National Library of Energy BETA

Sample records for industrial equipment test

  1. ISSUANCE 2016-02-22: Energy Conservation Program for Certain Commercial and Industrial Equipment: Test Procedures for Commercial Packaged Boilers, Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Certain Commercial and Industrial Equipment: Test Procedures for Commercial Packaged Boilers

  2. ISSUANCE 2015-06-30: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Final Rule

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Final Rule

  3. ISSUANCE 2015-05-12: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial Water Heaters

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial Water Heaters

  4. ISSUANCE 2015-06-25: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Residential and Commercial Water Heaters; Correction

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Residential and Commercial Water Heaters; Correction

  5. Water-Using Equipment: Commercial and Industrial

    SciTech Connect (OSTI)

    Solana, Amy E.; Mcmordie, Katherine

    2006-01-24

    Water is an important aspect of many facets in energy engineering. While the previous article detailed domestic related water-using equipment such as toilets and showerheads, this article focuses on various types of water-using equipment in commercial and industrial facilities, including commercial dishwashers and laundry, single-pass cooling equipment, boilers and steam generators, cooling towers, and landscape irrigation. Opportunities for water and energy conservation are explained, including both technology retrofits and operation and maintenance changes. Water management planning and leak detection are also included as they are essential to a successful water management program.

  6. Operating Experience Level 3, Industrial Equipment Impacts Infrastruct...

    Energy Savers [EERE]

    mission and schedule, divert resources, and change momentum. PDF icon OE-3 2014-06: Industrial Equipment Impacts infrastructure More Documents & Publications Operating...

  7. Commercial and Industrial Kitchen Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    NOTE: All equipment must be installed on or after January 1, 2015 through December 31, 2015. The documentation must be received no later than March 31, 2016. 

  8. Dispensing Equipment Testing With Mid-Level Ethanol/Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid The National Renewable Energy ...

  9. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  10. CRAD, Measuring and Testing Equipment Assessment Plan

    Broader source: Energy.gov [DOE]

    The objective of this assessment is to determine whether a program is in place which assures that Measuring and Test Equipment (M&TE) used in activities affecting quality and safety are properly controlled, calibrated, and adjusted at specified times to maintain accuracy within necessary limits.

  11. AVTA: Airport Ground Support Equipment Specifications and Test...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Airport Ground Support Equipment Specifications and Test Procedures AVTA: Airport Ground Support Equipment Specifications and Test Procedures PDF icon eGSE America Electric Baggage ...

  12. Operating Experience Level 3, Industrial Equipment Impacts Infrastructure

    Broader source: Energy.gov [DOE]

    This Operating Experience Level 3 (OE-3) document provides information on a safety concern related to heavy industrial equipment that contacts and damages structures and electrical, gas, and water lines. Although these contacts did not cause injuries, the events did impact mission and schedule, divert resources, and change momentum.

  13. Cold test data for equipment acceptance into 105-KE Basin

    SciTech Connect (OSTI)

    Packer, M.J.

    1994-11-09

    This document provides acceptance testing of equipment to be installed in the 105-KE Basin for pumping sludge to support the discharge chute barrier doors installation.

  14. Commercial Equipment Testing Enforcement Policies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Equipment Testing Enforcement Policies Commercial Equipment Testing Enforcement Policies In an exercise of its enforcement discretion, under specific conditions, DOE will not perform assessment testing pursuant to 10 C.F.R. § 429.104, verification testing pursuant to 10 C.F.R. § 429.70(c)(5), or enforcement testing pursuant to 10 C.F.R. § 429.110 on certain units of commercial equipment, as described in these policy statements. PDF icon Enforcement Policy Statement: Testing of

  15. The design and testing of subsea production equipment: Current practice and potential for the future

    SciTech Connect (OSTI)

    Cort, A.J.C.; Ford, J.T.

    1995-12-31

    This paper presents an analysis of the current approach to the design and testing of equipment used in subsea developments. The paper critically assesses the current equipment specification, design, manufacture and testing process. An essential part of the analysis is a review of the standards used by the industry and statutory regulations which impact on this process. It raises significant questions about the efficacy of the design and testing procedures and the role of the regulating bodies in that process. It discusses the impact of poor specification and design procedures, and inadequate testing, of the safety and reliability of the equipment. As a consequence of the analysis it is suggested that the manner in which equipment is specified, designed and tested may need to be changed in order to meet future needs. The above issues are focused, by considering the production of a subsea wellhead, from specification by the operator to delivery by the manufacturer.

  16. Defect Prevention and Detection in Software for Automated Test Equipment

    SciTech Connect (OSTI)

    E. Bean

    2006-11-30

    Software for automated test equipment can be tedious and monotonous making it just as error-prone as other software. Active defect prevention and detection are also important for test applications. Incomplete or unclear requirements, a cryptic syntax used for some test applicationsespecially script-based test sets, variability in syntax or structure, and changing requirements are among the problems encountered in one tester. Such problems are common to all software but can be particularly problematic in test equipment software intended to test another product. Each of these issues increases the probability of error injection during test application development. This report describes a test application development tool designed to address these issues and others for a particular piece of test equipment. By addressing these problems in the development environment, the tool has powerful built-in defect prevention and detection capabilities. Regular expressions are widely used in the development tool as a means of formally defining test equipment requirements for the test application and verifying conformance to those requirements. A novel means of using regular expressions to perform range checking was developed. A reduction in rework and increased productivity are the results. These capabilities are described along with lessons learned and their applicability to other test equipment software. The test application development tool, or application builder, is known as the PT3800 AM Creation, Revision and Archiving Tool (PACRAT).

  17. AVTA: Airport Ground Support Equipment Specifications and Test Procedures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Airport Ground Support Equipment Specifications and Test Procedures AVTA: Airport Ground Support Equipment Specifications and Test Procedures PDF icon eGSE America Electric Baggage Tow Tractor (EBTT) Technical Specifications PDF icon eGSE America Electric Aircraft PushBack Tractor (EAPT) Technical Specifications PDF icon eGSE America Electric Aircraft Cargo Conveyor (EACC) Technical Specifications PDF icon ETA-GAC001 Control, Close-out, and Storage of Documentation PDF

  18. Global Energy Efficient IT Equipment Industry 2015 Market Research...

    Open Energy Info (EERE)

    on. Then it analyzed the world's main region market conditions, including the product price, profit, capacity, production, capacity utilization, supply, demand and industry...

  19. Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Commercial Warm Air Furnaces, Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Commercial Warm Air Furnaces, Notice of Proposed Rulemaking

  20. Project W320 52-inch diameter equipment container load test: Test report

    SciTech Connect (OSTI)

    Bellomy, J.R.

    1995-02-22

    This test report summarizes testing activities and documents the results of the load tests performed on-site and off-site to structural qualify the 52-inch equipment containers designed and fabricated under Project W-320.

  1. ETA-NAC007 - Control of Measuring and Test Equipment (M&TE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control of Measuring and Test Equipment (M&TE) Prepared by Electric Transportation ... of calibration standards and Measuring and Test Equipment (M&TE) used for measuring, ...

  2. ETA-UAC07 - Control of Measuring and Test Equipment (M&TE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Control of Measuring and Test Equipment (M&TE)" Prepared by Electric Transportation ... of calibration standards and Measuring and Test Equipment (M&TE) used for measuring, ...

  3. Energy efficiency opportunities in China. Industrial equipment and small cogeneration

    SciTech Connect (OSTI)

    1995-02-01

    A quick glance at comparative statistics on energy consumption per unit of industrial output reveals that China is one of the least energy efficient countries in the world. Energy waste not only impedes economic growth, but also creates pollution that threatens human health, regional ecosystems, and the global climate. China`s decision to pursue economic reform and encourage technology transfer from developed countries has created a window of opportunity for significant advances in energy efficiency. Policy changes, technical training, public education, and financing can help China realize its energy conservation potential.

  4. SHEAR STRENGTH MEASURING EQUIPMENT EVALUATION AT THE COLD TEST FACILITY

    SciTech Connect (OSTI)

    MEACHAM JE

    2009-09-09

    Retrievals under current criteria require that approximately 2,000,000 gallons of double-shell tank (DST) waste storage space not be used to prevent creating new tanks that might be susceptible to buoyant displacement gas release events (BDGRE). New criteria are being evaluated, based on actual sludge properties, to potentially show that sludge wastes do not exhibit the same BDGRE risk. Implementation of the new criteria requires measurement of in situ waste shear strength. Cone penetrometers were judged the best equipment for measuring in situ shear strength and an A.P. van den berg Hyson 100 kN Light Weight Cone Penetrometer (CPT) was selected for evaluation. The CPT was procured and then evaluated at the Hanford Site Cold Test Facility. Evaluation demonstrated that the equipment with minor modification was suitable for use in Tank Farms.

  5. Assessment of the feasibility of reducing emissions from gasoline and LPG industrial equipment

    SciTech Connect (OSTI)

    Bekken, M.; Wood, M.S.

    1997-12-31

    In 1994, the California Air Resources Board (ARB) approved a State Implementation Plan (SIP) to bring California`s South Coast Air Basin into compliance with federal ozone standards. The plan includes the adoption of emission controls for previously un(der)regulated off-road vehicles and equipment. Off-road industrial equipment in the 25 to 175 horsepower range has been designed to meet power and fuel economy priorities, with little effort going to emission reductions. California`s plan requires substantial emission reductions for such equipment. The application of catalysts or other emission control technologies to spark-ignited industrial equipment can feasibly and cost-effectively achieve the emission reductions required in the SIP. The paper discusses off-road catalyst application, availability, and packaging. In addition, other technologies to reduce emissions are addressed, including engine, fuel system, and exhaust system modifications, and the use of alternate fuels. Anticipated costs are also discussed. There is good reason to presume that spark-ignited industrial equipment will be able to achieve the required emission reductions in the time frame indicated in the SIP.

  6. An Analysis of Price Determination and Markups in the Air-Conditioning and Heating Equipment Industry

    SciTech Connect (OSTI)

    Dale, Larry; Millstein, Dev; Coughlin, Katie; Van Buskirk, Robert; Rosenquist, Gregory; Lekov, Alex; Bhuyan, Sanjib

    2004-01-30

    In this report we calculate the change in final consumer prices due to minimum efficiency standards, focusing on a standard economic model of the air-conditioning and heating equipment (ACHE) wholesale industry. The model examines the relationship between the marginal cost to distribute and sell equipment and the final consumer price in this industry. The model predicts that the impact of a standard on the final consumer price is conditioned by its impact on marginal distribution costs. For example, if a standard raises the marginal cost to distribute and sell equipment a small amount, the model predicts that the standard will raise the final consumer price a small amount as well. Statistical analysis suggest that standards do not increase the amount of labor needed to distribute equipment the same employees needed to sell lower efficiency equipment can sell high efficiency equipment. Labor is a large component of the total marginal cost to distribute and sell air-conditioning and heating equipment. We infer from this that standards have a relatively small impact on ACHE marginal distribution and sale costs. Thus, our model predicts that a standard will have a relatively small impact on final ACHE consumer prices. Our statistical analysis of U.S. Census Bureau wholesale revenue tends to confirm this model prediction. Generalizing, we find that the ratio of manufacturer price to final consumer price prior to a standard tends to exceed the ratio of the change in manufacturer price to the change in final consumer price resulting from a standard. The appendix expands our analysis through a typical distribution chain for commercial and residential air-conditioning and heating equipment.

  7. ETA-HAC07 - Control of Measuring and Test Equipment (M&TE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control of Measuring and Test Equipment (M&TE) Prepared by Electric Transportation ... The objective of this procedure is to assure that Measuring and Test Equipment (M&TE) used ...

  8. ETA-HIAC07 - Control of Measuring and Test Equipment (M&TE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control of Measuring and Test Equipment (M&TE) Prepared by Electric Transportation ... The objective of this procedure is to assure that Measuring and Test Equipment (M&TE) used ...

  9. Comment submitted by Hobart/ITW Food Equipment Group regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by Hobart/ITW Food Equipment Group regarding the Energy Star Verification Testing Program

  10. DOE Publishes Notice of Proposed Rulemaking for Commercial Refrigeration Equipment Test Procedure

    Broader source: Energy.gov [DOE]

    The Department of Energy has published a notice of proposed rulemaking regarding test procedures for commercial refrigeration equipment.

  11. Blade Testing Equipment Development and Commercialization: Cooperative Research and Development Final Report, CRADA Number CRD-09-346

    SciTech Connect (OSTI)

    Snowberg, D.; Hughes, S.

    2013-04-01

    Blade testing is required to meet wind turbine design standards, reduce machine cost, and reduce the technical and financial risk of deploying mass-produced wind turbine models. NREL?s National Wind Technology Center (NWTC) in Colorado is the only blade test facility in the U.S. capable of performing full-scale static and fatigue testing of multi-megawatt-scale wind turbine blades. Rapid growth in wind turbine size over the past two decades has outstripped the size capacity of the NWTC blade test facility leaving the U.S. wind industry without a suitable means of testing blades for large land-based and offshore turbines. This CRADA will develop and commercialize testing technologies and test equipment, including scaling up, value engineering, and testing of equipment to be used at blade testing facilities in the U.S. and around the world.

  12. ISSUANCE 2015-08-21: Energy Efficiency Program for Commercial and Industrial Equipment: Notice of Open Meetings for the Fans and Blowers Working Group

    Broader source: Energy.gov [DOE]

    Energy Efficiency Program for Commercial and Industrial Equipment: Notice of Open Meetings for the Fans and Blowers Working Group

  13. Tensiometer, drive probe for use with environmental testing equipment, and methods of inserting environmental testing equipment into a sample

    DOE Patents [OSTI]

    Hubbell, Joel M.; Sisson, James B.

    2005-07-26

    A method of inserting a tensiometer into a sample, comprises providing a drive probe configured to be engaged by direct push equipment; supporting a porous member from the drive probe; and driving the drive probe into the sample using a cone penetrometer. A tensiometer comprises a drive probe configured to be engaged by direct push equipment or a cone penetrometer; a porous member supported by the drive probe; and a pressure sensor in pressure sensing relation to the porous member.

  14. DOE Publishes Notice of Proposed Rulemaking for Direct Heating Equipment and Pool Heater Test Procedures

    Broader source: Energy.gov [DOE]

    The Department of Energy has published a notice of proposed rulemaking regarding test procedures for direct heating equipment and pool heaters.

  15. ISSUANCE 2015-12-17: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces, Supplemental Notice of Proposed Rulemaking

  16. Flexible thermal cycle test equipment for concentrator solar cells

    DOE Patents [OSTI]

    Hebert, Peter H.; Brandt, Randolph J.

    2012-06-19

    A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

  17. NREL: Technology Transfer - NREL's ESIF Offers Equipment Testing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stores information from all ESIF labs. It also connects to outside test beds such as microgrids, he added. QUOTABLE: We set up a microgrid being built by the defense contractor...

  18. 2014-02-21 Issuance: Test Procedure for Commercial Water Heating Equipment; Request for Information

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register request for information regarding test procedures for commercial water heating equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency (February 21, 2014).

  19. Energy Conservation Program for Consumer Products and Commercial and Industrial Equipment-- AHRI Annual Meeting CCE Overview and Update Presenation, dated April 13, 2011

    Broader source: Energy.gov [DOE]

    This document is the Energy Conservation Program for Consumer Products and Commercial and Industrial Equipment-- AHRI Annual Meeting CCE Overview and Update Presenation, dated April 13, 2011

  20. Federal Register Vol. 76 No. 44, 12422-12505- Energy Conservation Program: Certification, Compliance, and Enforcement for Consumer Products and Commercial and Industrial Equipment (March 7, 2011)

    Broader source: Energy.gov [DOE]

    Federal Register Vol. 76 No. 44, 12422-12505 - Energy Conservation Program: Certification, Compliance, and Enforcement for Consumer Products and Commercial and Industrial Equipment (March 7, 2011)....

  1. ISSUANCE 2016-05-19: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Final Determination of Miscellaneous Refrigeration Products as Covered Products

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Final Determination of Miscellaneous Refrigeration Products as Covered Products

  2. ISSUANCE 2016-02-26: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Supplemental Proposed Determination of Miscellaneous Refrigeration Products as Covered Products

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Supplemental Proposed Determination of Miscellaneous Refrigeration Products as Covered Products

  3. ISSUANCE 2016-04-11: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Determination of Portable Air Conditioners as a Covered Consumer Product

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Determination of Portable Air Conditioners as a Covered Consumer Product

  4. Industrial Gas Turbine Engine Catalytic Pilot Combustor-Prototype Testing

    SciTech Connect (OSTI)

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep; Pfefferle, William

    2010-04-01

    PCI has developed and demonstrated its Rich Catalytic Lean-burn (RCL®) technology for industrial and utility gas turbines to meet DOE's goals of low single digit emissions. The technology offers stable combustion with extended turndown allowing ultra-low emissions without the cost of exhaust after-treatment and further increasing overall efficiency (avoidance of after-treatment losses). The objective of the work was to develop and demonstrate emission benefits of the catalytic technology to meet strict emissions regulations. Two different applications of the RCL® concept were demonstrated: RCL® catalytic pilot and Full RCL®. The RCL® catalytic pilot was designed to replace the existing pilot (a typical source of high NOx production) in the existing Dry Low NOx (DLN) injector, providing benefit of catalytic combustion while minimizing engine modification. This report discusses the development and single injector and engine testing of a set of T70 injectors equipped with RCL® pilots for natural gas applications. The overall (catalytic pilot plus main injector) program NOx target of less than 5 ppm (corrected to 15% oxygen) was achieved in the T70 engine for the complete set of conditions with engine CO emissions less than 10 ppm. Combustor acoustics were low (at or below 0.1 psi RMS) during testing. The RCL® catalytic pilot supported engine startup and shutdown process without major modification of existing engine controls. During high pressure testing, the catalytic pilot showed no incidence of flashback or autoignition while operating over a wide range of flame temperatures. In applications where lower NOx production is required (i.e. less than 3 ppm), in parallel, a Full RCL® combustor was developed that replaces the existing DLN injector providing potential for maximum emissions reduction. This concept was tested at industrial gas turbine conditions in a Solar Turbines, Incorporated high-pressure (17 atm.) combustion rig and in a modified Solar Turbines, Incorporated Saturn engine rig. High pressure single-injector rig and modified engine rig tests demonstrated NOx less than 2 ppm and CO less than 10 ppm over a wide flame temperature operating regime with low combustion noise (<0.15% peak-to-peak). Minimum NOx for the optimized engine retrofit Full RCL® designs was less than 1 ppm with CO emissions less than 10 ppm. Durability testing of the substrate and catalyst material was successfully demonstrated at pressure and temperature showing long term stable performance of the catalytic reactor element. Stable performance of the reactor element was achieved when subjected to durability tests (>5000 hours) at simulated engine conditions (P=15 atm, Tin=400C/750F.). Cyclic tests simulating engine trips was also demonstrated for catalyst reliability. In addition to catalyst tests, substrate oxidation testing was also performed for downselected substrate candidates for over 25,000 hours. At the end of the program, an RCL® catalytic pilot system has been developed and demonstrated to produce NOx emissions of less than 3 ppm (corrected to 15% O2) for 100% and 50% load operation in a production engine operating on natural gas. In addition, a Full RCL® combustor has been designed and demonstrated less than 2 ppm NOx (with potential to achieve 1 ppm) in single injector and modified engine testing. The catalyst/substrate combination has been shown to be stable up to 5500 hrs in simulated engine conditions.

  5. Dispensing Equipment Testing with Mid-Level Ethanol/Gasoline Test Fluid: Summary Report

    SciTech Connect (OSTI)

    Boyce, K.; Chapin, J. T.

    2010-11-01

    The National Renewable Energy Laboratory's (NREL) Nonpetroleum-Based Fuel Task addresses the hurdles to commercialization of biomass-derived fuels and fuel blends. One such hurdle is the unknown compatibility of new fuels with current infrastructure, such as the equipment used at service stations to dispense fuel into automobiles. The U.S. Department of Energy's (DOE) Vehicle Technology Program and the Biomass Program have engaged in a joint project to evaluate the potential for blending ethanol into gasoline at levels higher than nominal 10 volume percent. This project was established to help DOE and NREL better understand any potentially adverse impacts caused by a lack of knowledge about the compatibility of the dispensing equipment with ethanol blends higher than what the equipment was designed to dispense. This report provides data about the impact of introducing a gasoline with a higher volumetric ethanol content into service station dispensing equipment from a safety and a performance perspective.

  6. Solar Energy Education. Industrial arts: student activities. Field test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    edition (Technical Report) | SciTech Connect Industrial arts: student activities. Field test edition Citation Details In-Document Search Title: Solar Energy Education. Industrial arts: student activities. Field test edition × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in

  7. Solar Energy Education. Industrial arts: teacher's guide. Field test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    edition. [Includes glossary] (Technical Report) | SciTech Connect Industrial arts: teacher's guide. Field test edition. [Includes glossary] Citation Details In-Document Search Title: Solar Energy Education. Industrial arts: teacher's guide. Field test edition. [Includes glossary] × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit

  8. Dispensing Equipment Testing With Mid-Level Ethanol/Gasoline Test Fluid

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory’s (NREL) Nonpetroleum-Based Fuel Task addresses the hurdles to commercialization of biomass-derived fuels and fuel blends. One such hurdle is the unknown compatibility of new fuels with current infrastructure, such as the equipment used at service stations to dispense fuel into automobiles. The U.S. Department of Energy’s (DOE) Vehicle Technology Program and the Biomass Program have engaged in a joint project to evaluate the potential for blending ethanol into gasoline at levels higher than nominal 10 volume percent. The U.S. Environmental Protection Agency (EPA) is considering a waiver application for 15% by volume ethanol blended into gasoline (E15). Should the waiver be granted, service stations may be able to use their current equipment to dispense the new fuel. This project was established to help DOE and NREL better understand any potentially adverse impacts caused by a lack of knowledge about the compatibility of the dispensing equipment with ethanol blends higher than what the equipment was designed to dispense. This report provides data about the impact of introducing a gasoline with a higher volumetric ethanol content into service station dispensing equipment from a safety and a performance perspective.

  9. TANK 18 AND 19-F TIER 1A EQUIPMENT FILL MOCK UP TEST SUMMARY

    SciTech Connect (OSTI)

    Stefanko, D.; Langton, C.

    2011-11-04

    The United States Department of Energy (US DOE) has determined that Tanks 18-F and 19-F have met the F-Tank Farm (FTF) General Closure Plan Requirements and are ready to be permanently closed. The high-level waste (HLW) tanks have been isolated from FTF facilities. To complete operational closure they will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) discouraging future intrusion, and (4) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. Bulk waste removal and heel removal equipment remain in Tanks 18-F and 19-F. This equipment includes the Advance Design Mixer Pump (ADMP), transfer pumps, transfer jets, standard slurry mixer pumps, equipment-support masts, sampling masts, dip tube assemblies and robotic crawlers. The present Tank 18 and 19-F closure strategy is to grout the equipment in place and eliminate vertical pathways by filling voids in the equipment to vertical fast pathways and water infiltration. The mock-up tests described in this report were intended to address placement issues identified for grouting the equipment that will be left in Tank 18-F and Tank 19-F. The Tank 18-F and 19-F closure strategy document states that one of the Performance Assessment (PA) requirements for a closed tank is that equipment remaining in the tank be filled to the extent practical and that vertical flow paths 1 inch and larger be grouted. The specific objectives of the Tier 1A equipment grout mock-up testing include: (1) Identifying the most limiting equipment configurations with respect to internal void space filling; (2) Specifying and constructing initial test geometries and forms that represent scaled boundary conditions; (3) Identifying a target grout rheology for evaluation in the scaled mock-up configurations; (4) Scaling-up production of a grout mix with the target rheology (16 second flow cone value) from 0.25 cubic feet to 4.3 cubic feet. (Ten 0.43 cubic batches were produced because full-scale equipment was not available for the Tier 1A test.); (5) Demonstrating continuous gravity filling of the ADMP mock up test form; (6) Demonstrating continuous gravity filling of 1 inch and 2 inch schedule 40 pipe; and (7) Demonstrating filling of 1 inch and 2 inch schedule 40 pipe from the bottom up by discharging through a tube inserted into the pipes. The Tier 1A mock-up test focused on the ADMP and pipes at least one inch in diameter. The ADMP which is located in center riser of Tank 18-F is a concern because the column for this long-shaft (55 ft) pump is unique and modification to the pump prior to placing it in service limited the flow path options for filling by creating a single flow path for filling and venting the ADMP support column. The large size, vertical orientation, and complicated flow path in the ADMP warrants a detailed description of this piece of ancillary equipment.

  10. Results from the Operational Testing of the Eaton Smart Grid Capable Electric Vehicle Supply Equipment

    SciTech Connect (OSTI)

    Bennett, Brion

    2014-10-01

    The Idaho National Laboratory conducted testing and analysis of the Eaton smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from Eaton for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the Eaton smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  11. Results from Operational Testing of the Siemens Smart Grid-Capable Electric Vehicle Supply Equipment

    SciTech Connect (OSTI)

    Bennett, Brion

    2015-05-01

    The Idaho National Laboratory conducted testing and analysis of the Siemens smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from Siemens for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the Siemens smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  12. Comment submitted by the North American Association of Food Equipment Manufacturers (NAFEM) regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by the North American Association of Food Equipment Manufacturers (NAFEM) regarding the Energy Star Verification Testing Program

  13. Impacts of Rising Construction and Equipment Costs on Energy Industries (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Costs related to the construction industry have been volatile in recent years. Some of the volatility may be related to higher energy prices. Prices for iron and steel, cement, and concrete -- commodities used heavily in the construction of new energy projects -- rose sharply from 2004 to 2006, and shortages have been reported. How such price fluctuations may affect the cost or pace of new development in the energy industries is not known with any certainty, and short-term changes in commodity prices are not accounted for in the 25-year projections in Annual Energy Outlook 2007. Most projects in the energy industries require long planning and construction lead times, which can lessen the impacts of short-term trends.

  14. Educated and Equipped: Jump-Start Your Career in the Bioenergy Industry

    Broader source: Energy.gov [DOE]

    Are you a recent college graduate looking to jump-start your career? Whether you majored in engineering or English, science or political science, business or biology, there are numerous opportunities to use your skills and education in the emerging bioenergy industry.

  15. Expert system for testing industrial processes and determining sensor status

    DOE Patents [OSTI]

    Gross, K.C.; Singer, R.M.

    1998-06-02

    A method and system are disclosed for monitoring both an industrial process and a sensor. The method and system include determining a minimum number of sensor pairs needed to test the industrial process as well as the sensor for evaluating the state of operation of both. The technique further includes generating a first and second signal characteristic of an industrial process variable. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the pair of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test. 24 figs.

  16. Expert system for testing industrial processes and determining sensor status

    DOE Patents [OSTI]

    Gross, Kenneth C.; Singer, Ralph M.

    1998-01-01

    A method and system for monitoring both an industrial process and a sensor. The method and system include determining a minimum number of sensor pairs needed to test the industrial process as well as the sensor for evaluating the state of operation of both. The technique further includes generating a first and second signal characteristic of an industrial process variable. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the pair of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

  17. Double-shell tank integrity assessments ultrasonic test equipment performance test

    SciTech Connect (OSTI)

    Pfluger, D.C.

    1996-09-26

    A double-shell tank (DST) inspection (DSTI) system was performance tested over three months until August 1995 at Pittsburgh, Pennsylvania, completing a contract initiated in February 1993 to design, fabricate, and test an ultrasonic inspection system intended to provide ultrasonic test (UT) and visual data to determine the integrity of 28 DSTs at Hanford. The DSTs are approximately one-million-gallon underground radioactive-waste storage tanks. The test was performed in accordance with a procedure (Jensen 1995) that included requirements described in the contract specification (Pfluger 1995). This report documents the results of tests conducted to evaluate the performance of the DSTI system against the requirements of the contract specification. The test of the DSTI system also reflects the performance of qualified personnel and operating procedures.

  18. POC-SCALE TESTING OF OIL AGGLOMERATION TECHNIQUES AND EQUIPMENT FOR FINE COAL PROCESSING

    SciTech Connect (OSTI)

    1998-01-01

    This report covers the technical progress achieved from October 1, 1997 to December 31, 1997 on the POC-Scale Testing of Oil Agglomeration Techniques and Equipment for Fine Coal Processing project. Experimental test procedures and the results related to the processing of coal fines originating from process streams generated at the Shoal Creek Mine preparation plant, owned and operated by the Drummond Company Inc. of Alabama, are described. Two samples of coal fines, namely Cyclone Overflow and Pond Fines were investigated. The batch test results showed that by applying the Aglofloat technology a significant ash removal might be achieved at a very high combustible matter recovery: · for the Cyclone Overflow sample the ash reduction was in the range 50 to 55% at combustible matter recovery about 98% · for the Pond Fines sample the ash reduction was up to 48% at combustible matter recovery up to 85%. Additional tests were carried out with the Alberta origin Luscar Mine coal, which will be used for the parametric studies of agglomeration equipment at the 250 kg/h pilot plant. The Luscar coal is very similar to the Mary Lee Coal Group (processed at Shoal Creek Mine preparation plant) in terms of rank and chemical composition.

  19. Field Testing: Independent, Accredited Testing and Validation for the Wind Industry (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    This fact sheet describes the field testing capabilities at the National Wind Technology Center (NWTC). NREL's specialized facilities and personnel at the NWTC provide the U.S. wind industry with scientific and engineering support that has proven critical to the development of wind energy for U.S. energy needs. The NWTC's specialized field-testing capabilities have evolved over 30 years of continuous support by the U.S. Department of Energy Wind and Hydropower Technologies Program and long standing industry partnerships. The NWTC provides wind industry manufacturers, developers, and operators with turbine and component testing all in one convenient location. Although industry utilizes sophisticated modeling tools to design and optimize turbine configurations, there are always limitations in modeling capabilities, and testing is a necessity to ensure performance and reliability. Designs require validation and testing is the only way to determine if there are flaws. Prototype testing is especially important in capturing manufacturing flaws that might require fleet-wide retrofits. The NWTC works with its industry partners to verify the performance and reliability of wind turbines that range in size from 400 Watts to 3 megawatts. Engineers conduct tests on components and full-scale turbines in laboratory environments and in the field. Test data produced from these tests can be used to validate turbine design codes and simulations that further advance turbine designs.

  20. NREL Invention Speeds Solar Cell Quality Testing for Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Invention Speeds Solar Cell Quality Testing for Industry A solid-state optical system, invented by the National Renewable Energy Laboratory (NREL), measures solar cell quantum efficiency (QE) in less than a second, enabling a suite of new capabilities for solar cell manufacturers. The system was developed with funding in part by the Office of Energy Efficiency and Renewable Energy within the U.S. Department of Energy. QE is a measurement of how cells respond to light across the solar spectrum,

  1. Federal laboratory nondestructive testing research and development applicable to industry

    SciTech Connect (OSTI)

    Smith, S.A.; Moore, N.L.

    1987-02-01

    This document presents the results of a survey of nondestructive testing (NDT) and related sensor technology research and development (R and D) at selected federal laboratories. Objective was to identify and characterize NDT activities that could be applied to improving energy efficiency and overall productivity in US manufacturing. Numerous federally supported R and D programs were identified in areas such as acoustic emissions, eddy current, radiography, computer tomography and ultrasonics. A Preliminary Findings Report was sent to industry representatives, which generated considerable interest.

