National Library of Energy BETA

Sample records for industrial high technology

  1. Metropolitan High-Technology Industry Growth in the Mid 1970s: Can Everyone Have a Slice of the High-Tech Pie

    E-Print Network [OSTI]

    Glasmeier, Amy; Hall, Peter; Markusen, Ann R.

    1984-01-01

    tion and Gro wth in High Technology Industries: A R egionalC . Burke , Thomas. 1 97 9 . High Technology En terprise in1 9 83c. De fining High Technology Industries. I nstitute of

  2. Metropolitan High-Technology Industry Growth in the Mid 1970s: Can Everyone Have a Slice of the High-Tech Pie

    E-Print Network [OSTI]

    Glasmeier, Amy; Hall, Peter; Markusen, Ann R.

    1984-01-01

    such as crystal-growth technology. The second measure ,sustained economic growth (Office of Technology Assessmen t,TABLE 1 High Technology Industries Growth Performance, 1972-

  3. High temperature materials technology for industrial energy systems and processes. Final report, April 1984-May 1986

    SciTech Connect (OSTI)

    Bortz, S.A.

    1986-06-01

    GRI is pursuing new technologies that will improve the performance of natural gas in industrial processes and enable natural gas to be competitive in the industrial sector with other energy alternatives. The program focused on three areas of interest that require establishing a ceramic materials data base for technical input to GRI's RandD planning efforts. These areas are: Ceramics for Heat-Exchanger Applications in High-Temperature Corrosive Flue Streams; Advanced Material and Component Technology for Gas-Fueled Prime Movers; and Gas-Fired Indirect Heating and Melting Systems.

  4. Innovation and the state : development strategies for high technology industries in a world of fragmented production : Israel, Ireland, and Taiwan

    E-Print Network [OSTI]

    Breznitz, Dan

    2005-01-01

    One of the most unexpected changes of the 1990s is that firms in a number of emerging economies not previously known for their high-technology industries have leapfrogged to the forefront in new Information Technologies ...

  5. education. Our co-op program is closely associated with the Canadian high technology industry, giving you valuable work

    E-Print Network [OSTI]

    Dawson, Jeff W.

    education. Our co-op program is closely associated with the Canadian high technology industry is a major contributor to Ottawa's prominence in high technology. In return, our program is enriched through, several high technology companies specializing in computer systems and information networks. Admission

  6. Automotive Turbocharging: Industrial Requirements and Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbocharging: Industrial Requirements and Technology Developments Automotive Turbocharging: Industrial Requirements and Technology Developments Significant improvements in...

  7. Furnace Pressure Controllers; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 * September 2005 Industrial Technologies Program Furnace Pressure Controllers Furnace draft, or negative pres- sure, is created in fuel-fired furnaces when high temperature gases...

  8. Ultra-High Efficiency and Low-Emissions Combustion Technology for Manufacturing Industries

    SciTech Connect (OSTI)

    Atreya, Arvind

    2013-04-15

    The purpose of this research was to develop and test a transformational combustion technology for high temperature furnaces to reduce the energy intensity and carbon footprint of U.S. manufacturing industries such as steel, aluminum, glass, metal casting, and petroleum refining. A new technology based on internal and/or external Flue Gas Recirculation (FGR) along with significant enhancement in flame radiation was developed. It produces "Radiative Flameless Combustion (RFC)" and offers tremendous energy efficiency and pollutant reduction benefits over and above the now popular "flameless combustion." It will reduce the energy intensity (or fuel consumption per unit system output) by more than 50% and double the furnace productivity while significantly reducing pollutants and greenhouse gas emissions (10^3 times reduction in NOx and 10 times reduction in CO & hydrocarbons and 3 times reduction in CO2). Product quality improvements are also expected due to uniform radiation, as well as, reduction in scale/dross formation is expected because of non-oxidative atmosphere. RFC is inexpensive, easy to implement, and it was successfully tested in a laboratory-scale furnace at the University of Michigan during the course of this work. A first-ever theory with gas and particulate radiation was also developed. Numerical programs were also written to design an industrial-scale furnace. Nine papers were published (or are in the process of publication). We believe that this early stage research adequately proves the concept through laboratory experiments, modeling and computational models. All this work is presented in the published papers. Important conclusions of this work are: (1) It was proved through experimental measurements that RFC is not only feasible but a very beneficial technology. (2) Theoretical analysis of RFC was done in (a) spatially uniform strain field and (b) a planar momentum jet where the strain rate is neither prescribed nor uniform. Four important non-dimensional parameters controlling RFC in furnaces were identified. These are: (i) The Boltzmann number; (ii) The Damkohler number, (iii) The dimensionless Arrhenius number, and (iv) The equivalence ratio. Together they define the parameter space where RFC is possible. It was also found that the Damkohler number must be small for RFC to exist and that the Boltzmann number expands the RFC domain. The experimental data obtained during the course of this work agrees well with the predictions made by the theoretical analysis. Interestingly, the equivalence ratio dependence shows that it is easier to establish RFC for rich mixtures than for lean mixtures. This was also experimentally observed. Identifying the parameter space for RFC is necessary for controlling the RFC furnace operation. It is hoped that future work will enable the methodology developed here to be applied to the operation of real furnaces, with consequent improvement in efficiency and pollutant reduction. To reiterate, the new furnace combustion technology developed enables intense radiation from combustion products and has many benefits: (i) Ultra-High Efficiency and Low-Emissions; (ii) Uniform and intense radiation to substantially increase productivity; (iii) Oxygen-free atmosphere to reduce dross/scale formation; (iv) Provides multi-fuel capability; and (v) Enables carbon sequestration if pure oxygen is used for combustion.

  9. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel...

  10. The Industrialization of Thermoelectric Power Generation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Industrialization of Thermoelectric Power Generation Technology The Industrialization of Thermoelectric Power Generation Technology Presents module and system requirements for...

  11. Forest Products Industry Technology Roadmap

    SciTech Connect (OSTI)

    none,

    2010-04-01

    This document describes the forest products industry's research and development priorities. The original technology roadmap published by the industry in 1999 and was most recently updated in April 2010.

  12. Common Industrial Lighting Upgrade Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is used to regulate the ongoing electricity provided to the lamp. COMMON INDUSTRIAL LIGHTING UPGRADE TECHNOLOGIES Due to the phase-out of the incandescent bulb and magnetic...

  13. on technology transfer, industry research +

    E-Print Network [OSTI]

    Cafarella, Michael J.

    on technology transfer, industry research + economic development annual report U N I V E R S I T Y and resources available at the University of Michigan as showcased in this year's Annual Report on Technology Transfer, Industry Research, and Economic Development. At the heart of the University's contributions

  14. National Institute of Advanced Industrial Science and Technology Material Test Systems in High Pressure

    E-Print Network [OSTI]

    Siefert, Chris

    Pressure Hydrogen Gas at AIST Tsukuba Takashi Iijima, Bai An Hydrogen Industrial Use and Storage Group for Hydrogen Industrial Use and Storage) Collaborative Research Center between Kyusu University and AIST for Hydrogen Industrial Use and Storage (HYDROGENIUS) AIST Tsukuba Hydrogen Dynamics in Metals Research Team

  15. IMPACTS: Industrial Technologies Program, Summary of Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009 IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009...

  16. A Study to Develop an Industrial-Scale, Computer-Controlled High Magnetic Field Processing (HMFP) System to Assist in Commercializing the Novel, Enabling HMFP Manufacturing Technology

    SciTech Connect (OSTI)

    Ludtka, Gail Mackiewicz-; Chourey, Aashish

    2010-08-01

    As the original magnet designer and manufacturer of ORNL s 9T, 5-inch ID bore magnet, American Magnetics Inc. (AMI) has collaborated with ORNL s Materials Processing Group s and this partnership has been instrumental in the development of our unique thermo-magnetic facilities and expertise. Consequently, AMI and ORNL have realized that the commercial implementation of the High Magnetic Field Processing (HMFP) technology will require the evolution of robust, automated superconducting (SC) magnet systems that will be cost-effective and easy to operate in an industrial environment. The goal of this project and CRADA is to significantly expedite the timeline for implementing this revolutionary and pervasive cross-cutting technology for future US produced industrial components. The successful completion of this project is anticipated to significantly assist in the timely commercialization and licensing of our HMFP intellectual property for a broad spectrum of industries; and to open up a new market for AMI. One notable outcome of this project is that the ThermoMagnetic Processing Technology WON a prestigious 2009 R&D 100 Awards. This award acknowledges and recognizes our TMP Technology as one of the top 100 innovative US technologies in 2009. By successfully establishing the design requirements for a commercial scale magnetic processing system, this project effort has accomplished a key first step in facilitating the building and demonstration of a superconducting magnetic processing coil, enabling the transition of the High Magnetic Field Processing Technology beyond a laboratory novelty into a commercially viable and industrially scalable Manufacturing Technology.

  17. Energy Technology Partnership (ETP) Energy Industry Doctorates

    E-Print Network [OSTI]

    Painter, Kevin

    Energy Technology Partnership (ETP) Energy Industry Doctorates in Low Carbon Energy Technologies for Guidance 1. Introduction The Energy Technology Partnership (ETP) has established an Energy Industry for `industry-ready', post-doctoral researchers to enhance energy industry innovation and knowledge exchange

  18. Analyzing Your Compressed Air System; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 * August 2004 Industrial Technologies Program For additional information on industrial energy efficiency measures, contact the EERE Information Center at 1-877-337-3463 or visit...

  19. 1 Industrial Electron Accelerators type ILU for Industrial Technologies

    E-Print Network [OSTI]

    1 Industrial Electron Accelerators type ILU for Industrial Technologies The present work describes industrial electron accelerators of the ILU family. Their main parameters, design, principle of action the pulse linear accelerators type ILU are developed and supplied to the industry. The ILU machines

  20. A Study to Develop an Industrial-Scale, Computer-Controlled High Magnetic Field Processing (HMFP) System to Assist in Commercializing the Novel, Enabling HMFP Manufacturing Technology

    SciTech Connect (OSTI)

    Lutdka, G. M.; Chourey, A.

    2010-05-12

    As the original magnet designer and manufacturer of ORNL’s 9T, 5-inch ID bore magnet, American Magnetics Inc. (AMI) has collaborated with ORNL’s Materials Processing Group’s and this partnership has been instrumental in the development of our unique thermo-magnetic facilities and expertise. Consequently, AMI and ORNL have realized that the commercial implementation of the High Magnetic Field Processing (HMFP) technology will require the evolution of robust, automated superconducting (SC) magnet systems that will be cost-effective and easy to operate in an industrial environment. The goal of this project and CRADA is to significantly expedite the timeline for implementing this revolutionary and pervasive cross-cutting technology for future US produced industrial components. The successful completion of this project is anticipated to significantly assist in the timely commercialization and licensing of our HMFP intellectual property for a broad spectrum of industries; and to open up a new market for AMI. One notable outcome of this project is that the ThermoMagnetic Processing Technology WON a prestigious 2009 R&D 100 Awards. This award acknowledges and recognizes our TMP Technology as one of the top 100 innovative US technologies in 2009. By successfully establishing the design requirements for a commercial scale magnetic processing system, this project effort has accomplished a key first step in facilitating the building and demonstration of a superconducting magnetic processing coil, enabling the transition of the High Magnetic Field Processing Technology beyond a laboratory novelty into a commercially viable and industrially scalable Manufacturing Technology.

  1. Metropolitan High-Technology Industry Growth in the Mid 1970s: Can Everyone Have a Slice of the High-Tech Pie

    E-Print Network [OSTI]

    Glasmeier, Amy; Hall, Peter; Markusen, Ann R.

    1984-01-01

    surroundi ng high-technology (high-tech) i ndus­ tries is incommunities compete for high - tech employment with only agoverning the diffusion of high-tech development. All too

  2. High Impact Technology Catalyst: Technology Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Impact Technology Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact...

  3. Advanced Manufacturing Office (Formerly Industrial Technologies Program)

    E-Print Network [OSTI]

    Advanced Manufacturing Office (Formerly Industrial Technologies Program) Leo Christodoulou Jamie August 11, 2011 #12;Background and Opportunity Background Industry accounts for 30% of energy consumption-value industries such as the renewable energy industry. Example materials include low-cost carbon fiber, low

  4. ITP Aluminum: Aluminum Industry Technology Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2002, the industry created this updated Aluminum Industry Technology Roadmap to define the specific research and development priorities, performance targets, and milestones required to achieve the set vision.

  5. Compressed Air Storage Strategies; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Technologies Program Suggested Actions * Review the plant's compressed air demand patterns to determine whether storage would be beneficial. * Examine the compressed...

  6. Reduce Air Infiltration in Furnaces; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 * January 2006 Industrial Technologies Program Reduce Air Infiltration in Furnaces Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace...

  7. Compressed Air System Control Strategies; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 * August 2004 Industrial Technologies Program Suggested Actions * Understand your system require- ments by developing a pressure and a demand profile before investing in...

  8. China's Defense Electronics and Information Technology Industry

    E-Print Network [OSTI]

    RAGLAND, LeighAnn; MCREYNOLDS, Joe; GEARY, Debra

    2013-01-01

    2013 China’s Defense Electronics and Information Technologythe Chinese defense electronics and information technology (is moving the defense electronics and IT industry toward

  9. Office of Industrial Technologies research in progress

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffs of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.

  10. Emerging Energy-Efficient Technologies for Industry

    E-Print Network [OSTI]

    2005-01-01

    water treatment High efficiency/low Nox burners Membrane technology wastewater Process Integration (pinch

  11. Emerging energy-efficient technologies for industry

    E-Print Network [OSTI]

    2004-01-01

    water treatment High efficiency/low Nox burners Membrane technology wastewater Process Integration (pinch

  12. Emerging energy-efficient technologies for industry

    E-Print Network [OSTI]

    2001-01-01

    water treatment High efficiency/low Nox burners Membrane technology wastewater Process Integration (pinch

  13. Industry Sector Case Study Building Technologies Division

    E-Print Network [OSTI]

    Fischlin, Andreas

    energy supply is based on solar thermal collectors, a photovoltaic system, as well as building technologyIndustry Sector Case Study Building Technologies Division Zug (Switzerland), September 14, 2011,000 m, the New Monte Rosa Hut showcases the latest developments in the building technology field

  14. The Office of Industrial Technologies technical reports

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    The US Department of Energy's Office of Industrial Technologies (OIT) conducts R D activities which focus on the objectives of improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial energy conservation. The Office also conducts programs to reduce waste generation, increase recycling efforts, and improve the use of wastes as process feedstocks. An active program of technology transfer and education supports these activities and encourages adoption of new technologies. To accomplish these objectives OIT cooperates with the private sector to identify its technological needs and to share R D efforts. R D is conducted to the point that a new technology is shown to work and that it can be transferred to the private sector end-users. This bibliography contains information on all scientific and technical reports sponsored by the DOE Industrial Energy Conservation Program during the years 1988--1990.

  15. Roadmap 2030: The U.S. Concrete Industry Technology Roadmap

    SciTech Connect (OSTI)

    none,

    2002-12-01

    Roadmap 2030: The U.S. Concrete Industry Technology Roadmap tracks the eight goals published in the American Concrete Institute Strategic Development Council's Vision 2030: A Vision for the U.S. Concrete Industry. Roadmap 2030 highlights existing state-of-the-art technologies and emerging scientific advances that promise high potential for innovation, and predicts future technological needs. It defines enabling research opportunities and proposes areas where governmental-industrial-academic partnerships can accelerate the pace of development. Roadmap 2030 is a living document designed to continually address technical, institutional, and market changes.

  16. 2008 Industrial Technologies Market Report, May 2009

    SciTech Connect (OSTI)

    Energetics; DOE

    2009-07-01

    The industrial sector is a critical component of the U.S. economy, providing an array of consumer, transportation, and national defense-related goods we rely on every day. Unlike many other economic sectors, however, the industrial sector must compete globally for raw materials, production, and sales. Though our homes, stores, hospitals, and vehicles are located within our borders, elements of our goods-producing industries could potentially be moved offshore. Keeping U.S. industry competitive is essential to maintaining and growing the U.S. economy. This report begins with an overview of trends in industrial sector energy use. The next section of the report focuses on some of the largest and most energy-intensive industrial subsectors. The report also highlights several emerging technologies that could transform key segments of industry. Finally, the report presents policies, incentives, and drivers that can influence the competitiveness of U.S. industrial firms.

  17. Industrial Process Heating - Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingREnergyDepartment|ReserveofIndustrialJobs |Industrial

  18. Emerging energy-efficient industrial technologies

    SciTech Connect (OSTI)

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if not more important in many cases) in influencing the decision on whether to adopt an emerging technology. The technologies were characterized with respect to energy efficiency, economics, and environmental performance. The results demonstrate that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. We show that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity and worker safety, and reduced capital costs.

  19. Optimize Parallel Pumping Systems: Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a constant rate when these pumps approach no-flow or shutoff head. Some efficient, high-headlow-capacity, centrifugal pumps used in process industries have "drooping" pump...

  20. Technologies and Policies to Improve Energy Efficiency in Industry

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01

    Industrial Technologies Program provides many software tools for assessing energy efficiency of motors,

  1. Emerging energy-efficient industrial technologies

    E-Print Network [OSTI]

    2000-01-01

    Technology/Measure Pump Efficiency Pinch Analysis Switched Reluctance Motor Advanced Lighting Anaerobic Waste Waterwater treatment High-efficiency/low NO x burners Membrane technology wastewater Process integration (pinch)water treatment High efficiency/low NO x burners Membrane technology wastewater Process Integration (pinch

  2. High Power UV LED Industrial Curing Systems

    SciTech Connect (OSTI)

    Karlicek, Robert, F., Jr; Sargent, Robert

    2012-05-14

    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  3. Emerging Energy-Efficient Technologies for Industry

    SciTech Connect (OSTI)

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliot, Neal; Shipley, Anna; Thorn, Jennifer

    2005-05-05

    U.S. industry consumes approximately 37 percent of thenation's energy to produce 24 percent of the nation's GDP. Increasingly,society is confronted with the challenge of moving toward a cleaner, moresustainable path of production and consumption, while increasing globalcompetitiveness. Technology is essential in achieving these challenges.We report on a recent analysis of emerging energy-efficient technologiesfor industry, focusing on over 50 selected technologies. The technologiesare characterized with respect to energy efficiency, economics andenvironmental performance. This paper provides an overview of theresults, demonstrating that we are not running out of technologies toimprove energy efficiency, economic and environmental performance, andneither will we in the future. The study shows that many of thetechnologies have important non-energy benefits, ranging from reducedenvironmental impact to improved productivity, and reduced capital costscompared to current technologies.

  4. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    E-Print Network [OSTI]

    Sathaye, J.

    2011-01-01

    Technology Support Unit (ETSU), 1988. “High Level Control ofCircle Industries and SIRA (ETSU, 1988). The LINKman system

  5. High Impact Technology Hub- Results

    Broader source: Energy.gov [DOE]

    Highlights, outcomes and activities to support the adoption of High Impact TechnologiesTechnology Highlights preview early results from current technology demonstrations.  Case Studies overview...

  6. Science and technology for industrial ecology

    SciTech Connect (OSTI)

    Gilmartin, T.J.; Allenby, B.R.

    1996-07-10

    Scientific and technological communities have a significant role to play and responsibility for the evolution of global sustainability (continuously improving quality of life into the indefinite future). Sustainability is not possible without a substantially improved science and technology basis for industrial ecology. Society needs data and understanding of complex ecological issues to govern itself in a sustainable manner. We should: support and develop multi-disciplinary programs which create the scientific basis for understanding natural and anthropogenic complex systems and for developing environmentally and economically efficient technology; demonstrate a systems-based approach to science and technology issues which is life-cycle comprehensive, integrates environmental considerations, and promotes conservation of natural resources; and encourage development of responsible, technically and scientifically valid, cost-effective environmental laws and practices.

  7. Boost Process Heating Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program Process Heating Assessment and Survey Tool (PHAST) can help industrial plants indentify opportunities to save energy.

  8. Tools to Boost Steam System Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program steam software tools can help industrial plants identify steam system improvements to save energy and money.

  9. Improve Chilled Water System Performance, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program Chilled Water System Analysis Tool (CWSAT) can help optimize the performance of of industrial chilled water systems.

  10. FinalReport for completed IPP-0110 and 0110A Projects:"High Energy Ion Technology of Interfacial Thin Film Coatings for Electronic, Optical and Industrial Applications"

    SciTech Connect (OSTI)

    Brown, Ian

    2009-09-01

    The DOE-supported IPP (Initiatives for Proliferation Prevention) Project, IPP-0110, and its accompanying 'add-on project' IPP-0110A, entitled 'High Energy Ion Technology of Interfacial Thin Film Coatings for Electronic, Optical and Industrial Applications' was a collaborative project involving the Lawrence Berkeley National Laboratory (LBNL) as the U.S. DOE lab; the US surface modification company, Phygen, Inc., as the US private company involved; and the High Current Electronics Institute (HCEI) of the Russian Academy of Sciences, Tomsk, Siberia, Russia, as the NIS Institute involved. Regular scientific research progress meetings were held to which personnel came from all participating partners. The meetings were held mostly at the Phygen facilities in Minneapolis, Minnesota (with Phygen as host) with meetings also held at Tomsk, Russia (HCEI as host), and at Berkeley, California (LBNL as host) In this way, good exposure of all researchers to the various different laboratories involved was attained. This report contains the Final Reports (final deliverables) from the Russian Institute, HCEI. The first part is that for IPP-0110A (the 'main part' of the overall project) and the second part is that for the add-on project IPP-0110A. These reports are detailed, and contain all aspects of all the research carried out. The project was successful in that all deliverables as specified in the proposals were successfully developed, tested, and delivered to Phygen. All of the plasma hardware was designed, made and tested at HCEI, and the performance was excellent. Some of the machine and performance parameters were certainly of 'world class'. The goals and requirements of the IPP Project were well satisfied. I would like to express my gratitude to the DOE IPP program for support of this project throughout its entire duration, and for the unparalleled opportunity thereby provided for all of the diverse participants in the project to join in this collaborative research. The benefits are superb, as measured in quite a number of different ways.

  11. Inter-Industry Diffusion of Technology That Results

    E-Print Network [OSTI]

    April 2003 Inter-Industry Diffusion of Technology That Results From ATP Projects ADVANCED TECHNOLOGY PROGRAMADVANCED TECHNOLOGY PROGRAM NIST GCR 03-848 National Institute of Standards and Technology Funding Joel Popkin #12;NIST GCR 03-848 Inter-Industry Diffusion of Technology That Results From ATP

  12. ITP Mining: Mining Industry Roadmap for Crosscutting Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap for Crosscutting Technologies ITP Mining: Mining Industry Roadmap for Crosscutting Technologies ccroadmap.pdf More Documents & Publications ITP Mining: Exploration and...

  13. Vehicle Technologies Office Merit Review 2014: High Speed Joining...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Office Merit Review 2015: High Strength, Dissimilar Alloy Aluminum Tailor-Welded Blanks ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market (May 1999)...

  14. Emerging energy-efficient industrial technologies

    E-Print Network [OSTI]

    2000-01-01

    waste water treatment High efficiency/low No x burners BOF gas and sensible heat recoverywaste water treatment Dry sheet forming High Consistency forming Impulse drying BOF gas and sensible heat recoverywaste water treatment Membrane technology wastewater Sensors and controls Black liquor gasification Dry sheet forming Heat recovery—

  15. Ashkelon Technological Industries ATI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpen EnergyInformationAshkelon Technological Industries

  16. Final Report for completed IPP-0110 and 0110A Projects: "High Energy Ion Technology of Interfacial Thin Film Coatings for Electronic, Optical and Industrial Applications"

    E-Print Network [OSTI]

    Brown, Ian

    2010-01-01

    Electronic, Optical and Industrial Applications” Summary Thefor Electronic, Optical and Industrial Applications” was aELECTRONIC, OPTICAL AND INDUSTRIAL APPLICATIONS Subcontract

  17. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    specified in the ‘Energy Technology List’ during the yearenergy consumers in the chemical industry, and list examples of technology

  18. Solar-Assisted Technology Provides Heat for California Industries

    E-Print Network [OSTI]

    Solar-Assisted Technology Provides Heat for California Industries Industrial/Agriculture/Water End 2011 The Issue Solar thermal technology focuses the Sun's rays to heat water, and is a promising renewable resource for California's industrial sector. Commercially available solar water heating

  19. Industrial heat pumps in Germany -potentials, technological development

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    1 Industrial heat pumps in Germany - potentials, technological development and application examples of Energy (IER) Universität Stuttgart ACHEMA 2012 Application of industrial heat pumps Improving energy-efficiency of industrial processes 13. Juni 2012 #12;ACHEMA 2012 - Industrial heat pumps 21st June 2012 Types of Heat Pumps

  20. Innovative New Industrial Technologies: An Industry/DOE Joint Endeavor 

    E-Print Network [OSTI]

    Gross, T. J.

    1986-01-01

    The Department of Energy’s Office of Industrial Programs supports research and development leading to improved energy efficiency and greater overall productivity in the industrial sector. Its basic strategy is a program of cost-shared R...

  1. Industrial Technologies Program Research Plan for Energy-Intensive Process Industries

    SciTech Connect (OSTI)

    Chapas, Richard B.; Colwell, Jeffery A.

    2007-10-01

    In this plan, the Industrial Technologies Program (ITP) identifies the objectives of its cross-cutting strategy for conducting research in collaboration with industry and U.S. Department of Energy national laboratories to develop technologies that improve the efficiencies of energy-intensive process industries.

  2. Roadmap: Systems/Industrial Engineering Technology Associate of Applied Science

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Systems/Industrial Engineering Technology ­ Associate of Applied Science [RE Kent Core Summary below Semester Four: [17 Credit Hours] MERT 22009 Robotics and Flexible Automation 3

  3. DOE Fuel Cell Technologies Office Record 14010: Industry Deployed...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Hydrogen and Fuel Cells Program Record, Record 13008: Industry Deployed Fuel Cell Powered Lift Trucks Market Transformation Fact Sheet DOE Fuel Cell Technologies...

  4. New Membrane Technology Boosts Efficiency in Industrial Gas Processes

    Office of Energy Efficiency and Renewable Energy (EERE)

    Fact sheet from Membrane Technology and Research, Inc. about its pilot-scale industrial membrane system that was funded by the SBIR program.

  5. Remove Condensate with Minimal Air Loss; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 * August 2004 Industrial Technologies Program Suggested Actions * Inspect the condensate traps and determine if they are operating properly. * Review your condensate removal...

  6. Section 2: Landscapes of Capital - Landscapes of Knowledge and High Technology

    E-Print Network [OSTI]

    O'Mara, Margaret

    2007-01-01

    of Knowledge and High Technology Margaret O’Mara [T]his is adiscussion focuses on high-technology industries—since theseModel Why does high technology gravitate to suburbs? Ask a

  7. Diverse Applications of Pinch Technology Within the Process Industries 

    E-Print Network [OSTI]

    Spriggs, H. D.; Ashton, G.

    1986-01-01

    OF PINCH TECHNOLOGY WITHIN THE PROCESS INDUSTRIES H. P. Spriggs and Greg Ashton Linnhoff March Charleston, WV ABSTRACT PINCH ANALYSIS Within the past few years, pinch technology has revolutionised the way engineers design and retrofit... processes. The technology offers a new approach to process integration based on the applic?tion of the pinch principle. Early applications were mostly in the petrochemical and bulk chemical industries. In this paper we report the use of pinch technology...

  8. Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms

    E-Print Network [OSTI]

    Lewis, Joanna; Wiser, Ryan

    2005-01-01

    Renewable Energy. Renewable Energy Policy Project ResearchIndustrial Policy and Renewable Energy Technology.Development of Renewable Energy. Energy Policy, 31, 799-812.

  9. Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

  10. FIEA Advancing Wood Technology Forest Industry Engineering Scholarship

    E-Print Network [OSTI]

    Hickman, Mark

    FIEA ­ Advancing Wood Technology Forest Industry Engineering Scholarship Forest Industry, including any NZQA Unit Standards that you have completed. NOTES: 1. The Regulations for this award be received by the Dunedin office of Forest Industry Engineering Association by 1 March 2012

  11. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    SciTech Connect (OSTI)

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14

    This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 ?m) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

  12. Emerging Energy-Efficient Technologies for Industry 

    E-Print Network [OSTI]

    Worrell, E.; Martin, N.; Price, L.; Ruth, M.; Elliott, N.; Shipley, A.; Thorn, J.

