Powered by Deep Web Technologies
Note: This page contains sample records for the topic "industrial energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Analysis of the Energy Intensity of Industries in California  

NLE Websites -- All DOE Office Websites (Extended Search)

of the Energy Intensity of Industries in California Title Analysis of the Energy Intensity of Industries in California Publication Type Conference Proceedings Year of Publication...

2

Analysis and Decomposition of the Energy Intensity of Industries in  

NLE Websites -- All DOE Office Websites (Extended Search)

and Decomposition of the Energy Intensity of Industries in and Decomposition of the Energy Intensity of Industries in California Title Analysis and Decomposition of the Energy Intensity of Industries in California Publication Type Journal Article Year of Publication 2012 Authors de la du Can, Stephane Rue, Ali Hasanbeigi, and Jayant A. Sathaye Journal Energy Policy Volume 46 Pagination 234-245 Keywords california, co2 emissions, energy intensity, energy use Abstract In 2008, the gross domestic product (GDP) of California industry was larger than GDP of industry in any other U.S. states. This study analyses the energy use of and output from seventeen industry subsectors in California and performs decomposition analysis to assess the influence of different factors on California industry energy use. The logarithmic mean Divisia index method is used for the decomposition analysis. The decomposition analysis results show that the observed reduction of energy use in California industry since 2000 is the result of two main factors: the intensity effect and the structural effect. The intensity effect has started pushing final energy use downward in 2000 and has since amplified. The second large effect is the structural effect. The significant decrease of the energy-intensive "Oil and Gas Extraction" subsector's share of total industry value added, from 15% in 1997 to 5% in 2008, and the increase of the non-energy intensive "Electric and electronic equipment manufacturing" sector's share of value added, from 7% in 1997 to 30% in 2008, both contributed to a decrease in the energy intensity in the industry sector

3

Energy use and intensity in the industrial sector, 1972 - 1991  

SciTech Connect

Energy use in the United States is substantially lower now than it would have been had energy intensities not fallen after the oil price shocks of the 1970s. The United States would have consumed over 30 quadrillion Btu (QBtu) more energy in 1991 if the energy-GDP ratio (energy divided by gross domestic product) had remained at its 1972 value. Much of this improvement has stemmed from developments within the industrial sector. This paper examines industrial energy use from two perspectives. First, the contribution of the industrial sector to the decline in the overall energy-GDP ratio is estimated. Second, the components of change in conservation trends within the industrial sector are examined. This part of the analysis identifies the change in overall industrial intensity (total energy consumption/total industrial output) that is due to improvements in energy intensity at the individual industry level in comparison to various aspects of the composition of industrial output. This paper is based upon recent work conducted by Pacific Northwest Laboratory for the Office of Energy Efficiency and Alternative Fuels Policy, U.S. Department of Energy. Discussion of other end-use sectors and some additional analysis of industrial sector energy trends is found in Energy Conservation Trends - Understanding the Factors Affecting Conservation Gains and their Implications for Policy Development.

Belzer, D.B.

1995-08-01T23:59:59.000Z

4

Climate Policy Design for Energy-Intensive Industries - And The...  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Policy Design for Energy-Intensive Industries - And The Rest of Us Speaker(s): Holmes Hummel Date: January 8, 2009 - 12:00pm Location: 90-3122 Seminar HostPoint of...

5

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

Energy Use in the Steel Industry. Brussels: IISI. Worrell,1998. Energy Use in the Steel Industry. Brussels: IISI. 2.2.1998. Energy Use in the Steel Industry. Brussels: IISI. Best

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

6

Energy Use and Energy Intensity of the U.S. Chemical Industry | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Intensity of the U.S. Chemical Industry Intensity of the U.S. Chemical Industry Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

7

Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)  

Reports and Publications (EIA)

For the industrial sector, EIAs analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8 percent of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9 percent of annual operating cost, previously have received somewhat less attention, however. In AEO2006, energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50 percent of the projected increase in industrial natural gas consumption from 2004 to 2030.