  2. Cyber Security Testing and Training Programs for Industrial Control Systems

    SciTech Connect (OSTI)

    Daniel Noyes

    2012-03-01

    Service providers rely on industrial control systems (ICS) to manage the flow of water at dams, open breakers on power grids, control ventilation and cooling in nuclear power plants, and more. In today's interconnected environment, this can present a serious cyber security challenge. To combat this growing challenge, government, private industry, and academia are working together to reduce cyber risks. The Idaho National Laboratory (INL) is a key contributor to the Department of Energy National SCADA Test Bed (NSTB) and the Department of Homeland Security (DHS) Control Systems Security Program (CSSP), both of which focus on improving the overall security posture of ICS in the national critical infrastructure. In support of the NSTB, INL hosts a dedicated SCADA testing facility which consists of multiple control systems supplied by leading national and international manufacturers. Within the test bed, INL researchers systematically examine control system components and work to identify vulnerabilities. In support of the CSSP, INL develops and conducts training courses which are designed to increase awareness and defensive capabilities for IT/Control System professionals. These trainings vary from web-based cyber security trainings for control systems engineers to more advanced hands-on training that culminates with a Red Team/ Blue Team exercise that is conducted within an actual control systems environment. INL also provides staffing and operational support to the DHS Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) Security Operations Center which responds to and analyzes control systems cyber incidents across the 18 US critical infrastructure sectors.

  3. Characterization of Naturally Occurring Radioactive Material (NORM) in Oil and Gas Industry Equipment and Wastes

    SciTech Connect (OSTI)

    Rood, A.S.; White, G.J.

    1999-10-07

    This Sampling and Analysis (S and A) Plan was developed for the NORM Characterization Program, and describes the information to be gained through the program, how the required information is to be collected, and the anticipated form and content of the final data. The S and A Plan provides detailed procedures describing the work to be performed, how and why the work will be performed, and who will be responsible for conducting the various aspects of the work. The S and A Plan has been prepared with input from all parties involved with the program. Where appropriate, portions of the procedures described in the S and A Plan will be field tested by personnel of the Idaho National Engineering Laboratory (INEL) and the Grand Junction Project Office (GJPO), as well as representatives of the cosponsor organizations prior to their use in the field.

  4. Development of Functionally Graded Materials for Manufacturing Tools and Dies and Industrial Processing Equipment

    SciTech Connect (OSTI)

    Lherbier, Louis, W.; Novotnak, David, J.; Herling, Darrell, R.; Sears, James, W.

    2009-03-23

    Hot forming processes such as forging, die casting and glass forming require tooling that is subjected to high temperatures during the manufacturing of components. Current tooling is adversely affected by prolonged exposure at high temperatures. Initial studies were conducted to determine the root cause of tool failures in a number of applications. Results show that tool failures vary and depend on the operating environment under which they are used. Major root cause failures include (1) thermal softening, (2) fatigue and (3) tool erosion, all of which are affected by process boundary conditions such as lubrication, cooling, process speed, etc. While thermal management is a key to addressing tooling failures, it was clear that new tooling materials with superior high temperature strength could provide improved manufacturing efficiencies. These efficiencies are based on the use of functionally graded materials (FGM), a new subset of hybrid tools with customizable properties that can be fabricated using advanced powder metallurgy manufacturing technologies. Modeling studies of the various hot forming processes helped identify the effect of key variables such as stress, temperature and cooling rate and aid in the selection of tooling materials for specific applications. To address the problem of high temperature strength, several advanced powder metallurgy nickel and cobalt based alloys were selected for evaluation. These materials were manufactured into tooling using two relatively new consolidation processes. One process involved laser powder deposition (LPD) and the second involved a solid state dynamic powder consolidation (SSDPC) process. These processes made possible functionally graded materials (FGM) that resulted in shaped tooling that was monolithic, bi-metallic or substrate coated. Manufacturing of tooling with these processes was determined to be robust and consistent for a variety of materials. Prototype and production testing of FGM tooling showed the benefits of the nickel and cobalt based powder metallurgy alloys in a number of applications evaluated. Improvements in tool life ranged from three (3) to twenty (20) or more times than currently used tooling. Improvements were most dramatic where tool softening and deformation were the major cause of tool failures in hot/warm forging applications. Significant improvement was also noted in erosion of aluminum die casting tooling. Cost and energy savings can be realized as a result of increased tooling life, increased productivity and a reduction in scrap because of improved dimensional controls. Although LPD and SSDPC tooling usually have higher acquisition costs, net tooling costs per component produced drops dramatically with superior tool performance. Less energy is used to manufacture the tooling because fewer tools are required and less recycling of used tools are needed for the hot forming process. Energy is saved during the component manufacturing cycle because more parts can be produced in shorter periods of time. Energy is also saved by minimizing heating furnace idling time because of less downtime for tooling changes.

  5. ISSUANCE 2014-12-23: Energy Conservation Program for Consumer Products: Test Procedures for Direct Heating Equipment and Pool Heaters, Final Rule

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products: Test Procedures for Direct Heating Equipment and Pool Heaters, Final Rule

  6. Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report

    SciTech Connect (OSTI)

    Kevin Morrow; Dimitri Hochard; Jeff Wishart

    2011-09-01

    Plug-in electric vehicles (PEVs), including battery electric, plug-in hybrid electric, and extended range electric vehicles, are under evaluation by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) and other various stakeholders to better understand their capability and potential petroleum reduction benefits. PEVs could allow users to significantly improve fuel economy over a standard hybrid electric vehicles, and in some cases, depending on daily driving requirements and vehicle design, PEVs may have the ability to eliminate petroleum consumption entirely for daily vehicle trips. The AVTA is working jointly with the Society of Automotive Engineers (SAE) to assist in the further development of standards necessary for the advancement of PEVs. This report analyzes different methods and available hardware for advanced communications between the electric vehicle supply equipment (EVSE) and the PEV; particularly Power Line Devices and their physical layer. Results of this study are not conclusive, but add to the collective knowledge base in this area to help define further testing that will be necessary for the development of the final recommended SAE communications standard. The Idaho National Laboratory and the Electric Transportation Applications conduct the AVTA for the United States Department of Energy's Vehicle Technologies Program.

  7. Comment submitted by InterMetro Industries Corp. regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by InterMetro Industries Corp. regarding the Energy Star Verification Testing Program

  8. Energy Efficiency Program for Certain Commercial and Industrial...

    Energy Savers [EERE]

    Commercial and Industrial Equipment: Test Procedures for Automatic Commercial Ice ... on the proposal that the use of amended test procedure be required upon the effective ...

  9. Plowshare Program - American Atomic Bomb Tests For Industrial Applications

    SciTech Connect (OSTI)

    2012-04-22

    The United States Atomic Energy Commission (AEC) established the Plowshare Program as a research and development activity to explore the technical and economic feasibility of using nuclear explosives for industrial applications. The reasoning was that the relatively inexpensive energy available from nuclear explosions could prove useful for a wide variety of peaceful purposes. The Plowshare Program began in 1958 and continued through 1975. Between December 1961 and May 1973, the United States conducted 27 Plowshare nuclear explosive tests comprising 35 individual detonations. Conceptually, industrial applications resulting from the use of nuclear explosives could be divided into two broad categories: 1) large-scale excavation and quarrying, where the energy from the explosion was used to break up and/or move rock; and 2) underground engineering, where the energy released from deeply buried nuclear explosives increased the permeability and porosity of the rock by massive breaking and fracturing. Possible excavation applications included: canals, harbors, highway and railroad cuts through mountains, open pit mining, construction of dams, and other quarry and construction-related projects. Underground nuclear explosion applications included: stimulation of natural gas production, preparation of leachable ore bodies for in situ leaching, creation of underground zones of fractured oil shale for in situ retorting, and formation of underground natural gas and petroleum storage reservoirs.

  10. Plowshare Program - American Atomic Bomb Tests For Industrial Applications

    ScienceCinema (OSTI)

    None

    2014-07-31

    The United States Atomic Energy Commission (AEC) established the Plowshare Program as a research and development activity to explore the technical and economic feasibility of using nuclear explosives for industrial applications. The reasoning was that the relatively inexpensive energy available from nuclear explosions could prove useful for a wide variety of peaceful purposes. The Plowshare Program began in 1958 and continued through 1975. Between December 1961 and May 1973, the United States conducted 27 Plowshare nuclear explosive tests comprising 35 individual detonations. Conceptually, industrial applications resulting from the use of nuclear explosives could be divided into two broad categories: 1) large-scale excavation and quarrying, where the energy from the explosion was used to break up and/or move rock; and 2) underground engineering, where the energy released from deeply buried nuclear explosives increased the permeability and porosity of the rock by massive breaking and fracturing. Possible excavation applications included: canals, harbors, highway and railroad cuts through mountains, open pit mining, construction of dams, and other quarry and construction-related projects. Underground nuclear explosion applications included: stimulation of natural gas production, preparation of leachable ore bodies for in situ leaching, creation of underground zones of fractured oil shale for in situ retorting, and formation of underground natural gas and petroleum storage reservoirs.

  11. POC-scale testing of an advanced fine coal dewatering equipment/technique

    SciTech Connect (OSTI)

    Groppo, J.G.; Parekh, B.K.; Rawls, P.

    1995-11-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. As the contract title suggests, the main focus of the program is on proof-of-concept testing of a dewatering technique for a fine clean coal product. The coal industry is reluctant to use the advanced fine coal recovery technology due to the non-availability of an economical dewatering process. in fact, in a recent survey conducted by U.S. DOE and Battelle, dewatering of fine clean coal was identified as the number one priority for the coal industry. This project will attempt to demonstrate an efficient and economic fine clean coal slurry dewatering process.

  12. SECOND GENERATION EXPERIMENTAL EQUIPMENT DESIGN TO SUPPORT VOLOXIDATION TESTING AT INL

    SciTech Connect (OSTI)

    Dennis L. Wahlquit; Kenneth J. Bateman; Brian R. Westphal

    2008-05-01

    Voloxidation is a potential head-end process used prior to aqueous or pyrochemical spent-oxide-fuel treatment. The spent oxide fuel is heated to an elevated temperature in oxygen or air to promote separation of the fuel from the cladding as well as volatize the fission products. The Idaho National Laboratory (INL) and the Korea Atomic Energy Research Institute (KAERI) have been collaborating on voloxidation research through a joint International Nuclear Energy Research Initiative (I-NERI). A new furnace and off-gas trapping system (OTS) with enhanced capability was necessary to perform further testing. The design criteria for the OTS were jointly agreed upon by INL and KAERI. First, the equipment must accommodate the use of spent nuclear fuel and be capable of operating in the Hot Fuel Examination Facility (HFEF) at the INL. This primarily means the furnace and OTS must be remotely operational and maintainable. The system requires special filters and distinctive temperature zones so that the fission products can be uniquely captured. The OTS must be sealed to maximize the amount of fission products captured. Finally, to accommodate the largest range of operating conditions, the OTS must be capable of handling high temperatures and various oxidizing environments. The constructed system utilizes a vertical split-tube furnace with four independently controlled zones. One zone is capable of reaching 1200C to promote the release of volatile fission products. The three additional zones that capture fission products can be controlled to operate between 100-1100C. A detailed description of the OTS will be presented as well as some initial background information on high temperature seal options.

  13. Results from the Operational Testing of the General Electric Smart Grid Capable Electric Vehicle Supply Equipment (EVSE)

    SciTech Connect (OSTI)

    Richard Barney Carlson; Don Scoffield; Brion Bennett

    2013-12-01

    The Idaho National Laboratory conducted testing and analysis of the General Electric (GE) smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from GE for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the GE smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  14. Development and Testing of Industrial Scale Coal Fired Combustion System, Phase 3

    SciTech Connect (OSTI)

    Bert Zauderer

    1998-09-30

    Coal Tech Corp's mission is to develop, license & sell innovative, lowest cost, solid fuel fired power systems & total emission control processes using proprietary and patented technology for domestic and international markets. The present project 'DEVELOPMENT & TESTING OF INDUSTRIAL SCALE, COAL FIRED COMBUSTION SYSTEM, PHASE 3' on DOE Contract DE-AC22-91PC91162 was a key element in achieving this objective. The project consisted of five tasks that were divided into three phases. The first phase, 'Optimization of First Generation 20 MMBtu/hr Air-Cooled Slagging Coal Tech Combustor', consisted of three tasks, which are detailed in Appendix 'A' of this report. They were implemented in 1992 and 1993 at the first generation, 20 MMBtu/hour, combustor-boiler test site in Williamsport, PA. It consisted of substantial combustor modifications and coal-fired tests designed to improve the combustor's wall cooling, slag and ash management, automating of its operation, and correcting severe deficiencies in the coal feeding to the combustor. The need for these changes was indicated during the prior 900-hour test effort on this combustor that was conducted as part of the DOE Clean Coal Program. A combination of combustor changes, auxiliary equipment changes, sophisticated multi-dimensional combustion analysis, computer controlled automation, and series of single and double day shift tests totaling about 300 hours, either resolved these operational issues or indicated that further corrective changes were needed in the combustor design. The key result from both analyses and tests was that the combustor must be substantially lengthened to maximize combustion efficiency and sharply increase slag retention in the combustor. A measure of the success of these modifications was realized in the third phase of this project, consisting of task 5 entitled: 'Site Demonstration with the Second Generation 20 MMBtu/hr Air-Cooled Slagging Coal Tech Combustor'. The details of the task 5 effort are contained in Appendix 'C'. It was implemented between 1994 and 1998 after the entire 20 MMBtu/hr combustor-boiler facility was relocated to Philadelphia, PA in 1994. A new test facility was designed and installed. A substantially longer combustor was fabricated. Although not in the project plan or cost plan, an entire steam turbine-electric power generating plant was designed and the appropriate new and used equipment for continuous operation was specified. Insufficient funds and the lack of a customer for any electric power that the test facility could have generated prevented the installation of the power generating equipment needed for continuous operation. All other task 5 project measures were met and exceeded. 107 days of testing in task 5, which exceeded the 63 days (about 500 hours) in the test plan, were implemented. Compared to the first generation 20 MMBtu/hr combustor in Williamsport, the 2nd generation combustor has a much higher combustion efficiency, the retention of slag inside the combustor doubled to about 75% of the coal ash, and the ash carryover into the boiler, a major problem in the Williamsport combustor was essentially eliminated. In addition, the project goals for coal-fired emissions were exceeded in task 5. SO{sub 2} was reduced by 80% to 0.2 lb/MMBtu in a combination of reagent injection in the combustion and post-combustion zones. NO{sub x} was reduced by 93% to 0.07 lb/MMBtu in a combination of staged combustion in the combustor and post-combustion reagent injection. A baghouse was installed that was rated to 0.03 lb/MMBtu stack particle emissions. The initial particle emission test by EPA Method 5 indicated substantially higher emissions far beyond that indicated by the clear emission plume. These emissions were attributed to steel particles released by wall corrosion in the baghouse, correction of which had no effect of emissions.

  15. ISSUANCE 2015-04-29: Energy Conservation Program for Consumer Products: Test Procedures for Direct Heating Equipment and Pool Heaters Notice of petition to extend test procedure compliance date and request for comment

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products: Test Procedures for Direct Heating Equipment and Pool Heaters; Notice of petition to extend test procedure compliance date and request for comment.

  16. Vehicle Technologies Office: AVTA- Electric Vehicle Charging Equipment (EVSE) Testing Data

    Broader source: Energy.gov [DOE]

    Idaho National Laboratory, supported by the Vehicle Technologies Office (VTO), collects data on how electric vehicle supply equipment (electric car chargers), including AC Level 1, AC Level 2, DC fast chargers, and wireless chargers, function and interact with vehicles so that researchers can continue to improve the technology.

  17. A Discussion of Procedures and Equipment for the Comprehensive Test Ban Treaty On-Site Inspection Environmental Sampling and Analysis

    SciTech Connect (OSTI)

    Wogman, Ned A.; Milbrath, Brian D.; Payne, Rosara F.; Seifert, Carolyn E.; Friese, Judah I.; Miley, Harry S.; Bowyer, Ted W.; Hanlen, Richard C.; Onishi, Yasuo; Hayes, James C.; Wigmosta, Mark S.

    2011-02-01

    This paper is intended to serve as a scientific basis to start discussions of the available environmental sampling techniques and equipment that have been used in the past that could be considered for use within the context of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) on-site inspections (OSI). This work contains information on the techniques, equipment, costs, and some operational procedures associated with environmental sampling that have actually been used in the past by the United States for the detection of nuclear explosions. This paper also includes a discussion of issues, recommendations, and questions needing further study within the context of the sampling and analysis of aquatic materials, atmospheric gases, atmospheric particulates, vegetation, sediments and soils, fauna, and drill-back materials.

  18. MAS 10.2 Control of Measuring and Test Equipment, 3/9/95

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to verify that the contractor maintains adequate control of tools, gauges, instruments, devices or systems used to inspect, test, calibrate, measure or...

  19. ISSUANCE 2014-12-23: Energy Conservation Program for Certain Industrial

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Notice of Proposed Rulemaking | Department of Energy 23: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Notice of Proposed Rulemaking ISSUANCE 2014-12-23: Energy Conservation Program for Certain Industrial Equipment: Energy

  20. Development and Testing of an UltraBattery-Equipped Honda Civic Hybrid

    SciTech Connect (OSTI)

    Sally Sun; Tyler Gray; Pattie Hovorka; Jeffrey Wishart; Donald Karner; James Francfort

    2012-08-01

    The UltraBattery Retrofit Project DP1.8 and Carbon Enriched Project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy and the Advanced Lead Acid Battery Consortium (ALABC), are established to demonstrate the suitability of advanced lead battery technology in hybrid electrical vehicles (HEVs). A profile, termed the “Simulated Honda Civic HEV Profile” (SHCHEVP) has been developed in Project DP1.8 in order to provide reproducible laboratory evaluations of different battery types under real-world HEV conditions. The cycle is based on the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles and simulates operation of a battery pack in a Honda Civic HEV. One pass through the SHCHEVP takes 2,140 seconds and simulates 17.7 miles of driving. A complete nickel metal hydride (NiMH) battery pack was removed from a Honda Civic HEV and operated under SHCHEVP to validate the profile. The voltage behavior and energy balance of the battery during this operation was virtually the same as that displayed by the battery when in the Honda Civic operating on the dynamometer under the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles, thus confirming the efficacy of the simulated profile. An important objective of the project has been to benchmark the performance of the UltraBatteries manufactured by both Furukawa Battery Co., Ltd., Japan (Furakawa) and East Penn Manufacturing Co., Inc. (East Penn). Accordingly, UltraBattery packs from both Furakawa and East Penn have been characterized under a range of conditions. Resistance measurements and capacity tests at various rates show that both battery types are very similar in performance. Both technologies, as well as a standard lead-acid module (included for baseline data), were evaluated under a simple HEV screening test. Both Furakawa and East Penn UltraBattery packs operated for over 32,000 HEV cycles, with minimal loss in performance; whereas the standard lead-acid unit experienced significant degradation after only 6,273 cycles. The high-carbon, ALABC battery manufactured in Project C3 also was tested under the advanced HEV schedule. Its performance was significantly better than the standard lead-acid unit, but was still inferior compared with the UltraBattery. The batteries supplied by Exide as part of the C3 Project performed well under the HEV screening test, especially at high temperatures. The results suggest that higher operating temperatures may improve the performance of lead-acid-based technologies operated under HEV conditions—it is recommended that life studies be conducted on these technologies under such conditions.

  1. Biodiesel Emissions Testing with a Modern Diesel Engine - Equipment Only: Cooperative Research and Development Final Report, CRADA Number CRD-10-399

    SciTech Connect (OSTI)

    Williams, A.

    2013-06-01

    To evaluate the emissions and performance impact of biodiesel in a modern diesel engine equipped with a diesel particulate filter. This testing is in support of the Non-Petroleum Based Fuels (NPBF) 2010 Annual Operating Plan (AOP).

  2. Process Equipment Cost Estimation, Final Report

    Office of Scientific and Technical Information (OSTI)

    ... Evaluations in the Process and Utility Industries," adopted November 1990. 3 equipment. ... Table 6 shows approximate factors for setting various types of equipment. 1 The total cost ...

  3. Appliance and Equipment Standards Program Logic Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturers produce products with a high level of compliance that meet minimum energy conservation standards, resulting in energy savings in the buildings sector The Appliance & Equipment Standards Program promulgates energy conservation standards and test procedures in a rulemaking process to reduce energy consumption across residential, commercial, and industrial buildings. External Influences: DOE budget, Energy prices, Real estate market, Market incentives, Legislation / Regulation

  4. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  5. Partnering with Industry to Advance Biofuels, NREL's Integrated Biorefinery Research Facility (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    Fact sheet describing NREL's Integrated Biorefinery Research Facility and its availability to biofuels' industry partners who want to operate, test, and develop biorefining technology and equipment.

  6. Resource Conservation and Recovery Act Industrial Sites quality assurance project plan: Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This quality assurance project plan (QAPjP) describes the measures that shall be taken to ensure that the environmental data collected during characterization and closure activities of Resource Conservation and Recovery Act (RCRA) Industrial Sites at the Nevada Test Site (NTS) are meaningful, valid, defensible, and can be used to achieve project objectives. These activities are conducted by the US Department of Energy Nevada Operations Office (DOE/NV) under the Nevada Environmental Restoration (ER) Project. The Nevada ER Project consists of environmental restoration activities on the NTS, Tonopah Test Range, Nellis Air Force Range, and eight sites in five other states. The RCRA Industrial Sites subproject constitutes a component of the Nevada ER Project. Currently, this QAPjP is limited to the seven RCRA Industrial Sites identified within this document that are to be closed under an interim status and pertains to all field-investigation, analytical-laboratory, and data-review activities in support of these closures. The information presented here supplements the RCRA Industrial Sites Project Management Plan and is to be used in conjunction with the site-specific subproject sampling and analysis plans.

  7. Industrial Hygiene Concerns during the Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    SciTech Connect (OSTI)

    M.E. Lumia; C.A. Gentile

    2002-01-18

    A significant industrial hygiene concern during the Decontamination and Decommissioning (D and D) of the Tokamak Fusion Test Reactor (TFTR) was the oxidation of the lead bricks' surface, which were utilized for radiation shielding. This presented both airborne exposure and surface contamination issues for the workers in the field removing this material. This paper will detail the various protection and control methods tested and implemented to protect the workers, including those technologies deployed to decontaminate the work surfaces. In addition, those techniques employed to recycle the lead for additional use at the site will be discussed.

  8. ISSUANCE 2015-07-27: Energy Conservation Program: Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment, Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment, Notice of Proposed Rulemaking

  9. Biogas, Solar, and Wind Energy Equipment Exemption | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biogas, Solar, and Wind Energy Equipment Exemption Biogas, Solar, and Wind Energy Equipment Exemption < Back Eligibility Commercial Industrial Residential Agricultural Multifamily...

  10. Cleanroom Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conventional Machining Engis Lapping and Polishing Machine MET One particle Counter Sand Blaster Cabinet Flycutting Machine Lithography Equipment Mann 600 Pattern Generator Oriel UV Exposure Station with Aligner Quintel UL7000-OBS Aligner and DUV Exposure Station Metrology Equipment AFT 210XP Nanospec Digital Instrument 3100 SPM Hitachi S-4500II Field Emission SEM Hitachi U-2001 NIR-UV-VUS Spectrophotometer Nikon MM-22U Measuroscope Nikon OPTIPHOT-88 Optical Microscope OXFORD Plasmalab System

  11. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results

  12. IFT&E Industry Report Wind Turbine-Radar Interference Test Summary.

    SciTech Connect (OSTI)

    Karlson, Benjamin; LeBlanc, Bruce Philip; Minster, David G; Estill, Milford; Miller, Bryan Edward; Busse, Franz; Keck, Chris; Sullivan, Jonathan; Brigada, David; Parker, Lorri; Younger, Richard; Biddle, Jason

    2014-10-01

    Wind turbines have grown in size and capacity with today's average turbine having a power capacity of around 1.9 MW, reaching to heights of over 495 feet from ground to blade tip, and operating with speeds at the tip of the blade up to 200 knots. When these machines are installed within the line-of-sight of a radar system, they can cause significant clutter and interference, detrimentally impacting the primary surveillance radar (PSR) performance. The Massachusetts Institute of Technology's Lincoln Laboratory (MIT LL) and Sandia National Laboratories (SNL) were co-funded to conduct field tests and evaluations over two years in order to: I. Characterize the impact of wind turbines on existing Program-of-Record (POR) air surveillance radars; II. Assess near-term technologies proposed by industry that have the potential to mitigate the interference from wind turbines on radar systems; and III. Collect data and increase technical understanding of interference issues to advance development of long-term mitigation strategies. MIT LL and SNL managed the tests and evaluated resulting data from three flight campaigns to test eight mitigation technologies on terminal (short) and long-range (60 nmi and 250 nmi) radar systems. Combined across the three flight campaigns, more than 460 of hours of flight time were logged. This paper summarizes the Interagency Field Test & Evaluation (IFT&E) program and publicly- available results from the tests. It will also discuss the current wind turbine-radar interference evaluation process within the government and a proposed process to deploy mitigation technologies.

  13. Field Guide for Testing Existing Photovoltaic Systems for Ground Faults and Installing Equipment to Mitigate Fire Hazards

    SciTech Connect (OSTI)

    Brooks, William; Basso, Thomas; Coddington, Michael

    2015-10-01

    Ground faults and arc faults are the two most common reasons for fires in photovoltaic (PV) arrays and methods exist that can mitigate the hazards. This report provides field procedures for testing PV arrays for ground faults, and for implementing high resolution ground fault and arc fault detectors in existing and new PV system designs.

  14. Where is the coiled tubing wave headed. [The increased use of coiled tube drilling equipment in the oil and gas industry

    SciTech Connect (OSTI)

    Newman, K. )

    1994-09-01

    In the late 1980s, the coiled tubing (CT) service market began a wave of growth and expansion unparalleled by other oil field services. In 1989, market growth was so rapid it was referred to as a ''CT revolution.'' The trend has continued through the early 1990s with annual growth rates of 20%--30%, while other oil field service markets have been stagnant or even shrinking. With the recent advent of open-hole CT drilling (CTD) and CT completions (CTC), the wave's momentum is increasing with no end in sight. Advances in CT manufacturing, fatigue prediction, larger-diameter tubing, CT logging and other CT equipment made in the late 1980s improved the reliability and effectiveness of CT services, triggering this wave of activity. The status of this technology is discussed along with the performance and reliability of coiled tubing drills.

  15. Industry Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Partnerships

  16. Energy Efficiency Program for Certain Commercial and Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Program for Certain Commercial and Industrial Equipment Energy Efficiency Program for Certain Commercial and Industrial Equipment The purpose of this memorandum is to ...

  17. Lawrence Livermore National Laboratory (LLNL) Experimental Test Site (Site 300) Salinity Evaluation and Minimization Plan for Cooling Towers and Mechanical Equipment Discharges

    SciTech Connect (OSTI)

    Daily III, W D

    2010-02-24

    This document was created to comply with the Central Valley Regional Water Quality Control Board (CVRWQCB) Waste Discharge Requirement (Order No. 98-148). This order established new requirements to assess the effect of and effort required to reduce salts in process water discharged to the subsurface. This includes the review of technical, operational, and management options available to reduce total dissolved solids (TDS) concentrations in cooling tower and mechanical equipment water discharges at Lawrence Livermore National Laboratory's (LLNL's) Experimental Test Site (Site 300) facility. It was observed that for the six cooling towers currently in operation, the total volume of groundwater used as make up water is about 27 gallons per minute and the discharge to the subsurface via percolation pits is 13 gallons per minute. The extracted groundwater has a TDS concentration of 700 mg/L. The cooling tower discharge concentrations range from 700 to 1,400 mg/L. There is also a small volume of mechanical equipment effluent being discharged to percolation pits, with a TDS range from 400 to 3,300 mg/L. The cooling towers and mechanical equipment are maintained and operated in a satisfactory manner. No major leaks were identified. Currently, there are no re-use options being employed. Several approaches known to reduce the blow down flow rate and/or TDS concentration being discharged to the percolation pits and septic systems were reviewed for technical feasibility and cost efficiency. These options range from efforts as simple as eliminating leaks to implementing advanced and innovative treatment methods. The various options considered, and their anticipated effect on water consumption, discharge volumes, and reduced concentrations are listed and compared in this report. Based on the assessment, it was recommended that there is enough variability in equipment usage, chemistry, flow rate, and discharge configurations that each discharge location at Site 300 should be considered separately when deciding on an approach for reducing the salt discharge to the subsurface. The smaller units may justify moderate changes to equipment, and may benefit from increased cleaning frequencies, more accurate and suitable chemical treatment, and sources of make up water and discharge re-use. The larger cooling towers would be more suitable for automated systems where they don't already exist, re-circulation and treatment of blow down water, and enhanced chemical dosing strategies. It may be more technically feasible and cost efficient for the smaller cooling towers to be replaced by closed loop dry coolers or hybrid towers. There are several potential steps that could be taken at each location to reduce the TDS concentration and/or water use. These include: sump water filtration, minimization of drift, accurate chemical dosing, and use of scale and corrosion coupons for chemical calibration. The implementation of some of these options could be achieved by a step-wise approach taken at two representative facilities. Once viable prototype systems have been proven in the field, systematic implementation should proceed for the remaining systems, with cost, desired reduction, and general feasibility taken into consideration for such systems.

  18. Pulping wastewater treatment: Aeration processes and equipment. (Latest citations from the Paper and Board, Printing, and Packaging Industries Research Associations database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The bibliography contains citations concerning plant operations and methods, pilot plant and laboratory tests and results of pulping mill wastewater treatment by aeration. Composition of effluent components including condensates, bleaching effluents, and spent liquor are discussed. Foreign and domestic plant efficiency, performance reports, and cost data are considered. Aerator design, lagoon treatment system upgrading considerations, and environmental aspects are included. (Contains a minimum of 88 citations and includes a subject term index and title list.)

  19. Laboratory Equipment Donation Program - Equipment Information

    Office of Scientific and Technical Information (OSTI)

    Before you Apply, please Print This Page for your records Equipment Details No Package found. Item Control Number: Equipment Type: Condition: Date Entered: (you have 30 days from ...

  20. Agricultural Equipment Technology Conference

    Broader source: Energy.gov [DOE]

    The 20th Agricultural Equipment Technology Conference will be held Feb. 8–10, 2016, in Louisville, Kentucky. The conference will bring together professionals and experts in the agricultural and biological engineering fields. Bioenergy Technologies Office (BETO) Terrestrial Feedstocks Technology Manager Sam Tagore will be in attendance. Mr. Tagore will moderate a technical session titled “Ash Reduction Strategies for Improving Biomass Feedstock Quality.” The session will include presentations by researchers from Idaho National Laboratory and Oak Ridge National Laboratory supporting BETO, as well as from university and industry.

  1. Equipment qualification issues research and resolution: Status report

    SciTech Connect (OSTI)

    Bonzon, L.L.; Wyant, F.J.; Bustard, L.D.; Gillen, K.T.

    1986-11-01

    Since its inception in 1975, the Qualification Testing Evaluation (QTE) Program has produced numerous results pertinent to equipment qualification issues. Many have been incorporated into Regulatory Guides, Rules, and industry practices and standards. This report summarizes the numerous reports and findings to date. Thirty separate issues are discussed encompassing three generic areas: accident simulation methods, aging simulation methods, and special topics related to equipment qualification. Each issue-specific section contains (1) a brief description of the issue, (2) a summary of the applicable research effort, and (3) a summary of the findings to date.

  2. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report No. 5, October--December, 1995

    SciTech Connect (OSTI)

    Groppo, J.G.; Parekh, B.K.