    2001-01-01

    consists of all industrial activity outside of agriculture, mining, and construction, accounts for 70% of industrial value added (4). In 1998, the United States consumed 94 Quadrillion Btu (99 EJ) of primary energy or 25% of world primary energy use..., mining, construction, energy intensive industries, and non-energy intensive manufacturing. Energy is necessary to help our industries create useful products; however, we are increasingly confronted with the challenge of moving society toward a...

  13. The United States Department of Energy Office of Industrial Technology`s Technology Benefits Recording System

    SciTech Connect (OSTI)

    Hughes, K.R.; Moore, N.L.

    1994-09-01

    The U.S. Department of Energy (DOE) Office of Industrial Technology`s (OIT`s) Technology Benefits Recording System (TBRS) was developed by Pacific Northwest Laboratory (PNL). The TBRS is used to organize and maintain records of the benefits accrued from the use of technologies developed with the assistance of OIT. OIT has had a sustained emphasis on technology deployment. While individual program managers have specific technology deployment goals for each of their ongoing programs, the Office has also established a separate Technology Deployment Division whose mission is to assist program managers and research and development partners commercialize technologies. As part of this effort, the Technology Deployment Division developed an energy-tracking task which has been performed by PNL since 1977. The goal of the energy-tracking task is to accurately assess the energy savings impact of OIT-developed technologies. In previous years, information on OIT-sponsored technologies existed in a variety of forms--first as a hardcopy, then electronically in several spreadsheet formats that existed in multiple software programs. The TBRS was created in 1993 for OIT and was based on information collected in all previous years from numerous industrial contacts, vendors, and plants that have installed OIT-sponsored technologies. The TBRS contains information on technologies commercialized between 1977 and the present, as well as information on emerging technologies in the late development/early commercialization stage of the technology life cycle. For each technology, details on the number of units sold and the energy saved are available on a year-by-year basis. Information regarding environmental benefits, productivity and competitiveness benefits, or impact that the technology may have had on employment is also available.

  14. Emerging energy-efficient industrial technologies

    E-Print Network [OSTI]

    2000-01-01

    1998. “Black Liquor Gasifier/Gas Turbine Cogeneration. ”Black Liquor and Biomass Gasifier/Gas Turbine Technology. ”of Black Liquor Gasifier/Combined Cycle Technology

  15. Alternatives to Industrial Cogeneration: A Pinch Technology Perspective 

    E-Print Network [OSTI]

    Karp, A.

    1988-01-01

    TO INDUSTRIAL COGENERATION: A PINCH TECHNOLOGY PERSPECTIVE ALAN KARP, Senior Consultant Linnhoff March, Inc., Leesburg, Virginia ABSTRACT Pinch Technology studies across a broad spectrum of processes confirm that existing plants typically consume 15... industries, Pinch Technology has consistently shown that existing plants typically consume 15-40% more thermal energy than they should. This is true even among relatively new facilities which might be thought to be well optimized. Clearly, cogeneration...

  16. High Efficient Natural Gas Technologies

    Broader source: Energy.gov (indexed) [DOE]

    by: Eric Burgis Energy Solutions Center 610-796-1946 eburgis@escenter.org High Efficient Natural Gas Technologies FUPWG 5814 2 Energy Solutions Center Inc. - All Rights...

  17. Office of Industry Research and Technology Programs Greetings to Industry

    E-Print Network [OSTI]

    Ginzel, Matthew

    . Cheng, Industrial Engineering. 6 Centers/Laboratories Center Targets Reducing Fuel Consumption of functional materials and reli- ability/strength in metallic materials with integration of nanomaterials removal for hydrogen PEM fuel cells and continuous-flow solar ultraviolet disinfec- tion system

  18. Partnering for success: Industrial technologies program

    SciTech Connect (OSTI)

    None, None

    2004-02-01

    Partnering for Success features the R&D and industrial energy management best practices and accomplishments of manufacturers who are partnering with DOE.

  19. Achieve Steam System Excellence: Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in plant improvement projects. * Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries (1) defines the volume and...

  20. Steam Digest 2001: Office of Industrial Technologies

    SciTech Connect (OSTI)

    None, None

    2002-01-01

    Steam Digest 2001 chronicles Best Practices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  1. ITP Metal Casting: Metalcasting Industry Technology Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE)

    Castings are essential building blocks of U. S. industry. More than 90% of all mnaufactured, durable good and 100% of all manufacturing machinery contain castings.

  2. Industries of the Future: Creating a Sustainable Technology Edge 

    E-Print Network [OSTI]

    Glatt, S. L.

    2000-01-01

    OF THE FUTURE: Creating A Sustainable Technology Edge Sandra L. Glatt Office of Industrial Technologies Energy Efficiency and Renewable Energy U. S. Department of Energy 55 ESL-IE-00-04-10 Proceedings from the Twenty-second National Industrial Energy....S, Department of Energy Industries of the Future: Creating a Sustainable Technology Edge . cUn' OFwlOd CCooI .. LPG .Eleclric~ CNI!hnIG. AgriclAtll'e Mining A1uminu",J Totll1* kldutb't.1 Conllomption: :W, 111 TrtIlion 8tus Forest E"~ ?'913 1976...

  3. Effective Transfer of Industrial Energy Conservation Technologies 

    E-Print Network [OSTI]

    Clement, M.; Vallario, R. W.

    1983-01-01

    Voluntary participation in industrial energy conservation programs resulted in savings of approximately 1 million barrels of oil equivalent per day in the U.S. during 1981. These energy savings accrued largely from the ...

  4. Emerging energy-efficient industrial technologies

    E-Print Network [OSTI]

    2000-01-01

    Heat Recovery and Energy Saving in a Bakery. ” Project No.energy in the baking industry. (Heat recovery without food contamination in a bakery. )”energy-intensive process step was used in another process step. At bakeries,

  5. Technology Roadmap Research Program for the Steel Industry

    SciTech Connect (OSTI)

    Joseph R. Vehec

    2010-12-30

    The steel industry's Technology Roadmap Program (TRP) is a collaborative R&D effort jointly sponsored by the steel industry and the United States Department of Energy. The TRP program was designed to develop new technologies to save energy , increase competitiveness, and improve the environment. TRP ran from July, 1997 to December, 2008, with a total program budget of $38 million dollars. During that period 47 R&D projects were performed by 28 unique research organizations; co-funding was provided by DOE and 60 industry partners. The projects benefited all areas of steelmaking and much know-how was developed and transferred to industry. The American Iron and Steel Institute is the owner of all intellectual property developed under TRP and licenses it at commercial rates to all steelmakers. TRP technologies are in widespread use in the steel industry as participants received royalty-free use of intellectual property in return for taking the risk of funding this research.

  6. Emerging Computing Technologies in High Energy Physics

    E-Print Network [OSTI]

    Amir Farbin

    2009-10-19

    While in the early 90s High Energy Physics (HEP) lead the computing industry by establishing the HTTP protocol and the first web-servers, the long time-scale for planning and building modern HEP experiments has resulted in a generally slow adoption of emerging computing technologies which rapidly become commonplace in business and other scientific fields. I will overview some of the fundamental computing problems in HEP computing and then present the current state and future potential of employing new computing technologies in addressing these problems.

  7. Technology Vision 2020 – The U.S. Chemical Industry

    SciTech Connect (OSTI)

    none,

    1996-12-01

    Technology Vision 2020 is a call to action, innovation, and change for the U.S. chemical industry. The body of this report outlines the current state of the industry, a vision for tomorrow, and the technical advances needed to make this vision a reality.

  8. Improve the Energy Efficiency of Pump Systems, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program Pumping System Assessment Tool (PSAT) can help industrial plants identify opportunities to save energy and money in pump systems.

  9. Cleanroom energy benchmarking in high-tech and biotech industries

    E-Print Network [OSTI]

    Tschudi, William; Benschine, Kathleen; Fok, Stephen; Rumsey, Peter

    2001-01-01

    Benchmarking In High-Tech and Biotech Industries WilliamBenchmarking In High- Tech and Biotech Industries Williamindustries (electronics and biotech) were selected. The

  10. Science and technology for industrial ecology

    SciTech Connect (OSTI)

    Gilmartin, T.J.; Allenby, B.R.

    1996-07-10

    This paper first discusses the challenge offered by natural and anthropogenic systems in all of their complexity and then indicates some areas of research in which specific scientific and technological needs are identifiable.

  11. From Antiquity to the Pre-Industrial World Archaeology, Technology

    E-Print Network [OSTI]

    Cantlon, Jessica F.

    and interdepartmental · Integrates archaeology,architecture,classics,art history,history of technology,and engineeringFrom Antiquity to the Pre-Industrial World Archaeology, Technology and Historical Structures of History, Chair,History Joan Saab, Associate Professor of Art and Art History, Chair, Art and Art History

  12. Industrial Technologies Program ORNL-developed cast nickel aluminide rolls

    E-Print Network [OSTI]

    strength and oxidation resistance. · · · · Metal Infusion Surface Treatment (MIST) (2006)--a process for infusing up to 51 elements into metal and alloy surfaces, MIST lengthens the life of metalworking technology and the deployment of industrial wireless technologies. #12;Nanomanufacturing Metal Infusion

  13. Industrial Technologies Funding Profile by Subprogram

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIAL TECHNICAL ASSISTANCE Supports the deployment of energy

  14. Nuclear power high technology colloquium: proceedings

    SciTech Connect (OSTI)

    Not Available

    1984-12-10

    Reports presenting information on technology advancements in the nuclear industry and nuclear power plant functions have been abstracted and are available on the energy data base.

  15. Office of Industrial Technologies: Summary of program results

    SciTech Connect (OSTI)

    1999-01-01

    Working in partnership with industry, the US Department of Energy`s (DOE`s) Office of Industrial Technologies (OIT) is helping reduce industrial energy use, emissions, and waste while boosting productivity. Operating within the Office of Energy Efficiency and Renewable Energy (EE), OIT conducts research, development, demonstration, and technology transfer efforts that are producing substantial, measurable benefits to industry. This document summarizes some of the impacts of OIT`s programs through 1997. OIT tracks energy savings as well as other benefits associated with the successfully commercialized technologies resulting from OIT-supported research partnerships. Specifically, a chart shows current and cumulative energy savings as well as cumulative reductions of various air pollutants including particulates, volatile organic compounds (VOCs), nitrogen oxides (NO{sub x}), sulfur oxides (SO{sub x}), and the greenhouse gas, carbon dioxide (CO{sub 2}). The bulk of the document consists of four appendices. Appendix 1 describes the technologies currently available commercially, along with their applications and benefits; Appendix 2 describes the OIT-supported emerging technologies that are likely to be commercialized within the next year or two; Appendix 3 describes OIT-sponsored technologies used in commercial applications in the past that are no longer tracked; and Appendix 4 describes the methodology used to assess and track OIT-supported technologies.

  16. Science, technology, and the industrialization of laser-driven processes

    SciTech Connect (OSTI)

    Davis, J.I.; Paisner, J.A.

    1985-05-01

    Members of the laser program at Lawrence Livermore National Laboratory (LLNL) reviewed potential applications of lasers in industry, some of which are: isotope separation; cleanup of radioactive waste; trace impurity removal; selective chemical reactions; photochemical activation or dissociation of gases; control of combustion particulates; crystal and powder chemistry; and laser induced biochemistry. Many of these areas are currently under active study in the community. The investigation at LLNL focused on laser isotope separation of atomic uranium because of the large demand (> 1000 tonnes/year) and high product enrichment price (> $600/kg of product) for material used as fuel in commercial light-water nuclear power reactors. They also believed that once the technology was fully developed and deployed, it could be applied directly to separating many elements economically on an industrial scale. The Atomic Vapor Laser Isotope Separation (AVLIS) program at LLNL has an extensive uranium and plutonium program of >$100 M in FY85 and a minor research program for other elements. This report describes the AVLIS program conducted covering the following topics; candidate elements; separative work units; spectroscopic selectivety; major systems; facilities; integrated process model;multivariable sensitivety studies; world market; and US enrichment enterprise. 23 figs. (AT)

  17. Check Heat Transfer Services; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the result of: * Low air:fuel ratios * Improper fuel preparation * Malfunctioning burners * Oxidation of heat transfer surfaces in high temperature applications * Corrosive...

  18. Emerging energy-efficient industrial technologies

    E-Print Network [OSTI]

    2000-01-01

    High Levels Of PCI Coke Oven Gas Cogeneration "Pickliq" HCLt gy ypes N at algas,coke oven gas ur Fuel M ar segm ent ket

  19. U.S. Department of Energy's Industrial Technologies Program and Its Impacts 

    E-Print Network [OSTI]

    Weakley, S. A.; Brown, S. A.

    2011-01-01

    The U.S. Department of Energy's Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy...

  20. Emerging energy-efficient industrial technologies

    E-Print Network [OSTI]

    2000-01-01

    Brewery Waste Heat Recovery for Process Hot Water Heating. ”waste water treatment High efficiency/low No x burners BOF gas and sensible heat recoverywaste water treatment Dry sheet forming High Consistency forming Impulse drying BOF gas and sensible heat recovery

  1. High Impact Technology - Request for Information | Department...

    Broader source: Energy.gov (indexed) [DOE]

    View the Request for Information DE-FOA-0001226, "High Impact Commercial Building Technology." BTO has developed the High Impact Technology (HIT) Catalyst, a framework for...

  2. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  3. Industrial Wireless Technology for the 21st Century

    SciTech Connect (OSTI)

    none,

    2002-12-01

    In July 2002, the U.S. Department of Energy's Industrial Technologies Program sponsored the Industrial Wireless Workshop as a forum for articulating some long-term goals that may help guide the development of industrial wireless sensor systems. Over 30 individuals, representing manufacturers and suppliers, end users, universities, and national laboratories, attended the workshop in San Francisco and participated in a series of facilitated sessions. The workshop participants cooperatively developed a unified vision for the future and defined specific goals and challenges. This document presents the results of the workshop as well as some context for non-experts.

  4. Industrial applications' simulation technologies in virtual environments Part 1: Virtual Prototyping

    E-Print Network [OSTI]

    Aristomenis, Antoniadis

    1 Industrial applications' simulation technologies in virtual environments Part 1: Virtual and Environment Technological Educational Institute of Crete Chania, Crete, 73133, GREECE antoniadis the subject and the potentials of the technology as a simulation tool in industrial environments. Keywords

  5. Pricing bundles of products and services in the high-tech industry

    E-Print Network [OSTI]

    Ferrer, Juan-Carlos O., 1970-

    2002-01-01

    The High-Tech industry faces tremendous complexity in product design because of the large number of different products that can be offered and the mix of products and services that exists. Information Technology (IT) ...

  6. MAGENTA Technology: MultiAgent Systems for Industrial Logistics

    E-Print Network [OSTI]

    Woolridge, Mike

    MAGENTA Technology: Multi­Agent Systems for Industrial Logistics Jon Himoff 1 Petr Skobelev 1, and illustrate its practical use by describing a field­tested application in the area of logistics for debugging systems. The application we describe is a field­ tested scheduling/logistics system for Tankers

  7. High Efficiency Engine Technologies Program

    SciTech Connect (OSTI)

    Rich Kruiswyk

    2010-07-13

    Caterpillar's Product Development and Global Technology Division carried out a research program on waste heat recovery with support from DOE (Department of Energy) and the DOE National Energy Technology Laboratory. The objective of the program was to develop a new air management and exhaust energy recovery system that would demonstrate a minimum 10% improvement in thermal efficiency over a base heavy-duty on-highway diesel truck engine. The base engine for this program was a 2007 C15 15.2L series-turbocharged on-highway truck engine with a LPL (low-pressure loop) exhaust recirculation system. The focus of the program was on the development of high efficiency turbomachinery and a high efficiency turbocompound waste heat recovery system. The focus of each area of development was as follows: (1) For turbine stages, the focus was on investigation and development of technologies that would improve on-engine exhaust energy utilization compared to the conventional radial turbines in widespread use today. (2) For compressor stages, the focus was on investigating compressor wheel design parameters beyond the range typically utilized in production, to determine the potential efficiency benefits thereof. (3) For turbocompound, the focus was on the development of a robust bearing system that would provide higher bearing efficiencies compared to systems used in turbocompound power turbines in production. None of the turbocharger technologies investigated involved addition of moving parts, actuators, or exotic materials, thereby increasing the likelihood of a favorable cost-value tradeoff for each technology. And the turbocompound system requires less hardware addition than competing bottoming cycle technologies, making it a more attractive solution from a cost and packaging standpoint. Main outcomes of the program are as follows: (1) Two turbine technologies that demonstrated up to 6% improvement in turbine efficiency on gas stand and 1-3% improvement in thermal efficiency in on-engine testing. (2) A compressor technology that demonstrated 1.5% improvement in compressor efficiency on gas stand compared to production available compressors. (3) A power turbine with high efficiency bearing system that demonstrated excellent rotordynamic stability throughout the required speed range, up to 60,000 rpm. (4) A predicted improvement (using engine simulation) in engine thermal efficiency of 7% at the peak torque design point, when combining the technologies developed in this program.

  8. The Impact of Information Technology in Nigeria's Banking Industry

    E-Print Network [OSTI]

    Oluwatolani, Oluwagbemi; Philip, Achimugu

    2011-01-01

    Today, information technology (IT) has become a key element in economic development and a backbone of knowledge-based economies in terms of operations, quality delivery of services and productivity of services. Therefore, taking advantage of information technologies (IT) is an increasing challenge for developing countries. There is now growing evidence that Knowledge-driven innovation is a decisive factor in the competitiveness of nations, industries, organizations and firms. Organizations like the banking sector have benefited substantially from e-banking, which is one among the IT applications for strengthening the competitiveness. This paper presents the current trend in the application of IT in the banking industries in Nigeria and gives an insight into how quality banking has been enhanced via IT. The paper further reveals that the deployment of IT facilities in the Nigerian Banking industry has brought about fundamental changes in the content and quality of banking business in the country. This analysis...

  9. Climbing Up the Technology Ladder? High-Technology Exports in China and Latin America

    E-Print Network [OSTI]

    Gallagher, Kevin P.; Porzecanski, Roberto

    2008-01-01

    the Technology Ladder? High- Technology Exports in China andthe Technology Ladder? High-Technology Exports in China andin the global market for high technology products? How does

  10. Advanced Mechanical Heat Pump Technologies for Industrial Applications 

    E-Print Network [OSTI]

    Mills, J. I.; Chappell, R. N.

    1985-01-01

    seven fins per inch are used. The excijangers utilize modular cores consisting/of thirty 5/8-in.-diameter x 48-in.!10n g tubes per row, eight rows deep. Oucting walls, which contain the air/sol ent mixture, are stainless steel. A rofin... HEAT PUMP TECHNOLOGIES FOR INDUSTRIAL APPLICATIONsa James I. Mills D. S. Plaster EG&G Idaho, Inc. Idaho National Engineering Laboratory Idaho Falls, 10 83415 ABSTRACT The Department of Energy (DOE), Office of Industrial Programs (OIP...

  11. Improve Motor System Efficiency with MotorMaster+, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program MotorMaster+ software tool aids industrial plants with finding energy-efficient motor replacement options and managing motor systems.

  12. Clustering in the biotechnology industry

    E-Print Network [OSTI]

    Schoenberg, Frederic P

    2006-01-01

    the world to attract high-technology industry. The mostare attempts to create high-technology industrial clusters,institutes because high-technology firms frequently spin-off

  13. Improve Overall Plant Efficiency and Fuel Use, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program combined heat and power (CHP) tool can help identify energy savings in gas turbine-driven systems.

  14. Global High-purity Pentoxide Industry 2015 Market Research Report...

    Open Energy Info (EERE)

    Global High-purity Pentoxide Industry 2015 Market Research Report Home Gosreports's picture Submitted by Gosreports(70) Contributor 2 July, 2015 - 21:10 Global High-purity...

  15. Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry

    E-Print Network [OSTI]

    Kong, Lingbo

    2014-01-01

    International Energy Agency (IEA). 2007. Tracking IndustrialInternational Energy Agency (IEA). 2009. Energy TechnologyInternational Energy Agency (IEA). 2010a. Energy Technology

  16. IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009

    Office of Energy Efficiency and Renewable Energy (EERE)

    Describes the impacts in energy savings and environmental pollution reduction of the Industrial Technologies Program's commercialized and emerging technologies for CY2009.

  17. High temperature solar thermal technology: The North Africa Market

    SciTech Connect (OSTI)

    Not Available

    1990-12-01

    High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

  18. Master of Industrial Technology and Operations Department Web Site: www.intm.iit.edu

    E-Print Network [OSTI]

    Heller, Barbara

    Master of Industrial Technology and Operations Department Web Site: www.intm.iit.edu Industrial1@iit.edu The Master of Industrial Technology and Operations (MITO) is a professional degree designed for individuals who plan to make a career in industry. The purpose of the MITO program

  19. Summary of the government/industry workshop on new materials and processing technologies for industrial applications

    SciTech Connect (OSTI)

    Young, J.K.

    1992-07-01

    This report presents a summary of the 1-day workshop conducted at Ann Arbor, Michigan, on April 16, 1992, between the National Center for Manufacturing Sciences (NCMS) and the US Department of Energy Advanced Industrial Materials Program (DOE AIM). The workshop objectives were to: (1) encourage collaboration between DOE, the DOE national laboratories, and NCMS material manufacturers and (2) assist the DOE AIM program in targeting research and development (R&D) more effectively. During the workshop, participants from industry and DOE laboratories were divided into three working groups. Representatives from the DOE national laboratories currently conducting major research programs for AIM were asked to be working group leaders. The groups developed recommendations for NCMS and AIM managers using a six-step process. As a result of the workshop, the groups identified problems of key concern to NCMS member companies and promising materials and processes to meet industry needs. Overall, the workshop found that the research agenda of DOE AIM should include working with suppliers to develop manufacturing technology. The agenda should not be solely driven by energy considerations, but rather it should be driven by industry needs. The role of DOE should be to ensure that energy-efficient technology is available to meet these needs.

  20. Summary of the government/industry workshop on new materials and processing technologies for industrial applications

    SciTech Connect (OSTI)

    Young, J K

    1992-07-01

    This report presents a summary of the 1-day workshop conducted at Ann Arbor, Michigan, on April 16, 1992, between the National Center for Manufacturing Sciences (NCMS) and the US Department of Energy Advanced Industrial Materials Program (DOE AIM). The workshop objectives were to: (1) encourage collaboration between DOE, the DOE national laboratories, and NCMS material manufacturers and (2) assist the DOE AIM program in targeting research and development (R D) more effectively. During the workshop, participants from industry and DOE laboratories were divided into three working groups. Representatives from the DOE national laboratories currently conducting major research programs for AIM were asked to be working group leaders. The groups developed recommendations for NCMS and AIM managers using a six-step process. As a result of the workshop, the groups identified problems of key concern to NCMS member companies and promising materials and processes to meet industry needs. Overall, the workshop found that the research agenda of DOE AIM should include working with suppliers to develop manufacturing technology. The agenda should not be solely driven by energy considerations, but rather it should be driven by industry needs. The role of DOE should be to ensure that energy-efficient technology is available to meet these needs.

  1. Technologies and Policies to Improve Energy Efficiency in Industry

    SciTech Connect (OSTI)

    Price, Lynn; Price, Lynn

    2008-03-01

    The industrial sector consumes nearly 40% of annual global primary energy use and is responsible for a similar share of global energy-related carbon dioxide (CO2) emissions. Many studies and actual experience indicate that there is considerable potential to reduce the amount of energy used to manufacture most commodities, concurrently reducing CO2 emissions. With the support of strong policies and programs, energy-efficient technologies and measures can be implemented that will reduce global CO2 emissions. A number of countries, including the Netherlands, the UK, and China, have experience implementing aggressive programs to improve energy efficiency and reduce related CO2 emissions from industry. Even so, there is no silver bullet and all options must be pursued if greenhouse gas emissions are to be constrained to the level required to avoid significant negative impacts from global climate change.

  2. OLEDWORKS DEVELOPS INNOVATIVE HIGH-PERFORMANCE DEPOSITION TECHNOLOGY TO REDUCE MANUFACTURING COST OF OLED LIGHTING

    Broader source: Energy.gov [DOE]

    The high manufacturing cost of OLED lighting is a major barrier to the growth of the emerging OLED lighting industry. OLEDWorks is developing high-performance deposition technology that addresses...

  3. High Assurance Aerospace CPS & Implications for the Automotive Industry

    E-Print Network [OSTI]

    Poovendran, Radha

    High Assurance Aerospace CPS & Implications for the Automotive Industry Scott A. Lintelman1 assurance CPS can mutually benefit aerospace and automotive industries. I. INTRODUCTION Commercial aviation]. In the automotive industry, recent trends in intelligent transportation systems can be evidently mapped to e

  4. Fostering a Renewable Energy Technology Industry: An InternationalComparison of Wind Industry Policy Support Mechanisms

    SciTech Connect (OSTI)

    Lewis, Joanna; Wiser, Ryan

    2005-11-15

    This article examines the importance of national and sub-national policies in supporting the development of successful global wind turbine manufacturing companies. We explore the motivations behind establishing a local wind power industry, and the paths that different countries have taken to develop indigenous large wind turbine manufacturing industries within their borders. This is done through a cross-country comparison of the policy support mechanisms that have been employed to directly and indirectly promote wind technology manufacturing in twelve countries. We find that in many instances there is a clear relationship between a manufacturer's success in its home country market and its eventual success in the global wind power market. Whether new wind turbine manufacturing entrants are able to succeed will likely depend in part on the utilization of their turbines in their own domestic market, which in turn will be influenced by the annual size and stability of that market. Consequently, policies that support a sizable, stable market for wind power, in conjunction with policies that specifically provide incentives for wind power technology to be manufactured locally, are most likely to result in the establishment of an internationally competitive wind industry.

  5. Hatchery Technology for High Quality Juvenile Production

    E-Print Network [OSTI]

    Hatchery Technology for High Quality Juvenile Production Proceedings of the 40th U III, (Acting) Assistant Administrator for Fisheries Hatchery Technology for High Quality Juvenile;SUGGESTED CITATION: Rust, M., P. Olin, A. Bagwill and M. Fujitani (editors). 2013. Hatchery Technology

  6. Estimating energy-augmenting technological change in developing country industries

    E-Print Network [OSTI]

    Sanstad, Alan H.; Roy, Joyashree; Sathaye, Jayant A.

    2006-01-01

    while the pulp and paper industry displays negative rates ofenergy-intensive industries – paper and allied products,Korean industries – cement, fertilizer, pulp and paper, and

  7. High-Tech Industries in California: Panacea or Problem?

    E-Print Network [OSTI]

    Raphael, Stephen; Brown, Claire; Campbell, Ben

    2001-01-01

    of its employees are high-tech. We should also note that toemployment growth in high-tech industries, such as computerand speculate that as the high-tech sector expands, wages

  8. High Impact Technology Catalyst: Technology Deployment Strategies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡ ¢HelpHighJian Li,1

  9. Faculty of Science Physics and High Technology

    E-Print Network [OSTI]

    interested in applying their training in physics to the high-tech needs of society. www curriculum with courses in business and computer science to make our graduates especially attractive to high-techFaculty of Science Physics and High Technology Physics and High Technology is designed for students

  10. GE Develops High Water Recovery Technology in China | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    purification industry SHANGHAI, September. 17, 2015 - A team of scientists led by the Coating and Membrane Technology Laboratory at GE's China Technology Center have successfully...

  11. High-Performance Renewable Base Oils for Industrial Lubricants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Performance Renewable Base Oils for Industrial Lubricants Plant-Based Synthetic Lubricant Base Stock Reduces Emissions Dependence on foreign oil is a growing concern, as is...

  12. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems Surface Coatings Enhance Wear Resistance of Metals, Saving Energy and Increasing Component Life...

  13. Aerogel-Based Insulation for High-Temperature Industrial Processes...

    Office of Scientific and Technical Information (OSTI)

    Aerogel-Based Insulation for High-Temperature Industrial Processes Dr. Owen Evans 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; COMPETITION; ENERGY CONSUMPTION; MARKET;...

  14. Technologies and Policies to Improve Energy Efficiency in Industry

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01

    cement, and pulp and paper industries (Bernstein et al. ,Ethylene Ammonia Glass Paper Industry Aluminium Cement Iron

  15. High Impact Technology (HIT) Catalyst

    Energy Savers [EERE]

    Impact Technology (HIT) Catalyst Images courtesy CREE, True Manufacturing, A.O. Smith, Bernstein Associates, Cambridge Engineering, Alliance Laundry Systems, NREL Commercial...

