE]

A webinar by National Renewable Energy Laboratory analyst Eliza Hotchkiss on Solar Hot Water systems and how to properly monitor their installation.

13

Disaggregating residential hot water use. Part 2  

SciTech Connect (OSTI)

A major obstacle to gathering detailed data on end-use hot water consumption within residences and commercial buildings is the cost and complexity of the field tests. An earlier study by the authors presented a methodology that could accurately disaggregate hot water consumption into individual end-uses using only information on the flow of hot water from the water heater. The earlier methodology can be extended to a much larger population of buildings, without greatly increasing the cost and complexity of the data collection and analysis, by monitoring the temperature of the hot water lines that go to different parts of the building. For the three residences studied here, thermocouples /monitored the temperatures of four hot water lines at each site. The thermocouple readings provide a positive indication of when hot water starts to flow in a line. Since the end-uses served by each hot water line are known, the uncertainty in assigning a draw to a particular end-use is greatly reduced. Benefits and limitations for the methodology are discussed in the paper. Using the revised methodology, hot water usage in three residences is disaggregated into the following end-uses: showers, baths, clothes washing, dishwashing, kitchen sink, and bathroom sink. For two residences, the earlier methodology--which does not use the thermocouple data--is also used to disaggregate the same draw data.

Lowenstein, A. [AIL Research, Inc., Princeton, NJ (United States); Hiller, C.C. [Electric Power Research Inst., Palo Alto, CA (United States)

1998-10-01T23:59:59.000Z

14

Hot Water DJ: Saving Energy by Pre-mixing Hot Water Md Anindya Prodhan  

E-Print Network [OSTI]

Hot Water DJ: Saving Energy by Pre-mixing Hot Water Md Anindya Prodhan Department of Computer University of Virginia whitehouse@virginia.edu Abstract After space heating and cooling, water heating consumption. Current water heating systems waste up to 20% of their energy due to poor insulation in pipes

Whitehouse, Kamin

15

Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes  

SciTech Connect (OSTI)

While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

Henderson, H.; Wade, J.

2014-04-01T23:59:59.000Z

16

Commonwealth Solar Hot Water Commercial Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Commonwealth Solar Hot Water Commercial Program Commonwealth Solar Hot Water Commercial Program Commonwealth Solar Hot Water Commercial Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Local Government Multi-Family Residential Nonprofit Schools State Government Tribal Government Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Feasibility study: $5,000; Construction: 25% system costs or $50,000 Program Info Funding Source Massachusetts Renewable Energy Trust Fund Start Date 08/04/2011 State Massachusetts Program Type State Rebate Program Rebate Amount Feasibility study: $5,000; Construction grants: $45*number of collectors*SRCC Rating (Private); $55*number of collectors*SRCC Rating (Public/Non-Profit) Massachusetts Manufactured adder: $200-$500 Metering adder: Up to $1,500

17

Model Simulating Real Domestic Hot Water Use - Building America...  

Energy Savers [EERE]

Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Image of a pipe...

18

Webinar: ENERGY STAR Hot Water Systems for High Performance Homes...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Webinar: ENERGY STAR Hot Water Systems for High Performance Homes Webinar: ENERGY STAR Hot Water Systems for High Performance Homes This presentation is from the Building America...

19

Green Systems Solar Hot Water  

E-Print Network [OSTI]

,2; basement) Pre-heats water so water heaters don't need to use as much energy Gas-powered, high efficiency heated water before it is circulated through the building Two gas boilers (GWB-1,2; basement) can be used

Schladow, S. Geoffrey

20

University of Colorado Hot Water Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hot water system Brief Contest Report Hot water system Brief Contest Report Recognizing that the sun is an abundant source of clean energy that reaches the earth at an intensity of up to 1000 Watts/m 2 , the University of Colorado will be showcasing top-of-the-line technology in which solar radiation is converted into heat for the purposes of heating the home and providing domestic hot water. Solar Thermal System - Basics Colorado's 2005 Solar Decathlon team has chosen to harness the sun's thermal energy with 4 arrays of 20 Mazdon evacuated tube collectors manufactured by Thermomax, as shown in Figure 1 below. These collectors have incredibly high efficiencies - about 60% over the course of an entire day. In addition, the evacuated tube collectors resist internal condensation and corrosion more effectively than their counterparts

Note: This page contains sample records for the topic "industrial hot water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Hot Water Heating System Operation and Energy Conservation  

E-Print Network [OSTI]

Based on an example of the reconstruction of a hot water heating system, this paper provides an analysis and comparison of the operations of hot water heating systems, including supply water temperature adjustment, flow adjustment during each...

Shao, Z.; Chen, H.; Wei, P.

2006-01-01T23:59:59.000Z

22

Residential hot water distribution systems: Roundtablesession  

SciTech Connect (OSTI)

Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

2002-08-01T23:59:59.000Z

23

Water Heaters and Hot Water Distribution Systems  

E-Print Network [OSTI]

Building Energy Efficiency Standards .. 4 Multi-Family Water Heating.. 4 Pipe HeatBuilding Energy Efficiency Standards The scope of this task included the following subtasks; Multi-Family Water Heating, Pipe Heat

Lutz, Jim

2012-01-01T23:59:59.000Z

24

Alternatives for reducing hot-water bills  

SciTech Connect (OSTI)

A two stage approach to reducing residential water heating bills is described. In Stage I, simple conservation measures were included to reduce the daily hot water energy consumption and the energy losses from the water tank. Once these savings are achieved, Stage II considers more costly options for further reducing the water heating bill. Four alternatives are considered in Stage II: gas water heaters; solar water heaters (two types); heat pump water heaters; and heat recovery from a heat pump or air conditioner. To account for variations within the MASEC region, information on water heating in Rapid City, Minneapolis, Chicago, Detroit, and Kansas City is presented in detail. Information on geography, major population centers, fuel prices, climate, and state solar incentives is covered. (MCW)

Bennington, G.E.; Spewak, P.C.

1981-06-01T23:59:59.000Z

25

Solar Hot Water Resources and Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Hot Water Resources and Technologies Solar Hot Water Resources and Technologies Solar Hot Water Resources and Technologies October 7, 2013 - 11:49am Addthis Photo of a standalone solar hot water system standing in front of a clothesline with a backdrop of evergreen trees. This solar hot water system tracks sunlight using a standalone, single-axis mount to optimize hot water production for residential applications. This page provides a brief overview of solar hot water (SHW) technologies supplemented by specific information to apply SHW within the Federal sector. Overview Although a large variety of solar hot water systems exist, the basic technology is simple. A collector absorbs and transfers heat from the sun to water, which is stored in a tank until needed. Active solar heating systems use circulating pumps and controls. These are more expensive but

26

Federal Energy Management Program: Solar Hot Water Resources and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Hot Water Solar Hot Water Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Solar Hot Water Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Solar Hot Water Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Solar Hot Water Resources and Technologies on Google Bookmark Federal Energy Management Program: Solar Hot Water Resources and Technologies on Delicious Rank Federal Energy Management Program: Solar Hot Water Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Solar Hot Water Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

27

Microwave vs. Electric Kettle: Which Appliance Is in Hot Water...  

Energy Savers [EERE]

Microwave vs. Electric Kettle: Which Appliance Is in Hot Water in EnergyFaceoff Round 4? Microwave vs. Electric Kettle: Which Appliance Is in Hot Water in EnergyFaceoff Round 4?...

28

DOE ZERH Webinar: Efficient Hot Water Distribution II: How to...  

Energy Savers [EERE]

DOE ZERH Webinar: Efficient Hot Water Distribution II: How to Get it Right DOE ZERH Webinar: Efficient Hot Water Distribution II: How to Get it Right Watch the video or view the...

29

An Energy Policy Perspective on Solar Hot Water Equipment Mandates  

E-Print Network [OSTI]

An Energy Policy Perspective on Solar Hot Water Equipmentlast dol- ENERGY POLICY lar spent on solar equipment gaveENERGY POLICY tween a new house with solar hot water

Williams, Stephen F.

1981-01-01T23:59:59.000Z

30

Hot-water power from the earth  

SciTech Connect (OSTI)

This article examines geothermal sites on the West Coast in order to show the progress that has been made in converting geothermal energy into usable electric power. Only about 0.5% of the earth's geothermal reserve can be brought to the surface as dry steam. California's Imperial Valley is possibly the largest geothermal resource in the US. Three demonstration generating plants are each producing between 10 and 14 MW of power near the valley's Salton Sea. The high-temperature water (above 410/sup 0/F) at Brawley is drawn from wells tapping the subterranean reservoir. It is proposed that hot-water power will be economical when methods are found to extract maximum energy from a geothermal deposit and to control clogging and corrosion caused by minerals dissolved in the hot fluid.

Not Available

1984-02-01T23:59:59.000Z

31

Savings Project: Insulate Hot Water Pipes for Energy Savings | Department  

Broader source: Energy.gov (indexed) [DOE]

Insulate Hot Water Pipes for Energy Savings Insulate Hot Water Pipes for Energy Savings Savings Project: Insulate Hot Water Pipes for Energy Savings Addthis Project Level Medium Energy Savings $8-$12 annually Time to Complete 3 hours for a small house Overall Cost $10-$15 Insulating water pipes can save you water, energy, and money. | Photo courtesy of iStockphoto.com/nsj-images Insulating water pipes can save you water, energy, and money. | Photo courtesy of iStockphoto.com/nsj-images Insulating your hot water pipes reduces heat loss and can raise water temperature 2°F-4°F hotter than uninsulated pipes can deliver, allowing for a lower water temperature setting. You also won't have to wait as long for hot water when you turn on a faucet or showerhead, which helps conserve water. Paying for someone to insulate your pipes-as a project on its own-may

32

Webinar: ENERGY STAR Hot Water Systems for High Performance Homes  

Broader source: Energy.gov (indexed) [DOE]

Star Hot Water Systems for High Performance Homes Star Hot Water Systems for High Performance Homes 1 | Building America Program www.buildingamerica.gov Buildings Technologies Program Date: September 30, 2011 ENERGY STAR ® Hot Water Systems for High Performance Homes Welcome to the Webinar! We will start at 11:00 AM Eastern. There is no call in number. The audio will be sent through your computer speakers. All questions will be submitted via typing. Video of presenters Energy Star Hot Water Systems for High Performance Homes 2 | Building America Program www.buildingamerica.gov Energy Star Hot Water Systems for High Performance Homes 3 | Building America Program www.buildingamerica.gov Building America Program: Introduction Building Technologies Program Energy Star Hot Water Systems for High Performance Homes

33

Design package for solar domestic hot water system  

SciTech Connect (OSTI)

Information used to evaluate the initial design of the Elcam, Inc., Solar Domestic Hot Water System is presented. Included are such items as the system performance specification, detailed design drawings and other information. Elcam, Inc., has developed two solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control, transport, auxiliary energy, and government-furnished Site Data Acquisition. The two systems are installed at Tempe, Arizona, and San Diego, California.

None

1980-09-01T23:59:59.000Z

34

DOE ZERH Webinar: Efficient Hot Water Distribution I: What's...  

Office of Environmental Management (EM)

I: What's at Stake Watch the video or view the presentation below Zero Energy Ready Homes include critical systems to ensure both energy efficiency and performance. Hot water...

35

Mandating Solar Hot Water by California Local Governments: Legal Issues  

E-Print Network [OSTI]

the legality of solar mandates in California cities andCITIES & CALIFORNIA ENERGY COMMISSION, SOLAR HANDBOOK FORMandating Solar Hot Water By California Local Governments:

Hoffman,, Peter C.

1981-01-01T23:59:59.000Z

36

Superheated water drops in hot oil  

E-Print Network [OSTI]

Drops of water at room temperature were released in hot oil, which had a temperature higher than that of the boiling point of water. Initially, the drop temperature increases slowly mainly due to heat transfer diffusion; convective heat transfer is small because the motion takes place at a small Reynolds number. Once the drop reaches the bottom of the container, it sticks to the surface with a certain contact angle. Then, a part of the drop vaporizes: the nucleation point may appear at the wall, the interface or the bulk of the drop. The vapor expands inside the drop and deforms its interface. The way in which the vapor expands, either smooth or violent, depends on the location of the nucleation point and oil temperature. Furthermore, for temperatures close to the boiling point of water, the drops are stable (overheated); the vaporization does not occur spontaneously but it may be triggered with an external perturbation. In this case the growth of the vapor bubble is rather violent. Many visualization for dif...

Soto, Enrique; Belmonte, Andrew

2009-01-01T23:59:59.000Z

37

Solar Hot Water Technology: Office of Power Technologies (OPT) Success Stories Series Fact Sheet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Buildings Program Buildings Program Office of Solar Energy Technologies Every home, commercial building, and indus- trial facility requires hot water. An enormous amount of energy is consumed in the United States producing and maintaining our supply of on-demand hot water; the residential and commercial sectors combined use 3 quads (quadrillion Btus) of energy per year, roughly 3% of the total U.S. energy consumption. As of 1998, 1.2 million systems have been installed on homes in the United States, with 6000 currently being added each year. Yet the potential for growth is huge, as solar hot water systems are supplying less than 2% of the nation's hot water. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors which are being installed in increasing numbers in

38

Reduce Hot Water Use for Energy Savings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reduce Hot Water Use for Energy Savings Reduce Hot Water Use for Energy Savings Reduce Hot Water Use for Energy Savings June 15, 2012 - 5:51pm Addthis Low-flow fixtures and showerheads can achieve water savings of 25%–60%. | Photo courtesy of ©iStockphoto/DaveBolton. Low-flow fixtures and showerheads can achieve water savings of 25%-60%. | Photo courtesy of ©iStockphoto/DaveBolton. What does this mean for me? Fix leaks, install low-flow fixtures, and purchase an energy-efficient dishwasher and clothes washer to use less hot water and save money. You can lower your water heating costs by using and wasting less hot water in your home. To conserve hot water, you can fix leaks, install low-flow fixtures, and purchase an energy-efficient dishwasher and clothes washer. Fix Leaks You can significantly reduce hot water use by simply repairing leaks in

39

Solar Hot Water Creates Savings for Homeless Shelters | Department of  

Broader source: Energy.gov (indexed) [DOE]

Solar Hot Water Creates Savings for Homeless Shelters Solar Hot Water Creates Savings for Homeless Shelters Solar Hot Water Creates Savings for Homeless Shelters July 15, 2010 - 12:10pm Addthis Kevin Craft What are the key facts? Recovery Act funds are being used to install solar hot water systems at 5 Phoenix shelters. The systems will save Phoenox 33,452 kWh of energy -- about $4,000 -- annually. The systems will reduce about 40,000 pounds of carbon emissions annually. "This project will save us a huge amount of money," says Paul Williams, House of Refuge Sunnyslope's Executive Director. Williams is referring to a recent partnership between the state of Arizona and House of Refuge Sunnyslope to install solar hot water systems at five Phoenix-area housing sites for homeless men, which will make an immediate difference at the

40

NREL: Learning - Student Resources on Solar Hot Water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Hot Water Solar Hot Water Photo of a school building next to a pond. Roy Lee Walker Elementary School in Texas incorporates many renewable energy design features, including solar hot water heating. The following resources will help you learn more about solar water heating systems. If you are unfamiliar with this technology, see the introduction to solar hot water. Grades 7-12 NREL Educational Resources Educational resources available to students from the National Renewable Energy Laboratory. High School and College Level U.S. Department of Energy's Energy Savers: Solar Water Heaters Features comprehensive basic information and resources. U.S. Department of Energy's Energy Savers: Solar Swimming Pool Heaters Features comprehensive basic information and resources. U.S. Department of Energy Solar Decathlon

Note: This page contains sample records for the topic "industrial hot water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Solar Hot Water Contractor Licensing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hot Water Contractor Licensing Hot Water Contractor Licensing Solar Hot Water Contractor Licensing < Back Eligibility Installer/Contractor Savings Category Heating & Cooling Solar Water Heating Program Info State Arkansas Program Type Solar/Wind Contractor Licensing Arkansas offers several limited, specialty licenses for solar thermal installers under the general plumbing license. There are three specialty classifications available for solar thermal installers: a Restricted Solar Mechanic license, a Supervising Solar Mechanic license, and a Solar Mechanic Trainee classification. Installers with a Restricted Solar Mechanic license can install and maintain systems used to heat domestic hot water, but are not allowed to perform any other plumbing work. Individuals holding a Supervising Solar Mechanic license are able to supervise, install

42

DOE Solar Decathlon: News Blog » Hot Water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hot Water Hot Water Below you will find Solar Decathlon news from the Hot Water archive, sorted by date. New Contest Data Displays Provide Insight into Competition Scoring Saturday, October 5, 2013 By Solar Decathlon New contest data displays are now available on the U.S. Department of Energy Solar Decathlon website. If you are interested in the real-time performance of each house and want to keep a close eye on the competition, check out the Contests section pages. In the Contests section, the pages for the measured contests (Comfort Zone, Hot Water, Appliances, Home Entertainment, and Energy Balance) explain the contest requirements and provide real-time graphical displays of the accumulated measurements/scores for each team. Roll your cursor over the graphics to see more detailed information about each contest. For example,

43

ENERGY USE AND DOMESTIC HOT WATER CONSUMPTION Final Report  

Office of Scientific and Technical Information (OSTI)

DOMESTIC HOT WATER CONSUMPTION Final Report Phase 1 Prepared for THE N E W YORK STATE ENERGY RESEARCH AND DEVELOPMENT AUTHORITY Project Manager Norine H. Karins Prepared by ENERGY...

44

Guidelines for Estimating Unmetered Industrial Water Use  

SciTech Connect (OSTI)

The document provides a methodology to estimate unmetered industrial water use for evaporative cooling systems, steam generating boiler systems, batch process applications, and wash systems. For each category standard mathematical relationships are summarized and provided in a single resource to assist Federal agencies in developing an initial estimate of their industrial water use. The approach incorporates industry norms, general rules of thumb, and industry survey information to provide methodologies for each section.

Boyd, Brian K.

2010-08-01T23:59:59.000Z

45

Hot water geothermal development: opportunities and pilot plant results  

SciTech Connect (OSTI)

It has been projected that up to 11,000 MW of geothermal electric capacity may be on line in the United States by the year 2000. The majority of this capacity will come from hot water geothermal plants, as dry steam resources are limited. Currently, no commercial hot water geothermal capacity exists in the U.S., although, substantial capacity does exist in other countries. Large hot, high temperature resources exist in Southern California's Imperial Valley. Early research work has led to the technical success of a 10 MW unit at Brawley, and to the construction of second generation pilot unit at the Salton Sea resource.

Crane, G.K.

1982-08-01T23:59:59.000Z

46

City of San Jose - Solar Hot Water Heaters and Photovoltaic Systems Permit  

Broader source: Energy.gov (indexed) [DOE]

San Jose - Solar Hot Water Heaters and Photovoltaic Systems San Jose - Solar Hot Water Heaters and Photovoltaic Systems Permit Requirements City of San Jose - Solar Hot Water Heaters and Photovoltaic Systems Permit Requirements < Back Eligibility Commercial Construction Industrial Installer/Contractor Multi-Family Residential Residential Savings Category Solar Buying & Making Electricity Program Info State California Program Type Solar/Wind Permitting Standards Provider City of San Jose Building, Planning and Electrical Permits are required for Photovoltiac (PV) systems installed in San Jose. In most cases, PV systems must also undergo a Building Plan Review and an Electrical Plan Review. Building Plan Reviews are not required for installations that meet all of the following criteria: 1. Total panel weight (including frame) is not greater than 5 lbs. per

47

Hot New Advances in Water Heating Technology | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology April 18, 2013 - 1:15pm Addthis Learn how a cooperative R&D agreement with the Energy Department's Oak Ridge National Laboratory helped contributed to the success of GE's GeoSpring Hybrid Water Heater -- one of the most efficient electric heat pump water heaters on the market today. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Got Energy Efficiency Questions? Our energy efficiency and renewable energy experts will answer your questions about ways to save money and incorporate renewable energy into your home during our Earth Day Google+ Hangout on April 22 at 3 pm ET. Submit your questions on Twitter, G+ and YouTube using #askEnergy,

48

Hot New Advances in Water Heating Technology | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology April 18, 2013 - 1:15pm Addthis Learn how a cooperative R&D agreement with the Energy Department's Oak Ridge National Laboratory helped contributed to the success of GE's GeoSpring Hybrid Water Heater -- one of the most efficient electric heat pump water heaters on the market today. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Got Energy Efficiency Questions? Our energy efficiency and renewable energy experts will answer your questions about ways to save money and incorporate renewable energy into your home during our Earth Day Google+ Hangout on April 22 at 3 pm ET. Submit your questions on Twitter, G+ and YouTube using #askEnergy,

49

TYPICAL HOT WATER DRAW PATTERNS BASED ON FIELD DATA  

SciTech Connect (OSTI)

There is significant variation in hot water use and draw patterns among households. This report describes typical hot water use patterns in single-family residences in North America. We found that daily hot water use is highly variable both among residences and within the same residence. We compared the results of our analysis of the field data to the conditions and draw patterns established in the current U.S. Department of Energy (DOE) test procedure for residential water heaters. The results show a higher number of smaller draws at lower flow rates than used in the test procedure. The data from which the draw patterns were developed were obtained from 12 separate field studies. This report describes the ways in which we managed, cleaned, and analyzed the data and the results of our data analysis. After preparing the data, we used the complete data set to analyze inlet and outlet water temperatures. Then we divided the data into three clusters reflecting house configurations that demonstrated small, medium, or large median daily hot water use. We developed the three clusters partly to reflect efforts of the ASHRAE standard project committee (SPC) 118.2 to revise the test procedure for residential water heaters to incorporate a range of draw patterns. ASHRAE SPC 118.2 has identified the need to separately evaluate at least three, and perhaps as many as five, different water heater capacities. We analyzed the daily hot water use data within each cluster in terms of volume and number of hot water draws. The daily draw patterns in each cluster were characterized using distributions for volume of draws, duration of draws, time since previous draw, and flow rates.

Lutz, Jim; Melody, Moya

2012-11-08T23:59:59.000Z

50

Commonwealth Solar Hot Water Residential Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Commonwealth Solar Hot Water Residential Program Commonwealth Solar Hot Water Residential Program Commonwealth Solar Hot Water Residential Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Maximum Rebate $3,500 per building or 25% of total installed costs Program Info Funding Source Massachusetts Renewable Energy Trust Fund Start Date 02/07/2011 Expiration Date 12/31/2016 State Massachusetts Program Type State Rebate Program Rebate Amount Base rate: $45 X SRCC rating in thousands btu/panel/day (Category D, Mildly Cloudy Day) Additional $200/system for systems with parts manufactured in Massachusetts Additional $1,500/system for metering installation Adder for natural disaster relief of twice the base rebate.

51

NV Energy (Northern Nevada) - Solar Hot Water Incentive Program |  

Broader source: Energy.gov (indexed) [DOE]

NV Energy (Northern Nevada) - Solar Hot Water Incentive Program NV Energy (Northern Nevada) - Solar Hot Water Incentive Program NV Energy (Northern Nevada) - Solar Hot Water Incentive Program < Back Eligibility Commercial Fed. Government Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Residential electric customers: Lesser of 50% or $2,000 Residential gas customers: Lesser of 30% or $3,000 Small commercial gas customers: Lesser of 30% or $7,500 Nonprofits, schools and other public gas customers: Lesser of 50% or $30,000 Program Info Start Date 2/1/2011 State Nevada Program Type Utility Rebate Program Rebate Amount Residential electric customers: Lesser of 50% or $2,000 Residential gas customers: $14.50 per therm Small commercial gas customers: $14.50 per therm

52

Solar Hot Water Contractor Licensing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Hot Water Contractor Licensing Solar Hot Water Contractor Licensing Solar Hot Water Contractor Licensing < Back Eligibility Installer/Contractor Savings Category Heating & Cooling Solar Water Heating Program Info State Maine Program Type Solar/Wind Contractor Licensing In order to be eligible for Maine's solar thermal rebate program, systems must be installed by licensed plumbers who have received additional certification for solar thermal systems from the North American Board of Certified Energy Practitioners (NABCEP). The state solar thermal rebate program maintains a list of Efficiency Maine registered vendors/installers. In addition, Efficiency Maine has information for vendors interested in becoming registered and listed on the [http://www.efficiencymaine.com/at-home/registered-vendor-locator web

53

Evaporative system for water and beverage refrigeration in hot countries  

E-Print Network [OSTI]

Evaporative system for water and beverage refrigeration in hot countries A Saleh1 and MA Al-Nimr2 1 Abstract: The present study proposes an evaporative refrigerating system used to keep water or other are found to be consistent with the available literature data. Keywords: evaporative refrigeration, heat

54

DOE Solar Decathlon: News Blog » Hot Water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

'Hot Water' 'Hot Water' New Contest Data Displays Provide Insight into Competition Scoring Saturday, October 5, 2013 By Solar Decathlon New contest data displays are now available on the U.S. Department of Energy Solar Decathlon website. If you are interested in the real-time performance of each house and want to keep a close eye on the competition, check out the Contests section pages. In the Contests section, the pages for the measured contests (Comfort Zone, Hot Water, Appliances, Home Entertainment, and Energy Balance) explain the contest requirements and provide real-time graphical displays of the accumulated measurements/scores for each team. Roll your cursor over the graphics to see more detailed information about each contest. For example, in the Appliances Contest graphic, the scores for running the refrigerator,

55

Lessons and Measures Learned from Continuous Commissioning(SM) of Central Chilled/Hot Water Systems  

E-Print Network [OSTI]

water and hot water system operation. It can be performed before, during, or after building side continuous commissioning. Successful central chilled/hot water system CC not only results in improved production and distribution, but also achieves...

Deng, S.; Turner, W. D.; Claridge, D. E.; Bruner, H.; Chen, H.; Wei, G.

2001-01-01T23:59:59.000Z

56

CPS Energy- Solar Hot Water Rebate Program  

Broader source: Energy.gov [DOE]

As part of a larger program designed to reduce electricity demand within its service territory, CPS Energy now offers rebates for solar water heaters to its customers. In general, any CPS Energy...

57

Ocala Utility Services - Solar Hot Water Heating Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Ocala Utility Services - Solar Hot Water Heating Rebate Program Ocala Utility Services - Solar Hot Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate One rebate per account Program Info State Florida Program Type Utility Rebate Program Rebate Amount $450 per system Provider Ocala Utility Services The Solar Water Heater Rebate Program is offered to residential retail electric customers by the City of Ocala Utility Services. Interested customers must complete an application and receive approval from the Ocala Utility Services before installing equipment. The application can be found on the [http://www.ocalafl.org/COO3.aspx?id=947 program web site.] The system must be installed by a licensed Florida contractor on the customer's

58

Improve Chilled Water System Performance, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes how the Industrial Technologies Program Chilled Water System Analysis Tool (CWSAT) can help optimize the performance of of industrial chilled water systems.

Not Available

2008-12-01T23:59:59.000Z

59

Direct Use for Building Heat and Hot Water Presentation Slides and Text Version  

Broader source: Energy.gov [DOE]

Download presentation slides from the DOE Office of Indian Energy webinar on direct use for building heat and hot water.

60

DOE Zero Energy Ready Home Efficient Hot Water Distribution I-- What's At Stake Webinar (Text Version)  

Broader source: Energy.gov [DOE]

Below is the text version of the webinar, Efficient Hot Water Distribution I -- What's At Stake, presented in January 2014.

Note: This page contains sample records for the topic "industrial hot water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Water Heating: Energy-efficient strategies for supplying hot water in the home (BTS Technology Fact Sheet)  

SciTech Connect (OSTI)

Fact sheet for homeowners and contractors on how to supply hot water in the home while saving energy.

NAHB Research Center; Southface Energy Institute; U.S. Department of Energy's Oak Ridge Laboratory; U.S. Department of Energy's National Renewable Energy Laboratory

2001-08-15T23:59:59.000Z

62

Award Recipient of the ENERGY STAR Challenge for Industry Indianapolis Hot  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Indianapolis Hot Fill Plant Indianapolis Hot Fill Plant Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

63

Overheating in Hot Water- and Steam-Heated Multifamily Buildings  

SciTech Connect (OSTI)

Apartment temperature data have been collected from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. The data have been analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating. This research attempts to answer the question, 'What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?' This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort. Apartment temperature data were analyzed for deviation from a 70 degrees F desired setpoint and for variation by heating system type, apartment floor level and ambient conditions. The data shows that overheating is significant in these multifamily buildings with both hot water and steam heating systems.

Dentz, J.; Varshney, K.; Henderson, H.

2013-10-01T23:59:59.000Z

64

Study on the LWT control schemes of a heat pump for hot water supply  

Science Journals Connector (OSTI)

Heat pump systems have been widely used in buildings and industries due to their high performance. In this study, a leaving water temperature control scheme has been proposed for a water-to-water heat pump for hot water supply. The study was focused on the following four schemes: (1) using an auxiliary electric heater, (2) varying compressor speed, (3) adjusting water flow rate, and (4) adding heat to the secondary fluid flow of the heat source. With schemes (2) and (3), the system showed higher performance than other schemes. However, scheme (2) could not attain the appropriate LWT at low EWT heat source conditions. For all EWT conditions, using schemes (3) and (4) enabled the system to reach an appropriate LWT. Scheme (4) can be adopted as the best technology to control LWT, because it is not easy to vary flow rate of the secondary fluid as in scheme (3).

Jong Min Choi

2013-01-01T23:59:59.000Z

65

Water Efficient and Low Pollution Textile Industry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alternative and Emerging Technologies for an Energy Efficient Alternative and Emerging Technologies for an Energy Efficient Water Efficient and Low Pollution Textile Industry year month institution Lawrence Berkeley National Laboratory address Berkeley abstract p Emerging energy efficiency greenhouse gas GHG and pollution mitigation technologies will be crucial for the textile industry as it responds to population and economic growth that is expected to spur a rapid increase in textile consumption over the coming decades and a corresponding increase in the industry textquoteright s absolute energy use and GHG and other pollutant emissions This report gives an overview of textile industry processes and compiles available information on the energy savings environmental and other benefits costs commercialization status and references for emerging technologies to reduce the industry

66

DOE ZERH Webinar: Efficient Hot Water Distribution II: How to Get it Right  

Broader source: Energy.gov [DOE]

Zero Energy Ready Homes include critical systems to ensure both energy efficiency and performance. Hot water distribution is one of these critical systems affecting energy use , water...

67

DOE ZERH Webinar: Efficient Hot Water Distribution I: What's at Stake  

Broader source: Energy.gov [DOE]

Zero Energy Ready Homes include critical systems to ensure both energy efficiency and performance. Hot water distribution is one of these critical systems affecting energy use , water...

68

Energy and water interactions: implications for industry  

Science Journals Connector (OSTI)

The constant increase of the world-wide demand for water and energy makes it necessary to make their use more efficient. For supplying energy, so far mainly fossil fuels are used. The apparent link of energy and water supply increases the cost of delivery and, in many cases, causes shortages of all forms of energy and water. This paper reviews the main trends in the global flows of energy and water supply, identifies the inherent limitations and pays attention also to the concept of virtual water. The implications for industry and of some notable recent research efforts are also reviewed, and conclusions are drawn for the directions of possibly promising future research and development.

Petar Sabev Varbanov

2014-01-01T23:59:59.000Z

69

SYSTEM OPTIMIZTION OF HOT WATER CONCENTRATED SOLAR THERMOELECTRIC GENERATION  

E-Print Network [OSTI]

In this report, we describe the design of a concentrated solar thermoelectric (TE) system which can provide both electricity and hot water. Todays thermoelectric materials have a relatively low efficiency (~6 % for temperature difference across the thermoelement on the order of 300 o C). However since thermoelectrics dont need their cold side to be near room temperature, (in another word, one can chose the particular thermoelectric material to match to the operational temperature) it is possible to use the waste heat to provide hot water and this makes the overall efficiency of the combined system to be quite high. A key factor in the optimization of the thermoelectric module is the thermal impedance matching with the incident solar radiation, and also with the hot water heat exchanger on the cold side of the thermoelectric module. We have developed an analytic model for the whole system and optimized each component in order to minimize the material cost. TE element fill factor is found to be an important parameter to optimize at low solar concentrations (generated per mass of the thermoelectric elements. Similarly the co-optimization of the microchannel heat exchanger and the TE module can be used to minimize the amount of material in the heat exchanger and the pumping power required for forced convection liquid cooling. Changing the amount of solar concentration, changes the input heat flux and this is another parameter that can be optimized in order to reduce the cost of heat exchanger (by size), the tracking requirement and the whole system. A series of design curves for different solar concentration are obtained. It is shown that the overall efficiency of the system can be more than 80 % at 200x concentration which is independent of the material ZT (TE figure-of-merit). For a material with ZThot~0.9, the electrical conversion efficiency is ~10%. For advanced materials with ZThot ~ 2.8, the electrical conversion efficiency could reach ~21%. 1.

Kazuaki Yazawa; Ali Shakouri

70

Solar hot water system installed at Mobile, Alabama. Final report  

SciTech Connect (OSTI)

This final report describes the solar energy hot water system installed at LaQuinta Motor Inn Inc., at Mobile, Alabama. The building is a 122 unit motel. The system consists of six rows of ten collectors and three rows of eleven collectors (1990 square feet) mounted on the roof. Griswald flow control valves were installed to regulate the flow to each row. Two Heliotrope electronic thermometers with a combined capability of measuring the temperatures of 22 different locations were installed for monitoring purposes. Engineering drawings, component specifications, and operator instructions are included.

None

1980-10-01T23:59:59.000Z

71

Boiling during high-velocity impact of water droplets on a hot stainless steel surface  

Science Journals Connector (OSTI)

...rho, V and p 0 are water density, impact velocity and atmospheric pressure, respectively. Assuming water vapour is a perfect...droplet-on-demand generator. Exp. Fluids. 34...of hot surfaces with water sprays. J. Heat Treating...

2006-01-01T23:59:59.000Z

72

Experiments on adding a surfactant to water drops boiling on a hot surface  

Science Journals Connector (OSTI)

...photographs of droplets of water impacting on a hot surface...to film boiling for water and hydrocarbons. Baumeister & Simon...predicting TLeid for hydrocarbons and cryogens, but failed...surfactant to boiling water drops 685 Figure 8...

1997-01-01T23:59:59.000Z

73

Water and Energy Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems  

E-Print Network [OSTI]

study to determine waste of water and energy in residential30 percent. The average waste of energy in the hot water ispaper examines the waste of water and energy associated with

Lutz, Jim

2012-01-01T23:59:59.000Z

74

New Advanced System Utilizes Industrial Waste Heat to Power Water...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Water Reuse ADVANCED MANUFACTURING OFFICE New Advanced System Utilizes Industrial Waste Heat to Power Water Purification Introduction As population growth and associated factors...