    1996-02-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74{mu}m) clean coal. Economical dewatering of an ultrafine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept scale of 1 to 2 tph. The novel surface modification technique developed at the the University of Kentucky Center for Applied Energy Research will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high sulfur and low sulfur clean coal. Accomplishments for the past quarter are described.

  3. Philadelphia Gas Works - Commercial and Industrial Equipment...

    Broader source: Energy.gov (indexed) [DOE]

    Administrator Philadelphia Gas Works Website http:www.pgwenergysense.comdownloads.html State Pennsylvania Program Type Rebate Program Rebate Amount Commercial Boilers: 800 -...

  4. Biological alternatives to chemical identification for the ecotoxicological assessment of industrial effluents: The RTG-2 in vitro cytotoxicity test

    SciTech Connect (OSTI)

    Castano, A. . Centro de Sanidad Ambiental); Vega, M.; Blazquez, T.; Tarazona, J.V. )

    1994-10-01

    Ecotoxicology is concerned with the effects of chemicals on biological systems. Identifying components of complex aqueous effluents poses special problems, and can be useless if there is a lack of information on the biological effects of the identified chemicals. Toxicity-based (bioassay-directed) sample fractionation can be very useful, but the small amount of fractioned material is a constraint that can be solved by using in vitro tests. The RTG-2 in vitro cytotoxicity test has been used to assess (a) the efficacy of a treatment plant in the aeronautics industry and (b) the exposure of fish and molluscs cultured in Esteiro Bay to the effluent of a fish-processing factory. Ecotoxicological assessments could be done without identifying the responsible chemicals. The RTG-2 test was used in combination with concentration/fractionation procedures. It proved that the toxicity of the liquid wastes from the aeronautics industry was eliminated by the treatment, and that molluscs and fish reared in Esteiro Bay had accumulated toxic chemicals dumped by the fish-processing factory. A combination of the RTG-2 cytotoxicity test and HPLC proved to give useful information even for chemicals not identified by GC-MS.

  5. REAL ESTATE & EQUIPMENT LEASING / RENTAL CALIFORNIA LAWRENCE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Other Commercial and Industrial Machinery and Equipment Rental and Leasing 532490 NEVADA NEVADA SITE OFFICE POC Anita Ross Telephone (702) 295-5690 Email rossal@nv.doe.gov Lessors ...

  6. Development & Testing of Industrial Scale, Coal Fired Combustion System, Phase 3

    SciTech Connect (OSTI)

    Bert Zauderer

    1998-01-15

    In the third quarter of calendar year 1997, 10 days of tests on the 20 MMBtu/hr combustor-boiler facility were performed. The total test days on the Philadelphia facility to the end of September 1997 was 93, of which 19 tests were implemented as part of another DOE project. This exceeds the planned 63 test days for this project. Key project objectives have been exceeded, including NO emissions as low as 0.07 lb/MMBtu and SO emissions as low as 0.2 x 2 lb/MMBtu. The tests in the present quarter focussed on further optimizing post-combustion sorbent injection for SO2 and NOx control processes. The results were in the same range as in previous tests. In addition, initial tests of Coal Tech?s post-combustion NOx control process were implemented on a 100 MW and a 37 MW utility boiler, and NOx reductions as high as 40% were measured in the latter boiler.

  7. Goat Industries Fuels | Open Energy Information

    Open Energy Info (EERE)

    Industries Fuels Jump to: navigation, search Name: Goat Industries Fuels Place: Gwynedd, Wales, United Kingdom Zip: LL56 4PZ Product: Welsh manufacturer of biodiesel equipment that...

  8. Trends in powder processing equipment

    SciTech Connect (OSTI)

    Sheppard, L.M.

    1993-05-01

    Spray drying is the most widely used process for producing particles. It is used in industries other than ceramics including food, chemicals, and pharmaceutical. The process involves the atomization of a liquid feed stock into a spray of droplets and contacting the droplets with hot air in a drying chamber. The sprays are produced by either rotary or nozzle atomizers. Evaporation of moisture from the droplets and formation of dry particles proceed under controlled temperature and airflow conditions. Powder is then discharged continuously from the drying chamber. Spray drying equipment is being improved to handle an ever-increasing number of applications. Several developments in particle-size reduction equipment are also described.

  9. Laboratory Equipment Donation Program - Equipment Applications

    Office of Scientific and Technical Information (OSTI)

    Specific questions concerning equipment should be directed to the point of contact responsible for the item(s) under consideration. This information is listed on the "Equipment Information" page, as well as on the grant award e-mail sent to the applicant. Step 1: Search and Apply for Equipment Note: If you know the Item Control Number of the equipment you need, you may go directly to the on-line application. Please follow these procedures to "Search Equipment" and apply for

  10. Southeastern Center for Industrial Energy Intensity Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    equipment manufacturing, and food manufacturing, the industrial ... Existing continuing education resources at the universities target graduating engineering ...

  11. Salem Electric - Residential, Commercial, and Industrial Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Industrial Local Government Nonprofit Residential State Government Federal Government Multifamily Residential Savings Category Clothes Washers RefrigeratorsFreezers Equipment...

  12. Reduce Radiation Losses from Heating Equipment | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This tip sheet describes how to save process heating energy and costs by reducing expensive heat losses from industrial heating equipment, such as furnaces. PROCESS HEATING TIP ...

  13. Condensing Heating and Water Heating Equipment Workshop Location...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time: ...

  14. Ultrasonic examination of the heavy section test blocks for hydroprocessing reactors used by the petroleum industry

    SciTech Connect (OSTI)

    Dodd, F.J.; Zhang, Y.; Imgram, A.

    1995-12-01

    An 18-inch (457 mm) thick Cr-Mo steel test block with an austenitic stainless steel ID cladding was designed and fabricated at the direction of the Material Properties Council in cooperation with the Pressure Vessel Research Committee (PVRC) Committee on Nondestructive Examination of Components. The test block contains several embedded flaws located near both ID and OD surfaces. Chevron Research and Technology Company and WesDyne International conducted the initial UT Examinations on this block at Chevron. In addition, a 10-inch (254 mm) thick block with embedded flaws was also examined. All the flaws m the two blocks were either cracks or lack of fusion. The examination results demonstrate the feasibility of UT to detect and size flaws in hydroprocessing reactor vessels and provide a basis to compare the relative capabilities of UT with the radiographic (RT) inspections currently required by the fabrication code.

  15. Development and testing of industrial scale, coal fired combustion system, Phase 3. Sixteenth quarterly technical progress report, October 1--December 31, 1995

    SciTech Connect (OSTI)

    Zauderer, B.

    1996-01-03

    In the fourth quarter of calendar year 1995 the installation and checkout of the 20 MMBtu/hr combustor and auxiliary equipment in Philadelphia was completed. The task 5, Site Demonstration Testing, combustor-boiler tests on gas, oil, and coal were initiated. The task 5 effort involves testing the combustor over extended periods under conditions that fully simulate commercial operation and that meet the combustion and environmental specifications for this project. To meet this project objective within the current work scope requires up to 500 hours of testing. The focus of this testing will be on the component and environmental performance of combustor, boiler, coal preparation and feeding, and the stack gas equipment. The facility can be converted to a 500 kW power plant by the addition of a steam turbine, condenser, and cooling tower. However, this added effort is beyond the current work scope and its implementation will depend on recovering the added costs by placing the steam production from the boiler to beneficial use. During the present quarterly reporting period, all the components needed to implement the initial 100 hours of testing under task 5 were installed at the test site, and checkout of this equipment was performed. Since the present installation contained substantial improvements and simplifications to all sub-systems that had been used in the Williamsport facility, each component and sub-system had to be tested individually.

  16. Laboratory Equipment Donation Program - Equipment List

    Office of Scientific and Technical Information (OSTI)

    ...2016 Repairable NA 89022961190235 72358 WATER BLOCK 05172016 Repairable NA ... 89514161060003 LABORATORY EQUIPMENT AND SUPPLIES 05052016 Used NA 8991BB61130002 ...

  17. Equipment | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zeiss Axiovert 200 Optical Microscope Spark Cutter Fully Equipped Metallographic Laboratory Electropolisher Dimpler

  18. University of Delaware | CCEI Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCEI Equipment Click column headings to sort Type Equipment Details Institution / Professor {Type} {Equipment} {Details} {Institution} {Lab} BACK TO TOP

  19. Development of a Fan-Filter Unit Test Standard, LaboratoryValidations, and its Applications across Industries

    SciTech Connect (OSTI)

    Xu, Tengfang

    2006-10-20

    Lawrence Berkeley National Laboratory (LBNL) is now finalizing the Phase 2 Research and Demonstration Project on characterizing 2-foot x 4-foot (61-cm x 122-cm) fan-filter units in the market using the first-ever standard laboratory test method developed at LBNL.[1][2][3] Fan-filter units deliver re-circulated air and provide particle filtration control for clean environments. Much of the energy in cleanrooms (and minienvironments) is consumed by 2-foot x 4-foot (61-cm x 122-cm) or 4-foot x 4-foot (122-cm x 122-cm) fan-filter units that are typically located in the ceiling (25-100% coverage) of cleanroom controlled environments. Thanks to funding support by the California Energy Commission's Industrial Program of the Public Interest Energy Research (PIER) Program, and significant participation from manufacturers and users of fan-filter units from around the world, LBNL has developed and performed a series of standard laboratory tests and reporting on a variety of 2-foot x 4-foot (61-cm x 122-cm) fan-filter units (FFUs). Standard laboratory testing reports have been completed and reported back to anonymous individual participants in this project. To date, such reports on standard testing of FFU performance have provided rigorous and useful data for suppliers and end users to better understand, and more importantly, to quantitatively characterize performance of FFU products under a variety of operating conditions.[1] In the course of the project, the standard laboratory method previously developed at LBNL has been under continuous evaluation and update.[2][3] Based upon the updated standard, it becomes feasible for users and suppliers to characterize and evaluate energy performance of FFUs in a consistent way.

  20. Equipment Listing | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equipment Listing Crystal Preparation and Characterization Resistance Heated Bridgman Crystal Growth Systems Back-Reflection Laue X-ray System Electro-Discharge Machining High and Low speed Diamond Saws Arc Zone Melting Crystal Growth System Lapping Fixtures for Precise Orientation of Crystals (0.1°) Physical Properties Measurement Facilities - Hardness Testing Vickers and Rockwell Hardness Testing Brinell Hardness Instrument Wilson Tukon Micro Hardness Tester Forming and Characterization

  1. Consider Steam Turbine Drives for Rotating Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Turbine Drives for Rotating Equipment Consider Steam Turbine Drives for Rotating Equipment This tip sheet outlines the benefits of steam turbine drives for rotating equipment as part of optimized steam systems. STEAM TIP SHEET #21 PDF icon Consider Steam Turbine Drives for Rotating Equipment (January 2012) More Documents & Publications Improving Steam System Performance: A Sourcebook for Industry, Second Edition Adjustable Speed Drive Part-Load Efficiency Benchmark the Fuel Cost of

  2. Appliance and Equipment Standards Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appliance and Equipment Standards Fact Sheet Appliance and Equipment Standards Fact Sheet Appliance and equipment efficiency standards have served as one of the nation's most effective policies for improving energy efficiency and saving consumers energy and money. Today, the U.S. Department of Energy's (DOE) Appliance and Equipment Standards Program covers more than 60 products, representing about 90% of home energy use, 60% of commercial building energy use, and 30% of industrial energy use.

  3. Smart Buildings Equipment Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Equipment Initiative Smart Buildings Equipment Initiative Lead Performers: -- Pacific Northwest National Laboratory - Richland, WA -- National Renewable Energy Laboratory - Golden, CO DOE Funding: $2,100,000 Cost Share: N/A Project Term: Oct. 2014 - Sept. 2015 PROJECT OBJECTIVE The purpose of this project is to develop data taxonomies and standard communication protocols that enable building equipment to engage the larger electric system and to develop analytic methods and testing

  4. Analysis of an industrial cogeneration unit driven by a gas engine. Part 1: Experimental testing under full and part-load operating conditions

    SciTech Connect (OSTI)

    De Lucia, M.; Lanfranchi, C.

    1994-12-31

    This paper describes and analyzes an industrial cogeneration plant driven by a gas fueled reciprocating engine installed in a textile factory. It presents the results of experimental testing conducted under full and part-load operating conditions, as well as first-law energy considerations. The experimental tests conducted on the cogeneration unit proved the validity of the plant design and also enabled evaluation of part-load performance, which is the most common operating mode in cogeneration plants in the small-size industries which typical of central Italy.

  5. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2012-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance and other issues Discussion of the facility's environmental impacts During the 2011 permit year, approximately 166 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  6. 2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance issues Discussion of the facility’s environmental impacts During the 2012 permit year, approximately 183 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  7. UNIRIB: Equipment Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equipment Development Technical Developments and Equipment In close collaboration with Holifield Radioactive Ion Beam Facility (HRIBF) scientists, researchers at University Radioactive Ion Beam (UNIRIB) consortium universities are offered the opportunity to perform low-energy nuclear structure research using radioactive/stable ion beams and experimental equipment available through HRIBF. UNIRIB, a division of the Oak Ridge Institute for Science and Education (ORISE), provides not only funding,

  8. New Emergency Equipment Notifications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notifications Addition of New Emergency Equipment, Hazardous Waste Facility Permit Number: NM4890139088-TSDF Todd A. Shrader/CBFO and Philip J. Breidenbach/NWP dated October 20, 2015 Underground Fire Suppression Vehicles (2) Addition of New Emergency Equipment, Hazardous Waste Facility Permit Number: NM4890139088-TSDF Dana C. Bryson/CBFO and Philip J. Breidenbach/NWP dated September 30, 2015 Underground Ambulance #3 Addition of New Emergency Equipment, Hazardous Waste Facility Permit Number:

  9. Heavy Mobile Equipment Mechanic

    Broader source: Energy.gov [DOE]

    Join the Bonneville Power Administration (BPA) for a challenging and rewarding career, while working, living, and playing in the Pacific Northwest. The Heavy Mobile Equipment Mechanic (HMEM)...

  10. Hydrogen Equipment Certification Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... committees of ASME, SAE and ISO * Hydrogen has been used ... "approval" by the code official is required before ... or as meeting a standard. Listed - Equipment, ...

  11. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Commercial power plant tests blend of refuse-derived fuel and coal to generate electricity

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    MSW can be converted to energy in two ways. One involves the direct burning of MSW to produce steam and electricity. The second converts MSW into refuse-derived fuel (RDF) by reducing the size of the MSW and separating metals, glass, and other inorganic materials. RDF can be densified or mixed with binders to form fuel pellets. As part of a program sponsored by DOE`s Office of Industrial Technologies, the National Renewable Energy Laboratory participated in a cooperative research and development agreement to examine combustion of binder-enhanced, densified refuse-derived fuel (b-d RDF) pellets with coal. Pelletized b-d RDF has been burned in coal combustors, but only in quantities of less than 3% in large utility systems. The DOE project involved the use of b-d RDF in quantities up to 20%. A major goal was to quantify the pollutants released during combustion and measure combustion performance.

  12. U.S. Mining Industry Energy Bandwidth Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... materials, including aluminum, beryllium, coal, copper, gold, iron, limestone, and silica. ... exploration and production industries, since similar equipment is used in both industries. ...

  13. ConEd (Gas)- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Commercial and Industrial Equipment Rebate and Commercial and Industrial Custom Efficiency Programs offer incentives to gas customers in good standing who contribute to the system benefits...

  14. Shenzhen Coolead Industry Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Shenzhen Coolead Industry Co. Ltd. Place: China Product: Air conditioning R&D, equipment manufacture and sales. References: Shenzhen Coolead Industry Co....

  15. Field Guide for Testing Existing Photovoltaic Systems for Ground Faults and Installing Equipment to Mitigate Fire Hazards: November 2012 - October 2013

    SciTech Connect (OSTI)

    Brooks, William

    2015-02-01

    Ground faults and arc faults are the two most common reasons for fires in photovoltaic (PV) arrays and methods exist that can mitigate the hazards. This report provides field procedures for testing PV arrays for ground faults, and for implementing high resolution ground fault and arc fault detectors in existing and new PV system designs.

  16. Wind Technology Testing Center Acquires New Blade Fatigue Test System |

    Energy Savers [EERE]

    Department of Energy Technology Testing Center Acquires New Blade Fatigue Test System Wind Technology Testing Center Acquires New Blade Fatigue Test System August 1, 2013 - 4:33pm Addthis This is an excerpt from the Second Quarter 2013 edition of the Wind Program R&D Newsletter. The Wind Technology Testing Center (WTTC) in Boston, Massachusetts, recently acquired a significant piece of testing equipment needed to offer its industry partners a full state-of-the-art suite of wind turbine

  17. Improved Biomass Cooking Stoves and Improved Stove Emission Equipment

    SciTech Connect (OSTI)

    HATFIELD, MICHAEL; Still, Dean

    2013-04-15

    In developing countries, there is an urgent need for access to safe, efficient, and more affordable cooking technologies. Nearly 2.5 billion people currently use an open fire or traditional cookstove to prepare their meals, and recent models predict that use of biomass for cooking will continue to be the dominant energy use in rural, resource-poor households through 2030. For these families, cooking poses serious risks to health, safety, and income. An alarming 4 million people, primarily women and children, die prematurely each year from indoor and outdoor exposure to the harmful emissions released by solid fuel combustion. Use of traditional stoves can also have a significant impact on deforestation and climate change. This dire situation creates a critical need for cookstoves that significantly and verifiably reduce fuel use and emissions in order to reach protective levels for human health and the environment. Additionally, advances in the scientific equipment needed to measure and monitor stove fuel use and emissions have not kept pace with the significant need within the industry. While several testing centers in the developed world may have hundred thousand-dollar emissions testing systems, organizations in the field have had little more than a thermometer, a scale, and subjective observations to quantify the performance of stove designs. There is an urgent need for easy-to-use, inexpensive, accurate, and robust stove testing equipment for use by laboratory and field researchers around the world. ASAT and their research partner, Aprovecho Research Center (ARC), have over thirty years of experience addressing these two needs, improved cookstoves and emissions monitoring equipment, with expertise spanning the full spectrum of development from conceptual design to product manufacturing and dissemination. This includes: 1) research, design, and verification of clean biomass cookstove technology and emissions monitoring equipment; 2) mass production of quality-controlled stove and emissions equipment at levels scalable to meet global demand; and 3) global distribution through a variety of channels and partners. ARC has been instrumental in designing and improving more than 100 stove designs over the past thirty years. In the last four years, ASAT and ARC have played a key role in the production and sales of over 200,000 improved stoves in the developed and developing world. The ARC-designed emissions equipment is currently used by researchers in laboratories and field studies on five continents. During Phase I of the DOE STTR grant, ASAT and ARC worked together to apply their wealth of product development experience towards creating the next generation of improved cookstoves and emissions monitoring equipment. Highlights of Phase I for the biomass cookstove project include 1) the development of several new stove technologies that reached the DOE 50/90 benchmark; 2) fabrication of new stove prototypes by ASATs manufacturing partner, Shengzhou Stove Manufacturing (SSM); 3) field testing of prototype stoves with consumers in Puerto Rico and the US; and 4) the selection of three stove prototypes for further development and commercialization during Phase II. Highlights of Phase I for the emissions monitoring equipment project include: 1) creation of a new emissions monitoring equipment product, the Laboratory Emissions Monitoring System (LEMS 2) the addition of gravimetric PM measurements to the stove testing systems to meet International Standards Organization criteria; 3) the addition of a CO{sub 2} sensor and wireless 3G capability to the IAP Meter; and 4) and the improvement of sensors and signal quality on all systems. Twelve Regional Testing and Knowledge Centers purchased this equipment during the Phase I project period.

  18. Troubleshooting rotating equipment

    SciTech Connect (OSTI)

    Wong, R.F. )

    1992-10-01

    This paper reports that equipment problems in a Peruvian refinery illustrate the process engineer's role as a troubleshooter. Examples show that rotating equipment problems can stem from mechanical or process factors and involve both inspection/maintenance specialists and process engineers.

  19. PRAJ Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    molasses based distillery technology, plant and equipment for alcohol, fuel ethanol and beer production. References: PRAJ Industries Ltd1 This article is a stub. You can help...

  20. Mitsubishi Heavy Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Mitsubishi Heavy Industries Ltd Place: Tokyo, Tokyo, Japan Zip: 108 8215 Product: Integrated technology company and power equipment supplier....

  1. IMPACTS: Industrial Technologies Program, Summary of Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... industries, requiring natural gas to melt aluminum and electricity to run equipment. ... Automated Fluidized Bed Heat Treatment System Age Bed Quench Tank Robot Product raised ...

  2. Unichem Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Unichem produces high resolution screen printing equipment for crystalline silicon solar cell production. References: Unichem Industries Inc1 This article is a stub. You...

  3. Coldwater Board of Public Utilities - Commercial & Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    that encourage commercial and industrial to pursue energy efficient equipment and energy saving measures. Prescriptive rebates are available for efficient lighting, HVAC...

  4. Keystone coal industry manual

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The 1994 Keystone Coal Industry Manual is presented. Keystone has served as the one industry reference authority for the many diverse organizations concerned with the supply and utilization of coal in the USA and Canada. Through the continuing efforts of coal producers, buyers, users, sellers, and equipment designers and manufacturers, the coal industry supplies an abundant and economical fuel that is indispensable in meeting the expanding energy needs of North America. The manual is divided into the following sections: coal sales companies, coal export, transportation of coal, consumer directories, coal associations and groups, consulting and financial firms, buyers guide, industry statistics and ownership, coal preparation, coal mine directory, and coal seams.

  5. Solar Equipment Certification

    Broader source: Energy.gov [DOE]

    Under the Solar Energy Standards Act of 1976, the Florida Solar Energy Center (FSEC) is responsible for certifying all solar equipment sold in Florida. A manufacturer who wishes to have their solar...

  6. How Do I Bring and Use Electrical Equipment at the ALS?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bring and Use Electrical Equipment at the ALS? Print Testing All electrical equipment must meet minimum electrical safety requirements. Whenever possible, we rely on third party...

  7. Self-Tuning SPRT for Continuous Surveillance of Processes & Equipment

    Energy Science and Technology Software Center (OSTI)

    1996-12-18

    SABLE is an Al-based expert system for process and equipment operability surveillance in industrial applications that require high reliability, high sensitivity annunciation of degraded sensors, discrepant signals, or the incipience of system disturbances.

  8. Test and User Facilities | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test and User Facilities Our test and user facilities are available to industry and other organizations for researching, developing, and evaluating energy technologies. We can work with you to design the tests and operate the equipment. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Advanced Research Turbines B Battery Thermal and Life Test Facility Biochemical Conversion Pilot Plant C Controllable Grid Interface Test System D Distributed

  9. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-10-01

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  10. Microgrid Equipment Selection and Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microgrid Equipment Selection and Control Microgrid Equipment Selection and Control Project Objective The U.S.-China Clean Energy Research Center (CERC) is a pioneering research and development (R&D) consortium bringing together governments, key policymakers, researchers, and industry to develop a long-term platform for sustainable U.S.-China joint R&D. Ultra-efficient buildings and microgrids require complex optimization both for operations and when choosing equipment. This CERC project

  11. Alternative Fuel and Advanced Technology Commercial Lawn Equipment

    SciTech Connect (OSTI)

    2014-10-10

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  12. Carbon Absorber Retrofit Equipment (CARE)

    SciTech Connect (OSTI)

    Klein, Eric

    2015-12-23

    During Project DE-FE0007528, CARE (Carbon Absorber Retrofit Equipment), Neumann Systems Group (NSG) designed, installed and tested a 0.5MW NeuStream® carbon dioxide (CO2) capture system using the patented NeuStream® absorber equipment and concentrated (6 molal) piperazine (PZ) as the solvent at Colorado Springs Utilities’ (CSU’s) Martin Drake pulverized coal (PC) power plant. The 36 month project included design, build and test phases. The 0.5MW NeuStream® CO2 capture system was successfully tested on flue gas from both coal and natural gas combustion sources and was shown to meet project objectives. Ninety percent CO2 removal was achieved with greater than 95% CO2product purity. The absorbers tested support a 90% reduction in absorber volume compared to packed towers and with an absorber parasitic power of less than 1% when configured for operation with a 550MW coal plant. The preliminary techno-economic analysis (TEA) performed by the Energy and Environmental Research Center (EERC) predicted an over-the-fence cost of $25.73/tonne of CO2 captured from a sub-critical PC plant.

  13. Guardian Industries | Open Energy Information

    Open Energy Info (EERE)

    Industries Jump to: navigation, search Name: Guardian Industries Place: Auburn Hills, MI Website: www.guardian.com References: Results of NREL Testing (Glass Magazine)1 Guardian...

  14. Health Care Buildings: Equipment Table

    U.S. Energy Information Administration (EIA) Indexed Site

    Equipment Table Buildings, Size and Age Data by Equipment Types for Health Care Buildings Number of Buildings (thousand) Percent of Buildings Floorspace (million square feet)...

  15. Equipment Operational Requirements

    SciTech Connect (OSTI)

    Greenwalt, B; Henderer, B; Hibbard, W; Mercer, M

    2009-06-11

    The Iraq Department of Border Enforcement is rich in personnel, but poor in equipment. An effective border control system must include detection, discrimination, decision, tracking and interdiction, capture, identification, and disposition. An equipment solution that addresses only a part of this will not succeed, likewise equipment by itself is not the answer without considering the personnel and how they would employ the equipment. The solution should take advantage of the existing in-place system and address all of the critical functions. The solutions are envisioned as being implemented in a phased manner, where Solution 1 is followed by Solution 2 and eventually by Solution 3. This allows adequate time for training and gaining operational experience for successively more complex equipment. Detailed descriptions of the components follow the solution descriptions. Solution 1 - This solution is based on changes to CONOPs, and does not have a technology component. It consists of observers at the forts and annexes, forward patrols along the swamp edge, in depth patrols approximately 10 kilometers inland from the swamp, and checkpoints on major roads. Solution 2 - This solution adds a ground sensor array to the Solution 1 system. Solution 3 - This solution is based around installing a radar/video camera system on each fort. It employs the CONOPS from Solution 1, but uses minimal ground sensors deployed only in areas with poor radar/video camera coverage (such as canals and streams shielded by vegetation), or by roads covered by radar but outside the range of the radar associated cameras. This document provides broad operational requirements for major equipment components along with sufficient operational details to allow the technical community to identify potential hardware candidates. Continuing analysis will develop quantities required and more detailed tactics, techniques, and procedures.

  16. Advanced Battery Manufacturing Facilities and Equipment Program |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt002_es_flicker_2012_p.pdf More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results

  17. Appendix D: Facility Process Data and Appendix E: Equipment Calibration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Sheets | Department of Energy D: Facility Process Data and Appendix E: Equipment Calibration Data Sheets Appendix D: Facility Process Data and Appendix E: Equipment Calibration Data Sheets Docket No. EO-05-01: Appendix D: Facility Process Data and Appendix E: Equipment Calibration Data Sheets from Final Report: Particulate Emissions Testing, Unit 1, Potomac River Generating Station, Alexandria, Virginia PDF icon Appendix D: Facility Process Data and Appendix E: Equipment Calibration

  18. Validation of International Atomic Energy Agency Equipment Performance Requirements

    SciTech Connect (OSTI)

    Chiaro, PJ

    2004-02-17

    Performance requirements and testing protocols are needed to ensure that equipment used by the International Atomic Energy Agency (IAEA) is reliable. Oak Ridge National Laboratory (ORNL), through the US Support Program, tested equipment to validate performance requirements protocols used by the IAEA for the subject equipment categories. Performance protocol validation tests were performed in the Environmental Effects Laboratory in the categories for battery, DC power supply, and uninterruptible power supply (UPS). Specific test results for each piece of equipment used in the validation process are included in this report.

  19. Improving Compressed Air System Performance: A Sourcebook for Industry

    SciTech Connect (OSTI)

    2003-11-01

    NREL will produce this sourcebook for DOE's Industrial Technologies Office as part of a series of documents on industrial energy equipment. The sourcebook is a reference for industrial compressed air system users, outlining opportunities to improve system efficiency.

  20. Metrology for Industry for use in the Manufacture of Grazing Incidence Beam

    Office of Scientific and Technical Information (OSTI)

    Line Mirrors (Technical Report) | SciTech Connect Metrology for Industry for use in the Manufacture of Grazing Incidence Beam Line Mirrors Citation Details In-Document Search Title: Metrology for Industry for use in the Manufacture of Grazing Incidence Beam Line Mirrors The goal of this SBIR was to determine the slope sensitivity of Specular Reflection Deflectometry (SRD) and whether shearing methods had the sensitivity to be able to separate errors in the test equipment from slope error in

  1. Emergency Facilities and Equipment

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume clarifies requirements of DOE O 151.1 to ensure that emergency facilities and equipment are considered as part of emergency management program and that activities conducted at these emergency facilities are fully integrated. Canceled by DOE G 151.1-4.

  2. Development of Advanced Surface Enhancement Technology for Decreasing Wear and Corrosion of Equipment Used for Mineral Processing

    SciTech Connect (OSTI)

    Daniel Tao; Craig A. Blue

    2004-08-01

    Equipment wear is a major concern in the mineral processing industry, which dramatically increases the maintenance cost and adversely affects plant operation efficiency. In this research, wear problems of mineral processing equipment including screens, sieve bends, heavy media vessel, dewatering centrifuge, etc., were identified. A novel surface treatment technology, high density infrared (HDI) surface coating process was proposed for the surface enhancement of selected mineral processing equipment. Microstructural and mechanical properties of the coated samples were characterized. Laboratory-simulated wear tests were conducted to evaluate the tribological performance of the coated components. Test results indicate that the wear resistance of AISI 4140 and ASTM A36 steels can be increased 3 and 5 folds, respectively by the application of HDI coatings.

  3. NREL Battery Testing Capabilities Get a Boost - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Battery Testing Capabilities Get a Boost February 5, 2010 Photo of a Test engineer standing next to a camera showing a thermal image of a battery being tested. Enlarge image Engineer Dirk Long uses thermal imaging equipment to capture a battery's infrared fingerprint to diagnose its behavior. NREL soon will be ramping up testing as the battery industry uses stimulus funding to enhance batteries used in advanced vehicles. Credit: Pat Corkery Batteries are the heart of today's advanced

  4. Maintaining gas cooling equipment

    SciTech Connect (OSTI)

    Rector, J.D.

    1997-05-01

    An often overlooked key to satisfactory operation and longevity of any mechanical device is proper operation and maintenance in accordance with the manufacturer`s written instructions. Absorption chillers, although they use a different technology than the more familiar vapor compression cycle to produce chilled water, operate successfully in a variety of applications if operated and maintained properly. Maintenance procedures may be more frequent than those required for vapor compression chillers, but they are also typically less complex. The goal of this article is to describe the basic operation of an absorption chiller to provide an understanding of the relatively simple tasks required to keep the machine operating at maximum efficiency for its design life and beyond. A good starting point is definitions. Gas cooling equipment is generally defined as alternative energy, non-electric cooling products. This includes absorption chillers, engine-drive chillers and packaged desiccant units, among others. Natural gas combustion drives the equipment.