  16. Bachelor of Industrial Technology and Management Department Web Site: www.intm.iit.edu

    E-Print Network [OSTI]

    Heller, Barbara

    Bachelor of Industrial Technology and Management Department Web Site: www.intm.iit.edu Main Campus of Industrial Technology and Management (BINTM) program is designed to prepare skilled adults for managerial positions in industry. This is a completion program for working individuals who have technical training

  17. Cooperative Efforts to Introduce New Environmental Control Technologies to Industry- A Case Study for Brayton Cycle Heat Pump Technology 

    E-Print Network [OSTI]

    Enneking, J. C.

    1991-01-01

    TO INTRODUCE NEW ENVIRONMENTAL CONTROL TECHNOLOGIES TO INDUSTRY - A CASE STUDY FOR BRAYTON CYCLE HEAT PUMP TECHNOLOGY JOSEPH C. ENNEKING Vice President NUCON International, Inc. Columbus, ABSTRACT New environmental control technologies are rare... it entered the expander. Relatively clean air was returned to an oven used to evaporate solvents from a tape coating operation. 123 COOPERATIVE EFFORTS TO INTRODUCE NEW ENVIRONMENTAL CONTROL TECHNOLOGIES TO INDUSTRY A CASE STUDY FOR BRAYTON CYCLE HEAT...

  18. High Performance Computing Technologies Jack Dongarra

    E-Print Network [OSTI]

    Dongarra, Jack

    Fundamental limits are being approached. ffl More cost effective solution Example: Weather Prediction (Navier pressure humidity 3 \\Gamma wind velocity ffl 1 Kilometer Cells ffl 10 slices ! 5 \\Theta 10 9 cells ffl each Industry ffl Huge users of HPC technology: Ford (US) is 25th largest user of HPC in the world ffl Main uses

  19. Agenda 2020: A Technology Vision and Research Agenda for America's Forest, Wood and Paper Industry

    SciTech Connect (OSTI)

    none,

    1994-11-01

    In November 1994, the forest products industry published Agenda 2020: A Technology Vision and Research Agenda for America's Forest, Wood and Paper Industry, which articulated the industry's vision. This document set the foundation for collaborative efforts between the industry and the federal government.

  20. The Use of Smart Materials Technologies in Radiation Environment and Nuclear Industry

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    1 The Use of Smart Materials Technologies in Radiation Environment and Nuclear Industry Victor ABSTRACT Application of smart materials technology in nuclear industry offer new opportunities safety of nuclear facilities could benefit from the use of smart materials technologies in both

  1. Defying value-shift : how incumbents regain values in the industry with new technologies

    E-Print Network [OSTI]

    Kuramoto, Yukari

    2010-01-01

    Historically, incumbent assembly firms with unquestionable strong positions in such industries as the automobile, consumer electronics, computer and mobile phone industries, have lost power when new technology is introduced; ...

  2. The impact of manufacturing offshore on technology development paths in the automotive and optoelectronics industries

    E-Print Network [OSTI]

    Fuchs, Erica R. H. (Erica Renee H.), 1977-

    2006-01-01

    This dissertation presents a two-case study of the impact of manufacturing offshore on the technology trajectory of the firm and the industry. It looks in particular at the automotive and optoelectronics industries. The ...

  3. Estimating energy-augmenting technological change in developing country industries

    E-Print Network [OSTI]

    Sanstad, Alan H.; Roy, Joyashree; Sathaye, Jayant A.

    2006-01-01

    trend due to the constant energy price bias assumption. ThisIndian industries, Energy price bias (standard error)industries, 1980–1997 Energy price bias (standard error)

  4. Estimating energy-augmenting technological change in developing country industries

    E-Print Network [OSTI]

    Sanstad, Alan H.; Roy, Joyashree; Sathaye, Jayant A.

    2006-01-01

    change, while the pulp and paper industry displays negativeKorean industries – cement, fertilizer, pulp and paper, andindustries – aluminum, cement, fertilizer, glass, pulp and paper,

  5. Conduct an In-Plant Pumping System Survey; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Pumping System Performance: A Sourcebook for Industry. Hydraulic Institute-HI is a non- profit industry association for pump and pump system manufacturers; it...

  6. Match Pumps to System Requirements: Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Pumping System Performance: A Sourcebook for Industry. Hydraulic Institute-HI is a non- profit industry association for pump and pump system manufacturers; it...

  7. Estimating energy-augmenting technological change in developing country industries

    E-Print Network [OSTI]

    Sanstad, Alan H.; Roy, Joyashree; Sathaye, Jayant A.

    2006-01-01

    Productivity trends in India's energy-intensive industries,estimates. However, in India, the energy trend is negativefor several energy-intensive industries in India and South

  8. AMO Industrial Distributed Energy: Immediate Deployment of Waste Energy Technologies at Multiple Sites

    Broader source: Energy.gov [DOE]

    Fact sheet overviewing Verso Paper Corp. project that will deploy industrial technologies to recover and reuse water and steam at pulp and paper facilities.

  9. Postfeminist Technologies: Digital Media and the Culture Industries of Choice

    E-Print Network [OSTI]

    Cohn, Jonathan

    2013-01-01

    to Jonathan Cohn. “Plastic Surgery Technology Questions,”to Jonathan Cohn, “Plastic Surgery Technology Questions,”markets its 3D imaging technology to plastic surgeons via

  10. Technology partnerships: Enhancing the competitiveness, efficiency, and environmental quality of American industry

    SciTech Connect (OSTI)

    NONE

    1995-04-01

    An overview of the Department of Energy`s Office of Industrial Technologies and its private sector partnerships is presented. Commercial success stories and real-world benefits of the technology partnerships are discussed.

  11. Industrial applications' simulation technologies in virtual environments Part II: Virtual Manufacturing and Virtual Assembly

    E-Print Network [OSTI]

    Aristomenis, Antoniadis

    categories, according to the subject and the technology that is required: · Virtual Manufacturing1 Industrial applications' simulation technologies in virtual environments Part II: Virtual Manufacturing and Virtual Assembly Bilalis Nikolaos Associate Professor Department of Production and Engineering

  12. Considering the customer : determinants and impact of using technology on industry evolution

    E-Print Network [OSTI]

    Kahl, Steven J. (Steven John)

    2007-01-01

    This dissertation raises two questions: How do customers come to understand and use a technology? What is the influence of customers using a technology on industry evolution and competition? I use two historical cases to ...

  13. Technology Evaluation and Decision Making for Sustainability Enhancement of Industrial Systems Under Uncertainty

    E-Print Network [OSTI]

    Huang, Yinlun

    Technology Evaluation and Decision Making for Sustainability Enhancement of Industrial Systems. A case study on sustainable development of biodiesel manufacturing demonstrates methodological efficacy: sustainability enhancement, decision making, uncertainty, interval-parameter-based analysis, technology

  14. Articulation Agreement Hocking College, Industrial Technology: Alternative Energy and Fuel Cell A.S.

    E-Print Network [OSTI]

    Minnesota, University of

    Energy & Fuel Cells) Credits Transferred from Hocking College: Liberal Education 26 TechnologyArticulation Agreement Between Hocking College, Industrial Technology: Alternative Energy and Fuel Cell A.S. and University of Minnesota, Crookston (UMC), Agriculture & Natural Resources -Ag Systems

  15. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

    SciTech Connect (OSTI)

    Clifton B. Higdon III

    2011-01-07

    Industrial manufacturing in the U.S. accounts for roughly one third of the 98 quadrillion Btu total energy consumption. Motor system losses amount to 1.3 quadrillion Btu, which represents the largest proportional loss of any end-use category, while pumps alone represent over 574 trillion BTU (TBTU) of energy loss each year. The efficiency of machines with moving components is a function of the amount of energy lost to heat because of friction between contacting surfaces. The friction between these interfaces also contributes to downtime and the loss of productivity through component wear and subsequent repair. The production of new replacement parts requires additional energy. Among efforts to reduce energy losses, wear-resistant, low-friction coatings on rotating and sliding components offer a promising approach that is fully compatible with existing equipment and processes. In addition to lubrication, one of the most desirable solutions is to apply a protective coating or surface treatment to rotating or sliding components to reduce their friction coefficients, thereby leading to reduced wear. Historically, a number of materials such as diamond-like carbon (DLC), titanium nitride (TiN), titanium aluminum nitride (TiAlN), and tungsten carbide (WC) have been examined as tribological coatings. The primary objective of this project was the development of a variety of thin film nanocoatings, derived from the AlMgB14 system, with a focus on reducing wear and friction in both industrial hydraulics and cutting tool applications. Proof-of-concept studies leading up to this project had shown that the constituent phases, AlMgB14 and TiB2, were capable of producing low-friction coatings by pulsed laser deposition. These coatings combine high hardness with a low friction coefficient, and were shown to substantially reduce wear in laboratory tribology tests. Selection of the two applications was based largely on the concept of improved mechanical interface efficiencies for energy conservation. In mobile hydraulic systems, efficiency gains through low friction would translate into improved fuel economy and fewer greenhouse gas emissions. Stationary hydraulic systems, accordingly, would consume less electrical power. Reduced tooling wear in machining operations would translate to greater operating yields, while lowering the energy consumed during processing. The AlMgB14 nanocoatings technology progressed beyond baseline laboratory tests into measurable energy savings and enhancements to product durability. Three key hydraulic markets were identified over the course of the project that will benefit from implementation: industrial vane pumps, orbiting valve-in-star hydraulic motors, and variable displacement piston pumps. In the vane pump application, the overall product efficiency was improved by as much as 11%. Similar results were observed with the hydraulic motors tested, where efficiency gains of over 10% were noted. For variable displacement piston pumps, overall efficiency was improved by 5%. For cutting tools, the most significant gains in productivity (and, accordingly, the efficiency of the machining process as a whole) were associated with the roughing and finishing of titanium components for aerospace systems. Use of the AlMgB14 nanocoating in customer field tests has shown that the coated tools were able to withstand machining rates as high as 500sfm (limited only by the substrate material), with relatively low flank wear when compared to other industrial offerings. AlMgB14 coated tools exhibited a 60% improvement over similarly applied TiAlN thin films. Furthermore, AlMgB14-based coatings in these particular tests lasted twice as long than their TiAlN counterparts at the 500sfm feed rates. Full implementation of the technology into the industrial hydraulic and cutting tool markets equates to a worldwide energy savings of 46 trillion BTU/year by 2030. U.S.-based GHG emissions associated with the markets identified would fall accordingly, dropping by as much as 50,000 tonnes annually.

  16. uilding high-quality, industrial-strength software is difficult.

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    B uilding high-quality, industrial- strength software is difficult. Indeed, it has been argued that developing such software in domains like telecommunications, industrial control, and business process manage, a wide range of software engineering paradigms have been devised. Each successive development either

  17. Apply: Funding Opportunity- Building America Industry Partnerships for High Performance Housing Innovation

    Broader source: Energy.gov [DOE]

    Closed Application Deadline: February 4, 2015 The Building Technologies Office (BTO)’s Residential Buildings Integration Program has announced the availability of up to $4 million in 2015 for the Building America Industry Partnerships for High Performance Housing Innovation Funding Opportunity Announcement (FOA) DE-FOA-0001117.

  18. World first in high level waste vitrification - A review of French vitrification industrial achievements

    SciTech Connect (OSTI)

    Brueziere, J.; Chauvin, E. [AREVA, 1 place Jean Millier, 92084 Paris La Defense (France); Piroux, J.C. [Joint Vitrification Laboratory - LCV, Marcoule, BP171, 30207 Bagnols sur Ceze (France)

    2013-07-01

    AREVA has more than 30 years experience in operating industrial HLW (High Level radioactive Waste) vitrification facilities (AVM - Marcoule Vitrification Facility, R7 and T7 facilities). This vitrification technology was based on borosilicate glasses and induction-heating. AVM was the world's first industrial HLW vitrification facility to operate in-line with a reprocessing plant. The glass formulation was adapted to commercial Light Water Reactor fission products solutions, including alkaline liquid waste concentrates as well as platinoid-rich clarification fines. The R7 and T7 facilities were designed on the basis of the industrial experience acquired in the AVM facility. The AVM vitrification process was implemented at a larger scale in order to operate the R7 and T7 facilities in-line with the UP2 and UP3 reprocessing plants. After more than 30 years of operation, outstanding record of operation has been established by the R7 and T7 facilities. The industrial startup of the CCIM (Cold Crucible Induction Melter) technology with enhanced glass formulation was possible thanks to the close cooperation between CEA and AREVA. CCIM is a water-cooled induction melter in which the glass frit and the waste are melted by direct high frequency induction. This technology allows the handling of highly corrosive solutions and high operating temperatures which permits new glass compositions and a higher glass production capacity. The CCIM technology has been implemented successfully at La Hague plant.

  19. Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications

    SciTech Connect (OSTI)

    Lee Nelson

    2011-09-01

    This report is a summary of analyses performed by the NGNP project to determine whether it is technically and economically feasible to integrate high temperature gas cooled reactor (HTGR) technology into industrial processes. To avoid an overly optimistic environmental and economic baseline for comparing nuclear integrated and conventional processes, a conservative approach was used for the assumptions and calculations.

  20. INDUSTRY EVOLUTION AND ENTREPRENEURSHIP: STEVEN KLEPPER'S CONTRIBUTIONS TO INDUSTRIAL ORGANIZATION, STRATEGY, TECHNOLOGICAL

    E-Print Network [OSTI]

    Braguinsky, Serguey

    1 INDUSTRY EVOLUTION AND ENTREPRENEURSHIP: STEVEN KLEPPER'S CONTRIBUTIONS TO INDUSTRIAL Van Munching Hall, College Park, MD 20742 rajshree@umd.edu Serguey Braguinsky Associate Professor in industry evolution, employee entrepreneurship, and geographical clusters, we trace the evolution of his

  1. Industrial DSM: Beyond High Efficiency Lights and Motors 

    E-Print Network [OSTI]

    Appelbaum, B.

    1995-01-01

    Perhaps the greatest challenge to electric utilities is the design and implementation of demand side management (DSM) programs targeted to their industrial customers. In focussing on promotion of high efficiency lighting ...

  2. Energy Recovery for Medium- and High-Temperature Industrial Furnaces 

    E-Print Network [OSTI]

    Krumm, E. D.

    1981-01-01

    The application of metallic heat exchangers on medium- and high-temperature industrial furnaces is examined. A thorough technical understanding of all furnace operating conditions and the duties imposed upon heat exchangers is identified as a key...

  3. Energy Technology Solutions: Public-Private Partnerships Transforming Industry - December 2010

    SciTech Connect (OSTI)

    none,

    2010-12-01

    AMO's research and development partnerships with industry have resulted in more than 220 technologies and other solutions that can be purchased today. This document includes a description of each solution, its benefits, and vendor contact information. The document also identifies emerging technologies and other resources to help industry save energy.

  4. Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms

    E-Print Network [OSTI]

    Lewis, Joanna; Wiser, Ryan

    2005-01-01

    of Renewable Energy Technologies: Wind Power in the UnitedRenewable Energy, Wind & Hydropower Technologies Program, ofRenewable Energy, Wind & Hydropower Technologies Program, of

  5. ENERGY SERIES "Emerging High Power Conversion Technologies"

    E-Print Network [OSTI]

    Bergman, Keren

    SEMINAR: ENERGY SERIES "Emerging High Power Conversion Technologies" Dujic Drazen Professor, Power of embedded renewable energy sources. Whatever the renewable source of the prime energy is (wind, solar, hydro, storage or use. This is where power electronics come into a play, as key enabling technology for flexible

  6. Demand Response Enabling Technologies and Approaches for Industrial Facilities 

    E-Print Network [OSTI]

    Epstein, G.; D'Antonio, M.; Schmidt, C.; Seryak, J.; Smith, C.

    2005-01-01

    , there are also huge opportunities for demand response in the industrial sector. This paper describes some of the demand response initiatives that are currently active in New York State, explaining applicability of industrial facilities. Next, we discuss demand...

  7. Telematics industry dynamics and strategies for converging technologies

    E-Print Network [OSTI]

    Luis, Rodrigo, 1973-

    2004-01-01

    The Telematics Industry faces tremendous challenges for growth. Regardless of the efforts and investment from vehicle manufacturers and suppliers, telematics has not been that profitable industry that many analyst forecasted ...

  8. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    E-Print Network [OSTI]

    Sathaye, J.

    2011-01-01

    de Beer, 1997. "Energy Efficient Technologies in Industry -Tracking Industrial Energy Efficiency and CO2 Emissions.and L. Price. 1999. Energy Efficiency and Carbon Dioxide

  9. U.S. Department of Energy's Industrial Technology Program and Its Impacts 

    E-Print Network [OSTI]

    Weakley, S. A.; Roop, J. M.

    2009-01-01

    of Energy?s Industrial Technology Program and Its Impacts Steven A. Weakley Joseph M. Roop Senior Research Engineer Staff Scientist Pacific Northwest National Laboratory Pacific Northwest National Laboratory P.O. Box 999... Battelle Blvd. MS: K6-05 P.O. Box 999 Battelle Blvd. MS: K6-05 Richland, Washington 99352 Richland, Washington 99352 ABSTRACT The U.S. Department of Energy?s Industrial Technologies Program (ITP) has been working with industry since 1976...

  10. BEHAVIOURAL REALISM IN A TECHNOLOGY EXPLICIT ENERGY-ECONOMY MODEL: THE ADOPTION OF INDUSTRIAL COGENERATION IN CANADA

    E-Print Network [OSTI]

    COGENERATION IN CANADA Prepared for: OFFICE OF ENERGY EFFICIENCY NATURAL RESOURCES CANADA Prepared by: NIC choice model was estimated from the results. The model showed that industrial cogeneration is a relatively unknown technology to many firms. Among those that were familiar with cogeneration, its high

  11. Luoyang Zhonggui High Technology Co Ltd aka Luoyang Polysilicon...

    Open Energy Info (EERE)

    Zhonggui High Technology Co Ltd aka Luoyang Polysilicon Company China Silicon High Tech Jump to: navigation, search Name: Luoyang Zhonggui High Technology Co Ltd (aka Luoyang...

  12. Japanese power electronics inverter technology and its impact on the American air conditioning industry

    SciTech Connect (OSTI)

    Ushimaru, Kenji.

    1990-08-01

    Since 1983, technological advances and market growth of inverter- driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries-- microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices--were able to direct the development and market success of inverter-driven heat pumps. As a result, leading US variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales. 54 refs., 47 figs., 1 tab.

  13. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  14. DOE Fuel Cell Technologies Office Record 14009: Industry Deployed...

    Broader source: Energy.gov (indexed) [DOE]

    & Publications DOE Hydrogen and Fuel Cells Program Record 13007: Industry Deployed Fuel Cell Backup Power (BuP) DOE Hydrogen and Fuel Cells Program Record, Record 13008:...

  15. Technologies and Policies to Improve Energy Efficiency in Industry

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01

    CO2 Emissions (MtCO2) Transport Residential Buildings Commercial Buildings Agriculture Agriculture Commercial Buildings Residential Buildings Transport Industry Source:

  16. Technology Vision 2020 - The U.S. Chemical Industry

    SciTech Connect (OSTI)

    1996-12-01

    The body of this report outlines the current state of the industry, a vision for tomorrow, and the technical advances needed to make this vision a reality.

  17. Technologies and Policies to Improve Energy Efficiency in Industry

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01

    implementation of energy-efficiency and greenhouse gasWorking Group on Energy-Efficiency and Clean EnergyTracking Industrial Energy Efficiency and CO2 Emissions.

  18. TECHNOLOGY VISION 2020: The U.S. Chemical Industry

    Office of Energy Efficiency and Renewable Energy (EERE)

    The chemical industry faces heightened challenges as it enters the 21st century. Five major forces are among those shaping the topography of its business landscape

  19. Industrial validation models 1 4/23/03 Experimental validation of new software technology

    E-Print Network [OSTI]

    Zelkowitz, Marvin V.

    Industrial validation models 1 4/23/03 Experimental validation of new software technology Marvin V When to apply a new technology in an organization is a critical decision for every software development organization. Earlier work defines a set of methods that the research community uses when a new technology

  20. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    Planta- tion Products and Paper Industry Council, Paper Industry, Confederationof European Paper Industries, Brussels, March 2001. CESP,

  1. Research and development separation technology: The DOE Industrial Energy Conservation Program

    SciTech Connect (OSTI)

    Not Available

    1987-07-01

    This brochure summarizes the Office of Industrial Programs' RandD efforts in the advancement of separation technology. The purpose of this brochure is to provide interested parties with information on federal industrial energy conservation activities in separation technology. The brochure is comprised of the following sections: Separation Technology, summarizes the current state of separation technology and its uses. Potential Energy Savings, discusses the potential for industrial energy conservation through the implementation of advanced separation processes. Office of Industrial Programs' RandD Efforts in Separation Technology Development, describes the separation RandD projects conducted by IP. RandD Data Base, lists contractor, principal investigator, and location of each separation-related RandD effort sponsored by IP.

  2. The critical role of manufacturing-process innovation on product development excellence in high-technology companies

    E-Print Network [OSTI]

    Duarte, Carlos E. A., 1962-

    2004-01-01

    Few managers of high-technology companies view manufacturing-process development as primary source of competitive advantage. For the last two decades trends have shown an increasing number of high-tech industries outsourcing ...

  3. Postfeminist Technologies: Digital Media and the Culture Industries of Choice

    E-Print Network [OSTI]

    Cohn, Jonathan

    2013-01-01

    Digital Subjectivity Technology is essential to the transformationsdigital image technologies to present the body as a site of potential transformation –digital plenitude of seemingly endless information is just as much a force in this transformation.

  4. Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies, June 1999

    Broader source: Energy.gov [DOE]

    Assessment of the potential of CHP technologies to reduce carbon emissions in the US chemicals and pulp and paper industries.

  5. The Impact of Control Technology on the Demand Response Potential of California Industrial Refrigerated Facilities Final Report

    E-Print Network [OSTI]

    Scott, Doug

    2014-01-01

    and Automated Demand Response in Industrial RefrigeratedDemand Response .. ..Technology on the Demand Response Potential of California

  6. Within-Industry Technological Specialization, Collective Action, and Trade Policy 

    E-Print Network [OSTI]

    Urbanski, Piotr

    2015-01-21

    . I tie this with the logic of collective action and classical trade models to de- 6See Jones (2009). Also Wuchty et al. (2007); Jones et al. 2007. 6 rive an industry’s ability and intensity of lobbying over trade policy. The proposed theory helps us... has continued to de- velop. Arguably at an ever increasing rate. However, some industries have developed faster than others. At the same time some sectors of the American economy have lib- eralized more or less. Are the two trends related...

  7. Innovative High-Performance Deposition Technology for Low-Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative High-Performance Deposition Technology for Low-Cost Manufacturing of OLED Lighting Innovative High-Performance Deposition Technology for Low-Cost Manufacturing of OLED...

  8. Advanced Combustion Technology to Enable High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to Enable High Efficiency Clean Combustion Advanced Combustion Technology to Enable High Efficiency Clean Combustion Summary of advanced combustion research at Cummins...

  9. High-Performance Home Technologies: Solar Thermal & Photovoltaic...

    Energy Savers [EERE]

    High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series High-Performance Home Technologies: Solar Thermal &...

  10. Application of Synergistic Technologies to Achieve High Levels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Synergistic Technologies to Achieve High Levels of Gasoline Engine Downsizing Application of Synergistic Technologies to Achieve High Levels of Gasoline Engine Downsizing Discussed...

  11. Novel Manufacturing Technologies for High Power Induction and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric...

  12. Request for Information: High Impact Commercial Building Technology...

    Office of Environmental Management (EM)

    High Impact Commercial Building Technology Deployment (DE-FOA-0001086) Request for Information: High Impact Commercial Building Technology Deployment (DE-FOA-0001086) March 6, 2014...

  13. Thomas Jefferson High School for Science & Technology National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thomas Jefferson High School for Science & Technology National Science Bowl Champion Thomas Jefferson High School for Science & Technology National Science Bowl Champion May 2,...

  14. Assessment of selected conservation measures for high-temperature process industries

    SciTech Connect (OSTI)

    Kusik, C L; Parameswaran, K; Nadkarni, R; O'Neill, J K; Malhotra, S; Hyde, R; Kinneberg, D; Fox, L; Rossetti, M

    1981-01-01

    Energy conservation projects involving high-temperature processes in various stages of development are assessed to quantify their energy conservation potential; to determine their present status of development; to identify their research and development needs and estimate the associated costs; and to determine the most effective role for the Federal government in developing these technologies. The program analyzed 25 energy conserving processes in the iron and steel, aluminium, copper, magnesium, cement, and glassmaking industries. A preliminary list of other potential energy conservation projects in these industries is also presented in the appendix. (MCW)

  15. ITP Glass: Glass Industry Technology Roadmap; April 2002

    Office of Energy Efficiency and Renewable Energy (EERE)

    Glass is a unique material that has been produced for thousands of years. The glass industry's products are an integral part of the American economy and everyday life. Glass products are used in food and beverage packaging, lighting, communications, etc.

  16. DOE and Industry Showcase New Control Systems Security Technologies...

    Office of Environmental Management (EM)

    efforts. Industry leaders worked closely with national laboratories in the National SCADA Test Bed and other private-sector partners to develop, test, and gather end-user input...

  17. Check Burner Air to Fuel Ratios; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    radiant tubes. For the fuels most commonly used by U.S. industry, including natural gas, propane, and fuel oils, approximately one cubic foot of air is required to release about...

  18. Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry

    E-Print Network [OSTI]

    Kong, Lingbo

    2014-01-01

    Report. U.S. Department of Energy. Contract No. : DE-FC07-in the Cement Industry". Energy Procedia 1 (1): 87-94. Beck,for U.S. Department of Energy, National Energy Technology

  19. Engineering & Technology News | Industrial News Buzz Flexible electronics could help put Arrhythmic hearts back on rhythm

    E-Print Network [OSTI]

    Rogers, John A.

    Engineering & Technology News | Industrial News Buzz Flexible electronics could help put Arrhythmic hearts back on rhythm Home Engineering Store Products & Services Engineering Forum CAD Forum Engineering Design Data Engineering News Engineering Calculators Newsletter Register Advertise Feedback GD&T Training

  20. ITP Mining: Mining Industry of the Future Mineral Processing Technology Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE)

    In June 1998, the Chairman of the National Mining Association and the Secretary of energy entered into a Compact to pursue a collaborative technology research partnership, the Mining Industry of the Future.

  1. Technologies, markets and challenges for development of the Canadian Oil Sands industry

    E-Print Network [OSTI]

    Lacombe, Romain H.

    2007-01-01

    This paper provides an overview of the current status of development of the Canadian oil sands industry, and considers possible paths of further development. We outline the key technology alternatives, critical resource ...

  2. In high-tech industries, large amounts of reliable, high-quality

    E-Print Network [OSTI]

    In high-tech industries, large amounts of reliable, high-quality power are critical to information processing networks--industry giant Verizon Telecommunications uses over 5.1 billion kWh annually. Because with the grid, three reciprocating engines, two absorption chillers, and a heat recovery steam generator (HRSG

  3. Federal/Industry Development of Energy-Conserving Technologies for the Chemical and Petroleum Refining Industries 

    E-Print Network [OSTI]

    Alston, T. G.; Humphrey, J. L.

    1981-01-01

    Argonne National Laboratory has started a program to identify future RD&D projects that (i) promise cost-effective savings of scarce fuels in the chemical and petroleum refining industries, (ii) are not likely to be pursued by industry alone...

  4. Recovery Act: Oxy-Combustion Technology Development for Industrial...

    Office of Scientific and Technical Information (OSTI)

    Testing in Alstom's 15 MWth Boiler Simulation Facility Levasseur, Armand 01 COAL, LIGNITE, AND PEAT; 54 ENVIRONMENTAL SCIENCES Clean Coal Technology; Coal-Fuels;...

  5. New Membrane Technology Boosts Efficiency in Industrial Gas Processes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for refinery and other applications MTR's current R&D is extending use of membranes to carbon sequestration and biofuels separations. www.mtrinc.com New Membrane Technology...

  6. Technology and Organizational Factors in the Notebook Industry Supply Chain

    E-Print Network [OSTI]

    Foster, William; Cheng, Zhang; Dedrick, Jason; Kraemer, Kenneth L

    2006-01-01

    and Their Suppliers . . . . . . . . . . . . . . . . . . . 21Technology in the Third- and Fourth-Tier Suppliers. . . . .Percent) for Taiwanese Suppliers to ODMs . . . . 16 Notebook

  7. Technologies and Policies to Improve Energy Efficiency in Industry

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01

    Opportunities for Petroleum Refineries: An ENERGY STAR Guidesecondary energy such as electricity and petroleum products)90 energy-saving technologies and measures for the petroleum

  8. Using Waste Heat for External Processes; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    necessary? Resources See also the ASM Handbook, Volumes 1 (1990) and 2 (1991), Materials Park, OH: ASM International; Combustion Technology Manual, Fifth Edition, Cincinnati, OH:...