75

Guidelines for Estimating Unmetered Industrial Water Use | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

providing a methodology to calculate unmetered sources of industrial water use utilizing engineering estimates. estunmeteredindustrialwtr.pdf More Documents & Publications...

76

Numerical simulation of Large Solar Hot Water system in storage tank.  

E-Print Network [OSTI]

??This research is aimed to study the storage tank design parameters effects on the efficiency of the large solar hot water system. Detailed CFD simulation (more)

Shue, Nai-Shen

2012-01-01T23:59:59.000Z

77

Feasibility Analysis of Two Indirect Heat Pump Assisted Solar Domestic Hot Water Systems.  

E-Print Network [OSTI]

??This thesis is an analysis of the simulated performance of two indirect heat pump assisted solar domestic hot water (i-HPASDHW) systems compared to two base (more)

Sterling, Scott Joseph

2011-01-01T23:59:59.000Z

78

Solar Hot Water Heater Augmented with PV-TEM Heat Pump.  

E-Print Network [OSTI]

??Solar assisted heat pumps (SAHPs) can provide higher collector efficiencies and solar fractions when compared against standard solar hot water heaters. Vapour compression (VC) heat (more)

PRESTON, NATHANIEL

79

Feasibility study and roadmap to improve residential hot water distribution systems  

SciTech Connect (OSTI)

Residential building practice currently ignores the losses of energy and water caused by the poor design of hot water systems. These losses include: the waste of water while waiting for hot water to get to the point of use; the wasted heat as water cools down in the distribution system after a draw; and the energy to reheat water that was already heated once before. A feasibility study and an action plan for a proposed research project involving residential hot water distribution systems is being developed. The feasibility study will use past work to estimate of hot water and energy loses caused by current hot water distribution systems in residences. Proposed research project, or roadmap, will develop recommendations for improvements to residential hot water distribution systems. The roadmap addresses the technical obstacles and gaps in our knowledge that prevent water and energy reductions and market adoption of water- and energy-efficient technologies. The initial results of the feasibility study are presented here along with a discussion of a roadmap to improve the efficiency of residential hot water distribution systems.

Lutz, James D.

2004-03-31T23:59:59.000Z

80

Affordable Solar Hot Water and Power LLC | Open Energy Information  

Open Energy Info (EERE)

Water and Power LLC Water and Power LLC Jump to: navigation, search Name Affordable Solar Hot Water and Power LLC Place Dothan, Alabama Zip 36305 Sector Solar Product Solar and Energy Efficiency for buildings and homes Year founded 2006 Number of employees 1-10 Phone number 334-828-1024 Website http://www.asolarpro.com Coordinates 31.2070554°, -85.4994192° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.2070554,"lon":-85.4994192,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "industrial hot water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Guidelines for Estimating Unmetered Industrial Water Use  

Broader source: Energy.gov (indexed) [DOE]

Guidelines for Guidelines for Estimating Unmetered Industrial Water Use Prepared for U.S. Department of Energy Federal Energy Management Program By Pacific Northwest National Laboratory Brian Boyd Revised September 2011 Source: Michael Kauffmann 2 Contacts Will Lintner Federal Energy Management Program 1000 Independence Ave., S.W. Washington, D.C. 20585-0121 Phone: (202) 586-3120 E-mail: William.Lintner@ee.doe.gov Brian Boyd Pacific Northwest National Laboratory 902 Battelle Boulevard Richland, WA 99352 Phone: (509) 371-6724 E-mail: Brian.Boyd@pnnl.gov 3 Acknowledgements This document was prepared by the Pacific Northwest National Laboratory (PNNL) on behalf of the Federal Energy Management Program. PNNL would like to thank the Federal Water Working Group of the Interagency Energy Management Task Force, which provided initial

82

Guidelines for Estimating Unmetered Industrial Water Use  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Guidelines for Guidelines for Estimating Unmetered Industrial Water Use Prepared for U.S. Department of Energy Federal Energy Management Program By Pacific Northwest National Laboratory Brian Boyd Revised September 2011 Source: Michael Kauffmann 2 Contacts Will Lintner Federal Energy Management Program 1000 Independence Ave., S.W. Washington, D.C. 20585-0121 Phone: (202) 586-3120 E-mail: William.Lintner@ee.doe.gov Brian Boyd Pacific Northwest National Laboratory 902 Battelle Boulevard Richland, WA 99352 Phone: (509) 371-6724 E-mail: Brian.Boyd@pnnl.gov 3 Acknowledgements This document was prepared by the Pacific Northwest National Laboratory (PNNL) on behalf of the Federal Energy Management Program. PNNL would like to thank the Federal Water Working Group of the Interagency Energy Management Task Force, which provided initial

83

Building America Top Innovations Hall of Fame Profile … Model Simulating Real Domestic Hot Water Use  

Broader source: Energy.gov (indexed) [DOE]

and the Davis Energy Group used the and the Davis Energy Group used the Domestic Hot Water Event Schedule Generator to accurately quantify effects of low and high water usage on distribution system measures such as pipe insulation, home run plumbing, and demand-controlled recirculation loops. As progress continues with high-R, tightly sealed thermal enclosures, domestic hot water becomes an increasingly important energy use in high-performance homes. Building America research has improved our ability to model hot water use so new hot water technologies can be more accurately assessed and more readily integrated into high-performance homes. Energy savings for certain residential building technologies depend greatly on occupant behavior. Domestic hot water use is a good example. Simulating

84

Development of a Combined Hot Water and Sorption Store for Solar Thermal Systems  

Science Journals Connector (OSTI)

Abstract The motivation for the development of a combined hot water and sorption store is to complement the advantages and to reduce the disadvantages of the two particular storage technologies. Hot water stores offer high heat supply rates but are particularly suitable for short term storage due to heat losses whereas for a sorption store the power drain is low but it shows the advantage of a high storage density and long-term heat storage almost without losses. The combined hot water and sorption store has been developed using the example of a solar thermal system for domestic hot water preparation. The store consists of a radial stream adsorber integrated in a hot water store. Adsorption and desorption experiments in laboratory have been conducted with a prototype store in full-scale. A numerical model of the combined store has been developed and annual simulations of a solar thermal system including a combined hot water and sorption store have been conducted. The thermal performance has been compared to those of reference hot water stores. The results of the experimental and numerical investigations will be presented in this paper and the benefit of a combined hot water and sorption store applied for solar thermal systems will be discussed.

Rebecca Weber; Henner Kerskes; Harald Drck

2014-01-01T23:59:59.000Z

85

Applications of Commercial Heat Pump Water Heaters in Hot, Humid Climates  

E-Print Network [OSTI]

Heat pump water heaters can provide high-efficiency water heating and supplemental space cooling and dehumidification in commercial buildings throughout the United States. They are particularly attractive in hot, humid areas where cooling loads...

Johnson, K. F.; Shedd, A. C.

86

Dynamics of microdroplets over the surface of hot water  

E-Print Network [OSTI]

When drinking a cup of coffee under the morning sunshine, you may notice white membranes of steam floating on the surface of the hot water. They stay notably close to the surface and appear to almost stick to it. Although the membranes whiffle because of the air flow of rising steam, peculiarly fast splitting events occasionally occur. They resemble cracking to open slits approximately 1 mm wide in the membranes, and leave curious patterns. We studied this phenomenon using a microscope with a high-speed video camera and found intriguing details: i) the white membranes consist of fairly monodispersed small droplets of the order of 10 $\\mu\\,{\\rm m}$; ii) they levitate above the water surface by 10$\\sim$100 $\\mu{\\rm m}$; iii) the splitting events are a collective disappearance of the droplets, which propagates as a wave front of the surface wave with a speed of 1$\\sim$2 m/s; and iv) these events are triggered by a surface disturbance, which results from the disappearance of a single droplet.

Takahiro Umeki; Masahiko Ohata; Hiizu Nakanishi; Masatoshi Ichikawa

2015-01-03T23:59:59.000Z

87

Opinions of persons from outside the livestock industry on the practice of hot-iron jaw branding as perceived by persons from within Texas livestock show industry  

E-Print Network [OSTI]

The purpose of this study was to determine how opinions of persons from outside the livestock industry on the practice of hot-iron jaw branding are perceived by persons from within the Texas livestock show industry. The key-informant interviews...

Schlink, Suzanne Marie

1993-01-01T23:59:59.000Z

88

Faculty Position in Mechanical Engineering Water Conservation in Industrial Processes  

E-Print Network [OSTI]

Faculty Position in Mechanical Engineering Water Conservation in Industrial Processes University of Kansas The Department of Mechanical Engineering at the University of Kansas is seeking applications in industrial processes. Exceptional candidates with outstanding qualifications could be considered

89

Ch. III, Interpretation of water sample analyses Waunita Hot...  

Open Energy Info (EERE)

analyses Waunita Hot Springs area Gunnison County, Colorado Author R. H. Carpenter Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation with the U.S....

90

WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries Inc WFI  

Open Energy Info (EERE)

WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries Inc WFI WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries Inc WFI Jump to: navigation, search Name WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI)) Place Indiana Zip 46809 Sector Geothermal energy Product WaterFurnace develops and manufactures geothermal heating and cooling systems. References WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI))[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI)) is a company located in Indiana . References ↑ "WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI))"

91

Heat and Mass Transfer in a Wetted Thermal Insulation of hot Water Pipes Operating Under Flooding Conditions  

Science Journals Connector (OSTI)

We present the results of numerical simulation of the thermal regimes of hot water pipes under flooding conditions with account for evaporation and diffusion ... modeling thermal regimes of hot water pipes under

V. Yu. Polovnikov; E. V. Gubina

2014-09-01T23:59:59.000Z

92

The Impact of Hedonism on Domestic Hot Water Energy Demand for Showering ? The Case of the Schanzenfest, Hamburg  

Science Journals Connector (OSTI)

The causes of variation in energy demand for hot water in showering or bathing ... was triangulated with electric meter data to examine energy use behaviours and explore changes in hot water demand. This occurred...

Stephen Lorimer; Marianne Jang; Korinna Thielen

2013-01-01T23:59:59.000Z

93

Muscatine Power and Water- Commercial and Industrial Energy Efficiency Rebates  

Broader source: Energy.gov [DOE]

Muscatine Power and Water (MP&W) offers rebates for energy efficient upgrades to commercial and industrial customers. Rebates are available for commercial lighting retrofits, energy efficient...

94

Hot Water Draw Patterns in Single-Family Houses: Findings from Field  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hot Water Draw Patterns in Single-Family Houses: Findings from Field Hot Water Draw Patterns in Single-Family Houses: Findings from Field Studies Title Hot Water Draw Patterns in Single-Family Houses: Findings from Field Studies Publication Type Report LBNL Report Number LBNL-4830E Year of Publication 2011 Authors Lutz, James D., Renaldi, Alexander B. Lekov, Yining Qin, and Moya Melody Document Number LBNL-4830E Pagination 26 Date Published 05/2011 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract This report describes data regarding hot water draw patterns that Lawrence Berkeley National Laboratory obtained from 10 studies. The report describes our purposes in collecting the data; the ways in which we managed, cleaned, and analyzed the data; and the results of our data analysis. We found that daily hot water use is highly variable both among residences and within the same residence. We also found that the distributions of daily hot water use are not symmetrical normal distributions. Thus we used median, not average, values to characterize typical daily hot water use. This report presents summary information that illustrates the results of our data collection and some initial analysis.

95

DOE Office of Indian Energy Foundational Course on Direct Use for Building Heat and Hot Water  

Broader source: Energy.gov (indexed) [DOE]

Direct Use for Building Direct Use for Building Heat and Hot Water Webinar (text version) Below is the text version of the Webinar titled "DOE Office of Indian Energy Foundational Courses Renewable Energy Technologies: Direct Use for Building Heat and Hot Water." Slide 1 Amy Hollander: Hello, I'm Amy Hollander with the National Renewable Energy Laboratory. Welcome to today's webinar on Building Heat and Hot Water sponsored by the U.S. Department of Energy Office of Indian Energy Policy and Programs. This webinar is being recorded from DOE's National Renewable Energy Laboratory's new state-of-the-art net zero

96

ITP Mining: Water Use in Industries of the Future: Mining Industry  

Broader source: Energy.gov [DOE]

Water and energy may be directly or indirectly related in the mining industry, and the connection is mainly through pumping power to transfer the water or aqueous slurries of mineral products to another location.

97

Learning from Interventions Aimed at Mainstreaming Solar Hot Water in the Australian Market  

Science Journals Connector (OSTI)

Domestic water heating in Australia conventionally uses electric resistance heating storage or gas fuelled water heaters. The Australian electricity supply has some of the highest greenhouse gas emissions factors in the world. Consequently, water heating is responsible for approximately 24 percent of residential sector greenhouse gas emissions in Australia. To assist households to move towards an energy efficient, low carbon future, a suite of market intervention programs to support solar hot water uptake have been introduced at both state and federal levels. These programs aim to improve the capacity of industry to deliver solar solutions, reduce the emissions intensity and net cost of household water heating, and increase the market share of the solar water heating sector. Incentives include: Point of sale rebates and certificate-based programs for energy efficiency and renewable energy; Regulations for new houses that encourage solar water heating installations; Community awareness programs; and Training programs for installers to ensure that tradespeople have the competencies to size systems and the skills to install them correctly. In some jurisdictions the incentive programs were performance-based, but in others a fixed rebate amount was available for all systems having performance above a minimum threshold. These programs have lead to the widespread expansion of the industry, with an almost doubling of the proportion of households with solar water heaters between 1999 and 2011. Installations in new homes have seen an even more marked increase: For example, regulations for new homes in the state of Victoria require the installation of a solar water heater or rainwater tank. This program has seen the adoption of solar water heaters in new homes increase fro m around 5% in 2004 to over 70% in 2011. Across most of Australia there are proposed regulations limiting the emissions intensity of replacement water heaters which will effectively ban resistance electric water heaters in most situations. Recently both South Australia and Queensland commenced their program for existing houses. It is expected that in the future these programs will drive an even greater uptake, which will go some way to insulating Australian households from price increases that may result from carbon driven future increases in the cost of energy. This paper discusses the various approaches and outcomes of the different programs and provides analysis of the basis of program success or improvements. Learning relevant to market interventions worldwide include Continuity in program operation is necessary to allow industry to grow in a sustainable way. Basing the incentive on independently derived performance results provides industry with a means of differentiating better products and provides purchasers with appropriate guidance. Rebate program design should consider the consumer's purchasing priorities. For example, a point of sale discount awarded as part of the purchase transaction aligns with the urgency of the purchasing process and does not require additional cash to be available from the purchaser. Design of the schemes can not only produce a greater market share, but can also encourage the manufacture of lower greenhouse gas emissions products. Market interventions can have unintended consequences, so the programs need to be monitored and flexibility maintained to changes to avoid poor outcomes.

David Ferrari; Ken Guthrie; Sonja Ott; Robert Thomson

2012-01-01T23:59:59.000Z

98

Thermal and sanitary performance of domestic hot water cylinders: Conflicting requirements  

Science Journals Connector (OSTI)

Abstract In order to understand the sanitary implications around the demand side management of domestic hot water cylinders, microbial samples were taken from the bottom of 10 UK domestic electric hot water tanks whose heating elements are connected to a controlled off-peak supply. The results indicated high concentrations of bacteria in the water and biofilm. Microbial concentrations remained high in spite of the application of seven hours of heating during off-peak hours. Further numerical and experimental work shows that this problem arises due to the differing modes of heat transfer that prevail above and below the immersion element. The results from thermal and bacterial growth models suggest that it is impossible to achieve sanitary conditions throughout standard domestic hot water tanks without significantly increasing the heating element temperature or lowering the heating element from its current position. Raising the immersion thermostat temperature results in additional heat losses whilst lowering the immersion position compromises thermal stratification leading to uneconomical operation. Guidelines around storing hot water at temperatures that are sufficient for the purposes of sterilizing human pathogens such as Legionella, fail to take account of the conflict between thermal and sanitary performance. By better understanding the distribution of temperatures and bacteria within hot water tanks along with the associated risks, improved design and control strategies may be adopted to facilitate effective demand side management of hot water systems whilst meeting sanitary requirements.

Peter M. Armstrong; Meg Uapipatanakul; Ian Thompson; Duane Ager; Malcolm McCulloch

2014-01-01T23:59:59.000Z

99

Model Simulating Real Domestic Hot Water Use- Building America Top Innovation  

Broader source: Energy.gov [DOE]

This Building America Innovations profile describes Building America research that is improving domestic hot water modeling capabilities to more effectively address one of the largest energy uses in residential buildings.

100

Under Pressure and in Hot Water: Algae Conversion to Fuels and Chemicals  

E-Print Network [OSTI]

March 3rd Under Pressure and in Hot Water: Algae Conversion to Fuels and Chemicals Dr. Phil:50 April 10th (Joint Seminar with EES) Fecal Sludge-Fed Biodiesel Plants: The Next-Generation Urban

Minsker, Barbara S.

Note: This page contains sample records for the topic "industrial hot water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Tribal Renewable Energy Foundational Course: Direct Use for Building Heat and Hot Water  

Broader source: Energy.gov [DOE]

Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on direct use for building heat and hot water by clicking on the .swf link below. You can also download the...

102

An investigation of numerical dispersion in the hot water injection process  

E-Print Network [OSTI]

dispersion is important in the simulation of the hot water injection process with heat loss. Numerical results are compared to the analytical solution of the simple convective-diffusion problem and Lauwerier's analytical solution to the hot water... simulated, then some type of method for controlling numerical dispersion will have to be implemented. It is obvious from the numerical results that numerical dispersion is affected by injection velocity and distance travelled, but these variables do...

McVay, Duane Allen

2012-06-07T23:59:59.000Z

103

Solar hot water system installed at Las Vegas, Nevada. Final report  

SciTech Connect (OSTI)

The solar hot water system installed at LaQuinta Motor Inn Inc., at Las Vegas, Nevada is described. The Inn is a three-story building with a flat roof for installation of the solar panels. The system consists of 1200 square feet of liquid flat plate collectors, a 2500 gallon insulated vertical steel storage tank, two heat exchangers and pumps and controls. The system was designed to supply approximately 74 percent of the total hot water load.

None

1981-01-01T23:59:59.000Z

104

Water Sampling At Hot Lake Area (Wood, 2002) | Open Energy Information  

Open Energy Info (EERE)

Hot Lake Area (Wood, 2002) Hot Lake Area (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Hot Lake Area (Wood, 2002) Exploration Activity Details Location Hot Lake Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the

105

Water Sampling At Crane Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Hot Springs Area (Wood, 2002) Hot Springs Area (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Crane Hot Springs Area (Wood, 2002) Exploration Activity Details Location Crane Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the

106

Water Sampling At Mccredie Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Mccredie Hot Springs Area (Wood, 2002) Mccredie Hot Springs Area (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mccredie Hot Springs Area (Wood, 2002) Exploration Activity Details Location Mccredie Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the

107

Recovery of energy from geothermal brine and other hot water sources  

DOE Patents [OSTI]

Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

Wahl, III, Edward F. (Claremont, CA); Boucher, Frederic B. (San Juan Capistrano, CA)

1981-01-01T23:59:59.000Z

108

Sandia National Laboratories: industrial water use  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to saltwater to meet their water ... ECIS-UNM: Biomimetic Membranes for Water Purification On February 20, 2013, in Advanced Materials Laboratory, Energy Efficiency,...

109

Hybrid Membrane System for Industrial Water Reuse  

Broader source: Energy.gov [DOE]

Demonstrate an advanced water treatment and reuse process in a single hybrid system that combines forward osmosis with membrane distillation to achieve greater efficiency and increased water reuse.

110

Tapping Solar for Hot Water and Cheaper Bills for Puerto Rico | Department  

Broader source: Energy.gov (indexed) [DOE]

Tapping Solar for Hot Water and Cheaper Bills for Puerto Rico Tapping Solar for Hot Water and Cheaper Bills for Puerto Rico Tapping Solar for Hot Water and Cheaper Bills for Puerto Rico November 3, 2010 - 10:00am Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What does this mean for me? 150 new jobs. 1200 solar water heaters installed. In Puerto Rico, solar water heaters have been popular for decades. But even with energy savings, not everyone can afford one. Through a new Recovery Act-funded program for the island, more families are showering with water heated by the sun. The U.S. Department of Energy's new Weatherization Assistance Program (WAP) in Puerto Rico has made it a priority to install the systems in homes of income-eligible residents, as part of its weatherization assistance services. The Puerto Rico Energy Affairs Administration (PREAA), which

111

Sustainable Water Management in the Minerals Industry 1 SUSTAINABLE WATER MANAGEMENT IN THE MINERALS  

E-Print Network [OSTI]

Sustainable Water Management in the Minerals Industry 1 SUSTAINABLE WATER MANAGEMENT IN THE MINERALS INDUSTRY Bill Whiten1, Mark McGuinness2, Sayed Hoseini3 The problem of managing a storage dam interest. It arises in the provision of water for Queensland coal mines, where additional water

McGuinness, Mark

112

Water Sampling At Alvord Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Alvord Hot Springs Area (Wood, Water Sampling At Alvord Hot Springs Area (Wood, 2002) Exploration Activity Details Location Alvord Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from

113

Water Sampling At Beowawe Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Beowawe Hot Springs Area (Wood, Water Sampling At Beowawe Hot Springs Area (Wood, 2002) Exploration Activity Details Location Beowawe Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from

114

Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report  

SciTech Connect (OSTI)

The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

None

1980-11-01T23:59:59.000Z

115

New Hampshire Electric Co-Op - Solar Hot Water | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

New Hampshire Electric Co-Op - Solar Hot Water New Hampshire Electric Co-Op - Solar Hot Water New Hampshire Electric Co-Op - Solar Hot Water < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,500 Program Info State New Hampshire Program Type Utility Rebate Program Rebate Amount 20% of installed costs Provider New Hampshire Electric Co-Op New Hampshire Electric Co-Op (NHEC) offers rebates to residential customers who install qualified solar water-heating systems. The rebate is equal to 20% of installed system costs, with a maximum award of $1,500. Systems must be pre-approved, and installed in NHEC's service territory by a qualified installer. Program funds are available on a first-come, first-served basis. See the program web site listed above for more information, an application

116

Army Industrial, Landscaping, and Agricultural Water Use  

SciTech Connect (OSTI)

The Pacific Northwest National Laboratory conducted a task for the Deputy Assistant Secretary of the Army to quantify the Armys ILA water use and to help improve the data quality and installation water reporting in the Army Energy and Water Reporting System.

McMordie Stoughton, Kate; Loper, Susan A.; Boyd, Brian K.

2014-09-18T23:59:59.000Z

117

California Building Industry Association et al. v. State Water...  

Open Energy Info (EERE)

et al. v. State Water Resources Control Board Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal CaseHearing: California Building Industry Association et al....

118

Energy Conservation Through Water Usage Reduction in the Semiconductor Industry  

E-Print Network [OSTI]

ENERGY CONSERVATION THROUGH WATER USAGE REDUCTION IN THE SEMICONDUCTOR INDUSTRY Laura Mendicino Kathy McCormack Sarah Gibson Bob Patton Dana Lyon Jeff Covington Engineer Engineer ESrn Manager Engineer Engineer Engineer Motorola Austin, TX...

Mendicino, L.; McCormack, K.; Gibson, S.; Patton, B.; Lyon, D.; Covington, J.

119

Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California  

SciTech Connect (OSTI)

Residential water heating is a large source of energy use in California homes. This project took a life cycle approach to comparing tank and tankless water heaters in Northern and Southern California. Information about the life cycle phases was calculated using the European Union?s Methodology study for EcoDesign of Energy-using Products (MEEUP) and the National Renewable Energy Laboratory?s Life Cycle Inventory (NREL LCI) database. In a unit-to-unit comparison, it was found that tankless water heaters would lessen impacts of water heating by reducing annual energy use by 2800 MJ/year (16% compared to tank), and reducing global warming emissions by 175 kg CO2 eqv./year (18% reduction). Overall, the production and combustion of natural gas in the use phase had the largest impact. Total waste, VOCs, PAHs, particulate matter, and heavy-metals-to-air categories were also affected relatively strongly by manufacturing processes. It was estimated that tankless water heater users would have to use 10 more gallons of hot water a day (an increased usage of approximately 20%) to have the same impact as tank water heaters. The project results suggest that if a higher percentage of Californians used tankless water heaters, environmental impacts caused by water heating would be smaller.

Lu, Alison; McMahon, James; Masanet, Eric; Lutz, Jim

2008-08-13T23:59:59.000Z

120

New Infographic and Projects to Keep Your Energy Bills Out of Hot Water |  

Broader source: Energy.gov (indexed) [DOE]

Infographic and Projects to Keep Your Energy Bills Out of Hot Infographic and Projects to Keep Your Energy Bills Out of Hot Water New Infographic and Projects to Keep Your Energy Bills Out of Hot Water April 19, 2013 - 3:21pm Addthis New Energy Saver 101 infographic lays out the different types of water heaters on the market and will help you figure out how to select the best model for your home. Download a high-resolution version of the infographic. | Infographic by Sarah Gerrity. New Energy Saver 101 infographic lays out the different types of water heaters on the market and will help you figure out how to select the best model for your home. Download a high-resolution version of the infographic. | Infographic by Sarah Gerrity. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs

Note: This page contains sample records for the topic "industrial hot water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Water Sampling At Buffalo Valley Hot Springs Area (Laney, 2005) | Open  

Open Energy Info (EERE)

Water Sampling At Buffalo Valley Hot Springs Area Water Sampling At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in 2004. Samples are now being collected at sites identified by other

122

Webinar: ENERGY STAR Hot Water Systems for High Performance Homes  

Broader source: Energy.gov [DOE]

This presentation is from the Building America research team BA-PIRC webinar on September 30, 2011 providing informationprovide information about how to achieve energy savings from solar water heating, electric dedicated heat pump water heating, and gas tankless systems.

123

Loveland Water and Power - Commercial and Industrial Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Commercial and Industrial Energy Commercial and Industrial Energy Efficiency Rebate Program Loveland Water and Power - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Manufacturing Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Maximum Rebate $50,000 per year Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Lighting: See Program Website Cooling Efficiency Room AC: $50 - $110/ton, plus $3.50 - $5.00 for each 0.1 above minimum SEER, IEER, or EER Economizer: $250 Motion Sensor Controls: $75 Building Envelope Window Replacement: $1.50/sq. ft.

124

Low-Cost Solar Domestic Hot Water Systems for Mild Climates  

SciTech Connect (OSTI)

In FY99, Solar Heating and Lighting set the goal to reduce the life-cycle cost of saved-energy for solar domestic hot water (SDHW) systems in mild climates by 50%, primarily through use of polymer technology. Two industry teams (Davis Energy Group/SunEarth (DEG/SE) and FAFCO) have been developing un-pressurized integral-collector-storage (ICS) systems having load-side heat exchangers, and began field-testing in FY04. DEG/SE?s ICS has a rotomolded tank and thermoformed glazing. Based upon manufacturing issues, costs, and poor performance, the FAFCO team changed direction in late FY04 from an un-pressurized ICS to a direct thermosiphon design based upon use of pool collectors. Support for the teams is being provided for materials testing, modeling, and system testing. New ICS system models have been produced to model the new systems. A new ICS rating procedure for the ICS systems is undergoing testing and validation. Pipe freezing, freeze protection valves, and overheating have been tested and analyzed.

Burch, J.; Christensen, C.; Merrigan, T.; Hewett, R.; Jorgensen, G.

2005-01-01T23:59:59.000Z

125

Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Details Activities (5) Areas (2) Regions (0) Abstract: Two hot dry rock (HDR) geothermal energy reservoirs have been created by hydraulic fracturing of Precambrian granitic rock between two wells on the west flank of the Valles Caldera in the Jemez Mountains of northern New Mexico. Heat is extracted by injecting water into one well,

126

Why Is Nevada in Hot Water? Structural Controls and Tectonic Model of  

Open Energy Info (EERE)

Why Is Nevada in Hot Water? Structural Controls and Tectonic Model of Why Is Nevada in Hot Water? Structural Controls and Tectonic Model of Geothermal Systems in the Northwestern Great Basin Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Why Is Nevada in Hot Water? Structural Controls and Tectonic Model of Geothermal Systems in the Northwestern Great Basin Abstract In the western Great Basin, the Walker Lane is a system of right-lateral strike-slip faults accommodating ~15-25% of relative motion between the Pacific and North American plates. Relatively high rates of recent (<10 Ma) west-northwest extension absorb northwestward declining dextral motion in the Walker Lane, diffusing that motion into the Basin-Range. Abundant geothermal fields cluster in several northeasttrending belts in the

127

Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs,  

Open Energy Info (EERE)

Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs, Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs, Colorado, Using Geoelectrical Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs, Colorado, Using Geoelectrical Methods Details Activities (2) Areas (1) Regions (0) Abstract: In geothermal fields, open faults and fractures often act as high permeability pathways bringing hydrothermal fluids to the surface from deep reservoirs. The Mount Princeton area, in south-central Colorado, is an area that has an active geothermal system related to faulting and is therefore a suitable natural laboratory to test geophysical methods. The Sawatch range-front normal fault bordering the half-graben of the Upper Arkansas

128

Air Pollution Control Regulations: No. 13- Particulate Emissions from Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island)  

Broader source: Energy.gov [DOE]

The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and wood-fired steam or hot water generating units.

129

DOE Zero Energy Ready Home Efficient Hot Water Distribution II-- How to Get it Right Webinar (Text Version)  

Broader source: Energy.gov [DOE]

Below is the text version of the webinar, Efficient Hot Water Distribution II -- How to Get it Right, presented in January2014.

130

Sacramento Ordinance to Waive Fees for Solar Hot Water  

Broader source: Energy.gov [DOE]

An ordinance suspending for the calendar years 2007-2009 all fees related to installations of solar water heaters on existing residences.

131

On the Penetration of Water into Hot Rock  

Science Journals Connector (OSTI)

......that maximizes the penetration rate can be found from...lower bound to the rate of water penetration, but, since there...one-dimensional model of water penetration so far derived has...it is the rapid rate of advance of the......

C. R. B. Lister

1974-12-01T23:59:59.000Z

132

Solar Water Heating: What's Hot and What's Not  

E-Print Network [OSTI]

A handful of electric utilities in the United States now pay incentives to their customers to install solar water heaters or are developing programs to do so. The solar water heater incentives are part of a broader utility demand-side management...

Stein, J.

133

Comparative Environmental and Economic Analysis of Conventional and Nanofluid Solar Hot Water Technologies  

Science Journals Connector (OSTI)

Domestic solar hot water heaters for residential use in the Phoenix metropolitan area, as well as throughout the state of Arizona, are eligible for tax rebates at the state and federal level, in addition to incentive programs through local utilities. ... All of these studies have focused on utilizing solar hot water heaters in European countries, with most focusing only on the environmental aspect (8-10) and very limited prior works examining both the economic and environmental impacts (7). ... The nanofluid collector is expected to have the same lifetime as the conventional solar collector since it utilizes the same material technologies as a conventional collector. ...

Todd P. Otanicar; Jay S. Golden

2009-06-23T23:59:59.000Z

134

Water Sampling At Mickey Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Mickey Hot Springs Area (Wood, Mickey Hot Springs Area (Wood, 2002) Exploration Activity Details Location Mickey Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from

135

Water Sampling At Umpqua Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Umpqua Hot Springs Area (Wood, Umpqua Hot Springs Area (Wood, 2002) Exploration Activity Details Location Umpqua Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from

136

Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas. Final report  

SciTech Connect (OSTI)

This document is the Final Report of the Solar Energy System Installed at the First Solar Heated Office Building, One Solar Place, Dallas, Texas. The Solar System was designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 Solargenics, series 76, flat plate collectors with a total area of 1596 square feet. The solar loop circulates an ethylene glycol-water solution through the collectors into a hot water system heat exchanger. The hot water storage subsystem consists of a heat exchanger, two 2300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water fixtures. The building cold water system provides make-up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described. The system became operational July 11, 1979.

Not Available

1980-06-01T23:59:59.000Z

137

Gasification of Model Compounds and Wood in Hot Compressed Water  

Science Journals Connector (OSTI)

Examples of wet waste streams include the following:? vegetable, fruit and garden waste; waste streams from agricultural, food and beverage industries; manure; sewage sludge; and some household wastes. ... Lignin itself is difficult to gasify and it has been observed that lignin blocks the conversion of wood's other constituents:? cellulose and hemi-cellulose. ... The raw biomass feedstock of sawdust with some CMC was also gasified in this system, the gasification efficiency in excess of 95% was reached. ...

Sascha R. A. Kersten; Biljana Potic; Wolter Prins; Wim P. M. Van Swaaij

2006-05-12T23:59:59.000Z

138

NV Energy (Southern Nevada)- Solar Hot Water Incentive Program  

Broader source: Energy.gov [DOE]

NV Energy is providing an incentive for its residential customers to install solar water heaters on their homes. As of July 26, 2013, NV Energy electric customers in Southern Nevada who own their...

139

Water Sampling At Zim's Hot Springs Geothermal Area (Wood, 2002) | Open  

Open Energy Info (EERE)

2002) 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Zim's Hot Springs Geothermal Area (Wood, 2002) Exploration Activity Details Location Zim's Hot Springs Geothermal Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the

140

Water Sampling At Breitenbush Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Wood, 2002) Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Breitenbush Hot Springs Area (Wood, 2002) Exploration Activity Details Location Breitenbush Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the

Note: This page contains sample records for the topic "industrial hot water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Water Sampling At Belknap-Foley-Bigelow Hot Springs Area (Wood, 2002) |  

Open Energy Info (EERE)

Wood, 2002) Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Belknap-Foley-Bigelow Hot Springs Area (Wood, 2002) Exploration Activity Details Location Belknap-Foley-Bigelow Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the

142

Hot water tank for use with a combination of solar energy and heat-pump desuperheating  

DOE Patents [OSTI]

A water heater or system is described which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

Andrews, J.W.

1980-06-25T23:59:59.000Z

143

Guangdong Global Power and Water Industries Ltd | Open Energy Information  

Open Energy Info (EERE)

Global Power and Water Industries Ltd Global Power and Water Industries Ltd Jump to: navigation, search Name Guangdong Global Power and Water Industries Ltd Place Meizhou, Guangdong Province, China Sector Solar Product China-based JV researcher and developer of solar PV and power projects Coordinates 24.321199°, 116.118919° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.321199,"lon":116.118919,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

144

High-Throughput Screening Technique for Biomass Conversion in Hot Compressed Water  

Science Journals Connector (OSTI)

High-Throughput Screening Technique for Biomass Conversion in Hot Compressed Water ... Formic acid is known to be converted completely to gaseous products, mainly CO2 and H2 at high temperatures. ... The Ru/TiO2 catalyst is able to convert WSIS (char) to gas, while leaving the oil product practically unaltered with respect to compn. ...