  5. University-Industry-National Laboratory Partnership to Improve Building

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency by Equipment Health Monitoring with Virtual Intelligent Sensing | Department of Energy University-Industry-National Laboratory Partnership to Improve Building Efficiency by Equipment Health Monitoring with Virtual Intelligent Sensing University-Industry-National Laboratory Partnership to Improve Building Efficiency by Equipment Health Monitoring with Virtual Intelligent Sensing Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partners: -- University of Tennessee -

  6. AVLIS industrial access program

    SciTech Connect (OSTI)

    Not Available

    1984-11-15

    This document deals with the procurements planned for the construction of an Atomic Vapor Laser Isotope Separation (AVLIS) production plant. Several large-scale AVLIS facilities have already been built and tested; a full-scale engineering demonstration facility is currently under construction. The experience gained from these projects provides the procurement basis for the production plant construction and operation. In this document, the status of the AVLIS process procurement is presented from two viewpoints. The AVLIS Production Plant Work Breakdown Structure is referenced at the level of the items to be procured. The availability of suppliers for the items at this level is discussed. In addition, the work that will result from the AVLIS enrichment plant project is broken down by general procurement categories (construction, mechanical equipment, etc.) and the current AVLIS suppliers are listed according to these categories. A large number of companies in all categories are currently providing AVLIS equipment for the Full-Scale Demonstration Facility in Livermore, California. These companies form an existing and expanding supplier network for the AVLIS program. Finally, this document examines the relationship between the AVLIS construction project/operational facility and established commercial suppliers. The goal is to utilize existing industrial capability to meet the needs of the project in a competitive procurement situation. As a result, costs and procurement risks are both reduced because the products provided come from within the AVLIS suppliers' experience base. At the same time, suppliers can benefit by the potential to participate in AVLIS technology spin-off markets. 35 figures.

  7. Secure authenticated video equipment

    SciTech Connect (OSTI)

    Doren, N.E.

    1993-07-01

    In the verification technology arena, there is a pressing need for surveillance and monitoring equipment that produces authentic, verifiable records of observed activities. Such a record provides the inspecting party with confidence that observed activities occurred as recorded, without undetected tampering or spoofing having taken place. The secure authenticated video equipment (SAVE) system provides an authenticated series of video images of an observed activity. Being self-contained and portable, it can be installed as a stand-alone surveillance system or used in conjunction with existing monitoring equipment in a non-invasive manner. Security is provided by a tamper-proof camera enclosure containing a private, electronic authentication key. Video data is transferred communication link consisting of a coaxial cable, fiber-optic link or other similar media. A video review station, located remotely from the camera, receives, validates, displays and stores the incoming data. Video data is validated within the review station using a public key, a copy of which is held by authorized panics. This scheme allows the holder of the public key to verify the authenticity of the recorded video data but precludes undetectable modification of the data generated by the tamper-protected private authentication key.

  8. Industrial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Industrial Manufacturing Buildings Industrialmanufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey...

  9. High performance steam development. Final report, Phase No. 3: 1500{degree}F steam plant for industrial cogeneration prototype development tests

    SciTech Connect (OSTI)

    Duffy, T.; Schneider, P.

    1996-01-01

    As a key part of DOE`s and industry`s R&D efforts to improve the efficiency, cost, and emissions of power generation, a prototype High Performance Steam System (HPSS) has been designed, built, and demonstrated. The world`s highest temperature ASME Section I coded power plant successfully completed over 100 hours of development tests at 1500{degrees}F and 1500 psig on a 56,000 pound per hour steam generator, control valve and topping turbine at an output power of 5500 hp. This development advances the HPSS to 400{degrees}F higher steam temperature than the current best technology being installed around the world. Higher cycle temperatures produce higher conversion efficiencies and since steam is used to produce the large majority of the world`s power, the authors expect HPSS developments will have a major impact on electric power production and cogeneration in the twenty-first century. Coal fueled steam plants now produce the majority of the United States electric power. Cogeneration and reduced costs and availability of natural gas have now made gas turbines using Heat Recovery Steam Generators (HRSG`s) and combined cycles for cogeneration and power generation the lowest cost producer of electric power in the United States. These gas fueled combined cycles also have major benefits in reducing emissions while reducing the cost of electricity. Development of HPSS technology can significantly improve the efficiency of cogeneration, steam plants, and combined cycles. Figure 2 is a TS diagram that shows the HPSS has twice the energy available from each pound of steam when expanding from 1500{degrees}F and 1500 psia to 165 psia (150 psig, a common cogeneration process steam pressure). This report describes the prototype component and system design, and results of the 100-hour laboratory tests. The next phase of the program consists of building up the steam turbine into a generator set, and installing the power plant at an industrial site for extended operation.

  10. Equipment | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Micro-Hardness Instrument Brinell Hardness Instrument Vickers and Rockwell Hardness Testing

  11. Lubricant additives, friend or foe: What the equipment design engineer needs to know

    SciTech Connect (OSTI)

    Nixon, H.P.; Zantopulos, H.

    1995-10-01

    Lubricant formulations and lubricant additives have been slanted heavily toward protecting gear concentrated contacts from galling and wear. Much of the performance differentiation of these lubricants has been dependent on highly accelerated standardized laboratory testing. The area of contact fatigue has played a less important role in shaping lubricant formulations, but new test results for several commercially available gear lubricants suggest this area warrants a closer examination. The performance effects of fully and partially additized lubricants were studied using standard bearing industry rolling contact fatigue and wear testing procedures for tapered roller bearings. These test results indicate significant detrimental effects to wear, and fatigue life performance can occur with some additized lubricant formulations. Observations of functional surfaces, before and after testing, are made and examined for several lubricant formulations. The implications of these findings for equipment applications are discussed, and suggestions are made for ways to minimize or avoid potential detrimental performance effects. 10 refs., 11 figs., 3 tabs.

  12. Equipment Specialist | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment Specialist Equipment Specialist Submitted by admin on Sat, 2016-01-16 00:16 Job Summary Organization Name Department Of Energy Agency SubElement Bonneville Power...

  13. Alternative technologies for cooling and refrigeration equipment

    SciTech Connect (OSTI)

    Matchett, J.

    1995-12-01

    Significant national and international attention has focused on the role that chlorofluorocarbons (CFCs) play in stratospheric ozone depletion. The Clean Air Act of 1990 calls for the production of the most harmful CFCs to completely cease by December 31, 1995. This production phaseout affects many CFC-refrigerants which are commonly used in commercial, residential, and industrial cooling processes. The production phaseout of CFCs will require owners of CFC-based refrigeration equipment to make plans to replace their equipment. Many equipment owners find themselves in a {open_quotes}rut{close_quotes}replacing CFCs with another chemical coolant, rather than a new cooling process. Since many of the chemical alternatives are structurally similar to CFCs (i.e., HCFCs, HFCs, and blends) they require minimal changes to current equipment. However, these substances are also believed to affect the global climate. Hence, they may not be the most environmentally sound alternative and probable are subject to other Federal regulations. There are other HVAC/R alternatives which are less environmentally damaging than these chemicals and may actually be more cost-effective and energy efficient and than the {open_quotes}traditional{close_quotes} CFC chemical substitutes. Alternative cooling technologies include absorption systems, desiccant cooling, evaporative cooling, and ammonia vapor compression. These alternative technologies are proven alternatives and are commercially available. Further, significant technological developments in recent years have made these technologies feasible alternatives for applications previously believed to be unacceptable. This paper describes these alternative technologies and the conditions in which they are viable alternatives to CFC-based equipment. Additionally, energy efficiency and life-cycle cost analysis considerations are addressed to provide a more completes analysis of cooling equipment alternatives.

  14. Commercial Refrigeration Equipment

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards.

  15. Equipment | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rare Earth Metal Melting and Casting Unit Tantalum Crucible Welder Oxy-Gon High Temperature Quenching Furnace GCA Vacuum Industries Vacuum Furnace NRC - High Temperature Vacuum Furnace Nonconsumable Arc Casting Furnace Vacuum Induction Melting/Chill Casting Furnaces Arc Melting/Chill Casting Furnaces Box Furnaces Resistance heated vacuum distillation/sublimation furnaces Electrotransport Purification Furnace 2250 psi High Pressure Hydrogen Charging furnace 1000°C Hydrofluorination furnace

  16. Process Control Systems in the Chemical Industry: Safety vs. Security

    SciTech Connect (OSTI)

    Jeffrey Hahn; Thomas Anderson

    2005-04-01

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nations critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  17. Guide to Low-Emission Boiler and Combustion Equipment Selection |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Low-Emission Boiler and Combustion Equipment Selection Guide to Low-Emission Boiler and Combustion Equipment Selection The guide provides background information about various types of industrial, commercial, and institutional (ICI) boilers along with discussion about the fuels that they burn and the emissions that they produce. Also included are discussions about emissions standards and compliance issues, technical details related to emissions control techniques, and

  18. Directory of Tennessee's forest industries 1980

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    A directory of primary and secondary forest industries is presented. Firm names and addresses are listed by county in alphabetical order. The following information is listed for each industry: type of plant, production and employee size class, products manufactured, and equipment. For the primary industries, the major species of trees used are listed. (MHR)

  19. Equipment Pool | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pool What is the Equipment Pool? Property that is no longer required or being used by a research group or administrative office is sent to the Ames Laboratory's warehouse Equipment Pool area for reuitilization within the Laboratory. What property is in the Equipment Pool? 1. Visit the Equipment Pool Listing page, or 2. Visit our Ames Laboratory warehouse between the hours of 7:30-4 p.m. to view the items in the equipment pool. How do I request property from the Pool? Contact Brian Aspengren,

  20. Development of Advanced Surface Enhancement Technology for Decreasing Wear and Corrosion of Equipment Used for Mineral Processing

    SciTech Connect (OSTI)

    Daniel Tao; R. Honaker; B. K. Parekh

    2007-09-20

    Equipment wear is a major concern in the mineral processing industry, which dramatically increases the maintenance cost and adversely affects plant operation efficiency. In this research, novel surface treatment technologies, High Density Infrared (HDI) and Laser Surface Engineering (LSE) surface coating processes were developed for the surface enhancement of selected mineral and coal processing equipment. Microstructural and mechanical properties of the coated specimens were characterized. Laboratory-simulated wear tests were conducted to evaluate the tribological performance of the coated components. Test results indicate that the wear resistance of ASTM A36 (raw coal screen section) and can be significantly increased by applying HDI and LSE coating processes. Field testing has been performed using a LSE-treated screen panel and it showed a significant improvement of the service life.

  1. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  2. ConEd (Electric)- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Commercial and Industrial Equipment Rebate and Custom Efficiency Programs offer incentives to directly metered electric customers in good standing who contribute to the system benefits charge ...

  3. Duke Energy- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Duke Energy encourages its business customers to increase the energy efficiency of eligible facilities through the Commercial and Industrial Energy Efficiency Rebate Program. The equipment rebates...

  4. Reduce Radiation Losses from Heating Equipment; Industrial Technologie...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    line of sight, and the rate of heat transfer increases with the fourth power of the ... Radiation losses are a function of three factors: * The temperature of the internal ...

  5. LNG infrastructure and equipment

    SciTech Connect (OSTI)

    Forgash, D.J.

    1995-12-31

    Sound engineering principals have been used by every company involved in the development of the LNG infrastructure, but there is very little that is new. The same cryogenic technology that is used in the manufacture and sale of nitrogen, argon, and oxygen infrastructure is used in LNG infrastructure. The key component of the refueling infrastructure is the LNG tank which should have a capacity of at least 15,000 gallons. These stainless steel tanks are actually a tank within a tank separated by an annular space that is void of air creating a vacuum between the inner and outer tank where superinsulation is applied. Dispensing can be accomplished by pressure or pump. Either works well and has been demonstrated in the field. Until work is complete on NFPA 57 or The Texas Railroad Commission Rules for LNG are complete, the industry is setting the standards for the safe installation of refueling infrastructure. As a new industry, the safety record to date has been outstanding.

  6. Industrial energy management and utilization

    SciTech Connect (OSTI)

    Witte, L.C.; Schmidt, P.S.; Brown, D.

    1986-01-01

    This text covers the principles of industrial energy conservation and energy conservation applications, with emphasis on the energy-intensive industries. Topics covered include energy consumption, alternative energy sources, elements of energy audits, economic investment analysis, management of energy conservation programs, boilers and fired heaters, steam and condensate systems, classification and fouling of heat exchangers, heat transfer augmentation, waste heat sources, heat recovery equipment, properties and characteristics of insulation, energy conservation in industrial buildings, cogeneration, power circuit components and energy conversion devices, electrical energy conservation. A review of the fundamentals of fluid mechanics, heat transfer, and thermodynamics, as well as examples, problems, and case studies from specific industries are included.

  7. How Do I Bring and Use Electrical Equipment at the ALS?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bring and Use Electrical Equipment at the ALS? Print Testing All electrical equipment must meet minimum electrical safety requirements. Whenever possible, we rely on third party organizations like Underwriters Laboratories (UL) . The simplest, quickest, cheapest, most reliable way to have equipment approved is to make sure that it has a label from a Nationally Recognized Testing Lab (NRTL) . We recognize that many pieces of equipment are specialized, and manufacturers do not obtain the testing.

  8. How Do I Bring and Use Electrical Equipment at the ALS?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bring and Use Electrical Equipment at the ALS? Print Testing All electrical equipment must meet minimum electrical safety requirements. Whenever possible, we rely on third party organizations like Underwriters Laboratories (UL) . The simplest, quickest, cheapest, most reliable way to have equipment approved is to make sure that it has a label from a Nationally Recognized Testing Lab (NRTL) . We recognize that many pieces of equipment are specialized, and manufacturers do not obtain the testing.

  9. How Do I Bring and Use Electrical Equipment at the ALS?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bring and Use Electrical Equipment at the ALS? Print Testing All electrical equipment must meet minimum electrical safety requirements. Whenever possible, we rely on third party organizations like Underwriters Laboratories (UL) . The simplest, quickest, cheapest, most reliable way to have equipment approved is to make sure that it has a label from a Nationally Recognized Testing Lab (NRTL) . We recognize that many pieces of equipment are specialized, and manufacturers do not obtain the testing.

  10. Puerto Rico - Renewable Energy Equipment Certification | Department...

    Broader source: Energy.gov (indexed) [DOE]

    State Puerto Rico Program Type Equipment Certification Summary Certification of Photovoltaic Equipment EAA specifies that PV equipment must meet UL 1703 requirements, and...

  11. Small Industrial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    because of equipment age, suboptimal components, or inherently inefficient part-load control. Incentives may be available (check with your electric utility) to help cover the...

  12. Bulk Hauling Equipment for CHG | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bulk Hauling Equipment for CHG Bulk Hauling Equipment for CHG This presentation by Don Baldwin of Hexagon Composites was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop in March 2013. PDF icon csd_workshop_8_baldwin.pdf More Documents & Publications Tank Manufacturing, Testing, Deployment and Field Performance Hydrogen Delivery Roadmap US DRIVE Hydrogen Delivery Technical Team Roadmap

  13. Equipment Loans | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Loans Requirements to Loan Property: Ames Laboratory may loan Government Property provided the equipment is not excess to the Laboratory's needs. In order to loan equipment, the following criteria must be met: 1) Equipment shall be used in performing research, studies, and other efforts that result in benefits to both the U.S. Government, the borrower, and provided that the DOE mission is not affected. 2) Used by another DOE organization, contractor, Government agency, or organization that has a

  14. Laboratory Equipment Donation Program - Guidelines

    Office of Scientific and Technical Information (OSTI)

    The United States Department of Energy, in accordance with its responsibility to encourage research and development in the energy area, awards grants of used energy-related laboratory equipment. Universities, colleges and other non-profit educational institutions of higher learning in the United States are eligible to apply for equipment to use in energy-oriented educational programs in the life, physical, and environmental sciences, and in engineering. The equipment listed in this database is

  15. LANSCE | Lujan Center | Ancillary Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ancillary Equipment For general questions, please contact the Lujan Center Sample Environments responsible: Victor Fanelli | vfanelli@lanl.gov | 505.667.8755 Sample and Equipment Shipping Instructions For questions regarding shipping procedures, contact the Lujan Center Experiment Coordinator: TBA Low Temperature Equipment Specifications Flight Path/Instrument Compatibility Responsible Displex closed-cycle refrigerators Tmin= 4 K to 12 K Tmax= 300 K to 340 K 11 - Asterix 04 - HIPPO 03 - HIPD 10

  16. Commercial Kitchen Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    Efficiency Vermont offers rebates for ENERGY STAR certified fryers, griddles, convection ovens, and steam cookers. Custom rebates for other types of commercial cooking equipment may be available...

  17. INL '@work' heavy equipment mechanic

    SciTech Connect (OSTI)

    Christensen, Cad

    2008-01-01

    INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  18. Information technology equipment cooling system

    DOE Patents [OSTI]

    Schultz, Mark D.

    2014-06-10

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

  19. Equipment Certification | Open Energy Information

    Open Energy Info (EERE)

    Fuel Cells Geothermal Electric Hydroelectric energy Hydroelectric (Small) Natural Gas Nuclear Solar Photovoltaics Tidal Energy Wave Energy Wind energy Yes Madison - Equipment...

  20. Webinar: Hydrogen Equipment Certification Guide

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar titled "Hydrogen Equipment Certification Guide" on Thursday, December 10, from 1 to 2 p.m. EST.

  1. INL '@work' heavy equipment mechanic

    ScienceCinema (OSTI)

    Christensen, Cad

    2013-05-28

    INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  2. Improving Fan System Performance: A Sourcebook for Industry

    SciTech Connect (OSTI)

    2003-04-01

    This is one of a series of sourcebooks on motor-driven equipment produced by the Industrial Technologies Program. It provides a reference for industrial fan systems users, outlining opportunities to improve fan system performance.

  3. Industrial Applications for Micropower: A Market Assessment,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    here as electricity generation equipment less than 1 MW) such as microturbines, fuel cells, and reciprocating engines offers promise to renew growth in the U.S. industrial sector. ...

  4. Industrial Assessment Centers Train Future Energy-Savvy Engineers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Industrial Assessment Centers Train Future Energy-Savvy Engineers Industrial Assessment Centers Train Future Energy-Savvy Engineers April 12, 2013 - 11:06am Addthis Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment

  5. CASL Test Stand Experience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Test Stand Experience Stephen Hess, EPRI Heather Feldman, EPRI Brenden Mervin, .........1 2. Westinghouse Test Stand ......

  6. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program Fact ...

  7. Comparison of Real World Energy Consumption to Models and DOE Test

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procedures | Department of Energy Comparison of Real World Energy Consumption to Models and DOE Test Procedures Comparison of Real World Energy Consumption to Models and DOE Test Procedures This study investigates the real-world energy performance of appliances and equipment as it compares with models and test procedures. The study looked to determine whether DOE and industry test procedures actually replicate real world conditions, whether performance degrades over time, and whether

  8. Information technology equipment cooling method

    DOE Patents [OSTI]

    Schultz, Mark D.

    2015-10-20

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools air utilized by the rack of information technology equipment to cool the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat generated by the rack of information technology equipment.

  9. Better metallurgy for process equipment

    SciTech Connect (OSTI)

    Rayner, R.E.

    1994-01-01

    Metallurgy choices have expanded significantly for process equipment and pumps used for handling difficult corrosive fluids. If they have been specifying the austenitic AISI types 316, 316L, 317, 317L or the newer first generation alloy 329 in their pumps, there is a strong message in recent literature. Based on tests and experience there are better, often less costly alternatives. In the case of CD[sub 4]MCu, N08020 and 904L, there are lower-cost material alternatives for many applications. For SA S31254 and SA N08367, there are some less aggressive can be substituted. These alternatives are the new second generation duplex steels. The lower cost of the duplex alloys is a result of the reduced nickel content, which is about half that of the standard austenitics. Also, their carbon content is low; the same as 316L and 317L for most alloys, including S31803. The second generation duplex alloys offer significant value improvement in a vast majority of applications over the common austenitics and ferritics. Further, their improved resistance to corrosion and improved physical properties relative to the expensive. and in many cases proprietary, highly corrosion-resistant, super-ferritics and super-austenitics, means that they can and should be considered as an alternative for applications where those materials are now overqualified. Strength, toughness and wide corrosion resistance are all-important properties and considerations for process pump materials. Combine these with competitive cost and there is an opportunity that must be investigated.

  10. 2014 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    Lewis, Mike

    2015-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2013–October 31, 2014. The report contains the following information; Facility and system description; Permit required effluent monitoring data and loading rates; Permit required groundwater monitoring data; Status of compliance activities; Noncompliance issues; and Discussion of the facility’s environmental impacts. During the 2014 permit year, approximately 238 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters are below the Ground Water Quality Rule Secondary Constituent Standards in the downgradient monitoring wells.

  11. 2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    mike lewis

    2011-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2009 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of compliance activities • Discussion of the facility’s environmental impacts During the 2010 permit year, approximately 164 million gallons of wastewater were discharged to the Cold Waste Pond. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  12. 2013 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2014-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2012–October 31, 2013. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of compliance activities • Noncompliance issues • Discussion of the facility’s environmental impacts. During the 2013 permit year, approximately 238 million gallons of wastewater was discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters are below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  13. Vehicle Technologies Office: Modeling, Testing, Data and Results |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Modeling, Testing, Data and Results Vehicle Technologies Office: Modeling, Testing, Data and Results Along with work in individual technologies, the Vehicle Technologies Office (VTO) funds research that explores how to connect these components and systems together in the most effective, efficient way possible. Much of this work uses specialized equipment and software that VTO developed in partnership with the national laboratories, including the industry-leading modeling

  14. Solkar Solar Industry Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Place: CHENNAI, India Zip: 600 034 Product: Manufactures equipment for sorting PV cells, laminating them, testing the modules and cutting cells with a laser. Also...

  15. New Emergency Equipment Notifications 2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notifications 2016 Addition of New Emergency Equipment, Hazardous Waste Facility Permit Number: NM4890139088-TSDF Todd A. Shrader/CBFO and Philip J. Breidenbach/NWP dated January 8, 2016 Underground Fire Suppression Vehicles

  16. Appliance and Equipment Efficiency Standards

    Broader source: Energy.gov [DOE]

    Arizona’s Appliance and Equipment Efficiency Standards (Arizona Revised Statutes, Title 44, Section 1375) set minimum energy efficiency standards for twelve products, all of which have since been...

  17. Water-Using Equipment: Domestic

    SciTech Connect (OSTI)

    Solana, Amy E.; Mcmordie, Katherine

    2006-01-24

    Water management is an important aspect of energy engineering. This article addresses water-using equipment primarily used for household purposes, including faucets, showers, toilets, urinals, dishwashers, and clothes washers, and focuses on how the equipment can be optimized to save both water and energy. Technology retrofits and operation and maintenance changes are the primary methods discussed for water and energy conservation. Auditing to determine current consumption rates is also described for each technology.

  18. Industrial Combustion Vision: A Vision by and for the Industrial Combustion Community

    SciTech Connect (OSTI)

    none,

    1998-05-01

    The Industrial Combustion Vision is the result of a collaborative effort by manufacturers and users of burners, boilers, furnaces, and other process heating equipment. The vision sets bold targets for tomorrow's combustion systems.

  19. 2014-04-10 Issuance: Test Procedures for Commercial Refrigeration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Issuance: Test Procedures for Commercial Refrigeration Equipment; Final Rule 2014-04-10 Issuance: Test Procedures for Commercial Refrigeration Equipment; Final Rule This document ...

  20. Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility

    Energy Savers [EERE]

    Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time: 10:00 am - 12:30 pm EDT Purpose: To convene representatives from stakeholder organizations in order to enhance their understanding of the characteristics of condensing natural gas heating and water heating equipment that contribute to the unique installation requirements and challenges of this equipment compared to

  1. MECS 2006 - Transportation Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Equipment MECS 2006 - Transportation Equipment Manufacturing Energy and Carbon Footprint for Transportation Equipment (NAICS 336) Sector with Total Energy Input, October 2012 (MECS 2006) All available footprints and supporting documents Manufacturing Energy and Carbon Footprint PDF icon Transportation Equipment More Documents & Publications Transportation Equipment

  2. Transportation Equipment (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Equipment (2010 MECS) Transportation Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Transportation Equipment Sector (NAICS 336) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint PDF icon Transportation Equipment More Documents & Publications MECS 2006 - Transportation Equipment Cement (2010 MECS) Glass and Glass Products (2010

  3. Webinar December 10: Hydrogen Equipment Certification Guide

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar titled "Hydrogen Equipment Certification Guide" on Thursday, December 10, from 1 to 2 p.m. EST. The webinar will introduce the Hydrogen Equipment Certification Guide, a document intended to aid in equipment approval until listed equipment are available for the entirety of equipment and components.

  4. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the National Pollutant Discharge Elimination System. October 15, 2012 Outfall from the Laboratory's Data Communications Center cooling towers Intermittent flow of discharged water from the Laboratory's Data Communications Center eventually reaches perennial segment of Sandia Canyon during storm events (Outfall 03A199). Contact Environmental Communication & Public

  5. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by cosmic-ray-induced neutrons upon miniature electronic devices, such as chips that help control aircraft or complex integrated circuits in automobiles. Industrial User...

  6. OTHER INDUSTRIES

    Broader source: Energy.gov [DOE]

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  7. INDUSTRIAL ASSESSMENT CENTERS IAC Quarterly Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summer 2015 INDUSTRIAL ASSESSMENT CENTERS IAC Quarterly Update Spring 2014 INDUSTRIAL ASSESSMENT CENTERS The IAC Update, Summer 2015 About the IAC Program Beginning in 1976, the Industrial Assessment Centers (IACs) have provided small and medium-sized manufacturers with site- specific recommendations for improving energy efficiency, reducing waste, and increasing productivity through changes in processes and equipment. A typical IAC client will receive recommendations that save more than

  8. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users - Media Publications and Information The Invisible Neutron Threat Neutron-Induced Failures in Semiconductor Devices Nuclear Science Research at the LANSCE-WNR Facility Links About WNR Industrial Users 4FP30L-A/ICE House 4FP30R/ICE II Media

  9. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic ...

  10. Cruising Equipment Company CECO | Open Energy Information

    Open Energy Info (EERE)

    Equipment Company (CECO) Place: Seattle, Washington Zip: 98107 Product: Maker of pollution control equipment - bought by Xantrex in 2000. Coordinates: 47.60356,...

  11. Moncada Solar Equipment | Open Energy Information

    Open Energy Info (EERE)

    search Name: Moncada Solar Equipment Place: Italy Product: Developer and manufacturer of thin-film modules. References: Moncada Solar Equipment1 This article is a stub. You can...

  12. Personal Computing Equipment | Open Energy Information

    Open Energy Info (EERE)

    Computing Equipment Jump to: navigation, search TODO: Add description List of Personal Computing Equipment Incentives Retrieved from "http:en.openei.orgwindex.php?titlePersona...

  13. China Shandong Penglai Electric Power Equipment Manufacturing...

    Open Energy Info (EERE)

    Penglai Electric Power Equipment Manufacturing Jump to: navigation, search Name: China Shandong Penglai Electric Power Equipment Manufacturing Place: Penglai, Shandong Province,...

  14. Commercial Refrigeration Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    standards. File Commercial Refrigeration Equipment -- v2.0 More Documents & Publications Beverage Vending Machines Commercial Refrigeration Equipment Fluorescent Lamp Ballasts

  15. Laboratory Equipment Donation Program - LEDP Widget

    Office of Scientific and Technical Information (OSTI)

    LEDP Widget You can access key features of the Laboratory Equipment Donation Program (LEDP) website by downloading the LEDP widget. Use the widget to search, view the equipment ...

  16. Laboratory Equipment Donation Program - About Us

    Office of Scientific and Technical Information (OSTI)

    About LEDP The Laboratory Equipment Donation Program (LEDP), formerly the Energy-Related Laboratory Equipment (ERLE) Grant Program, was established by the United States Department ...

  17. CVD Equipment Corp | Open Energy Information

    Open Energy Info (EERE)

    Place: Ronkonkoma, New York Zip: 11779 Sector: Solar Product: New York-based maker of chemical vapour deposition process equipment. This equipment is used in the manufacture of...

  18. DMSE Equipment Scheduling | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scheduling Equipment ownercustodian reserves the right to override the schedule for maintenance andor other justified reasons. Abuse of the scheduling system or equipment may...

  19. Enforcement Policy Statement: Commercial HVAC Equipment Issued...

    Energy Savers [EERE]

    ... that conditions the equipment's supply air using energy transferred from an external source ... SteamHydronic Heat Options. A heat exchanger located inside the equipment that ...

  20. Processing and Manufacturing Equipment | Open Energy Information

    Open Energy Info (EERE)

    Processing and Manufacturing Equipment Jump to: navigation, search TODO: Add description List of Processing and Manufacturing Equipment Incentives Retrieved from "http:...

  1. DOE-STD-1039-93; Guide to Good Practices for Control of Equipment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... . . . . . 13 4.8 Equipment Post-Maintenance Testing and ... of a facility, process, experiment, or other project. ... should be pre-authorized by the operations supervisor. ...

  2. Covered Product Category: Imaging Equipment

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for imaging equipment, a product category covered by the ENERGY STAR program. Federal laws and requirements mandate that agencies buy ENERGY STAR qualified products in all product categories covered by this program and any acquisition actions that are not specifically exempted by law.

  3. Industry Economist

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will report to the Manager of Load Forecasting and Analysis of the Customer Services Organization. He/she serves as an industry economist engaged in load...

  4. Industry Perspective

    Broader source: Energy.gov [DOE]

    Fuel cell and biogas industries perspectives. Presented by Mike Hicks, Fuel Cell and Hydrogen Energy Association, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

  5. Industry @ ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry @ ALS Industry @ ALS Hewlett Packard Labs Gains Insights with Innovative ALS Research Tools Print Thursday, 05 May 2016 11:21 For the past eight years, Hewlett Packard Labs, the central research organization of Hewlett Packard Enterprise, has been using cutting-edge ALS techniques to advance some of their most promising technological research, including vanadium dioxide phase transitions and atomic movement during memristor operation. Read more... ALS, Molecular Foundry, and aBeam

  6. LDRD report: Smoke effects on electrical equipment

    SciTech Connect (OSTI)

    TANAKA,TINA J.; BAYNES JR.,EDWARD E.; NOWLEN,STEVEN P.; BROCKMANN,JOHN E.; GRITZO,LOUIS A.; SHADDIX,CHRISTOPHER R.

    2000-03-01

    Smoke is known to cause electrical equipment failure, but the likelihood of immediate failure during a fire is unknown. Traditional failure assessment techniques measure the density of ionic contaminants deposited on surfaces to determine the need for cleaning or replacement of electronic equipment exposed to smoke. Such techniques focus on long-term effects, such as corrosion, but do not address the immediate effects of the fire. This document reports the results of tests on the immediate effects of smoke on electronic equipment. Various circuits and components were exposed to smoke from different fields in a static smoke exposure chamber and were monitored throughout the exposure. Electrically, the loss of insulation resistance was the most important change caused by smoke. For direct current circuits, soot collected on high-voltage surfaces sometimes formed semi-conductive soot bridges that shorted the circuit. For high voltage alternating current circuits, the smoke also tended to increase the likelihood of arcing, but did not accumulate on the surfaces. Static random access memory chips failed for high levels of smoke, but hard disk drives did not. High humidity increased the conductive properties of the smoke. The conductivity does not increase linearly with smoke density as first proposed; however, it does increase with quantity. The data can be used to give a rough estimate of the amount of smoke that will cause failures in CMOS memory chips, dc and ac circuits. Comparisons of this data to other fire tests can be made through the optical and mass density measurements of the smoke.