  9. Cleanroom energy benchmarking in high-tech and biotech industries

    SciTech Connect (OSTI)

    Tschudi, William; Benschine, Kathleen; Fok, Stephen; Rumsey, Peter

    2001-04-01

    Cleanrooms, critical to a wide range of industries, universities, and government facilities, are extremely energy intensive. Consequently, energy represents a significant operating cost for these facilities. Improving energy efficiency in cleanrooms will yield dramatic productivity improvement. But more importantly to the industries which rely on cleanrooms, base load reduction will also improve reliability. The number of cleanrooms in the US is growing and the cleanroom environmental systems' energy use is increasing due to increases in total square footage and trends toward more energy intensive, higher cleanliness applications. In California, many industries important to the State's economy utilize cleanrooms. In California these industries utilize over 150 cleanrooms with a total of 4.2 million sq. ft. (McIlvaine). Energy intensive high tech buildings offer an attractive incentive for large base load energy reduction. Opportunities for energy efficiency improvement exist in virtually all operating cleanrooms as well as in new designs. To understand the opportunities and their potential impact, Pacific Gas and Electric Company sponsored a project to benchmark energy use in cleanrooms in the electronics (high-tech) and biotechnology industries. Both of these industries are heavily dependent intensive cleanroom environments for research and manufacturing. In California these two industries account for approximately 3.6 million sq. ft. of cleanroom (McIlvaine, 1996) and 4349 GWh/yr. (Sartor et al. 1999). Little comparative energy information on cleanroom environmental systems was previously available. Benchmarking energy use allows direct comparisons leading to identification of best practices, efficiency innovations, and highlighting previously masked design or operational problems.

  10. Methods of Mathematical and Computational Physics for Industry, Science, and Technology

    E-Print Network [OSTI]

    Melnik, Roderick

    Methods of Mathematical and Computational Physics for Industry, Science, and Technology 2006 J industrial problems provide scientists with important and challenging problems that need to be solved today. Gigantic ships and steam engines, repeating catapult of Dionysius and the Antikythera `computer' invented

  11. Covered Product Category: Industrial Luminaires (High/Low Bay)

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency requirements for Industrial Luminaires (High/Low Bay). Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  12. Science for Energy Technology: The Industry Perspective (2011 EFRC Summit, panel session)

    SciTech Connect (OSTI)

    Wadsworth, Jeffrey (Battelle Memorial Institute) [Battelle Memorial Institute; Carlson, David E. (BP Solar) [BP Solar; Chiang, Yet-Ming (MIT and A123 Systems) [MIT and A123 Systems; Hunt, Catherine T. (Dow Chemical) [Dow Chemical

    2011-05-25

    A distinguished panel of industry leaders discussed how basic science impacts energy technology at the 2011 EFRC Summit. Panel members are Jeffrey Wadworth, President and CEO of Battelle Memorial Institute; David E. Carlson, the Chief Scientist for BP Solar; Yet-Ming Chiang, Professor at MIT and the founder of A123 Systems; and Catherine T. Hunt, the R&D Director of Innovation Sourcing and Sustainable Technologies at the Dow Chemical Company. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss 'Science for our Nation's Energy Future.' In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  13. Science for Energy Technology: The Industry Perspective (2011 EFRC Summit, panel session)

    ScienceCinema (OSTI)

    Wadsworth, Jeffrey (Battelle Memorial Institute); Carlson, David E. (BP Solar); Chiang, Yet-Ming (MIT and A123 Systems); Hunt, Catherine T. (Dow Chemical)

    2012-03-20

    A distinguished panel of industry leaders discussed how basic science impacts energy technology at the 2011 EFRC Summit. Panel members are Jeffrey Wadworth, President and CEO of Battelle Memorial Institute; David E. Carlson, the Chief Scientist for BP Solar; Yet-Ming Chiang, Professor at MIT and the founder of A123 Systems; and Catherine T. Hunt, the R&D Director of Innovation Sourcing and Sustainable Technologies at the Dow Chemical Company. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss 'Science for our Nation's Energy Future.' In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  14. Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms

    E-Print Network [OSTI]

    Lewis, Joanna; Wiser, Ryan

    2005-01-01

    and Renewable Energy, Wind & Hydropower Technologiesand Renewable Energy, Wind & Hydropower Technologies2004. International Wind Energy Development, World Market

  15. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    for the European Pulp and Paper Industry, Confederation ofin food and pulp and paper industry wastes, turbines tocement, and pulp and paper industries and in the control of

  16. Emerging Industrial Innovations for New Energy Efficient Technologies 

    E-Print Network [OSTI]

    Laitner, J. A.

    2007-01-01

    of the materials and technologies that can generate large efficiency gains within all other sectors of the economy. For example, its role in developing a new generation of fuel cell vehicles, “on demand” manufacturing capabilities, or new plastics that double...

  17. Industrial clusters and regional innovation based on hydrogen and fuel cell technologies

    E-Print Network [OSTI]

    Industrial clusters and regional innovation based on hydrogen and fuel cell technologies-Westphalia (Germany): Fuel Cell and Hydrogen Network in North Rhine-Westphalia Regional authorities develops fully or regions in Europe with a potential to develop clusters based on hydrogen and fuel cell technologies? 3

  18. Geographically-Distributed Databases: A Big Data Technology for Production Analysis in the Oil & Gas Industry

    E-Print Network [OSTI]

    SPE 167844 Geographically-Distributed Databases: A Big Data Technology for Production Analysis advances in the scientific field of "big-data" to the world of Oil & Gas upstream industry. These off-of-the-start IT technologies currently employed in the data management of Oil & Gas production operations. Most current

  19. Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program

    E-Print Network [OSTI]

    Beckermann, Christoph

    Industrial Technologies Program U.S. Department of Energy Office of Energy Efficiency and Renewable Energy and stresses that develop during the heating and quenching processes. The proposed project will develop Technologies Program A Strong Energy Portfolio for a Strong America Energy efficiency and clean, renewable

  20. Development and Testing of a Moving Granular Bed Filter at the Taiwan Industrial Technology Research Institute

    SciTech Connect (OSTI)

    Peng, C.Y.; Hsiau, S-S.; Lee, H-T.; Smid, J.; Wu, T-C.

    2002-09-18

    The main purpose of developing high temperature gas cleaning technologies are to clean the gas under high temperature in order to be cost effective and to improve energy efficiency. Moving granular bed filters are technically and economically applicable for high temperature cleaning system because of low cost, possible to keep operation at a constant pressure drop, simple structure, easy in operation and maintenance, no high risk internals, and more tolerant to process thermal flow. Energy and Resource Laboratories, Taiwan Industrial Technology Research Institute (ERL/ITRI) has been developing a moving granular bed filter (MGBF) for BIGCC(Biomass Integrated Gasification Combined Cycle) high temperature gas cleanup. The filter granules move downwards directed by louver-like guide plates and the hot gases penetrate the MGBF horizontally. Filtration mechanisms include collection of the dust cake over the bed media surface and deep bed filtration. Stagnant zones of filter granules combining with the dusts always exist along the louver walls. Such stagnant zones often corrode the louver-like guide plates, increase the system pressure drop and decrease the total reaction efficiency that may endanger MGBF operation. Series louver and inert structure research that modify the granular flow pattern have been designed to eliminate the formation of these stagnant zones. By connecting to an auxiliary dust/bed media separation system, MGBF can be operated continuously at a stable pressure drop with a stable high efficiency. There are several MGBF R&D activities in progress: (1) a 3-dimensional cold flow system for testing the MGBF filtration efficiency; (2) a high temperature gas cleanup experimental system that has been designed and installed; (3) a 2-dimensional flow pattern experimental system for approving design concepts.

  1. Directed Evolution of a Highly Efficient Cellobiose Utilizing Pathway in an Industrial Saccharomyces

    E-Print Network [OSTI]

    Zhao, Huimin

    Directed Evolution of a Highly Efficient Cellobiose Utilizing Pathway in an Industrial, this strategy was applied to optimize a cellobiose utilizing pathway in an industrial Saccharomyces cerevisiae

  2. Industrial Waste Heat Recovery - Potential Applications, Available Technologies and Crosscutting R&D Opportunities

    SciTech Connect (OSTI)

    Thekdi, Arvind; Nimbalkar, Sachin U.

    2015-01-01

    The purpose of this report was to explore key areas and characteristics of industrial waste heat and its generation, barriers to waste heat recovery and use, and potential research and development (R&D) opportunities. The report also provides an overview of technologies and systems currently available for waste heat recovery and discusses the issues or barriers for each. Also included is information on emerging technologies under development or at various stages of demonstrations, and R&D opportunities cross-walked by various temperature ranges, technology areas, and energy-intensive process industries.

  3. Carbon Dioxide Separation Technology: R&D Needs for the Chemical and Petrochemical Industries

    SciTech Connect (OSTI)

    none,

    2007-11-01

    This report, the second in a series, is designed to summarize and present recommendations for improved CO2 separation technology for industrial processes. This report provides an overview of 1) the principal CO2 producing processes, 2) the current commercial separation technologies and 3) emerging adsorption and membrane technologies for CO2 separation, and makes recommendations for future research.

  4. High Performance Thermal Interface Technology Overview

    E-Print Network [OSTI]

    R. Linderman; T. Brunschwiler; B. Smith; B. Michel

    2008-01-07

    An overview on recent developments in thermal interfaces is given with a focus on a novel thermal interface technology that allows the formation of 2-3 times thinner bondlines with strongly improved thermal properties at lower assembly pressures. This is achieved using nested hierarchical surface channels to control the particle stacking with highly particle-filled materials. Reliability testing with thermal cycling has also demonstrated a decrease in thermal resistance after extended times with longer overall lifetime compared to a flat interface.

  5. Innovative High-Performance Deposition Technology for Low-Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hamer, Tim Spencer OLEDWorks LLC Innovative High-Performance Deposition Technology for Low-Cost Manufacturing of OLED Lighting 2015 Building Technologies Office Peer Review DOE...

  6. Detecting Fractures Using Technology at High Temperatures and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report Detecting...

  7. HEPTech funding opportunites HEPTech -High Energy Physics Technology Transfer Network

    E-Print Network [OSTI]

    Roma "La Sapienza", Universitŕ di

    HEPTech funding opportunites 1 HEPTech - High Energy Physics Technology Transfer Network May 2015 Prepared by: Jozef Stefan Institute, CTT - Center for Technology Transfer and Innovation, Slovenia dr

  8. A survey of thin-film solar photovoltaic industry & technologies

    E-Print Network [OSTI]

    Grama, Sorin

    2007-01-01

    A new type of solar cell technology using so-called thin-film solar photovoltaic material has the potential to make a great impact on our lives. Because it uses very little or no silicon at all, thin- film (TF) solar ...

  9. Industrial Technologies Available for Licensing - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat Pumps Heat Pumpsfacility doe logoIn FocusInIndustrial

  10. Towards a new high technology development in the Silicon Valley : a 21st century urban design vision

    E-Print Network [OSTI]

    Pang, Jonathan K. (Jonathan Kam)

    1988-01-01

    Santa Clara Valley, perhaps better known as the Silicon Valley, is currently facing many problems and uncertainties. The explosion of the high technology industry has changed the regional scene faster than anyone could ...

  11. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    No. 9. CTI, 2005: Climate Technology Initiative. Climate Technology Initiative (CTI)the identification of climate technology needs in developing

  12. Thomas Jefferson High School for Science & Technology Wins Feb...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bowl; Warwick High Wins Math and Science Challenges fellowship The Thomas Jefferson High School for Science and Technology, Alexandria, won the Feb. 5 Virginia Regional High...

  13. An industry view of the new technology and inventions needed by the independent petroleum industry by 2025

    SciTech Connect (OSTI)

    Oltz, D.F. [Illinois State Geological Survey, Champaign, IL (United States)

    1994-12-31

    In order to remain competitive, the U.S. independent oil industry will need rapid access to relevant data such as development histories, production data, rock samples, fluid samples, reservoir test data, advanced reservoir characterization, optimized drilling and completion technologies, interpreted geophysical (including seismic) data, and a source of funds derived from investors who can expect a return on their money. State geological surveys, attuned to the needs of local independents, can play a major role in meeting these increasing demands for data availability and data interpretation. Surveys can serve as neutral third parties to aid in collecting data not required to be reported to state governments. The interface between independents and surveys and between surveys and the technology developers and providers will produce technological leaps that may include: Improved reservoir imaging in a digital format that can be readily used by an independent`s PC-based system. Availability of data and information on analogous approaches to solutions of various drilling, completion, reservoir and production problems. Development of MWD technology that will allow comparison of real-time acquisition of reservoir rock and fluid data to geological and engineering analogs such as those developed by researchers at state geological surveys. The oil business is risk-based; the price of oil is determined in the world marketplace. At current levels of technology, well abandonments will increase at a deplorable rate between now and 2025. It is in the nation`s best interest from both the natural resource conservation and national energy policy standpoints to reduce the rate of well abandonments and improve recovery efficiency. This can be accomplished through a focused effort by both state and federal agencies addressing the technological needs of the independent industry.

  14. Electrochemical Energy Storage Technologies and the Automotive Industry

    ScienceCinema (OSTI)

    Mark Verbrugge

    2010-01-08

    The first portion of the lecture will relate global energy challenges to trends in personal transportation. Following this introduction, a short overview of technology associated with lithium ion batteries for traction applications will be provided. Last, I shall present new research results that enable adaptive characterization of lithium ion cells. Experimental and modeling results help to clarify the underlying electrochemistry and system performance. Specifically, through chemical modification of the electrodes, it is possible to place markers within the electrodes that signal the state of charge of a battery through abrupt voltage changes during cell operation, thereby allowing full utilization of the battery in applications. In closing, I shall highlight some promising materials research efforts that are expected to lead to substantially improved battery technology

  15. Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry: A Systematic Prioritization of Research Needs

    E-Print Network [OSTI]

    Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry: A Systematic and Policy Program #12;- 2 - #12;Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry in Technology and Policy Abstract Coal is widely relied upon as a fuel for electric power generation

  16. Science for Energy Technology: Strengthening the Link Between Basic Research and Industry

    SciTech Connect (OSTI)

    2010-04-01

    The nation faces two severe challenges that will determine our prosperity for decades to come: assuring clean, secure, and sustainable energy to power our world, and establishing a new foundation for enduring economic and jobs growth. These challenges are linked: the global demand for clean sustainable energy is an unprecedented economic opportunity for creating jobs and exporting energy technology to the developing and developed world. But achieving the tremendous potential of clean energy technology is not easy. In contrast to traditional fossil fuel-based technologies, clean energy technologies are in their infancy, operating far below their potential, with many scientific and technological challenges to overcome. Industry is ultimately the agent for commercializing clean energy technology and for reestablishing the foundation for our economic and jobs growth. For industry to succeed in these challenges, it must overcome many roadblocks and continuously innovate new generations of renewable, sustainable, and low-carbon energy technologies such as solar energy, carbon sequestration, nuclear energy, electricity delivery and efficiency, solid state lighting, batteries and biofuels. The roadblocks to higher performing clean energy technology are not just challenges of engineering design but are also limited by scientific understanding.Innovation relies on contributions from basic research to bridge major gaps in our understanding of the phenomena that limit efficiency, performance, or lifetime of the materials or chemistries of these sustainable energy technologies. Thus, efforts aimed at understanding the scientific issues behind performance limitations can have a real and immediate impact on cost, reliability, and performance of technology, and ultimately a transformative impact on our economy. With its broad research base and unique scientific user facilities, the DOE Office of Basic Energy Sciences (BES) is ideally positioned to address these needs. BES has laid out a broad view of the basic and grand challenge science needs for the development of future clean energy technologies in a series of comprehensive 'Basic Research Needs' workshops and reports (inside front cover and http://www.sc.doe.gov/bes/reports/list.html) and has structured its programs and launched initiatives to address the challenges. The basic science needs of industry, however, are often more narrowly focused on solving specific nearer-term roadblocks to progress in existing and emerging clean energy technologies. To better define these issues and identify specific barriers to progress, the Basic Energy Sciences Advisory Committee (BESAC) sponsored the Workshop on Science for Energy Technology, January 18-21, 2010. A wide cross-section of scientists and engineers from industry, universities, and national laboratories delineated the basic science Priority Research Directions most urgently needed to address the roadblocks and accelerate the innovation of clean energy technologies. These Priority Research Directions address the scientific understanding underlying performance limitations in existing but still immature technologies. Resolving these performance limitations can dramatically improve the commercial penetration of clean energy technologies. A key conclusion of the Workshop is that in addition to the decadal challenges defined in the 'Basic Research Needs' reports, specific research directions addressing industry roadblocks are ripe for further emphasis. Another key conclusion is that identifying and focusing on specific scientific challenges and translating the results to industry requires more direct feedback and communication and collaboration between industrial and BES-supported scientists. BES-supported scientists need to be better informed of the detailed scientific issues facing industry, and industry more aware of BES capabilities and how to utilize them. An important capability is the suite of BES scientific user facilities, which are seen as playing a key role in advancing the science of clean energy technology. Working together, in

  17. Select an Energy-Efficient Centrifugal Pump: Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2005 Select an Energy-Efficient Centrifugal Pump Overview Centrifugal pumps handle high flow rates, provide smooth, nonpulsating delivery, and regulate the flow rate over a wide...

  18. POTENTIAL AND FUTURE TRENDS ON INDUSTRIAL RADIATION PROCESSING TECHNOLOGY APPLICATION IN EMERGING COUNTRY - BRAZIL

    SciTech Connect (OSTI)

    Sampa, M.H.O.; Omi, N.M.; Rela, C.S.; Tsai, D.

    2004-10-06

    Brazil started the use of radiation technology in the seventies on crosslinking polyethylene for insulation of wire and electronic cables and sterilization of medical care devices. The present status of industrial applications of radiation shows that the use of this technology is increasing according to the economical development and the necessity to become the products manufactured in the local industries competitive in quality and price for internal and external market. The on going development activities in this area are concentrated on polymers processing (materials modification), foodstuff treatment and environmental protection. The development, the promotion and the technical support to consolidate this technology to the local industries is the main attribution of Institute for Energetic and Nuclear Research-IPEN, a governmental Institution.

  19. Heat Pipe Technology for Energy Conservation in the Process Industry 

    E-Print Network [OSTI]

    Price, B. L. Jr.

    1985-01-01

    is installed at an angle below the condenser section to assist in gravity return of the condensate inside the heat pipes. The angle of installation in the boiler is 30 deg to maximize heat piping capacity and allows smoother duct turns. The exhaust gases... stream_source_info ESL-IE-85-05-47.pdf.txt stream_content_type text/plain stream_size 24618 Content-Encoding ISO-8859-1 stream_name ESL-IE-85-05-47.pdf.txt Content-Type text/plain; charset=ISO-8859-1 HEAT PIPE TECHNOLOGY...

  20. Thompson Technology Industries Inc TTI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film Solar Technologies Jump to: navigation,TholenMiddle

  1. Clean Technology & Sustainable Industries Organization | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) Jump to:New York:ClayBurn FuelsTechnologiesInformation

  2. Vehicle Technologies Office Merit Review 2015: Development of Industrially

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutoryin theNuclearEnergyVBA-0082TechnologiesHeavy

  3. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    pp. IEA, 2006b: Industrial motor systems energy efficiency:industrial energy efficiency. Presented at Energy Efficiency in Motorenergy-efficient electric motors and motor-systems. These include: (1) industrial

  4. High Impact Technology Catalyst | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996 EMBG-PLN-003611,DepartmentMaterial |SecurityHigh Impact Technology

  5. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    and waste management that take place within industrialpolicies Waste management policies can reduce industrialWaste management policies.56 7.10 Co-benefits of industrial

  6. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    R.R. ,et al. , 2004: Eco-industrial park initiatives in theCHP plant) form an eco-industrial park that serves as an ex-

  7. EERE Technology Commercialization Portal: Connecting Energy Industry and Market Leaders with Laboratory Technologies

    SciTech Connect (OSTI)

    2010-06-01

    A flyer briefly describing the EERE Technology Commercialization Portal along with an example of one of its marketing summaries.

  8. EERE Technology Commercialization Portal: Connecting Energy Industry and Market Leaders with Laboratory Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    A flyer briefly describing the EERE Technology Commercialization Portal along with an example of one of its marketing summaries.

  9. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    cement and pulp and paper industries in China, and in thePulp and Paper Industry, Confederation of European Paper Industries, Brussels, March 2001. CESP, 2004: China’pulp and paper industries (GOI, 2005). There are 39.8 million SMEs in China,

  10. High Speed Imaging Technology for the Microgravity Containerless Processing Facility

    E-Print Network [OSTI]

    Fossum, Eric R.

    Study on High Speed Imaging Technology for the Microgravity Containerless Processing Facility Dr September 15, 1992 #12;High Speed Imaging Technology Study page 2 TABLE OF CONTENTS Glossary........................................................................................................................18 #12;High Speed Imaging Technology Study page 3 Glossary A/D analog-to-digital converter APS active

  11. High Impact Technology Hub- Provide Information about Technologies

    Broader source: Energy.gov [DOE]

    The Energy Department identifies and compiles inputs on technologies through a variety of engagement activities including Requests for Information (RFIs), workshops, discussion forums and ongoing...

  12. Vehicle Technologies Office Merit Review 2014: Enhanced High...

    Energy Savers [EERE]

    Enhanced High and Low Temperature Performance of NOx Reduction Materials Vehicle Technologies Office Merit Review 2014: Enhanced High and Low Temperature Performance of NOx...

  13. Thomas Jefferson High School for Science and Technology from...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    day of science and math questions and answers, the winning team was Thomas Jefferson High School for Science and Technology from Alexandria. Team captain and high school...

  14. Technology Development for Light Duty High Efficient Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications...

  15. Technology Development for High Efficiency Clean Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency...

  16. Cummins SuperTruck Program - Technology Demonstration of Highly...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration of Highly Efficient Clean, Diesel Powered Class 8 Trucks Cummins SuperTruck Program - Technology Demonstration of Highly Efficient Clean, Diesel Powered Class 8...

  17. Vehicle Technologies Office Merit Review 2014: High Energy Lithium...

    Office of Environmental Management (EM)

    High Energy Lithium Batteries for PHEV Applications Vehicle Technologies Office Merit Review 2014: High Energy Lithium Batteries for PHEV Applications Presentation given by...

  18. Vehicle Technologies Office Merit Review 2015: High Energy Lithium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Energy Lithium-Sulfur Cathodes Vehicle Technologies Office Merit Review 2015: High Energy Lithium-Sulfur Cathodes Presentation given by Stanford University at 2015 DOE...

  19. Wastewater and sludge control-technology options for synfuels industries

    SciTech Connect (OSTI)

    Castaldi, F.J.; Harrison, W.; Ford, D.L.

    1981-02-01

    The options examined were those of zero discharge, partial water reuse with restricted discharge of treated effluents, and unrestricted discharge of treated effluents. Analysis of cost data and performance-analyses data for several candidate secondary-wastewater-treatment unit processes indicated that combined activated-sludge/powdered-activated-carbon (AS/PAC) treatment incorporating wet-air-oxidation carbon regeneration is the most cost-effective control technology available for the removal of organic material from slagging, fixed-bed process wastewaters. Bench-scale treatability and organic-constituent removal studies conducted on process quench waters from a pilot-scale, slagging, fixed-bed gasifer using lignite as feedstock indicated that solvent extraction followed by AS/PAC treatment reduces levels of extractable and chromatographable organics to less than 1 ..mu..g/L in the final effluent. Levels of conventional pollutants also were effectively reduced by AS/PAC to the minimum water-quality standards for most receiving waters. The most favored and most cost-effective treatment option is unrestricted discharge of treated effluents with ultimate disposal of biosludges and landfilling of gasifier ash and slag. This option requires a capital expenditure of $8,260,000 and an annual net operating cost of $2,869,000 in 1978 dollars, exclusive of slag disposal. The net energy requirement of 19.6 x 10/sup 6/ kWh/year, or 15.3 kWh/1000 gal treated, is less than 6% of the equivalent energy demand associated with the zero-discharge option.

  20. IMPACTS. Industrial Technologies Program: Summary of Program Results for CY 2008

    SciTech Connect (OSTI)

    none,

    2010-08-02

    The Impacts report summarizes benefits resulting from ITP-sponsored technologies, including energy savings, waste reduction, increased productivity, and lowered emissions. It also provides an overview of the activities of the Industrial Assessment Centers, BestPractices Program, and Combined Heat and Power efforts.

  1. Design considerations for solar industrial process heat systems: nontracking and line focus collector technologies

    SciTech Connect (OSTI)

    Kutscher, C.F.

    1981-03-01

    Items are listed that should be considered in each aspect of the design of a solar industrial process heat system. The collector technologies covered are flat-plate, evacuated tube, and line focus. Qualitative design considerations are stressed rather than specific design recommendations. (LEW)

  2. Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program

    E-Print Network [OSTI]

    Beckermann, Christoph

    Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Program A Strong Energy Portfolio for a Strong America Energy efficiency and clean, renewable energy Industrial Technologies Program U.S. Department of Energy Office of Energy Efficiency and Renewable Energy

  3. WirelessHART: Applying Wireless Technology in Real-Time Industrial Process Control

    E-Print Network [OSTI]

    Chandy, John A.

    a WirelessHART protocol stack. 1 Introduction Wireless process control has been a popular topic re- centlyWirelessHART: Applying Wireless Technology in Real-Time Industrial Process Control Jianping Song.nixon}@emerson.com Wally Pratt HART Communication Foundation 9390 Research Blvd., Suite I-350 Austin, TX 78759, USA wallyp

  4. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    developed technology to use wastes such as plastics (Ziebekdeveloped technologies that use wastes, such as plastics, as

  5. The University of Texas at Austin High Value/High Risk Information Technology Purchase Policy

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    The University of Texas at Austin High Value/High Risk Information Technology Purchase Policy Officer Document Version: Approved Last Edited: 3/7/2011 1 High Value/High Risk Information Technology Original High Value/High Risk Information Technology Purchase Policy 3/4/2011 Converted web page to PDF

  6. U.S. Department of Energy’s Industrial Technologies Program and Its Impacts

    SciTech Connect (OSTI)

    Weakley, Steven A.; Brown, Scott A.

    2011-05-20

    The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ-mental performance, product quality, and productivity. To help ITP determine the impacts of its pro-grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro-gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer-cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the new technolo-gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNL’s most recent review (conducted in 2010). From 1976-2009, the commercialized technologies from ITP’s research and development programs and other activities have cumulatively saved 10.0 quadrillion Btu, with a net cost savings of $61.82 billion.

  7. U.S. Department of Energy’s Industrial Technology Program and Its Impacts

    SciTech Connect (OSTI)

    Weakley, Steven A.; Roop, Joseph M.

    2010-05-15

    The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ-mental performance, product quality, and productivity. To help ITP determine the impacts of its pro-grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro-gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer-cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the new technolo¬gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNL’s most recent review (conducted in 2009). From 1976-2008, the commercialized technologies from ITP’s research and development programs and other activities have cumulatively saved 9.27 quadrillion Btu, with a net cost savings of $63.91 billion.

  8. U.S. Department of Energy’s Industrial Technology Program and Its Impacts

    SciTech Connect (OSTI)

    Weakley, Steven A.; Roop, Joseph M.

    2009-04-02

    The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ-mental performance, product quality, and productivity. To help ITP determine the impacts of its pro-grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro-gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer-cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the new technolo¬gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNL’s most recent review (conducted in 2008). From 1976-2007, the commercialized technologies from ITP’s research and development programs and other activities have cumulatively saved 6.17 quadrillion Btu, with a net cost savings of $63.0 billion.

  9. Technology Roadmap for the 21st Century Truck Program, a government-industry research partnership

    SciTech Connect (OSTI)

    2000-12-01

    The 21st Century Truck Program has been established as a government-industry research partnership to support the development and implementation of commercially viable technologies that will dramatically cut fuel use and emissions of commercial trucks and buses while enhancing their safety and affordability as well as maintaining or enhancing performance. The innovations resulting from this program will reduce dependence on foreign oil, improve our nation's air quality, provide advanced technology for military vehicles, and enhance the competitiveness of the U.S. truck and bus industry while ensuring safe and affordable freight and bus transportation for the nation's economy. This Technology Roadmap for the 21st Century Truck Program has been prepared to guide the development of the technical advancements that will enable the needed improvements in commercial truck fuel economy, emissions, and safety.