Pavlina Nanou; Wim P. M. van Swaaij; Sascha R. A. Kersten; Guus van Rossum

2012-01-17T23:59:59.000Z

145

Targeted removal of ant colonies in ecological experiments, using hot water  

E-Print Network [OSTI]

a large tank through a long coil of copper tubing within the kiln to produce 4 to 5 l. of hot water per colonies were formed, and mature colonies expanded into the plots. A third treatment was made in the spring

146

Comparison Between TRNSYS Software Simulation and F-Chart Program on Solar Domestic Hot Water System  

E-Print Network [OSTI]

This study presents the accuracy test of a TRNSYS Solar Domestic Hot Water (SDHW) System simulation. The testing is based on comparing the results with the F-Chart software. The selected system to carry out the tests was the Active Solar Domestic...

Haberl, J. S.; Baltazar, J. C.; Mao, C.

2012-01-01T23:59:59.000Z

147

Archaeoglobus fulgidus Isolated from Hot North Sea Oil Field Waters  

Science Journals Connector (OSTI)

...hydrothermal systems near Mexico (6). The sulfate-reducing...generation of H2S in geothermal heated oil wells when suitable substrates...and steel alloys in oil wells and in the oil-processing...in the production well head or in the oil-water...

Janiche Beeder; Roald Kre Nilsen; Jan Thomas Rosnes; Terje Torsvik; Torleiv Lien

1994-04-01T23:59:59.000Z

148

Solar heating and hot water system installed at St. Louis, Missouri. Final report  

SciTech Connect (OSTI)

Information is provided on the solar heating and hot water system installed at the William Tao and Associates, Inc., office building in St. Louis, Missouri. The information consists of description, photos, maintenance and construction problems, final drawing, system requirements and manufacturer's component data. The solar system was designed to provide 50% of the hot water requirements and 45% of the space heating needs for a 900 square foot office space and drafting room. The solar facility has 252 square foot of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

Not Available

1980-04-01T23:59:59.000Z

149

Water retention and gas relative permeability of two industrial concretes  

SciTech Connect (OSTI)

This experimental study aims at identifying the water retention properties of two industrial concretes to be used for long term underground nuclear waste storage structures. Together with water retention, gas transfer properties are identified at varying water saturation level, i.e. relative gas permeability is assessed directly as a function of water saturation level S{sub w}. The influence of the initial de-sorption path and of the subsequent re-saturation are analysed both in terms of water retention and gas transfer properties. Also, the influence of concrete microstructure upon water retention and relative gas permeability is assessed, using porosity measurements, analysis of the BET theory from water retention properties, and MIP. Finally, a single relative gas permeability curve is proposed for each concrete, based on Van Genuchten-Mualem's statistical model, to be used for continuous modelling approaches of concrete structures, both during drying and imbibition.

Chen Wei; Liu Jian; Brue, Flore; Skoczylas, Frederic [Univ Lille Nord de France, F-59000 Lille (France); ECLille, LML, BP 48, F-59650 Villeneuve d'Ascq (France); CNRS, UMR 8107, F-59650 Villeneuve d'Ascq (France); Davy, C.A., E-mail: catherine.davy@ec-lille.fr [Univ Lille Nord de France, F-59000 Lille (France); ECLille, LML, BP 48, F-59650 Villeneuve d'Ascq (France); CNRS, UMR 8107, F-59650 Villeneuve d'Ascq (France); Bourbon, Xavier; Talandier, Jean [Andra, 1-7 rue Jean Monnet, F-92298 Chatenay-Malabry Cedex (France)

2012-07-15T23:59:59.000Z

150

Water, Vapor, and Salt Dynamics in a Hot Repository  

SciTech Connect (OSTI)

The purpose of this paper is to report the results of a new model study examining the high temperature nuclear waste disposal concept at Yucca Mountain using MULTIFLUX, an integrated in-drift- and mountain-scale thermal-hydrologic model. The results show that a large amount of vapor flow into the drift is expected during the period of above-boiling temperatures. This phenomenon makes the emplacement drift a water/moisture attractor during the above-boiling temperature operation. The evaporation of the percolation water into the drift gives rise to salt accumulation in the rock wall, especially in the crown of the drift for about 1500 years in the example. The deposited salts over the drift footprint, almost entirely present in the fractures, may enter the drift either by rock fall or by water drippage. During the high temperature operation mode, the barometric pressure variation creates fluctuating relative humidity in the emplacement drift with a time period of approximately 10 days. Potentially wet and dry conditions and condensation on salt-laden drift wall sections may adversely affect the storage environment. Salt accumulations during the above-boiling temperature operation must be sufficiently addressed to fully understand the waste package environment during the thermal period. Until the questions are resolved, a below-boiling repository design is favored where the Alloy-22 will be less susceptible to localized corrosion. (authors)

Bahrami, Davood; Danko, George [Department of Mining Engineering, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV, 89557 (United States); Walton, John [Department of Civil Engineering, University of Texas at El Paso, 500 W. University, El Paso, TX, 79968 (United States)

2007-07-01T23:59:59.000Z

151

Don't Let Your Money and Hot Water Go Down the Drain | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Don't Let Your Money and Hot Water Go Down the Drain Don't Let Your Money and Hot Water Go Down the Drain Don't Let Your Money and Hot Water Go Down the Drain December 9, 2008 - 4:00am Addthis John Lippert Do you look at your retirement savings statements and feel like you're sending your money down the drain? Do you deposit more money each paycheck into your retirement account, but find the balance goes down, not up? Pssst, want to invest in a "sure thing?" No, this isn't a scam. It's a device that has no moving parts to break down, but is certain to save you energy, and thus save you money by lowering your utility bills. When we all take showers and baths, wash the dishes or clothes, and wash our hands, we send heated water literally down the drain. That typically represents 80%-90% of the energy used to heat water in a home. Drain-water (or

152

Manufacturing muscle : the hot rod industry and the American fascination with speed, 1915-1984  

E-Print Network [OSTI]

This dissertation focuses on the pursuits of a particular subset of automobile users: hot rodders, those who modify their standard production automobiles for improved performance. More specifically, this project examines ...

Lucsko, David Nicholas

2005-01-01T23:59:59.000Z

153

Promising freeze protection alternatives in solar domestic hot water systems  

SciTech Connect (OSTI)

Since the gains associated with solar thermal energy technologies are comparatively small in relation to the required capital investment, it is vital to maximize conversion efficiency. While providing the necessary function of freeze protection, the heat exchanger commonly included in solar domestic water heating systems represents a system inefficiency. This thesis explores two alternate methods of providing freeze protection without resorting to a heat exchanger. Commonly, collectors are made of rigid copper tubes separated by copper or aluminum fins. Cracking damage can occur when water is allowed to freeze and expand inside the non compliant tubes. The possibility of making collectors out of an elastic material was investigated and shown to be effective. Since unlike copper, elastomers typically have low thermal conductivities, the standard collector performance prediction equations do not apply. Modified thermal performance prediction equations were developed which can be used for both low and high thermal conductivity materials to provide accurate predictions within a limited range of plate geometries. An elastomeric collector plate was then designed and shown to have comparable performance to a copper plate collector whose aperture area is approximately 33% smaller. Another options for providing freeze protection to an SDHW system is to turn it off during the winter. Choosing a three-season operating period means two things. First, the system will have different optimums such as slope and collector area. Second, the wintertime solar energy incident on the collector is unavailable for meeting a heating load. However, the system`s heat exchanger becomes unnecessary and removing it increases the amount of energy that arrives at the storage tank during those periods in which the system is operating.

Bradley, D.E.

1997-12-31T23:59:59.000Z

154

Low rank coal upgrading in a flow of hot water  

SciTech Connect (OSTI)

Simultaneous hydrothermal degradation and extraction at around 350{sup o}C using flowing solvent as a reaction/extraction medium were proposed for upgrading brown coal, more specifically, for converting brown coal into several fractions having different molecular weight and chemical structure under mild conditions. When an Australian brown coal, Loy Yang coal, was treated by water at 350{sup o}C under 18 MPa, the coal was separated into four fractions: gaseous product by 8% yield, water-soluble extract at room temperature (soluble) by 23% yield, extract precipitates as solid at room temperature (deposit) by 23% yield, and residual coal (upgraded coal) by 46% yield on daf basis. The separation was found to be realized by in situ extraction of low-molecular-weight substances released from coal macromolecular structure and/or those generated by hydrothermal decomposition reactions at 350{sup o}C. The solid products obtained, deposit and upgraded coal, were characterized in detail to examine the possibility of their effective utilization as solid fuel and chemical feed stock. The upgraded coal showed higher heating value and higher gasification reactivity than the parent coal, indicating that the upgraded coal can be a better solid fuel than the parent coal. The solid extract, deposit, was found to show thermoplasticity at less than 200{sup o}C, suggesting the possibility of utilizing the deposit as a raw material of high performance carbon materials. Several variables affecting the performance of the proposed method are also examined in detail in this paper. 12 refs., 8 figs., 3 tabs.

Masato Morimoto; Hiroyuki Nakagawa; Kouichi Miura [Kyoto University, Kyoto (Japan). Department of Chemical Engineering

2009-09-15T23:59:59.000Z

155

The waters of Southeastern Wisconsin are vast but vulnerable. We depend on our waters for drinking water, irrigation, industry, transportation,  

E-Print Network [OSTI]

The waters of Southeastern Wisconsin are vast but vulnerable. We depend on our waters for drinking for drinking water is rising in the United States and around the world due to population growth. At the same water, irrigation, industry, transportation, power production, recreation and scenic beauty

Saldin, Dilano

156

Hot water decontamination of beef carcasses to increase microbiological safety and shelf-life  

E-Print Network [OSTI]

). The spraying system functioned by circulating hot water from the water bath to the spray gun at a given pressure and temperature. The pressure was constantly monitored by a pressure gauge (Marshall Town 88901, USA) installed in the valve junction.... The temperature m the water bath was monitored by a digital thermometer (Tegam 871, Digital Thermometer) with a type K thermocouple sensor. Also, the temperature of the spray coming out of the jet was measured with a thermocouple inserted and sealed in the tip...

Barakate, Michelle Lee

2012-06-07T23:59:59.000Z

157

Boiling Water at Hot Creek--The Dangerous and Dynamic Thermal Springs in California's Long Valley Caldera  

E-Print Network [OSTI]

Boiling Water at Hot Creek--The Dangerous and Dynamic Thermal Springs in California's Long Valley.S. Geological Survey USGS Fact Sheet 2007-3045 2007 T Hot Creek flows through the Long Valley Caldera Airport Fish hatchery CH-10B 44-16 Well Well Long Valley C aldera Area of Map Californ i a The thermal

Torgersen, Christian

158

Evaluating Domestic Hot Water Distribution System Options With Validated Analysis Models  

SciTech Connect (OSTI)

A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. A full distribution system developed in TRNSYS has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. This study builds upon previous analysis modelling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall 124 different TRNSYS models were simulated. Of the configurations evaluated, distribution losses account for 13-29% of the total water heating energy use and water use efficiency ranges from 11-22%. The base case, an uninsulated trunk and branch system sees the most improvement in energy consumption by insulating and locating the water heater central to all fixtures. Demand recirculation systems are not projected to provide significant energy savings and in some cases increase energy consumption. Water use is most efficient with demand recirculation systems, followed by the insulated trunk and branch system with a central water heater. Compact plumbing practices and insulation have the most impact on energy consumption (2-6% for insulation and 3-4% per 10 gallons of enclosed volume reduced). The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

Weitzel, E.; Hoeschele, M.

2014-09-01T23:59:59.000Z

159

Multielement geochemistry of solid materials in geothermal systems and its applications. Part 1. Hot-water system at the Roosevelt Hot Springs KGRA, Utah  

SciTech Connect (OSTI)

Geochemical studies of the geothermal system at Roosevelt Hot Springs, Utah, have led to development of chemical criteria for recognition of major features of the system and to a three-dimensional model for chemical zoning in the system. Based on this improved level of understanding several new or modified geochemical exploration and assessment techniques have been defined and are probably broadly applicable to evaluation of hot-water geothermal systems. The main purpose of this work was the development or adaptation of solids geochemical exploration techniques for use in the geothermal environment. (MHR)

Bamford, R.W.; Christensen, O.D.; Capuano, R.M.

1980-02-01T23:59:59.000Z

160

AN OVERVIEW OF BUILDING AMERICA INDUSTRIALIZED HOUSING PARTNERSHIP (BAIHP) ACTIVITIES IN HOT-HUMID CLIMATES  

E-Print Network [OSTI]

assistance resulting in the construction of extremely energy efficient homes. One BA research team is led by the Florida Solar Energy Center (FSEC). This team, called the Building America Industrialized Housing Partnership (BAIHP) is staffed by FSEC... assistance resulting in the construction of extremely energy efficient homes. One BA research team is led by the Florida Solar Energy Center (FSEC). This team, called the Building America Industrialized Housing Partnership (BAIHP) is staffed by FSEC...

Chandra, S.; Parker, D.; Sherwin, J.; Colon, C.; Fonorow, K.; Stroer, D.; Martin, E.; McIlvaine, J.; Chasar, D.; Moyer, N.; Thomas-Rees, S.; Hoak, D.; Beal, D.; Gil, C.

Note: This page contains sample records for the topic "industrial hot water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

DOE Office of Indian Energy Foundational Course on Direct Use for Building Heat and Hot Water  

Broader source: Energy.gov (indexed) [DOE]

DIRECT USE FOR BUILDING HEAT & HOT WATER Presented by the National Renewable Energy Laboratory Course Outline 2 What we will cover...  About the DOE Office of Indian Energy Education Initiative  Course Introduction  Solar Thermal and Solar Ventilation Air Pre-Heat - Resources, Technology, Examples & Cost, and References  Biomass Heat - Resources, Technology, Examples & Cost, and References  Geothermal Building Heat - Resources, Technology, Examples & Cost, and References  Additional Information & Resources Introduction The U.S. Department of Energy (DOE) Office of Indian Energy Policy and Programs is responsible for assisting Tribes with energy planning and development, infrastructure, energy costs, and electrification of Indian

162

One Machine for Heating Cooling & Domestic Hot Water: Multi-Function Heat Pumps to Enable Zero Net Energy Homes  

E-Print Network [OSTI]

advances to commercialize stand-alone electric heat-pump storage hot water heaters. These systems offer design uses multiple systems and fuels to provide thermal services, the emerging generation of heat to experience this change as air-source heat-pump water heaters deliver obvious energy savings over electric

California at Davis, University of

163

High performance in low-flow solar domestic hot water systems  

SciTech Connect (OSTI)

Low-flow solar hot water heating systems employ flow rates on the order of 1/5 to 1/10 of the conventional flow. Low-flow systems are of interest because the reduced flow rate allows smaller diameter tubing, which is less costly to install. Further, low-flow systems result in increased tank stratification. Lower collector inlet temperatures are achieved through stratification and the useful energy produced by the collector is increased. The disadvantage of low-flow systems is the collector heat removal factor decreases with decreasing flow rate. Many solar domestic hot water systems require an auxiliary electric source to operate a pump in order to circulate fluid through the solar collector. A photovoltaic driven pump can be used to replace the standard electrical pump. PV driven pumps provide an ideal means of controlling the flow rate, as pumps will only circulate fluid when there is sufficient radiation. Peak performance was always found to occur when the heat exchanger tank-side flow rate was approximately equal to the average load flow rate. For low collector-side flow rates, a small deviation from the optimum flow rate will dramatically effect system performance.

Dayan, M.

1997-12-31T23:59:59.000Z

164

Primary energy consumption of the dwelling with solar hot water system and biomass boiler  

Science Journals Connector (OSTI)

Abstract This paper presents a new methodology, based on the energy performance of buildings Directive related European norms. It is developed to overcome ambiguities and incompleteness of these standards in determining the delivered and primary energy. The available procedures from the present Algorithm for determining the energy demands and efficiency of technical systems in buildings, normally used for energy performance certification of buildings, also allow detailed analyzes of the influence of particular system components on the overall system energy efficiency. The calculation example is given for a Croatian reference dwelling, equipped with a solar hot water system, backed up with a biomass boiler for space heating and domestic hot water purposes as a part of the dwelling energy performance certification. Calculations were performed for two cases corresponding to different levels of the dwelling thermal insulation with an appropriate heating system capacity, in order to investigate the influence of the building heat losses on the system design and energy consumption. The results are compared against those obtained for the conventional system with a gas boiler in terms of the primary energy consumption as well as of investment and operating costs. These results indicate great reduction in both delivered and primary energy consumption when a solar system with biomass boiler is used instead of the conventional one. Higher savings are obtained in the case of the dwelling with higher energy need for space heating. Such dwellings also have a shorter payback period than the ones with better thermal insulation.

Mihaela Berkovi?-ubi?; Martina Rauch; Damir Dovi?; Mladen Andrassy

2014-01-01T23:59:59.000Z

165

New test methodologies to analyse direct expansion solar assisted heat pumps for domestic hot water  

Science Journals Connector (OSTI)

Abstract Since there are not specific standards for testing direct expansion solar assisted heat pumps for domestic hot water, new testing methodologies are proposed supported by laboratory experiments. Two methodologies were developed for performance measurement: modified BIN method and long term performance prediction with a TRNSYS model validated with specific experimental conditions. The long term performance prediction is a methodology similar to the already obtained for solar thermal systems. A system was tested in Lisbon during one year, covering almost all possible local weather conditions. The hot water tapping test cycle used was in agreement with recent standards EN16147:2011 or EN15316-3-1:2007. The influence of average daily air temperature, dew point temperature and solar irradiation was analysed. The seasonal performance factor was calculated for two cities in Portugal (Lisbon and Porto) and for additional four cities in Europe (Davos, Athens, Helsinki and Strasburg). The establishment of a procedure to calculate the seasonal performance of this kind of systems is very important according to the directive 2009/28/EC of the European Parliament and of the Council.

Jorge Faco; Maria Joo Carvalho

2014-01-01T23:59:59.000Z

166

DYNAMIC MODEL OF AN INDUSTRIAL HEAT PUMP USING WATER AS REFRIGERANT  

E-Print Network [OSTI]

1 DYNAMIC MODEL OF AN INDUSTRIAL HEAT PUMP USING WATER AS REFRIGERANT CHAMOUN MARWAN to improve industrial energy efficiency, the development of a high temperature heat pump using water vapor as refrigerant is investigated. Technical problems restraining the feasibility of this industrial heat pump

Paris-Sud XI, Université de

167

Alkaline subcritical water gasification of dairy industry waste (Whey)  

Science Journals Connector (OSTI)

The near-critical water gasification of dairy industry waste in the form of Whey, a product composed of mixtures of carbohydrates (mainly lactose) and amino acids such as glycine and glutamic acid, has been studied. The gasification process involved partial oxidation with hydrogen peroxide in the presence of NaOH. The reactions were studied over the temperature range from 300C to 390C, corresponding pressures of 9.524.5MPa and reaction times from 0min to 120min. Hydrogen production was affected by the presence of NaOH, the concentration of H2O2, temperature, reaction time and feed concentration. Up to 40% of the theoretical hydrogen gas production was achieved at 390C. Over 80% of the Whey nitrogen content was found as ammonia, mainly in the liquid effluent.

Rattana Muangrat; Jude A. Onwudili; Paul T. Williams

2011-01-01T23:59:59.000Z

168

Proposal for the Purchase, Without a Call for Tenders, of a Medium-Temperature Hot Water Boiler for the 300 GeV Accelerator  

E-Print Network [OSTI]

Proposal for the Purchase, Without a Call for Tenders, of a Medium-Temperature Hot Water Boiler for the 300 GeV Accelerator

1976-01-01T23:59:59.000Z

169

American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 281 Solar Hot Water Application Assessment for U.S. Army IMCOM-Southeast Region  

SciTech Connect (OSTI)

The Energy Independence and Security Act of 2007 requires installations (EISA) to install solar systems of sufficient capacity to provide 30% of service hot water in new construction and renovations where cost-effective. However, installations are struggling with how to implement solar hot water, and while several installations are installing solar hot water on a limited basis, paybacks remain long. Pacific Northwest National Laboratory (PNNL) was tasked to address this issue to help determine how best to implement solar hot water projects. This documents discusses the results of that project.

Russo, Bryan J.; Chvala, William D.

2010-09-30T23:59:59.000Z

170

Analysis of space heating and domestic hot water systems for energy-efficient residential buildings  

SciTech Connect (OSTI)

An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

Dennehy, G

1983-04-01T23:59:59.000Z

171

Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California  

SciTech Connect (OSTI)

Residential water heating is an important consideration in California?s building energy efficiency standard. Explicit treatment of ground-coupled hot water piping is one of several planned improvements to the standard. The properties of water, piping, insulation, backfill materials, concrete slabs, and soil, their interactions, and their variations with temperature and over time are important considerations in the required supporting analysis. Heat transfer algorithms and models devised for generalized, hot water distribution system, ground-source heat pump and ground heat exchanger, nuclear waste repository, buried oil pipeline, and underground electricity transmission cable applications can be adapted to the simulation of under-slab water piping. A numerical model that permits detailed examination of and broad variations in many inputs while employing a technique to conserve computer run time is recommended.

Warner, J.L.; Lutz, J.D.

2006-01-01T23:59:59.000Z

172

Assembly and comparison of available solar hot water system reliability databases and information.  

SciTech Connect (OSTI)

Solar hot water (SHW) systems have been installed commercially for over 30 years, yet few quantitative details are known about their reliability. This report describes a comprehensive analysis of all of the known major previous research and data regarding the reliability of SHW systems and components. Some important conclusions emerged. First, based on a detailed inspection of ten-year-old systems in Florida, about half of active systems can be expected to fail within a ten-year period. Second, valves were identified as the probable cause of a majority of active SHW failures. Third, passive integral and thermosiphon SHW systems have much lower failure rates than active ones, probably due to their simple design that employs few mechanical parts. Fourth, it is probable that the existing data about reliability do not reveal the full extent of fielded system failures because most of the data were based on trouble calls. Often an SHW system owner is not aware of a failure because the backup system silently continues to produce hot water. Thus, a repair event may not be generated in a timely manner, if at all. This final report for the project provides all of the pertinent details about this study, including the source of the data, the techniques to assure their quality before analysis, the organization of the data into perhaps the most comprehensive reliability database in existence, a detailed statistical analysis, and a list of recommendations for additional critical work. Important recommendations include the inclusion of an alarm on SHW systems to identify a failed system, the need for a scientifically designed study to collect high-quality reliability data that will lead to design improvements and lower costs, and accelerated testing of components that are identified as highly problematic.

Menicucci, David F. (Building Specialists, Inc., Albuquerque, NM)

2009-05-01T23:59:59.000Z

173

Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California  

E-Print Network [OSTI]

Diagram 1: A Typical Tank Water Heater Source: http://to-unit comparisons of tank versus tankless water heaters.Energy Use MJ/(unit*year) Tank Tankless MJ/(unit*year) Tank

Lu, Alison

2011-01-01T23:59:59.000Z

174

Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for  

E-Print Network [OSTI]

Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for single storage tank is studied. Thermal stratification in the tank increases the heat recovery performance of the residence. Two fuels are considered, namely syngas and natural gas. The tank model considers the temperature

Berning, Torsten

175

Effect of Methanol on the Liquefaction Reaction of Biomass in Hot Compressed Water under Microwave Energy  

Science Journals Connector (OSTI)

It was found that 5-hydroxymethylfurfural (HMF) and levulinic acid are the dominate products using pure water as the liquefying agent. ... As an efficient method for biomass conversion, a thermal chemical reaction, such as liquefaction, has been considered as a potential pathway for production of biofuels and chemicals. ... It is perfectly suitable for these products to be used as potential platform chemicals, such as polyols, in the polyurethane industry because the appropriate viscosity and hydroxyl number of the final products can be obtained by a slight modification using ethylene oxide and propylene oxide. ...

Junming Xu; Jianchun Jiang; Chung-yun Hse; Todd F. Shupe

2013-07-22T23:59:59.000Z

176

Buoyancy driven flow in a hot water tank due to standby heat loss  

Science Journals Connector (OSTI)

Results of experimental and numerical investigations of thermal behavior in a vertical cylindrical hot water tank due to standby heat loss of the tank are presented. The effect of standby heat loss on temperature distribution in the tank is investigated experimentally on a slim 150l tank with a height to diameter ratio of 5. A tank with uniform temperatures and with thermal stratification is studied. A detailed computational fluid dynamics (CFD) model of the tank is developed to calculate the natural convection flow in the tank. The distribution of the heat loss coefficient for the different parts of the tank is measured by experiments and used as input to the CFD model. Water temperatures at different levels of the tank are measured and compared to CFD calculated temperatures. The investigations focus on validation of the CFD model and on understanding of the CFD calculations. The results show that the CFD model predicts satisfactorily water temperatures at different levels of the tank during cooling by standby heat loss. It is elucidated how the downward buoyancy driven flow along the tank wall is established by the heat loss from the tank sides and how the natural convection flow is influenced by water temperatures in the tank. When the temperature gradient in the tank is smaller than 2K/m, there is a downward fluid velocity of 0.0030.015m/s. With the presence of thermal stratification the buoyancy driven flow is significantly reduced. The dependence of the velocity magnitude of the downward flow on temperature gradient is not influenced by the tank volume and is only slightly influenced by the tank height to tank diameter ratio. Based on results of the CFD calculations, an equation is determined to calculate the magnitude of the buoyancy driven flow along the tank wall for a given temperature gradient in the tank.

Jianhua Fan; Simon Furbo

2012-01-01T23:59:59.000Z

177

Improving thermosyphon solar domestic hot water system model performance. Final report, March 1994--February 1995  

SciTech Connect (OSTI)

Data from an indoor solar simulator experimental performance test is used to develop a systematic calibration procedure for a computer model of a thermosyphoning, solar domestic hot water heating system with a tank-in-tank heat exchanger. Calibration is performed using an indoor test with a simulated solar collector to adjust heat transfer in the heat exchanger and heat transfer between adjacent layers of water in the storage tank. An outdoor test is used to calibrate the calculation of the friction drop in the closed collector loop. Additional indoor data with forced flow in the annulus of the heat exchanger leads to improved heat transfer correlations for the inside and outside regions of the tank-in-tank heat exchanger. The calibrated simulation model is compared to several additional outdoor tests both with and without auxiliary heating. Integrated draw energies are predicted with greater accuracy and draw temperature profiles match experimental results to a better degree. Auxiliary energy input predictions improve significantly. 63 figs., 29 tabs.

Swift, T.N.

1996-09-01T23:59:59.000Z

178

Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet)  

SciTech Connect (OSTI)

Over recent years, heat pump water heaters (HPWHs) have become more readily available and more widely adopted in the marketplace. For a 6-month period, the Building America team Consortium for Advanced Residential Buildings monitored the performance of a GE Geospring HPWH in Windermere, Florida. The study found that the HPWH performed 144% more efficiently than a traditional electric resistance water heater, saving approximately 64% on water heating annually. The monitoring showed that the domestic hot water draw was a primary factor affecting the system's operating efficiency.

Metzger, C.; Puttagunta, S.; Williamson, J.

2013-11-01T23:59:59.000Z

179

Water and Energy Savings using Demand Hot Water Recirculating Systems in Residential Homes: A Case Study of Five Homes in Palo Alto, California  

SciTech Connect (OSTI)

This report summarizes a preliminary study aimed at estimating the potential of saving potable water, (and the electrical energy used to heat it), that is presently lost directly to the drain while occupants wait for hot water to arrive at the faucet (point of use). Data were collected from five single-family homes in Palo Alto, California. Despite the small sample size in this study, the results make a compelling case for retrofitting homes with hot water recirculation systems to eliminate unnecessary wastage of water at the point of use. Technical as well as behavioral and attitudinal changes towards water conservation are necessary for a fulfilling and successful conservation effort. This report focuses on the technical issues, but behavioral issues are also noted, which may be factored into future studies involving local and state governments and utility companies.

Ally, M.R.

2002-11-14T23:59:59.000Z

180

Industrial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Products Industrial Institutional Multi-Sector Residential Momentum Savings Regional Efficiency Progress Report Utility Toolkit Energy Smart Industrial - Energy Management...

Note: This page contains sample records for the topic "industrial hot water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Industry  

E-Print Network [OSTI]

2004). US DOEs Industrial Assessment Centers (IACs) are anof Energys Industrial Assessment Center program in SMEs

Bernstein, Lenny

2008-01-01T23:59:59.000Z

182

Development of a cogenerating thermophotovoltaic powered combination hot water heater/hydronic boiler  

Science Journals Connector (OSTI)

A cogenerating thermophotovoltaic (TPV) device for hot water hydronic space heating and electric power generation was developed designed fabricated and tested under a Department of Energy contracted program. The device utilizes a cylindrical ytterbia superemissive ceramic fiber burner (SCFB) and is designed for a nominal capacity of 80 kBtu/hr. The burner is fired with premixed natural gas and air. Narrow band emission from the SCFB is converted to electricity by single crystal silicon (Si) photovoltaic (PV) arrays arranged concentrically around the burner. A three-way mixing valve is used to direct heated water to either the portable water storage tank radiant baseboard heaters or both. As part of this program QGI developed a microprocessor-based control system to address the safety issues as well as photovoltaic power management. Flame sensing is accomplished via the photovoltaics a technology borrowed from QGIs Quantum Control safety shut-off system. Device testing demonstrated a nominal photovoltaic power output of 200 W. Power consumed during steady state operation was 33 W with power drawn from the combustion air blower hydronic system pump three-way switching valve and the control system resulting in a net power surplus of 142 W. Power drawn during the ignition sequence was 55 W and a battery recharge time of 1 minute 30 seconds was recorded. System efficiency was measured and found to be more than 83%. Pollutant emissions at determined operating conditions were below the South Coast Air Quality Management Districts (California) limit of 40 ng/J for NOx and carbon monoxide emissions were measured at less than 50 dppm.

Aleksandr S. Kushch; Steven M. Skinner; Richard Brennan; Pedro A. Sarmiento

1997-01-01T23:59:59.000Z

183

Economic analysis of residential combined solar-heating and hot-water systems  

SciTech Connect (OSTI)

A brief description of a typical residential solar heating and hot water system and typical cost and performance information are presented. The monthly costs and savings of the typical system are discussed. The economic evaluation of solar residential systems is presented in increasing levels of complexity. Utilizing a typical system, the effective interest rate that the purchaser of a system would receive on money invested is shown for all regions of the country. The importance of numerous variables that can make a significant difference on the economics of the system is described so that it can be determined whether the typical system economics are compatible with the particular situation. Methods for calculating the payback period for any non-typical solar system are described. This calculated payback period is then shown to be related to the effective interest rate that the purchaser of the system would receive for a typical economic condition. A nomagraph is presented that performs this calculation. Finally, a method is presented to calculate the effective interest rate that the solar system would provide. It is shown how to develop the relationship between payback period and the effective interest rate for any economic scenario.

None

1980-09-23T23:59:59.000Z

184

Economic analysis of residential and commercial solar heating and hot water systems  

SciTech Connect (OSTI)

The economic evaluation of residential and commercial solar heating and hot water systems is presented. Commercial systems are further categorized as taxable and non-taxable applications in recognition of the effect of Federal and state tax incentives and disincentives for solar energy systems. The economic evaluation of each system type is performed utilizing two distinct methods of analysis. The economic analyses follow a brief description of each method. The Cash Flow Analyses provide insight into the short and long term effects of a solar investment on the budget of the solar energy system purchaser while the Return-On-Investment Analyses provide an appropriate method of measuring the attractiveness of a solar investment in comparison to alternative long term investments. Utilizing a typical system for each system type and application the Cash Flow and Return-On-Investment Analyses are presented. The sensitivity of the results on the numerous variables in the economic analyses is shown. Maps provide a graphic display of the results of the economic analysis of typical systems using Federal and state tax credits and average state conventional fuel costs for each system type. Conclusions based on the economic analyses performed and a thorough discussion of the present status of the data required for the complete economic evaluation of solar energy systems are summarized. The current availability and limitations of data and requirements for further work in this area are discussed.

None

1980-09-23T23:59:59.000Z

185

Sustaining Industrial Energy Efficiency in Process Cooling in a Potentially Water-Short Future  

E-Print Network [OSTI]

by Energy-Intensive Plants* Source: Anonymous US petrochemical company *Includes refineries and ethylene plants ESL-IE-14-05-18 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Estimated Water Use... Sources Strategy: Education on New(er) Technologies and Approaches Barriers to Use of Unconventional Water Sources (sea water, brackish water or brine water) High pipeline costs; Need to address upgrades to metallurgy as well as minimizing...

Ferland, K.

2014-01-01T23:59:59.000Z

186

The waters of Southeastern Wisconsin are vast but vulnerable. We depend on our waters for drinking water, irrigation, industry, transportation, power production,  

E-Print Network [OSTI]

. Understanding our region's water-related issues and future challenges can help us protect clean, abundant water and industry, public health and ecosystem health. Water quality gains more at- tention during summer, when cause illness. The bacteria and other pollutants that affect our water quality come from a variety

Saldin, Dilano

187

Solar heating and hot water system installed at the Senior Citizen Center, Huntsville, Alabama. [Includes engineering drawings  

SciTech Connect (OSTI)

Information is provided on the solar energy system installed at the Huntsville Senior Citizen Center. The solar space heating and hot water facility and the project involved in its construction are described in considerable detail and detailed drawings of the complete system and discussions of the planning, the hardware, recommendations, and other pertinent information are included. The facility was designed to provide 85 percent of the hot water and 85 percent of the space heating requirements. Two important factors concerning this project for commercial demonstration are the successful use of silicon oil as a heat transfer fluid and the architecturally aesthetic impact of a large solar energy system as a visual centerpoint. There is no overheat or freeze protection due to the characteristics of the silicon oil and the design of the system. Construction proceeded on schedule with no cost overruns. It is designed to be relatively free of scheduled maintenance, and has experienced practically no problems.

Not Available

1980-02-01T23:59:59.000Z

188

Impact of a solar domestic hot water demand-side management program on an electric utility and its customers  

SciTech Connect (OSTI)

A methodology to assess the economic and environmental impacts of a large scale implementation of solar domestic hot water (SDHW) systems is developed. Energy, emission and demand reductions and their respective savings are quantified. It is shown that, on average, an SDHW system provides an energy reduction of about 3200 kWH, avoided emissions of about 2 tons and a capacity contribution of 0.7 kW to a typical Wisconsin utility that installs 5000 SDHW system. The annual savings from these reductions to utility is {dollar_sign}385,000, providing a return on an investment of over 20{percent}. It is shown that, on average, a consumer will save {dollar_sign}211 annually in hot water heating bills. 8 refs., 7 figs.