  7. Energy Efficient Microwave Hybrid Processing of Lime for Cement, Steel, and Glass Industries

    SciTech Connect (OSTI)

    Fall, Morgana L; Yakovlev, Vadim; Sahi, Catherine; Baranova, Inessa; Bowers, Johnney G; Esquenazi , Gibran L

    2012-02-10

    In this study, the microwave materials interactions were studied through dielectric property measurements, process modeling, and lab scale microwave hybrid calcination tests. Characterization and analysis were performed to evaluate material reactions and energy usage. Processing parameters for laboratory scale and larger scale calcining experiments were developed for MAT limestone calcination. Early stage equipment design concepts were developed, with a focus on microwave post heating treatment. The retrofitting of existing rotary calcine equipment in the lime industry was assessed and found to be feasible. Ceralink sought to address some of the major barriers to the uptake of MAT identified as the need for (1) team approach with end users, technology partners, and equipment manufacturers, (2) modeling that incorporates kiln materials and variations to the design of industrial microwave equipment. This project has furthered the commercialization effort of MAT by working closely with an industrial lime manufacturer to educate them regarding MAT, identifying equipment manufacturer to supply microwave equipment, and developing a sophisticated MAT modeling with WPI, the university partner. MAT was shown to enhance calcining through lower energy consumption and faster reaction rates compared to conventional processing. Laboratory testing concluded that a 23% reduction in energy was possible for calcining small batches (5kg). Scale-up testing indicated that the energy savings increased as a function of load size and 36% energy savings was demonstrated (22 kg). A sophisticated model was developed which combines simultaneous microwave and conventional heating. Continued development of this modeling software could be used for larger scale calcining simulations, which would be a beneficial low-cost tool for exploring equipment design prior to actual building. Based on these findings, estimates for production scale MAT calcining benefits were calculated, assuming uptake of MAT in the US lime industry. This estimate showed that 7.3 TBTU/year could be saved, with reduction of 270 MMlbs of CO2 emissions, and $29 MM/year in economic savings. Taking into account estimates for MAT implementation in the US cement industry, an additional 39 TBTU/year, 3 Blbs of CO2 and $155 MM/year could be saved. One of the main remaining barriers to commercialization of MAT for the lime and cement industries is the sheer size of production. Through this project, it was realized that a production size MAT rotary calciner was not feasible, and a different approach was adapted. The concept of a microwave post heat section located in the upper portion of the cooler was devised and appears to be a more realistic approach for MAT implementation. Commercialization of this technology will require (1) continued pilot scale calcining demonstrations, (2) involvement of lime kiln companies, and (3) involvement of an industrial microwave equipment provider. An initial design concept for a MAT post-heat treatment section was conceived as a retrofit into the cooler sections of existing lime rotary calciners with a 1.4 year payback. Retrofitting will help spur implementation of this technology, as the capital investment will be minimal for enhancing the efficiency of current rotary lime kilns. Retrofits would likely be attractive to lime manufacturers, as the purchase of a new lime kiln is on the order of a $30 million dollar investment, where as a MAT retrofit is estimated on the order of $1 million. The path for commercialization lies in partnering with existing lime kiln companies, who will be able to implement the microwave post heat sections in existing and new build kilns. A microwave equipment provider has been identified, who would make up part of the continued development and commercialization team.

  8. Modular, High-Volume Fuel Cell Leak-Test Suite and Process

    SciTech Connect (OSTI)

    Ru Chen; Ian Kaye

    2012-03-12

    Fuel cell stacks are typically hand-assembled and tested. As a result the manufacturing process is labor-intensive and time-consuming. The fluid leakage in fuel cell stacks may reduce fuel cell performance, damage fuel cell stack, or even cause fire and become a safety hazard. Leak check is a critical step in the fuel cell stack manufacturing. The fuel cell industry is in need of fuel cell leak-test processes and equipment that is automatic, robust, and high throughput. The equipment should reduce fuel cell manufacturing cost.

  9. Strategy Guideline: HVAC Equipment Sizing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategy Guideline: HVAC Equipment Sizing Arlan Burdick IBACOS, Inc. February 2012 This report received minimal editorial review at NREL NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,

  10. Strategy Guideline: HVAC Equipment Sizing

    SciTech Connect (OSTI)

    Burdick, A.

    2012-02-01

    The heating, ventilation, and air conditioning (HVAC) system is arguably the most complex system installed in a house and is a substantial component of the total house energy use. A right-sized HVAC system will provide the desired occupant comfort and will run efficiently. This Strategy Guideline discusses the information needed to initially select the equipment for a properly designed HVAC system. Right-sizing of an HVAC system involves the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Right-sizing the HVAC system begins with an accurate understanding of the heating and cooling loads on a space; however, a full HVAC design involves more than just the load estimate calculation - the load calculation is the first step of the iterative HVAC design procedure. This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, Florida. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.

  11. Commercial / Industrial Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Commercial & Industrial Lighting Efficiency Program The Commercial & Industrial...

  12. Guide to Low-Emission Boiler and Combustion Equipment Selection

    SciTech Connect (OSTI)

    Oland, CB

    2002-05-06

    Boiler owners and operators who need additional generating capacity face a number of legal, political, environmental, economic, and technical challenges. Their key to success requires selection of an adequately sized low-emission boiler and combustion equipment that can be operated in compliance with emission standards established by state and federal regulatory agencies. Recognizing that many issues are involved in making informed selection decisions, the U.S. Department of Energy (DOE), Office of Industrial Technologies (OIT) sponsored efforts at the Oak Ridge National Laboratory (ORNL) to develop a guide for use in choosing low-emission boilers and combustion equipment. To ensure that the guide covers a broad range of technical and regulatory issues of particular interest to the commercial boiler industry, the guide was developed in cooperation with the American Boiler Manufacturers Association (ABMA), the Council of Industrial Boiler Owners (CIBO), and the U.S. Environmental Protection Agency (EPA). The guide presents topics pertaining to industrial, commercial, and institutional (ICI) boilers. Background information about various types of commercially available boilers is provided along with discussions about the fuels that they burn and the emissions that they produce. Also included are discussions about emissions standards and compliance issues, technical details related to emissions control techniques, and other important selection considerations. Although information in the guide is primarily applicable to new ICI boilers, it may also apply to existing boiler installations.

  13. Office of Industrial Technologies research in progress

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffs of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.

  14. Electrical equipment performance under severe accident conditions (BWR/Mark 1 plant analysis): Summary report

    SciTech Connect (OSTI)

    Bennett, P.R.; Kolaczkowski, A.M.; Medford, G.T.

    1986-09-01

    The purpose of the Performance Evaluation of Electrical Equipment during Severe Accident States Program is to determine the performance of electrical equipment, important to safety, under severe accident conditions. In FY85, a method was devised to identify important electrical equipment and the severe accident environments in which the equipment was likely to fail. This method was used to evaluate the equipment and severe accident environments for Browns Ferry Unit 1, a BWR/Mark I. Following this work, a test plan was written in FY86 to experimentally determine the performance of one selected component to two severe accident environments.

  15. HAND TRUCK FOR HANDLING EQUIPMENT

    DOE Patents [OSTI]

    King, D.W.

    1959-02-24

    A truck is described for the handling of large and relatively heavy pieces of equipment and particularly for the handling of ion source units for use in calutrons. The truck includes a chassis and a frame pivoted to the chassis so as to be operable to swing in the manner of a boom. The frame has spaced members so arranged that the device to be handled can be suspended between or passed between these spaced members and also rotated with respect to the frame when the device is secured to the spaced members.

  16. Industrial energy-efficiency-improvement program

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

  17. Best Management Practice #11: Commercial Kitchen Equipment

    Broader source: Energy.gov [DOE]

    Commercial kitchen equipment can be a significant water use in the non-residential sector. Water efficiency for commercial kitchen equipment is especially important because high-volume applications...

  18. Energy Smart Industrial: five years of enormous savings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.5 million kWh a year. JD Hisey, the plant's continuous improvement manager, says Energy Smart Industrial did more than just cut Fitesa's energy costs. "The new equipment reduced...

  19. Delmarva Power- Commercial and Industrial Energy Savings Program

    Broader source: Energy.gov [DOE]

    The Delmarva Power Commercial and Industrial (C&I) Energy Savings Program is designed to promote and encourage the incorporation of energy efficient equipment, products, and services into non-...

  20. Empire District Electric- Commercial & Industrial Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    The Empire District Electric Company offers a Commercial/Industrial Prescriptive Rebate Program to its non-residential customers in Arkansas who purchase certain high-efficiency equipment for...

  1. New Jersey Industrial Energy Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jersey Industrial Energy Program New Jersey Industrial Energy Program Map highlighting New Jersey New Jersey is home to energy-intensive industrial manufacturing sectors such as chemicals, computers and electronics, and transportation equipment manufacturing. In 2007, industrial manufacturing in the state contributed to approximately 10% of New Jersey's gross domestic product and 20% of the state's energy usage, consuming 452.1 trillion British thermal units (Btu). As part of an initiative to

  2. Solar Energy Education. Industrial arts: teacher's guide. Field...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial arts: teacher's guide. Field test edition. Includes glossary Citation Details In-Document Search Title: Solar Energy Education. Industrial arts: teacher's guide. Field ...

  3. Liquid-Liquid Extraction Equipment

    SciTech Connect (OSTI)

    Jack D. Law; Terry A. Todd

    2008-12-01

    Solvent extraction processing has demonstrated the ability to achieve high decontamination factors for uranium and plutonium while operating at high throughputs. Historical application of solvent extraction contacting equipment implies that for the HA cycle (primary separation of uranium and plutonium from fission products) the equipment of choice is pulse columns. This is likely due to relatively short residence times (as compared to mixer-settlers) and the ability of the columns to tolerate solids in the feed. Savannah River successfully operated the F-Canyon with centrifugal contactors in the HA cycle (which have shorter residence times than columns). All three contactors have been successfully deployed in uranium and plutonium purification cycles. Over the past 20 years, there has been significant development of centrifugal contactor designs and they have become very common for research and development applications. New reprocessing plants are being planned in Russia and China and the United States has done preliminary design studies on future reprocessing plants. The choice of contactors for all of these facilities is yet to be determined.

  4. Appliance and Equipment Efficiency Standards

    Broader source: Energy.gov [DOE]

    Testing procedures for energy efficiency not provided for in Rhode Island law or in the State Building Code may be adopted from the test methods approved by the U.S. Department of Energy, or in t...

  5. Neural Network Based System for Equipment Startup Surveillance

    Energy Science and Technology Software Center (OSTI)

    1996-12-18

    NEBSESS is a system for equipment surveillance and fault detection which relies on a neural-network based means for diagnosing disturbances during startup and for automatically actuating the Sequential Probability Ratio Test (SPRT) as a signal validation means during steady-state operation.

  6. Don`t overlook natural gas cooling equipment

    SciTech Connect (OSTI)

    Katzel, J.

    1997-03-01

    If one thought the confusion surrounding chiller specification and operation ended with the availability of CFC-free refrigerant alternatives, think again. Plant engineers involved in the selection and installation of cooling equipment are facing yet another complicated task, this time thanks to deregulation of the electric utility industry. Still in its early stages, deregulation is a process that could take up to a decade. However, deregulation is also bringing about changing pricing structures. Electric power costs may not always be low for everyone. For plants paying $0.02/kwh for electricity, an electric-powered chiller is a must. But those paying $0.35 or $0.40/kwh, even for a few hours, cannot afford NOT to consider something besides an electric-motor-driven chiller. Among the most viable, yet often overlooked, options available is natural gas cooling. Gas cooling equipment gives industrial users the flexibility to choose either gas or electricity to drive their cooling systems. Natural gas cooling is defined here as the use of absorption cooling systems and engine-driven chillers, as alternatives to electric-driven equipment, to deliver chilled water in a conventional manner. Desiccant systems can also be gas fired and are used primarily for providing dry air for process control. Because of their specialized applications, desiccant cooling is not covered in this article.

  7. Case Study of the Failure of two 13.8kV Control & Metering Transformers that caused significant Equipment Damage

    SciTech Connect (OSTI)

    Dreifuerst, G R; Chew, D B; Mangonon, H L; Swyers, P W

    2011-08-25

    The degradation and failure of cast-coil epoxy windings within 13.8kV control power transformers and metering potential transformers has been shown to be dangerous to both equipment and personnel, even though best industrial design practices were followed. Accident scenes will be examined for two events at a U.S. Department of Energy laboratory. Failure modes will be explained and current design practices discussed with changes suggested to prevent a recurrence and to minimize future risk. New maintenance philosophies utilizing partial discharge testing of the transformers as a prediction of end-of-life will be examined.

  8. Laboratory Equipment Donation Program - Application Process

    Office of Scientific and Technical Information (OSTI)

    Equipment listings on the LEDP web site are obtained from the U.S. General Services Administration (GSA) Energy Asset Disposal System (EADS). Once equipment is listed, EADS allows 30 days for grantees from eligible institutions to apply for it on the LEDP site. Equipment Condition Codes are found near the top of the "LEDP Equipment Information" page for each item. The condition of equipment is graded as follows: 1: Unused Good Condition 4: Used Good Condition 7: Repairable Requires

  9. ISSUANCE 2015-04-01: Energy Conservation Program for Consumer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial ... Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial ...

  10. ISSUANCE 2015-03-27: Energy Conservation Program for Consumer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial ... Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial ...

  11. Specialized equipment enabled completions with large coiled tubing

    SciTech Connect (OSTI)

    Taylor, R.W.; Conrad, B.

    1996-02-19

    Specialized equipment enabled successful well completions in Oman with large 3{1/2}-inch coiled tubing. Conventional drilling or completion rigs were not needed. Although the use of 3{1/2}-inch coiled tubing to complete wells is relatively new, it is gaining widespread industry application. One Middle East operating company felt that if downhole completion equipment could be successfully run using coiled tubing, greater cost efficiency, both in initial deployment and in maintenance, could be derived. The paper lists some of the technical considerations for these assumptions. The long-term advantages regarding production and well maintenance cannot yet be determined, but experience in Oman has confirmed the belief that large coiled tubing completions can be technically achieved.

  12. wave energy industry research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    industry research - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  13. Electric power equipment - Paraguay. Foreign market survey report

    SciTech Connect (OSTI)

    Ceuppens, H.D.

    1982-03-01

    The market research was undertaken to study the present and potential US share of the market in Paraguay for electric power equipment; to examine growth trends in Paraguayan end-user industries over the next few years; to identify specific project categories that offer the most promising export potential for US companies; and to provide basic data which will assist US suppliers in determining current and potential sales and marketing opportunities. The trade promotional and marketing techniques which are likely to succeed in Paraguay were also reviewed.

  14. Particle dispersing system and method for testing semiconductor manufacturing equipment

    DOE Patents [OSTI]

    Chandrachood, Madhavi; Ghanayem, Steve G.; Cantwell, Nancy; Rader, Daniel J.; Geller, Anthony S.

    1998-01-01

    The system and method prepare a gas stream comprising particles at a known concentration using a particle disperser for moving particles from a reservoir of particles into a stream of flowing carrier gas. The electrostatic charges on the particles entrained in the carrier gas are then neutralized or otherwise altered, and the resulting particle-laden gas stream is then diluted to provide an acceptable particle concentration. The diluted gas stream is then split into a calibration stream and the desired output stream. The particles in the calibration stream are detected to provide an indication of the actual size distribution and concentration of particles in the output stream that is supplied to a process chamber being analyzed. Particles flowing out of the process chamber within a vacuum pumping system are detected, and the output particle size distribution and concentration are compared with the particle size distribution and concentration of the calibration stream in order to determine the particle transport characteristics of a process chamber, or to determine the number of particles lodged in the process chamber as a function of manufacturing process parameters such as pressure, flowrate, temperature, process chamber geometry, particle size, particle charge, and gas composition.

  15. Dispensing Equipment Testing With Mid-Level Ethanol/Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... ethanol and ASTM Reference Fuel C EPA U.S. Environmental Protection Agency DOE ... The fluids were analyzed using a gas chromatography-mass spectrometer (GC-MS). GC- MS is ...

  16. Zoe Industries: Data Request (2010-SW-1602)

    Broader source: Energy.gov [DOE]

    DOE requested test data from Zoe Industries, Inc., to permit the Department to evaluate whether a particular model of showerhead meets the applicable water conservation standard.

  17. Workshop on environmental qualification of electric equipment

    SciTech Connect (OSTI)

    Lofaro, R.; Gunther, W.; Villaran, M.; Lee, B.S.; Taylor, J.

    1994-05-01

    Questions concerning the Environmental Qualification (EQ) of electrical equipment used in commercial nuclear power plants have recently become the subject of significant interest to the US Nuclear Regulatory Commission (NRC). Initial questions centered on whether compliance with the EQ requirements for older plants were adequate to support plant operation beyond 40 years. After subsequent investigation, the NRC Staff concluded that questions related to the differences in EQ requirements between older and newer plants constitute a potential generic issue which should be evaluated for backfit, independent of license renewal activities. EQ testing of electric cables was performed by Sandia National Laboratories (SNL) under contract to the NRC in support of license renewal activities. Results showed that some of the environmentally qualified cables either failed or exhibited marginal insulation resistance after a simulated plant life of 20 years during accident simulation. This indicated that the EQ process for some electric cables may be non-conservative. These results raised questions regarding the EQ process including the bases for conclusions about the qualified life of components based upon artificial aging prior to testing.

  18. Sustainable Nanomaterials Industry Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Perspective U.S. Department of Energy Advanced Manufacturing Office Sustainable ... the forest products industry through innovation 2 The U.S. Forest Products Industry's ...

  19. Novel Energy Conversion Equipment for Low Temperatures Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Conversion Equipment for Low Temperatures Geothermal Resources Novel Energy Conversion Equipment for Low Temperatures Geothermal Resources Novel Energy Conversion Equipment ...

  20. Category:Smart Grid Projects - Equipment Manufacturing | Open...

    Open Energy Info (EERE)

    Smart Grid Projects - Equipment Manufacturing Jump to: navigation, search Smart Grid Projects - Equipment Manufacturing category. Pages in category "Smart Grid Projects - Equipment...

  1. ISSUANCE 2015-06-25: Energy Conservation Program for Certain Industrial

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment: Energy Conservation Standards for Dedicated-Purpose Pool Pumps, Reopening of the Comment Period | Department of Energy Program for Certain Industrial Equipment: Energy Conservation Standards for Dedicated-Purpose Pool Pumps, Reopening of the Comment Period ISSUANCE 2015-06-25: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Dedicated-Purpose Pool Pumps, Reopening of the Comment Period This document is the Energy Conservation Program

  2. ISSUANCE: 2015-04-24 Energy Conservation Program for Certain Industrial

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment: Energy Conservation Standards for Dedicated-Purpose Pool Pumps; Request for Information | Department of Energy ISSUANCE: 2015-04-24 Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Dedicated-Purpose Pool Pumps; Request for Information ISSUANCE: 2015-04-24 Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Dedicated-Purpose Pool Pumps; Request for Information This document is the Energy

  3. OIT Wireless Telemetry for Industrial Applications

    SciTech Connect (OSTI)

    Manges, WW

    2002-09-03

    The need for advanced wireless technology has been identified in the National Research Council publication (1) ''Manufacturing Process Controls for the Industries of the Future as a Critical Technology for the Future''. The deployment challenges to be overcome in order for wireless to be a viable option include: (1) eliminating interference (assuring reliable communications); (2) easing the deployment of intelligent, wireless sensors; (3) developing reliable networks (robust architectures); (4) developing remote power (long-lasting and reliable); and (5) developing standardized communication protocols. This project demonstrated the feasibility of robust wireless sensor networks that could meet these requirements for the harsh environments common to the DOE/OIT Industries of the Future. It resulted in a wireless test bed that was demonstrated in a paper mill and a steel plant. The test bed illustrated key protocols and components that would be required in a real-life, wireless network. The technologies for low power connectivity developed and demonstrated at the plant eased fears that the radios would interfere with existing control equipment. The same direct sequence, spread spectrum (DSSS) technology that helped assure the reliability of the connection also demonstrated that wireless communication was feasible in these plants without boosting the transmitted power to dangerous levels. Our experience and research have indicated that two key parameters are of ultimate importance: (1) reliability and (2) inter-system compatibility. Reliability is the key to immediate acceptance among industrial users. The importance cannot be overstated, because users will not tolerate an unreliable information network. A longer term issue that is at least as important as the reliability of a single system is the inter-system compatibility between these wireless sensor networks and other wireless systems that are part of our industries. In the long run, the ability of wireless sensor networks to operate cooperatively in an environment that includes wireless LANs, wireless headsets, RF heating, wireless crane controls and many other users of the electromagnetic spectrum will probably be the most important issue we can address. A network of units (Figure 1) has been developed that demonstrates the feasibility of direct-sequence spread spectrum wireless sensor networking for industrial environments. The hardware consists of a group of reprogrammable transceivers that can act as sensor nodes or network nodes or both. These units and the team that built them are the heart of a test bed development system that has been used successfully in demonstrations at various industrial sites. As previously reported, these units have been successfully tested at a paper mill. More recently, these units were utilized in a permanent installation at a steel mill. Both of these applications demonstrated the ease with which a new network could be installed, and the reality that DSSS units can operate successfully in plants where narrow band transmitters had previously caused interference with plant operations.

  4. Test Procedure Waivers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appliance & Equipment Standards Rulemakings & Notices Test Procedure Waivers Test Procedure Waivers Products covered by standards change as manufacturers add new features to ...

  5. Equipment-Resources-PHaSe-EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equipment Equipment photo Last update 30 April 2015. People wishing to use equipment listed below must first receive training and permission from the Facility Director, or present instrument contact person, who can provide basic training and information from an experienced user. Training and access must be arranged in advance of first use. Reservation of usage time for a number of instruments requires you to set up an account on the Facilities Online Manager (FOM) service! Connect to the

  6. NREL: Energy Storage - Facilities and Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities and Equipment Arial photo of several buildings. NREL's ESIF is the first U.S. facility with capabilities to conduct megawatt-scale R&D examining integration of power grids, buildings, vehicles, charging systems, and energy storage systems. Photo of scientific equipment in a laboratory setting. Differential scanning calorimeter. Photo of a row of ten tall rectangular panels (battery cyclers). Battery cyclers. Photo of scientific equipment and computer monitors in a laboratory

  7. Decontamination and Decommisioning Equipment Tracking System

    Energy Science and Technology Software Center (OSTI)

    1994-08-26

    DDETS is Relational Data Base Management System (RDBMS) which incorporates 1-D (code 39) and 2-D (PDF417) bar codes into its equipment tracking capabilities. DDETS is compatible with the Reportable Excess Automated Property System (REAPS), and has add, edit, delete and query capabilities for tracking equipment being decontaminated and decommissioned. In addition, bar code technology is utilized in the inventory tracking and shipping of equipment.

  8. New recommended heat gains for commercial cooking equipment

    SciTech Connect (OSTI)

    Fisher, D.R.

    1998-12-31

    Radiant heat gain from cooking equipment can significantly impact the air-conditioning load and/or human comfort in a commercial kitchen. This paper presents and discusses updated heat gain data for several types of commercial cooking equipment based on recent testing by gas and electric utility research organizations. The cooking equipment was tested under exhaust-only, wall-canopy hoods. The fundamentals of appliance heat gain are reviewed and the new data are compared with data published in the 1993 ASHRAE Handbook--Fundamentals, chapter 26, nonresidential cooling and heating load calculations. These updated data are now incorporated in the 1997 ASHRAE Handbook--Fundamentals, chapter 28, nonresidential cooling and heating load calculations. The paper also discusses appliance heat gain with respect to sizing air-conditioning systems for commercial kitchens and presents representative radiant factors that may be used to estimate heat gain from other sizes or types of gas and electric cooking equipment when appliance specific heat gain data are not avoidable.

  9. INL Equipment to Aid Regional Response Team

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transferred are a Crossley Custom Bomb Trailer for transporting suspect devices to a safe location, and a 3500 GVWR trailer for transporting equipment. Editorial Date November 28...

  10. Laboratory Equipment Donation Program - Guidelines/FAQ

    Office of Scientific and Technical Information (OSTI)

    Frequently Asked Questions Who is eligible to apply for equipment? Due to budget constraints, the free shipping program for "high need schools" has been discontinued; and middle ...

  11. Heavy Mobile Equipment Mechanic (1 Mechanic Shop)

    Broader source: Energy.gov [DOE]

    A successful candidate will perform preventative, predictive, and corrective maintenance on Bonneville Power Administration (BPA's) light and heavy mobile equipment in maintenance and filed...

  12. CRAD, Equipment and Piping Labeling Assessment Plan

    Broader source: Energy.gov [DOE]

    This assessment provides a basis for evaluating the effectiveness of the contractor’s program for labeling equipment and piping and for establishing compliance with DOE requirements.

  13. China Power Equipment Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: China Power Equipment Inc Place: Xian, China Zip: 70075 Product: China-based manufacturer of energy saving transformers and transformer cores....

  14. Equips Nucleares SA | Open Energy Information

    Open Energy Info (EERE)

    SA Place: Madrid, Spain Zip: 28006 Sector: Services Product: ENSA is a Spanish nuclear components and nuclear services supply company. References: Equips Nucleares, SA1...

  15. Laboratory Equipment Donation Program - Contact Us

    Office of Scientific and Technical Information (OSTI)

    Contact Us If you have a question about the Laboratory Equipment Donation Program (LEDP), we recommend you check frequently asked questions. If your question still has not been ...

  16. CRAD, Nuclear Facility Construction - Mechanical Equipment -...

    Broader source: Energy.gov (indexed) [DOE]

    Nuclear Facility Construction - Mechanical Equipment Installation, (HSS CRAD 45-53, Rev. 0) This Criteria Review and Approach Document (HSS CRAD 45-53) establishes review criteria...

  17. Equipment Certification Requirements | Open Energy Information

    Open Energy Info (EERE)

    Fuel Cells Geothermal Electric Hydroelectric energy Hydroelectric (Small) Natural Gas Nuclear Solar Photovoltaics Tidal Energy Wave Energy Wind energy Yes Madison - Equipment...

  18. PPP Equipment Corporation | Open Energy Information

    Open Energy Info (EERE)

    PPP Equipment Corporation Sector: Solar Product: PPP-E designs, produces and markets Chemical Vapor Deposition (CVD) reactors and converter systems producing high-purity...

  19. Heavy Mobile Equipment Mechanic (One Mechanic Shop)

    Broader source: Energy.gov [DOE]

    Join the Bonneville Power Administration (BPA) for a challenging and rewarding career, while working, living, and playing in the Pacific Northwest. The Heavy Mobile Equipment Mechanic (One Mechanic...

  20. Appliance and Equipment Standards Program Logic Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Appliance & Equipment Standards Program Logic Model OBJECTIVE ACTIVITIES KEY OUTPUT ... Non-compliance warnings Standards* developed with stakeholder input Procedures available ...

  1. Agricultural Lighting and Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    In Vermont, agricultural operations are eligible for prescriptive and customized incentives for equipment proven to help make farms more efficient. Prescriptive rebates are available for lighting...

  2. Permit for Charging Equipment Installation: Electric Vehicle...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Where electric vehicle nonvented storage batteries are used or where the electric vehicle supply equipment is listed or labeled as suitable for charging electric vehicles indoors ...

  3. Semiconductor Equipment and Materials International SEMI | Open...

    Open Energy Info (EERE)

    search Name: Semiconductor Equipment and Materials International (SEMI) Place: San Jose, California Zip: 95134 2127 Product: Global trade association, publisher and conference...

  4. Stangl Semiconductor Equipment AG | Open Energy Information

    Open Energy Info (EERE)

    German manufacturer of wet chemistry systems for processing silicon and thin-film solar cells. References: Stangl Semiconductor Equipment AG1 This article is a stub. You...

  5. Partnering with Industry to Advance Biofuels and Bioproducts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-12-01

    Fact sheet describing NREL's Integrated Biorefinery Research Facility, a biochemical pilot plant and partnership facility containing equipment and lab space for pretreatement, enzymatic hydrolysis, fermentation, compositional analysis, and downstream processing. For more than 30 years, the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) has been at the leading edge of research and technology advancements to develop renewable fuels and bioproducts. NREL works to develop cost-competitive alternatives to conventional transportation fuels and value-added biobased chemicals that can be used to manufacture clothing, plastics, lubricants, and other products. NREL is developing technologies and processes to produce a range of sustainable, energy-dense advanced biofuels that are compatible with our existing transportation fuel infrastructure. As part of that effort, NREL's National Bioenergy Center has entered into more than 90 collaborations in the past five years with companies ranging in size from start-ups to those that appear on Fortune magazine's Fortune 100 list. The new Integrated Biorefinery Research Facility (IBRF) showcases NREL's commitment to collaboration and to meeting the nation's biofuels and bioproducts development and deployment goals. Designed to speed the growth of the biofuels and bioproducts industries, the IBRF is a unique $33.5 million pilot facility capable of supporting a variety of projects. The IBRF is available to industry partners who work with NREL through cooperative research and development, technical, and analytical service agreements. With 27,000 ft2 of high bay space, the IBRF provides industry partners with the opportunity to operate, test, and develop their own biorefining technology and equipment.

  6. ISSUANCE 2015-12-17: Energy Conservation Program for Certain Industrial

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces | Department of Energy 7: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces ISSUANCE 2015-12-17: Energy Conservation Program for Certain

  7. Characterization of industrial process waste heat and input heat streams

    SciTech Connect (OSTI)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  8. Handbook for face-to-face moves of longwall equipment

    SciTech Connect (OSTI)

    Adam, R.F.J.; Pimentel, R.A.; Shoff, W.E.

    1982-10-01

    The problem of moving the equipment of a longwall face from one (the finished) panel to the next has always been an issue critical to any longwall operation. In the United States, moving longwall equipment from panel to panel takes an average of 20 days, and moves as long as 30 days are no exception. With $8 million invested and a 20% return on investment, a longwall move of four weeks represents a $135,000 opportunity loss, in addition to the $200,000 labor required to perform the move and the interest and depreciation related to the equipment. A four to six week move each year will decrease the longwall yearly production by 10% to 15%. For the average US longwall, move time reduction is second only to increasing the system availability in its production improvement potential. The reduction of move time can only be achieved through careful planning, optimal method development, and effective and efficient operational procedures. This handbook has been developed to provide the US coal mining industry with a comprehensive background for and guidance in performing safe and efficient face-to-face moves.

  9. Appliance/Equipment Efficiency Standards | Open Energy Information

    Open Energy Info (EERE)

    ApplianceEquipment Efficiency Standards Massachusetts Boilers Furnaces No Appliance Energy Efficiency Standards (Maryland) ApplianceEquipment Efficiency Standards Maryland...

  10. Industrial Applications for Micropower: A Market Assessment, November 1999

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Industrial Applications for Micropower: A Market Assessment, November 1999 Industrial Applications for Micropower: A Market Assessment, November 1999 Micropower (defined here as electricity generation equipment less than 1 MW) such as microturbines, fuel cells, and reciprocating engines offers promise to renew growth in the U.S. industrial sector. Based on the analysis conducted for this 1999 study, these technologies can cost-effectively provide thermal and electric

  11. Waste Heat Management Options for Improving Industrial Process Heating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy Waste Heat Management Options for Improving Industrial Process Heating Systems Waste Heat Management Options for Improving Industrial Process Heating Systems This presentation covers typical sources of waste heat from process heating equipment, characteristics of waste heat streams, and options for recovery including Combined Heat and Power. PDF icon Waste Heat Management Options for Improving Industrial Process Heating Systems (August 20, 2009) More Documents

  12. Laboratory Equipment Donation Program - Home Page

    Office of Scientific and Technical Information (OSTI)

    Get the tools you need to inspire innovation and creativity The United States Department of Energy (DOE), in accordance with its responsibility to encourage research and development in the energy area, awards grants of used energy-related laboratory equipment. equipment

  13. General Restaurant Equipment: Order (2013-CE-5344)

    Broader source: Energy.gov [DOE]

    DOE ordered General Restaurant Equipment Co. to pay a $8,000 civil penalty after finding General Restaurant Equipment had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  14. Advanced, Energy-Efficient Hybrid Membrane System for Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... host industrial sites for field test Food & beverage Ethanol Pulp & ... GoNo---Go - Preliminary draft engineering design package for ...