  10. Qualification of Innovative High Level Waste Pipeline Unplugging Technologies

    SciTech Connect (OSTI)

    McDaniel, D.; Gokaltun, S.; Varona, J.; Awwad, A.; Roelant, D.; Srivastava, R.

    2008-07-01

    In the past, some of the pipelines have plugged during high level waste (HLW) transfers resulting in schedule delays and increased costs. Furthermore, pipeline plugging has been cited by the 'best and brightest' technical review as one of the major issues that can result in unplanned outages at the Waste Treatment Plant causing inconsistent operation. As the DOE moves toward a more active high level waste retrieval, the site engineers will be faced with increasing cross-site pipeline waste slurry transfers that will result in increased probability of a pipeline getting plugged. Hence, availability of a pipeline unplugging tool/technology is crucial to ensure smooth operation of the waste transfers and in ensuring tank farm cleanup milestones are met. FIU had earlier tested and evaluated various unplugging technologies through an industry call. Based on mockup testing, two technologies were identified that could withstand the rigors of operation in a radioactive environment and with the ability to handle sharp 90 elbows. We present results of the second phase of detailed testing and evaluation of pipeline unplugging technologies and the objective is to qualify these pipeline unplugging technologies for subsequent deployment at a DOE facility. The current phase of testing and qualification comprises of a heavily instrumented 3-inch diameter (full-scale) pipeline facilitating extensive data acquisition for design optimization and performance evaluation, as it applies to three types of plugs atypical of the DOE HLW waste. Furthermore, the data from testing at three different lengths of pipe in conjunction with the physics of the process will assist in modeling the unplugging phenomenon that will then be used to scale-up process parameters and system variables for longer and site typical pipe lengths, which can extend as much as up to 19,000 ft. Detailed information resulting from the testing will provide the DOE end-user with sufficient data and understanding of the technology, and its limitations to aid in the benefit-cost analysis for management decision whether to deploy the technology or to abandon the pipeline as has been done in the past. In conclusion: The ultimate objective of this study is to qualify NuVision's unplugging technology for use at Hanford. Experimental testing has been conducted using three pipeline lengths and three types of blockages. Erosion rates have been obtained and pressure data is being analyzed. An amplification of the inlet pressure has been observed along the pipeline and is the key to determining up to what pipe lengths the technology can be used without surpassing the site pressure limit. In addition, we will attempt to establish what the expected unplugging rates will be at the longer pipe lengths for each of the three blockages tested. Detailed information resulting from the testing will provide the DOE end-user with sufficient data and understanding of the technology, and its limitations so that management decisions can be made whether the technology has a reasonable chance to successfully unplug a pipeline, such as a cross site transfer line or process transfer pipeline at the Waste Treatment Plant. (authors)

  11. BEHAVIOURAL REALISM IN A TECHNOLOGY EXPLICIT ENERGY-ECONOMY MODEL: THE ADOPTION OF INDUSTRIAL COGENERATION IN CANADA

    E-Print Network [OSTI]

    COGENERATION IN CANADA by Nicholas J. Rivers B.Eng., Memorial University of Newfoundland, 2000 RESEARCH PROJECT: Behavioural realism in a technology explicit energy-economy model: The adoption of industrial cogeneration the results. The model showed that industrial cogeneration is a relatively unknown technology to many firms

  12. Research-Technology Management November--December 2013 | 1 Before the Industrial Revolution, goods were produced by

    E-Print Network [OSTI]

    Research-Technology Management · November--December 2013 | 1 Before the Industrial Revolution linked to the producer; there was no middleman and no supply chain. The Industrial Revolution ushered to the manufacturing sector as the Industrial Revolution was--the age of 3D printing and the digital tools that support

  13. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    disposal routes, several countries have set incen- tives to promote the use of various wastes in industrial processes in direct

  14. Occupational Safety Review of High Technology Facilities

    SciTech Connect (OSTI)

    Lee Cadwallader

    2005-01-31

    This report contains reviews of operating experiences, selected accident events, and industrial safety performance indicators that document the performance of the major US DOE magnetic fusion experiments and particle accelerators. These data are useful to form a basis for the occupational safety level at matured research facilities with known sets of safety rules and regulations. Some of the issues discussed are radiation safety, electromagnetic energy exposure events, and some of the more widespread issues of working at height, equipment fires, confined space work, electrical work, and other industrial hazards. Nuclear power plant industrial safety data are also included for comparison.

  15. Renewable Electricity Use by the U.S. Information and Communication Technology (ICT) Industry

    SciTech Connect (OSTI)

    Miller, John; Bird, Lori; Heeter, Jenny; Gorham, Bethany

    2015-07-20

    The information and communication technology (ICT) sector continues to witness rapid growth and uptake of ICT equipment and services at both the national and global levels. The electricity consumption associated with this expansion is substantial, although recent adoptions of cloudcomputing services, co-location data centers, and other less energy-intensive equipment and operations have likely reduced the rate of growth in this sector. This paper is intended to aggregate existing ICT industry data and research to provide an initial look at electricity use, current and future renewable electricity acquisition, as well as serve as a benchmark for future growth and trends in ICT industry renewable electricity consumption.

  16. Department of Energy Lauds Highly Efficient Industrial Technology |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory |EducationDepartment of Energy DOE Celebrates

  17. A systems approach to enterprise risk management in high-tech industry

    E-Print Network [OSTI]

    Sharma, Atul, 1973-

    2005-01-01

    The high-tech industry is showing increased interest in developing an enterprise wide approach to risk management. There are three reasons for this increased interest; first as the industry has matured, as evidenced by ...

  18. High Impact Technology Hub- Host a Site

    Broader source: Energy.gov [DOE]

    We are always looking for partners to host technology demonstrations.  Host site participants receive recognition by the Department of Energy, site applicability analysis as well as the opportunity...

  19. International Trade Conflict in High Technology Sectors: The Japanese Satellite Example

    E-Print Network [OSTI]

    Reynolds, Glenn H.

    1994-01-01

    TRADE CONFLICT IN HIGH TECHNOLOGY SECTORS: THE JAPANESEI. INTRODUCTION Commerce in high technology items has been aRICH- ARD NELSON, HIGH TECHNOLOGY POLICIES: A FIVE NATION

  20. The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry 

    E-Print Network [OSTI]

    Lung, R. B.; Masanet, E.; McKane, A.

    2006-01-01

    to each emerging technology in its target industry sector in 2020 was calculated. Projected savings were calculated in terms of both delivered energy (i.e., natural gas and electricity consumed at the plant) and primary energy (i.e., the fossil fuels...Wh/lb. (electricity) Specific energy consumption of base technologies (delivered) 166 Btu/lb. (natural gas) Regional weighted average fossil fuel intensity of electricity generation 7,380 Btu/kWh Regional weighted average CO 2 emissions from electricity...

  1. NOx reduction technology for natural-gas-industry prime movers. Special report, August 1990

    SciTech Connect (OSTI)

    Castaldini, C.

    1990-08-01

    The applicability, performance, and costs are summarized for state-of-the-art NOx emission controls for prime movers used by the natural gas industry to drive pipeline compressors. Nearly 7700 prime movers of 300 hp or greater are in operation at compressor stations. NOx control technologies for application to reciprocating engines are catalytic reduction, engine modification, exhaust gas recirculation, and pre-stratified charge. Technologies discussed for application to gas turbines are catalytic reduction, water or steam injection, and low-NOx combustors.

  2. An Assessment of carbon reduction technology opportunities in the petroleum refining industry.

    SciTech Connect (OSTI)

    Petrick, M.

    1998-09-14

    The refining industry is a major source of CO{sub 2} emissions in the industrial sector and therefore in the future can expect to face increasing pressures to reduce emission levels. The energy used in refining is impacted by market dictates, crude quality, and environmental regulations. While the industry is technologically advanced and relatively efficient opportunities nevertheless exist to reduce energy usage and CO{sub 2} emissions. The opportunities will vary from refinery to refinery and will necessarily have to be economically viable and compatible with each refiner's strategic plans. Recognizing the many factors involved, a target of 15-20% reduction in CO{sub 2} emissions from the refining sector does not appear to be unreasonable, assuming a favorable investment climate.

  3. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    of its electricity requirements in the USA (US DOE, 2002)USA, where motor-driven systems account for 63% of industrial electricity

  4. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    increased use of biomass and energy efficiency improvements,Moreira, J. , 2006: Global biomass energy potential. Journal1971–2004 Notes 1) Biomass energy included 2) Industrial

  5. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    of Industrial Electrical Switchgear and Control Gear in the6 from use in electrical switchgear and magnesium processinggas insulated electrical switchgear, during the production

  6. Technology and System Level Demonstration of Highly Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Peer Evaluation arravt081vssnewhouse2011o.pdf More Documents & Publications Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8...

  7. Thomas Jefferson High School for Science & Technology Wins...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    School, Richmond, Takes Second NEWPORT NEWS, Va., Feb. 27, 2010 - The Thomas Jefferson High School for Science and Technology from Alexandria beat out St. Christopher's School...

  8. Thomas Jefferson High School for Science & Technology wins...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Science Bowl. Winning the daylong academic competition was the Thomas Jefferson High School for Science and Technology, from Alexandria, Va. Following in second place was...

  9. Technology and System Level Demonstration of Highly Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation Meeting arravt081vssnewhouse2012o.pdf More Documents & Publications Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8...

  10. Technology Transfer Webinar on November 12: High-Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transfer Webinar on November 12: High-Performance Hybrid SimulationMeasurement-Based Tools for Proactive Operator Decision-Support Technology Transfer Webinar on November 12:...

  11. Vehicle Technologies Office Merit Review 2014: High Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    about high efficiency clean combustion in multi-cylinder light-duty engines. ace016curran2014o.pdf More Documents & Publications Vehicle Technologies Office Merit Review...

  12. High-throughput metagenomic technologies for complex microbial...

    Office of Scientific and Technical Information (OSTI)

    formats Prev Next Title: High-throughput metagenomic technologies for complex microbial community analysis. Open and closed formats You are accessing a document from...

  13. Global High-purity Pentoxide Industry 2015 Market Research Report...

    Open Energy Info (EERE)

    on. Then it analyzed the world's main region market conditions, including the product price, profit, capacity, production, capacity utilization, supply, demand and industry...

  14. Geothermal Industry Ends 2012 on a High Note | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    additional highlights of geothermal industry development in 2012 were: The first hybrid solar-geothermal project was commissioned by Enel Green Power at its Stillwater Geothermal...

  15. The roadmap for downscaling and introducing new technologies in the semiconductor industry is well laid out for the next ten years2.

    E-Print Network [OSTI]

    The roadmap for downscaling and introducing new technologies in the semiconductor industry is well in the International Technology Roadmap for Semiconductors, one- dimensional structures, such as carbon nanotubes

  16. Hollow-waveguide delivery systems for high-power, industrial CO2 lasers

    E-Print Network [OSTI]

    Hollow-waveguide delivery systems for high-power, industrial CO2 lasers Ricky K. Nubling and James to deliver CO2 laser power for industrial laser applications. The transmission, bending loss, and output, beam delivery, industrial lasers, power delivery, CO2 lasers. r 1996 Optical Society of America 1

  17. How Green is Silicon Valley? Ecological Sustainability and the High-tech Industry

    E-Print Network [OSTI]

    Evans, Tom

    2004-01-01

    Double Standards in Global High-Tech Production. http://Sustainability and the High-tech Industry Tom Evansand indicators projects. High-tech is often perceived to be

  18. Vehicle Technologies Office Merit Review 2015: High Energy High...

    Energy Savers [EERE]

    Exceeding PHEV-40 Requirements Presentation given by TIAX LLC at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  19. Thomas Jefferson High School for Science & Technology Snaps Up...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beach Schools Take 2nd, 3rd Place High School Science Bowl 1st Place The Thomas Jefferson High School for Science and Technology team from Alexandria poses with its first-place...

  20. Thomas Jefferson High School for Science & Technology wins...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the Virginia Regional High School Science Bowl was the team from the Thomas Jefferson High School for Science and Technology from Alexandria, Va. Pictured from left to right is...

  1. Funding Opportunity Webinar – Building America Industry Partnerships for High Performance Housing Innovations

    Broader source: Energy.gov [DOE]

    This webinar provides an overview of the “Building America Industry Partnerships for High Performance Housing Innovations” Funding Opportunity Announcement, DE-FOA-0001117.

  2. Funding Opportunity Webinar – Building America Industry Partnerships for High Performance Housing Innovations (Text Version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the Funding Opportunity Webinar, Building America Industry Partnerships for High Performance Housing Innovations, presented in November 2014.

  3. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    options for combined heat and power in Canada. Office ofpolicies to promote combined heat and power in US industry.conversions, such as combined heat and power and coke ovens,

  4. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    iron and steel production. IEA Greenhouse Gas R&D Programme,tempera- ture range. IEA/Caddet, Sittard, The Netherlands.industry. Cheltenham, UK, IEA Greenhouse Gas R&D Programme,

  5. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    developing countries, like India, adoption of efficient electricitydeveloping countries the sugar in- dustry uses bagasse and the edible oils industry uses byproduct wastes to generate steam and/or electricity (

  6. Advanced Membrane Separation Technologies for Energy Recovery from Industrial Process Streams

    SciTech Connect (OSTI)

    Keiser, J.R.; Wang, D.; Bischoff, B.; Ciora; Radhakrishnan, B.; Gorti, S.B.

    2013-01-14

    Recovery of energy from relatively low-temperature waste streams is a goal that has not been achieved on any large scale. Heat exchangers do not operate efficiently with low-temperature streams and thus require such large heat exchanger surface areas that they are not practical. Condensing economizers offer one option for heat recovery from such streams, but they have not been widely implemented by industry. A promising alternative to these heat exchangers and economizers is a prototype ceramic membrane system using transport membrane technology for separation of water vapor and recovery of heat. This system was successfully tested by the Gas Technology Institute (GTI) on a natural gas fired boiler where the flue gas is relatively clean and free of contaminants. However, since the tubes of the prototype system were constructed of aluminum oxide, the brittle nature of the tubes limited the robustness of the system and even limited the length of tubes that could be used. In order to improve the robustness of the membrane tubes and make the system more suitable for industrial applications, this project was initiated with the objective of developing a system with materials that would permit the system to function successfully on a larger scale and in contaminated and potentially corrosive industrial environments. This required identifying likely industrial environments and the hazards associated with those environments. Based on the hazardous components in these environments, candidate metallic materials were identified that are expected to have sufficient strength, thermal conductivity and corrosion resistance to permit production of longer tubes that could function in the industrial environments identified. Tests were conducted to determine the corrosion resistance of these candidate alloys, and the feasibility of forming these materials into porous substrates was assessed. Once the most promising metallic materials were identified, the ability to form an alumina membrane layer on the surface of the metallic tubes was evaluated. Evaluation of this new style of membrane tube involved exposure to SO{sub 2} containing gases as well as to materials with a potential for fouling. Once the choice of substrate and membrane materials and design were confirmed, about 150 tubes were fabricated and assembled into three modules. These modules were mounted on an industrial size boiler and their performance carefully monitored during a limited testing period. The positive results of this performance test confirm the feasibility of utilizing such a system for recovery of heat and water from industrial waste streams. The improved module design along with use of long metallic substrate tubes with a ceramic membrane on the outer surface resulted in the successful, limited scale demonstration of the Transport Membrane Condenser (TMC) technology in the GTI test facility. This test showed this technology can successfully recover a significant amount of heat and water from gaseous waste streams. However, before industry will make the investment to install a full scale TMC, a full scale system will need to be constructed, installed and successfully operated at a few industrial sites. Companies were identified that had an interest in serving as a host site for a demonstration system.

  7. Effective policymaking for developing ICT industries : lessons from three African governments' approach to information and communications technology

    E-Print Network [OSTI]

    Watkins, Kristen D

    2012-01-01

    This thesis studies the effect of different information and communication technology (ICT) policies on the performance of the ICT industry in a given country. Many developing country governments are in the process of ...

  8. Cluster building by policy design: a sociotechnical constituency study of information communication technology (ICT) industries in Scotland and Hong Kong 

    E-Print Network [OSTI]

    Wong, Alexandra Wai Wah

    2009-01-01

    This thesis investigates whether and how public policies can help build industrial clusters. The research applies a case study method based on 60 interviews to the emerging information communication technology (ICT) ...

  9. Crossing the Valley of Death: Policy Options to Advance the Uptake of Energy-Efficient Emerging Technologies in US Industry 

    E-Print Network [OSTI]

    Harris, J.; Bostrom, P.; Lung, R. B.

    2011-01-01

    and private investment, perceived risk, organizational decision-making, and regulatory certainty are all factors that influence the market penetration of emerging industrial technologies. Understanding their interplay is crucial to providing a policy...

  10. High-Speed Network Enables Industrial Internet | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure to Connect Machines, Data and People at Light Speed to the Industrial Internet Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new...

  11. High Performance Computing Technologies Jack Dongarra

    E-Print Network [OSTI]

    Dongarra, Jack

    limits are being approached. More cost e ective solution Example: Weather Prediction Navier-Stokes with 3D Grid around the Earth 6 variables 8 : temperature pressure humidity 3 ,wind velocity 1 Kilometer Huge users of HPC technology: Ford US is 25th largest user of HPC in the world Main uses of simulation

  12. Maximum Achievable Control Technology for New Industrial Boilers (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    As part of Clean Air Act 90 (CAAA90, the EPA on February 26, 2004, issued a final rulethe National Emission Standards for Hazardous Air Pollutants (NESHAP) to reduce emissions of hazardous air pollutants (HAPs) from industrial, commercial, and institutional boilers and process heaters. The rule requires industrial boilers and process heaters to meet limits on HAP emissions to comply with a Maximum Achievable Control Technology (MACT) floor level of control that is the minimum level such sources must meet to comply with the rule. The major HAPs to be reduced are hydrochloric acid, hydrofluoric acid, arsenic, beryllium, cadmium, and nickel. The EPA predicts that the boiler MACT rule will reduce those HAP emissions from existing sources by about 59,000 tons per year in 2005.

  13. Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels

    SciTech Connect (OSTI)

    Agrawal, Ajay; Taylor, Robert

    2013-09-30

    This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a path forward to utilize both fossil and alternative liquid fuels in the same combustion system. In particular, experiments show that straight VO can be cleanly combusted without the need for chemical processing or preheating steps, which can result in significant economic and environmental benefits. Next, low-emission combustion of glycerol/methane was achieved by utilizing FB injector to yield fine droplets of highly viscous glycerol. Heat released from methane combustion further improves glycerol pre-vaporization and thus its clean combustion. Methane addition results in an intensified reaction zone with locally high temperatures near the injector exit. Reduction in methane flow rate elongates the reaction zone, which leads to higher CO emissions and lower NOx emissions. Similarly, higher air to liquid (ALR) mass ratio improves atomization and fuel pre-vaporization and shifts the flame closer to the injector exit. In spite of these internal variations, all fuel mixes of glycerol with methane produced similar CO and NOx emissions at the combustor exit. Results show that FB concept provides low emissions with the flexibility to utilize gaseous and highly viscous liquid fuels, straight VO and glycerol, without preheating or preprocessing the fuels. Following these initial experiments in quartz combustor, we demonstrated that glycerol combustion can be stably sustained in a metal combustor. Phase Doppler Particle Analyzer (PDPA) measurements in glycerol/methane flames resulted in flow-weighted Sauter Mean Diameter (SMD) of 35 to 40 ?m, depending upon the methane percentage. This study verified that lab-scale dual-fuel burner using FB injector can successfully atomize and combust glycerol and presumably other highly viscous liquid fuels at relatively low HRR (<10 kW). For industrial applications, a scaled-up glycerol burner design thus seemed feasible.

  14. Advancing the technology base for high-temperature membranes

    SciTech Connect (OSTI)

    Dye, R.C.; Birdsell, S.A.; Snow, R.C. [and others

    1997-10-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project addresses the major issues confronting the implementation of high-temperature membranes for separations and catalysis. We are pursuing high-temperature membrane systems that can have a large impact for DOE and be industrially relevant. A major obstacle for increased use of membranes is that most applications require the membrane material to withstand temperatures above those acceptable for polymer-based systems. Advances made by this project have helped industry and DOE move toward high-temperature membrane applications to improve overall energy efficiency.

  15. Prospects for the medium- and long-term development of China`s electric power industry and analysis of the potential market for superconductivity technology

    SciTech Connect (OSTI)

    Li, Z.

    1998-05-01

    First of all, overall economic growth objectives in China are concisely and succinctly specified in this report. Secondly, this report presents a forecast of energy supply and demand for China`s economic growth for 2000--2050. In comparison with the capability of energy construction in China in the future, a gap between supply and demand is one of the important factors hindering the sustainable development of Chain`s economy. The electric power industry is one of China`s most important industries. To adopt energy efficiency through high technology and utilizing energy adequately is an important technological policy for the development of China`s electric power industry in the future. After briefly describing the achievements of China`s electric power industry, this report defines the target areas and policies for the development of hydroelectricity and nuclear electricity in the 2000s in China, presents the strategic position of China`s electric power industry as well as objectives and relevant plans of development for 2000--2050. This report finds that with the discovery of superconducting electricity, the discovery of new high-temperature superconducting (HTS) materials, and progress in materials techniques, the 21st century will be an era of superconductivity. Applications of superconductivity in the energy field, such as superconducting storage, superconducting transmission, superconducting transformers, superconducting motors, its application in Magneto-Hydro-Dynamics (MHD), as well as in nuclear fusion, has unique advantages. Its market prospects are quite promising. 12 figs.

  16. Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry

    E-Print Network [OSTI]

    Kong, Lingbo

    2014-01-01

    potential in the pulp and paper industry up to 2030. Master1999. India's Pulp and Paper Industry: Productivity andfor the Pulp and Paper Industry . 69

  17. Promising Technology: High-Efficiency Rooftop Units

    Broader source: Energy.gov [DOE]

    High-efficiency rooftop air conditioning units (RTUs) can significantly reduce heating, cooling, and ventilation energy consumption. High efficiency RTUs incorporate variable speed controls to minimize fan and compressor energy while capturing and reusing heat, cold, and humidity from a building’s exhaust air.

  18. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

    SciTech Connect (OSTI)

    2009-05-01

    This factsheet describes a research project whose goal is to develop degradation-resistant nano-coatings of AlMgB14 and AlMgB14– (titanium diboride) TiB2 that result in improved surface hardness and reduced friction for industrial hydraulic and tooling systems.

  19. ISTUM PC: industrial sector technology use model for the IBM-PC

    SciTech Connect (OSTI)

    Roop, J.M.; Kaplan, D.T.

    1984-09-01

    A project to improve and enhance the Industrial Sector Technology Use Model (ISTUM) was originated in the summer of 1983. The project had dix identifiable objectives: update the data base; improve run-time efficiency; revise the reference base case; conduct case studies; provide technical and promotional seminars; and organize a service bureau. This interim report describes which of these objectives have been met and which tasks remain to be completed. The most dramatic achievement has been in the area of run-time efficiency. From a model that required a large proportion of the total resources of a mainframe computer and a great deal of effort to operate, the current version of the model (ISTUM-PC) runs on an IBM Personal Computer. The reorganization required for the model to run on a PC has additional advantages: the modular programs are somewhat easier to understand and the data base is more accessible and easier to use. A simple description of the logic of the model is given in this report. To generate the necessary funds for completion of the model, a multiclient project is proposed. This project will extend the industry coverage to all the industrial sectors, including the construction of process flow models for chemicals and petroleum refining. The project will also calibrate this model to historical data and construct a base case and alternative scenarios. The model will be delivered to clients and training provided. 2 references, 4 figures, 3 tables.

  20. Section 2: Landscapes of Capital - Landscapes of Knowledge and High Technology

    E-Print Network [OSTI]

    O'Mara, Margaret

    2007-01-01

    technology industries, the Stanford Research Park became thetechnology industry by building a research park adjacent toindustry, with drawing power greater than low taxes or cheap labor. ” 5 The Early Research Park

  1. Cold Crucible Induction Melting Technology for Vitrification of High Level Waste: Development and Status in India

    SciTech Connect (OSTI)

    Sugilal, G.; Sengar, P.B.S. [Nuclear Recycle Group, Bhabha Atomic Research Centre, Trombay, Mumbai (India)

    2008-07-01

    Cold crucible induction melting is globally emerging as an alternative technology for the vitrification of high level radioactive waste. The new technology offers several advantages such as high temperature availability with long melter life, high waste loading, high specific capacity etc. Based on the laboratory and bench scale studies, an engineering scale cold crucible induction melter was locally developed in India. The melter was operated continuously to assess its performance. The electrical and thermal efficiencies were found to be in the range of 70-80 % and 10-20 % respectively. Glass melting capacities up to 200 kg m{sup -2} hr{sup -1} were accomplished using the ESCCIM. Industrially adaptable melter operating procedures for start-up, melting and pouring operations were established (author)

  2. Patent Litigation for High Technology and Life Sciences Companies

    E-Print Network [OSTI]

    Shamos, Michael I.

    Patent Litigation for High Technology and Life Sciences Companies #12;© 2005 Fenwick & West LLP Corporate (emerging growth, financings, securities, mergers & acquisitions) n Intellectual Property (patent, copyright, licensing, trademark) n Litigation (patent and other IP, securities, antitrust, employment

  3. High Technology School-to-Work Program at Argonne

    ScienceCinema (OSTI)

    None

    2013-04-19

    Argonne's High Technology School-to-Work Program for Chicago Public School Students. Supported by the Illinois Department of Commerce and Economic Opportunity, Chicago Public Schools, Argonne National Laboratory and the City of Chicago.

  4. OTHER INDUSTRIES

    Office of Energy Efficiency and Renewable Energy (EERE)

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  5. Vehicle Technologies Office Merit Review 2014: High Temperature Materials for High Efficiency Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  6. Vehicle Technologies Office Merit Review 2015: High Temperature Materials for High Efficiency Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  7. Multijunction Photovoltaic Technologies for High-Performance Concentrators: Preprint

    SciTech Connect (OSTI)

    McConnell, R.; Symko-Davies, M.

    2006-05-01

    Multijunction solar cells provide high-performance technology pathways leading to potentially low-cost electricity generated from concentrated sunlight. The National Center for Photovoltaics at the National Renewable Energy Laboratory has funded different III-V multijunction solar cell technologies and various solar concentration approaches. Within this group of projects, III-V solar cell efficiencies of 41% are close at hand and will likely be reported in these conference proceedings. Companies with well-developed solar concentrator structures foresee installed system costs of $3/watt--half of today's costs--within the next 2 to 5 years as these high-efficiency photovoltaic technologies are incorporated into their concentrator photovoltaic systems. These technology improvements are timely as new large-scale multi-megawatt markets, appropriate for high performance PV concentrators, open around the world.

  8. Multijunction Photovoltaic Technologies for High-Performance Concentrators

    SciTech Connect (OSTI)

    McConnell, R.; Symko-Davies, M.

    2006-01-01

    Multijunction solar cells provide high-performance technology pathways leading to potentially low-cost electricity generated from concentrated sunlight. The National Center for Photovoltaics at the National Renewable Energy Laboratory has funded different III-V multijunction solar cell technologies and various solar concentration approaches. Within this group of projects, III-V solar cell efficiencies of 41% are close at hand and will likely be reported in these conference proceedings. Companies with well-developed solar concentrator structures foresee installed system costs of $3/watt--half of today's costs--within the next 2 to 5 years as these high-efficiency photovoltaic technologies are incorporated into their concentrator photovoltaic systems. These technology improvements are timely as new large-scale multi-megawatt markets, appropriate for high performance PV concentrators, open around the world.

  9. High Impact Technology Catalyst | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to TappingWORK BREAKDOWNEnergy how toEM&High impact

  10. High Impact Technology Hub | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡ ¢HelpHighJian Li,1and

  11. Innovation in mature industries : recent impacts of the oil & gas and automobile technological trends on the steel industry

    E-Print Network [OSTI]

    Tivelli, Marco M. (Marco Mario), 1964-

    2004-01-01

    In order to survive, the steel industry has undergone traumatic changes in the last years. A thirty years old overcapacity combined with a slow growing market led to a steadily eroding profitability of steel companies, ...