Trzeniewski, J.; Mitchell, J.W.; Klein, S.A.; Beckman, W.A.

1996-09-01T23:59:59.000Z

189

A Critical Analysis of Technological Innovation and Economic Development in Southern California's Urban Water Reuse And Recycling Industry  

E-Print Network [OSTI]

country also targeted clean technologies, such as waters renewable energy and clean technology industries. (ibid,and clean tech. In clean technologies, in which water

Pilip-Florea, Shadrach Jay

2012-01-01T23:59:59.000Z

190

A New ACS Audio Course to help you understand and solve industrial and municipal waste-water problems ....  

Science Journals Connector (OSTI)

A New ACS Audio Course to help you understand and solve industrial and municipal waste-water problems .... ...

1982-08-01T23:59:59.000Z

191

Solar heating and domestic hot water system installed at Kansas City, Fire Station, Kansas City, Missouri. Final report  

SciTech Connect (OSTI)

This document is the final report of the solar energy heating and hot water system installed at the Kansas City Fire Station, Number 24, 2309 Hardesty Street, Kansas City, Missouri. The solar system was designed to provide 47 percent of the space heating, 8800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1428 cubic feet of 1/2 inch diameter pebbles weighing 71 1/2 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120-gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30-kilowatt electric unit heaters. There are six modes of system operation. This project is part of the Department of Energy PON-1 Solar Demonstration Program with DOE cost sharing $154,282 of the $174,372 solar system cost. The Final Design Review was held March 1977, the system became operational March 1979 and acceptance test was completed in September 1979.

None

1980-07-01T23:59:59.000Z

192

Recycled Water Reuse Permit Renewal Application for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond  

SciTech Connect (OSTI)

ABSTRACT This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in the initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.

No Name

2014-10-01T23:59:59.000Z

193

Report on the analysis of field data relating to the reliability of solar hot water systems.  

SciTech Connect (OSTI)

Utilities are overseeing the installations of thousand of solar hot water (SHW) systems. Utility planners have begun to ask for quantitative measures of the expected lifetimes of these systems so that they can properly forecast their loads. This report, which augments a 2009 reliability analysis effort by Sandia National Laboratories (SNL), addresses this need. Additional reliability data have been collected, added to the existing database, and analyzed. The results are presented. Additionally, formal reliability theory is described, including the bathtub curve, which is the most common model to characterize the lifetime reliability character of systems, and for predicting failures in the field. Reliability theory is used to assess the SNL reliability database. This assessment shows that the database is heavily weighted with data that describe the reliability of SHW systems early in their lives, during the warranty period. But it contains few measured data to describe the ends of SHW systems lives. End-of-life data are the most critical ones to define sufficiently the reliability of SHW systems in order to answer the questions that the utilities pose. Several ideas are presented for collecting the required data, including photometric analysis of aerial photographs of installed collectors, statistical and neural network analysis of energy bills from solar homes, and the development of simple algorithms to allow conventional SHW controllers to announce system failures and record the details of the event, similar to how aircraft black box recorders perform. Some information is also presented about public expectations for the longevity of a SHW system, information that is useful in developing reliability goals.

Menicucci, David F. (Building Specialists, Inc., Albuquerque, NM)

2011-07-01T23:59:59.000Z

194

Opportunities and Experiences in Implementing the Recycling Methods for Industrial Water Supply in Bulgaria  

Science Journals Connector (OSTI)

In this chapter, the importance of recycling of industrial wastewater in general and in Bulgaria is explained. The necessary preconditions for water recycling, i.e. environmental, technical and economical ... The...

Plamen Stoychev

2011-01-01T23:59:59.000Z

195

Computational Modeling of Coal Water Slurry Combustion Processes in Industrial Heating Boiler  

Science Journals Connector (OSTI)

Coal water slurry (CWS) is typically composed of 6070% coal, 3040% water, and 1% chemical additives. It has been developed over the last 20 years as an alternative to fuel oil mainly in industrial and utility b...

L. J. Zhu; B. Q. Gu

2007-01-01T23:59:59.000Z

196

Pilot Phase of a Field Study to Determine Waste of Water and Energy in Residential Hot-Water Distribution Systems  

E-Print Network [OSTI]

understanding the waste of energy and water in residentialStudy to Determine Waste of Water and Energy in ResidentialStudy to Determine Waste of Water and Energy in Residential

Lutz, Jim

2012-01-01T23:59:59.000Z

197

Industry  

E-Print Network [OSTI]

Information on corn wet milling. Corn Refiners Association corn wet milling industry: An ENERGYas an automotive fuel. Corn wet milling is the most energy-

Bernstein, Lenny

2008-01-01T23:59:59.000Z

198

Industry  

E-Print Network [OSTI]

increased use of biomass and energy efficiency improvements,Moreira, J. , 2006: Global biomass energy potential. Journal19712004 Notes 1) Biomass energy included 2) Industrial

Bernstein, Lenny

2008-01-01T23:59:59.000Z

199

Development of a gas backup heater for solar domestic hot-water systems. Final report, April 1978-April 1980  

SciTech Connect (OSTI)

A comprehensive program was undertaken to develop a unique gas fired backup for solar domestic hot water systems. Detailed computer design tools were written. A series of heat transfer experiments were performed to characterize the performance of individual components. A full scale engineering prototype, including the solar preheat tank and solar heat exchanger, was designed, fabricated and subjected to limited testing. Firing efficiency for the backup system was found to be 81.4% at a firing rate of 50,000 Btu/h. Long term standby losses should be negligible.

Morrison, D.J.; Grunes, H.E.; de Winter, F.; Armstrong, P.R.

1980-06-01T23:59:59.000Z

200

Experiments on adding a surfactant to water drops boiling on a hot surface  

Science Journals Connector (OSTI)

...surfactant to boiling water drops 675 done with three...0 ppm (i.e. pure water), 100 ppm and 1000...and ambient pressure (atmospheric). 2. Experimental...surfactant to 800 g of water. The water was distilled...solution in the droplet generator the syringe, needle...

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial hot water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Building America Technology Solutions for New and Existing Homes: Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet)  

Broader source: Energy.gov [DOE]

For a 6-month period, the Building America team Consortium for Advanced Residential Buildings monitored the performance of a heat pump water heater in Windermere, Florida. The study found that the HPWH performed 144% more efficiently than a traditional electric resistance water heater, saving approximately 64% on water heating annually. The monitoring showed that the domestic hot water draw was a primary factor affecting the system's operating efficiency.

202

Performance and economic evaluation of the seahorse natural gas hot water heater conversion at Fort Stewart. Interim report, 1994 Summer  

SciTech Connect (OSTI)

The federal government is the largest single energy consumer in the United States cost valued at nearly $10 billion annually. The US Department of Energy`s (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL) is one of four DOE laboratories that participate in the New Technologies Demonstration Program, providing technical expertise and equipment to evaluate new, energy-saving technologies being studied under that program. This interim report provides the results of a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology-a hot water heater conversion system to convert electrically heated hot water tanks to natural gas fuel. The unit was installed at a single residence at Fort Stewart, a US Army base in Georgia, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were Gas Fired Products, developers of the technology; the Public Service Company of North Carolina; Atlanta Gas Light Company; the Army Corps of Engineers; Fort Stewart; and Pacific Northwest Laboratory.

Winiarski, D.W.

1995-01-01T23:59:59.000Z

203

Performance of an experimental ground-coupled heat pump system for heating, cooling and domestic hot-water operation  

Science Journals Connector (OSTI)

Abstract The ground-coupled heat pump (GCHP) system is a type of renewable energy technology providing space heating and cooling as well as domestic hot water. However, experimental studies on GCHP systems are still insufficient. This paper first presents an energy-operational optimisation device for a GCHP system involving insertion of a buffer tank between the heat pump unit and fan coil units and consumer supply using quantitative adjustment with a variable speed circulating pump. Then, the experimental measurements are used to test the performance of the GCHP system in different operating modes. The main performance parameters (energy efficiency and CO2 emissions) are obtained for one month of operation using both classical and optimised adjustment of the GCHP system, and a comparative analysis of these performances is performed. In addition, using TRNSYS (Transient Systems Simulation) software, two simulation models of thermal energy consumption in heating, cooling and domestic hot-water operation are developed. Finally, the simulations obtained using TRNSYS are analysed and compared to experimental data, resulting in good agreement and thus the simulation models are validated.

Calin Sebarchievici; Ioan Sarbu

2015-01-01T23:59:59.000Z

204

In-situ parameter estimation for solar domestic hot water heating systems components. Final report, June 1995--May 1996  

SciTech Connect (OSTI)

Three different solar domestic hot water systems are being tested at the Colorado State University Solar Energy Applications Laboratory; an unpressurized drain-back system with a load side heat exchanger, an integral collector storage system, and an ultra low flow natural convection heat exchanger system. The systems are fully instrumented to yield data appropriate for in-depth analyses of performance. The level of detail allows the observation of the performance of the total system and the performance of the individual components. This report evaluates the systems based on in-situ experimental data and compares the performances with simulated performances. The verification of the simulations aids in the rating procedure. The whole system performance measurements are also used to analyze the performance of individual components of a solar hot water system and to develop improved component models. The data are analyzed extensively and the parameters needed to characterize the systems fully are developed. Also resulting from this indepth analysis are suggested design improvements wither to the systems or the system components.

Smith, T.R.

1997-03-01T23:59:59.000Z

205

The mutagenic potential of soil and runoff water from land treatment of three hazardous industrial wastes  

E-Print Network [OSTI]

THE MUTAGENIC POTENTIAL OF SOIL AND RUNOFF WATER FROM LAND TREATMENT OF THREE HAZARDOUS INDUSTRIAL WASTES A Thesis by PHEBE DAYOL Submitted to the Graduate College of Te xa s ASM Un i ver s i ty in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE August 1987 Major Subject: Soil Science THE MUTAGENIC POTENTIAL OF SOIL AND RUNOFF WATER FROM LAND TREATMENT OF THREE HAZARDOUS INDUSTRIAL WASTES A Thesis by PHEBE DAVDL Approved. s to style and content by: Kirk W...

Davol, Phebe

2012-06-07T23:59:59.000Z

206

Hydrothermal Liquefaction of Biomass in Hot-Compressed Water, Alcohols, and Alcohol-Water Co-solvents for Biocrude Production  

Science Journals Connector (OSTI)

HTL technology is particularly promising for converting wet biomass resources such as microalgae, agro waste streams (e.g., manures), municipal/industrial wastewater sludge and fresh/green forest biomass/residues...

Chunbao Charles Xu; Yuanyuan Shao

2014-01-01T23:59:59.000Z

207

Issue #4: Are High Efficiency Hot Water Heating Systems Worth the Cost?  

Office of Energy Efficiency and Renewable Energy (EERE)

What are realistic energy savings associated with the latest advanced and forthcoming water heating technologies and are they cost effective?

208

Industry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Exploration of Innovation and An Exploration of Innovation and Energy Efficiency in an Appliance Industry Prepared by Margaret Taylor, K. Sydny Fujita, Larry Dale, and James McMahon For the European Council for an Energy Efficient Economy March 29, 2012 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL - 5689E An Exploration of Innovation and Energy Efficiency in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and direction of technological change of product industries; the factors that underlie the outcomes of innovation in these industries; and the ways the innovation system might respond to any given intervention. The report provides an overview of the dynamics of energy efficiency policy and innovation in the appliance

209

Industry  

E-Print Network [OSTI]

for im- proving energy efficiency of corn wet milling havefor the corn wet milling industry: An ENERGY STAR Guide forfuel. Corn wet milling is the most energy-intensive food

Bernstein, Lenny

2008-01-01T23:59:59.000Z

210

Industry  

E-Print Network [OSTI]

options for combined heat and power in Canada. Office ofpolicies to promote combined heat and power in US industry.with fuel inputs in combined heat and power plants being

Bernstein, Lenny

2008-01-01T23:59:59.000Z

211

Industry  

E-Print Network [OSTI]

EJ of primary energy, 40% of the global total of 227 EJ. Bytotal energy use by industry and on the fraction of electricity use consumed by motor driven systems was taken as representative of global

Bernstein, Lenny

2008-01-01T23:59:59.000Z

212

Industry  

SciTech Connect (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

213

Consolidating the water industry: an analysis of the potential gains from horizontal integration in a conditional efficiency framework  

Science Journals Connector (OSTI)

The German potable water supply industry is regarded highly fragmented, thus preventing efficiency improvements that could happen through consolidation. Focusing ... use a cross-section sample of 364 German water

Michael Zschille

2014-08-01T23:59:59.000Z

214

Microwave vs. Electric Kettle: Which Appliance Is in Hot Water in #EnergyFaceoff Round 4?  

Broader source: Energy.gov [DOE]

In the final #EnergyFaceoff round, the electric kettle takes on the microwave for the honor of heating your water.

215

A Precise Water Abundance Measurement for the Hot Jupiter WASP-43b  

E-Print Network [OSTI]

The water abundance in a planetary atmosphere provides a key constraint on the planet's primordial origins because water ice is expected to play an important role in the core accretion model of planet formation. However, the water content of the Solar System giant planets is not well known because water is sequestered in clouds deep in their atmospheres. By contrast, short-period exoplanets have such high temperatures that their atmospheres have water in the gas phase, making it possible to measure the water abundance for these objects. We present a precise determination of the water abundance in the atmosphere of the 2 $M_\\mathrm{Jup}$ short-period exoplanet WASP-43b based on thermal emission and transmission spectroscopy measurements obtained with the Hubble Space Telescope. We find the water content is consistent with the value expected in a solar composition gas at planetary temperatures (0.4-3.5x solar at 1 $\\sigma$ confidence). The metallicity of WASP-43b's atmosphere suggested by this result extends th...

Kreidberg, Laura; Dsert, Jean-Michel; Line, Michael R; Fortney, Jonathan J; Madhusudhan, Nikku; Stevenson, Kevin B; Showman, Adam P; Charbonneau, David; McCullough, Peter R; Seager, Sara; Burrows, Adam; Henry, Gregory W; Williamson, Michael; Kataria, Tiffany; Homeier, Derek

2014-01-01T23:59:59.000Z

216

Performance Evaluation of Hot Water Efficiency Plumbing System Using Thermal Valve  

E-Print Network [OSTI]

In Korea two popular water distribution systemsthe branch type and the separate type systemshave serious drawbacks. The branch type suffers from temperature instability while the separate type suffers from excessive piping. Neither of them re...

Cha, K. S.; Park, M. S.; Seo, H. Y.

217

Present research within the EC on the application of solar energy for hot water production  

Science Journals Connector (OSTI)

In this chapter, an overview is given of some of the research that has been done on solar water heating applications, introduced in the preceding chapter. This material is based on information provided by CEC ...

V. Goedseels; E. Van Der Stuyft

1986-01-01T23:59:59.000Z

218

Analysis of recoverable waste heat of circulating cooling water in hot-stamping power system  

Science Journals Connector (OSTI)

This article studies the possibility of using heat pump instead of cooling tower to decrease temperature and recover waste heat of circulating cooling water of power system. Making use of heat transfer theory ......

Panpan Qin; Hui Chen; Lili Chen; Chong Wang

2013-08-01T23:59:59.000Z

219

Characterization of the U.S. Industrial/Commercial Boiler Population- Final Report, May 2005  

Broader source: Energy.gov [DOE]

The U.S. industrial and commercial sectors consume large quantities of energy. Much of this energy is used in boilers to generate steam and hot water. This 2005 report characterizes the boilers in...

220

Evaluation of the soft measures' effects on ambient water quality improvement and household and industry economies  

Science Journals Connector (OSTI)

Abstract Various ecological footprint calculators, carbon footprint calculators and water footprint calculators have been developed in recent years. The basic concepts of ecological behaviour record notebooks and of carbon dioxide emission calculators have been developed since the late 20th century. The first carbon dioxide emission calculator was developed in 1991. Likewise, water pollutant discharge calculators have been developed to estimate the effects of soft measures introduced into households to reduce pollutant discharge since 2004. The soft measures which have been developed in Japan may consist of a wider framework, household sustainable consumption, which has been developed in Europe, and can be referred to cleaner consumption. In this research, summarisation of the short history of ecological behaviour record notebooks and ecological footprint calculators in Japan since the 1980s was conducted, and the soft measures in households to reduce pollutant discharge were evaluated for their effects on ambient water quality improvement as well as household and industry economies. Effects of the soft measures on related industry economies were investigated using an InputOutput Tableanalysis and the effects of the imported goods were evaluated with an import effect matrix, which was developed in this research. The effects of the soft measures on household expenditures were estimated to be a decrease by 2.5% or USD 285 person?1year?1 in 20032006. The results show that the soft measures positively affect the chemical fibre industry and significantly affect the detergent industry. Analysis of the import effect matrix proved that the six industries were tightly related through extensive amounts of imported goods. The soft measures in households may lead to household sustainable consumption and thus reduce disadvantageous human impacts on water environments. The effects of the measures introduced to improve the environment should be qualitatively and quantitatively evaluated to avoid redundant concerns and discord between the environment and the economy, which may be worried when the relationship is not well understood.

Yoshiaki Tsuzuki

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial hot water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Instrument Qualification of Custom Fabricated Water Activity Meter for Hot Cell Use  

SciTech Connect (OSTI)

This report describes a custom fabricated water activity meter and the results of the qualification of this meter as described in the laboratory test plan LAB-PLN-11-00012, Testing and Validation of an Enhanced Acquisition and Control System. It was calibrated against several NaOH solutions of varying concentrations to quantify the accuracy and precision of the instrument at 20 C and 60 C. Also, a schematic and parts list of the equipment used to make the water activity meter will be presented in this report.

McCoskey, Jacob K.

2014-01-22T23:59:59.000Z

222

Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial 8,870,422 44.3% Commercial 3,158,244 15.8% Electric Utilities 2,732,496 13.7% Residential 5,241,414 26.2% Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." T e x a s L o u i s i a n a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Industrial Billion Cubic Meters T e x a s C a l i f o r n i a F l o r i d a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Electric Utilities Billion Cubic Meters N e w Y o r k C a l i f o r n i a I l l i n o i s A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Commercial Billion Cubic Meters I l l i n o i s C a l i f o r n i a N e w Y o r k A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Residential Billion Cubic Meters 11. Natural Gas Delivered to Consumers in the United States, 1996 Figure Volumes in Million Cubic Feet Energy Information Administration

223

Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas. Final report  

SciTech Connect (OSTI)

The building has approximately 5600 square feet of conditioned space. Solar energy is used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system has an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water is the transfer medium that delivers solar energy to a tube-in-shell heat exchanger that in turn delivers solar-heated water to a 1100 gallon pressurized hot water storage tank. When solar energy is insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provides auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are included.

None

1980-11-01T23:59:59.000Z

224

Economies of Scale and Scope in Network Industries: Lessons for the UK water and sewerage sectors  

E-Print Network [OSTI]

was directly transferred to 12 private firms. The government sold its remaining share of the power generators in the year 2000.4 The 2001 New Electricity Trading Arrangements (NETA) changed the mechanism for electricity trading and the latest major reform... sectors1 Michael G. Pollitt Steven J. Steer ESRC Electricity Policy Research Group University of Cambridge August 2011 Abstract Many studies of the water and sewerage industries place significant importance on the benefits of economies...

Pollitt, Michael G.; Steer, Stephen J.

225

Experimental investigation of the night heat losses of hot water storage tanks in thermosyphon solar water heaters  

Science Journals Connector (OSTI)

The effects of night heat losses on the performance of thermosyphon solar water heaters have been experimentally examined. Three typical thermosyphon solar water heating systems with different storage tank sizes were tested by utilising the method suggested by ISO 9459-2:95. The results were analysed to quantify the night heat losses and to investigate the effect that these may have on the system daily performance. Analysis of the results showed that a linear behavior of the heat losses with the night mean ambient temperature exists. The correlation coefficients of the linearity for the three systems under consideration range from 0.93 to 0.97 with the losses reaching almost 8000 kJ at a mean ambient air temperature of 10 C. This value represents a significant percentage of the daily collected energy making the night losses one of the most important sources of energy loss in thermosyphonic systems.

Ioannis Michaelides; Polyvios Eleftheriou; George A. Siamas; George Roditis; Paraskevas Kyriacou

2011-01-01T23:59:59.000Z

226

BEST Winery Guidebook: Benchmarking and Energy and Water SavingsTool for the Wine Industry  

SciTech Connect (OSTI)

Not all industrial facilities have the staff or the opportunity to perform a detailed audit of their operations. The lack of knowledge of energy efficiency opportunities provides an important barrier to improving efficiency. Benchmarking has demonstrated to help energy users understand energy use and the potential for energy efficiency improvement, reducing the information barrier. In California, the wine making industry is not only one of the economic pillars of the economy; it is also a large energy consumer, with a considerable potential for energy-efficiency improvement. Lawrence Berkeley National Laboratory and Fetzer Vineyards developed an integrated benchmarking and self-assessment tool for the California wine industry called ''BEST''(Benchmarking and Energy and water Savings Tool) Winery. BEST Winery enables a winery to compare its energy efficiency to a best practice winery, accounting for differences in product mix and other characteristics of the winery. The tool enables the user to evaluate the impact of implementing energy and water efficiency measures. The tool facilitates strategic planning of efficiency measures, based on the estimated impact of the measures, their costs and savings. BEST Winery is available as a software tool in an Excel environment. This report serves as background material, documenting assumptions and information on the included energy and water efficiency measures. It also serves as a user guide for the software package.

Galitsky, Christina; Worrell, Ernst; Radspieler, Anthony; Healy,Patrick; Zechiel, Susanne

2005-10-15T23:59:59.000Z

227

Investment efficiency in the Italian water service industry: a benchmarking study using data envelopment analysis (DEA)  

Science Journals Connector (OSTI)

The paper presents a benchmarking study of the Italian water service industry using data envelopment analysis. Sample investigated in the study includes 38 optimal territorial areas (ATOs), where the ATO is a well circumscribed geographical area where the provision of integrated water services is considered efficient. Results of DEA implementation show that the average pure technical and scale efficiency are situated at 92.62% and 93.91%, respectively, while the average technical efficiencies score is 87.61%. Findings also support the idea that there might be an optimal size of ATOs which is associated to higher efficiency scores and that agglomeration economies are important in the provision of water integrated services. Large scale operations and ATO size are associated to lower efficiency rates.

Corrado Lo Storto

2011-01-01T23:59:59.000Z

228

Flexible Distributed Energy & Water from Waste for the Food & Beverage Industry- Presentation by GE Global Research, June 2011  

Broader source: Energy.gov [DOE]

Presentation on Flexible Distributed Energy & Water from Waste for the Food & Beverage Industry, given by Aditya Kumar of GE Global Research, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

229

WATER AND BY-PRODUCT ISSUES IN THE ELECTRIC-UTILITY INDUSTRY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Power Conference in conjunction with 2 and Power Conference in conjunction with 2 nd Joint U.S.-People's Republic of China Conference on Clean Energy, November 17-19, 2003, Washington, DC A DOE R&D RESPONSE TO EMERGING COAL BY-PRODUCT AND WATER ISSUES IN THE ELECTRIC-UTILITY INDUSTRY Thomas J. Feeley, III Technology Manager U.S. Department of Energy - Office of Fossil Energy National Energy Technology Laboratory Pittsburgh, PA ABSTRACT While the regulation and control of air emissions will continue to be of primary concern to the electric-utility industry over the next several decades, other environmental-related issues may also impact the operation of existing and new coal-based power systems. Coal by-products are one such issue. Coal-fired power plants generate nearly 118 million tons of fly ash, flue gas

230

BEST Winery Guidebook: Benchmarking and Energy and Water Savings Tool for the Wine Industry  

E-Print Network [OSTI]

http://www.pumps.org/. Industrial Assessment Center (IAC). (2001). Industrial Assessment Center Database version 8.1.1997a). An Industrial Assessment Center (IAC) study shows

Galitsky, Christina; Worrell, Ernst; Radspieler, Anthony; Healy, Patrick; Zechiel, Susanne

2005-01-01T23:59:59.000Z

231

U.S. Marine Corps Base Camp Pendleton: Using The Sun For Hot Water And Electricity, Federal Energy Management Program (FEMP) (Fact Sheet)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. Marine Corps Base Camp Pendleton, U.S. Marine Corps Base Camp Pendleton, covering 125,000 acres including 17 miles of Southern-California coastline, is the largest expeditionary training facility on the West Coast. More than 41,500 marines and family members call the base home, which reaches a daytime population of approximately 100,000. In fiscal year 2007, Camp Pendleton saved energy and money and reduced greenhouse gas (GHG) emissions through solar hot water (SHW) and photovoltaic (PV) arrays. The base implemented two integrated solar thermal/PV systems at its 53 Area and 62 Area training pools. The projects demonstrate Camp Pendleton's continuing commitment to energy conservation while helping meet Federal requirements for on-site renewable energy and solar hot water generation.

232

U.S. Marine Corps Base Camp Pendleton: Using The Sun For Hot Water And Electricity, Federal Energy Management Program (FEMP) (Fact Sheet)  

Broader source: Energy.gov (indexed) [DOE]

U.S. Marine Corps Base Camp Pendleton, U.S. Marine Corps Base Camp Pendleton, covering 125,000 acres including 17 miles of Southern-California coastline, is the largest expeditionary training facility on the West Coast. More than 41,500 marines and family members call the base home, which reaches a daytime population of approximately 100,000. In fiscal year 2007, Camp Pendleton saved energy and money and reduced greenhouse gas (GHG) emissions through solar hot water (SHW) and photovoltaic (PV) arrays. The base implemented two integrated solar thermal/PV systems at its 53 Area and 62 Area training pools. The projects demonstrate Camp Pendleton's continuing commitment to energy conservation while helping meet Federal requirements for on-site renewable energy and solar hot water generation.

233

Fuzzy control model and simulation of supply air system in a test rig of low-temperature hot-water radiator system  

Science Journals Connector (OSTI)

This paper proposes a typical multi-variable, large time delay and nonlinear system, self-extracting rules fuzzy control (SERFC) method to maintain a stable temperature value in a built environment chamber with supply air system and hot-water system. The parameters of the transfer functions in every control loop were identified by experimental data in a format of time sequences obtained from the experiment of dynamical responding performance. Fuzzy control simulations were implemented based on adjustment of the supply air system and hot-water system by SERFC. The simulation results show that SERFC for environment chamber has satisfied performance. There is no higher overshoot and stable error. The work presented in here can be used to deal with those complex thermal processes with difficulties in modeling of fuzzy control rules and provide a foundation for further application of fuzzy control in HVAC system.

Zhen Lu; Jili Zhang; Yongpan Chen; Tianyi Zhao; Hui Liu

2010-01-01T23:59:59.000Z

234

Thermal Gradient Holes At Spencer Hot Springs Area (Shevenell, Et Al.,  

Open Energy Info (EERE)

Hot Springs Area (Shevenell, Et Al., Hot Springs Area (Shevenell, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Spencer Hot Springs Area (Shevenell, Et Al., 2008) Exploration Activity Details Location Spencer Hot Springs Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes Collaboration with the gold mining industry has brought two new geothermal discoveries to the attention of the geothermal community. Exploration holes at Tungsten Mountain and McGuiness Hills (Spencer Hot Springs?) in 2004 and 2005 encountered hot water and steam at depths of meters with fluid geothermometry indicating reservoir temperatures of 170 to 200oC. More information can be obtained from the Nevada Bureau of Mines and Geology web

235

Development and testing of a photometric method to identify non-operating solar hot water systems in field settings.  

SciTech Connect (OSTI)

This report presents the results of experimental tests of a concept for using infrared (IR) photos to identify non-operational systems based on their glazing temperatures; operating systems have lower glazing temperatures than those in stagnation. In recent years thousands of new solar hot water (SHW) systems have been installed in some utility districts. As these numbers increase, concern is growing about the systems dependability because installation rebates are often based on the assumption that all of the SHW systems will perform flawlessly for a 20-year period. If SHW systems routinely fail prematurely, then the utilities will have overpaid for grid-energy reduction performance that is unrealized. Moreover, utilities are responsible for replacing energy for loads that failed SHW system were supplying. Thus, utilities are seeking data to quantify the reliability of SHW systems. The work described herein is intended to help meet this need. The details of the experiment are presented, including a description of the SHW collectors that were examined, the testbed that was used to control the system and record data, the IR camera that was employed, and the conditions in which testing was completed. The details of the associated analysis are presented, including direct examination of the video records of operational and stagnant collectors, as well as the development of a model to predict glazing temperatures and an analysis of temporal intermittency of the images, both of which are critical to properly adjusting the IR camera for optimal performance. Many IR images and a video are presented to show the contrast between operating and stagnant collectors. The major conclusion is that the technique has potential to be applied by using an aircraft fitted with an IR camera that can fly over an area with installed SHW systems, thus recording the images. Subsequent analysis of the images can determine the operational condition of the fielded collectors. Specific recommendations are presented relative to the application of the technique, including ways to mitigate and manage potential sources of error.

He, Hongbo (University of New Mexico, Albuquerque, NM); Vorobieff, Peter V. (University of New Mexico, Albuquerque, NM); Menicucci, David (University of New Mexico, Albuquerque, NM); Mammoli, Andrea A. (University of New Mexico, Albuquerque, NM); Carlson, Jeffrey J.

2012-06-01T23:59:59.000Z

236

Engineering and economic evaluation of direct hot-water geothermal energy applications on the University of New Mexico campus. Final technical report  

SciTech Connect (OSTI)

The potential engineering and economic feasibility of low-temperature geothermal energy applications on the campus of the University of New Mexico is studied in detail. This report includes three phases of work: data acquisition and evaluation, system synthesis, and system refinement and implementation. Detailed process designs are presented for a system using 190/sup 0/F geothermal water to substitute for the use of 135 x 10/sup 9/ Btu/y (141 TJ/y) of fossil fuels to provide space and domestic hot water heating for approximately 23% of the campus. Specific areas covered in the report include economic evaluation, environmental impact and program implementation plans.

Kauffman, D.; Houghton, A.V.

1980-12-31T23:59:59.000Z

237

Coping with Hot Work Environments  

E-Print Network [OSTI]

E-340 04/05 Many Texans work under hot, humid conditions. Summer heat is a particular hazard to agricultural pro- ducers who work long hours under the sun. However, other people working in hot yards, gardens, kitchens or industry jobs are also... evaporation. Wiping sweat from the skin with a cloth also prevents cooling from evaporation. In hot, humid conditions, hard work becomes harder. The sweat glands release moisture and essential David W. Smith, Extension Safety Program The Texas A&M...

Smith, David

2005-04-28T23:59:59.000Z

238

Hot Springs | Open Energy Information  

Open Energy Info (EERE)

Springs Springs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hot Springs Dictionary.png Hot Springs: A naturally occurring spring of hot water, heated by geothermal processes in the subsurface, and typically having a temperature greater than 37°C. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Mammoth Hot Springs at Yellowstone National Park (reference: http://www.hsd3.org/HighSchool/Teachers/MATTIXS/Mattix%20homepage/studentwork/Laura%20Cornelisse%27s%20Web%20Page/Yellowstone%20National%20Park.htm) Hot springs occur where geothermally heated waters naturally flow out of the surface of the Earth. Hot springs may deposit minerals and spectacular

239

Water extraction kinetics of metals, arsenic and dissolved organic carbon from industrial contaminated poplar leaves  

Science Journals Connector (OSTI)

Abstract In industrial areas, tree leaves contaminated by metals and metalloids could constitute a secondary source of pollutants. In the present study, water extraction kinetics of inorganic elements (IE: Pb, Zn, Cd, As, Fe and Mn), dissolved organic carbon, pH and biological activity were studied for industrial contaminated poplar leaves. Moreover, the distribution of the IE through the size fractions of the associated top soil was measured. High quantities of Mn, Zn and As and polysaccharides were released in the solution from the strongly contaminated leaves. The kinetic of release varied with time and metal type. The solution pH decreased while dissolved organic contents increased with time after 30 days. Therefore, these contaminated leaves could constitute a source of more available organic metals and metalloids than the initial inorganic process particles. However, the distribution of the IE through the size fractions of the top soil suggested that a great part of the released IE was adsorbed, reducing in consequence their transfers and bioavailability. It's concluded that mobility/bioavailability and speciation of metals and metalloids released from the decomposition of polluted tree leaves depends on soil characteristics, pollutant type and litter composition, with consequences for environmental risk assessment.

Muhammad Shahid; Tiantian Xiong; Maryse Castrec-Rouelle; Tibo Leveque; Camille Dumat

2013-01-01T23:59:59.000Z

240

ontanans use water in homes, on land, and in industries. We also use the state's streams, rivers, and lakes for recreation. When we  

E-Print Network [OSTI]

M ontanans use water in homes, on land, and in industries. We also use the state's streams, rivers Irrigation use reflects the size and importance of agriculture, the state's largest industry. Water withdrawn, and lakes for recreation. When we use water for such things as cooking, irrigation, or mineral extraction

Dyer, Bill

Note: This page contains sample records for the topic "industrial hot water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Task 15 -- Remediation of organically contaminated soil using hot/liquid (subcritical) water. Semi-annual report, April 1--September 30, 1997  

SciTech Connect (OSTI)

This activity involves a pilot-scale demonstration of the use of hot/liquid water for the removal of organic contaminants from soil at the pilot (20 to 40 kg) scale. Lab-scale studies are being performed to determine the optimum temperature, contact time, and flow rates for removal of the organic contaminants. Initial investigations into using carbon sorbents to clean the extractant water for recycle use and to concentrate the extracted contaminants in a small volume for disposal are also being performed. Liquid water is normally considered to be too polar a solvent to be effective for removal of organic contaminants from contaminated soils and sludges. However, the Energy and Environmental Research Center (EERC) has demonstrated that the polarity of liquid water can be changed from that of a very polar solvent at ambient conditions to that of an organic solvent (e.g., ethanol or acetonitrile) by simply raising the temperature. The EERC has exploited this unique property of liquid water to obtain highly selective extractions of polar (at lower temperatures) to nonpolar (at 200 to 250 C) organics from contaminated soils and sludges. Only moderate pressures (a maximum of about 45 atm at 250 C and lower pressures at lower temperatures) are required. With this procedure, all detectable hazardous organics were removed from the sludge, thus making the remaining material (about 99% of the original mass) a nonhazardous material. The present understanding of hot/liquid water extraction for the removal of hazardous organics from contaminated soils and sludges is being used to develop the engineering parameters needed to perform a pilot-scale demonstration of the remediation technology. Progress during the report period is summarized.

Hawthorne, S.B.

1997-12-31T23:59:59.000Z

242

NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Rhotech develop cost-effective solar water heating prototype to rival natural gas water heaters. Water heating energy use represents the second largest energy demand for homes...