  15. Universal null DTE (data terminal equipment)

    DOE Patents [OSTI]

    George, M.; Pierson, L.G.; Wilkins, M.E.

    1987-11-09

    A communication device in the form of data terminal equipment permits two data communication equipments, each having its own master clock and operating at substantially the same nominal clock rate, to communicate with each other in a multi-segment circuit configuration of a general communication network even when phase or frequency errors exist between the two clocks. Data transmitted between communication equipments of two segments of the communication network is buffered. A variable buffer fill circuit is provided to fill the buffer to a selectable extent prior to initiation of data output clocking. Selection switches are provided to select the degree of buffer preload. A dynamic buffer fill circuit may be incorporated for automatically selecting the buffer fill level as a function of the difference in clock frequencies of the two equipments. Controllable alarm circuitry is provided for selectively generating an underflow or an overflow alarm to one or both of the communicating equipments. 5 figs.

  16. Automatic monitoring of vibration welding equipment

    DOE Patents [OSTI]

    Spicer, John Patrick; Chakraborty, Debejyo; Wincek, Michael Anthony; Wang, Hui; Abell, Jeffrey A; Bracey, Jennifer; Cai, Wayne W

    2014-10-14

    A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host device, a check station, and a robot. The robot moves the horn and anvil via an arm to the check station. Sensors, e.g., temperature sensors, are positioned with respect to the welding equipment. Additional sensors are positioned with respect to the check station, including a pressure-sensitive array. The host device, which monitors a condition of the welding equipment, measures signals via the sensors positioned with respect to the welding equipment when the horn is actively forming a weld. The robot moves the horn and anvil to the check station, activates the check station sensors at the check station, and determines a condition of the welding equipment by processing the received signals. Acoustic, force, temperature, displacement, amplitude, and/or attitude/gyroscopic sensors may be used.

  17. Recovery Act: Training Program Development for Commercial Building Equipment Technicians

    SciTech Connect (OSTI)

    Leah Glameyer

    2012-07-12

    The overall goal of this project has been to develop curricula, certification requirements, and accreditation standards for training on energy efficient practices and technologies for commercial building technicians. These training products will advance industry expertise towards net-zero energy commercial building goals and will result in a substantial reduction in energy use. The ultimate objective is to develop a workforce that can bring existing commercial buildings up to their energy performance potential and ensure that new commercial buildings do not fall below their expected optimal level of performance. Commercial building equipment technicians participating in this training program will learn how to best operate commercial buildings to ensure they reach their expected energy performance level. The training is a combination of classroom, online and on-site lessons. The Texas Engineering Extension Service (TEEX) developed curricula using subject matter and adult learning experts to ensure the training meets certification requirements and accreditation standards for training these technicians. The training targets a specific climate zone to meets the needs, specialized expertise, and perspectives of the commercial building equipment technicians in that zone. The combination of efficient operations and advanced design will improve the internal built environment of a commercial building by increasing comfort and safety, while reducing energy use and environmental impact. Properly trained technicians will ensure equipment operates at design specifications. A second impact is a more highly trained workforce that is better equipped to obtain employment. Organizations that contributed to the development of the training program include TEEX and the Texas Engineering Experiment Station (TEES) (both members of The Texas A&M University System). TEES is also a member of the Building Commissioning Association. This report includes a description of the project accomplishments, including the course development phases, tasks associated with each phase, and detailed list of the course materials developed. A summary of each year's activities is also included.

  18. SSPA Equipment Engineering Feasibility Report

    SciTech Connect (OSTI)

    N.E. Woolstenhulme; C.R. Clark

    2011-09-01

    In response to a demanding reactor conversion schedule, construction of the Shielded Sample Preparation Area (SSPA) was initiated in 2010 to augment the existing capabilities of the Hot Fuel Examination Facility (HFEF). While HFEF is and will remain the workhorse for post irradiation sample preparation, there is currently a large backlog of Post-Irradiation Examination (PIE) experiments caused by numerous competing projects (this backlog is expected to continue for the foreseeable future). HFEF, in its present configuration also lacks the ability to prepare samples suitable for several of the tests that have been identified for the successful conclusion of the RERTR program; these samples require fine detail machining of irradiated fuel plates.

  19. Partnerships For Industry - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    115.jpg Partnerships For Industry Connect With JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP Connect with JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP partnerships for industry JCAP has established an Industrial Partnership Program. For more information on Industrial Partnership Program or to learn more about other modes of industrial interactions with JCAP, please contact: California Institute of Technology Office of

  20. Process Heating Roadmap to Help U.S. Industries Be Competitive | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Roadmap to Help U.S. Industries Be Competitive Process Heating Roadmap to Help U.S. Industries Be Competitive This brief summarizes the development of a comprehensive plan for meeting industrial process heating needs started by the Industrial Heating Equipment Association (IHEA) and DOE in 1999. PDF icon Process Heating Roadmap to Help U.S. Industries Be Competitive (January 2001) More Documents & Publications Roadmap for Process Heating Technology The Big Picture on Process

  1. Subsea equipment marriage is top ROV priority

    SciTech Connect (OSTI)

    Redden, J.

    1985-04-01

    Interfacing subsea equipment with remotely operated vehicles (ROV's) and the further development of arctic-class units are the primary challenges facing manufacturers. Worldwide use of the ROV for drilling support has exploded during this decade as oil companies continue their search in deeper waters. If the unmanned vehicles are to become an even more integral tool of the oilman, experts say they must be able to perform more complex tasks. The evolution of more multi-purpose ROVs, however, hinges on the redesigning of subsea equipment. The severe limitations on subsea support (by ROVs) is the obsolete design associated with the subsea equipment itself. These limitations are discussed.

  2. Incidents of chemical reactions in cell equipment

    SciTech Connect (OSTI)

    Baldwin, N.M.; Barlow, C.R.

    1991-12-31

    Strongly exothermic reactions can occur between equipment structural components and process gases under certain accident conditions in the diffusion enrichment cascades. This paper describes the conditions required for initiation of these reactions, and describes the range of such reactions experienced over nearly 50 years of equipment operation in the US uranium enrichment program. Factors are cited which can promote or limit the destructive extent of these reactions, and process operations are described which are designed to control the reactions to minimize equipment damage, downtime, and the possibility of material releases.

  3. BCM 2 Equipment Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Equipment Inventory « Biology Chemistry & Material Science Laboratory 2 Title Equipment Type Description Accumet Basic AB15 pH meter pH Meter pH meters with combination Ag/AgCl electrode and ATC probe. Corning 430 pH Meter pH Meter (Cold Room) Corning 430 pH meter. Corning 6795-420D Digital Stirrer/Hot Plate w/ temp probe Temperature Control Digital Hot Plate/Stirrer, 5 inch x 7 inch ceramic top, temperature range: 5° to 550°C; stir range: 60 to 1100rpm. The hot plate is equipment with

  4. Fideris Inc formerly Lynntech Industries | Open Energy Information

    Open Energy Info (EERE)

    Massachusetts Zip: 1852 Sector: Services Product: Fideris offers a range of fuel cell test stations and testing equipment from under 1W to over 100KW, as well as supplies...

  5. Metrology for Industry for use in the Manufacture of Grazing...

    Office of Scientific and Technical Information (OSTI)

    Deflectometry (SRD) and whether shearing methods had the sensitivity to be able to separate errors in the test equipment from slope error in the unit under test (UUT), or mirror. ...

  6. Exparte Memo: 4-26-16 Meeting on Test Procedures for Water Heaters,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE-2015-BT-TP-0007-0002 | Department of Energy Exparte Memo: 4-26-16 Meeting on Test Procedures for Water Heaters, EERE-2015-BT-TP-0007-0002 Exparte Memo: 4-26-16 Meeting on Test Procedures for Water Heaters, EERE-2015-BT-TP-0007-0002 Energy Conservation Program for Consumer Products and Certain Industrial Equipment: Test Procedures for Water Heaters, EERE-2015-BT-TP-0007-0002, specifically issues surrounding the Conversion Factor status. PDF icon EXPARTE MEMO 4 26-rbc More Documents &

  7. Testing of optical components to assure performance in a high acerage power environment

    SciTech Connect (OSTI)

    Chow, R.; Taylor, J.R.; Eickelberg, W.K.; Primdahl, K.A.

    1997-06-24

    Evaluation and testing of the optical components used in the Atomic Vapor Laser Isotope Separation (AVLIS) plant is critical for qualification of suppliers, development of new optical multilayer designs and monufacturing processes, and assurance of performance in the production cycle. The range of specifications requires development of specialized test equipment and methods which are not routine or readily available in industry. Specifications are given on material characteristics such as index homogeneity, subsurface damage left after polishing, microscopic surface defects and contamination, coating absorption, and high average power laser damage. The approach to testing these performance characteristics and assuring the quality throughout the production cycle is described.

  8. Comparison of Real World Energy Consumption to Models and Department of Energy Test Procedures

    SciTech Connect (OSTI)

    Goetzler, William; Sutherland, Timothy; Kar, Rahul; Foley, Kevin

    2011-09-01

    This study investigated the real-world energy performance of appliances and equipment as it compared with models and test procedures. The study looked to determine whether the U.S. Department of Energy and industry test procedures actually replicate real world conditions, whether performance degrades over time, and whether installation patterns and procedures differ from the ideal procedures. The study first identified and prioritized appliances to be evaluated. Then, the study determined whether real world energy consumption differed substantially from predictions and also assessed whether performance degrades over time. Finally, the study recommended test procedure modifications and areas for future research.

  9. 1000–ton testing machine for cyclic fatigue tests of materials at liquid nitrogen temperatures

    SciTech Connect (OSTI)

    Khitruk, A. A.; Klimchenko, Yu. A.; Kovalchuk, O. A.; Marushin, E. L.; Mednikov, A. A.; Nasluzov, S. N.; Privalova, E. K.; Rodin, I. Yu.; Stepanov, D. B.; Sukhanova, M. V.

    2014-01-29

    One of the main tasks of superconductive magnets R and D is to determine the mechanical and fatigue properties of structural materials and the critical design elements in the cryogenic temperature range. This paper describes a new facility built based on the industrial 1000-ton (10 MN) testing machine Schenk PC10.0S. Special equipment was developed to provide the mechanical and cyclic tensile fatigue tests of large-scale samples at the liquid nitrogen temperature and in a given load range. The main feature of the developed testing machine is the cryostat, in which the device converting a standard compression force of the testing machine to the tensile force affected at the test object is placed. The control system provides the remote control of the test and obtaining, processing and presentation of test data. As an example of the testing machine operation the test program and test results of the cyclic tensile fatigue tests of fullscale helium inlet sample of the PF1 coil ITER are presented.

  10. Performance evaluation of the quarter-scale Russian retrieval equipment for the removal of hazardous waste

    SciTech Connect (OSTI)

    Enderlin, C.W.; Mullen, O.D.; Terrones, G.

    1997-09-01

    This report describes the test program for evaluating the Russian Retrieval Equipment fabricated by the Integrated Mining Chemical Company (IMCC) and delivered to the US by Radiochem Services Company (RCSC), both of Russia. The testing and fabrication of this equipment were sponsored by the US Department of Energy (DOE). The tests described in this report were conducted at the Pacific Northwest National Laboratory (PNNL) at the DOE Hanford Site by the Retrieval Process Development and Enhancement (RPD and E) team of the Tank Focus Area program (TFA). Tests were carried out jointly by Russian and US personnel for the purpose of evaluating the Russian Retrieval Equipment for potential deployment within the DOE complex. Section 1.0 of this report presents the objectives and a brief background for the test program. The Russian Equipment is described in Section 2.0. Section 3.0 describes the approach taken for testing the equipment. The results of the tests and an analysis of the data are described in Section 4.0. The results and observations obtained from the tests are discussed in Section 5.0. Recommendations and conclusions are presented in Section 6.0.

  11. Liberty Utilities Iowa High Efficiency Equipment Rebate

    Broader source: Energy.gov [DOE]

    Liberty Utilities offers a rebate to its Iowa residential and small business customers for the purchase of high efficiency ENERGY STAR natural gas home heating and water heating equipment....

  12. Consider Steam Turbine Drives for Rotating Equipment

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

  13. Renewable Energy Equipment Exemption | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    100% of sales tax Summary Iowa allow a sales tax exemption for solar, wind, and hydroelectricity equipment. As of August 2014, the Iowa sales tax rate is 6%. Wind For wind energy...

  14. Hot conditioning equipment conceptual design report

    SciTech Connect (OSTI)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  15. Biomass Equipment & Materials Compensating Tax Deduction

    Broader source: Energy.gov [DOE]

    In 2005, New Mexico adopted a policy to allow businesses to deduct the value of biomass equipment and biomass materials used for the processing of biopower, biofuels, or biobased products in...

  16. Capital Equipment Validation Form | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capital Equipment Validation Form Version Number: 2.0 Document Number: Form 48100.001 Effective Date: 02/2015 File (public): Office spreadsheet icon form_48100.001_rev2.xls

  17. Field surveys of office equipment operating patterns

    SciTech Connect (OSTI)

    Webber, Carrie A.; Roberson, Judy A.; Brown, Richard E.; Payne, Christopher T.; Nordman, Bruce; Koomey, Jonathan G.

    2001-09-05

    This paper presents the results of 11 after-hours walk-throughs of offices in the San Francisco CA and Washington D.C. areas. The primary purpose of these walk-throughs was to collect data on turn-off rates for various types of office equipment (computers, monitors, printers, fax machines, copiers, and multifunction products). Each piece of equipment observed was recorded and its power status noted (e.g. on, off, low power). Whenever possible, we also recorded whether power management was enabled on the equipment. The floor area audited was recorded as well, which allowed us to calculate equipment densities. We found that only 44 percent of computers, 32 percent of monitors, and 25 percent of printers were turned off at night. Based on our observations we estimate success rates of 56 percent for monitor power management and 96 percent for enabling of power management on printers.

  18. Property Tax Assessment for Renewable Energy Equipment

    Broader source: Energy.gov [DOE]

    H.B. 2403 of 2014 clarified that depreciation should be determined using straight-line depreciation over the useful life of the equipment. The taxable original cost equals the original cost of th...

  19. Advanced Battery Manufacturing Facilities and Equipment Program |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt002_es_flicker_2011_p.pdf More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (August 2013)

  20. Geoscience Equipment Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geoscience Equipment Inventory « Geoscience Laboratory Title Equipment Type Description Coy Anaerobic Chamber Inert Atmosphere Chamber Coy anaerobic chamber (Type C, model 7100-000) with auto airlock for wet and dry sample preparations, 5% H2/95% N2 mix atmosphere, and auto injection system. Fisher Scientific General Purpose Refrigerator Temperature Control Fisher Scientific General Purpose refrigerator. Fisher Scientific Isotemp Freezer Temperature Control Fisher Scientific Isotemp Freezer.

  1. Available for Checkout Equipment Inventory | Sample Preparation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories Available for Checkout Equipment Inventory « Equipment Resources Title Description Agate Mortar & Pestle Sets Agate mortar & pestle sets (100mm, 65 mm, & 50mm sizes). Buchi V-700 Vacuum Pump & condenser Chemically resistant vacuum pump, flow rate 1.8m^3/h, ultimate vacuum less than 10mbar. The secondary condenser (Buchi 047180) is a complete module with insulation and 500mL receiving flask. Campden Instruments Vibrating Manual Tissue Cutter HA 752 Campden

  2. Carbon Emissions: Food Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct....

  3. Chemicals Industry Vision

    SciTech Connect (OSTI)

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  4. Chemical Industry Corrosion Management

    SciTech Connect (OSTI)

    2003-02-01

    Improved Corrosion Management Could Provide Significant Cost and Energy Savings for the Chemical Industry. In the chemical industry, corrosion is often responsible for significant shutdown and maintenance costs.

  5. Industrial | Open Energy Information

    Open Energy Info (EERE)

    Trends Despite a 54-percent increase in industrial shipments, industrial energy consumption increases by only 19 percent from 2009 to 2035 in the AEO2011 Reference case....

  6. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  7. DOE Field Operations Program EV and HEV Testing

    SciTech Connect (OSTI)

    Francfort, James Edward; Slezak, L. A.

    2001-10-01

    The United States Department of Energy’s (DOE) Field Operations Program tests advanced technology vehicles (ATVs) and disseminates the testing results to provide fleet managers and other potential ATV users with accurate and unbiased information on vehicle performance. The ATVs (including electric, hybrid, and other alternative fuel vehicles) are tested using one or more methods - Baseline Performance Testing (EVAmerica and Pomona Loop), Accelerated Reliability Testing, and Fleet Testing. The Program (http://ev.inel.gov/sop) and its nine industry testing partners have tested over 30 full-size electric vehicle (EV) models and they have accumulated over 4 million miles of EV testing experience since 1994. In conjunction with several original equipment manufacturers, the Program has developed testing procedures for the new classes of hybrid, urban, and neighborhood EVs. The testing of these vehicles started during 2001. The EVS 18 presentation will include (1) EV and hybrid electric vehicle (HEV) test results, (2) operating experience with and performance trends of various EV and HEV models, and (3) experience with operating hydrogen-fueled vehicles. Data presented for EVs will include vehicle efficiency (km/kWh), average distance driven per charge, and range testing results. The HEV data will include operating considerations, fuel use rates, and range testing results.

  8. LS Industrial Systems Co Ltd formerly LG Industrial Systems ...

    Open Energy Info (EERE)

    LS Industrial Systems Co Ltd formerly LG Industrial Systems Jump to: navigation, search Name: LS Industrial Systems Co Ltd (formerly LG Industrial Systems) Place: Anyang,...

  9. How reclamation tests mechanical governors

    SciTech Connect (OSTI)

    Agee, J.C.; Girgis, G.K.; Cline, R.

    1996-08-01

    The Bureau of Reclamation has developed its own equipment for testing mechanical-hydraulic governors for hydroelectric generators. The device, called a Permanent Magnet Generator (PMG) Simulator, generates a three-phase voltage that will drive the governor ballhead motor at variable speed. Utilizing this equipment, most traditional governor tests can be completed with the generating unit dewatered. In addition, frequency response testing and other detailed analytical tests can be performed to validate governor models. This article describes the development and design of the equipment, and it also discusses its usage in a case study of events at Glen Canyon Dam.

  10. NREL: Wind Research - Dynamometer Test Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamometer Test Facilities Dynamometer test configuration for a wind turbine drivetrain. Enlarge image Dynamometers enable industry and testing agencies to verify the performance...

  11. List of Commercial Refrigeration Equipment Incentives | Open...

    Open Energy Info (EERE)

    Active AEP Ohio - Commercial New Construction Energy Efficiency Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Industrial Local Government Municipal Utility...

  12. Neural network based system for equipment surveillance

    DOE Patents [OSTI]

    Vilim, R.B.; Gross, K.C.; Wegerich, S.W.

    1998-04-28

    A method and system are disclosed for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process. 33 figs.

  13. Neural network based system for equipment surveillance

    DOE Patents [OSTI]

    Vilim, Richard B.; Gross, Kenneth C.; Wegerich, Stephan W.

    1998-01-01

    A method and system for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process.

  14. Electric Ground Support Equipment Advanced Battery Technology Demonstration Project at the Ontario Airport

    SciTech Connect (OSTI)

    Tyler Gray; Jeremy Diez; Jeffrey Wishart; James Francfort

    2013-07-01

    The intent of the electric Ground Support Equipment (eGSE) demonstration is to evaluate the day-to-day vehicle performance of electric baggage tractors using two advanced battery technologies to demonstrate possible replacements for the flooded lead-acid (FLA) batteries utilized throughout the industry. These advanced battery technologies have the potential to resolve barriers to the widespread adoption of eGSE deployment. Validation testing had not previously been performed within fleet operations to determine if the performance of current advanced batteries is sufficient to withstand the duty cycle of electric baggage tractors. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. The demonstration project also grew the relationship with Southwest Airlines (SWA), our demonstration partner at Ontario International Airport (ONT), located in Ontario, California. The results of this study have encouraged a proposal for a future demonstration project with SWA.

  15. Career Map: Industrial Engineer

    Broader source: Energy.gov [DOE]

    The Wind Program's Career Map provides job description information for Industrial Engineer positions.

  16. Nitrate Salt Surrogate Blending Scoping Test Plan

    SciTech Connect (OSTI)

    Anast, Kurt Roy

    2015-11-13

    Test blending equipment identified in the “Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing”. Determine if the equipment will provide adequate mixing of zeolite and surrogate salt/Swheat stream; optimize equipment type and operational sequencing; impact of baffles and inserts on mixing performance; and means of validating mixing performance

  17. Ex Parte Memorandum on Set Top Boxes and Network Equipment | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy on Set Top Boxes and Network Equipment Ex Parte Memorandum on Set Top Boxes and Network Equipment This Memorandum for the Record provides a summary of a May 1, 2012, meeting with DOE officials concerning potential test procedures and energy conservation standards for set-top boxes and network equipment. PDF icon Meeting_of_05_01_2012.pdf More Documents & Publications Docket No. EERE-2012-BT-TP-0046 Ex Parte Communication DOE's Proposed Coverage Determination for Set-Top Boxes

  18. Alternative Fuels Data Center: Installing New E85 Equipment

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Installing New E85 Equipment to someone by E-mail Share Alternative Fuels Data Center: Installing New E85 Equipment on Facebook Tweet about Alternative Fuels Data Center: Installing New E85 Equipment on Twitter Bookmark Alternative Fuels Data Center: Installing New E85 Equipment on Google Bookmark Alternative Fuels Data Center: Installing New E85 Equipment on Delicious Rank Alternative Fuels Data Center: Installing New E85 Equipment on Digg Find More places to share Alternative Fuels Data

  19. Process and equipment development for hot isostatic pressing treatability study

    SciTech Connect (OSTI)

    Bateman, Ken; Wahlquist, Dennis; Malewitz, Tim

    2015-03-01

    Battelle Energy Alliance (BEA), LLC, has developed processes and equipment for a pilot-scale hot isostatic pressing (HIP) treatability study to stabilize and volume reduce radioactive calcine stored at Idaho National Laboratory (INL). In 2009, the U. S. Department of Energy signed a Record of Decision with the state of Idaho selecting HIP technology as the method to treat 5,800 yd^3 (4,400 m^3) of granular zirconia and alumina calcine produced between 1953 and 1992 as a waste byproduct of spent nuclear fuel reprocessing. Since the 1990s, a variety of radioactive and hazardous waste forms have been remotely treated using HIP within INL hot cells. To execute the remote process at INL, waste is loaded into a stainless-steel or aluminum can, which is evacuated, sealed, and placed into a HIP furnace. The HIP simultaneously heats and pressurizes the waste, reducing its volume and increasing its durability. Two 1 gal cans of calcine waste currently stored in a shielded cask were identified as candidate materials for a treatability study involving the HIP process. Equipment and materials for cask-handling and calcine transfer into INL hot cells, as well as remotely operated equipment for waste can opening, particle sizing, material blending, and HIP can loading have been designed and successfully tested. These results demonstrate BEAs readiness for treatment of INL calcine.

  20. Users from Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users from Industry Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, and/or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial

  1. Zhejiang DunAn Artificial Environmental Equipment Co Ltd | Open...

    Open Energy Info (EERE)

    DunAn Artificial Environmental Equipment Co Ltd Jump to: navigation, search Name: Zhejiang DunAn Artificial Environmental Equipment Co Ltd Place: Zhuji, Zhejiang Province, China...

  2. Product Standards for Vending Equipment (Japan) | Open Energy...

    Open Energy Info (EERE)

    Vending Equipment (Japan) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Product Standards for Vending Equipment (Japan) Focus Area: Energy Efficiency Topics: Policy...

  3. Zhangjiakou Kunyuan Wind Power Equipment Co | Open Energy Information

    Open Energy Info (EERE)

    Kunyuan Wind Power Equipment Co Jump to: navigation, search Name: Zhangjiakou Kunyuan Wind Power Equipment Co Place: Zhangjiakou, Hebei Province, China Sector: Wind energy Product:...

  4. Harbin Hafei Winwind Wind Power Equipment Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Hafei Winwind Wind Power Equipment Co Ltd Jump to: navigation, search Name: Harbin Hafei-Winwind Wind Power Equipment Co Ltd Place: Harbin, Heilongjiang Province, China Zip: 150060...

  5. Jilin Tianhe Wind Power Equipment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Equipment Co Ltd Jump to: navigation, search Name: Jilin Tianhe Wind Power Equipment Co Ltd Place: Baicheng, Jilin Province, China Sector: Wind energy Product:...

  6. Foshan Dongxing Fengying Wind Power Equipment Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Dongxing Fengying Wind Power Equipment Co Ltd Jump to: navigation, search Name: Foshan Dongxing Fengying Wind Power Equipment Co Ltd Place: Foshan, China Zip: 528000 Sector: Wind...

  7. Baoding Hengyi Wind Power Equipment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Baoding Hengyi Wind Power Equipment Co Ltd Jump to: navigation, search Name: Baoding Hengyi Wind Power Equipment Co Ltd Place: Baoding, Hebei Province, China Product: Baoding-based...

  8. Harbin Wind Power Equipment Company | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Equipment Company Jump to: navigation, search Name: Harbin Wind Power Equipment Company Place: Harbin, Heilongjiang Province, China Sector: Wind energy Product: A wind...

  9. Jiangsu Guoshen Wind Power Equipment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Guoshen Wind Power Equipment Co Ltd Jump to: navigation, search Name: Jiangsu Guoshen Wind Power Equipment Co Ltd Place: Yancheng, Jiangsu Province, China Sector: Wind energy...

  10. Nantong Hongbo Windpower Equipment Co Ltd HWE | Open Energy Informatio...

    Open Energy Info (EERE)

    Nantong Hongbo Windpower Equipment Co Ltd HWE Jump to: navigation, search Name: Nantong Hongbo Windpower Equipment Co Ltd (HWE) Place: Nantong, Jiangsu Province, China Zip: 226371...

  11. PNC Bank Equipment Finance and Energy Group | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: PNC Bank - Equipment Finance and Energy Group Place: Valencia, California Zip: 91355 Product: Energy and Equipment Finance arm of PNC Bank...

  12. Beijing Jingyi Century Automatic Equipment Co Ltd | Open Energy...

    Open Energy Info (EERE)

    beijing Jingyi Century Automatic Equipment Co Ltd Place: Beijing Municipality, China Zip: 100079 Product: A Chinese equipment manufacturer provides monosilicon ingot puller and...

  13. CXD 4605, Disposition Excess Equipment from Alpha 1 (4605)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disposition Excess Equipment from Alpha 1 (4605) Y-12 Site Office Oak Ridge, Anderson County, Tennessee The proposed action is to characterize and disposition equipment that was...

  14. GT Solar Technologies formerly GT Equipment Technologies | Open...

    Open Energy Info (EERE)

    Technologies formerly GT Equipment Technologies Jump to: navigation, search Name: GT Solar Technologies (formerly GT Equipment Technologies) Place: Merrimack, New Hampshire...

  15. NREL: Energy Systems Integration Facility - Fixed Equipment and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fixed Equipment and Experimental Resources The Energy Systems Integration Facility hosts an array of fixed equipment and experimental resources to support component and system...

  16. Tuori Solar Energy Equipment Mfg Company | Open Energy Information

    Open Energy Info (EERE)

    Tuori Solar Energy Equipment Mfg Company Jump to: navigation, search Name: Tuori Solar Energy Equipment Mfg Company Place: Baoding, Hebei Province, China Zip: 71000 Sector: Solar...

  17. How Do I Determine what Personal Protective Equipment (PPE) to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determine what Personal Protective Equipment (PPE) to Wear? Print General The ALS has a standard Personal Protective Equipment (PPE) policy that covers all activities on the...

  18. China SC Exact Equipment Co LTD | Open Energy Information

    Open Energy Info (EERE)

    SC Exact Equipment Co LTD Jump to: navigation, search Name: China SC Exact Equipment Co., LTD Place: Shenzhen, Guangdong Province, China Zip: 518125 Sector: Solar Product:...

  19. China Ordnance Equipment Group Corporation COEGC | Open Energy...

    Open Energy Info (EERE)

    China Ordnance Equipment Group Corporation COEGC Jump to: navigation, search Name: China Ordnance Equipment Group Corporation (COEGC) Place: Beijing Municipality, China Sector:...

  20. Data Center Efficiency and IT Equipment Reliability at Wider...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center Efficiency and IT Equipment Reliability at Wider Operating Temperature and Humidity Ranges Data Center Efficiency and IT Equipment Reliability at Wider Operating Temperature ...

  1. Novel Energy Conversion Equipment for Low Temperature Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Project objective: Develop ...

  2. Varian Semiconductor Equipment Associates Inc VSEA | Open Energy...

    Open Energy Info (EERE)

    Varian Semiconductor Equipment Associates Inc VSEA Jump to: navigation, search Name: Varian Semiconductor Equipment Associates Inc (VSEA) Place: Gloucester, Massachusetts Zip: 1930...

  3. Community Wind Handbook/Purchase Equipment | Open Energy Information

    Open Energy Info (EERE)

    * Submit Permit Applications * Find an Installer * Purchase Equipment * Plan for Maintenance Purchase Equipment The purchase of a turbine for a small community wind project is...

  4. Beijing Zhongkexin Electronics Equipment Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Zhongkexin Electronics Equipment Co Ltd Jump to: navigation, search Name: Beijing Zhongkexin Electronics Equipment Co Ltd Place: Beijing Municipality, China Zip: 101111 Product: A...

  5. MSA Apparatus Construction for Chemical Equipment Ltd | Open...

    Open Energy Info (EERE)

    MSA Apparatus Construction for Chemical Equipment Ltd Jump to: navigation, search Name: MSA Apparatus Construction for Chemical Equipment Ltd Place: United Kingdom Sector: Hydro,...

  6. Modular Process Equipment for Low Cost Manufacturing of High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-...

  7. Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd | Open...

    Open Energy Info (EERE)

    Yeelong Wind Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd Place: Hebei Province, China Sector:...

  8. Shenyang Tianxiang Wind Equipments Manufacturing Co Ltd | Open...

    Open Energy Info (EERE)

    Tianxiang Wind Equipments Manufacturing Co Ltd Jump to: navigation, search Name: Shenyang Tianxiang Wind Equipments Manufacturing Co., Ltd Place: Shenyang, Liaoning Province, China...

  9. Ningxia Yinxing Energy PV Power Equipment Manufacturing Co Ltd...

    Open Energy Info (EERE)

    Yinxing Energy PV Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Ningxia Yinxing Energy PV Power Equipment Manufacturing Co Ltd Place: Yinchuan, Ningxia...

  10. Nordex Yinchuan Wind Power Equipment Manufacturing Co Ltd | Open...

    Open Energy Info (EERE)

    Yinchuan Wind Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Nordex (Yinchuan) Wind Power Equipment Manufacturing Co. Ltd Place: Yinchuan, Ningxia...

  11. Yatu Yangjiang Fengdian Equipment Manufacturing Co Ltd | Open...

    Open Energy Info (EERE)

    Yatu Yangjiang Fengdian Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Yatu (Yangjiang) Fengdian Equipment Manufacturing Co Ltd Place: Yangjiang, Guangdong...