  12. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    Refining Cement Membrane separation Refinery gas Natural gasgas pressure Charcoal recovery, Byproduct gas combined cycle Scrap High strength steel Non-Ferrous Metals Chemicals Scrap Membrane separations,

  13. Emerging High-Efficiency Low-Cost Solar Cell Technologies

    E-Print Network [OSTI]

    McGehee, Michael

    J. of Photovoltaics, 2 (2012) p. 303. Si GaAs #12;Why thin film GaAs;Gallium Arsenide · The 1.4 eV band gap is ideal for solar cells. · High quality films are grownEmerging High-Efficiency Low-Cost Solar Cell Technologies Mike McGehee Materials Science

  14. REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES

    SciTech Connect (OSTI)

    Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

    2002-02-25

    The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

  15. Vehicle Technologies Office Merit Review 2015: High-Voltage, High-Capacity Polyanion Cathodes

    Broader source: Energy.gov [DOE]

    Presentation given by U of Texas at Austin at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high-voltage, high...

  16. Vehicle Technologies Office Merit Review 2014: High Energy High Power Battery Exceeding PHEV-40 Requirements

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy high power battery...

  17. Managing multi-tiered suppliers in the high-tech industry

    E-Print Network [OSTI]

    Frantz, Charles E. (Charles Evan)

    2009-01-01

    This thesis presents a roadmap for companies to follow as they manage multi-tiered suppliers in the high-tech industry. Our research covered a host of sources including interviews and publications from various companies, ...

  18. SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT COLLEGE OF ENGINEERING, ARCHITECTURE AND TECHNOLOGY

    E-Print Network [OSTI]

    Piao, Daqing

    SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT COLLEGE OF ENGINEERING performance. Candidates must have a Ph.D. in industrial engineering or a related in the industrial engineering and management field. We seek candidates with curricular

  19. Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry

    E-Print Network [OSTI]

    Kong, Lingbo

    2014-01-01

    potential in the pulp and paper industry up to 2030. Master1999. India's Pulp and Paper Industry: Productivity andWhite. 2006. Pulp and Paper Industry Energy Bandwidth Study.

  20. Technological options of Taiwan to mitigate global warming: Perspectives of a newly industrialized economy

    SciTech Connect (OSTI)

    Young, R.T.; Fang, L.J.

    1996-12-31

    While there is no shortage of studies on whether and how OECD countries can stabilize their CO{sub 2} emissions, the situation in developing countries has been subjected to much less scrutiny. Although current emission levels in developing countries are low, they can vastly increase in the future due to higher economic growth rates. Of particular interest are newly industrializing economies; they are positioned to be the first group of countries to catch up with OECD emission levels. In this paper, the authors examine the CO{sub 2} emission scenarios in Taiwan, whose economy is still growing at more than 6% after years of impressive performance. A dynamic, multi-period optimization model was constructed to evaluate various energy system development paths. Both currently utilized technologies and advanced technologies that may become available are considered. The model meets externally specified final energy sectoral demands while keeping the objective function minimal. For devising a practical program to control greenhouse gases emissions, relative advantages of the conventional regulation approach with incentive-based approaches are compared. The comparison is made by running the model using different objective functions.

  1. Dependability for high-tech systems: an industry-as-laboratory approach Ed Brinksma

    E-Print Network [OSTI]

    Hooman, Jozef

    Dependability for high-tech systems: an industry-as-laboratory approach Ed Brinksma Embedded-based control paradigm, and the current status of the project results. 1. Introduction High-tech systems lifted the issue of dependability of the embedded compo- nents to the level of the embedding high-tech

  2. Heavy-Duty Engine Technology for High Thermal Efficiency at EPA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology for High Thermal Efficiency at EPA 2010 Emissions Regulations Heavy-Duty Engine Technology for High Thermal Efficiency at EPA 2010 Emissions Regulations Presentation...

  3. Nanocoatings for High-Efficiency Industrial and Tooling Systems

    SciTech Connect (OSTI)

    Blau, P; Qu, J.; Higdon, C.

    2011-02-01

    This industry-driven project was the result of a successful response by Eaton Corporation to a DOE/ITP Program industry call. It consisted of three phases in which ORNL participated. In addition to Eaton Corporation and ORNL (CRADA), the project team included Ames Laboratory, who developed the underlying concept for aluminum-magnesium-boron based nanocomposite coatings [1], and Greenleaf, a small tooling manufacturer in western Pennsylvania. This report focuses on the portion of this work that was conducted by ORNL in a CRADA with Eaton Corporation. A comprehensive final report for the entire effort, which ended in September 2010, has been prepared by Eaton Corporation. Phase I, “Proof of Concept” ran for one year (September 1, 2006 to September 30, 2007) during which the applicability of AlMgB14 single-phase and nanocomposite coatings on hydraulic material coupons and components as well as on tool inserts was demonstrated.. The coating processes used either plasma laser deposition (PLD) or physical vapor deposition (PVD). During Phase I, ORNL conducted laboratory-scale pin-on-disk and reciprocating pin-on-flat tests of coatings produced by PLD and PVD. Non-coated M2 tool steel was used as a baseline for comparison, and the material for the sliding counterface was Type 52100 bearing steel since it simulated the pump materials. Initial tests were run mainly in a commercial hydraulic fluid named Mobil DTE-24, but some tests were later run in a water-glycol mixture as well. A tribosystem analysis was conducted to define the operating conditions of pump components and to help develop simulative tests in Phase II. Phase II, “Coating Process Scale-up” was intended to use scaled-up process to generate prototype parts. This involved both PLD practices at Ames Lab, and a PVD scale-up study at Eaton using its production capable equipment. There was also a limited scale-up study at Greenleaf for the tooling application. ORNL continued to conduct friction and wear tests on process variants and developed tests to better simulate the applications of interest. ORNL also employed existing lubrication models to better understand hydraulic pump frictional behavior and test results. Phase III, “Functional Testing” focused on finalizing the strategy for commercialization of AlMgB14 coatings for both hydraulic and tooling systems. ORNL continued to provide tribology testing and analysis support for hydraulic pump applications. It included both laboratory-scale coupon testing and the analysis of friction and wear data from full component-level tests performed at Eaton Corp. Laboratory-scale tribology test methods are used to characterize the behavior of nanocomposite coatings prior to running them in full-sized hydraulic pumps. This task also includes developing tribosystems analyses, both to provide a better understanding of the performance of coated surfaces in alternate hydraulic fluids, and to help design useful laboratory protocols. Analysis also includes modeling the lubrication conditions and identifying the physical processes by which wear and friction of the contact interface changes over time. This final report summarizes ORNL’s portion of the nanocomposite coatings development effort and presents both generated data and the analyses that were used in the course of this effort.

  4. Reactor User Interface Technology Development Roadmaps for a High Temperature Gas-Cooled Reactor Outlet Temperature of 750 degrees C

    SciTech Connect (OSTI)

    Ian Mckirdy

    2010-12-01

    This report evaluates the technology readiness of the interface components that are required to transfer high-temperature heat from a High Temperature Gas-Cooled Reactor (HTGR) to selected industrial applications. This report assumes that the HTGR operates at a reactor outlet temperature of 750°C and provides electricity and/or process heat at 700°C to conventional process applications, including the production of hydrogen.

  5. Incentives to Accelerate the Penetration of Electricity in the Industrial Sector by Promoting New Technologies: A French Experiment 

    E-Print Network [OSTI]

    Bouchet, J.; Froehlich, R.

    1983-01-01

    A major problem encountered when trying to speed up electrification of French industry has been 'hot to finance, at end-user's level, investments related to such a change of technology'. Government incentives, the aims of which are to help saving...

  6. Technology, Knowledge, Culture, and Management: the keys The shift from industrial societies to information societies

    E-Print Network [OSTI]

    Kopec, Danny

    Technology, Knowledge, Culture, and Management: the keys to success Abstract The shift from to success: technology, knowledge, culture and management. Organizations employ technology with the goal of improving efficiency and reducing operational costs. Hence technology structures within organizations must

  7. Supporting the High-Technology Entrepreneur: Support Network Geographies for Semiconductor, Telecommunications Equipment, and Biotechnology Start-Ups

    E-Print Network [OSTI]

    Kenney, Martin; Patton, Donald

    2004-01-01

    Flexible Recycling and High-Technology Entrepreneurship." InVenture Capital, High Technology and Regional Development."as the Ideal-Typical High Technology Cluster. ” Unpublished

  8. Nanocoating for High-efficiency Industrial Hydraulic and Tooling Systems

    SciTech Connect (OSTI)

    Cook, Bruce

    2011-06-22

    Characterization of the AlMgB14-based coatings revealed their semi-crystalline nature; as a single phase, AlMgB14 appears amorphous. Combining this material with TiB2 through comminution of very fine-scale powders (~100 nm), produces a bulk solid that exceeds the hardness of its respective constituent phases. Through physical vapor deposition processing, the resulting nanocomposite coating combines the wear resistance characteristic of hard materials (e.g. the AlMgB14) with a regenerating lubricant. Within the top layers (10-20 nm) of the nanocomposite coating, the same TiB2 phase used to enhance the strength and provide ductility to the otherwise brittle AlMgB14 material reacts with available oxygen to form boron oxide. As the atoms of TiB2 continue to react, layers of boric acid begin to form at the surface. This affords an exceptionally low coefficient of friction (as low as 0.02) to the coating. Physical vapor deposition processing parameters were evaluated and optimized during the project to minimize the difficulties common to transitioning a laboratory-scale process or technology to a salable product. Coating process times and temperatures, process gas flows and ramp rates, and a number of other adjustable parameters were optimized based on the results of testing and coating characterization. The overriding goal of all of these efforts was a repeatable coating process that yields the benefits observed in the laboratory, independent of the intended product or market.

  9. Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications

    SciTech Connect (OSTI)

    Armstrong, Phillip

    2014-11-01

    Air Products is carrying out a scope of work under DOE Award No. DE-FE0012065 “Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications.” The Statement of Project Objectives (SOPO) includes a Task 4f in which a Decision Point shall be reached, necessitating a review of Tasks 2-5 with an emphasis on Task 4f. This Topical Report constitutes the Decision Point Application pertaining to Task 4f. The SOPO under DOE Award No. DE-FE0012065 is aimed at furthering the development of the Ion Transport Membrane (ITM) Oxygen production process toward a demonstration scale facility known as the Oxygen Development Facility (ODF). It is anticipated that the completion of the current SOPO will advance the technology significantly along a pathway towards enabling the design and construction of the ODF. Development progress on several fronts is critical before an ODF project can commence; this Topical Report serves as an early update on the progress in critical development areas. Progress was made under all tasks, including Materials Development, Ceramic Processing Development, Engineering Development, and Performance Testing. Under Task 4f, Air Products carried out a cost and performance study in which several process design and cost parameters were varied and assessed with a process model and budgetary costing exercise. The results show that the major variables include ceramic module reliability, ITM operating temperature, module production yield, and heat addition strategy. High-temperature compact heat exchangers are shown to contribute significant cost benefits, while directly firing into the feed stream to an ITM are even a mild improvement on the high-temperature recuperation approach. Based on the findings to-date, Air Products recommends no changes to the content or emphasis in the current SOPO and recommends its completion prior to another formal assessment of these factors.

  10. Special Focus on High-Confidence Software Technologies SCIENCE CHINA

    E-Print Network [OSTI]

    Yang, Yun

    , China; 3School of Software and Electrical Engineering, Swinburne University of Technology, Hawthorn VIC of high-level middleware services for different comput- ing paradigms such as cluster, grid, and cloud intensive e-science applications such as weather fore- cast earthquake modeling, and astrophysics [4

  11. High-Speed Network Enables Industrial Internet | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D. Title: ProfessorHigh-Pressure MOFOffice of

  12. Implementing very high-speed hierarchical MLP-based classification systems in real-time industrial environments

    E-Print Network [OSTI]

    Masulli, Francesco

    Implementing very high-speed hierarchical MLP-based classification systems in real-time industrial-Perceptron-based "tree architecture" even in very high-speed industrial classification problems. In particular, the paper 64 input ­ 128 hidden ­ 64 output MLP on-chip), it has been possible to build an industrial board

  13. An evolution of technologies and applications of gamma imagers in the nuclear cycle industry

    SciTech Connect (OSTI)

    Khalil, R. A. [AREVA/CANBERRA - Nuclear Measurements Business Unit (France); Carrel, F. [CEA, LIST, F-91191 Gif-sur-Yvette (France); Menaa, N.; De Toro, D. [AREVA/CANBERRA - Nuclear Measurements Business Unit (France); Schoepff, V.; Gmar, M. [CEA, LIST, F-91191 Gif-sur-Yvette (France); Varet, T. [AREVA/Nuclear Site Value Development Business Unit (France); Toubon, H. [AREVA/CANBERRA - Nuclear Measurements Business Unit (France)

    2011-07-01

    The tracking of radiation contamination and distribution has become a high priority in the nuclear cycle industry in order to respect the ALARA principle which is a main challenge during decontamination and dismantling activities. To support this need, AREVA/CANBERRA and CEA LIST have been actively carrying out research and development on a gamma-radiation imager. In this paper we will present the new generation of gamma camera, called GAMPIX. This system is based on the Timepix chip, hybridized with a CdTe substrate. A coded mask could be used in order to increase the sensitivity of the camera. Moreover, due to the USB connection with a standard computer, this gamma camera is immediately operational and user-friendly. The final system is a very compact gamma camera (global weight is less than 1 kg without any shielding) which could be used as a hand-held device for radioprotection purposes. In this article, we present the main characteristics of this new generation of gamma camera and we expose experimental results obtained during in situ measurements. Even though we present preliminary results the final product is under industrialization phase to address various applications specifications. (authors)

  14. High-level waste management technology program plan

    SciTech Connect (OSTI)

    Harmon, H.D.

    1995-01-01

    The purpose of this plan is to document the integrated technology program plan for the Savannah River Site (SRS) High-Level Waste (HLW) Management System. The mission of the SRS HLW System is to receive and store SRS high-level wastes in a see and environmentally sound, and to convert these wastes into forms suitable for final disposal. These final disposal forms are borosilicate glass to be sent to the Federal Repository, Saltstone grout to be disposed of on site, and treated waste water to be released to the environment via a permitted outfall. Thus, the technology development activities described herein are those activities required to enable successful accomplishment of this mission. The technology program is based on specific needs of the SRS HLW System and organized following the systems engineering level 3 functions. Technology needs for each level 3 function are listed as reference, enhancements, and alternatives. Finally, FY-95 funding, deliverables, and schedules are s in Chapter IV with details on the specific tasks that are funded in FY-95 provided in Appendix A. The information in this report represents the vision of activities as defined at the beginning of the fiscal year. Depending on emergent issues, funding changes, and other factors, programs and milestones may be adjusted during the fiscal year. The FY-95 SRS HLW technology program strongly emphasizes startup support for the Defense Waste Processing Facility and In-Tank Precipitation. Closure of technical issues associated with these operations has been given highest priority. Consequently, efforts on longer term enhancements and alternatives are receiving minimal funding. However, High-Level Waste Management is committed to participation in the national Radioactive Waste Tank Remediation Technology Focus Area. 4 refs., 5 figs., 9 tabs.

  15. Applying New Technologies: ANT Automation es una empresa de Automatizacin Industrial, con operaciones en USA, Argentina y Espaa. La empresa est conformada por un slido grupo de

    E-Print Network [OSTI]

    Maguitman, Ana Gabriela

    Applying New Technologies: ANT Automation es una empresa de Automatización Industrial, con más de 12 ańos de experiencia en Software/Automatización Industrial y por nuevos jóvenes talentos con el desarrollo de productos de software industrial: OPC, SCADA, MES, VISION ARTIFICIAL, MODELOS

  16. Prospects for pyrolysis technologies in managing municipal, industrial, and DOE cleanup wastes

    SciTech Connect (OSTI)

    Reaven, S.J.

    1994-12-01

    Pyrolysis converts portions of municipal solid wastes, hazardous wastes, and special wastes such as tires, medical wastes, and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. Pyrolysis heats a carbonaceous waste stream typically to 290--900 C in the absence of oxygen, and reduces the volume of waste by 90% and its weight by 75%. The solid carbon char has existing markets as an ingredient in many manufactured goods, and as an adsorbent or filter to sequester certain hazardous wastes. Pyrolytic gases may be burned as fuel by utilities, or liquefied for use as chemical feedstocks, or low-pollution motor vehicle fuels and fuel additives. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates for the four most promising pyrolytic systems their technological and commercial readiness, their applicability to regional waste management needs, and their conformity with DOE requirements for environmental restoration and waste management. This summary characterizes their engineering performance, environmental effects, costs, product applications, and markets. Because it can effectively treat those wastes that are inadequately addressed by current systems, pyrolysis can play an important complementing role in the region`s existing waste management strategy. Its role could be even more significant if the region moves away from existing commitments to incineration and MSW composting. Either way, Long Island could become the center for a pyrolysis-based recovery services industry serving global markets in municipal solid waste treatment and hazardous waste cleanup. 162 refs.

  17. Integrating renewable energy technologies in the electric supply industry: A risk management approach

    SciTech Connect (OSTI)

    Hoff, T.E. [Pacific Energy Group, Walnut Creek, CA (United States)

    1997-07-01

    Regulatory and technical forces are causing electric utilities to move from a natural monopoly to a more competitive environment. Associated with this movement is an increasing concern about how to manage the risks associated with the electric supply business. One approach to managing risks is to purchase financial instruments such as options and futures contracts. Another approach is to own physical assets that have low risk attributes or characteristics. This research evaluates how investments in renewable energy technologies can mitigate risks in the electric supply industry. It identifies risks that are known to be of concern to utilities and other power producers. These risks include uncertainty in fuel prices, demand, environmental regulations, capital cost, supply, and market structure. The research then determines how investments in renewables can mitigate these risks. Methods are developed to calculate the value of renewables in terms of their attributes of fuel costs, environmental costs, lead-time, modularity, availability, initial capital costs, and investment reversibility. Examples illustrate how to apply the methods.

  18. Agricultural Industry Advanced Vehicle Technology: Benchmark Study for Reduction in Petroleum Use

    SciTech Connect (OSTI)

    Roger Hoy

    2014-09-01

    Diesel use on farms in the United States has remained relatively constant since 1985, decreasing slightly in 2009, which may be attributed to price increases and the economic recession. During this time, the United States’ harvested area also has remained relatively constant at roughly 300 million acres. In 2010, farm diesel use was 5.4% of the total United States diesel use. Crops accounting for an estimated 65% of United States farm diesel use include corn, soybean, wheat, hay, and alfalfa, respectively, based on harvested crop area and a recent analysis of estimated fuel use by crop. Diesel use in these cropping systems primarily is from tillage, harvest, and various other operations (e.g., planting and spraying) (Figure 3). Diesel efficiency is markedly variable due to machinery types, conditions of operation (e.g., soil type and moisture), and operator variability. Farm diesel use per acre has slightly decreased in the last two decades and diesel is now estimated to be less than 5% of farm costs per acre. This report will explore current trends in increasing diesel efficiency in the farm sector. The report combines a survey of industry representatives, a review of literature, and data analysis to identify nascent technologies for increasing diesel efficiency

  19. Product strategy in response to technological innovation in the semiconductor test industry

    E-Print Network [OSTI]

    Lin, Robert W. (Robert Wei-Pang), 1976-

    2004-01-01

    After the market boom of 2000 in the semiconductor industry changed significantly. The changes included stricter limits on capital cost spending, and the increased propensity of the industry to outsource the manufacturing ...

  20. Overview of U. S. Department of Energy Program in Industrial Energy Conservation Technology Development 

    E-Print Network [OSTI]

    Massey, R. G.

    1980-01-01

    The primary responsibility for Federal industrial energy conservation is in the Office of Industrial Programs which reports to the Assistant Secretary for Conservation and Solar Energy. The objectives of the Federal program are to: achieve maximum...

  1. Technology requirements for high-power Lithium Lorentz Force accelerators

    SciTech Connect (OSTI)

    Polk, J.; Frisbee, R.; Krauthamer, S.; Tikhonov, V.; Semenikhin, S.; Kim, V.

    1997-01-01

    Lithium Lorentz Force Accelerators (LFA{close_quote}s) are capable of processing very high power levels and are therefore applicable to a wide range of challenging missions. An analysis of a reusable orbit transfer vehicle with a solar or nuclear electric power source was performed to assess the applicability of high-power LFA{close_quote}s to this mission and to define engine performance and lifetime goals to help guide the technology development program. For this class of missions, the emphasis must be on achieving high efficiency at an Isp of 4000{endash}5000 s at power levels of 200{endash}250 kWe. The engines must demonstrate very reliable operation for a service life of about 3000 hours. These goals appear to be achievable with engine technologies currently under development. {copyright} {ital 1997 American Institute of Physics.}

  2. Technology Development Roadmap for the Advanced High Temperature Reactor Secondary Heat Exchanger

    SciTech Connect (OSTI)

    P. Sabharwall; M. McCllar; A. Siahpush; D. Clark; M. Patterson; J. Collins

    2012-09-01

    This Technology Development Roadmap (TDRM) presents the path forward for deploying large-scale molten salt secondary heat exchangers (MS-SHX) and recognizing the benefits of using molten salt as the heat transport medium for advanced high temperature reactors (AHTR). This TDRM will aid in the development and selection of the required heat exchanger for: power production (the first anticipated process heat application), hydrogen production, steam methane reforming, methanol to gasoline production, or ammonia production. This TDRM (a) establishes the current state of molten salt SHX technology readiness, (b) defines a path forward that systematically and effectively tests this technology to overcome areas of uncertainty, (c) demonstrates the achievement of an appropriate level of maturity prior to construction and plant operation, and (d) identifies issues and prioritizes future work for maturing the state of SHX technology. This study discusses the results of a preliminary design analysis of the SHX and explains the evaluation and selection methodology. An important engineering challenge will be to prevent the molten salt from freezing during normal and off-normal operations because of its high melting temperature (390°C for KF ZrF4). The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The need for efficiency, compactness, and safety challenge the capabilities of existing heat exchanger technology. The description of potential heat exchanger configurations or designs (such as printed circuit, spiral or helical coiled, ceramic, plate and fin, and plate type) were covered in an earlier report (Sabharwall et al. 2011). Significant future work, much of which is suggested in this report, is needed before the benefits and full potential of the AHTR can be realized. The execution of this TDRM will focuses research efforts on the near-term qualification, selection, or maturation strategy as detailed in this report. Development of the integration methodology feasibility study, along with research and development (R&D) needs, are ongoing tasks that will be covered in the future reports as work progresses. Section 2 briefly presents the integration of AHTR technology with conventional chemical industrial processes., See Idaho National Laboratory (INL) TEV-1160 (2011) for further details

  3. Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry

    E-Print Network [OSTI]

    Kong, Lingbo

    2014-01-01

    Pulp and Paper Industry Lingbo Kong, Ali Hasanbeigi, Lynn Price ChinaPulp and Paper Industry Lingbo Kong 1, 2 , Ali Hasanbeigi 1 , Lynn Price 1 ChinaPulp and Paper Industry Lingbo Kong 1, 2 , Ali Hasanbeigi 1 , Lynn Price 1 China

  4. A project operated by RIKEN as part of the Japanese Ministry of Education, Culture, Sports, Science & Technology's High Performance

    E-Print Network [OSTI]

    Fukai, Tomoki

    & Technology's High Performance Computing Infrastructure (HPCI) program Supercomputational Life Science

  5. Development of high temperature transport technology for LiCl-KCl eutectic salt in pyroprocessing

    SciTech Connect (OSTI)

    Lee, Sung Ho; Lee, Hansoo; Kim, In Tae; Kim, Jeong-Guk

    2013-07-01

    The development of high-temperature transport technologies for molten salt is a prerequisite and a key issue in the industrialization of pyro-reprocessing for advanced fuel cycle scenarios. The solution of a molten salt centrifugal pump was discarded because of the high corrosion power of a high temperature molten salt, so the suction pump solution was selected. An apparatus for salt transport experiments by suction was designed and tested using LiC-KCl eutectic salt. The experimental results of lab-scale molten salt transport by suction showed a 99.5% transport rate (ratio of transported salt to total salt) under a vacuum range of 100 mtorr - 10 torr at 500 Celsius degrees. The suction system has been integrated to the PRIDE (pyroprocessing integrated inactive demonstration) facility that is a demonstrator using non-irradiated materials (natural uranium and surrogate materials). The performance of the suction pump for the transport of molten salts has been confirmed.

  6. High-Tech Means High-Efficiency: The Business Case for EnergyManagement in High-Tech Industries

    SciTech Connect (OSTI)

    Shanshoian, Gary; Blazek, Michele; Naughton, Phil; Seese, RobertS.; Mills, Evan; Tschudi, William

    2005-11-15

    In the race to apply new technologies in ''high-tech'' facilities such as data centers, laboratories, and clean rooms, much emphasis has been placed on improving service, building capacity, and increasing speed. These facilities are socially and economically important, as part of the critical infrastructure for pharmaceuticals,electronics, communications, and many other sectors. With a singular focus on throughput, some important design issues can be overlooked, such as the energy efficiency of individual equipment (e.g., lasers, routers and switches) as well as the integration of high-tech equipment into the power distribution system and the building envelope. Among technology-based businesses, improving energy efficiency presents an often untapped opportunity to increase profits, enhance process control,maximize asset value, improve the work place environment, and manage a variety of business risks. Oddly enough, the adoption of energy efficiency improvements in this sector lags behind many others. As a result, millions of dollars are left on the table with each year ofoperation.

  7. Advancing the Technology Base for High Temperature Hydrogen Membranes

    SciTech Connect (OSTI)

    Dye, Robert C.; Moss, Thomas S.

    1997-12-31

    High purity hydrogen is a critical component for at least two major industrial processes: 1) the refining of conventional steels and raw pig iron into low carbon steels and high purity iron used for high performance magnets in motors, generators, alternators, transformers, and etc.; and 2) refining metallurgical grade silicon to the high- purity, polycrystalline silicon used in fabricating single crystal silicon wafers for semiconductor manufacturing. In the process of producing low carbon iron products, CO and CO2 impurities prevent efficient removal of the carbon already in the raw iron. In the refining of metallurgical grade silicon, the presence of any impurity above the part-per- million level prevents the ultimate fabrication of the large scale single crystals that are essential to the semiconductor device. In a lesser magnitude role, high quality hydrogen is used in a variety of other processes, including specialty metals refining (e.g., iridium, osmium, palladium, platinum, and ruthenium) and R{ampersand}D in areas such as organic synthesis and development of certain types of fuel cells. In all of these applications, a high-temperature hydrogen membrane can provide a method for achieving a very high purity level of hydrogen in a manner that is more economical and/or more rugged than existing techniques.

  8. High Impact Technology - Request for Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy ServicesContracting OversightEMS PolicyandHigh Impact Technology -

  9. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    SciTech Connect (OSTI)

    Sathaye, J.; Xu, T.; Galitsky, C.

    2010-08-15

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

  10. Managing the integration of technology into the product development pipeline

    E-Print Network [OSTI]

    Barretto, Eduardo F., 1971-

    2005-01-01

    Managing the integration of technology is a complex task in any industry, but especially so in the highly competitive automotive industry. Automakers seek to develop plans to integrate technology into their products such ...

  11. Vehicle Technologies Office Merit Review 2014: High Compression Ratio Turbo Gasoline Engine Operation Using Alcohol Enhancement

    Broader source: Energy.gov [DOE]

    Presentation given by Massachusetts Institute of Technology at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  12. Technology Choices for the PV Industry: A Comparative Life Cycle Assessment

    E-Print Network [OSTI]

    Boyd, Sarah; Dornfeld, David A

    2005-01-01

    2000), “Environmental Life Cycle Assessment of Solar HomePV INDUSTRY: A Comparative Life Cycle Assessment Sarah Boydinput-output life cycle assessment (EIOLCA) to capture both

  13. 2014 U.S. Offshore Wind Market Report: Industry Trends, Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stehly, Walt Musial Floating Substructure Sensitivities Global Market Trends * The global offshore wind industry is set to reach a deployment record with 4,000 megawatts (MW)...

  14. Improved Technology Transfer Processes for the U.S. Upstream Petroleum Industry

    SciTech Connect (OSTI)

    Rowell, Deborah; Cole, E. Lance

    2003-01-24

    This report covers PTTC's technical progress during the 1st half of FY99, and illustrates its increasing impact on the independent oil and gas producing industry.