243

NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact Sheet)  

SciTech Connect (OSTI)

NREL and Rhotech develop cost-effective solar water heating prototype to rival natural gas water heater market.

Not Available

2014-08-01T23:59:59.000Z

244

Use of active solar heating and domestic hot water (DHW) systems in single family homes: technical findings and lessons learned from the HUD solar demonstration program  

SciTech Connect (OSTI)

This report describes the technical experiences with active solar space and domestic water heating systems installed in single family homes. It is intended to assist members of the home building and solar industries to provide their customers with satisfactory products and installations and to avoid some of the problems caused by improper equipment, system design, and installation. Two chapters focus on liquid and air systems. Problems are discussed by subsystem: collectors, transport, storage, distribution, and control. Industry responsibility, including cooperation during the construction phase and responsiveness during the occupancy phase, are considered. The conclusion notes that system efficiency, which now runs in the 10 to 30 - percent range, can be greatly improved if the solar and home building industries make greater efforts to properly insulate pipes, ducts, and storage; assure system operation at the proper time; and minimize leaks through valves or dampers. Additional suggestions are given. Graphs, photographs, footnotes, a glossary, and selected bibliographies are provided.

Freeborne, W.; Mara, G.

1982-12-01T23:59:59.000Z

245

Current and future industrial energy service characterizations  

SciTech Connect (OSTI)

Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

1980-10-01T23:59:59.000Z

246

Sustainable development through beneficial use of produced water for the oil and gas industry  

E-Print Network [OSTI]

using desalination membranes. Produced water with up to 45,000 ppm total dissolved solids (TDS) can be treated to agricultural water quality water standards having less than 500 ppm TDS. Finally an economic analysis, including capital and operational...

Siddiqui, Mustafa Ashique

2012-06-07T23:59:59.000Z

247

Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse  

Broader source: Energy.gov [DOE]

Demonstrate an advanced water treatment and reuse process in a single hybrid system that combines forward osmosis with membrane distillation to achieve greater efficiency and increased water reuse.

248

Direct and Indirect Water Withdrawals for U.S. Industrial Sectors  

Science Journals Connector (OSTI)

Nevertheless, information necessary to meaningfully assess sustainable water use is incomplete. ... real estate ... Integrated Sustainability Analysis. ...

By Michael Blackhurst; Chris Hendrickson; Jordi Sels i Vidal

2010-02-08T23:59:59.000Z

249

Case Study of Stratified Chilled Water Storage Utilization for Comfort and Process Cooling in a Hot, Humid Climate  

E-Print Network [OSTI]

of the system and its operation is followed by presentation of operating data taken during 1997. INTRODUCTION Chilled water thermal energy storage ('TES) in naturally stratified tanks has been shown to be a valuable central cooling plant load management... and humid environment and presents new data on the performance of a large stratified chilled water storage tank. Figure 1. Plant Schematic. SITE The case study site is the Dallas, TX world headquarters of a major semiconductor manufacturer. The 6...

Bahnfleth, W. P.; Musser, A.

1998-01-01T23:59:59.000Z

250

Waste to energy by industrially integrated supercritical water gasification Effects of alkali salts in residual by-products from the pulp and paper industry  

Science Journals Connector (OSTI)

Supercritical water gasification (SCWG) is a method by which biomass can be converted intoa hydrogen-rich gas product. Wet industrial waste streams, which contain both organic and inorganic material, are well suited for treatment by SCWG. In this study, the gasification of two streams of biomass resulting from the pulp and paper industry, black liquor and paper sludge, has been investigated. The purpose is to convert these to useful products, both gaseous and solids, which can be used either in the papermaking process or in external applications. Simple compounds, such as glucose, have been fully gasified in SCWG, but gasification of more complex compounds, such as biomass and waste, have not reached as high conversions. The investigated paper sludge was not easily gasified. Improving gasification results with catalysts is an option and the use of alkali salts for this purpose was studied. The relationship between alkali concentration, temperature, and gasification yields was studied with the addition of KOH, K2CO3, NaOH and black liquor to the paper sludge. Addition of black liquor to the paper sludge resulted in similarly enhancing effects as when the alkali salts were added, which made it possible to raise the dry matter content and gasification yield without expensive additives.

I. Rnnlund; L. Myren; K. Lundqvist; J. Ahlbeck; T. Westerlund

2011-01-01T23:59:59.000Z

251

Effect of Water Quality on the Performance of Boiler in Nigerian Petroleum Industry  

E-Print Network [OSTI]

This work investigates quality of water used in boilers of Refinery Company in Nigeria. The results shows that the quality of water fed to boilers are off specification. Low water quality used in boilers led to frequent failure of the boilers as a result of tube rupture. This has resulted into low capacity utilization and loss of processing fees. The poor performance of the boiler feed treatment plant is attributable to the deplorable condition of water intake plant, raw water treatment, demineralization plant, change in raw water quality and non-functioning of the polisher unit.

J. O. Odigure; A. S. Abdulkareem; E. T. Asuquo

252

Activated-charcoal filters: water treatment, pollution control, and industrial applications. January 1970-July 1988 (citations from the US Patent data base). Report for January 1970-July 1988  

SciTech Connect (OSTI)

This bibliography contains citations of selected patents concerning activated-charcoal filters and their applications in water treatment, pollution control, and industrial processes. Filtering methods and equipment for air and water purification, industrial distillation and extraction, industrial leaching, and filtration of toxic gases and pollutants are described. Applications include drinking water purification, filtering beverages, production of polymer materials, solvent and metal recovery, swimming pool filtration, waste conversion, automobile fuel and exhaust systems, and footwear deodorizing. (Contains 129 citations fully indexed and including a title list.)

Not Available

1988-08-01T23:59:59.000Z

253

Activated charcoal filters: Water treatment, pollution control, and industrial applications. (Latest citations from the Patent Bibliographic database with exemplary claims. ) Published Search  

SciTech Connect (OSTI)

The bibliography contains citations of selected patents concerning activated charcoal filters and their applications in water treatment, pollution control, and industrial processes. Filtering methods and equipment for air and water purification, industrial distillation and extraction, industrial leaching, and filtration of toxic materials and contaminants are described. Applications include drinking water purification, filtering beverages, production of polymer materials, solvent and metal recovery, waste conversion, automotive fuel and exhaust systems, swimming pool filtration, tobacco smoke filters, kitchen ventilators, medical filtration treatment, and odor absorbing materials. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-08-01T23:59:59.000Z

254

Energy Department Announces $4 Million for University Consortium to Advance Americas Water Power Industry  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced $4 million to engage Americas research universities in the effort to accelerate the development of the emerging marine and hydrokinetic (MHK) energy industry in the United States.

255

Pharmaceutical Industry Wastewater: Review of the Technologies for Water Treatment and Reuse  

Science Journals Connector (OSTI)

The recovered waste stream can be used elsewhere in the process, and the water could be used for boiler feed or cooling towers and other operations thereby reducing consumption of precious raw water and drastically reducing operating costs. ...

Chandrakanth Gadipelly; Anta Prez-Gonzlez; Ganapati D. Yadav; Inmaculada Ortiz; Raquel Ibez; Virendra K. Rathod; Kumudini V. Marathe

2014-06-20T23:59:59.000Z

256

Evaluation of Hot Water Wash Parameters to Achieve Maximum Effectiveness in Reducing Levels of Salmonella Typhimurium, Escherichia coli O157:H7 and coliforms/Escherichia coli on Beef Carcass Surfaces  

E-Print Network [OSTI]

This study measured and compared different temperatures and dwell times of hot water treatment on the reduction of Escherichia coli O157:H7 and Salmonella Typhimurium on beef carcass surfaces. Two different types of beef surfaces, lean and fat, were...

Davidson, Melissa A.

2010-07-14T23:59:59.000Z

257

Hot Canyon  

ScienceCinema (OSTI)

This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

None

2013-03-01T23:59:59.000Z

258

Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Broader source: Energy.gov (indexed) [DOE]

Performance of a Performance of a Heat Pump Water Heater in the Hot-Humid Climate Windermere, Florida Over recent years, heat pump water heaters (HPWHs) have become more read- ily available and more widely adopted in the marketplace. A key feature of an HPWH unit is that it is a hybrid system. When conditions are favorable, the unit will operate in heat pump mode (using a vapor compression system that extracts heat from the surrounding air) to efficiently provide domestic hot water (DHW). Homeowners need not adjust their behavior to conform to the heat pump's capabilities. If a heat pump cannot meet a higher water draw demand, the heater will switch to electric resistance to provide a higher heating rate. This flexibility

259

Review of industry efforts to manage pressurized water reactor feedwater nozzle, piping, and feedring cracking and wall thinning  

SciTech Connect (OSTI)

This report presents a review of nuclear industry efforts to manage thermal fatigue, flow-accelerated corrosion, and water hammer damage to pressurized water reactor (PWR) feedwater nozzles, piping, and feedrings. The review includes an evaluation of design modifications, operating procedure changes, augmented inspection and monitoring programs, and mitigation, repair and replacement activities. Four actions were taken: (a) review of field experience to identify trends of operating events, (b) review of technical literature, (c) visits to PWR plants and a PWR vendor, and (d) solicitation of information from 8 other countries. Assessment of field experience is that licensees have apparently taken sufficient action to minimize feedwater nozzle cracking caused by thermal fatigue and wall thinning of J-tubes and feedwater piping. Specific industry actions to minimize the wall-thinning in feedrings and thermal sleeves were not found, but visual inspection and necessary repairs are being performed. Assessment of field experience indicates that licensees have taken sufficient action to minimize steam generator water hammer in both top-feed and preheat steam generators. Industry efforts to minimize multiple check valve failures that have allowed backflow of steam from a steam generator and have played a major role in several steam generator water hammer events were not evaluated. A major finding of this review is that analysis, inspection, monitoring, mitigation, and replacement techniques have been developed for managing thermal fatigue and flow-accelerated corrosion damage to feedwater nozzles, piping, and feedrings. Adequate training and appropriate applications of these techniques would ensure effective management of this damage.

Shah, V.N.; Ware, A.G.; Porter, A.M.

1997-03-01T23:59:59.000Z

260

Bridging ScrippS Science and induStry This was one of many issues that formed the basis for a study  

E-Print Network [OSTI]

tailored to the needs of water, electric, and natural gas industries. CalEnergy became viable when advances involving a consortium of industrial and academic partners including the California Energy Commission to help energy officials more efficiently plan for electricity demand, such as in hot summer months when

Constable, Steve

Note: This page contains sample records for the topic "industrial hot water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Design of dual column water purification system for industrial gamma irradiator based of PUROLITE resins  

Science Journals Connector (OSTI)

Abstract When gamma irradiators are not in use, they have to be stored in nuclear grade water pool. This water serves as shielding and the medium for the removal of generated heat. To prevent corrosion damage to the gamma source and other equipment a purification system controls the water quality. Also, this system serves as the make-up water system for supplies and maintains the de-ionized water level in the gamma source storage pool. In this paper, the design of the dual system for purification and make-up water for optimal water supply and its chemical parameters in the gamma source storage pool is presented. For this purpose, the characteristics of activated carbon purifier, anionic and cationic demineralizers have been determined. Aerb Safety Standard, Purolite Ion Exchange Design Code and Canadian Water Refining Company Manual have been used to design IR-136 gamma irradiator storage pool purification and make-up water system. The main objective of the design is to maintain water purity throughout the storage time.

Reza Gholizadeh Aghoyeh; Hossein Khalafi

2014-01-01T23:59:59.000Z

262

X-ray Diffraction and Molecular Dynamics Study of Medium-range Order in Ambient and Hot Water  

E-Print Network [OSTI]

We have developed x-ray diffraction measurements with high energy-resolution and accuracy to study water structure at three different temperatures (7, 25 and 66 C) under normal pressure. Using a spherically curved Ge crystal an energy resolution better than 15 eV has been achieved which eliminates influence from Compton scattering. The high quality of the data allows a precise oxygen-oxygen pair correlation function (PCF) to be directly derived from the Fourier transform of the experimental data resolving shell structure out to ~12 {\\AA}, i.e. 5 hydration shells. Large-scale molecular dynamics (MD) simulations using the TIP4P/2005 force-field reproduce excellently the experimental shell-structure in the range 4-12 {\\AA} although less agreement is seen for the first peak in the PCF. The Local Structure Index [J. Chem. Phys. 104, 7671 (1996)] identifies a tetrahedral minority giving the intermediate-range oscillations in the PCF and a disordered majority providing a more featureless background in this range. The current study supports the proposal that the structure of liquid water, even at high temperatures, can be described in terms of a two-state fluctuation model involving local structures related to the high-density and low-density forms of liquid water postulated in the liquid-liquid phase transition hypothesis.

Congcong Huang; K. T. Wikfeldt; D. Nordlund; U. Bergmann; T. McQueen; J. Sellberg; L. G. M. Pettersson; A. Nilsson

2011-07-24T23:59:59.000Z

263

Wall Drying in Hot and Humid Climates  

E-Print Network [OSTI]

Moisture and subsequent mold problems in buildings are a serious and increasing concern for the building industry. Moisture intrusion in buildings is especially pertinent in hot and humid climates because the climate conditions provide only limited...

Boone, K.; Weston, T.; Pascual, X.

2004-01-01T23:59:59.000Z

264

Water Efficiency  

Energy Savers [EERE]

Wheeler - Water Savers, LLC * fwheeler@watersaversllc.com Topics * Performance contracting analysis * Water industry terms * Federal reduction goals * Water balance * Water...

265

Water Resources Milind Sohoni  

E-Print Network [OSTI]

. Agricultural, Industrial and Domestic 4 Annexure III: Water recycling technologies Wastewater and Industrial

Sohoni, Milind

266

Seasonal abundance, distribution and growth of commercially important marine crustaceans at a hot water discharge in Galveston Bay, Texas  

E-Print Network [OSTI]

setiferus; and brown shrimp, Penaeus aztecus were taken once a month, January 1968-December 1969, at 11 offshore (trawl) and 6 beach (seine) stations. The collecting stations were in and around the entrance of the discharge canal carrying heated water... each month at offshore stations, 1968-1969. 28 Number of blue crabs seined each month at beach stations, 1968-1969 30 Number of white shrimp trawled each month at offshore stations, 1968-1969 43 Number of white shrimp seined each month at beach...

Gallaway, B. J

2012-06-07T23:59:59.000Z

267

Factors Governing Change in Water Withdrawals for U.S. Industrial Sectors from 1997 to 2002  

Science Journals Connector (OSTI)

Using structural decomposition analysis (SDA), the change in water withdrawals for the economy from 1997 to 2002 was allocated to changes in population, GDP per capita, water use intensity, production structure, and consumption patterns. ... With the growth of population and the economy, the demand for the products supporting individual consumption increased, especially for elementary needs of people such as food, energy and household products. ...

Hui Wang; Mitchell J. Small; David A. Dzombak

2014-02-24T23:59:59.000Z

268

Performance and economic evaluation of the seahorse natural gas hot water heater conversion at Fort Stewart. Final report  

SciTech Connect (OSTI)

The Federal government is the largest single energy consumer in the United States with consumption of nearly 1.5 quads/year of energy (10{sup 15} quad = 1015 Btu) and cost valued at nearly $10 billion annually. The US Department of Energy`s (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP) seeks to evaluate new energy -- saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL) is one of four DOE laboratories that participate in the New Technologies Demonstration Program, providing technical expertise and equipment to evaluate new, energy-saving technologies being studied under that program. This report provides the results of a field evaluation that PNL conducted for DOE/FEMP with funding support from the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of 4 candidate energy-saving technology-a water heater conversion system to convert electrically powered water heaters to natural gas fuel. The unit was installed at a single residence at Fort Stewart, a US Army base in Georgia, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were Gas Fired Products, developers of the technology; the Public Service Company of North Carolina; Atlanta Gas Light Company; the Army Corps of Engineers; Fort Stewart; and Pacific Northwest Laboratory.

Winiarski, D.W.

1995-12-01T23:59:59.000Z

269

Industry Alliance Industry Alliance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century October, 2010...

270

Flexible Distributed Energy & Water from Waste for Food and Beverage Industry  

SciTech Connect (OSTI)

Food and beverage plants inherently consume a large quantity of water and generate a high volume of wastewater rich in organic content. On one hand, water discharge regulations are getting more stringent over the time, necessitating the use of different technologies to reduce the amount of wastewater and improve the effluent water quality. On the other hand, growing energy and water costs are driving the plants to extract and reuse valuable energy and water from the wastewater stream. An integrated waste-tovalue system uses a combination of anaerobic digester (AD), reciprocating gas engine/boiler, membrane bioreactor (MBR), and reverse osmosis (RO) to recover valuable energy as heat and/or electricity as well as purify the water for reuse. While individual anaerobic digestion and membrane bioreactors are being used in increasing numbers, there is a growing need to integrate them together in a waste-to-value system for enhanced energy and water recovery. However, currently operation of these systems relies heavily on the plant operator to perform periodic sampling and off-line lab analysis to monitor the system performance, detect any abnormal condition due to variations in the wastewater and decide on appropriate remedial action needed. This leads to a conservative design and operation of these systems to avoid any potential upsets that can destabilize the system.

Shi, Ruijie

2013-12-30T23:59:59.000Z

271

Sustainable development through beneficial use of produced water for the oil and gas industry.  

E-Print Network [OSTI]

??Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large (more)

Siddiqui, Mustafa Ashique

2012-01-01T23:59:59.000Z

272

Water in Alberta With Special Focus on the Oil and Gas Industry  

E-Print Network [OSTI]

Tom Jack Gregor Wolbring Calgary-Canada May 2011 #12;2 Contents 1. Introduction......................................................................................................25 Wind and Solar Energy...........................................................................................................................25 Water Use for Wind and Solar Energy [73]..........................................

Gieg, Lisa

273

Assessing the recycling potential of industrial wastewater to replace fresh water in concrete mixes: application of polyvinyl acetate resin wastewater  

Science Journals Connector (OSTI)

This study presents the use of industrial wastewater released from polyvinyl acetate resin manufacturing plant to totally replace the fresh water in concrete composites. Seventy-two laboratory prepared concrete composites were tested to investigate the effect of using various PVAW/C ratios of 0.30, 0.35, 0.40, and 0.45 on the slump, compressive strength, flexural strength, and dry density of the concrete mixes. Results indicated a slight to moderate increase in compressive strength and hard density values compared to those of the control concrete made with fresh water at 7 and 28 day curing. On the contrary, a reduction in the slump values of the PVAWconcrete was observed compared to the slump of the control mixes. However, the slump values increased with increasing the PVAW/C ratios. On the other hand, the waste material leaching test revealed that none of the PVAW toxic constituents was detected. The findings of this work would form basic information for recycling PVAW in concrete mixes and indicate a potential alternative for diminution the adverse effects on the environment posed by the hazardous effluent of the polyvinyl acetate resin industry.

Zainab Z. Ismail; Enas A. Al-Hashmi

2011-01-01T23:59:59.000Z

274

New Mexico Water Resources Research Institute, New Mexico State University http://wrri.nmsu.edu Land application of industrial effluent on a Chihuahuan Desert  

E-Print Network [OSTI]

, 2001). Little data are available on the use of native terrestrial ecosystems for waste- water treatmentNew Mexico Water Resources Research Institute, New Mexico State University http://wrri.nmsu.edu Land application of industrial effluent on a Chihuahuan Desert ecosystem: Impact on soil physical

Johnson, Eric E.

275

Water balance analysis and wastewater recycling investigation in electrolytic manganese industry of China A case study  

Science Journals Connector (OSTI)

Abstract A water balance investigation was performed for a representative electrolytic manganese metal (EMM) enterprise to study the details of water consumption and generation in the production process. A new integrated wastewater treatment approach was put forward to recover useful chemicals from the process wastewater, which contained high concentrations of Mn2+, Cr(VI), Cr3+, and NH4+. Cr(VI) was recovered from the wastewater by ion exchange techniques and reused as EMM passivant. The remaining wastewater containing Mn2+ and NH4+ was returned to the leaching section before the impurity removal procedure to prepare electrolytes. Complete wastewater recycling was achieved after water balance regulation and optimization. Final demonstration line results proved that the proposed process is feasible and exhibits significant advantages of better treatment effects, lower costs and lower environmental impact compared to the traditional reductionneutralizationsedimentation treatment method. With the adoption of the proposed approach, solid waste disposal cost and the required area for the landfill yard were decreased by 80%. Operating costs for wastewater treatment were lowered by 85%. Around 4.8kg/t EMM of Mn2+, 5.2kg/t EMM of NH4+ and 0.24kg/t EMM of Cr(VI) were recovered. The recycled wastewater proportion was increased from 6.2% to 100.0%. 1.168m3/t EMM of fresh water was saved and the equivalent amount of discharging wastewater was reduced to the environment.

Fuyuan Xu; Linhua Jiang; Zhigang Dan; Xiaojuan Gao; Ning Duan; Guimei Han; Hong Zhu

2014-01-01T23:59:59.000Z

276

Trends and guidelines in water pollution control in the Finnish pulp and paper industry  

SciTech Connect (OSTI)

There are about 50 paper and pulp mills in Finland. In this paper, their production capacities in 1988 are illustrated. Pulp and paper production has increased quite rapidly during the last few decades. The greatest increase incurred in the production of bleached kraft pulp and mechanical pulp. The production of sulfite pulp has decreased during recent years. Within paper the production of printing papers has had the biggest increase. Estimates predict that the production capacity of the finish pulp and paper industry will show an average increase of 4% per year by the middle of this decade. Final production in 1987 and one estimate of production in 1992 are given. Wastewater loadings per production output are decreasing.

Junna, J. (National Board of Waters and the Environment, P.O. Box 250, SF-00101 Helsinki (FI)); Ruonala, S. (Environmental Research and Development Programme of the Finnish Forest Industry, P.O. Box 250, SF-00101 Helsinki (FI))

1991-07-01T23:59:59.000Z

277

Application of solar thermal energy to buildings and industry  

SciTech Connect (OSTI)

Flat plate collectors and evacuated tube collectors are described, as are parabolic troughs, Fresnel lenses, and compound parabolic concentrators. Use of solar energy for domestic hot water and for space heating and cooling are discussed. Some useful references and methods of system design and sizing are given. This includes mention of the importance of economic analysis. The suitability of solar energy for industrial use is discussed, and solar ponds, point-focus receivers and central receivers are briefly described. The use of solar energy for process hot water, drying and dehydration, and process steam are examined, industrial process heat field tests by the Department of Energy are discussed, and a solar total energy system in Shenandoah, GA is briefly described. (LEW)

Kutscher, C. F.

1981-05-01T23:59:59.000Z

278

A Critical Analysis of Technological Innovation and Economic Development in Southern California's Urban Water Reuse And Recycling Industry  

E-Print Network [OSTI]

patents, notably in water purification technologies (Foley &of water technology: water purification, reclamation andthe heart of the water purification process and the firms

Pilip-Florea, Shadrach Jay

2012-01-01T23:59:59.000Z

279

A Critical Analysis of Technological Innovation and Economic Development in Southern California's Urban Water Reuse And Recycling Industry  

E-Print Network [OSTI]

www.water.ca.gov/ California State Water Resources ControlCalifornia State Water Resources Control Board (CASWRCB),Issues. Western States Water Council. July, 2011 Branco,

Pilip-Florea, Shadrach Jay

2012-01-01T23:59:59.000Z

280

A Critical Analysis of Technological Innovation and Economic Development in Southern California's Urban Water Reuse And Recycling Industry  

E-Print Network [OSTI]

Water Task Force, Water Recycling 2030: Recommendations of2007. Water Funding Recycling Program Strategic Plan. Web.grants_loans/water_recycling/docs/strategicplan2007.pdf

Pilip-Florea, Shadrach Jay

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial hot water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

"Hot" for Warm Water Cooling  

E-Print Network [OSTI]

Group Susan Coghlan, Argonne National Laboratory David E.Center (SLAC), Menlo Park California Argonne NationalLaboratory (Argonne), Argonne Illinois Idaho National

Coles, Henry

2012-01-01T23:59:59.000Z

282

Selecting a New Water Heater You have a lot to consider when selecting a  

E-Print Network [OSTI]

the water heater's annual operation costs but also its size and energy efficiency. Natural gas, oil or tank water heater operates by releasing hot water from the top of the tank when the hot water tap is turned on. The hot water is released into the hot water line. As the hot water leaves the tank, cold

283

ISSUANCE 2014-12-23: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Notice of Proposed Rulemaking  

Broader source: Energy.gov [DOE]

Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Notice of Proposed Rulemaking

284

Hot Springs, Virginia  

SciTech Connect (OSTI)

Three major springs are located in the Warm Springs Valley of the Allegheny Mountains in western Virginia along US route 220--the Warm, Hot and Healing--all now owned by Virginia Hot Springs, Inc. The Homestead, a large and historic luxurious resort, is located at Hot Springs. The odorless mineral water used at The Homestead spa flows from several springs at temperatures ranging from 39{degrees}C to 41{degrees}C (102{degrees} to 106{degrees}F) (Loam and Gersh, 1992). It is piped to individual, one-person bathtubs in separate men`s and women`s bathhouses, where is is mixed to provide an ideal temperature of 40{degrees}C (104{degrees}F). Tubs are drained and refilled after each use so that no chemical treatment is necessary. Mineral water from the same springs is used in an indoor swimming pool maintained at 29{degrees}C (84{degrees}F), and an outdoor swimming pool maintained at 22{degrees}C (72{degrees}F). Eight kilometers (5 miles) away to the northeast, but still within the 6,000-ha (15,000-acre) Homestead property, are the Warm Springs, which flow at 36{degrees}C (96{degrees}F). The rate of discharge is so great, 63 L/s (1000 gpm) (Muffler, 1979) that the two large Warm Springs pools, in separate men`s and women`s buildings, maintain the temperature on a flow-through basis requiring no chemical treatment. The men`s pool was designed by Thomas Jefferson and opened in 1761; the ladies` pool was opened in 1836. The adjacent {open_quotes}drinking spring{close_quotes} and the two covered pools have been preserved in their original condition.

Lund, J.W.

1996-05-01T23:59:59.000Z

285

Water Heaters and Hot Water Distribution Systems  

E-Print Network [OSTI]

from controlling heat loss through the distribution pipes.distribution system configurations; a collection of analytical heat lossdistribution system configurations; a collection of analytical heat loss

Lutz, Jim

2012-01-01T23:59:59.000Z

286

Water Heaters and Hot Water Distribution Systems  

E-Print Network [OSTI]

Building Energy Efficiency Standards .. 4 Multi-FamilyBuilding Energy Efficiency Standards 11 Multi-FamilyBuilding Energy Efficiency Standards 48 Multi-Family

Lutz, Jim

2012-01-01T23:59:59.000Z

287

Water quality improvement of a lagoon containing mixed chemical industrial wastewater by micro-electrolysis-contact oxidization  

Science Journals Connector (OSTI)

A lagoon in the New Binhai District, a high-speed developing area, Tianjin, China, has long been receiving the mixed chemical industrial wastewater from a chemical industrial park. This lagoon contained comple...

Ya-fei Zhou; Mao Liu; Qiong Wu

2011-05-01T23:59:59.000Z

288

A Critical Analysis of Technological Innovation and Economic Development in Southern California's Urban Water Reuse And Recycling Industry  

E-Print Network [OSTI]

for the Purification of Water with Systems (a NationalWater Recycling . 99 8. Groundwater Replenishment System Purification

Pilip-Florea, Shadrach Jay

2012-01-01T23:59:59.000Z

289

ITP Industrial Distributed Energy: Boa Vista Apartments: New Bedford Housing Authority/ New Bedford, MA  

Broader source: Energy.gov [DOE]

Overview of Boa Vista Apartments housing development, with CHP system to provide electricity and hot water.

290

Global Implications for Domestic and Industrial Water Reuse Workshop Starr Pass Resort, Tucson, Arizona, January 1314, 2011  

E-Print Network [OSTI]

:30am Dave Smith, WateReuse California Water Recycling Status and Trends in California 12:00pm Liese and Challenges for Potable Water Recycling in Australia 2:00pm Min Yang, Chinese Academy of Sciences Water Wastewater and Beyond 4:30pm John Kmiec, Tucson Water The Value of Reuse: An Overview of the Tucson Water

Fay, Noah

291

Hot Showers, Fresh Laundry, Clean Dishes | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hot Showers, Fresh Laundry, Clean Dishes Hot Showers, Fresh Laundry, Clean Dishes Hot Showers, Fresh Laundry, Clean Dishes March 5, 2013 - 11:17am Addthis The GE GeoSpring™ Electric Heat Pump Water Heater is readily integrated into new and existing home designs. Taking up the same footprint as a traditional 50-gallon tank water heater, the Electric Heat Pump Water Heater uses the existing water heater's plumbing and electrical connections. Credit: GE The GE GeoSpring(tm) Electric Heat Pump Water Heater is readily integrated into new and existing home designs. Taking up the same footprint as a traditional 50-gallon tank water heater, the Electric Heat Pump Water Heater uses the existing water heater's plumbing and electrical connections. Credit: GE To introduce this new electric heat pump water heater, GE ran a memorable ad during the 2010 Winter Olympics featuring snow monkeys enjoying a hot soak. Credit: GE

292

Status of LLNL Hot-Recycled-Solid oil shale retort  

SciTech Connect (OSTI)

We have investigated the technical and economic barriers facing the introduction of an oil shale industry and we have chosen Hot-Recycled-Solid (HRS) oil shale retorting as the primary advanced technology of interest. We are investigating this approach through fundamental research, operation of a 4 tonne-per-day, HRS pilot plant and development of an Oil Shale Process (OSP) mathematical model. Over the last three years, from June 1991 to June 1993, we completed a series of runs (H10--H27) using the 4-TPD pilot plant to demonstrate the technical feasibility of the HRS process and answer key scale-up questions. With our CRADA partners, we seek to further develop the HRS technology, maintain and enhance the knowledge base gained over the past two decades through research and development by Government and industry and determine the follow on steps needed to advance the technology towards commercialization. The LLNL Hot-Recycled-Solid process has the potential to improve existing oil shale technology. It processes oil shale in minutes instead of hours, reducing plant size. It processes all oil shale, including fines rejected by other processes. It provides controls to optimize product quality for different applications. It co-generates electricity to maximize useful energy output. And, it produces negligible SO{sub 2} and NO{sub x} emissions, a non-hazardous waste shale and uses minimal water.

Baldwin, D.E.; Cena, R.J.

1993-12-31T23:59:59.000Z

293

HOT TOPIC: Nanotechnology lecture  

Science Journals Connector (OSTI)

...Check-Bits HOT TOPIC: Nanotechnology lecture TOP SITE www.ukonlineforbusiness...proper handling. HOT TOPIC Nanotechnology lecture FUTURESHOCK Cyborgs...Cheltenham and Gloucester Branch. Nanotechnology Devices Defying Nature is taking......

HOT TOPIC: Nanotechnology lecture

2003-11-01T23:59:59.000Z

294

Phylogenetic Diversity Analysis of Subterranean Hot Springs in Iceland  

Science Journals Connector (OSTI)

...The hot tap water was a mixture of geothermal fluid transported from 50 operating geothermal wells into geothermal water tanks and then delivered into the laboratory through the one-way district heating system. The fluid from each well...

Vigg Thr Marteinsson; Sigurbjrg Hauksdttir; Cdric F. V. Hobel; Hrefna Kristmannsdttir; Gudmundur Oli Hreggvidsson; Jakob K. Kristjnsson

2001-09-01T23:59:59.000Z

295

INDUSTRIAL AND BIOMEDICAL APPLICATIONS  

E-Print Network [OSTI]

INDUSTRIAL AND BIOMEDICAL APPLICATIONS Frank Smith, Nicholas Ovenden and Richard Purvis University are described, one industrial on violent water-air interaction during an impact process and the other biomedical: industrial, biomedical, impacts, networks, theory, computation, scales. 1. INTRODUCTION It is a pleasure

Purvis, Richard

296

Study of the distribution of 226Ra in ground water near the uranium industry of Jharkhand, India  

Science Journals Connector (OSTI)

......levels of 226Ra observed in the ground water. Being a mineralised area, variation...226Ra activity concentration in ground water that is used for drinking purpose...Cretescu I. Characterisation and remediation of soils contaminated with uranium......

R. M. Tripathi; V. N. Jha; S. K. Sahoo; N. K. Sethy; A. K. Shukla; V. D. Puranik; H. S. Kushwaha

2012-01-01T23:59:59.000Z

297

Potential of thermal insulation and solar thermal energy in domestic hot water and space heating and cooling sectors in Lebanon in the period 2010 - 2030.  

E-Print Network [OSTI]

??The potential of thermal insulation and solar thermal energy in domestic water heating, space heating and cooling in residential and commercial buildings Lebanon is studied (more)

Zaatari, Z.A.R.

2012-01-01T23:59:59.000Z

298

ITP Steel: Steel Industry Energy Bandwidth Study October 2004  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

hot rolling As shown in Table 1, both Fruehan and Stubbles estimated current process energy intensity. Fruehan's estimates reflect an overall industry average, while Stubbles'...

299

Hydrogeologic investigation of Coso Hot Springs, Inyo County, California.  

Open Energy Info (EERE)

Hydrogeologic investigation of Coso Hot Springs, Inyo County, California. Hydrogeologic investigation of Coso Hot Springs, Inyo County, California. Final report October 1977--January 1978 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Hydrogeologic investigation of Coso Hot Springs, Inyo County, California. Final report October 1977--January 1978 Details Activities (2) Areas (1) Regions (0) Abstract: This investigation included: review of existing geologic, geophysical, and hydrologic information; field examination of geologic rock units and springs and other features of hydrologic significance and sampling of waters for chemical analysis; determination of the local Coso Hot Springs and regional groundwater hydrology, including consideration of recharge, discharge, movement, and water quality; and determination of the

300

Storage capacity in hot dry rock reservoirs  

DOE Patents [OSTI]

A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

Brown, Donald W. (Los Alamos, NM)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial hot water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Hot Plate Station  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

temperature is limited to 200C in order to maintain temperature inside the cleanroom. A hood located over the hot plate station ensures evaporated fumes are not released...

302

Pilgrim Hot Springs, Alaska  

Broader source: Energy.gov (indexed) [DOE]

data processing and use of FLIR - fast, cost effective method to measure natural heat loss * Pilgrim Hot Springs Resource Development - baseload power for the Nome area....

303

Biologically active filtration for treatment of produced water and fracturing flowback wastewater in the O&G industry.  

E-Print Network [OSTI]

??Sustainable development of unconventional oil and gas reserves, particularly tight oil, tight gas, and shale gas, requires prudent management of water resources used during drilling, (more)

Freedman, Daniel E.