  12. Nordex Dongying Wind Power Equipment Manufacturing Co Ltd | Open...

    Open Energy Info (EERE)

    Dongying Wind Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Nordex (Dongying) Wind Power Equipment Manufacturing Co. Ltd. Place: Dongying, Shandong...

  13. Best Management Practice #9: Single-Pass Cooling Equipment |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cooling include CAT scanners, degreasers, hydraulic equipment, condensers, air compressors, welding machines, vacuum pumps, ice machines, x-ray equipment, and air conditioners. ...

  14. Changzhou Jiangnan Electrical Power Equipment Group Co Ltd |...

    Open Energy Info (EERE)

    Jiangnan Electrical Power Equipment Group Co Ltd Jump to: navigation, search Name: Changzhou Jiangnan Electrical Power Equipment Group Co., Ltd Place: Changzhou, Jiangsu Province,...

  15. Focus Series: The Greater Cincinnati Energy Alliance (GCEA) Equipment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Focus Series CINCINNATI-EQUIPMENT LEASE PROGRAM Equipment Lease Program Breaks Down Barriers for Cincinnati Contractors The Greater Cincinnati Energy Alliance (GCEA), a Better ...

  16. Chinese Wind Energy Equipment Association CWEEA | Open Energy...

    Open Energy Info (EERE)

    Wind Energy Equipment Association CWEEA Jump to: navigation, search Name: Chinese Wind Energy Equipment Association (CWEEA) Place: Beijing, Beijing Municipality, China Zip: 100825...

  17. List of Food Service Equipment Incentives | Open Energy Information

    Open Energy Info (EERE)

    Refrigeration Equipment Food Service Equipment Yes Alabama Gas Corporation - Residential Natural Gas Rebate Program (Alabama) Utility Rebate Program Alabama Residential Furnaces...

  18. Updated Buildings Sector Appliance and Equipment Costs and Efficiency

    Gasoline and Diesel Fuel Update (EIA)

    characterizes most major residential equipment and commercial heating, cooling, and water heating equipment. Appendix A was used in developing Reference case projections, while...

  19. Heating and Cooling System Support Equipment Basics | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Cooling System Support Equipment Basics Heating and Cooling System Support Equipment ... Thermostats and ducts provide opportunities for saving energy. Dehumidifying heat pipes ...

  20. Recovery Act Incentives for Wind Energy Equipment Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Incentives for Wind Energy Equipment Manufacturing Recovery Act Incentives for Wind Energy Equipment Manufacturing Document that lists some of the major federal ...

  1. Conceptual design report, CEBAF basic experimental equipment

    SciTech Connect (OSTI)

    1990-04-13

    The Continuous Electron Beam Accelerator Facility (CEBAF) will be dedicated to basic research in Nuclear Physics using electrons and photons as projectiles. The accelerator configuration allows three nearly continuous beams to be delivered simultaneously in three experimental halls, which will be equipped with complementary sets of instruments: Hall A--two high resolution magnetic spectrometers; Hall B--a large acceptance magnetic spectrometer; Hall C--a high-momentum, moderate resolution, magnetic spectrometer and a variety of more dedicated instruments. This report contains a short description of the initial complement of experimental equipment to be installed in each of the three halls.

  2. Clean Cities Guide to Alternative Fuel Commercial Lawn Equipment (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Guide explains the different types of alternative fuel commercial mowers and lists the makes and models of the ones available on the market. Turf grass is a fixture of the American landscape and the American economy. It is the nation's largest irrigated crop, covering more than 40 million acres. Legions of lawnmowers care for this expanse during the growing season-up to year-round in the warmest climates. The annual economic impact of the U.S. turf grass industry has been estimated at more than $62 billion. Lawn mowing also contributes to the nation's petroleum consumption and pollutant emissions. Mowers consume 1.2 billion gallons of gasoline annually, about 1% of U.S. motor gasoline consumption. Commercial mowing accounts for about 35% of this total and is the highest-intensity use. Large property owners and mowing companies cut lawns, sports fields, golf courses, parks, roadsides, and other grassy areas for 7 hours per day and consume 900 to 2,000 gallons of fuel annually depending on climate and length of the growing season. In addition to gasoline, commercial mowing consumes more than 100 million gallons of diesel annually. Alternative fuel mowers are one way to reduce the energy and environmental impacts of commercial lawn mowing. They can reduce petroleum use and emissions compared with gasoline- and diesel-fueled mowers. They may also save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and promote a 'green' image. And on ozone alert days, alternative fuel mowers may not be subject to the operational restrictions that gasoline mowers must abide by. To help inform the commercial mowing industry about product options and potential benefits, Clean Cities produced this guide to alternative fuel commercial lawn equipment. Although the guide's focus is on original equipment manufacturer (OEM) mowers, some mowers can be converted to run on alternative fuels. For more information about propane conversions. This guide may be particularly helpful for organizations that are already using alternative fuels in their vehicles and have an alternative fuel supply or electric charging in place (e.g., golf cart charging stations at most golf courses). On the flip side, experiencing the benefits of using alternative fuels in mowing equipment may encourage organizations to try them in on-road vehicles as well. Whatever the case, alternative fuel commercial lawnmowers are a powerful and cost-effective way to reduce U.S. petroleum dependence and help protect the environment.

  3. Cheyenne Light, Fuel and Power (Gas)- Commercial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cheyenne Light, Fuel and Power (CLFP) offers incentives to commercial and industrial gas customers who install energy efficient equipment in existing buildings. Incentives are available for boilers...

  4. Cheyenne Light, Fuel and Power (Electric)- Commercial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cheyenne Light, Fuel and Power offers incentives to commercial and industrial electric customers who wish to install energy efficient equipment and measures in eligible facilities. Incentives are...

  5. 2014-04-10 Issuance: Test Procedures for Commercial Refrigeration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment; Final Rule | Department of Energy 0 Issuance: Test Procedures for Commercial Refrigeration Equipment; Final Rule 2014-04-10 Issuance: Test Procedures for Commercial Refrigeration Equipment; Final Rule This document is a pre-publication Federal Register final rule regarding test procedures for commercial refrigeration equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on April 10, 2014. Though it is not intended or expected, should any discrepancy occur

  6. Test report for core drilling ignitability testing

    SciTech Connect (OSTI)

    Witwer, K.S.

    1996-08-08

    Testing was carried out with the cooperation of Westinghouse Hanford Company and the United States Bureau of Mines at the Pittsburgh Research Center in Pennsylvania under the Memorandum of Agreement 14- 09-0050-3666. Several core drilling equipment items, specifically those which can come in contact with flammable gasses while drilling into some waste tanks, were tested under conditions similar to actual field sampling conditions. Rotary drilling against steel and rock as well as drop testing of several different pieces of equipment in a flammable gas environment were the specific items addressed. The test items completed either caused no ignition of the gas mixture, or, after having hardware changes or drilling parameters modified, produced no ignition in repeat testing.

  7. ENERGY STAR Test Procedures and Verification | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appliance & Equipment Standards ENERGY STAR ENERGY STAR Test Procedures and Verification ENERGY STAR Test Procedures and Verification The Department of Energy (DOE) is the ...

  8. Meeting Concerning Potential Test Procedures and Energy Conservation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concerning Potential Test Procedures and Energy Conservation Standards for Set-Top Boxes and Network Equipment Meeting Concerning Potential Test Procedures and Energy Conservation ...

  9. Developing an Instrumentation Package for in-Water Testing of Marine Hydrokinetic Energy Devices: Preprint

    SciTech Connect (OSTI)

    Nelson, E.

    2010-08-01

    The ocean-energy industry is still in its infancy and device developers have provided their own equipment and procedures for testing. Currently, no testing standards exist for ocean energy devices in the United States. Furthermore, as prototype devices move from the test tank to in-water testing, the logistical challenges and costs grow exponentially. Development of a common instrumentation package that can be moved from device to device is one means of reducing testing costs and providing normalized data to the industry as a whole. As a first step, the U.S. National Renewable Energy Laboratory (NREL) has initiated an effort to develop an instrumentation package to provide a tool to allow common measurements across various ocean energy devices. The effort is summarized in this paper. First, we present the current status of ocean energy devices. We then review the experiences of the wind industry in its development of the instrumentation package and discuss how they can be applied in the ocean environment. Next, the challenges that will be addressed in the development of the ocean instrumentation package are discussed. For example, the instrument package must be highly adaptable to fit a large array of devices but still conduct common measurements. Finally, some possible system configurations are outlined followed by input from the industry regarding its measurement needs, lessons learned from prior testing, and other ideas.

  10. NREL: Energy Systems Integration - Commonwealth Scientific and Industrial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Organisation Commonwealth Scientific and Industrial Research Organisation Photo of a large piece of laboratory equipment labeled "CSIRO Renewable Energy Integration Facility." NREL is collaborating with CSIRO on an innovative new plug-and-play solar technology for distributed generation applications. Photo from CSIRO NREL has joined forces with Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) to develop a plug-and-play technology that will

  11. Energy Department Funding Helping Energy-Intensive Dairy Industry

    Broader source: Energy.gov [DOE]

    Historically, the U.S. dairy industry has been one of the most energy-intensive forms of agriculture. Dairies operate every hour of every day. Milk harvesting and cooling, equipment sterilization, lighting, and ventilation all require energy. With support from the Energy Department's State Energy Program, Colorado has implemented a successful pilot program to help the dairy industry reduce it electricity bill that could be emulated in other states.

  12. Test fire environmental testing operations at Mound Applied Technologies

    SciTech Connect (OSTI)

    1992-03-01

    This paper describes Mound Laboratory`s environmental testing operations. The function of environmental testing is to perform quality environmental (thermal, mechanical, spin, resistance, visual) testing/conditioning of inert/explosive products to assure their compliance with specified customer acceptance criteria. Capabilities, organization, equipment specifications, and test facilities are summarized.

  13. Meeting Summary for Diagnostic and Performance Feedback for Residential Space Conditioning System Equipment Expert Meeting

    Energy Savers [EERE]

    Final Report on the Expert Meeting for DIAGNOSTIC AND PERFORMANCE FEEDBACK FOR RESIDENTIAL SPACE CONDITIONING SYSTEM EQUIPMENT Building Science Corporation Industry Team 15 July 2010 Work Performed Under Funding Opportunity Number: DE-FC26-08NT00601 Submitted By: Building Science Corporation 30 Forest Street Somerville, MA 02143 Principal Investigators: Joseph W. Lstiburek, Ph.D., P.Eng. ASHRAE Fellow Betsy Pettit, FAIA Phone Number: 978-589-5100 Fax Number: 978-589-5103 E-Mail:

  14. DOE Hydrogen Storage Technical Performance Targets for Material Handling Equipment

    Broader source: Energy.gov [DOE]

    This table summarizes hydrogen storage technical performance targets for material handling equipment.

  15. EERE INDUSTRY DAY

    Broader source: Energy.gov [DOE]

    On September 23-24, 2015 the inaugural EERE Industry Day was held at Oak Ridge National Laboratory to foster relationships and encourage dialog among researchers, industry representatives, and U.S. Department of Energy representatives.

  16. Energy efficient industrialized housing research program

    SciTech Connect (OSTI)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. )

    1989-12-01

    This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

  17. Industrial Carbon Management Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Assessment Centers (IACs) Industrial Assessment Centers (IACs) Industrial Assessment Centers (IACs) Small- and medium-sized manufacturers may be eligible to receive a no-cost assessment provided by DOE Industrial Assessment Centers (IACs). Teams located at 24 universities around the country conduct the energy audits to identify opportunities to improve productivity, reduce waste, and save energy. IACs typically identify more than $130,000 in potential annual savings opportunities for

  18. Industrial Green | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics The industrial sector is vital to the U.S. economy, but at the same time consumes the most energy in the country to manufacture products we use every day. Among the most energy-intensive industries are aluminum, chemicals, forest product, glass, metal casting, mining, petroleum refining, and steel. The energy supply chain begins with electricity, steam, natural gas, coal, and other fuels supplied to a manufacturing plant

  19. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  20. Industrial Strength Pipes

    Energy Science and Technology Software Center (OSTI)

    2006-01-23

    Industrial Strength Pipes (ISP) is a toolkit for construction pipeline applications using the UNIX pipe and filter model.

  1. Type B Accident Investigation Board Report on the August 5, 1998, Load Haul Dump Accident at U16b Tunnel, Nevada Test Site

    Broader source: Energy.gov [DOE]

    Thisis theType B Accident Investigation Board report of an industrial accident at the Nevada Test site (NTS), U16b tunnel in which a Bechtel Nevada (BN) employee suffered a compressed skull fracture as a result of being struck onthe head by a valve and fitting assembly on the end of a hose whichhad been broken from a water pipe by a moving piece of construction equipment.

  2. Alternative Fuels Data Center: Installing B20 Equipment

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels & Vehicles » Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center: Installing B20 Equipment to someone by E-mail Share Alternative Fuels Data Center: Installing B20 Equipment on Facebook Tweet about Alternative Fuels Data Center: Installing B20 Equipment on Twitter Bookmark Alternative Fuels Data Center: Installing B20 Equipment on Google Bookmark Alternative Fuels Data Center: Installing B20 Equipment on Delicious Rank Alternative Fuels Data

  3. Workplace Charging Equipment and Installation Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment and Installation Costs Workplace Charging Equipment and Installation Costs The costs for a workplace charging program include the costs for charging equipment, installation, maintenance, and supplying electricity. Charging equipment costs depend on the type of charging station you decide to install in your workplace. Level 1 ($300-$1,500) and Level 2 ($400-$6,500) charging stations are commonly installed at workplaces. Explore how charging station equipment features affect the total

  4. About the Appliance and Equipment Standards Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appliance & Equipment Standards » About the Appliance and Equipment Standards Program About the Appliance and Equipment Standards Program The Department of Energy (DOE), through the Buildings Technologies Office, sets minimum energy efficiency standards for approximately 60 categories of appliances and equipment used in homes, businesses, and other applications, as required by existing law. The appliances and equipment covered provide services that are used by consumers and businesses each

  5. Alternative Fuels Data Center: Onboard Idle Reduction Equipment for

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Heavy-Duty Trucks Onboard Idle Reduction Equipment for Heavy-Duty Trucks to someone by E-mail Share Alternative Fuels Data Center: Onboard Idle Reduction Equipment for Heavy-Duty Trucks on Facebook Tweet about Alternative Fuels Data Center: Onboard Idle Reduction Equipment for Heavy-Duty Trucks on Twitter Bookmark Alternative Fuels Data Center: Onboard Idle Reduction Equipment for Heavy-Duty Trucks on Google Bookmark Alternative Fuels Data Center: Onboard Idle Reduction Equipment for

  6. Early Markets: Fuel Cells for Material Handling Equipment | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Material Handling Equipment Early Markets: Fuel Cells for Material Handling Equipment This fact sheet describes the use of hydrogen fuel cells to power material handling equipment (MHE) and includes cost and performance comparisons for fuel cell-powered and battery-powered MHE. PDF icon Early Markets: Fuel Cells for Material Handling Equipment More Documents & Publications An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment Market

  7. Best Management Practice #12: Laboratory and Medical Equipment | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 12: Laboratory and Medical Equipment Best Management Practice #12: Laboratory and Medical Equipment Equipment used in hospitals and laboratories can use significant amounts of water, offering the opportunity for substantial water savings by making a few small changes to how and when the water is used by the equipment. Water-consuming equipment in laboratories and medical facilities include water purification systems, sterilization and disinfection systems photographic and x-ray

  8. Photovoltaics industry profile

    SciTech Connect (OSTI)

    1980-10-01

    A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

  9. Industrial Dojo Program Fosters Industrial Internet Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dojo,' Contributes to Open Source to Foster Continued Development of the Industrial Internet Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new...

  10. Chapter 10 - Property, Plant and Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7-18-2011 Chapter 10-1 CHAPTER 10 PROPERTY, PLANT, AND EQUIPMENT 1. INTRODUCTION. a. Background/Authorities. This chapter describes financial controls over the acquisition, use, and retirement of property and provides guidelines for distinguishing between charges to capital accounts and charges to expense accounts consistent with the Statement of Federal Financial Accounting Standards (SFFAS). b. Applicability. The applicability of this chapter is specified in Chapter 1, "Accounting

  11. Current Test Procedure Waivers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Current Test Procedure Waivers Current Test Procedure Waivers The U.S. Department of Energy's (DOE) regulations for covered products permit a person to seek a waiver, or an interim waiver, from the test procedure requirements for covered appliances and commercial equipment if certain criteria are satisfied. Regulations applicable to test procedure waivers for appliances can be found at 10 CFR 430.27; those applicable to test procedure waivers for commercial equipment are at 10 CFR 431.401. This

  12. Uranium industry annual 1998

    SciTech Connect (OSTI)

    1999-04-22

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

  13. Direct Liquid Cooling for Electronic Equipment

    SciTech Connect (OSTI)

    Coles, Henry; Greenberg, Steve

    2014-03-01

    This report documents a demonstration of an electronic--equipment cooling system in the engineering prototype development stage that can be applied in data centers. The technology provides cooling by bringing a water--based cooling fluid into direct contact with high--heat--generating electronic components. This direct cooling system improves overall data center energy efficiency in three ways: High--heat--generating electronic components are more efficiently cooled directly using water, capturing a large portion of the total electronic equipment heat generated. This captured heat reduces the load on the less--efficient air--based data center room cooling systems. The combination contributes to the overall savings. The power consumption of the electronic equipment internal fans is significantly reduced when equipped with this cooling system. The temperature of the cooling water supplied to the direct cooling system can be much higher than that commonly provided by facility chilled water loops, and therefore can be produced with lower cooling infrastructure energy consumption and possibly compressor-free cooling. Providing opportunities for heat reuse is an additional benefit of this technology. The cooling system can be controlled to produce high return water temperatures while providing adequate component cooling. The demonstration was conducted in a data center located at Lawrence Berkeley National Laboratory in Berkeley, California. Thirty--eight servers equipped with the liquid cooling system and instrumented for energy measurements were placed in a single rack. Two unmodified servers of the same configuration, located in an adjacent rack, were used to provide a baseline. The demonstration characterized the fraction of heat removed by the direct cooling technology, quantified the energy savings for a number of cooling infrastructure scenarios, and provided information that could be used to investigate heat reuse opportunities. Thermal measurement data were used with data center energy use modeling software to estimate overall site energy use. These estimates show that an overall data center energy savings of approximately 20 percent can be expected if a center is retrofitted as specified in the models used. Increasing the portion of heat captured by this technology is an area suggested for further development.

  14. EERE Success Story-DOE Industry Partnerships Lead to Widespread...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in real world situations, beyond manufacturer's data sheets and laboratory testing. ... bring together industry, utilities, and environmental groups in forming the new standard. ...

  15. High-Speed Network Enables Industrial Internet | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GE software scientists and developers to spur high-speed connectivity and access to really big data Disruptive innovation demonstrates industry success in creating viable test beds ...

  16. Nevada Test Site closure program

    SciTech Connect (OSTI)

    Shenk, D.P.

    1994-08-01

    This report is a summary of the history, design and development, procurement, fabrication, installation and operation of the closures used as containment devices on underground nuclear tests at the Nevada Test Site. It also addresses the closure program mothball and start-up procedures. The Closure Program Document Index and equipment inventories, included as appendices, serve as location directories for future document reference and equipment use.

  17. After-hours Power Status of Office Equipment and Inventory of Miscellaneous Plug-load Equipment

    SciTech Connect (OSTI)

    Roberson, Judy A.; Webber, Carrie A.; McWhinney, Marla C.; Brown, Richard E.; Pinckard, Margaret J.; Busch, John F.

    2004-01-22

    This research was conducted in support of two branches of the EPA ENERGY STAR program, whose overall goal is to reduce, through voluntary market-based means, the amount of carbon dioxide emitted in the U.S. The primary objective was to collect data for the ENERGY STAR Office Equipment program on the after-hours power state of computers, monitors, printers, copiers, scanners, fax machines, and multi-function devices. We also collected data for the ENERGY STAR Commercial Buildings branch on the types and amounts of ''miscellaneous'' plug-load equipment, a significant and growing end use that is not usually accounted for by building energy managers. This data set is the first of its kind that we know of, and is an important first step in characterizing miscellaneous plug loads in commercial buildings. The main purpose of this study is to supplement and update previous data we collected on the extent to which electronic office equipment is turned off or automatically enters a low power state when not in active use. In addition, it provides data on numbers and types of office equipment, and helps identify trends in office equipment usage patterns. These data improve our estimates of typical unit energy consumption and savings for each equipment type, and enables the ENERGY STAR Office Equipment program to focus future effort on products with the highest energy savings potential. This study expands our previous sample of office buildings in California and Washington DC to include education and health care facilities, and buildings in other states. We report data from twelve commercial buildings in California, Georgia, and Pennsylvania: two health care buildings, two large offices (> 500 employees each), three medium offices (50-500 employees), four education buildings, and one ''small office'' that is actually an aggregate of five small businesses. Two buildings are in the San Francisco Bay area of California, five are in Pittsburgh, Pennsylvania, and five are in Atlanta, Georgia.

  18. Test report for slow rotation core sampling test

    SciTech Connect (OSTI)

    Ralston, G.L.

    1995-04-03

    This report documents the temperature increase experienced when core sampling equipment is rotated slowly with a relatively low downforce applied to the drill string (nominal 10 rpm/400 lb downforce). The test was carried out in close to worst-case conditions, rotating against a cement mixture in one test sequence, and a steel plate in the second test sequence.

  19. Development of bonded composite doublers for the repair of oil recovery equipment.

    SciTech Connect (OSTI)

    Roach, David W.; Rackow, Kirk A.

    2005-06-01

    An unavoidable by-product of a metallic structure's use is the appearance of crack and corrosion flaws. Economic barriers to the replacement of these structures have created an aging infrastructure and placed even greater demands on efficient and safe repair methods. In the past decade, an advanced composite repair technology has made great strides in commercial aviation use. Extensive testing and analysis, through joint programs between the Sandia Labs FAA Airworthiness Assurance Center and the aviation industry, have proven that composite materials can be used to repair damaged aluminum structure. Successful pilot programs have produced flight performance history to establish the durability of bonded composite patches as a permanent repair on commercial aircraft structures. With this foundation in place, this effort is adapting bonded composite repair technology to civil structures. The use of bonded composite doublers has the potential to correct the difficulties associated with current repair techniques and the ability to be applied where there are no rehabilitation options. It promises to be cost-effective with minimal disruption to the users of the structure. This report concludes a study into the application of composite patches on thick steel structures typically used in mining operations. Extreme fatigue, temperature, erosive, and corrosive environments induce an array of equipment damage. The current weld repair techniques for these structures provide a fatigue life that is inferior to that of the original plate. Subsequent cracking must be revisited on a regular basis. The use of composite doublers, which do not have brittle fracture problems such as those inherent in welds, can help extend the structure's fatigue life and reduce the equipment downtime. Two of the main issues for adapting aircraft composite repairs to civil applications are developing an installation technique for carbon steel and accommodating large repairs on extremely thick structures. This study developed and proved an optimum field installation process using specific mechanical and chemical surface preparation techniques coupled with unique, in-situ heating methods. In addition, a comprehensive performance assessment of composite doubler repairs was completed to establish the viability of this technology for large, steel structures. The factors influencing the durability of composite patches in severe field environments were evaluated along with related laminate design issues.

  20. TESTING LED COLOR-TUNABLE PRODUCTS

    Broader source: Energy.gov [DOE]

    New product capabilities and performance variables require new test methods to be developed, which is important for industry because accurate, repeatable, standardized test methods enable accurate...

  1. TANK VAPOR CHEMICALS OF POTENTIAL CONCERN & EXISTING DIRECT READING INSTRUMENTION & PERSONAL PROTECTIVE EQUIPMENT CONSIDERATIONS

    SciTech Connect (OSTI)

    BUTLER, N.K.

    2004-11-01

    This document takes the newly released Industrial Hygiene Chemical Vapor Technical Basis (RPP-22491) and evaluates the chemicals of potential concern (COPC) identified for selected implementation actions by the industrial hygiene organization. This document is not intended as a hazard analysis with recommended controls for all tank farm activities. Not all of the chemicals listed are present in all tanks; therefore, hazard analyses can and should be tailored as appropriate. Detection of each chemical by current industrial hygiene non-specific instrumentation in use at the tank farms is evaluated. Information gaps are identified and recommendations are made to resolve these needs. Of the 52 COPC, 34 can be detected with existing instrumentation. Three additional chemicals could be detected with a photoionization detector (PID) equipped with a different lamp. Discussion with specific instrument manufacturers is warranted. Consideration should be given to having the SapphIRe XL customized for tank farm applications. Other instruments, sampling or modeling techniques should be evaluated to estimate concentrations of chemicals not detected by direct reading instruments. In addition, relative instrument response needs to be factored in to action levels used for direct reading instruments. These action levels should be correlated to exposures to the COPC and corresponding occupational exposure limits (OELs). The minimum respiratory protection for each of the COPC is evaluated against current options. Recommendations are made for respiratory protection based on each chemical. Until exposures are sufficiently quantified and analyzed, the current use of supplied air respiratory protection is appropriate and protective for the COPC. Use of supplied air respiratory protection should be evaluated once a detailed exposure assessment for the COPC is completed. The established tank farm OELs should be documented in the TFC-PLN-34. For chemicals without an established tank farm OEL, consideration should be given to adopting protective limits from NIOSH, AIHA, or developing OELs. Protective gloves and suits are evaluated for each chemical for which information is available. Information gaps are identified for some of the compounds and materials. Recommendations are made for resolving these needs. Based on available information, Silver Shield{reg_sign} gloves are promising for tank farm applications. However, permeation testing documentation is needed for the COPC and mixtures for Silver Shield{reg_sign} gloves to evaluate their protectiveness. North Safety Products is expected to provide the requested documentation. Multiple Tychem{reg_sign} products are available. There is overlap between chemicals and effective materials. Further hazard evaluation to determine actual hazards and permeation testing documentation is required to assess the efficacy of a single Tychem{reg_sign} product for tank farm applications. All of this chemical specific data is combined into a spreadsheet that will assist the industrial hygienist in the selection of monitoring instruments, respiratory protection selection and protective clothing for performing work at a specific tank(s).

  2. NREL: Wind Research - Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing Photo of a large wind turbine blade sticking out of the structural testing laboratory; it is perpendicular to a building at the National Wind Technology Center. A multimegawatt wind turbine blade extends outside of the structural testing facility at the NWTC. PIX #19010 Testing capabilities at the National Wind Technology Center (NWTC) support the installation and testing of wind turbines that range in size from 400 watts to 5.0 megawatts. Engineers provide wind industry manufacturers,

  3. Laboratory Equipment Donation Program - LEDP Widget Code

    Office of Scientific and Technical Information (OSTI)

    Widget Inclusion Code Copy the code below and paste it to your website or blog: <script type="text/javascript" src="http://cdn.widgetserver.com/syndication/subscriber/InsertWidget.js"></script><script type="text/javascript">if (WIDGETBOX) WIDGETBOX.renderWidget('6f283a3d-1392-4025-a8bf-566030ca0281');</script><noscript>Get the <a href="http://www.widgetbox.com/widget/erle">Laboratory Equipment Donation Program</a>

  4. LANSCE | Lujan Center | Instruments | ASTERIX | Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equipment Surfaces and Interfaces Sample Environment: Magnet and cryostat system offering 0-1 T fields and 4-300 K temperatures. This system consists of an electromagnet or Helmholtz coil that produce fields up to 1T and 3 mT, respectively. A Displex cryostat (4-300 K) can be accommodated by either magnet. For samples with a dimension greater than 1 cm the maximum field is 0.6 T. Cryomagnet: The maximum field is 11 T for polarized or unpolarized beam experiments. We offer two 1.7 - 300 K sample

  5. Experimental Study on the Performance of Quenching Mesh for an Equipment Protection during a Hydrogen Combustion

    SciTech Connect (OSTI)

    Seong-Wan Hong; Jin-Ho Song; Hee-Dong Kim

    2006-07-01

    An igniter has been used as one of the important tools for the control of the hydrogen concentration in the containment. However, the hydrogen control method using an igniter is accompanied essentially with a combustion, which may result in damaging the equipment that should be operated during/after severe accidents. In this paper, an equipment protection test during a hydrogen combustion was carried out using a quenching mesh which is a kind of flame arrester. The temperatures at the surface of the model equipment were measured during the hydrogen combustion when the quenching mesh with about a 0.3 mm gap distance surrounded the model equipment. The effects of the initial pressure and the flame velocity were investigated. The surface temperatures of the model equipment were increased with the initial pressure rise for a 10% hydrogen concentration. The flame velocity with 25 m/s had not an effect on the increase of the surface temperatures of the model equipment for a 9% hydrogen concentration. (authors)

  6. Systems and Industry Analyses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems and industry analyses Go to the NETL Gasification Systems Program's Systems and Industry Analyses Studies Technology & Cost/Performance Studies NETL Gasification Systems Program's Systems and Industry Analyses Studies provide invaluable information, and help to ensure that the technologies being developed are the best ones to develop. System studies are often used to compare competing technologies, determine the best way to integrate a technology with other technologies, and predict

  7. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

    SciTech Connect (OSTI)

    Clifton B. Higdon III

    2011-01-07

    Industrial manufacturing in the U.S. accounts for roughly one third of the 98 quadrillion Btu total energy consumption. Motor system losses amount to 1.3 quadrillion Btu, which represents the largest proportional loss of any end-use category, while pumps alone represent over 574 trillion BTU (TBTU) of energy loss each year. The efficiency of machines with moving components is a function of the amount of energy lost to heat because of friction between contacting surfaces. The friction between these interfaces also contributes to downtime and the loss of productivity through component wear and subsequent repair. The production of new replacement parts requires additional energy. Among efforts to reduce energy losses, wear-resistant, low-friction coatings on rotating and sliding components offer a promising approach that is fully compatible with existing equipment and processes. In addition to lubrication, one of the most desirable solutions is to apply a protective coating or surface treatment to rotating or sliding components to reduce their friction coefficients, thereby leading to reduced wear. Historically, a number of materials such as diamond-like carbon (DLC), titanium nitride (TiN), titanium aluminum nitride (TiAlN), and tungsten carbide (WC) have been examined as tribological coatings. The primary objective of this project was the development of a variety of thin film nanocoatings, derived from the AlMgB14 system, with a focus on reducing wear and friction in both industrial hydraulics and cutting tool applications. Proof-of-concept studies leading up to this project had shown that the constituent phases, AlMgB14 and TiB2, were capable of producing low-friction coatings by pulsed laser deposition. These coatings combine high hardness with a low friction coefficient, and were shown to substantially reduce wear in laboratory tribology tests. Selection of the two applications was based largely on the concept of improved mechanical interface efficiencies for energy conservation. In mobile hydraulic systems, efficiency gains through low friction would translate into improved fuel economy and fewer greenhouse gas emissions. Stationary hydraulic systems, accordingly, would consume less electrical power. Reduced tooling wear in machining operations would translate to greater operating yields, while lowering the energy consumed during processing. The AlMgB14 nanocoatings technology progressed beyond baseline laboratory tests into measurable energy savings and enhancements to product durability. Three key hydraulic markets were identified over the course of the project that will benefit from implementation: industrial vane pumps, orbiting valve-in-star hydraulic motors, and variable displacement piston pumps. In the vane pump application, the overall product efficiency was improved by as much as 11%. Similar results were observed with the hydraulic motors tested, where efficiency gains of over 10% were noted. For variable displacement piston pumps, overall efficiency was improved by 5%. For cutting tools, the most significant gains in productivity (and, accordingly, the efficiency of the machining process as a whole) were associated with the roughing and finishing of titanium components for aerospace systems. Use of the AlMgB14 nanocoating in customer field tests has shown that the coated tools were able to withstand machining rates as high as 500sfm (limited only by the substrate material), with relatively low flank wear when compared to other industrial offerings. AlMgB14 coated tools exhibited a 60% improvement over similarly applied TiAlN thin films. Furthermore, AlMgB14-based coatings in these particular tests lasted twice as long than their TiAlN counterparts at the 500sfm feed rates. Full implementation of the technology into the industrial hydraulic and cutting tool markets equates to a worldwide energy savings of 46 trillion BTU/year by 2030. U.S.-based GHG emissions associated with the markets identified would fall accordingly, dropping by as much as 50,000 tonnes annually.