  15. Ultra Wideband Technology and the Struggle to Adopt a Standard for the Consumer Electronics Industry

    E-Print Network [OSTI]

    Malakooty, Nina

    2006-01-01

    30). No Standard for UWB. Electronics News. Retrieved Marchuse throughout consumer electronics, is building a wirelessfor the Consumer Electronics Industry Nina Malakooty

  16. Why and how should innovative industries with high consumer switching costs be re-regulated?

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ). While most of the contributions on the subject focus on wholesale markets, retail price control and North (1986). Empirical and econometric evidence in retail markets of several network industries opened of the low penetration rate of cable in France possibly due to the high cost to retail consumers to switch

  17. ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY

    E-Print Network [OSTI]

    Kramer, Klaas Jan

    2010-01-01

    Efficiency and Renewable Energy, Industrial TechnologiesEfficiency and Renewable Energy, Industrial TechnologiesEfficiency and Renewable Energy, Industrial Technologies

  18. Energy Efficiency Improvement Opportunities for the Cement Industry

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01

    Technology Support Unit (ETSU). 1988. High Level Control ofCircle Industries and SIRA (ETSU, 1988). The first systemreduction of nearly 8% (ETSU, 1988). The LINKman system has

  19. High-solids black liquor firing in pulp and paper industry kraft recovery boilers: Phase 1 -- Final report. Volume 2: Project technical results

    SciTech Connect (OSTI)

    Southards, W.T.; Clement, J.L.; McIlroy, R.A.; Tharp, M.R.; Verrill, C.L.; Wessell, R.A.

    1995-11-01

    This project is a multiple-phase effort to develop technologies to improve high-solids black liquor firing in pulp mill recovery boilers. The principal means to this end is to construct and operate a pilot-scale recovery furnace simulator (RFS) in which these technologies can be tested. The Phase 1 objectives are to prepare a preliminary design for the RFS, delineate a project concept for evaluating candidate technologies, establish industrial partners, and report the results. Phase 1 addressed the objectives with seven tasks: Develop a preliminary design of the RFS; estimate the detailed design and construction costs of the RFS and the balance of the project; identify interested parties in the paper industry and key suppliers; plan the Phase 2 and Phase 3 tests to characterize the RFS; evaluate the economic justification for high-solids firing deployment in the industry; evaluate high-solids black liquor property data to support the RFS design; manage the project and reporting results, which included planning the future program direction.

  20. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    SciTech Connect (OSTI)

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration The technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature limitations of the encoder, it could not be operated at air cooled condensing temperatures. (7) The two-stage impellers/diffusers worked well separately but combined did not match well.

  1. Chemicals Industry Vision

    SciTech Connect (OSTI)

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  2. Development of Designer Diamond Technology for High-Pressure-High Temperature Experiments in Support of the Stockpile Stewardship

    SciTech Connect (OSTI)

    Vohra, Yogesh, K.

    2003-08-27

    OAK B127 Development of Designer Diamond Technology for High-Pressure-High Temperature Experiments in Support of the Stockpile Stewardship

  3. Revisit of Energy Use and Technologies of High Performance Buildings

    SciTech Connect (OSTI)

    Li , Cheng; Hong , Tianzhen

    2014-03-30

    Energy consumed by buildings accounts for one third of the world?s total primary energy use. Associated with the conscious of energy savings in buildings, High Performance Buildings (HPBs) has surged across the world, with wide promotion and adoption of various performance rating and certification systems. It is valuable to look into the actual energy performance of HPBs and to understand their influencing factors. To shed some light on this topic, this paper conducted a series of portfolio analysis based on a database of 51 high performance office buildings across the world. Analyses showed that the actual site Energy Use Intensity (EUI) of the 51 buildings varied by a factor of up to 11, indicating a large scale of variation of the actual energy performance of the current HPBs. Further analysis of the correlation between EUI and climate elucidated ubiquitous phenomenon of EUI scatter throughout all climate zones, implying that the weather is not a decisive factor, although important, for the actual energy consumption of an individual building. On the building size via EUI, analysis disclosed that smaller buildings have a tendency to achieving lower energy use. Even so, the correlation is not absolute since some large buildings demonstrated low energy use while some small buildings performed opposite. Concerning the technologies, statistics indicated that the application of some technologies had correlations with some specific building size and climate characteristic. However, it was still hard to pinpoint a set of technologies which was directly correlative with a group of low EUI buildings. It is concluded that no a single factor essentially determines the actual energy performance of HPBs. To deliver energy-efficient buildings, an integrated design taking account of climate, technology, occupant behavior as well as operation and maintenance should be implemented.

  4. Solar capabilities : promoting, technological learning in South Africa's photovoltaic supply industry

    E-Print Network [OSTI]

    Wright, Janelle N., 1978-

    2003-01-01

    I explore the mechanisms through which technological capabilities have been built in the market for photovoltaic (PV) module and balance of system (BOS) manufacture in South Africa. Drawing on the literature on technology ...

  5. Technology and policy options for reducing industrial air pollutants in the Mexico City Metropolitan Area

    E-Print Network [OSTI]

    Vijay, Samudra, 1968-

    2005-01-01

    Technology plays an important role in dealing with air pollution and other environmental problems faced by developing and developed societies. This research examines if technological solutions alone, such as end-of-pipe ...

  6. ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry

    Office of Energy Efficiency and Renewable Energy (EERE)

    The study examines current and emerging melting technologies and discusses their technical barriers to scale-up issues and research needed to advance these technologies, improving melting efficiency, lowering metal transfer heat loss, and reducing scrap.

  7. Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry

    SciTech Connect (OSTI)

    None

    2005-11-01

    The study examines current and emerging melting technologies and discusses their technical barriers to scale-up issues and research needed to advance these technologies, improving melting efficiency, lowering metal transfer heat loss, and reducing scrap.

  8. Proceedings of the Conference on Industry Partnerships to Deploy Environmental Technology

    SciTech Connect (OSTI)

    1996-01-01

    Three goals were accomplished at the meeting: review of the latest environmental and waste-management technologies being developed under FETC sponsorship; addressing the accomplishments in, and barriers affecting, private-sector development of these technologies; and laying the groundwork for future technology development initiatives and opportunities.

  9. Section 2: Landscapes of Capital - Landscapes of Knowledge and High Technology

    E-Print Network [OSTI]

    O'Mara, Margaret

    2007-01-01

    s Belltown that drew the new high-tech workers in the ?rstPhiladelphia, New York, and Chicago, high-tech districtsseeded the high-tech industry. Whether new entrepreneurial

  10. A Review of Energy Use and Energy Efficiency Technologies for the Textile Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01

    Inc. for U.S. Department of Energy’s Office of IndustrialRenewable and Sustainable Energy Reviews”, Volume 16 (2012)and Muthukumaraswamy, P. SITRA Energy Audit – Implementation

  11. A study of building technology in the Natal building industry, South Africa 

    E-Print Network [OSTI]

    Pather, Rubintheran

    1989-01-01

    This thesis reports the findings of a mail survey of 215 randomly selected Natal building industry professionals consisting of architects, civil engineers, quantity surveyors, academics, managers of building product manufacturers, and building...

  12. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Commercial power plant tests blend of refuse-derived fuel and coal to generate electricity

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    MSW can be converted to energy in two ways. One involves the direct burning of MSW to produce steam and electricity. The second converts MSW into refuse-derived fuel (RDF) by reducing the size of the MSW and separating metals, glass, and other inorganic materials. RDF can be densified or mixed with binders to form fuel pellets. As part of a program sponsored by DOE`s Office of Industrial Technologies, the National Renewable Energy Laboratory participated in a cooperative research and development agreement to examine combustion of binder-enhanced, densified refuse-derived fuel (b-d RDF) pellets with coal. Pelletized b-d RDF has been burned in coal combustors, but only in quantities of less than 3% in large utility systems. The DOE project involved the use of b-d RDF in quantities up to 20%. A major goal was to quantify the pollutants released during combustion and measure combustion performance.

  13. Advancement of High Temperature Black Liquor Gasification Technology

    SciTech Connect (OSTI)

    Craig Brown; Ingvar Landalv; Ragnar Stare; Jerry Yuan; Nikolai DeMartini; Nasser Ashgriz

    2008-03-31

    Weyerhaeuser operates the world's only commercial high-temperature black liquor gasifier at its pulp mill in New Bern, NC. The unit was started-up in December 1996 and currently processes about 15% of the mill's black liquor. Weyerhaeuser, Chemrec AB (the gasifier technology developer), and the U.S. Department of Energy recognized that the long-term, continuous operation of the New Bern gasifier offered a unique opportunity to advance the state of high temperature black liquor gasification toward the commercial-scale pressurized O2-blown gasification technology needed as a foundation for the Forest Products Bio-Refinery of the future. Weyerhaeuser along with its subcontracting partners submitted a proposal in response to the 2004 joint USDOE and USDA solicitation - 'Biomass Research and Development Initiative'. The Weyerhaeuser project 'Advancement of High Temperature Black Liquor Gasification' was awarded USDOE Cooperative Agreement DE-FC26-04NT42259 in November 2004. The overall goal of the DOE sponsored project was to utilize the Chemrec{trademark} black liquor gasification facility at New Bern as a test bed for advancing the development status of molten phase black liquor gasification. In particular, project tasks were directed at improvements to process performance and reliability. The effort featured the development and validation of advanced CFD modeling tools and the application of these tools to direct burner technology modifications. The project also focused on gaining a fundamental understanding and developing practical solutions to address condensate and green liquor scaling issues, and process integration issues related to gasifier dregs and product gas scrubbing. The Project was conducted in two phases with a review point between the phases. Weyerhaeuser pulled together a team of collaborators to undertake these tasks. Chemrec AB, the technology supplier, was intimately involved in most tasks, and focused primarily on the design, specification and procurement of facility upgrades. Chemrec AB is also operating a pressurized, O2-blown gasifier pilot facility in Piteaa, Sweden. There was an exchange of knowledge with the pressurized projects including utilization of the experimental results from facilities in Piteaa, Sweden. Resources at the Georgia Tech Research Corporation (GTRC, a.k.a., the Institute of Paper Science and Technology) were employed primarily to conduct the fundamental investigations on scaling and plugging mechanisms and characterization of green liquor dregs. The project also tapped GTRC expertise in the development of the critical underlying black liquor gasification rate subroutines employed in the CFD code. The actual CFD code development and application was undertaken by Process Simulation, Ltd (PSL) and Simulent, Ltd. PSL focused on the overall integrated gasifier CFD code, while Simulent focused on modeling the black liquor nozzle and description of the black liquor spray. For nozzle development and testing Chemrec collaborated with ETC (Energy Technology Centre) in Piteae utilizing their test facility for nozzle spray investigation. GTI (Gas Technology Institute), Des Plains, IL supported the team with advanced gas analysis equipment during the gasifier test period in June 2005.

  14. Harnessing Smart Sensor Technology for Industrial Energy Efficiency- Making Process-Specific Efficiency Projects Cost Effective with a Broadly Configurable, Network-Enabled Monitoring Tool 

    E-Print Network [OSTI]

    Wiczer, J. J.; Wiczer, M. B.

    2011-01-01

    To improve monitoring technology often re-quired by industrial energy efficiency projects, we have developed a set of power and process monitoring tools based on the IEEE 1451.2 smart sensor interface standard. These tools enable a wide...

  15. Analysis of the impacts of Internet-based business activities on the container shipping industry : the system dynamics modeling approach with the framework of technological evolution

    E-Print Network [OSTI]

    Auh, Jae Hyuck, 1969-

    2003-01-01

    The internet-based business (e-business) activities have become a new technological challenge to the container shipping industry (CSI) in recent years. Despite the growing importance of e-business in the CSI, little ...

  16. Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.

    SciTech Connect (OSTI)

    Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter; Jow, Hong-Nian; Mattie, Patrick D.; Schelling, Frank Joseph Jr.

    2007-01-01

    Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.

  17. A survey of industries which interview students through the Texas A&M Placement Office to ascertain their attitude toward the Engineering Technology Department 

    E-Print Network [OSTI]

    Johnson, Roy Newell

    1972-01-01

    A SURVEY OF INDUSTRIES WHICH INTERVIEW STUDENTS THROUGH THE TEXAS A&M PLACEMENT OFFICE TO ASCERTAIN THEIR ATTITUDE TOWARD THE ENGINEERING TECHNOLOGY DEPARTMENT A Thesis by ROY NEWELL JOHNSON Submitted to the Graduate College of Texas A... TOWARD THE ENGINEERING TECHNOLOGY DEPARTMENT A Thesis by ROY NEWELL JOHNSON Approved as to style and content by: (Chairman of Committee) (Head of Departmen (Member) (Memb er ) August 1972 g ". ;, 'j', '~ 0 ABSTRACT A Survey of Industries Which...

  18. Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry

    E-Print Network [OSTI]

    Kong, Lingbo

    2014-01-01

    economics of black liquor gasifier/gas turbine cogenerationblack liquor and biomass gasifier/gas turbine technology".entrained flow booster gasifier in New Bern, North Carolina;

  19. High-speed SiGe BiCMOS technologies for Ethernet communications

    E-Print Network [OSTI]

    Weinreb, Sander

    High-speed SiGe BiCMOS technologies for Ethernet communications from 10Gb/s to 100Gb/s Pascal Characterization, Modeling, Design, ... involved in the development of High-Speed BiCMOS technologies Thanks-offs 43 · Reliability 46 Technology of high-speed HBTs · Architectures 50 · Competitors 66 · Device

  20. Physics Educations Technology in an International Baccalaureate/ Advanced Placement High School Classroom

    E-Print Network [OSTI]

    Finkelstein, Noah

    1 Physics Educations Technology in an International Baccalaureate/ Advanced Placement High School. Technology has made its way into high school classrooms. Not only have computers, wireless internet -Century lives, the introduction of this technology into high schools has not been met without controversy

  1. THE UNIVERSITY OF NEW MEXICO THE CENTER FOR HIGH TECHNOLOGY MATERIALS

    E-Print Network [OSTI]

    Mojahedi, Mohammad

    THE UNIVERSITY OF NEW MEXICO THE CENTER FOR HIGH TECHNOLOGY MATERIALS Photonic Crystals: Part I.J. Malloy1 1Center for High Technology Materials University of New Mexico 2Lockheed Martin Denver, Colorado PL/WSMS Kirtland Air Force Base, NM #12;THE UNIVERSITY OF NEW MEXICO THE CENTER FOR HIGH TECHNOLOGY

  2. Midwest Industrial Energy Efficiency Handbook

    SciTech Connect (OSTI)

    2010-06-25

    This Industrial Technologies Program handbook connects industry with the various energy efficiency resources available in the midwest.

  3. IEEE Vehicular Technology Chapter Presentation Recent Advances in Body Area Networks and Industry

    E-Print Network [OSTI]

    Chen, Min

    Applications for Internet of Things Professor Min Chen School of Computer Science and Technology Huazhong University of Science and Technology, Wuhan, China Abstract: The Internet of Things (IoT), the ultimate communications and Internet of Things, etc. He is an IEEE Senior Member since 2009. DATE: Monday, April 16, 2012

  4. Design approaches for solar industrial process-heat systems: nontracking and line-focus collector technologies

    SciTech Connect (OSTI)

    Kutscher, C.F.; Davenport, R.L.; Dougherty, D.A.; Gee, R.C.; Masterson, P.M.; May, E.K.

    1982-08-01

    The design methodology for solar industrial process heat systems is described, and an overview is given of the use of solar energy in industry. A way to determine whether solar energy makes sense for a particular application is described. The basic system configurations used to supply hot water or steam are discussed, and computer-generated graphs are supplied that allow the user to select a collector type. Detailed energy calculations are provided, including the effects of thermal losses and storage. The selection of subsystem components is described, and control systems, installation and start-up details, economics, and safety and environmental issues are explained. (LEW)

  5. Senior Software Engineer -High Performance NerVve Technologies Buffalo, NY

    E-Print Network [OSTI]

    Salvaggio, Carl

    Senior Software Engineer - High Performance NerVve Technologies ­ Buffalo, NY Senior Software Engineer - High Performance NerVve Technologies, a fast growing visual search company, is seeking a highly guide team members towards writing high performance server side software. You must be a highly self

  6. High-Tech Means High-Efficiency: The Business Case for Energy Management in High-Tech Industries

    E-Print Network [OSTI]

    Shamshoian, Gary; Blazek, Michele; Naughton, Phil; Seese, Robert S.; Mills, Evan; Tschudi, William

    2005-01-01

    Comparative Energy Costs High-Tech Facilities vs. Standardof energy costs for high-tech buildings and conventionalSurvey (1999 values). High-Tech buildings from LBNL

  7. Vehicle Technologies Office Merit Review 2015: Technology Requirements for High Power Applications of Wireless Power Transfer

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about technology...

  8. In Proceedings of SPIE AeroSense 2001. Robotic Technologies for Outdoor Industrial Vehicles

    E-Print Network [OSTI]

    Stentz, Tony

    in agriculture, surface mining, underground mining, quarrying, construction, material handling, and other automation may be difficult or expensive; for example, an underground coal mine would require new, PA 15201 tony@cmu.edu Abstract The commercial industries of agriculture, mining, construction

  9. Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry

    E-Print Network [OSTI]

    Kong, Lingbo

    2014-01-01

    condense water vapor by capillarity and recovery waste heat.heat recovery technology enables the capture, recovery, and reuse of all sensible and latent waste heat, as well as water

  10. Use of broker organizations in technology transfer and research utilization for the buildings industry

    SciTech Connect (OSTI)

    Copenhaver, E.D.

    1985-12-01

    Several broker organizations are already an active part of the technology transfer and research utilization activities of DOE's Building Systems Division. These interactions often take the form of service on broker organization or DOE task forces and review committees, joint sponsorship of meetings and workshops, subcontracts for research and/or information dissemination to brokers, publication of documents, code and standards setting activities, and congressional testimony. Recommendations for additional research on technology transfer utilizing brokers are also outlined.

  11. 3-D MAPPING TECHNOLOGIES FOR HIGH LEVEL WASTE TANKS

    SciTech Connect (OSTI)

    Marzolf, A.; Folsom, M.

    2010-08-31

    This research investigated four techniques that could be applicable for mapping of solids remaining in radioactive waste tanks at the Savannah River Site: stereo vision, LIDAR, flash LIDAR, and Structure from Motion (SfM). Stereo vision is the least appropriate technique for the solids mapping application. Although the equipment cost is low and repackaging would be fairly simple, the algorithms to create a 3D image from stereo vision would require significant further development and may not even be applicable since stereo vision works by finding disparity in feature point locations from the images taken by the cameras. When minimal variation in visual texture exists for an area of interest, it becomes difficult for the software to detect correspondences for that object. SfM appears to be appropriate for solids mapping in waste tanks. However, equipment development would be required for positioning and movement of the camera in the tank space to enable capturing a sequence of images of the scene. Since SfM requires the identification of distinctive features and associates those features to their corresponding instantiations in the other image frames, mockup testing would be required to determine the applicability of SfM technology for mapping of waste in tanks. There may be too few features to track between image frame sequences to employ the SfM technology since uniform appearance may exist when viewing the remaining solids in the interior of the waste tanks. Although scanning LIDAR appears to be an adequate solution, the expense of the equipment ($80,000-$120,000) and the need for further development to allow tank deployment may prohibit utilizing this technology. The development would include repackaging of equipment to permit deployment through the 4-inch access ports and to keep the equipment relatively uncontaminated to allow use in additional tanks. 3D flash LIDAR has a number of advantages over stereo vision, scanning LIDAR, and SfM, including full frame time-of-flight data (3D image) collected with a single laser pulse, high frame rates, direct calculation of range, blur-free images without motion distortion, no need for precision scanning mechanisms, ability to combine 3D flash LIDAR with 2D cameras for 2D texture over 3D depth, and no moving parts. The major disadvantage of the 3D flash LIDAR camera is the cost of approximately $150,000, not including the software development time and repackaging of the camera for deployment in the waste tanks.

  12. MIT and Automotive Industries MIT Industry Brief

    E-Print Network [OSTI]

    Herr, Hugh

    MIT and Automotive Industries MIT Industry Brief MIT's Industrial Liaison Program (ILP) can bring@ilp.mit.edu, or visit http://ilp.mit.edu. MIT and Automotive Industries The Massachusetts Institute of Technology (MIT) is a leading center of research and education on topics important to the automotive industry and its suppliers

  13. Vehicle Technologies Office Merit Review 2014: High Efficiency VCR Engine with Variable Valve Actuation and new Supercharging Technology

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Envera LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency VCR engine...

  14. Vehicle Technologies Office Merit Review 2015: High Efficiency VCR Engine with Variable Valve Actuation and New Supercharging Technology

    Broader source: Energy.gov [DOE]

    Presentation given by Envera LLC at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency VCR engine with...

  15. Demonstration of Natural Gas Engine Driven Air Compressor Technology at Department of Defense Industrial Facilities 

    E-Print Network [OSTI]

    Lin, M.; Aylor, S. W.; Van Ormer, H.

    2002-01-01

    . In an effort to reduce its over-all environmental impact and energy consumption, the U.S. Army plans to apply NGEDAC technology in support of fixed facilities compressed air systems. Site assessment and demonstration results are presented in this paper....

  16. The Future of Combustion Turbine Technology for Industrial and Utility Power Generation 

    E-Print Network [OSTI]

    Karp, A. D.; Simbeck, D. R.

    1994-01-01

    Low capital cost and ample low-cost natural gas supplies will make natural gas-fired combustion turbine systems the power generation technology of choice over the next decade. Against the background of earlier use by electric utilities, this paper...

  17. 33UPSTREAM TECHNOLOGY 04 I 2015 Tapping expertise from industry and academia, a collaborative research

    E-Print Network [OSTI]

    Sottos, Nancy R.

    by University of Manchester physics professor Andre Geim. Separation research will draw on Imperial's membrane for oil and gas applications, including a new hydrogen-resistant steel alloy, as Russell McCulley reports, corrosion and imaging expertise in Manchester, membrane technology from Imperial, and groundbreaking

  18. IMPACTS. Industrial Technologies Program: Summary of Program Results for CY 2009

    SciTech Connect (OSTI)

    none,

    2011-10-01

    This annual report tracks the energy and other benefits of our commercialized technologies. From the 1980s to 2009, cumulative net energy savings are estimated at 10.0 quads, with an associated cost savings of $50.55 billion (in 2009 dollars).

  19. Unrestricted. Siemens AG 2013. All rights reserved.Page 2 October 2013 Corporate Technology Siemens is organized in 4 Sectors: Industry,

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    pumps High Temp. heat pumps 270PJ/a*330PJ/a* * Source: Lambauer et al, Heat supply industry in Germany ­ the megawatt range. Achema, Frankfurt, 2012 6 Pearson, Nellissen, Application of industrial heat pumps. Achema performance evaluation of new safe and environmentally friendly working fluids for high temperature heat pumps

  20. Developing a solar energy industry in Egypt

    E-Print Network [OSTI]

    AbdelMessih, Sherife (Sherife Mohsen)

    2009-01-01

    This paper assesses Egypt's current energy infrastructure and its problems, the available solar energy resource, and the technologies required to harness this resource. After this assessment, an industry based on high ...

  1. SLIM, Short-pulse Technology for High Gradient Induction Accelerators

    SciTech Connect (OSTI)

    Arntz, Floyd; Kardo-Sysoev, A.; Krasnykh, A.; /SLAC

    2008-12-16

    A novel short-pulse concept (SLIM) suited to a new generation of a high gradient induction particle accelerators is described herein. It applies advanced solid state semiconductor technology and modern microfabrication techniques to a coreless induction method of charged particle acceleration first proven on a macro scale in the 1960's. Because this approach avoids use of magnetic materials there is the prospect of such an accelerator working efficiently with accelerating pulses in the nanosecond range and, potentially, at megahertz pulse rates. The principal accelerator section is envisioned as a stack of coreless induction cells, the only active element within each being a single, extremely fast (subnanosecond) solid state opening switch: a Drift Step Recovery Diode (DSRD). Each coreless induction cell incorporates an electromagnetic pulse compressor in which inductive energy developed within a transmission-line feed structure over a period of tens of nanoseconds is diverted to the acceleration of the passing charge packet for a few nanoseconds by the abrupt opening of the DSRD switch. The duration of this accelerating output pulse--typically two-to-four nanoseconds--is precisely determined by a microfabricated pulse forming line connected to the cell. Because the accelerating pulse is only nanoseconds in duration, longitudinal accelerating gradients approaching 100 MeV per meter are believed to be achievable without inciting breakdown. Further benefits of this approach are that, (1) only a low voltage power supply is required to produce the high accelerating gradient, and, (2) since the DSRD switch is normally closed, voltage stress is limited to a few nanoseconds per period, hence the susceptibility to hostile environment conditions such as ionizing radiation, mismatch (e.g. in medical applications the peak beam current may be low), strong electromagnetic noise levels, etc is expected to be minimal. Finally, we observe the SLIM concept is not limited to linac applications; for instance, it could be employed to both accelerate the beam and to stabilize the superbunch mode of operation in circular track machines.

  2. High Impact Commercial Technology RFI Review | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and market factors including: Market demand Existing resources related to the specific technology Regulatory environment Manufacturing capacity Cost-effectiveness including...

  3. Vehicle Technologies Office Merit Review 2015: High Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation Meeting about clean combustion in multi-cylinder light-duty engines. ace016curran2015o.pdf More Documents & Publications Vehicle Technologies Office Merit Review...

  4. New Technology Paves Way for Highly Sensitive Photodetectors...

    Office of Science (SC) Website

    award-winners201208larger-microchannel-plates-less-cost External link http:web.anl.govtechtransferAvailableTechnologiesSensorTechnologymicrochannelplatedetect...

  5. High Impact Technology Hub- Resources for Evaluators- Site Evaluation Checklists

    Broader source: Energy.gov [DOE]

    The HIT Catalyst conducts technology demonstrations in three main phases govern demonstrations: Site Evaluation, Selection and Project Kick-Off, Measurement and Verification Scoping and Plan...

  6. Vehicle Technologies Office Merit Review 2015: High-Efficiency...

    Energy Savers [EERE]

    for PEVs Presentation given by Delta Products Corporation at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  7. Application and Technology Requirements for Heat Pumps at the Process Industries 

    E-Print Network [OSTI]

    Priebe, S.; Chappell, R.

    1987-01-01

    AND TECHNOLOGY REQUIREMENTS FOR HEAT PUMPS AT THE PROCESS INDUSTRIESl Stephen Priebe Engineering Specialist EG&G Idaho, Inc. Idaho Falls, ID There are basically three categories of equip ment used to manage heat energy flows in an indus trial process.... First, heat exchangers are used to move heat through the process down the temperature gradient. Second, heat pumps are used to move heat through the process up the temperature gra dient. Third, heat engines are used to convert heat to shaft power...

  8. The place for sodars in a high-technology environment.

    SciTech Connect (OSTI)

    Coulter, R. L.

    1998-06-12

    In an era of increasingly complex technology, some of the atmospheric quantities most difficult to measure and observe are yielding their secrets to increasingly complex instruments and combinations of instruments. For example, water vapor profiles, a long-time nemesis to detailed examination, have become measurable with the use of Raman lidar; temperature profile measurements are becoming relatively routine with radio acoustic sounding systems (RASSs) or infrared Fourier transform instrumentation such as the atmospheric emitted radiance interferometer (AERI); and radar, lidar, or combinations of the two are enabling wind profile measurements to increasing altitudes. What, then, is the role of the relatively pedestrian sodar in such an era? Because the sodar's propagation speed in the atmosphere is six orders of magnitude smaller than that of its electromagnetic counterparts (3 x 10{sup 2} vs. 3 x 10{sup 8} m/s), severely limiting its rate of interrogation, and because the sodar's signal limit frequency modulation techniques, many high-technology advances associated with enormous increases in computation speed and available memory have had relatively little direct impact on acoustic remote sensing. However, the principal elements of acoustic remote sensing continue to make it a useful, even essential, tool for obtaining a better understanding of the physics of the lower atmosphere. The sodar's ''slow'' propagation speed provides relatively easy access to the region between 10 m and several hundred meters above the surface that is often inaccessible to other instruments. This is the region of the atmosphere where conditions often change radically with height, the ''matching'' region between large-scale forcing and small-scale surface heterogeneities that can have large effects on human activity. The atmosphere provides signals for sodars that are rich in content because the phase speed of sound is dependent on the atmosphere itself and is tied directly to the atmosphere's temperature and wind structure. Hence, the signals from acoustic remote sensing instruments can provide boundary conditions crucial for the proper operation of numerical models of the atmosphere whose output is becoming increasingly important in individual and business decision making.

  9. Summary of innovative concepts for industrial process improvement: An experimental technology exchange

    SciTech Connect (OSTI)

    Conger, R.L.; Lee, V.E.; Buel, L.M.