2014-01-01T23:59:59.000Z

304

Integrated Geophysical Exploration of a Known Geothermal Resource: Neal Hot  

Open Energy Info (EERE)

Geophysical Exploration of a Known Geothermal Resource: Neal Hot Geophysical Exploration of a Known Geothermal Resource: Neal Hot Springs Jump to: navigation, search OpenEI Reference LibraryAdd to library Book Section: Integrated Geophysical Exploration of a Known Geothermal Resource: Neal Hot Springs Abstract We present integrated geophysical data to characterize a geothermal system at Neal Hot Springs in eastern Oregon. This system is currently being developed for geothermal energy production. The hot springs are in a region of complex and intersecting fault trends associated with two major extensional events, the Oregon-Idaho Graben and the Western Snake River Plain. The intersection of these two fault systems, coupled with high geothermal gradients from thin continental crust produces pathways for surface water and deep geothermal water interactions at Neal Hot Springs.

305

Techno-Economic Design Tools Used in Selecting Industrial Energy Recovery Systems  

E-Print Network [OSTI]

cost. output (245 kW) by the high-efficiency turb' ne. Assuming a $2.3-million installed cost differ The 38% rate of return after 5 years (47% aft 10 ential between the organic Rankine cycle/compressor years) is quite acceptable for companies looki.... These tools are the industrial heat pump program (IHOP) and the Rankine cycle power program (RANKCYCLE). IHOP is used if industrial process steam is the de sired energy form and if available heat sources consist either of hot water at 130-200 o F...

Hanus, N.

1982-01-01T23:59:59.000Z

306

Advanced, Energy-Efficient Hybrid Membrane System for Industrial...  

Broader source: Energy.gov (indexed) [DOE]

Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse hybridmembranesystemsfa...

307

Advanced, Energy-Efficient Hybrid Membrane System for Industrial...  

Energy Savers [EERE]

MANUFACTURING OFFICE Advanced, Energy- Efficient Hybrid Membrane System for Industrial Water Reuse New Hybrid Membrane System Utilizes Industrial Waste Heat to Power Water...

308

Decision Document for the Storm Water Outfalls/Industrial Wastewater Treatment Plant, Pesticide Rinse Area, Old Fire Fighting Training Pit, Illicit PCB Dump Site, and the Battery Acid Pit Fort Lewis, Washington  

SciTech Connect (OSTI)

PNNL conducted independent site evaluations for four sites at Fort Lewis, Washington, to determine their suitability for closure on behalf of the installation. These sites were recommended for "No Further Action" by previous invesitgators and included the Storm Water Outfalls/Industrial Waste Water Treatment Plant (IWTP), the Pesticide Rinse Area, the Old Fire Fighting Training Pit, and the Illicit PCB Dump Site.

Cantrell, Kirk J.; Liikala, Terry L.; Strenge, Dennis L.; Taira, Randal Y.

2000-12-11T23:59:59.000Z

309

EIS-0071: Memphis Light, Gas and Water Division Industrial Fuels Gas Demonstration Plant, Memphis, Shelby County, Tennessee  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this EIS to assesses the potential environmental impacts associated with the construction and operation of a 3,155-ton-per-day capacity facility, which will demonstrate the technical operability, economic viability, and environmental acceptability of the Memphis Division of Light, Gas and Water coal gasification plant at Memphis, Tennessee.

310

Bacteria in Ballast Water: The Shipping Industry's Contributions to the Transport and Distribution of Microbial Species in Texas  

E-Print Network [OSTI]

of the ballast tank bacterial community has not been examined. This study is the first to characterize the total bacterial community within a ballast tank by constructing a clone library from a ballast water sample from a cargo ship in the Port of Houston...

Neyland, Elizabeth B.

2010-10-12T23:59:59.000Z

311

Hot and dark matter  

E-Print Network [OSTI]

In this thesis, we build new Effective Field Theory tools to describe the propagation of energetic partons in hot and dense media, and we propose two new reactions for dark matter in the early universe. In the first part, ...

D'Eramo, Francesco

2012-01-01T23:59:59.000Z

312

Reactor hot spot analysis  

SciTech Connect (OSTI)

The principle methods for performing reactor hot spot analysis are reviewed and examined for potential use in the Applied Physics Division. The semistatistical horizontal method is recommended for future work and is now available as an option in the SE2-ANL core thermal hydraulic code. The semistatistical horizontal method is applied to a small LMR to illustrate the calculation of cladding midwall and fuel centerline hot spot temperatures. The example includes a listing of uncertainties, estimates for their magnitudes, computation of hot spot subfactor values and calculation of two sigma temperatures. A review of the uncertainties that affect liquid metal fast reactors is also presented. It was found that hot spot subfactor magnitudes are strongly dependent on the reactor design and therefore reactor specific details must be carefully studied. 13 refs., 1 fig., 5 tabs.

Vilim, R.B.

1985-08-01T23:59:59.000Z

313

Simulation Models for Improved Water Heating Systems  

E-Print Network [OSTI]

The DLM accounts for the distribution heat loss within eachHot-Water Distribution System Piping Heat Loss FactorsPhaseHot Water Distribution System Piping Heat Loss Factors-

Lutz, Jim

2014-01-01T23:59:59.000Z

314

Hot Dry Rock Reservoir Engineering | Open Energy Information  

Open Energy Info (EERE)

hydraulically connect the wells. Water pumped down the injection well and through the fracture system is heated by contact with the hot rock and rises to the production well. This...

315

OPERATING EXPERIENCE ON SINGLE AND THREE PASS BOILERS IN THE CANE SUGAR INDUSTRY WITH PARTICULAR REFERENCE TO EROSION AND DRUM WATER LEVEL STABILITY  

E-Print Network [OSTI]

Two boiler designs have recently emerged to suit the present requirements of the cane sugar industry, viz the single pass panel wall unit and the three pass, bottom supported boiler with an open pitch furnace tube construction. The former is less susceptible to erosion compared with the original concept of the three pass boiler. It is believed that the three pass unit in its present form as installed at Tongaat will be effective in reducing erosion in the tube bank. The effect of fuel properties on the performance of boiler plant is considered and it is shown that efficient operation, in addition to improving the utilisation of bagasse, can result in a significant reduction in tube erosion. A relationship is presented for determining dust loadings as a function of the grate heat release rate and the fuel ash content at the furnace and main bank exits. Circulation studies undertaken on both boiler types are presented indicating very similar circulation rates. Shrink and swell characteristics and hence the drum level stability can be related to the volume of water contained in the system and the water plan area in the drum at the steam- water interface. Finally the mechanical design features of the two boiler designs are compared to provide an insight into the design philosophies relating to the two units.

N. Magasiner; D. P. Naude; P. J. Mcintyre

316

Impact on the steam electric power industry of deleting Section 316(a) of the Clean Water Act: Energy and environmental impacts  

SciTech Connect (OSTI)

Many power plants discharge large volumes of cooling water. In some cases, the temperature of the discharge exceeds state thermal requirements. Section 316(a) of the Clean Water Act (CWA) allows a thermal discharger to demonstrate that less stringent thermal effluent limitations would still protect aquatic life. About 32% of the total steam electric generating capacity in the United States operates under Section 316(a) variances. In 1991, the US Senate proposed legislation that would delete Section 316(a) from the CWA. This study, presented in two companion reports, examines how this legislation would affect the steam electric power industry. This report quantitatively and qualitatively evaluates the energy and environmental impacts of deleting the variance. No evidence exists that Section 316(a) variances have caused any widespread environmental problems. Conversion from once-through cooling to cooling towers would result in a loss of plant output of 14.7-23.7 billion kilowatt-hours. The cost to make up the lost energy is estimated at $12.8-$23.7 billion (in 1992 dollars). Conversion to cooling towers would increase emission of pollutants to the atmosphere and water loss through evaporation. The second report describes alternatives available to plants that currently operate under the variance and estimates the national cost of implementing such alternatives. Little justification has been found for removing the 316(a) variance from the CWA.

Veil, J.A.; VanKuiken, J.C.; Folga, S.; Gillette, J.L.

1993-01-01T23:59:59.000Z

317

Columbia River System Operation Review : Final Environmental Impact Statement, Appendix F: Irrigation, Municipal and Industrial/Water Supply.  

SciTech Connect (OSTI)

Since the 1930`s, the Columbia River has been harnessed for the benefit of the Northwest and the nation. Federal agencies have built 30 major dams on the river and its tributaries. Dozens of non-Federal projects have been developed as well. The dams provide flood control, irrigation, navigation, hydro-electric power generation, recreation, fish and wildlife, and streamflows for wildlife, anadromous fish, resident fish, and water quality. This is Appendix F of the Environmental Impact Statement for the Columbia River System, focusing on irrigation issues and concerns arrising from the Irrigation and Mitigation of impacts (M&I) working Group of the SOR process. Major subheadings include the following: Scope and process of irrigation/M&I studies; Irrigation/M&I in the Columbia Basin Today including overview, irrigated acreage and water rights, Irrigation and M&I issues basin-wide and at specific locations; and the analysis of impacts and alternative for the Environmental Impact Statement.

Columbia River System Operations Review (U.S.); United States. Bonneville Power Administration; United States. Army. Corps of Engineers. North Pacific Division; United States. Bureau of Reclamation. Pacific Northwest Region.

1995-11-01T23:59:59.000Z

318

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Efficiency & Renewable Energy (EERE), Office of IndustrialSeptember 4, 2010. ) U.S. DOE EERE. Industrial Technologies25, 2011. ) U.S. DOE EERE. 2002. United States Industrial

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

319

Geothermometry At Hot Springs Ranch Area (Szybinski, 2006) | Open Energy  

Open Energy Info (EERE)

Hot Springs Ranch Area (Szybinski, 2006) Hot Springs Ranch Area (Szybinski, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Hot Springs Ranch Area (Szybinski, 2006) Exploration Activity Details Location Hot Springs Ranch Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes The brine from the drill holes, hot springs, seepages, and irrigation wells was sampled, as well as water from two nearby creeks, (total of 13 samples) and sent for analysis to Thermochem Inc. For sample locations refer to Figure 35; the geochemical data are presented in Appendix C. Geochemical results indicate the presence of two distinct waters in this group of samples (Tom Powell of Thermochem Inc., personal communication, 2005).

320

Industrial Waste Treatment Opportunities for Reverse Osmosis  

Science Journals Connector (OSTI)

Since the beginning of our industrial economy, an abundant supply of clean water has been a major factor in the choice of plant locations. In many instances in the past, industry has used water from our rivers...

J. G. Mahoney; M. E. Rowley; L. E. West

1970-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial hot water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Recommended requirements to code officials for solar heating, cooling, and hot water systems. Model document for code officials on solar heating and cooling of buildings  

SciTech Connect (OSTI)

These recommended requirements include provisions for electrical, building, mechanical, and plumbing installations for active and passive solar energy systems used for space or process heating and cooling, and domestic water heating. The provisions in these recommended requirements are intended to be used in conjunction with the existing building codes in each jurisdiction. Where a solar relevant provision is adequately covered in an existing model code, the section is referenced in the Appendix. Where a provision has been drafted because there is no counterpart in the existing model code, it is found in the body of these recommended requirements. Commentaries are included in the text explaining the coverage and intent of present model code requirements and suggesting alternatives that may, at the discretion of the building official, be considered as providing reasonable protection to the public health and safety. Also included is an Appendix which is divided into a model code cross reference section and a reference standards section. The model code cross references are a compilation of the sections in the text and their equivalent requirements in the applicable model codes. (MHR)

None

1980-06-01T23:59:59.000Z

322

Water A magic solvent for biomass conversion  

Science Journals Connector (OSTI)

Abstract Hydrothermal biomass conversion processes provide the opportunity to use feedstocks with high water content for the formation of energy carriers or platform chemicals. The water plays an active role in the processes as solvent, reactant and catalyst or catalyst precursor. In this paper, the different hydrothermal processes of carbonization, gasification and liquefaction are introduced and the specific role of water is discussed for each of them. The high reactivity of the polar components of biomass in hot compressed water and its changing properties with temperature are the key to obtain high selectivities of the desired products. Despite the obvious advantages of hydrothermal conversion examples for industrial applications are rare. The main reason for not commercial application of water in the high temperature state is that there are no products that can be sold with profit and cannot be produced cheaper, with less capital risk, and with more simple processes.

Andrea Kruse; Nicolaus Dahmen

2014-01-01T23:59:59.000Z

323

Waste Heat Management Options: Industrial Process Heating Systems  

Broader source: Energy.gov (indexed) [DOE]

Heat Management Options Heat Management Options Industrial Process Heating Systems By Dr. Arvind C. Thekdi E-mail: athekdi@e3minc.com E3M, Inc. August 20, 2009 2 Source of Waste Heat in Industries * Steam Generation * Fluid Heating * Calcining * Drying * Heat Treating * Metal Heating * Metal and Non-metal Melting * Smelting, agglomeration etc. * Curing and Forming * Other Heating Waste heat is everywhere! Arvind Thekdi, E3M Inc Arvind Thekdi, E3M Inc 3 Waste Heat Sources from Process Heating Equipment * Hot gases - combustion products - Temperature from 300 deg. F. to 3000 deg.F. * Radiation-Convection heat loss - From temperature source of 500 deg. F. to 2500 deg. F. * Sensible-latent heat in heated product - From temperature 400 deg. F. to 2200 deg. F. * Cooling water or other liquids - Temperature from 100 deg. F. to 180 deg. F.

324

Tips: Water Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tips: Water Heating Tips: Water Heating Tips: Water Heating May 2, 2012 - 4:53pm Addthis Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Water heating is the second largest energy expense in your home. It typically accounts for about 18% of your utility bill. There are four ways to cut your water heating bills: use less hot water, turn down the thermostat on your water heater, insulate your water heater, or buy a new, more efficient model. Water Heating Tips Install aerating, low-flow faucets and showerheads. Repair leaky faucets promptly; a leaky faucet wastes gallons of

325

Tips: Water Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Water Heating Tips: Water Heating May 2, 2012 - 4:53pm Addthis Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Water heating is the second largest energy expense in your home. It typically accounts for about 18% of your utility bill. There are four ways to cut your water heating bills: use less hot water, turn down the thermostat on your water heater, insulate your water heater, or buy a new, more efficient model. Water Heating Tips Install aerating, low-flow faucets and showerheads. Repair leaky faucets promptly; a leaky faucet wastes gallons of

326

Industrial Engineering Industrial Advisory Board  

E-Print Network [OSTI]

Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

Gelfond, Michael

327

Edmund G. Brown, Jr. PIER INDUSTRIAL, AGRICULTURAL, AND  

E-Print Network [OSTI]

, petroleum refining, natural gas, beverage industry, water and wastewater, energy efficiency, industrial natural gas efficiency, electronics, Public Interest Energy R Edmund G. Brown, Jr. Governor PIER INDUSTRIAL, AGRICULTURAL, AND WATER ENERGY EFFICIENCY

328

Tankless Gas Water Heater Performance - Building America Top...  

Energy Savers [EERE]

Tankless Gas Water Heater Performance - Building America Top Innovation Tankless Gas Water Heater Performance - Building America Top Innovation This photo shows a hot water heater...

329

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

In a drinking water treatment plant, the motors devoted toSmall Water Supply Facilities: A Profile of Motor Energydrinking water systems, installing energy-efficient motors

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

330

Algae Under Pressure and in Hot Water  

Science Journals Connector (OSTI)

...of liquid fuels from algae involve extracting the...converting the oil to either biodiesel by catalyzed transesterification...hydrotreating. Drying the algae before extracting the oil...converted to biocrude or biodiesel. Likewise, polysaccharides...extracted hydrothermally from algae and the extracted biomass...

Phillip E. Savage

2012-11-23T23:59:59.000Z

331

Algae Under Pressure and in Hot Water  

Science Journals Connector (OSTI)

...liquid fuels from algae involve extracting...hydrotreating. Drying the algae before extracting...time, consumes energy, and adds expense...sustainability of algal biofuels. Processing strategies...research into alternative approaches, including...processing is energy efficient and favors...content of the algae and a greater partitioning...

Phillip E. Savage

2012-11-23T23:59:59.000Z

332

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Use at Wisconsins Drinking Water Utilities. AvailableFinancial Assistance for Small Drinking Water Systems. U.S.of Ground Water and Drinking Water. Report 816-K-02-005.

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

333

4 - Recrystallisation and grain growth in hot working of steels  

Science Journals Connector (OSTI)

Abstract: This chapter analyses the hardeningsoftening mechanisms that operate during hot working of steels. Special attention is focused on such aspects as recrystallisation and strain-induced precipitation, which help to achieve refinement and conditioning of the austenite microstructure before transformation. An approach including both semi-empirical and physical models is described, followed by their application to selected industrial cases.

B. Lpez; J.M. Rodriguez-Ibabe

2012-01-01T23:59:59.000Z

334

Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Exploration Activity Details Location Indian Valley Hot Springs Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the recharge of the area Notes Hydrogen and oxygen isotope data on waters of Coso thermal and nonthermal waters were studied. Hydrogen and oxygen isotopes do not uniquely define the recharge area for the Coso geothermal system but strongly suggest Sierran recharge with perhaps some local recharge. References

335

Grays Harbor PUD - Solar Water Heater Rebate | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Grays Harbor PUD - Solar Water Heater Rebate Grays Harbor PUD - Solar Water Heater Rebate Grays Harbor PUD - Solar Water Heater Rebate < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Solar Water Heating Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount $600 Provider Grays Harbor PUD Since October 2001, Grays Harbor PUD has offered a rebate program for the installation of solar water heaters. Rebates of $600 are available for the installation of solar collectors of 40 square feet or more. Only customers who currently use electricity for hot water are eligible. This rebate is available on a case-by-case basis, so you must contact the utility in order to take advantage of it. Customers may choose a [http://dsireusa.org/incentives/incentive.cfm?Incentive_Code=WA09F&re=1&ee=1

336

Burbank Water and Power - Residential and Commercial Solar Support Program  

Broader source: Energy.gov (indexed) [DOE]

Burbank Water and Power - Residential and Commercial Solar Support Burbank Water and Power - Residential and Commercial Solar Support Program Burbank Water and Power - Residential and Commercial Solar Support Program < Back Eligibility Commercial Industrial Low-Income Residential Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate Maximum payment of 400,000 per year for performance-based incentives Program Info Start Date 1/1/2010 Expiration Date 12/31/2016 State California Program Type Utility Rebate Program Rebate Amount PV rebates will be awarded via lottery on August 12, 2013 Residential PV: $1.28/W CEC-AC Commercial PV (less than 30 kW): $0.97/W CEC-AC Commercial PV (30 kW or larger): ineligible at this time Solar Water Heaters (residential domestic hot water only; not pools):

337

Phylogenetic Diversity Analysis of Subterranean Hot Springs in Iceland  

Science Journals Connector (OSTI)

...clones in indicated borehole or HTW Closest division...in media with source borehole water. The cultures...groundwater from a borehole in granite rock...geothermal water during drilling, we would have expected...is one of the worlds largest subsurface hot spots...

Vigg Thr Marteinsson; Sigurbjrg Hauksdttir; Cdric F. V. Hobel; Hrefna Kristmannsdttir; Gudmundur Oli Hreggvidsson; Jakob K. Kristjnsson

2001-09-01T23:59:59.000Z

338

Kelley Hot Spring Geothermal Project: Kelly Hot Spring Agricultural Center conceptual design  

SciTech Connect (OSTI)

The proposed core activity in the Kelly Hot Spring Agricultural Center is a nominal 1200 sow swine raising complex. The swine raising is to be a totally confined operation for producing premium pork in controlled environment facilities that utilize geothermal energy. The complex will include a feedmill for producing the various feed formulae required for the animals from breeding through gestation, farrowing, nursery, growing and finishing. The market animals are shipped live by truck to slaughter in Modesto, California. A complete waste management facility will include manure collection from all raising areas, transport via a water flush sysem to methane (biogas) generators, manure separation, settling ponds and disposition of the surplus agricultural quality water. The design is based upon the best commercial practices in confined swine raising in the US today. The most unique feature of the facility is the utilization of geothermal hot water for space heating and process energy throughout the complex.

Longyear, A.B. (ed.)

1980-06-01T23:59:59.000Z

339

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network [OSTI]

still appears important. Electric motor energy consumpt1m isHeat Space Heat Electric Motors Hot Water Miscellaneous PG&EHeat Space Heat Electric Motors Hot Water Miscellaneous PG&E

Akbari, H.

2008-01-01T23:59:59.000Z

340

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

Note: This page contains sample records for the topic "industrial hot water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

TO I Ppi B. Harris, Chief, Industrial Rygiene Branah  

Office of Legacy Management (LM)

Ppi B. Harris, Chief, Industrial Rygiene Branah Ppi B. Harris, Chief, Industrial Rygiene Branah DATE: .' hpt Health and Safe i-?iSiOll FROM .t A. 3. Breslin 8v SUBJECT: URBHNad ROD DR&RG,TEST AILTWYCKoFF STEZL COO SYMBOL: RSHG%JB:~O On September 6, the m iter accompanied M re Fe Stroke to the Steel Co. in Bewark to witness the trial drawing of l-1/2 i diameter uranium rods* !l'w rods, about four feet in length, were used in the test. just dipped in an 6% solution of hot sulfurio acid, rinsed and ooated in a hot Ca(OH)2 bathe !fhey were D water, In the first attempt at drgsing, the rod jmxmed in the die - ahdhad to bs removed by the use of asludge hammere For the seoond 'attempt, a larger dismeter die was substituted but the drawing was adcompanied by oonsiderable poiee and vibration. Unfortuuatsly, no se&e was

342

Energy-efficient water heating  

SciTech Connect (OSTI)

This fact sheet describes how to reduce the amount of hot water used in faucets and showers, automatic dishwashers, and washing machines; how to increase water-heating system efficiency by lowering the water heater thermostat, installing a timer and heat traps, and insulating hot water pipes and the storage tank; and how to use off-peak power to heat water. A resource list for further information is included.

NONE

1995-01-01T23:59:59.000Z

343

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

2002. United States Industrial Electric Motor Systems MarketEfficiency Alliance, Electric Motor Management. 2001. Motoraccessed March 23, Motors Electric motors represent one of

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

344

Environmental Effects of Industrial Farming  

E-Print Network [OSTI]

·Water contamination ·Soil contamination ·Solutions #12;US Meat Industry Animals (2009) kg produced (2009 contamination #12;Water contamination ·~9x108 kg of dry waste produced in the US per day day in 2001 #12;Water!" #12;Air contamination ·220kg of CH4 produced in the lifetime of a cow "Smells like money!" #12;Air

Budker, Dmitry

345

Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program  

E-Print Network [OSTI]

Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program U.S. Department of Energy Office of Energy Efficiency and Renewable Energy for a comprehensive, physics- based model of dimensional changes and hot tearing. Hot Tear #12;Industrial Technologies

Beckermann, Christoph

346

Advanced coal-fueled industrial cogeneration gas turbine system  

SciTech Connect (OSTI)

This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

1992-06-01T23:59:59.000Z

347

HOT TOPICS: Bridge suicides (http://www.marinij.com/goldengatebridge/ci_25220172/record-number-golden-gate-bridge-suicides-recorded-2013) #MarinDrought (http://www.marinij.com/marinnews/ci_24975029/readers-share-water-saving-ideas-marindroughtt)  

E-Print Network [OSTI]

HOT TOPICS: Bridge suicides (http://www.marinij.com/goldengatebridge/ci_25220172/record-number-golden-gate-bridge://www.marinij.com/goldengatebridge/ci_25217201/golden-gate-bridge-toll-could-increase-by-1) Data center (http://www.marinij.com/data) Traffic://www.marinij.com/marinnews/ci_25202779/marin-robbery-suspect-loses-bid-stop-ij-from) Bridge toll hike (http

California at Berkeley, University of

348

Energy savings through hot pressing  

SciTech Connect (OSTI)

Theoretical considerations indicate that the hot-pressing process can provide energy savings. Several selected results demonstrate that, under favorable conditions, practical results exceed theoretical predictions.

Cutshall, K.

1988-04-01T23:59:59.000Z

349

Industry @ ALS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry @ ALS Industry @ ALS Industry @ ALS Concrete Industry Benefits from Ancient Romans and the ALS Print Thursday, 17 October 2013 14:24 New insights into the Romans' ingenious concrete harbor structures emerging from ALS beamline research could move the modern concrete industry toward its goal of a reduced carbon footprint. Summary Slide Read more... Moving Industry Forward: Finding the Environmental Opportunity in Biochar Print Thursday, 12 September 2013 08:41 Using ALS Beamlines 10.3.2 and 8.3.2, the Environmental Protection Agency (EPA) is currently investigating how biochar sorbs environmental toxins and which kinds of biochar are the most effective. The possibilities for widespread use have already launched entrepreneurial commercial ventures. Summary Slide

350

DOE/EA-1673: Environmental Assessment for Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment (July 2009)  

Broader source: Energy.gov (indexed) [DOE]

3 3 Environmental Assessment for 10 CFR 431 Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air- Conditioning, and Water-Heating Equipment July 2009 8-i CHAPTER 8. ENVIRONMENTAL ASSESSMENT TABLE OF CONTENTS 8.1 INTRODUCTION ............................................................................................................... 8-1 8.2 AIR QUALITY ANALYSIS ............................................................................................... 8-1 8.3 AIR POLLUTANT DESCRIPTIONS ................................................................................ 8-1 8.4 AIR QUALITY REGULATIONS ...................................................................................... 8-3

351

Industrial Hygienist  

Broader source: Energy.gov [DOE]

A successful candidate in this position wil l serve as an Industrial Hygienist in the Operations Division, providing technical oversight of the Pacific Northwest National Laboratory contractors...

352

Industrial Users  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Users - Media Publications and Information The Invisible Neutron Threat Neutron-Induced Failures in Semiconductor Devices Nuclear Science Research at the LANSCE-WNR...

353

Industrial Users  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on altitude. This large flux allows testing of semiconductor devices at greatly accelerated rates. Industry users are invited to contact Steve Wender, phone:505-667-1344 or...

354

Geothermometry At Buffalo Valley Hot Springs Area (Laney, 2005) | Open  

Open Energy Info (EERE)

Buffalo Valley Hot Springs Area (Laney, 2005) Buffalo Valley Hot Springs Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being

355

Hot Leg Piping Materials Issues  

SciTech Connect (OSTI)

With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the space nuclear power plant (SNPP) for Project Prometheus (References a and b) the reactor outlet piping was recognized to require a design that utilizes internal insulation (Reference c). The initial pipe design suggested ceramic fiber blanket as the insulation material based on requirements associated with service temperature capability within the expected range, very low thermal conductivity, and low density. Nevertheless, it was not considered to be well suited for internal insulation use because its very high surface area and proclivity for holding adsorbed gases, especially water, would make outgassing a source of contaminant gases in the He-Xe working fluid. Additionally, ceramic fiber blanket insulating materials become very friable after relatively short service periods at working temperatures and small pieces of fiber could be dislodged and contaminate the system. Consequently, alternative insulation materials were sought that would have comparable thermal properties and density but superior structural integrity and greatly reduced outgassing. This letter provides technical information regarding insulation and materials issues for the Hot Leg Piping preconceptual design developed for the Project Prometheus space nuclear power plant (SNPP).

V. Munne

2006-07-19T23:59:59.000Z

356

Industrial microbiology  

Science Journals Connector (OSTI)

...include the fruit, wine, baking, milling, dairy, and distill-ing industries...fructose known as high fruc-tose corn syrup. Between 500,000 and 1...glucose isomerase has permitted the corn wet milling industry to capture 30 percent of...

AL Demain

1981-11-27T23:59:59.000Z

357

Hot hollow cathode gun assembly  

DOE Patents [OSTI]

A hot hollow cathode deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, the hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

Zeren, J.D.

1983-11-22T23:59:59.000Z

358

Electric Storage Water Heaters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy can be wasted even when a hot water tap isn't running. This is called standby heat loss. The American Council for an Energy Efficient Economy provides a helpful...

359

Report on Produced Water  

Office of Scientific and Technical Information (OSTI)

of the pond, as well as the quality of the produced water. In semiarid regions, hot, dry air moving from a land surface will result in high evaporation rates for smaller ponds. As...

360

Chemicals Industry Profile | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The industry greatly influences our safe water supply, food, shelter, clothing, health care, computer technology, transportation, and almost every other facet of modern...

Note: This page contains sample records for the topic "industrial hot water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Status of LLNL Hot-Recycled-Solid oil shale retort, January 1991--September 30, 1993  

SciTech Connect (OSTI)

Our objective, together with our CRADA partners, is to demonstrate advanced technology that could lead to an economic and environmentally acceptable commercialization of oil shale. We have investigated the technical and economic barriers facing the introduction of an oil shale industry and we have chosen Hot-Recycled-Solid (HRS) oil shale retorting as the primary advanced technology of interest. We are investigating this approach through fundamental research, operation of a 4 tonne-per-day HRS pilot plant and development of an Oil Shale Process (OSP) mathematical model. The LLNL Hot-Recycled-Solid process has the potential to improve existing oil shale technology. It processes oil shale in minutes instead of hours, reducing plant size. It processes all oil shale, including fines rejected by other processes. It provides controls to optimize product quality for different applications. It co-generates electricity to maximize useful energy output. And, it produces negligible SO{sub 2} and NO{sub x} emissions, a non-hazardous waste shale and uses minimal water.

Cena, R.J.

1993-11-01T23:59:59.000Z

362

Enabling Technologies for Ceramic Hot Section Components  

SciTech Connect (OSTI)

Silicon-based ceramics are attractive materials for use in gas turbine engine hot sections due to their high temperature mechanical and physical properties as well as lower density than metals. The advantages of utilizing ceramic hot section components include weight reduction, and improved efficiency as well as enhanced power output and lower emissions as a result of reducing or eliminating cooling. Potential gas turbine ceramic components for industrial, commercial and/or military high temperature turbine applications include combustor liners, vanes, rotors, and shrouds. These components require materials that can withstand high temperatures and pressures for long duration under steam-rich environments. For Navy applications, ceramic hot section components have the potential to increase the operation range. The amount of weight reduced by utilizing a lighter gas turbine can be used to increase fuel storage capacity while a more efficient gas turbine consumes less fuel. Both improvements enable a longer operation range for Navy ships and aircraft. Ceramic hot section components will also be beneficial to the Navy's Growth Joint Strike Fighter (JSF) and VAATE (Versatile Affordable Advanced Turbine Engines) initiatives in terms of reduced weight, cooling air savings, and capability/cost index (CCI). For DOE applications, ceramic hot section components provide an avenue to achieve low emissions while improving efficiency. Combustors made of ceramic material can withstand higher wall temperatures and require less cooling air. Ability of the ceramics to withstand high temperatures enables novel combustor designs that have reduced NO{sub x}, smoke and CO levels. In the turbine section, ceramic vanes and blades do not require sophisticated cooling schemes currently used for metal components. The saved cooling air could be used to further improve efficiency and power output. The objectives of this contract were to develop technologies critical for ceramic hot section components for gas turbine engines. Significant technical progress has been made towards maturation of the EBC and CMC technologies for incorporation into gas turbine engine hot-section. Promising EBC candidates for longer life and/or higher temperature applications relative to current state of the art BSAS-based EBCs have been identified. These next generation coating systems have been scaled-up from coupons to components and are currently being field tested in Solar Centaur 50S engine. CMC combustor liners were designed, fabricated and tested in a FT8 sector rig to demonstrate the benefits of a high temperature material system. Pretest predictions made through the use of perfectly stirred reactor models showed a 2-3x benefit in CO emissions for CMC versus metallic liners. The sector-rig test validated the pretest predictions with >2x benefit in CO at the same NOx levels at various load conditions. The CMC liners also survived several trip shut downs thereby validating the CMC design methodology. Significant technical progress has been made towards incorporation of ceramic matrix composites (CMC) and environmental barrier coatings (EBC) technologies into gas turbine engine hot-section. The second phase of the program focused on the demonstration of a reverse flow annular CMC combustor. This has included overcoming the challenges of design and fabrication of CMCs into 'complex' shapes; developing processing to apply EBCs to 'engine hardware'; testing of an advanced combustor enabled by CMCs in a PW206 rig; and the validation of performance benefits against a metal baseline. The rig test validated many of the pretest predictions with a 40-50% reduction in pattern factor compared to the baseline and reductions in NOx levels at maximum power conditions. The next steps are to develop an understanding of the life limiting mechanisms in EBC and CMC materials, developing a design system for EBC coated CMCs and durability testing in an engine environment.

Venkat Vedula; Tania Bhatia

2009-04-30T23:59:59.000Z

363

Recovery and Recycling of Industrial Wastewater by Hybrid Processes  

Science Journals Connector (OSTI)

Modern industries demand large quantities of water at purity levels that are unprecedented in industrial applications. Unless water usage is changed, these processes will not be sustainable. The key solution to r...

Farhang Shadman

2013-01-01T23:59:59.000Z

364

Development of a 20x20cm2 'hot' indium-alloy hermetic seal  

E-Print Network [OSTI]

If long time in air before sealing ­ clean with Micro-90 and rinse with DI water 'Hot' Seal #12;8 Step 21 Development of a 20x20cm2 'hot' indium-alloy hermetic seal in an inert atmosphere for photo glass tile except for an aluminum photo-cathode top seal by compression on a viton o-ring active

365

Ground water provides drinking water, irrigation for  

E-Print Network [OSTI]

Ground water provides drinking water, irrigation for crops and water for indus- tries. It is also connected to surface waters, and maintains the flow of rivers and streams and the level of wetlands- tion of those along Lake Michigan, most communi- ties, farms and industries still rely on ground water

Saldin, Dilano

366

Industry Perspective  

Broader source: Energy.gov [DOE]

Fuel cell and biogas industries perspectives. Presented by Mike Hicks, Fuel Cell and Hydrogen Energy Association, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

367

Solar-Assisted Technology Provides Heat for California Industries  

E-Print Network [OSTI]

Solar-Assisted Technology Provides Heat for California Industries Industrial/Agriculture/Water End 2011 The Issue Solar thermal technology focuses the Sun's rays to heat water, and is a promising renewable resource for California's industrial sector. Commercially available solar water heating

368

District cooling gets hot  

SciTech Connect (OSTI)

Utilities across the country are adopting cool storage methods, such as ice-storage and chilled-water tanks, as an economical and environmentally safe way to provide cooling for cities and towns. The use of district cooling, in which cold water or steam is pumped to absorption chillers and then to buildings via a central community chiller plant, is growing strongly in the US. In Chicago, San Diego, Pittsburgh, Baltimore, and elsewhere, independent district-energy companies and utilities are refurbishing neglected district-heating systems and adding district cooling, a technology first developed approximately 35 years ago.

Seeley, R.S.