  8. Users from Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, andor...

  9. Presentations for Industry

    Broader source: Energy.gov [DOE]

    Learn energy-saving strategies from leading manufacturing companies and energy experts. The presentations are organized below by topic area. In addition, industrial energy managers, utilities, and...

  10. Appendix C - Industrial technologies

    SciTech Connect (OSTI)

    None, None

    2002-12-20

    This report describes the results, calculations, and assumptions underlying the GPRA 2004 Quality Metrics results for all Planning Units within the Office of Industrial Technologies.

  11. Window Industry Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2000-04-01

    The Window Industry Technology Roadmap looks at the trends in window design and installation in 2000 and projects trends for the future.

  12. About Industrial Distributed Energy

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office's (AMO's) Industrial Distributed Energy activities build on the success of predecessor DOE programs on distributed energy and combined heat and power (CHP) while...

  13. Commercial & Industrial Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  14. Midwest Industrial Energy Efficiency Handbook

    SciTech Connect (OSTI)

    2010-06-25

    This Industrial Technologies Program handbook connects industry with the various energy efficiency resources available in the midwest.

  15. Best Management Practice #12: Laboratory and Medical Equipment

    Broader source: Energy.gov [DOE]

    Equipment used in hospitals and laboratories can use significant amounts of water, offering the opportunity for substantial water savings by making a few small changes to how and when the water is used by the equipment.

  16. Equipment acquisition plans for the SSCL magnet excitation power system

    SciTech Connect (OSTI)

    Winje, R.

    1993-05-01

    This report gives a brief description of the major electrical technical equipment used in the Superconducting Super Collider accelerators systems and the present laboratory plans for the acquisition of the equipment.

  17. Anne Arundel County- Solar and Geothermal Equipment Property Tax Credits

    Broader source: Energy.gov [DOE]

    Anne Arundel County offers a one-time credit from county property taxes on residential dwellings that use solar and geothermal energy equipment for heating and cooling, and solar energy equipment...

  18. Appendix D: Facility Process Data and Appendix E: Equipment Calibratio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D: Facility Process Data and Appendix E: Equipment Calibration Data Sheets Appendix D: Facility Process Data and Appendix E: Equipment Calibration Data Sheets Docket No. EO-05-01: ...

  19. Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF In reference ...

  20. Sales and Use Tax Exemption for Electrical Generating Equipment

    Broader source: Energy.gov [DOE]

    Indiana does not have a specific sales and use tax exemption for equipment used in the production of renewable electricity. Therefore, such equipment is presumed to be subject to sales and use tax....

  1. Balance-of-System Equipment Required for Renewable Energy Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Balance-of-System Equipment Required for Renewable Energy Systems Balance-of-System Equipment Required for Renewable Energy Systems July 2, 2012 - 8:21pm Addthis Both...

  2. Field power measurements of imaging equipment

    SciTech Connect (OSTI)

    McWhinney, Marla; Homan, Gregory; Brown, Richard; Roberson, Judy; Nordman, Bruce; Busch, John

    2004-05-14

    According to the U.S. Department of Energy, electricity use by non-PC commercial office equipment is growing at an annual rate of nearly 5 percent (AEO 2003). To help address this growth in consumption, U.S. EPA periodically updates its ENERGY STAR specifications as products and markets change. This report presents background research conducted to help EPA update the ENERGY STAR specification for imaging equipment, which covers printers, fax machines, copiers, scanners, and multifunction devices (MFDs). We first estimated the market impact of the current ENERGY STAR imaging specification, finding over 90 percent of the current market complies with the specification. We then analyzed a sample of typical new imaging products, including 11 faxes, 57 printers and 19 copiers/MFD. For these devices we metered power levels in the most common modes: active/ready/sleep/off, and recorded features that would most likely affect energy consumption. Our metering indicates that for many products and speed bins, current models consume substantially less power than the current specification. We also found that for all product categories, power consumption varied most considerably across technology (i.e. inkjet vs. laser). Although inkjet printers consumed less energy than laser printers in active, ready and sleep-mode, they consumed more power on average while off, mostly due to the use of external power supplies. Based on these findings, we developed strategies for the ENERGY STAR program to achieve additional energy reductions. Finally, we present an assessment of manufacturer's ENERGY STAR labeling practices.

  3. Computers, Electronics and Electrical Equipment (2010 MECS) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Computers, Electronics and Electrical Equipment (2010 MECS) Computers, Electronics and Electrical Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Computers, Electronics and Electrical Equipment Sector (NAICS 334, 335) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint PDF icon Computers, Electronics and Electrical Equipment More Documents

  4. Use Lower Flammable Limit Monitoring Equipment to Improve Process Oven

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency | Department of Energy Lower Flammable Limit Monitoring Equipment to Improve Process Oven Efficiency Use Lower Flammable Limit Monitoring Equipment to Improve Process Oven Efficiency This process heating tip sheet recommends using lower flammable limit monitoring equipment to improve oven efficiency. PROCESS HEATING TIP SHEET #11 PDF icon Use Lower Flammable Limit Monitoring Equipment to Improve Process Oven Efficiency (October 2007) More Documents & Publications Check Burner

  5. USSR report: Engineering and equipment, [May 15, 1985

    SciTech Connect (OSTI)

    1985-05-15

    This USSR Report contains articles on engineering and equipment. The main topics are marine and shipbuilding and nuclear energy.

  6. Heating Equipment Checklist for Winter Comfort and Efficiency | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Heating Equipment Checklist for Winter Comfort and Efficiency Heating Equipment Checklist for Winter Comfort and Efficiency December 19, 2014 - 10:59am Addthis Using our heating equipment checklist can help you properly maintain your heating system this winter! | Photo courtesy of iStockphoto.com/lionvision Using our heating equipment checklist can help you properly maintain your heating system this winter! | Photo courtesy of iStockphoto.com/lionvision Paige Terlip Paige Terlip

  7. WPN 13-7: Vehicle and Equipment Purchases

    Broader source: Energy.gov [DOE]

    To provide Grantee with guidance on purchasing vehicles and equipment for use in the Weatherization Assistance Program (WAP).

  8. Paducah Site Modernizes Equipment to Treat Off-Site Groundwater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contamination | Department of Energy Site Modernizes Equipment to Treat Off-Site Groundwater Contamination Paducah Site Modernizes Equipment to Treat Off-Site Groundwater Contamination February 25, 2016 - 12:15pm Addthis New groundwater contamination treatment equipment sits outside the C-612 Northwest Pump-and-Treat facility. New groundwater contamination treatment equipment sits outside the C-612 Northwest Pump-and-Treat facility. A computer-modeled illustration shows the off-site movement

  9. Hydrogen Equipment Certification Guide Webinar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment Certification Guide Webinar Hydrogen Equipment Certification Guide Webinar Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen Equipment Certification Guide" held on December 10, 2015. PDF icon Hydrogen Equipment Certification Guide Webinar Slides More Documents & Publications H2 Refuel H-Prize Safety Guidance Webinar H2 Refuel H-Prize Safety Guidance Webinar National Hydrogen Safety Training Resource for

  10. Alternative Fuels Data Center: Biodiesel Equipment Options

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Steel tanks are listed under UL 58 for flammable fuels and do not test with specific fuels. Fiberglass tanks are listed under UL 1316, which does not offer a biodiesel test fluid. ...

  11. The methanol industry`s missed opportunities

    SciTech Connect (OSTI)

    Stokes, C.A.

    1995-12-31

    Throughout its history the methanol industry has been backward in research and development and in industry cooperation on public image and regulatory matters. It has been extremely reticent as to the virtue of its product for new uses, especially for motor fuel. While this is perhaps understandable looking back, it is inexcusable looking forward. The industry needs to cooperate on a worldwide basis in research and market development, on the one hand, and in image-building and political influence, on the other, staying, of course, within the US and European and other regional antitrust regulations. Unless the industry develops the motor fuel market, and especially the exciting new approach through fuel cell operated EVs, to siphon off incremental capacity and keep plants running at 90% or more of capacity, it will continue to live in a price roller-coaster climate. A few low-cost producers will do reasonably well and the rest will just get along or drop out here and there along the way, as in the past. Having come so far from such a humble beginning, it is a shame not to realize the full potential that is clearly there: a potential to nearly double sales dollars without new plants and to produce from a plentiful resource, at least for the next half-century, all the methanol that can be imagined to be needed. Beyond that the industry can turn to renewable energy--the sun--via biomass growth, to make their product. In so doing, it can perhaps apply methanol as a plant growth stimulant, in effect making the product fully self-sustainable. The world needs to know what methanol can do to provide--economically and reliably--the things upon which a better life rests.

  12. Topsides equipment, operating flexibility key floating LNG design

    SciTech Connect (OSTI)

    Yost, K.; Lopez, R.; Mok, J.

    1998-03-09

    Use of a large-scale floating liquefied natural gas (LNG) plant is an economical alternative to an onshore plant for producing from an offshore field. Mobil Technology Co., Dallas, has advanced a design for such a plant that is technically feasible, economical, safe, and reliable. Presented were descriptions of the general design basis, hull modeling and testing, topsides and storage layouts, and LNG offloading. But such a design also presents challenges for designing topsides equipment in an offshore environment and for including flexibility and safety. These are covered in this second article. Mobil`s floating LNG plant design calls for a square concrete barge with a moon-pool in the center. It is designed to produce 6 million tons/year of LNG with up to 55,000 b/d of condensate from 1 bcfd of raw feed gas.

  13. The Sao Paulo Microtron: Equipment and Planned Experiments

    SciTech Connect (OSTI)

    Martins, M. N.; Maidana, N. L.; Vanin, V. R.

    2007-10-26

    The Linear Accelerator Laboratory (LAL) of the Instituto de Fisica da Universidade de Sao Paulo (IFUSP) is building a two-stage racetrack microtron, which will generate continuous wave electron beams with energies up to 38 MeV. This paper describes the characteristics of the accelerator, and reports on the experimental equipment that will be available in order to pursue the photonuclear physics research program. Operation will begin with the first stage (5 MeV), and concentrate on NRF (Nuclear Resonance Fluorescence) measurements and radiation physics studies. Planned experiments for the second stage explore the cw character of the beam on coincidence experiments. A photon tagger has been already tested with radioactive sources and is ready to be installed. Gamma and neutron detector arrays are being developed for the detailed study of photoneutron reactions. Plans include the study of NRF and pygmy resonances, near the neutron binding energy.

  14. Network Traffic Generator for Low-rate Small Network Equipment Software

    Energy Science and Technology Software Center (OSTI)

    2013-05-28

    Application that uses the Python low-level socket interface to pass network traffic between devices on the local side of a NAT router and the WAN side of the NAT router. This application is designed to generate traffic that complies with the Energy Star Small Network Equipment Test Method.

  15. SNL Issues a Request for Quotation for a Hydrogen Station Test Device

    Broader source: Energy.gov [DOE]

    Sandia National Laboratories (SNL) has issued a Request for Quotation (RFQ) for hydrogen station equipment performance testing device fabrication.

  16. Updated Buildings Sector Appliance and Equipment Costs and Efficiency

    U.S. Energy Information Administration (EIA) Indexed Site

    Full report (3.6 mb) Major residential equipment and commercial heating, cooling, & water heating equipment Appendix A - Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case (1 mb) Appendix B - Technology Forecast Updates - Residential and Commercial Building Technologies - Advanced Case (1 mb) Lighting and commercial ventilation & refrigeration equipment Appendix C - Technology Forecast Updates - Residential and Commercial Building Technologies

  17. Surveillance of industrial processes with correlated parameters

    DOE Patents [OSTI]

    White, Andrew M.; Gross, Kenny C.; Kubic, William L.; Wigeland, Roald A.

    1996-01-01

    A system and method for surveillance of an industrial process. The system and method includes a plurality of sensors monitoring industrial process parameters, devices to convert the sensed data to computer compatible information and a computer which executes computer software directed to analyzing the sensor data to discern statistically reliable alarm conditions. The computer software is executed to remove serial correlation information and then calculate Mahalanobis distribution data to carry out a probability ratio test to determine alarm conditions.

  18. Surveillance of industrial processes with correlated parameters

    DOE Patents [OSTI]

    White, A.M.; Gross, K.C.; Kubic, W.L.; Wigeland, R.A.

    1996-12-17

    A system and method for surveillance of an industrial process are disclosed. The system and method includes a plurality of sensors monitoring industrial process parameters, devices to convert the sensed data to computer compatible information and a computer which executes computer software directed to analyzing the sensor data to discern statistically reliable alarm conditions. The computer software is executed to remove serial correlation information and then calculate Mahalanobis distribution data to carry out a probability ratio test to determine alarm conditions. 10 figs.

  19. Pompano subsea development -- Testing program

    SciTech Connect (OSTI)

    Nelson, R.; Berger, R.; Tyer, C.

    1996-12-31

    System reliability is essential for the economic success of any subsea oil and gas development. Testing programs can be developed to prove system reliability while still adhering to cost and schedule constraints. This paper describes a three-tiered equipment testing program that was employed for the Pompano Phase 2 subsea system. Program objectives, test descriptions, procedure development and test execution are discussed in detail. Lessons learned throughout the tests are also presented.

  20. Guidelines for an original equipment manufacturer starting a remanufacturing operation

    SciTech Connect (OSTI)

    Lund, R.T.; Skeels, F.D.

    1983-07-01

    Remanufacturing is an industrial process in which worn-out products (called cores) are restored to like-new condition. In a typical remanufacturing process, identical cores are grouped into production batches, completely disassembled, and thoroughly cleaned. Component parts are replaced or refurbished as necessary to bring their performance at least back to the level of the product when new. The product is assembled, finished, tested, packaged, and distributed in the same manner as new products. Even the warranty on the remanufactured product is usually similar or identical to the OEM new product warranty. Marketing, distribution, collection, technology, economics, organizational aspects, and legal considerations of remanufacturing are discussed.

  1. Uranium industry annual 1996

    SciTech Connect (OSTI)

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  2. Final Technical Report for project entitled "Equipment Request for the Belleville Agricultural Research and Education Center"

    SciTech Connect (OSTI)

    Young, Bryan; Nehring, Jarrett; Susan Graham, Brian Klubek

    2013-01-16

    Executive Summary The funding provided by the DOE for this project was used exclusively to purchase research equipment involved with the field development and evaluation of crop production technologies and practices for energy crop production. The new equipment has been placed into service on the SIU farms and has significantly enhanced our research capacity and scope for agronomy and precision ag research to support novel seed traits or crop management strategies for improving the efficiency and productivity of corn and soybeans. More specifically, the precision ag capability of the equipment that was purchased has heightened interest by faculty and associated industry partners to develop collaborative projects. In addition, this equipment has provided SIU with a foundation to be more successful at securing competitive grants in energy crop production and precision ag data management. Furthermore, the enhanced capacity for agronomy research in the southern Illinois region has been realized and will benefit crop producers in this region by learning to improve their operations from our research outcomes.

  3. BENEFITS OF VIBRATION ANALYSIS FOR DEVELOPMENT OF EQUIPMENT IN HLW TANKS - 12341

    SciTech Connect (OSTI)

    Stefanko, D.; Herbert, J.

    2012-01-10

    Vibration analyses of equipment intended for use in the Savannah River Site (SRS) radioactive liquid waste storage tanks are performed during pre-deployment testing and has been demonstrated to be effective in reducing the life-cycle costs of the equipment. Benefits of using vibration analysis to identify rotating machinery problems prior to deployment in radioactive service will be presented in this paper. Problems encountered at SRS and actions to correct or lessen the severity of the problem are discussed. In short, multi-million dollar cost saving have been realized at SRS as a direct result of vibration analysis on existing equipment. Vibration analysis of equipment prior to installation can potentially reduce inservice failures, and increases reliability. High-level radioactive waste is currently stored in underground carbon steel waste tanks at the United States Department of Energy (DOE) Savannah River Site and at the Hanford Site, WA. Various types of rotating machinery (pumps and separations equipment) are used to manage and retrieve the tank contents. Installation, maintenance, and repair of these pumps and other equipment are expensive. In fact, costs to remove and replace a single pump can be as high as a half million dollars due to requirements for radioactive containment. Problems that lead to in-service maintenance and/or equipment replacement can quickly exceed the initial investment, increase radiological exposure, generate additional waste, and risk contamination of personnel and the work environment. Several different types of equipment are considered in this paper, but pumps provide an initial example for the use of vibration analysis. Long-shaft (45 foot long) and short-shaft (5-10 feet long) equipment arrangements are used for 25-350 horsepower slurry mixing and transfer pumps in the SRS HLW tanks. Each pump has a unique design, operating characteristics and associated costs, sometimes exceeding a million dollars. Vibration data are routinely collected during pre-installation tests and screened for: Critical speeds or resonance, Imbalance of rotating parts, Shaft misalignment, Fluid whirl or lubrication break down, Bearing damages, and Other component abnormalities. Examples of previous changes in operating parameters and fabrication tolerances and extension of equipment life resulting from the SRS vibration analysis program include: (1) Limiting operational speeds for some pumps to extend service life without design or part changes; (2) Modifying manufacturing methods (tightening tolerances) for impellers on slurry mixing pumps based on vibration data that indicated hydraulic imbalance; (3) Identifying rolling element mounting defects and replacing those components in pump seals before installation; and (4) Identifying the need for bearing design modification for SRS long-shaft mixing pump designs to eliminate fluid whirl and critical speeds which significantly increased the equipment service life. In addition, vibration analyses and related analyses have been used during new equipment scale-up tests to identify the need for design improvements for full-scale operation / deployment of the equipment in the full size tanks. For example, vibration analyses were recently included in the rotary micro-filtration scale-up test program at SRNL.

  4. Workshop proceeding of the industrial building energy use

    SciTech Connect (OSTI)

    Akbari, H.; Gadgil, A.

    1988-01-01

    California has a large number of small and medium sized industries which have a major impact on the demand growth of California utilities. Energy use in building services (lighting, HVAC, office equipment, computers, etc.). These industries constitute an important but largely neglected fraction of the total site energy use. The ratio of energy use in building service to the total site energy use is a function of the industrial activity, its size, and the climate at the site of the facility. Also, energy use in building services is more responsive to weather and occupant schedules than the traditional base-load'' industrial process energy. Industrial energy use is considered as a base-load'' by utility companies because it helps to increase the utilities' load factor. To increase this further, utilities often market energy at lower rates to industrial facilities. Presently, the energy use in the building services of the industrial sector is often clubbed together with industrial process load. Data on non-process industrial energy use are not readily available in the literature. In cases where the major portion of the energy is used in the building services (with daily and seasonal load profiles that in fact peak at the same time as systemwide load peaks), the utility may be selling below cost at peak power times. These cases frequently happen with electric utilities. 30 figs., 6 tabs.

  5. Pollution prevention in the pharmaceutical industry

    SciTech Connect (OSTI)

    Venkataramani, E.S.

    1995-09-01

    A clear understanding of the process, reaction pathways, process equipment, operational requirements, and waste stream characteristics are critical for the evaluation, selection, and implementation of pollution prevention in the pharmaceutical industry. Although pollution prevention opportunities are always preferred over treatment and disposal techniques, consideration of a full range of options--including at-source treatments and disposal--is a practical necessity to ensure protection of the environment using best available technology. General housekeeping can also play a major role in waste minimization. Waste minimization and pollution prevention are not new concepts for the pharmaceutical industry. But the confidential and highly competitive nature of the business stands in the way of disseminating information regarding specific activities in this area. The pharmaceutical industry could probably do much better in this respect. Successful implementation of waste minimization in the pharmaceutical industry requires that a process modification not have a negative impact on product quality. Recovered and recycled materials must meet quality specifications that are similar to those for virgin raw materials.

  6. 1997 Housing Characteristics Tables Home Office Equipment Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Percent of U.S. Households; 13 pages, 48 kb) Contents Pages HC7-1b. Home Office Equipment by Climate Zone, Percent of U.S. Households, 1997 1 HC7-2b. Home Office Equipment by Year of Construction, Percent of U.S. Households, 1997 1 HC7-3b. Home Office Equipment by Household Income, Percent of U.S. Households, 1997 1 HC7-4b. Home Office Equipment by Type of Housing Unit, Percent of U.S. Households, 1997 1 HC7-5b. Home Office Equipment by Type of Owner-Occupied Housing Unit, Percent of U.S.

  7. Industrial Safety | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Safety includes traditional safety disciplines such as machine guarding, personal protective equipment (PPE), electrical safety, accident prevention and investigation, ...

  8. Nanocoatings for High-Efficiency Industrial and Tooling Systems

    SciTech Connect (OSTI)

    Blau, P; Qu, J.; Higdon, C.

    2011-02-01

    This industry-driven project was the result of a successful response by Eaton Corporation to a DOE/ITP Program industry call. It consisted of three phases in which ORNL participated. In addition to Eaton Corporation and ORNL (CRADA), the project team included Ames Laboratory, who developed the underlying concept for aluminum-magnesium-boron based nanocomposite coatings [1], and Greenleaf, a small tooling manufacturer in western Pennsylvania. This report focuses on the portion of this work that was conducted by ORNL in a CRADA with Eaton Corporation. A comprehensive final report for the entire effort, which ended in September 2010, has been prepared by Eaton Corporation. Phase I, Proof of Concept ran for one year (September 1, 2006 to September 30, 2007) during which the applicability of AlMgB14 single-phase and nanocomposite coatings on hydraulic material coupons and components as well as on tool inserts was demonstrated.. The coating processes used either plasma laser deposition (PLD) or physical vapor deposition (PVD). During Phase I, ORNL conducted laboratory-scale pin-on-disk and reciprocating pin-on-flat tests of coatings produced by PLD and PVD. Non-coated M2 tool steel was used as a baseline for comparison, and the material for the sliding counterface was Type 52100 bearing steel since it simulated the pump materials. Initial tests were run mainly in a commercial hydraulic fluid named Mobil DTE-24, but some tests were later run in a water-glycol mixture as well. A tribosystem analysis was conducted to define the operating conditions of pump components and to help develop simulative tests in Phase II. Phase II, Coating Process Scale-up was intended to use scaled-up process to generate prototype parts. This involved both PLD practices at Ames Lab, and a PVD scale-up study at Eaton using its production capable equipment. There was also a limited scale-up study at Greenleaf for the tooling application. ORNL continued to conduct friction and wear tests on process variants and developed tests to better simulate the applications of interest. ORNL also employed existing lubrication models to better understand hydraulic pump frictional behavior and test results. Phase III, Functional Testing focused on finalizing the strategy for commercialization of AlMgB14 coatings for both hydraulic and tooling systems. ORNL continued to provide tribology testing and analysis support for hydraulic pump applications. It included both laboratory-scale coupon testing and the analysis of friction and wear data from full component-level tests performed at Eaton Corp. Laboratory-scale tribology test methods are used to characterize the behavior of nanocomposite coatings prior to running them in full-sized hydraulic pumps. This task also includes developing tribosystems analyses, both to provide a better understanding of the performance of coated surfaces in alternate hydraulic fluids, and to help design useful laboratory protocols. Analysis also includes modeling the lubrication conditions and identifying the physical processes by which wear and friction of the contact interface changes over time. This final report summarizes ORNLs portion of the nanocomposite coatings development effort and presents both generated data and the analyses that were used in the course of this effort.

  9. Development of an equipment management model to improve effectiveness of processes

    SciTech Connect (OSTI)

    Chang, H. S.; Ju, T. Y.; Song, T. Y.

    2012-07-01

    The nuclear industries have developed and are trying to create a performance model to improve effectiveness of the processes implemented at nuclear plants in order to enhance performance. Most high performing nuclear stations seek to continually improve the quality of their operations by identifying and closing important performance gaps. Thus, many utilities have implemented performance models adjusted to their plant's configuration and have instituted policies for such models. KHNP is developing a standard performance model to integrate the engineering processes and to improve the inter-relation among processes. The model, called the Standard Equipment Management Model (SEMM), is under development first by focusing on engineering processes and performance improvement processes related to plant equipment used at the site. This model includes performance indicators for each process that can allow evaluating and comparing the process performance among 21 operating units. The model will later be expanded to incorporate cost and management processes. (authors)

  10. Natural phenomena hazards evaluation of equipment and piping of Gaseous Diffusion Plant Uranium Enrichment Facility

    SciTech Connect (OSTI)

    Singhal, M.K.; Kincaid, J.H.; Hammond, C.R.; Stockdale, B.I.; Walls, J.C.; Brock, W.R.; Denton, D.R.

    1995-12-31

    In support of the Gaseous Diffusion Plant Safety Analysis Report Upgrade program (GDP SARUP), a natural phenomena hazards evaluation was performed for the main process equipment and piping in the uranium enrichment buildings at Paducah and Portsmouth gaseous diffusion plants. In order to reduce the cost of rigorous analyses, the evaluation methodology utilized a graded approach based on an experience data base collected by SQUG/EPRI that contains information on the performance of industrial equipment and piping during past earthquakes. This method consisted of a screening walkthrough of the facility in combination with the use of engineering judgment and simple calculations. By using these screenings combined with evaluations that contain decreasing conservatism, reductions in the time and cost of the analyses were significant. A team of experienced seismic engineers who were trained in the use of the DOE SQUG/EPRI Walkdown Screening Material was essential to the success of this natural phenomena hazards evaluation.

  11. Emergency sacrificial sealing method in filters, equipment, or systems

    DOE Patents [OSTI]

    Brown, Erik P

    2014-09-30

    A system seals a filter or equipment component to a base and will continue to seal the filter or equipment component to the base in the event of hot air or fire. The system includes a first sealing material between the filter or equipment component and the base; and a second sealing material between the filter or equipment component and the base and proximate the first sealing material. The first sealing material and the second seal material are positioned relative to each other and relative to the filter or equipment component and the base to seal the filter or equipment component to the base and upon the event of fire the second sealing material will be activated and expand to continue to seal the filter or equipment component to the base in the event of hot air or fire.

  12. Zhongneng Windpower Equipments | Open Energy Information

    Open Energy Info (EERE)

    B, Hebei Province, China Zip: 71051 Sector: Wind energy Product: Chinese wind turbine blade manufacturer engages in the development, design, testing and products manufacture of...

  13. FIBROUS MONOLITH WEAR RESISTANT COMPONENTS FOR THE MINING INDUSTRY

    SciTech Connect (OSTI)

    Mike L. Fulcher; Kenneth L. Knittel

    2004-06-08

    The work performed on this program was to develop wear resistant, tough FM composite materials with efforts focused on WC-Co based FM systems. The materials were developed for use in mining industry wear applications. Components of interest were drill bit inserts for drilling blast holes. Other component applications investigated included wear plates for a variety of equipment such as pit shovels, wear surfaces for conveyors, milling media for ball milling operations, hydrocyclone cones, grader blades and dozer teeth. Cross-cutting technologies investigated included hot metal extrusion dies, drill bits for circuit board fabrication, cutting tools for cast iron and aluminum machining. An important part of the work was identification of the standard materials used in drilling applications. A materials trade study to determine those metals and ceramics used for mining applications provided guidance for the most important materials to be investigated. WC-Co and diamond combinations were shown to have the most desirable properties. Other considerations such as fabrication technique and the ability to consolidate shifted the focus away from diamond materials and toward WC-Co. Cooperating partners such as Kennametal and Kyocera assisted with supplies, evaluations of material systems, fabricated parts and suggestions for cross-cutting technology applications for FM architectures. Kennametal provided the raw materials (WC-Co and Al-TiCN powders) for the extent of the material evaluations. Kyocera shared their research into various FM systems and provided laboratory testing of fabricated materials. Field testing provided by partners Superior Rock Bit and Brady Mining and Construction provided insight into the performance of the fabricated materials under actual operational conditions. Additional field testing of cross-cutting technology, the extrusion of hot metals, at Extruded Metals showed the potential for additional market development.

  14. CASL Industry Council Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 CASL Industry Council Meeting March 26-27, 2013 - Cranberry Township, PA Minutes The sixth meeting of the Industry Council (IC) for the Consortium for Advanced Simulation of Light Water Reactors (CASL) was held on March 26-27, 2013 at Westinghouse in Cranberry Township, PA. The first day of the Industry Council was chaired by John Gaertner and the second day was chaired by Heather Feldman. The meeting attendees and their affiliations are listed on Attachment 1 to these minutes. Attendance was

  15. CASL Industry Council Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Council Meeting 4 - 5 November 2015 Meeting Minutes The autumn 2015 meeting of the Industry Council (IC) for the Consortium for Advanced Simulation of Light Water Reactors (CASL) was held on 4 - 5 November 2015 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN. The first day of meeting was a joint meeting of the CASL Industry and Science Councils and was held at the Spallation Neutron Source (SNS) facility at ORNL. An independent IC meeting was held the morning of the second

  16. Industrial process surveillance system

    DOE Patents [OSTI]

    Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

    1998-06-09

    A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

  17. Industrial Process Surveillance System

    DOE Patents [OSTI]

    Gross, Kenneth C.; Wegerich, Stephan W; Singer, Ralph M.; Mott, Jack E.

    2001-01-30

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  18. Industrial process surveillance system

    DOE Patents [OSTI]

    Gross, Kenneth C.; Wegerich, Stephan W.; Singer, Ralph M.; Mott, Jack E.

    1998-01-01

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  19. Microgrid Testing

    SciTech Connect (OSTI)

    Shirazi, M.; Kroposki, B.

    2012-01-01

    With the publication of IEEE 1574.4 Guide for Design, Operation, and Integration of Distributed Resource Island Systems with Electric Power Systems, there is an increasing amount of attention on not only the design and operations of microgrids, but also on the proper operation and testing of these systems. This standard provides alternative approaches and good practices for the design, operation, and integration of microgrids. This includes the ability to separate from and reconnect to part of the utility grid while providing power to the islanded power system. This presentation addresses the industry need to develop standardized testing and evaluation procedures for microgrids in order to assure quality operation in the grid connected and islanded modes of operation.

  20. Portable NDA Equipment for Enrichment Measurements in the HEU Transparency Program

    SciTech Connect (OSTI)

    Decman, D J; Bandong, B B; Wong, J L; Valentine, J D; Luke, S J

    2008-06-02

    The Highly Enriched Uranium (HEU) Transparency Program has used portable nondestructive assay (NDA) equipment to measure the {sup 235}U enrichment of material subject to the transparency agreement since 1997. The equipment is based on the 'enrichment meter' method and uses low-resolution sodium iodide (NaI(Tl)) detectors. Although systems using high-purity germanium (HPGe) detectors can produce more accurate results we have found that the results with NaI(Tl) detectors are quite adequate for the requirements of the transparency agreement. This paper will describe the details of the equipment's operation, calibration, testing, and deployment in Russia. We will also provide a comparison of the units originally deployed in 1997 with the upgraded systems that were deployed in 2003.