    1995-08-01

    This document is a compilation of one-page technical briefs that summarize the highlights of thirty-eight innovations that were presented at the seventh Innovative Concepts Fair, held in Denver, Colorado on April 20--21, 1995. Sixteen of the innovations were funded through the Innovative Concepts Program, and twenty-two innovations represent other state or federally funded programs. The concepts in this year`s fair addressed innovations that can substantially improve industrial processes. Each tech brief describes the need for the proposed concept; the concept being proposed; and the concept`s economics and market potential, key experimental results, and future development needs. A contact block is also included with each flier.

  10. High Impact Technology Hub- Resources for Evaluators- General Templates

    Broader source: Energy.gov [DOE]

    The HIT Catalyst conducts technology demonstrations in three main phases: Site Evaluation, Selection and Project Kick-Off, Measurement and Verification Scoping and Plan Development. The following Templates were developed in collaboration with third party evaluators, the Energy Department, and technology providers as a part of recent demonstration projects.

  11. A summary of the report on prospects for pyrolysis technologies in managing municipal, industrial, and Department of Energy cleanup wastes

    SciTech Connect (OSTI)

    Reaven, S.J.

    1994-08-01

    Pyrolysis converts portions of municipal solid wastes, hazardous wastes and special wastes such as tires, medical wastes and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. In the past twenty years, advances in the engineering of pyrolysis systems and in sorting and feeding technologies for solid waste industries have ensured consistent feedstocks and system performance. Some vendors now offer complete pyrolysis systems with performance warranties. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates the four most promising pyrolytic systems for their readiness, applicability to regional waste management needs and conformity with DOE environmental restoration and waste management requirements. This summary characterizes the engineering performance, environmental effects, costs, product applications and markets for these pyrolysis systems.

  12. Thomas Jefferson High School for Science & Technology National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hill School, Kansas City, Mo. Santa Monica High School, Santa Monica, Calif. Smoky Hill High School, Aurora, Colo. State College Are High School, State College, Pa. Sycamore...

  13. Vehicle Technologies Office Merit Review 2014: High Temperature Aluminum Alloys (Agreement ID:24034) Project ID:18518

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  14. High efficiency coarse-grained customised dynamically reconfigurable architecture for digital image processing and compression technologies 

    E-Print Network [OSTI]

    Zhao, Xin

    2012-06-25

    Digital image processing and compression technologies have significant market potential, especially the JPEG2000 standard which offers outstanding codestream flexibility and high compression ratio. Strong demand for ...

  15. Vehicle Technologies Office Merit Review 2015: High Strength, Dissimilar Alloy Aluminum Tailor-Welded Blanks

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  16. Vehicle Technologies Office Merit Review 2014: High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  17. Vehicle Technologies Office Merit Review 2014: High-Temperature Air-Cooled Power Electronics Thermal Design

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  18. New solar cell technology captures high-energy photons more efficientl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (click to enlarge) Argonne's Center for Nanoscale Materials (click to enlarge) New solar cell technology captures high-energy photons more efficiently By Jared Sagoff *...

  19. High Impact Technologies Forum: Harnessing American Ingenuity and Innovation to Catalyze Building Efficiency

    Broader source: Energy.gov [DOE]

    Take advantage of DOE’s high impact technology programs, partnerships and products as we drive toward our building energy reduction goals.

  20. Vehicle Technologies Office Merit Review 2015: High Efficiency GDI Engine Research, with Emphasis on Ignition Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency...

  1. Vehicle Technologies Office Merit Review 2015: High-Strength Electroformed Nanostructured Aluminum for Lightweight Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Xtalic Corporation at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high-strength...

  2. Vehicle Technologies Office Merit Review 2014: High Efficiency GDI Engine Research, with Emphasis on Ignition Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency...

  3. Application of Synergistic Technologies to Achieve High Levels of Gasoline Engine Downsizing

    Broader source: Energy.gov [DOE]

    Discussed technologies applied in highly downsized efficient gasoline engine concept such as multiple injection, advanced boosting, cooled exhaust gas recirculation, and electrical supercharger

  4. OVERVIEW OF SELECTED SURROGATE TECHNOLOGIES FOR HIGH-TEMPORAL RESOLUTION SUSPENDED-SEDIMENT MONITORING

    E-Print Network [OSTI]

    OVERVIEW OF SELECTED SURROGATE TECHNOLOGIES FOR HIGH- TEMPORAL RESOLUTION SUSPENDED such surrogate technology, and the first to be sanctioned by the U.S. Geological Survey for use in producing data in the National Water Information System. Other technologies, including laser-diffraction, digital photo

  5. Proceedings HTR2006: International Topical Meeting on High Temperature Reactor Technology

    E-Print Network [OSTI]

    Proceedings HTR2006: 3rd International Topical Meeting on High Temperature Reactor Technology Massachusetts Institute of Technology Andrew C. Kadak Department of Nuclear Engineering Massachusetts Institute of Technology Abstract MIT has been benchmarking Japanese and German NACOK air ingress tests using the FLUENT

  6. A TECHNOLOGY-SCALABLE ARCHITECTURE FOR FAST CLOCKS AND HIGH ILP

    E-Print Network [OSTI]

    Keckler, Stephen W.

    Chapter 1 A TECHNOLOGY-SCALABLE ARCHITECTURE FOR FAST CLOCKS AND HIGH ILP Karthikeyan Sankaralingam Computer Architecture and Technology Laboratory Department of Computer Sciences The University of Texas at Austin karu@cs.utexas.edu Ramadass Nagarajan Computer Architecture and Technology Laboratory Department

  7. Technology and policy drivers for standardization : consequences for the optical components industry

    E-Print Network [OSTI]

    Speerschneider, Michael James, 1975-

    2004-01-01

    Optical communications promise the delivery of high bandwidth service to all types of customers. The potential for optical communications is enormous and has generated excitement and anticipation over the last decade. ...

  8. Development of Enabling Technologies for High Efficiency, Low...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. ace038fiveland2010o.pdf More Documents &...

  9. A functional approach for studying technological progress : extension to wireless telecommunications technology

    E-Print Network [OSTI]

    Amaya, Mario A

    2008-01-01

    This thesis attempts to study the technological progress of wireless technology and the wireless industry throughout history, using high-level, non-device specific performance metrics. Such metrics are developed by following ...

  10. INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering

    E-Print Network [OSTI]

    Rohs, Remo

    78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take of industries including consulting, technology development, software, supply chain manufacturing, engineering

  11. Innovative High-Performance Deposition Technology for Low-Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIAL TECHNICAL ASSISTANCEPueblo, New Mexico |Manufacturing of OLED

  12. Application of a moving bed biofilm reactor for tertiary ammonia treatment in high temperature industrial wastewater

    E-Print Network [OSTI]

    industrial wastewater Jennifer L. Shore a,b , William S. M'Coy b , Claudia K. Gunsch a , Marc A. Deshusses a 2012 Available online 17 February 2012 Keywords: Moving bed biofilm reactor Industrial wastewater and industrial wastewater. No biotreatment was observed at 45 °C, although effective nitrification was rapidly

  13. Presentation 3.1: Report on energy efficient technologies and CO2 reduction potentials in the pulp and paper industry

    E-Print Network [OSTI]

    & Paper Industry workshop Thore Berntsson IEA / IETS IA © OECD/IEA 2006 INTERNATIONAL ENERGY AGENCY AGENCE

  14. A Critical Analysis of Technological Innovation and Economic Development in Southern California's Urban Water Reuse And Recycling Industry

    E-Print Network [OSTI]

    Pilip-Florea, Shadrach Jay

    2012-01-01

    124. doi: Claude Laval Water and Energy Technology Center (Claude Laval Water and Energy Technology Incubator Worldto promote the use of water and energy saving technologies.

  15. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    E-Print Network [OSTI]

    Sathaye, J.

    2011-01-01

    energy-efficiency technology costs and improvementon behavioral responses, technology costs, energy savings,is to characterize technology costs and potentials for

  16. Promising Technology: High Bay Light-Emitting Diodes

    Broader source: Energy.gov [DOE]

    High bay LEDs offer several advantages over conventional high intensity discharge (HID) luminaires including longer lifetimes, reduced maintenance costs, and lower energy consumption.

  17. DOE Announces Webinars on High Impact Building Technologies,...

    Energy Savers [EERE]

    the High Performance Outdoor Lighting Accelerator (HPOLA), designed to accelerate the deployment of high performance street and outdoor lighting across at least 50 percent of a...

  18. Industrial Technology of Decontamination of Liquid Radioactive Waste in SUE MosSIA 'Radon' - 12371

    SciTech Connect (OSTI)

    Adamovich, Dmitry V.; Neveykin, Petr P.; Karlin, Yuri V.; Savkin, Alexander E. [SUE MosSIA 'Radon', 7th Rostovsky lane 2/14, Moscow 119121 (Russian Federation)

    2012-07-01

    SUE MosSIA 'RADON' - this enterprise was created more than 50 years ago, which deals with the recycling of radioactive waste and conditioning of spent sources of radiation in stationary and mobile systems in the own factory and operating organizations. Here is represented the experience SUE MosSIA 'Radon' in the field of the management with liquid radioactive waste. It's shown, that the activity of SUE MosSIA 'RADON' is developing in three directions - improvement of technical facilities for treatment of radioactive waters into SUE MosSIA 'RADON' development of mobile equipment for the decontamination of radioactive waters in other organizations, development of new technologies for decontamination of liquid radioactive wastes as part of various domestic Russian and international projects including those related to the operation of nuclear power and nuclear submarines. SUE MosSIA 'RADON' has processed more than 270 thousand m{sup 3} of radioactive water, at that more than 7000 m{sup 3} in other organizations for more than 50 years. It is shown that a number of directions, particularly, the development of mobile modular units for decontamination of liquid radioactive waste, SUE MosSIA 'RADON' is a leader in the world. (authors)

  19. High-Tech Tools for Teaching Physics: the Physics Education Technology Project

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    MS #06-020 High-Tech Tools for Teaching Physics: the Physics Education Technology Project Noah Teaching and Learning September 15, 2006 #12;MS #06-020 High-Tech Tools for Teaching Physics: the Physics the Physics Education Technology (PhET) project, identifies features of these educational tools

  20. Droplet microfluidic technology for single-cell high-throughput screening

    E-Print Network [OSTI]

    Perrimon, Norbert

    Droplet microfluidic technology for single-cell high-throughput screening Eric Brouzesa,b,1 (received for review March 31, 2009) We present a droplet-based microfluidic technology that enables high our droplet microfluidic platform is modular, robust, uses no moving parts, and has a wide range

  1. Survey of US Department of Defense Manufacturing Technology Program activities applicable to civilian manufacturing industries. Final report

    SciTech Connect (OSTI)

    Azimi, S.A.; Conrad, J.L.; Reed, J.E.

    1985-03-01

    Intent of the survey was to identify and characterize activities potentially applicable to improving energy efficiency and overall productivity in the civilian manufacturing industries. The civilian industries emphasized were the general manufacturing industries (including fabricated metals, glass, machinery, paper, plastic, textile, and transportation equipment manufacturing) and the primary metals industries (including primary aluminum, copper, steel, and zinc production). The principal steps in the survey were to: develop overview taxonomies of the general manufacturing and primary metals industries as well as specific industry taxonomies; identify needs and opportunities for improving process energy efficiency and productivity in the industries included; identify federal programs, capabilities, and special technical expertise that might be relevant to industry's needs and opportunities; contact federal laboratories/facilities, through visits and other forms of inquiry; prepare formatted profiles (descriptions) potentially applicable work efforts; review findings with industry; and compile and evaluate industry responses.

  2. IIT SCHOOL OF APPLIED TECHNOLOGY

    E-Print Network [OSTI]

    Heller, Barbara

    . MANUFACTURINGTECHNOLOGY. #12;BE A LEADER OF THE NEXT INDUSTRIAL REVOLUTION. An undergraduate degree in IndustrialINDUSTRIAL TECHNOLOGY AND MANAGEMENT IIT SCHOOL OF APPLIED TECHNOLOGY INDUSTRIAL OPERATIONS. RESOURCE MANAGEMENT. INDUSTRIAL FACILITIES. SUPPLY CHAIN MANAGEMENT. SUSTAINABILITY

  3. New and Underutilized Technology: High Bay LED Lighting

    Broader source: Energy.gov [DOE]

    The following information outlines key deployment considerations for high bay LED lighting within the Federal sector.

  4. Vehicle Technologies Office Merit Review 2014: Daikin Advanced Lithium Ion Battery TechnologyHigh Voltage Electrolyte

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Daikin America at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion...

  5. Compressed Air System Modifications Improve Efficiency at a Plastics Blow Molding Plant (Southeastern Container Plant): Office of Industrial Technologies (OIT) BestPractices Technical Case Study

    SciTech Connect (OSTI)

    Wogsland, J.

    2001-06-18

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the plastics blow molding plant project.

  6. Vehicle Technologies Office Merit Review 2014: High Temperature DC-Bus Capacitors Cost Reduction and Performance Improvements

    Broader source: Energy.gov [DOE]

    Presentation given by Sigma Technologies International at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  7. Vehicle Technologies Office Merit Review 2015: High Temperature DC-Bus Capacitor Cost Reduction and Performance Improvements

    Broader source: Energy.gov [DOE]

    Presentation given by Sigma Technologies International at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  8. Innovative Drying Technology Extracts More Energy from High Moisture Coal |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OFBarriers to IndustrialStacksDepartment of|

  9. Process Industries Division CALL FOR PAPERS

    E-Print Network [OSTI]

    Müller, Norbert

    Process Industries Division CALL FOR PAPERS The Process Industries Division of ASME is sponsoring a series of sessions on issues facing Process industries, such as Heat Exchangers Performance, Compression Technology, Water Purification / Treatment Technologies, Low Temperature Industrial Applications, etc

  10. Thomas Jefferson High School for Science & Technology Takes 2015...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high school and middle school students will compete in 70 high school and 50 middle school regional Science Bowl tournaments. Students, in teams of four or five, compete in the...

  11. Optimum Reactor Outlet Temperatures for High Temperature Gas-Cooled Reactors Integrated with Industrial Processes

    SciTech Connect (OSTI)

    Lee O. Nelson

    2011-04-01

    This report summarizes the results of a temperature sensitivity study conducted to identify the optimum reactor operating temperatures for producing the heat and hydrogen required for industrial processes associated with the proposed new high temperature gas-cooled reactor. This study assumed that primary steam outputs of the reactor were delivered at 17 MPa and 540°C and the helium coolant was delivered at 7 MPa at 625–925°C. The secondary outputs of were electricity and hydrogen. For the power generation analysis, it was assumed that the power cycle efficiency was 66% of the maximum theoretical efficiency of the Carnot thermodynamic cycle. Hydrogen was generated via the hightemperature steam electrolysis or the steam methane reforming process. The study indicates that optimum or a range of reactor outlet temperatures could be identified to further refine the process evaluations that were developed for high temperature gas-cooled reactor-integrated production of synthetic transportation fuels, ammonia, and ammonia derivatives, oil from unconventional sources, and substitute natural gas from coal.

  12. HTGR Industrial Application Functional and Operational Requirements

    SciTech Connect (OSTI)

    L. E. Demick

    2010-08-01

    This document specifies the functional and performance requirements to be used in the development of the conceptual design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to a typical industrial facility. These requirements were developed from collaboration with industry and HTGR suppliers over the preceding three years to identify the energy needs of industrial processes for which the HTGR technology is technically and economically viable. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a conceptual design of the plant that will serve the broadest range of industrial applications.

  13. TECHNOLOGY REPORT Development of a Gene-Trap Vector With a Highly

    E-Print Network [OSTI]

    Zandstra, Peter W.

    TECHNOLOGY REPORT Development of a Gene-Trap Vector With a Highly Sensitive Fluorescent Protein 23 March 2008; Revised 27 April 2008; Accepted 6 May 2008 Summary: Combining high-content screening and Twist2. This highly sensitive reporter system is amenable to high-throughput expression- based real

  14. Vehicle Technologies Office Merit Review 2014: Development of High Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobs SearchWater-SavingofCode&TechnologyDensity

  15. ITP Industrial Materials: Development and Commercialization of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Materials: Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies ITP Industrial Materials: Development and...

  16. Southeast Electronic Book of Industrial Resources

    SciTech Connect (OSTI)

    2010-06-25

    This Industrial Technologies Program handbook connects industry with the various energy efficiency resources available in the midwest.

  17. Technological problems associated with subsea development of high pressure and high temperature hydrocarbon reservoirs

    SciTech Connect (OSTI)

    Grillo, P.; Natarajan, S.

    1996-12-31

    The paper analyzes the implications in design of subsea completion for exploitation of HP/HT hydrocarbon reservoirs. The paper characterizes limitations associated with current subsea technology for HP/HT applications and outlines the engineering and technological development considered necessary to demonstrate the viability of subsea production technology for the exploitation of HP/HT reservoirs.

  18. High magnetic field ohmically decoupled non-contact technology

    DOE Patents [OSTI]

    Wilgen, John (Oak Ridge, TN) [Oak Ridge, TN; Kisner, Roger (Knoxville, TN) [Knoxville, TN; Ludtka, Gerard (Oak Ridge, TN) [Oak Ridge, TN; Ludtka, Gail (Oak Ridge, TN) [Oak Ridge, TN; Jaramillo, Roger (Knoxville, TN) [Knoxville, TN

    2009-05-19

    Methods and apparatus are described for high magnetic field ohmically decoupled non-contact treatment of conductive materials in a high magnetic field. A method includes applying a high magnetic field to at least a portion of a conductive material; and applying an inductive magnetic field to at least a fraction of the conductive material to induce a surface current within the fraction of the conductive material, the surface current generating a substantially bi-directional force that defines a vibration. The high magnetic field and the inductive magnetic field are substantially confocal, the fraction of the conductive material is located within the portion of the conductive material and ohmic heating from the surface current is ohmically decoupled from the vibration. An apparatus includes a high magnetic field coil defining an applied high magnetic field; an inductive magnetic field coil coupled to the high magnetic field coil, the inductive magnetic field coil defining an applied inductive magnetic field; and a processing zone located within both the applied high magnetic field and the applied inductive magnetic field. The high magnetic field and the inductive magnetic field are substantially confocal, and ohmic heating of a conductive material located in the processing zone is ohmically decoupled from a vibration of the conductive material.

  19. High-throughput metagenomic technologies for complex microbial...

    Office of Scientific and Technical Information (OSTI)

    within the context of environmental applications and focus on analysis of complex microbial systems, such as those in soils, in which diversity is high and reference...

  20. Preliminary Technology Maturation Plan for Immobilization of High-Level Waste in Glass Ceramics

    SciTech Connect (OSTI)

    Vienna, John D.; Crum, Jarrod V.; Sevigny, Gary J.; Smith, G L.

    2012-09-30

    A technology maturation plan (TMP) was developed for immobilization of high-level waste (HLW) raffinate in a glass ceramics waste form using a cold-crucible induction melter (CCIM). The TMP was prepared by the following process: 1) define the reference process and boundaries of the technology being matured, 2) evaluate the technology elements and identify the critical technology elements (CTE), 3) identify the technology readiness level (TRL) of each of the CTE’s using the DOE G 413.3-4, 4) describe the development and demonstration activities required to advance the TRLs to 4 and 6 in order, and 5) prepare a preliminary plan to conduct the development and demonstration. Results of the technology readiness assessment identified five CTE’s and found relatively low TRL’s for each of them: • Mixing, sampling, and analysis of waste slurry and melter feed: TRL-1 • Feeding, melting, and pouring: TRL-1 • Glass ceramic formulation: TRL-1 • Canister cooling and crystallization: TRL-1 • Canister decontamination: TRL-4 Although the TRL’s are low for most of these CTE’s (TRL-1), the effort required to advance them to higher values. The activities required to advance the TRL’s are listed below: • Complete this TMP • Perform a preliminary engineering study • Characterize, estimate, and simulate waste to be treated • Laboratory scale glass ceramic testing • Melter and off-gas testing with simulants • Test the mixing, sampling, and analyses • Canister testing • Decontamination system testing • Issue a requirements document • Issue a risk management document • Complete preliminary design • Integrated pilot testing • Issue a waste compliance plan A preliminary schedule and budget were developed to complete these activities as summarized in the following table (assuming 2012 dollars). TRL Budget Year MSA FMP GCF CCC CD Overall $M 2012 1 1 1 1 4 1 0.3 2013 2 2 1 1 4 1 1.3 2014 2 3 1 1 4 1 1.8 2015 2 3 2 2 4 2 2.6 2016 2 3 2 2 4 2 4.9 2017 2 3 3 2 4 2 9.8 2018 3 3 3 3 4 3 7.9 2019 3 3 3 3 4 3 5.1 2020 3 3 3 3 4 3 14.6 2021 3 3 3 3 4 3 7.3 2022 3 3 3 3 4 3 8.8 2023 4 4 4 4 4 4 9.1 2024 5 5 5 5 5 5 6.9 2025 6 6 6 6 6 6 6.9 CCC = canister cooling and crystallization; FMP = feeding, melting, and pouring; GCF = glass ceramic formulation; MSA = mixing, sampling, and analyses. This TMP is intended to guide the development of the glass ceramics waste form and process to the point where it is ready for industrialization.

  1. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 2, Industrial liquid waste processing, industrial gaseous waste processing

    SciTech Connect (OSTI)

    Lee, V.E. [ed.; Watts, R.L.

    1993-04-01

    This two-volume proceedings summarize the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Individual reports are indexed separately.

  2. Heat pipe technology development for high temperature space radiator applications

    SciTech Connect (OSTI)

    Merrigan, M.A.; Keddy, E.S.; Sena, J.T.; Elder, M.G.

    1984-01-01

    Technology requirements for heat pipe radiators, potentially among the lightest weight systems for space power applications, include flexible elements, and improved specific radiator performance(kg/kW). For these applications a flexible heat pipe capable of continuous operation through an angle of 180/sup 0/ has been demonstrated. The effect of bend angle on the heat pipe temperature distribution is reviewed. An analysis of lightweight membrane heat pipe radiators that use surface tension forces for fluid containment has been conducted. The design analysis of these lightweight heat pipes is described and a potential application in heat rejection systems for space nuclear power plants outlined.

  3. Producing a High Impact Technology | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How toPolycrystallineEmerging TechnologiesProcess Rule

  4. OCIO Technology Summit: High Performance Computing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice|in the subsurface isProject |NewsATVA WattsOCIO Technology

  5. Technology Solutions Case Study: Moisture Management of High-Walls

    SciTech Connect (OSTI)

    2013-12-01

    Moisture management of high-R walls is important to ensure optimal performance. This case study, developed by Building America team Building Science Corporation, focuses on how eight high-R walls handle the three main sources of moisture—construction moisture, air leakage condensation, and bulk water leaks.

  6. Industrial Energy Efficiency and Climate Change Mitigation

    E-Print Network [OSTI]

    Worrell, Ernst

    2009-01-01

    Stimulating R&D of industrial energy-efficient technology;Turnover, Retrofit and Industrial Energy Efficiency. Energyprograms perform at improving industrial energy efficiency.

  7. Record of the facility deactivation, decommissioning, and material disposition (D and D) workshop: A new focus for technology development, opportunities for industry/government collaboration

    SciTech Connect (OSTI)

    Bedick, R.C.; Bossart, S.J.; Hart, P.W.

    1995-07-01

    This workshop was held at the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia, on July 11--12, 1995. The workshop sought to establish a foundation for continued dialogue between industry and the DOE to ensure that industry`s experiences, lessons learned, and recommendations are incorporated into D and D program policy, strategy, and plans. The mission of the D and D Focus Area is to develop improved technologies, processes and products, to characterize, deactivate, survey, maintain, decontaminate, dismantle, and dispose of DOE surplus structures, buildings, and contents. The target is a five-to-one return on investment through cost avoidance. The cornerstone of the D and D focus area activities is large-scale demonstration projects that actually decontaminate, decommission, and dispose of a building. The aim is to demonstrate innovative D and D technologies as part of an ongoing DOE D and D project. OTD would pay the incremental cost of demonstrating the innovative technologies. The goal is to have the first demonstration project completed within the next 2 years. The intent is to select projects, or a project, with visible impact so all of the stakeholders know that a building was removed, and demonstrate at a scale that is convincing to the customers in the EM program so they feel comfortable using it in subsequent D and D projects. The plan is to use a D and D integrating contractor who can then use the expertise in this project to use in jobs at other DOE sites.

  8. Fuel Cells - The Reality of a High Technology 

    E-Print Network [OSTI]

    Cuttica, J. J.

    1984-01-01

    A fuel cell power plant is an energy conversion device which can continuously transform the chemical energy of natural gas into utility grade electricity and usable heat. The characteristics of high electrical conversion efficiencies (40 to 55...

  9. High power triboelectric nanogenerator based on printed circuit board (PCB) technology

    E-Print Network [OSTI]

    Wang, Zhong L.

    of mechanical energy, such as wind power [13], wave energy [14], and walking energy [15], and is likelyHigh power triboelectric nanogenerator based on printed circuit board (PCB) technology Changbao Han and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

  10. High performance steam development. Final report, Phase No. 3: 1500{degree}F steam plant for industrial cogeneration prototype development tests

    SciTech Connect (OSTI)

    Duffy, T.; Schneider, P.

    1996-01-01

    As a key part of DOE`s and industry`s R&D efforts to improve the efficiency, cost, and emissions of power generation, a prototype High Performance Steam System (HPSS) has been designed, built, and demonstrated. The world`s highest temperature ASME Section I coded power plant successfully completed over 100 hours of development tests at 1500{degrees}F and 1500 psig on a 56,000 pound per hour steam generator, control valve and topping turbine at an output power of 5500 hp. This development advances the HPSS to 400{degrees}F higher steam temperature than the current best technology being installed around the world. Higher cycle temperatures produce higher conversion efficiencies and since steam is used to produce the large majority of the world`s power, the authors expect HPSS developments will have a major impact on electric power production and cogeneration in the twenty-first century. Coal fueled steam plants now produce the majority of the United States electric power. Cogeneration and reduced costs and availability of natural gas have now made gas turbines using Heat Recovery Steam Generators (HRSG`s) and combined cycles for cogeneration and power generation the lowest cost producer of electric power in the United States. These gas fueled combined cycles also have major benefits in reducing emissions while reducing the cost of electricity. Development of HPSS technology can significantly improve the efficiency of cogeneration, steam plants, and combined cycles. Figure 2 is a TS diagram that shows the HPSS has twice the energy available from each pound of steam when expanding from 1500{degrees}F and 1500 psia to 165 psia (150 psig, a common cogeneration process steam pressure). This report describes the prototype component and system design, and results of the 100-hour laboratory tests. The next phase of the program consists of building up the steam turbine into a generator set, and installing the power plant at an industrial site for extended operation.

  11. Industrial Energy Conservation Technology

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    A separate abstract was prepared for each of the 55 papers presented in this volume, all of which will appear in Energy Research Abstracts (ERA); 18 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

  12. Steel Industry Technology Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE)

    Introduction; Process Improvement; Iron Unit Recycling; Environment; Product Development; Notes; Glossary

  13. Industrial energy conservation technology

    SciTech Connect (OSTI)

    Schmidt, P.S.; Williams, M.A.

    1980-01-01

    A separate abstract was prepared for each of the 60 papers included in this volume, all of which will appear in Energy Research Abstracts (ERA); 21 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

  14. Vehicle Technologies Office Merit Review 2014: High Energy Lithium Batteries for PHEV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy lithium batteries...

  15. Vehicle Technologies Office Merit Review 2015: Development of High-Performance Cast Crankshafts

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Caterpillar at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of high-performance...

  16. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect (OSTI)

    Per F. Peterson

    2010-03-01

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  17. IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 17, NO. 6, JUNE 2005 1253 High Sensitivity Evanescent Field Fiber

    E-Print Network [OSTI]

    Dagenais, Mario

    IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 17, NO. 6, JUNE 2005 1253 High Sensitivity Evanescent Field, IEEE, and Mario Dagenais, Senior Member, IEEE Abstract--Increased sensitivity to change in surrounding

  18. Vehicle Technologies Office Merit Review 2014: High Performance DC Bus Film Capacitor

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by GE Global Research at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high performance DC bus...

  19. Vehicle Technologies Office Merit Review 2015: High Performance DC Bus Film Capacitor

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by GE Global Research at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high performance DC bus...

  20. Vehicle Technologies Office Merit Review 2014: High Strength, Light-Weight Engines for Heavy Duty Trucks

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high strength,...