1996-07-01T23:59:59.000Z

369

ET Industries, Inc.  

Broader source: Energy.gov (indexed) [DOE]

ET Industries, Inc. ET Industries, Inc. (showerheads) Issued: May 24, 2013 BEFORE THE U.S. DEPARTMENT OF ENERGY Washington, D.C. 20585 ) ) ) ) ) Case Number: 2012-SE-2902 AMENDED NOTICE OF NONCOMPLIANCE DETERMINATION 1 Manufacturers (including importers) are prohibited from distributing covered products in the United States that do not comply with applicable federal water conservation standards. See 10 C.F.R. §§ 429.5, 429.102; 42 U.S.C. §§ 6291(10), 6302. On April 3, 2012, DOE tested one unit of the "ThunderHead" showerhead basic model ("basic model TH-1 " 2 ), which ET Industries, Inc. ("ET") imported into the United States. On April 24, 2012, DOE completed testing of three additional units of basic model TH-1, also imported into

370

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

31, 2010. ) U.S. DOE Energy Efficiency & Renewable Energy (3, 2010. ) Northwest Energy Efficiency Alliance, ElectricEPRI. 1997. Quality Energy Efficiency Retrofits for Water

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

371

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

Brown, Moya Melody, Camilla Dunham Whitehead, Rich; Dunham Whitehead, Camilla; Brown, Rich

2010-09-30T23:59:59.000Z

372

The deep, hot biosphere  

Science Journals Connector (OSTI)

...of the water-based drilling fluid. Later a pump...in several other oil drilling operations, and micro...Later, when oil-based drilling fluid had been in use...phenomenon that occurred on a large scale and that was a...4000 m in the Gravberg borehole, Siljan Ring, Central...

T Gold

1992-01-01T23:59:59.000Z

373

Hot carrier diffusion in graphene  

E-Print Network [OSTI]

We report an optical study of charge transport in graphene. Diffusion of hot carriers in epitaxial graphene and reduced graphene oxide samples are studied using an ultrafast pump-probe technique with a high spatial resolution. Spatiotemporal...

Ruzicka, Brian Andrew; Wang, Shuai; Werake, Lalani Kumari; Weintrub, Ben; Loh, Kian Ping; Zhao, Hui

2010-11-01T23:59:59.000Z

374

Hot Spot | Open Energy Information  

Open Energy Info (EERE)

Spot Dictionary.png Hot Spot: Anomalous volcanic regions that can occur within a tectonic plate and are thought to be caused by mantle plumes Other definitions:Wikipedia Reegle...

375

Emulsified industrial oils recycling  

SciTech Connect (OSTI)

The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

Gabris, T.

1982-04-01T23:59:59.000Z

376

COMMITMENT & INTEGRITY DRIVE RESULTS Industry, Nonprofit,  

E-Print Network [OSTI]

-containing particles in wastewater. #12;000000.00 3COMMITMENT & INTEGRITY DRIVE RESULTS My Industry Experience 6 years, drinking water, sanitary wastewater, industrial wastewater, and stormwater Worked for private industry of waste, materials storage, product recycling, remediation, property transfers Internal Pressures Profit

Lipson, Michal

377

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Best Practices. Case StudyThe Challenge: Improving Ventilation System Energy EfficiencyEnergy Efficiency & Renewable Energy (EERE), Office of Industrial Technologies. 2000. Best PracticesEnergy Efficiency Actions for Plant Personnel96 iii Appendix D: Assessing Energy Management Systems for Best Practices .

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

378

CREDIT:G.NOLET/PRINCETONUNIVERSITY he workings of the hot interiors of the  

E-Print Network [OSTI]

of the solar system are most dramatically expressed by the size and arrangement of their volcanoes. Most down in hydrous minerals. The water, when re- leased by metamorphism, causes already hot rock material

Manga, Michael

379

Exploration Of The Upper Hot Creek Ranch Geothermal Resource, Nye County,  

Open Energy Info (EERE)

Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Exploration Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: The Upper Hot Creek Ranch (UHCR) geothermal system had seen no significant exploration activity prior to initiation of this GRED III project. Geochemical geothermometers calculated from previously available but questionable quality analyses of the UHCR hot spring waters indicated possible subsurface temperatures of +320 oF. A complex Quaternary and Holocene faulting pattern associated with a six mile step over of the Hot Creek Range near the UHCR also indicated that this area was worthy of some

380

Self Potential At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) |  

Open Energy Info (EERE)

Self Potential At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) Self Potential At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) Exploration Activity Details Location Mt Princeton Hot Springs Area Exploration Technique Self Potential Activity Date Usefulness useful DOE-funding Unknown Notes Used to map fracture and fluid flow patterns. References K. Richards, A. Revil, A. Jardani, F. Henderson, M. Batzle, A. Haas (2010) Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs, Colorado, Using Geoelectrical Methods Retrieved from "http://en.openei.org/w/index.php?title=Self_Potential_At_Mt_Princeton_Hot_Springs_Area_(Richards,_Et_Al.,_2010)&oldid=388680"

Note: This page contains sample records for the topic "industrial hot water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

15 Ways to Save on Your Water Heating Bill | Department of Energy  

Energy Savers [EERE]

traps. Learn more about heat traps. Insulate your hot-water storage tank. For electric tanks, be careful not to cover the thermostat, and for natural gas or oil hot water storage...

382

Hot Topics in astrophysics  

Science Journals Connector (OSTI)

Three current topics in astrophysics are described on the occasion of the joint meeting of the AAPT and the American Astronomical Society (Jan. 7-11 2001) in San Diego CA. They are the habitability of Mars (evidence for ancient and contemporary water and indications of current volcanism);black holes and their intimate relationship with galaxy bulges including their involvement in the x-ray background; and the nature and origin of gamma-ray bursts.

Stephen P. Maran

2000-01-01T23:59:59.000Z

383

Chemistry and the Motor Car Industry  

Science Journals Connector (OSTI)

Chemistry and the Motor Car Industry ... It so happens that this chemical reaction, the production of water and carbon dioxide (which in proper combination gives you seltzer water), is accompanied by the generation of heat which is used to produce power, and after all, power is what primarily concerns the automotive industry. ...

CHARLES F. KETTERING

1943-06-10T23:59:59.000Z

384

Hot Pot Detail - Evidence of Quaternary Faulting  

SciTech Connect (OSTI)

Compilation of published data, field observations and photo interpretation relevant to Quaternary faulting at Hot Pot.

Lane, Michael

2013-06-27T23:59:59.000Z

385

Hot Pot Detail - Evidence of Quaternary Faulting  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Compilation of published data, field observations and photo interpretation relevant to Quaternary faulting at Hot Pot.

Lane, Michael

386

Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) | Open  

Open Energy Info (EERE)

Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) Exploration Activity Details Location Hot Springs Ranch Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley

387

natural gas+ condensing flue gas heat recovery+ water creation+ CO2  

Open Energy Info (EERE)

natural gas+ condensing flue gas heat recovery+ water creation+ CO2 natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy efficiency+ power plant energy efficiency+ Home Increase Natural Gas Energy Efficiency Description: Increased natural gas energy efficiency = Reduced utility bills = Profit In 2011 the EIA reports that commercial buildings, industry and the power plants consumed approx. 17.5 Trillion cu.ft. of natural gas. How much of that energy was wasted, blown up chimneys across the country as HOT exhaust into the atmosphere? 40% ~ 60% ? At what temperature? Links: The technology of Condensing Flue Gas Heat Recovery natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building

388

Industrial Radiology  

Science Journals Connector (OSTI)

... chief application of industrial radiology in Norway is in the examination of pipe welds in hydroelectric plant. H. Vinter (Denmark), director of the Akademiet for de Technische Videns ... and to compare various methods of non-destructive testing. He gave results of tests on turbine disk forgings of austenitic steel which showed satisfactory agreement between radiography, ultrasonic examination and ...

1950-11-18T23:59:59.000Z

389

Drain Water Heat Recovery | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Drain Water Heat Recovery Drain Water Heat Recovery Drain Water Heat Recovery June 15, 2012 - 6:20pm Addthis Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. How does it work? Use heat from water you've already used to preheat more hot water, reducing your water heating costs. Any hot water that goes down the drain carries away energy with it. That's typically 80%-90% of the energy used to heat water in a home. Drain-water (or greywater) heat recovery systems capture this energy from water you've already used (for example, to shower, wash dishes, or wash clothing) to preheat cold water entering the water heater or going to other water fixtures. This reduces the amount of energy needed for water heating. How It Works Drain-water heat recovery technology works well with all types of water

390

Drain Water Heat Recovery | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Drain Water Heat Recovery Drain Water Heat Recovery Drain Water Heat Recovery June 15, 2012 - 6:20pm Addthis Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. How does it work? Use heat from water you've already used to preheat more hot water, reducing your water heating costs. Any hot water that goes down the drain carries away energy with it. That's typically 80%-90% of the energy used to heat water in a home. Drain-water (or greywater) heat recovery systems capture this energy from water you've already used (for example, to shower, wash dishes, or wash clothing) to preheat cold water entering the water heater or going to other water fixtures. This reduces the amount of energy needed for water heating. How It Works Drain-water heat recovery technology works well with all types of water

391

Virginia Regional Industrial Facilities Act (Virginia) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Regional Industrial Facilities Act (Virginia) Regional Industrial Facilities Act (Virginia) Virginia Regional Industrial Facilities Act (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Industry Recruitment/Support Provider Regional Industrial Facility Authorities The Virginia Regional Industrial Facilities Act is meant to aid the economic development of localities within the Commonwealth. The Act provides a mechanism for localities to establish regional industrial facility authorities, enabling them to pool financial resources to stimulate economic development. The purpose of a regional industrial

392

Prometheus Hot Leg Piping Concept  

SciTech Connect (OSTI)

The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

Gribik, Anastasia M. [Bechtel Bettis, Inc., Bettis Atomic Power Laboratory, West Mifflin, PA 15122 (United States); DiLorenzo, Peter A. [KAPL, Inc., Knolls Atomic Power Laboratory, Schenectady, NY 12301 (United States)

2007-01-30T23:59:59.000Z

393

Zoe Industries, Inc.  

Broader source: Energy.gov (indexed) [DOE]

D.C. 20585 D.C. 20585 ) ) ) ) ) Case Number: 2011-SW-2912 Issued: September 28, 2011 NOTICE OF NONCOMPLIANCE DETERMINATION Manufacturers and private labelers are prohibited from distributing covered products that do not comply with applicable Federal water conservation standards. 10 C.F.R. § 429.102; 42 U.S.C. § 6302. On July 20, 2011, DOE tested four units of the Giessdorf eight-jet basic model showerhead, SKU 150043 ("Giessdorf 150043"), manufactured by GiessdorfPlumbing, Inc. ("Giessdorf"), and imported by Zoe Industries, Inc. ("Zoe"), in accordance with DOE test procedures (10 C.F.R. Part 430, Subpart B, Appendix S). DOE's testing demonstrated that the Giessdorf 150043 model is not in compliance with Federal law. First, Federal water conservation standards require that the water flow for a showerhead

394

Compound and Elemental Analysis At Hot Springs Ranch Area (Szybinski, 2006)  

Open Energy Info (EERE)

Compound and Elemental Analysis At Hot Springs Ranch Compound and Elemental Analysis At Hot Springs Ranch Area (Szybinski, 2006) Exploration Activity Details Location Hot Springs Ranch Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes The brine from the drill holes, hot springs, seepages, and irrigation wells was sampled, as well as water from two nearby creeks, (total of 13 samples) and sent for analysis to Thermochem Inc. For sample locations refer to Figure 35; the geochemical data are presented in Appendix C. Geochemical results indicate the presence of two distinct waters in this group of samples (Tom Powell of Thermochem Inc., personal communication, 2005). Powell found that MDH, TRS-1 and TRS-6 are the most prospective waters and tend to be more bicarbonate rich with much higher proportions of B, Li and

395

Electronics Industry: Markets & Issues  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electronics Industry: Markets & Issues Electronics Industry: Markets & Issues Speaker(s): William M. Smith Date: March 17, 1998 - 12:00pm Location: 90-3148 Seminar Host/Point of Contact: Richard Sextro Electronics represents a unique opportunity to get in on the beginning of an incredible growth spurt, for an already huge industry; $400 billion/year in the U.S. now, moving up by 10%-20% per year in several sectors. This is quite unlike many other U.S. industrial sectors, which often involve mature businesses requiring assistance to stay afloat. The potential for forming business partnerships with electronics firms to deal with issues in energy efficiency, water availability/quality, air quality, productivity/yield, HVAC, power quality, wastewater, air emissions, etc., is staggering. The industrys oligopic nature provides serious opportunities

396

Hot carrier diffusion in graphene  

Science Journals Connector (OSTI)

We report an optical study of charge transport in graphene. Diffusion of hot carriers in epitaxial graphene and reduced graphene-oxide samples are studied using an ultrafast pump-probe technique with a high spatial resolution. Spatiotemporal dynamics of hot carriers after a pointlike excitation are monitored. Carrier-diffusion coefficients of 11?000 and 5500?cm2?s?1 are measured in epitaxial graphene and reduced graphene-oxide samples, respectively, with a carrier temperature on the order of 3600 K. The demonstrated optical techniques can be used for noncontact and noninvasive in situ detection of transport properties of graphene.

Brian A. Ruzicka; Shuai Wang; Lalani K. Werake; Ben Weintrub; Kian Ping Loh; Hui Zhao

2010-11-08T23:59:59.000Z

397

Industrial Literature  

Science Journals Connector (OSTI)

"Studies of Wool Dyeing: Crocking" reporting result of studies on relation between intensity of crock and incomplete scouring, presence of dye solvents, hard water, drying, shearing, chlorination, Glauber's salt, temperature, pH, and dye concentration. ...

1947-06-30T23:59:59.000Z

398

Geothermal's hot prospects  

SciTech Connect (OSTI)

Magma Power and California Energy's ambitious plans to build geothermal capacity in the United States and abroad have captured Wall Street's attention. After acquiring three geothermal plants, a power contract and 11,000 acres of geothermal leaseholds, officials at Magma Power Co. can probably wipe their brows, take a deep breath and agree that is has been a big year. The San Diego-based company acquired the three projects in March. The leaseholds came from Unocal and are in the Imperial Valley of California, close to the four geothermal plants Magma operates near the Salton Sea. Overnight, Magma's generating capacity increased 50 percent, from 164 MW to 244 MW, and revenues, as measured on a pro forma basis, were boosted 60 percent to $174 million from $108 million in fiscal 1992. By most standards, that qualifies as a big year. No wonder, then, that Magma's stock (MGMA:NASDAQ) has been this year's best performing public, independent energy stock by far, soaring 17.8 percent to about $38 a share through August 31. That's way ahead of Standard Poor's 500 Index, which increased 5.7 percent during the same time. The industry's other major independent geothermal player, California Energy Co., based in Omaha, Neb., is a strong competitor with Magma for geothermal assets. Both companies are nearly even in terms of megawatt capacity, and both are pursuing an aggressive expansion strategy as they begin to reach global markets. California Energy has begun implementing its own plans for rapid growth. Its stock (CE:NYSE, PSE, LSE) has outperformed the S P 500, too, rising 6.7 percent through August 31 to trade at a little more than $18 a share. California Energy also acquired some Unocal assets, paying between $15 million and $19 million for 26,000 acres of reserves in the Glass Mountain area in Northern California. While Magma acquired three operating plants able to generate 80 MW and a power contract to supply 20 MW more, California Energy acquired leases and wells.

Mandelker, J.

1993-11-01T23:59:59.000Z

399

Solar water heaters | Open Energy Information  

Open Energy Info (EERE)

water heaters water heaters (Redirected from - Solar Hot Water) Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of Solar Water Heating technology.)[1] Solar Water Heater One of the most cost-effective ways to include renewable technologies into a building is by incorporating solar hot water. A typical residential solar water-heating system reduces the need for conventional water heating by about two-thirds. It minimizes the expense of electricity or fossil fuel to heat the water and reduces the associated environmental impacts. Solar Water Heating for Buildings Most solar water-heating systems for buildings have two main parts: (1) a solar collector and (2) a storage tank. The most common collector used in solar hot water systems is the

400

Review of International Methods of Test to Rate the Efficiency of Water Heaters  

E-Print Network [OSTI]

hot water distribution losses and waste heat recovery.Distribution losses are those heat losses that occur betweenDistribution losses Smart controls Wasted water Solar Heat

Lutz, Jim

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial hot water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

SciTech Connect: Hot electron dynamics in graphene  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ThesisDissertation: Hot electron dynamics in graphene Citation Details In-Document Search Title: Hot electron dynamics in graphene Hot electron dynamics in graphene Graphene, a...

402

DOE signs Record of Decision selecting Hot Isostatic Pressing Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NEWS MEDIA CONTACT: Brad Bugger (208) 526-0833 Danielle Miller (208) 526-5709 FOR IMMEDIATE RELEASE: December 28, 2009 DOE signs Record of Decision selecting Hot Isostatic Pressing Technology for Treatment of High Level Waste The U.S. Department of Energy (DOE) has signed the Record of Decision (ROD) for the treatment of high level waste calcine at the Department�s Idaho Site, meeting a legal commitment to the State of Idaho for a decision no later than the end of 2009. DOE today announced its decision to treat high-level waste (HLW) calcine using an industrially mature manufacturing process known as hot isostatic pressing (HIP). DOE selected this technology to treat roughly 5,750 cubic yards of highly radioactive waste generated from the reprocessing of spent nuclear fuel to recover uranium. Reprocessing of spent nuclear fuel was terminated by a DOE policy decision in 1992.

403

Advanced Hot Section Materials and Coatings Test Rig  

SciTech Connect (OSTI)

Phase I of the Hyperbaric Advanced Hot Section Materials & Coating Test Rig Program has been successfully completed. Florida Turbine Technologies has designed and planned the implementation of a laboratory rig capable of simulating the hot gas path conditions of coal gas fired industrial gas turbine engines. Potential uses of this rig include investigations into environmental attack of turbine materials and coatings exposed to syngas, erosion, and thermal-mechanical fatigue. The principle activities during Phase 1 of this project included providing several conceptual designs for the test section, evaluating various syngas-fueled rig combustor concepts, comparing the various test section concepts and then selecting a configuration for detail design. Conceptual definition and requirements of auxiliary systems and facilities were also prepared. Implementation planning also progressed, with schedules prepared and future project milestones defined. The results of these tasks continue to show rig feasibility, both technically and economically.

Dan Davis

2006-09-30T23:59:59.000Z

404

Cost Effective Water Heating Solutions  

Broader source: Energy.gov [DOE]

This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question"Are high-efficiency hot water heating systems worth the cost?"

405

Could energy-intensive industries be powered by carbon-free electricity?  

Science Journals Connector (OSTI)

...Gutowski and Ernst Worrell Could energy-intensive industries be powered...MacKay, DJC . 2008 Sustainable energy-without the hot air. Cambridge...com . 3 Gallman, PG . 2011 Green alternatives and national energy strategy: the facts behind the...

2013-01-01T23:59:59.000Z

406

Tankless Demand Water Heater Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Demand Water Heater Basics Demand Water Heater Basics Tankless Demand Water Heater Basics August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the top of the image, the heating unit is shown. Cold water flows in one end of a pipe, flows through and around several curved pipes over the heating elements, and out the other end as hot water. Beneath the heating unit, a typical sink setup is shown. The sink has two pipes coming out the bottom, one for the hot water line and one for the cold water line. Both pipes lead to the heating unit, which is installed in close proximity to the area of hot water use, and is connected to a power source (110 or 220 volts). Demand (tankless or instantaneous) water heaters have heating devices that are activated by the flow of water, so they provide hot water only as

407

Tankless Demand Water Heater Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tankless Demand Water Heater Basics Tankless Demand Water Heater Basics Tankless Demand Water Heater Basics August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the top of the image, the heating unit is shown. Cold water flows in one end of a pipe, flows through and around several curved pipes over the heating elements, and out the other end as hot water. Beneath the heating unit, a typical sink setup is shown. The sink has two pipes coming out the bottom, one for the hot water line and one for the cold water line. Both pipes lead to the heating unit, which is installed in close proximity to the area of hot water use, and is connected to a power source (110 or 220 volts). Demand (tankless or instantaneous) water heaters have heating devices that are activated by the flow of water, so they provide hot water only as

408

Chemical and light-stable isotope characteristics of waters from...  

Open Energy Info (EERE)

water; (2) there is a single deep hot water, and the range of chloride concentrations is produced by the water passing through a zone of highly soluble materials (most likely in...

409

Trace-Element Distribution In An Active Hydrothermal System, Roosevelt Hot  

Open Energy Info (EERE)

Trace-Element Distribution In An Active Hydrothermal System, Roosevelt Hot Trace-Element Distribution In An Active Hydrothermal System, Roosevelt Hot Springs Thermal Area, Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Trace-Element Distribution In An Active Hydrothermal System, Roosevelt Hot Springs Thermal Area, Utah Details Activities (3) Areas (1) Regions (0) Abstract: Chemical interaction of thermal fluids with reservoir rock in the Roosevelt Hot Springs thermal area, Utah, has resulted in the development of characteristic trace-element dispersion patterns. Multielement analyses of surface rock samples, soil samples and drill cuttings from deep exploration wells provide a three-dimensional perspective of chemical redistribution within this structurally-controlled hot-water geothermal system. Five distinctive elemental suites of chemical enrichment are

410

Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) |  

Open Energy Info (EERE)

Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Exploration Activity Details Location Upper Hot Creek Ranch Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Ten water samples were collected for chemical analysis and interpretation. Analyses of three samples of the UHCR thermal give predicted subsurface temperatures ranging from 317 to 334 oF from the Na-K-Ca, silica (quartz), and Na-Li geothermometers. The fact that all three thermometers closely agree gives the predictions added credibility. References Dick Benoit, David Blackwell (2006) Exploration Of The Upper Hot

411

INDUSTRIAL LITERATURE  

Science Journals Connector (OSTI)

Air Preheaters . Describes a new method to remove insoluble deposits from regenerative air preheater elements by water jets at pressures up to 3000 p.s.i. DOWELL, INC. L 1Allyl Alcohol . Reactions and uses of allyl alcohol. Used as an intermediate ...

1958-06-09T23:59:59.000Z

412

Industrial Gas Turbines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

413

Industrial Gas Turbines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

414

Water Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Water Heating Water Heating Infographic: Water Heaters 101 Everything you need to know about saving money on water heating costs Read more Selecting a New Water Heater Tankless? Storage? Solar? Save money on your water heating bill by choosing the right type of energy-efficient water heater for your needs. Read more Sizing a New Water Heater When buying a new water heater, bigger is not always better. Learn how to buy the right size of water heater. Read more You can reduce your monthly water heating bills by selecting the appropriate water heater for your home or pool and by using some energy-efficient water heating strategies. Some simple do-it-yourself projects, like insulating hot water pipes and lowering your water heating temperature, can also help you save money and energy on your water heating.

415

Mechanical & Industrial Engineering  

E-Print Network [OSTI]

Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board October 15, 2010 #12;Mechanical & Industrial Engineering 2 MIE Dorothy Adams Undergraduate/Graduate Secretary David Schmidt Associate Professor & Graduate Program Director #12;Mechanical & Industrial Engineering 3 MIE James Rinderle

Mountziaris, T. J.

416

Industry Perspective  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

idatech.com idatech.com info@idatech.com 63065 NE 18 th Street Bend, OR 97701 541.383.3390 Industry Perspective Biogas and Fuel Cell Workshop National Renewable Energy Laboratory June 11 - 13, 2012 Mike Hicks Chairman of the Board of Directors, FCHEA Treasurer of the Board of Directors, FCS&E Engineering Manager, Technology Development & Integration, IdaTech Outline 1. Critical Factors * Fuel Purity * Fuel Cost 2. Natural Gas - The Wild Card & Competition 3. IdaTech's Experience Implementing Biofuel Critical Factor - Fuel Purity All fuel cell system OEMs have fuel purity specifications * Independent of * Raw materials or feed stocks * Manufacturing process * Depends on * Fuel processor technology * Fuel cell technology - low temp PEM versus SOFC

417

Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1991--June 1992  

SciTech Connect (OSTI)

This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump & Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

1992-06-01T23:59:59.000Z

418

Hot and Dense QCD Matter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

QCD Matter QCD Matter A Community White Paper on the Future of Relativistic Heavy-Ion Physics in the US Unraveling the Mysteries of the Strongly Interacting Quark-Gluon-Plasma Executive Summary This document presents the response of the US relativistic heavy-ion community to the request for comments by the NSAC Subcommittee, chaired by Robert Tribble, that is tasked to recommend optimizations to the US Nuclear Science Program over the next five years. The study of the properties of hot and dense QCD matter is one of the four main areas of nuclear physics research described in the 2007 NSAC Long Range Plan. The US nuclear physics community plays a leading role in this research area and has been instrumental in its most important discovery made over the past decade, namely that hot and dense QCD matter acts as a strongly interacting system with unique and previously unexpected

419

Engineering Industrial & Systems  

E-Print Network [OSTI]

Industrial Engineering Department of Industrial & Systems Engineering Leslie Monplaisir, Ph powerful tool sets used in industry today. -Brent Gillett, BSIE 2007 Advanced Planning Engineer at BMW I is available at: http://ise.wayne.edu/bs-industrial/index What is Industrial Engineering? The industrial

Berdichevsky, Victor

420

INDUSTRIAL ENGINEERING Industrial engineering is concerned  

E-Print Network [OSTI]

INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. Industrial engineers design and run the factories and systems

Note: This page contains sample records for the topic "industrial hot water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

INDUSTRIAL ENGINEERING Industrial engineering is concerned  

E-Print Network [OSTI]

INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. The focus of industrial engineering is on process improvement

422

Impacts of Water Quality on Residential Water Heating Equipment  

SciTech Connect (OSTI)

Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

Widder, Sarah H.; Baechler, Michael C.

2013-11-01T23:59:59.000Z

423

EPA's Priorities for Clean Water Act Programs  

E-Print Network [OSTI]

, industrial, construction) Pesticide application to water Discharges from Vessels CWA 309 Enforcement; deter non- compliance on an industry-wide basis Aggressively go after pollution problems that make America's waters Expanding the conversation on environmentalism and working for environmental justice

Nebraska-Lincoln, University of

424

HotSpot | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

HotSpot HotSpot HotSpot Current Central Registry Toolbox Version(s): 2.07.1 Code Owner: Department of Energy, Office of Emergency Operations and Lawrence Livermore National Laboratory (LLNL) Description: The HotSpot Health Physics Code is used for safety-analysis of DOE facilities handling nuclear material. Additionally, HotSpot provides emergency response personnel and emergency planners with a fast, field-portable set of software tools for evaluating incidents involving radioactive material. HotSpot provides a fast and usually conservative means for estimation of the radiation effects associated with atmospheric release of radioactive materials. The HotSpot atmospheric dispersion models are designed for near-surface releases, short-range (less than 10 km) dispersion, and short-term (less than 24 hours) release durations in

425

Hot Springs Metropolitan Planning Organization 2030 Long Range Transportation Plan  

E-Print Network [OSTI]

Hot Springs Area Metropolitan Planning Organization 100 Broadway Terrace Hot Springs, Arkansas 71901 Adopted November 3, 2005 HSA-MPO 2030 LRTPii Participating Agencies Garland County Hot... Spring County City of Hot Springs City of Mountain Pine Hot Springs Village The Greater Hot Springs Chamber of Commerce The Arkansas State Highway and Transportation Department In Cooperation With United States Department of Transportation...

Hot Springs Metropolitan Planning Organization

2005-11-03T23:59:59.000Z

426

Captive power plants and industrial sector in the developing countries  

SciTech Connect (OSTI)

The electrical power and energy is essential for the industrial sector of the countries which are transferring its social structure to the industry oriented one from the agrarian society. In Asian countries, this kind of transformation has actively been achieved in this century starting from Japan and followed by Korea, Taiwan, and it is more actively achieved in the countries of Malaysia, Indonesia, Thailand, Philippine, India and China(PRC) in these days. It is valuable to review the effective utilizing of Power and Energy in the industrial sector of the developing countries. In this paper, it is therefore focussed to the captive power plants comparing those of utility companies such as government owned electrical power company and independent power company. It is noticed that major contribution to the electrical power generation in these days is largely dependent on the fossil fuel such as coal, oil and gas which are limited in source. Fossil energy reserves are assumed 1,194 trillion cubic meters or about 1,182 billion barrels of oil equivalent for natural gas 1,009 billion barrels for oil and at least 930 billion tons for coal in the world. According to the statistic data prepared by the World Energy Council, the fossil fuel contribution to electrical power generation records 92.3% in 1970 and 83.3% in 1990 in the world wide. Primary energy source for electrical power generation is shown in figure 1. It is therefore one of the most essential task of human being on how to utilize the limited fossil energy effectively and how to maximize the thermal efficiency in transferring the fossil fuel to usable energy either electrical power and energy or thermal energy of steam or hot/chilled water.

Lee, Rim-Taig [Hyundai Engineering Co. (Korea, Republic of)

1996-12-31T23:59:59.000Z

427

Workplace Charging Challenge Partner: Pentair Water Pool and Spa, Inc.  

Broader source: Energy.gov [DOE]

Pentair Water Pool and Spa, Inc. a provider of equipment, accessories and water technology solutions to the swimming pool, aquaculture and environmental water monitoring industries, is fully...

428

Remediation of Mercury and Industrial Contaminants  

Broader source: Energy.gov [DOE]

The mission of the Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative is to control the flux of contaminants in soil and water environments for the purpose of...

429

Water Power Events | Department of Energy  

Energy Savers [EERE]

Water Power Events Water Power Events Below is an industry calendar with meetings, conferences, and webinars of interest to the conventional hydropower and marine and hydrokinetic...

430

Reusing Water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reusing Water Reusing Water Reusing Water Millions of gallons of industrial wastewater is recycled at LANL by virtue of a long-term strategy to treat wastewater rather than discharging it into the environment. April 12, 2012 Water from cooling the supercomputer is release to maintain a healthy wetland. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email We reuse the same water up to six times before releasing it back into the environment cleaner than when it was pumped. How many times does LANL reuse water? Wastewater is generated from some of the facilities responsible for the Lab's biggest missions, such as the cooling towers of the Los Alamos Neutron Science Center, one of the Lab's premier science research

431

Assistance to Oil and Gas State Agencies and Industry through Continuation of Environmental and Production Data Management and a Water Regulatory Initiative  

SciTech Connect (OSTI)

This grant project was a major step toward completion of the Risk Based Data Management System (RBDMS) project. Additionally the project addresses the needs identified during the projects initial phases. By implementing this project, the following outcomes were sought: (1) State regulatory agencies implemented more formalized environmental risk management practices as they pertain to the production of oil and gas, and injection via Class II wells. (2) Enhancement of oil and gas production by implementing a management system supporting the saving of abandoned or idle wells located in areas with a relatively low environmental risk of endangering underground sources of drinking water (USDWs) in a particular state. (3) Verification that protection of USDWs is adequate and additional restrictions of requirements are not necessary in areas with a relatively low environmental risk. (4) Standardization of data and information maintained by state regulatory agencies and decrease the regulatory cost burden on producers operating in multiple states, and (5) Development of a system for electronic data transfer among operators and state regulatory agencies and reduction of overall operator reporting burdens.

Grunewald, Ben; Arthur, Dan; Langhus, Bruce; Gillespie, Tom; Binder, Ben; Warner, Don; Roberts, Jim; Cox, D.O.

2002-05-31T23:59:59.000Z

432

Hot  

Office of Scientific and Technical Information (OSTI)

LLC. UMI Number: 1494695 ii DEDICATION I would like to dedicate this thesis to my advisor Joerg Schmailian, a great physicist and mentor. I've learned a lot from him, no...

433

Hot Dry Rock energy annual report fiscal year 1992  

SciTech Connect (OSTI)

Hot Dry Rock technology took a giant leap forward this year as the long-awaited long-term flow test (LTFT) of the Phase II HDR reservoir at Fenton Hill got underway. Energy was produced on a twenty-four hour a day basis for a continuous period of nearly four months of steady-state testing. Hot water was brought to the surface at 90-100 gallons per minute (gpm) with temperatures of 180[degrees]C (356[degrees]F) and higher. During that time, the HDR plant achieved an on-line record of 98.8%. Surface temperature measurements and temperature logging deep within the wellbore confirmed that no decline in the average temperature of fluid produced from the reservoir occurred. Tracer experiments indicated that flow paths within the reservoir were undergoing continuous change during the test. Remarkably, it appeared that longer flow paths carried a larger proportion of the flow as the test proceeded, while more direct fluid pathways disappeared or carried a significantly reduced flow. In sum, access to hot rock appeared to improve over the span of the test. Water losses during the test averaged 10-12% and showed a slow long-term decline. These results confirmed what had been previously discovered in static pressurization testing: Water consumption declines significantly during extended operation of an HDR reservoir. In combination with a recent demonstration by the Japanese that water losses can be greatly reduced by the proper placement of multiple production wells, the recent results at Fenton Hill have effectively demonstrated that excessive water consumption should not be an issue for a properly engineered HDR facility at a well chosen site.

Duchane, D.V.; Winchester, W.W.

1993-04-01T23:59:59.000Z

434

Advanced, Energy-Efficient Hybrid Membrane System for Industrial...  

Broader source: Energy.gov (indexed) [DOE]

of contaminants in industrial wastewaters, making them difficult to treat High energy intensity, pretreatment needs, and water---treatment costs Unsustainabilit...

435

WATER AS A REAGENT FOR SOIL REMEDIATION  

SciTech Connect (OSTI)

SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, to separate petroleum-related contaminants and other hazardous pollutants from soil and sediments. In this process, water with added electrolytes (inexpensive and environmentally friendly) is used as the extracting solvent under subcritical conditions (150-300 C). The use of electrolytes allows us to operate reactors under mild conditions and to obtain high separation efficiencies that were hitherto impossible. Unlike common organic solvents, water under subcritical conditions dissolves both organics and inorganics, thus allowing opportunities for separation of both organic and inorganic material from soil. In developing this technology, our systematic approach was to (1) establish fundamental solubility data, (2) conduct treatability studies with industrial soils, and (3) perform a bench-scale demonstration using a highly contaminated soil. The bench-scale demonstration of the process has shown great promise. The next step of the development process is the successful pilot demonstration of this technology. Once pilot tested, this technology can be implemented quite easily, since most of the basic components are readily available from mature technologies (e.g., steam stripping, soil washing, thermal desorption). The implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and will provide a stand-alone technology for removal of both volatile and heavy components from contaminated soil.

Indira S. Jayaweera; Montserrat Marti-Perez; Jordi Diaz-Ferrero; Angel Sanjurjo

2001-11-12T23:59:59.000Z

436

Development of Bulk Nanocrystalline Cemented Tungsten Carbide for Industrial Applicaitons  

SciTech Connect (OSTI)

This report contains detailed information of the research program entitled "Development of Bulk Nanocrystalline Cemented Tungsten Carbide Materials for Industrial Applications". The report include the processes that were developed for producing nanosized WC/Co composite powders, and an ultrahigh pressure rapid hot consolidation process for sintering of nanosized powders. The mechanical properties of consolidated materials using the nanosized powders are also reported.

Z. Zak Fang, H. Y. Sohn

2009-03-10T23:59:59.000Z

437

Chemical Potential of Water from Measurements of Optic Axial Angle of Zeolites  

Science Journals Connector (OSTI)

...a purified sample collected at a new occurrence near Chena Hot Springs, Alaska. The chemical analysis of the sample from which...1-methyl-5-nitroimidazole-2-carboxalde-hyde thiosemicarbazone (2) in hot water. Recrystallized from dimethylformamide, the sample...

G. Donald Eberlein; C. L. Christ

1968-12-06T23:59:59.000Z

438

Tax-Exempt Industrial Revenue Bonds (Kansas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Revenue Bonds (Kansas) Industrial Revenue Bonds (Kansas) Tax-Exempt Industrial Revenue Bonds (Kansas) < Back Eligibility Agricultural Commercial Construction Industrial Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kansas Program Type Bond Program Provider Revenue Tax-Exempt Industrial Revenue Bonds are issued by cities and counties for the purchase, construction, improvement or remodeling of a facility for agricultural, commercial, hospital, industrial, natural resources, recreational development or manufacturing purposes. The board of county commissioners of any county or the governing body of any city may approve an exemption of property funded by industrial revenue bonds (IRB's). Some

439

TrendSetter Solar Products Inc aka Trendsetter Industries formerly Six  

Open Energy Info (EERE)

TrendSetter Solar Products Inc aka Trendsetter Industries formerly Six TrendSetter Solar Products Inc aka Trendsetter Industries formerly Six River Solar Jump to: navigation, search Name TrendSetter Solar Products Inc (aka Trendsetter Industries, formerly Six River Solar) Place Fairhaven, California Zip 95564 Sector Solar Product Manufacturer of solar hot water heating and storage systems. Coordinates 41.63548°, -70.903856° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.63548,"lon":-70.903856,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

440

Shenzhen Prosunpro PengSangPu Solar Industrial Products Corporation | Open  

Open Energy Info (EERE)

Prosunpro PengSangPu Solar Industrial Products Corporation Prosunpro PengSangPu Solar Industrial Products Corporation Jump to: navigation, search Name Shenzhen Prosunpro/ PengSangPu Solar Industrial Products Corporation Place Shenzhen, Guangdong Province, China Zip 518055 Sector Solar Product Shenzhen Prosunpro makes and installs flat panel solar passive energy collectors and engineers central solar hot water systems. Coordinates 22.546789°, 114.112556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.546789,"lon":114.112556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "industrial hot water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Hot Dry Rock Geothermal Energy Development Program Annual Report Fiscal Year 1988  

SciTech Connect (OSTI)

The complete list of HDR objectives is provided in Reference 10, and is tabulated below in Tables 1 and 2 for the reader's convenience. The primary, level 1, objective for HDR is ''to improve the technology to the point where electricity could be produced commercially from a substantial number of known HDR resource sites in a cost range of 5 to 8 cents/kWh by 1997''. A critically important milestone in attaining this cost target is the level II objective: ''Evaluate the performance of the Fenton Hill Phase II reservoir''. To appreciate the significance of this objective, a brief background is helpful. During the past 14 years the US DOE has invested $123 million to develop the technology required to make Hot Dry Rock geothermal energy commercially useful. The Governments of Japan and the Federal Republic of Germany have contributed an additional $32 million to the US program. The initial objectives of the program were met by the successful development and long-term operation of a heat-extraction loop in hydraulically-fractured hot dry rock. This Phase I reservoir produced pressurized hot water at temperatures and flow rates suitable for many commercial uses such as space heating and food processing. It operated for more than a year with no major problems or detectable environmental effect. With this accomplished and the technical feasibility of HDR energy systems demonstrated, the program undertook the more difficult task of developing a larger, deeper, hotter reservoir, called ''Phase II'', capable of supporting pilot-plant-scale operation of a commercial electricity-generating power plant. As described earlier in ''History of Research'', such a system was created and operated successfully in a preliminary 30-day flow test. However, to justify capital investment in HDR geothermal technology, industry now requires assurance that the reservoir can be operated for a long time without major problems or a significant decrease in the rate and quality of energy production. Industrial advisors to the HDR Program have concluded that, while a longer testing period would certainly be desirable, a successful and well-documented flow test of this high-temperature, Phase II reservoir lasting at least one year should convince industry that HDR geothermal energy merits their investment in its commercial development. This test is called the Long Term Flow Test (LTFT), and its completion will be a major milestone in attaining the Level 1 objective. However, before the LTFT could be initiated, well EE-2 had to be repaired, as also briefly described in the ''History of Research''. During this repair operation, superb progress was made toward satisfying the next most critically important Level II objective: Improve the Performance of HDR Drilling and Completion Technology. During the repair of EE-2, Los Alamos sidetracked by drilling out of the damaged well at 2.96 km (9700 ft), and then completed drilling a new-wellbore (EE-2A) to a total depth of 3.78 km (12,360 ft). As a consequence of this drilling experience, Los Alamos believes that if the original wells were redrilled today their combined cost would be only $8 million rather than the $18.8 million actually spent (a 60% cost saving). Further details, particularly of the completion of the well, can be found in the major section, ACCOMPLISHMENTS, but it can be seen that the second, Level II objective is already nearing attainment.

Dash, Zora V.; Murphy, Hugh D.; Smith, Morton C.

1988-01-01T23:59:59.000Z

442

Massachusetts Municipal Commercial Industrial Incentive Program |  

Broader source: Energy.gov (indexed) [DOE]

Massachusetts Municipal Commercial Industrial Incentive Program Massachusetts Municipal Commercial Industrial Incentive Program Massachusetts Municipal Commercial Industrial Incentive Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Manufacturing Other Windows, Doors, & Skylights Ventilation Appliances & Electronics Commercial Lighting Lighting Insulation Water Heating Maximum Rebate Varies depending on utility Program Info Start Date Varies Expiration Date Varies State Massachusetts Program Type Utility Rebate Program Rebate Amount Varies depending on utility Provider Massachusetts Municipal Wholesale Electric Company Certain municipal utilities in Massachusetts, in cooperation with

443

Colorado's Hot Springs | Open Energy Information  

Open Energy Info (EERE)

http:crossref.org Citation D. Frazier. 2000. Colorado's Hot Springs. Boulder, Colorado: Pruett Publishing Company. 165p. Retrieved from "http:en.openei.orgw...

444

Covered Product Category: Hot Food Holding Cabinets  

Broader source: Energy.gov [DOE]

The Federal Energy Management Program (FEMP) provides acquisition guidance for hot food holding cabinets, which are covered by the ENERGY STAR program.

445

and Industrial Engineering  

E-Print Network [OSTI]

45 Mechanical and Industrial Engineering 220 Engineering Lab Degrees: Bachelor of Science in Mechanical Engineering Bachelor of Science in Industrial Engineering Contact: James R. Rinderle to prosthetic limbs to windmills, and their myriad components. Industrial engineers are concerned

Mountziaris, T. J.

446

Industrial and Systems engineering  

E-Print Network [OSTI]

Industrial and Systems engineering COLLEGE of ENGINEERING DepartmentofIndustrialandSystemsEngineering EDGE Engineering Entrepreneur Certificate Program is a great addition to an industrial and systems to expert clinical recommendations. engineering.wayne.edu/isefaculty Industrial and systems engineering

Berdichevsky, Victor

447

Commentary on industrial processes  

Science Journals Connector (OSTI)

...crucial for an industrial process, namely: catalyst activity...of catalysis to industrial processes. The papers, however, do...at the heart of successful commercialization of catalytic science and technology...addressed in any industrial process, namely: activity-the...

2005-01-01T23:59:59.000Z

448

Savings Project: Insulate Your Water Heater Tank | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Savings Project: Insulate Your Water Heater Tank Savings Project: Insulate Your Water Heater Tank Savings Project: Insulate Your Water Heater Tank Addthis Project Level medium Energy Savings $20-$45 annually Time to Complete 1.5 hours Overall Cost $30 Insulate your hot water tank to save energy and money. | Photo courtesy of iStockphoto.com/glennebo Insulate your hot water tank to save energy and money. | Photo courtesy of iStockphoto.com/glennebo Just like insulating your walls or roof, insulating your hot water tank is an easy and inexpensive way to improve energy efficiency and save you money each month. If your water tank is new, it is likely already insulated. If you have an older hot water tank, check to see if it has insulation with an R-value of at least 24. If not, consider insulating your water tank, which

449

Department of Mechanical Engineering Spring 2013 Lumax Lighting 2: LED Industrial High Bay Light Fixture  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical Engineering Spring 2013 Lumax Lighting 2: LED Industrial High was to design a light fixture for an industrial setting using high power LED lights. The challenge with these LEDs is that they get so hot in a very little time period that the LED will fail and not work anymore

Demirel, Melik C.

450

Uranium industry annual 1997  

SciTech Connect (OSTI)

This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

NONE

1998-04-01T23:59:59.000Z

451

Zoe Industries, Inc.  

Broader source: Energy.gov (indexed) [DOE]

Issued: February 9, 2012 Issued: February 9, 2012 BEFORE THE U.S. DEPARTMENT OF ENERGY WASHINGTON, D.C. 20585 ) ) ) ) ) ORDER Case Number: 2011-SW-2912 By the General Counsel, U.S. Department of Energy: 1. In this Order, I adopt the attached Compromise Agreement entered into between the U.S. Department of Energy ("DOE") and Zoe Industries, Inc. ("Respondent"). The Compromise Agreement resolves the case initiated against Respondent pursuant to 10 C.F.R. § 429.122 by Notice of Proposed Civil Penalty, alleging that Respondent distributed in commerce in the United States the Giessdorf eight-jet basic model showerhead, SKU 150043, which failed to meet the applicable standard for water usage. See 10 C.F.R. § 430.32(p). 2. The DOE and Respondent have negotiated the terms of the Compromise Agreement

452

Chapter 1 - Industrial Wastewater Treatment, Recycling, and Reuse: An Overview  

Science Journals Connector (OSTI)

Abstract Water availability; usage, treatment, and discharge of used water; and possible ways of recycling and reusing this used water are briefly discussed here. Issues pertaining to industrial wastewaters, sources of generation, characterization of wastewaters, and various methodologies of wastewater treatment have been reviewed along with economic perspectives of water management. Recent developments in the area of industrial wastewater treatment, recycling, and reuse are also briefly outlined here.

Vivek V. Ranade; Vinay M. Bhandari

2014-01-01T23:59:59.000Z

453

Direct-Current Resistivity Survey At Mt Princeton Hot Springs Area  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Direct-Current Resistivity Survey At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) Exploration Activity Details Location Mt Princeton Hot Springs Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Used to map fracture and fluid flow patterns. References K. Richards, A. Revil, A. Jardani, F. Henderson, M. Batzle, A. Haas (2010) Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs,

454

Long-Term Testing of Geothermal Wells in the Coso Hot Springs KGRA | Open  

Open Energy Info (EERE)

Long-Term Testing of Geothermal Wells in the Coso Hot Springs KGRA Long-Term Testing of Geothermal Wells in the Coso Hot Springs KGRA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Long-Term Testing of Geothermal Wells in the Coso Hot Springs KGRA Details Activities (3) Areas (2) Regions (0) Abstract: Three wells have been drilled by the Los Angeles Department of Water and Power at the Coso Hot Springs KGRA. A long-term flow test was conducted involving one producing well (well 43-7), one injector (well 88-1), and two observation wells (well 66-6 and California Energy Co's well 71A-7). This paper presents the equipment and techniques involved and the results from the long-term test conducted between December 1985 and February 1986. Author(s): Sanyal, S.; Menzies, A.; Granados, E.; Sugine, S.;

455

Relationship between Hot Spot Residues and Ligand Binding Hot Spots in Protein-Protein Interfaces  

E-Print Network [OSTI]

, while identification of a hot spot by alanine scanning establishes the potential to generate substantial, termed "hot spots", that comprise the subset of residues that contribute the bulk of the binding free proposed as prime targets for drug binding.1,4 The established approach to the identification of such hot

Vajda, Sandor

456

Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley Caldera  

E-Print Network [OSTI]

Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley springs located within the Long Valley Caldera, Little Hot Creek (LHC) 1, 3, and 4. All three springs were that springs associated with the Long Valley Caldera contain microbial populations that show some similarities

Ahmad, Sajjad

457

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

458

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

459

Ceramic hot-gas filter  

DOE Patents [OSTI]

A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

Connolly, Elizabeth Sokolinski (Wilmington, DE); Forsythe, George Daniel (Landenberg, PA); Domanski, Daniel Matthew (New Castle, DE); Chambers, Jeffrey Allen (Hockessin, DE); Rajendran, Govindasamy Paramasivam (Boothwyn, PA)

1999-01-01T23:59:59.000Z

460

Ceramic hot-gas filter  

DOE Patents [OSTI]

A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

1999-05-11T23:59:59.000Z

Note: This page contains sample records for the topic "industrial hot water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Arsenic in your water?: Economists study perceptions of risks from drinking water high in arsenic  

E-Print Network [OSTI]

Arsenic in water?your tx H2O | pg. 27 Story by Kathy Wythe Economists study perceptions of risks from drinking water high in arsenic In several ?hot spots? across the United States people may be drinking water with high levels of naturally... occurring arsenic without understanding the associated risks, according to agricultural economists. ?Many households in arsenic ?hot spots? are in fact being exposed to harmful doses of arsenic,? said Dr. Douglass Shaw, professor of agricultural...

Wythe, Kathy

2010-01-01T23:59:59.000Z

462

The private city through the hot images  

Science Journals Connector (OSTI)

Hot Images is an artistic mixed reality application that deals with the relation between human beings and city environments, thus proposing a novel cartography and navigation tool for the city. Within the virtual recreated environment of the Hot Images, ... Keywords: color navigation, human space, location based services, mixed reality, urban environments

Cristina Portals

2007-06-01T23:59:59.000Z

463

Wine Valley Inn: A mineral water spa in Calistoga, California. Geothermal-energy-system conceptual design and economic feasibility  

SciTech Connect (OSTI)

The purpose of this study is to determine the engineering and economic feasibility for utilizing geothermal energy for air conditioning and service water heating at the Wine Valley Inn, a mineral water spa in Calistoga, California. The study evaluates heating, ventilating, air conditioning and water heating systems suitable for direct heat geothermal application. Due to the excellent geothermal temperatures available at this site, the mechanics and economics of a geothermally powered chilled water cooling system are evaluated. The Wine Valley Inn has the resource potential to have one of the few totally geothermal powered air conditioning and water heating systems in the world. This total concept is completely developed. A water plan was prepared to determine the quantity of water required for fresh water well development based on the special requirements of the project. An economic evaluation of the system is included to justify the added capital investment needed to build the geothermally powered mineral spa. Energy payback calculations are presented. A thermal cascade system is proposed to direct the geothermal water through the energy system to first power the chiller, then the space heating system, domestic hot water, the two spas and finally to heat the swimming pool. The Energy Management strategy required to automatically control this cascade process using industrial quality micro-processor equipment is described. Energy Management controls are selected to keep equipment sizing at a minimum, pump only the amount of geothermal water needed and be self balancing.

Not Available

1981-10-26T23:59:59.000Z

464

DOE Solar Decathlon: 2007 Building Industry Workshops  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

team Puerto Rico student stands over the team's gray-water pool, which is filled with green plants, and explains to visitors surrounding the pool how it recycles water for reuse. team Puerto Rico student stands over the team's gray-water pool, which is filled with green plants, and explains to visitors surrounding the pool how it recycles water for reuse. Universidad de Puerto Rico student Wilfredo Rodriguez explains the team's gray-water pool to visitors at the 2007 Solar Decathlon. The pool is used to filter wash water for reuse. Solar Decathlon 2007 Building Industry Workshops Below are descriptions of the workshops offered at the 2007 Solar Decathlon on Building Industry Day, Thursday, October 18, 2007. Solar Applications for Homes Revised Title: Translating Sustainability to Affordable Housing 9:00 a.m. Presenter: ASHRAE and John Quale, Assistant Professor, University of Virginia School of Architecture The focus of the workshop is translating sustainability to affordable

465

Building America Webinar: Central Multifamily Water Heating Systems  

Broader source: Energy.gov [DOE]

Hosted by DOE's Building America program, this webinar will focus on the effective use of central heat pump water heaters (HPWHs) and control systems to reduce the energy use in hot water distribution.

466

Save on Home Water Heating | Department of Energy  

Office of Environmental Management (EM)

and money, or choose an on-demand hot water heater to save even more. Tips: Water Heating Solar energy systems are among the renewable and efficiency purchases that are...

467

Building Energy Software Tools Directory: HOT2000  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HOT2000 HOT2000 HOT2000 logo. Easy-to-use energy analysis and design software for low-rise residential buildings. Utilizing current heat loss/gain and system performance models, the program aids in the simulation and design of buildings for thermal effectiveness, passive solar heating and the operation and performance of heating and cooling systems. Keywords energy performance, design, residential buildings, energy simulation, passive solar Validation/Testing N/A Expertise Required Basic understanding of the construction and operation of residential buildings. Users Over 1400 worldwide. HOT2000 is used mainly in Canada and the United States with a few users in Japan and Europe. Audience Builders, design evaluators, engineers, architects, building and energy code writers, Policy writers. HOT2000 is also used as the compliance

468

INDUSTRIAL ENGINEERING GRADUATE PROGRAMS  

E-Print Network [OSTI]

INDUSTRIAL ENGINEERING GRADUATE PROGRAMS The Master of Science in Industrial Engineering (M Systems and Engineering (M.S.M.S.E.), the Doctor of Philosophy in Industrial Engineering, and the Doctor of Philosophy in Systems and Engineering Management programs prepare competent industrial engineers

Gelfond, Michael

469

Mechanical & Industrial Engineering  

E-Print Network [OSTI]

Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board May 5th, 2011 #12;Mechanical & Industrial Engineering 2 IAB 2010-2011 · David K. Anderson ­ Alden Research Laboratory, Inc went on for three weeks Mechanical & Industrial Engineering 6 #12;Reza Shahbazian Yassar Mechanical

Mountziaris, T. J.

470

Career Map: Industrial Engineer  

Broader source: Energy.gov [DOE]

The Wind Program's Career Map provides job description information for Industrial Engineer positions.

471

Climate VISION: Industry Associations  

Office of Scientific and Technical Information (OSTI)

Industry Associations Industry Associations Aluminum Aluminum Association (Coordinating aluminum industry Climate VISION activities) The Aluminum Association, Inc. is the trade association for producers of primary aluminum, recyclers and semi-fabricated aluminum products, as well as suppliers to the industry. The Association provides leadership to the industry through its programs and services which aim to enhance aluminum's position in a world of proliferating materials, increase its use as the "material of choice," remove impediments to its fullest use, and assist in achieving the industry's environmental, societal, and economic objectives. Automobile Manufacturers Alliance of Automobile Manufacturers (Coordinating automobile industry Climate VISION activities) The Alliance of Automobile Manufacturers, Inc. is a trade association

472

Solar Water Heaters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Water Heaters Solar Water Heaters Solar Water Heaters May 7, 2012 - 9:52am Addthis Solar water heaters -- also called solar domestic hot water systems -- can be a cost-effective way to generate hot water for your home. They can be used in any climate, and the fuel they use -- sunshine -- is free. How They Work Solar water heating systems include storage tanks and solar collectors. There are two types of solar water heating systems: active, which have circulating pumps and controls, and passive, which don't. Active Solar Water Heating Systems There are two types of active solar water heating systems: Direct circulation systems Pumps circulate household water through the collectors and into the home. They work well in climates where it rarely freezes. Indirect circulation systems

473

Solar water heaters | Open Energy Information  

Open Energy Info (EERE)

heaters heaters Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of Solar Water Heating technology.)[1] Solar Water Heater One of the most cost-effective ways to include renewable technologies into a building is by incorporating solar hot water. A typical residential solar water-heating system reduces the need for conventional water heating by about two-thirds. It minimizes the expense of electricity or fossil fuel to heat the water and reduces the associated environmental impacts. Solar Water Heating for Buildings Most solar water-heating systems for buildings have two main parts: (1) a solar collector and (2) a storage tank. The most common collector used in solar hot water systems is the flat-plate collector. Solar water heaters use the sun to heat either water

474

Emission of Visible Light by Hot Dense Metals  

E-Print Network [OSTI]

HIFAN 1761 EMISSION OF VISIBLE LIGHT BY HOT DENSE METALS ByDE-AC52-07NA27344. HI FAN Emission of Visible Light by HotABSTRACT We consider the emission of visible light by hot

More, R.M.

2010-01-01T23:59:59.000Z

475

Feature - WATER Tool Released  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Assessment for Transportation Energy Resources (WATER) Tool Released Water Assessment for Transportation Energy Resources (WATER) Tool Released Argonne National Laboratory recently released an open access online tool called WATER (Water Assessment for Transportation Energy Resources), which quantifies water footprint of fuel production stages from feedstock production to conversion process for biofuel with county, state, and regional level spatial resolution. WATER provides analysis on water consumption and its impact on water quality. It contains biofuel pathways for corn grain ethanol, soybean biodiesel, and cellulosic ethanol produced from corn stover and wheat straw. Perennial grass (Switchgrass and Miscanthus) and forest wood residue-based biofuel pathways are currently under development. The WATER tool enables users to conduct pathway comparison, scenario development, and regional specific feedstock analysis in supporting of biofuel industry development and planning. It is available at http://water.es.anl.gov/.

476

Electrochemistry and Water Pollution  

Science Journals Connector (OSTI)

This article reviews both the pollution by the electrochemical industry and the use of electrochemistry to clean water, air and soils. Main pollutants include Pd, Cd, Ni, Hg and other metals, SO2, CO2 and cyanide...

Subramanyan Vasudevan; Mehmet A. Oturan

2013-01-01T23:59:59.000Z

477

Water Quality Control (Texas)  

Broader source: Energy.gov [DOE]

The policy of the state of Texas is to promote the quality of the state's water by regulating existing industries, taking into consideration the economic development of the state, and by...

478

Hafnium nitride for hot carrier solar cells  

Science Journals Connector (OSTI)

Abstract Hot carrier solar cells is an attractive technology with the potential of reaching high energy conversion efficiencies approaching the thermodynamic limit of infinitely stacked multi-junction solar cells: 65% under one sun and 86% under maximally concentrated. The hot carrier solar cell is conceptually simple consisting of two key components: absorber and energy selective contacts. High efficiencies are achieved by minimising the energy lost to thermalisaton of hot photo-generated carriers while absorbing majority of the solar spectrum. For this to be achieved, energy selective contacts are required to allow the extraction of carriers fast enough at an energy level above the electronic band edge. It is critical for the absorber to be able to maintain a hot carrier population for a sufficiently long time period for the extraction of carriers while they are hot. Bulk materials with a large gap between acoustic and optical branches in the phonon dispersion are predicted to exhibit slow hot carrier thermalisation rates. Hafnium nitride is such a material with a large gap in its phonon dispersion and is identified as a potential material to be used as a hot carrier absorber. Hafnium nitride has been deposited using reactive sputtering and characterised to investigate material properties and carrier cooling rates.

Simon Chung; Santosh Shrestha; Xiaoming Wen; Yu Feng; Neeti Gupta; Hongze Xia; Pyng Yu; Jau Tang; Gavin Conibeer

2014-01-01T23:59:59.000Z

479

Seismic baseline and induction studies- Roosevelt Hot Springs...  

Open Energy Info (EERE)

studies- Roosevelt Hot Springs, Utah and Raft River, Idaho Abstract Local seismic networks were established at the Roosevelt Hot Springs geothermal area, utah and at Raft...

480

EIS-0502: Hot Springs to Anaconda Transmission Line Rebuild Project...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hot Springs to Anaconda Transmission Line Rebuild Project, Montana EIS-0502: Hot Springs to Anaconda Transmission Line Rebuild Project, Montana SUMMARY DOE's Bonneville Power...

Note: This page contains sample records for the topic "industrial hot water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility...

482

Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal...  

Open Energy Info (EERE)

Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal...

483

Chena Hot Springs Resort - Electric Power Generation Using Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

484

Aeromagnetic Survey At Roosevelt Hot Springs Geothermal Area...  

Open Energy Info (EERE)

literature review of the Roosevelt Hot Springs Geothermal Area. Notes Aeromagnetic intensity residual map compiled for Roosevelt Hot Springs Geothermal Area, providing...

485

Resistivity Tomography At Crump's Hot Springs Area (DOE GTP)...  

Open Energy Info (EERE)

Tomography At Crump's Hot Springs Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Resistivity Tomography At Crump's Hot Springs...

486

Mandating Solar Hot Water by California Local Governments: Legal Issues  

E-Print Network [OSTI]

Legal Obstacles to Decentralized Solar Energy Technologies:Legal Obstacles to Decentralized Solar Energy Technologies,of solar energy systems and to remove obstacles thereto."

Hoffman,, Peter C.

1981-01-01T23:59:59.000Z

487

Solar Hot Water Technology and Approach to Popularise the same  

Science Journals Connector (OSTI)

Indian scientists had realised the importance of solar energy just after Independence when a beginning to develop solar thermal devices was made at the National Physical Laboratory in early 1950s. At that time...

G. D. Sootha

1986-01-01T23:59:59.000Z

488

home power 114 / august & september 2006 in Solar Hot Water  

E-Print Network [OSTI]

the great steam-engine catastrophes I had ever read about. Not only that, but my wife Carlene was giving me friends and I were always messing around with stuff. Chemistry sets, model rockets, lawn mower engines on the roof started to make a funny kind of squeal, and we started to see steam coming from the relief valves

Knowles, David William

489

DOE Zero Energy Ready Home Efficient Hot Water Distribution II...  

Broader source: Energy.gov (indexed) [DOE]

Next slide: So what are the operating costs of loops? You've got pumps. You've got heat loss in the loop. You've got maintenance. And it turns out that 90 percent of the...

490

Proceedings: EPRI Workshop on Condition and Remaining Life Assessment of Hot Gas Path Components of Combustion Turbines  

SciTech Connect (OSTI)

The severity of modern combustion turbine operation is a reflection of industry competition to achieve higher thermal efficiency. This competitive stance has resulted in new turbine designs and material systems that have at times outpaced condition and remaining life assessment (CARLA) technology. These proceedings summarize a two-day workshop on CARLA technology for hot section components of large combustion turbines.

None

2000-05-01T23:59:59.000Z

491

Water information bulletin No. 30 geothermal investigations in Idaho  

SciTech Connect (OSTI)

There are 899 thermal water occurrences known in Idaho, including 258 springs and 641 wells having temperatures ranging from 20 to 93/sup 0/C. Fifty-one cities or towns in Idaho containing 30% of the state's population are within 5 km of known geothermal springs or wells. These include several of Idaho's major cities such as Lewiston, Caldwell, Nampa, Boise, Twin Falls, Pocatello, and Idaho Falls. Fourteen sites appear to have subsurface temperatures of 140/sup 0/C or higher according to the several chemical geothermometers applied to thermal water discharges. These include Weiser, Big Creek, White Licks, Vulcan, Roystone, Bonneville, Crane Creek, Cove Creek, Indian Creek, and Deer Creek hot springs, and Raft River, Preston, and Magic Reservoir areas. These sites could be industrial sites, but several are in remote areas away from major transportation and, therefore, would probably be best utilized for electrical power generation using the binary cycle or Magma Max process. Present uses range from space heating to power generation. Six areas are known where commercial greenhouse operations are conducted for growing cut and potted flowers and vegetables. Space heating is substantial in only two places (Boise and Ketchum) although numerous individuals scattered throughout the state make use of thermal water for space heating and private swimming facilities. There are 22 operating resorts using thermal water and two commercial warm-water fish-rearing operations.

Mitchell, J.C.; Johnson, L.L.; Anderson, J.E.; Spencer, S.G.; Sullivan, J.F.

1980-06-01T23:59:59.000Z

492

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 12 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS 27 data.

493

Fragmentation of hot classical drops  

Science Journals Connector (OSTI)

Time evolution of hot drops of matter containing ?230 or ?130 particles is studied by classical molecular dynamics. Initially, the drops have uniform density and a sharp surface. The chosen initial conditions include three values of density and a range of temperatures wide enough to study the phenomena of evaporation, fragmentation, and total vaporization in a unified fashion. The average density and temperature of central matter is measured periodically to obtain trajectories of the evolution in the ?,T plane. These trajectories indicate that the matter expands almost adiabatically until it reaches the region of adiabatic instabilities. Density inhomogeneities develop in this region, but the matter fragments only if the expansion continues to average densities of less than one-fourth the liquid density, otherwise it recondenses into a single blob. The recondensed matter and fragments have very crooked surfaces. If the temperature is high enough, the expanding matter does not enter the region of adiabatic instabilities and totally vaporizes. For initial densities of the order of equilibrium density, matter does not fragment or develop large inhomogeneities in the region enclosed by the isothermal and adiabatic spinodals. Thus it appears unlikely that fragmentation of small drops (nuclei) can be used to study the isothermal critical region of gas-liquid phase transition. A detailed tabulation of the energies and number of monomers, dimers, light, and heavy fragments emitted in each event is presented.

A. Vicentini; G. Jacucci; V. R. Pandharipande

1985-05-01T23:59:59.000Z

494

Hot Dry Rock Geothermal Energy Development in the USA David Duchane and Donald Brown  

E-Print Network [OSTI]

1 Hot Dry Rock Geothermal Energy Development in the USA by David Duchane and Donald Brown Los of the world's store of geothermal energy. The real potential for growth in the use of geothermal energy lies system. Water is circulated around a closed loop to extract thermal energy from an engineered geothermal

495

Volume reduction of hot cell plastic wastes  

SciTech Connect (OSTI)

The disposal of radioactively-contaminated solid wastes has become a national crisis. In such circumstances, it is imperative that this waste be reduced to minimum volume and be packaged to prevent pollution of the environment. The majority of the solid waste generated at the hot cell under consideration is plastic lab ware. Cutting this waste into small pieces with a hot wire technique reduced the volume 66%. Melting the waste, although more time consuming, reduced the volume 90%. The hot wire technique can also be used to cut up damaged master slave manipulator boots, greatly reducing their disposal volume.

Dykes, F W; Henscheid, J P; Lewis, L C; Lundholm, C W; Nicklas, J H

1989-09-19T23:59:59.000Z

496

Wastewater minimization in industrial applications: Challenges and solutions  

SciTech Connect (OSTI)

The impetus for waste minimization and water recycle in the metal processing industry comes from increasingly stringent environmental regulations and dwindling water supplies. Tougher discharge permits often dictate additional wastewater treatments, which can make water recycle and waste minimization an attractive option. The most challenging part in the design of a water recycle system is to minimize the capital and operating costs while meeting the water quality requirements of the process. Computer simulation of water recycle alternatives provides: (1) ``expected`` water chemistry, (2) steady-state mass and energy balance for the plant water system, (3) performance of the water treatments considered in the water recycle scheme, and (4) relative economics based on capital and operating costs. The computer simulation study recommends the best wastewater recycle scheme based on economics and technical merits. Benefits of a computer simulation study in the design of water recycle and wastewater minimization processes are illustrated by a case study in the metal processing industry.

Dave, B.B. [Nalco Chemical Co., Naperville, IL (United States)

1998-12-31T23:59:59.000Z

497

Solar Water Heater Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Water Heater Basics Solar Water Heater Basics Solar Water Heater Basics August 19, 2013 - 3:01pm Addthis Illustration of an active, closed loop solar water heater. A large, flat panel called a flat plate collector is connected to a tank called a solar storage/backup water heater by two pipes. One of these pipes runs through a cylindrical pump into the bottom of the tank, where it becomes a coil called a double-wall heat exchanger. This coil runs up through the tank and out again to the flat plate collector. Antifreeze fluid runs only through this collector loop. Two pipes run out the top of the water heater tank; one is a cold water supply into the tank, and the other sends hot water to the house. Solar water heaters use the sun's heat to provide hot water for a home or

498

Hot gas defrosting method for air-source transcritical CO2 heat pump systems  

Science Journals Connector (OSTI)

Abstract When the air-source heat pump systems operate at low ambient temperatures in winter, frost forms on the coil surface of the outdoor evaporators. The frost substantially affects the operating performance and energy efficiency of heat pump systems, and hence periodic defrosting is essential. In this study, several defrost methods are presented to look for a candidate for air-source transcritical CO2 heat pump systems. The hot gas method proves to be more suitable among other defrosting methods for transcritical CO2 heat pump systems. To validate its reliability and rationality, an air-source transcritical CO2 heat pump water heater was built in a climatic laboratory. Through the experiments, the dynamic process of temperature and pressure were obtained to demonstrate the hot gas defrosting characteristics and system cycle. The hot gas defrosting cycle in the ph diagram was also validated by experiment results. Meanwhile, instant defrosting images were captured to record the dynamic defrosting process. The defrosting process lasted 10min and defrosting efficiency was 34.8% for hot gas defrosting method. The effectiveness and applicability of hot gas defrosting method for CO2 heat pump water heater is validated by experiments.

Bin Hu; Dongfang Yang; Feng Cao; Ziwen Xing; Jiyou Fei

2015-01-01T23:59:59.000Z

499

Tankless Coil and Indirect Water Heaters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tankless Coil and Indirect Water Heaters Tankless Coil and Indirect Water Heaters Tankless Coil and Indirect Water Heaters May 16, 2013 - 7:21pm Addthis An indirect water heater. An indirect water heater. How does it work? Tankless coil and indirect water heaters use your home's heating system to heat water. Tankless coil and indirect water heaters use a home's space heating system to heat water. They're part of what's called integrated or combination water and space heating systems. How They Work A tankless coil water heater provides hot water on demand without a tank. When a hot water faucet is turned on, water is heated as it flows through a heating coil or heat exchanger installed in a main furnace or boiler. Tankless coil water heaters are most efficient during cold months when the heating system is used regularly but can be an inefficient choice for many

500

Surface Water Sampling | Open Energy Information  

Open Energy Info (EERE)

Surface Water Sampling Surface Water Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Surface Water Sampling Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Water Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids Thermal: Water temperature Dictionary.png Surface Water Sampling: Water sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Other definitions:Wikipedia Reegle Introduction Surface water sampling of hot and cold spring discharges has traditionally