Information Center

2007-03-11T23:59:59.000Z

8

Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries  

SciTech Connect

This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 ?m) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

2006-11-14T23:59:59.000Z

9

Energy Use and Energy Intensity of the U.S. Chemical Industry...  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR Partner Resources You are here Home Buildings & Plants Energy Use and Energy Intensity of the U.S. Chemical Industry Secondary menu About us Press room Contact...

10

The cement industry is the most energy intensive of all ...  

U.S. Energy Information Administration (EIA)

Today in Energy July 1, 2013.. ... tags: consumption industrial manufacturing. Email Updates. RSS Feeds. Facebook. Twitter. YouTube. Add us to your site.

11

Energy use and energy intensity of the U.S. chemical industry  

SciTech Connect

The U.S. chemical industry is the largest in the world, and responsible for about 11% of the U.S. industrial production measured as value added. It consumes approximately 20% of total industrial energy consumption in the U.S. (1994), and contributes in similar proportions to U.S. greenhouse gas emissions. Surprisingly, there is not much information on energy use and energy intensity in the chemical industry available in the public domain. This report provides detailed information on energy use and energy intensity for the major groups of energy-intensive chemical products. Ethylene production is the major product in terms of production volume of the petrochemical industry. The petrochemical industry (SIC 2869) produces a wide variety of products. However, most energy is used for a small number of intermediate compounds, of which ethylene is the most important one. Based on a detailed assessment we estimate fuel use for ethylene manufacture at 520 PJ (LHV), excluding feedstock use. Energy intensity is estimated at 26 GJ/tonne ethylene (LHV), excluding feedstocks.The nitrogenous fertilizer production is a very energy intensive industry, producing a variety of fertilizers and other nitrogen-compounds. Ammonia is the most important intermediate chemical compound, used as basis for almost all products. Fuel use is estimated at 268 PJ (excluding feedstocks) while 368 PJ natural gas is used as feedstock. Electricity consumption is estimated at 14 PJ. We estimate the energy intensity of ammonia manufacture at 39.3 GJ/tonne (including feedstocks, HHV) and 140 kWh/tonne, resulting in a specific primary energy consumption of 40.9 GJ/tonne (HHV), equivalent to 37.1 GJ/tonne (LHV). Excluding natural gas use for feedstocks the primary energy consumption is estimated at 16.7 GJ/tonne (LHV). The third most important product from an energy perspective is the production of chlorine and caustic soda. Chlorine is produced through electrolysis of a salt-solution. Chlorine production is the main electricity consuming process in the chemical industry, next to oxygen and nitrogen production. We estimate final electricity use at 173 PJ (48 TWh) and fuel use of 38 PJ. Total primary energy consumption is estimated at 526 PJ (including credits for hydrogen export). The energy intensity is estimated at an electricity consumption of 4380 kWh/tonne chlorine and fuel consumption of 3.45 GJ/tonne chlorine, where all energy use is allocated to chlorine production. Assuming an average power generation efficiency of 33% the primary energy consumption is estimated at 47.8 GJ/tonne chlorine (allocating all energy use to chlorine).

Worrell, E.; Phylipsen, D.; Einstein, D.; Martin, N.

2000-04-01T23:59:59.000Z

12

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

An ENERGY STAR ® Guide for Energy and Plant Managers.An ENERGY STAR ® Guide for Energy and Plant Managers.

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

13

Energy use and energy intensity of the U.S. chemical industry  

E-Print Network (OSTI)

of Chlorine Making US energy statistics only report energya weighted-average US energy intensity. The intensity valuesProcess Stage The US Manufacturing Energy Consumption survey

Worrell, Ernst; Phylipsen, Dian; Einstein, Dan; Martin, Nathan

2000-01-01T23:59:59.000Z

14

Industrial Technologies Program Research Plan for Energy-Intensive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and deployment in 2009 and beyond. Technology investments fall under one of four technology platforms: * Industrial Reactions and Separations-New technologies with...

15

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

Industry. Brussels: IISI. The best practice coke plant isa modern coke plant using standard technology, includingspeed drives on motors and fans. Coke dry quenching saves an

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

16

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

cracking and alternative processes,” Energy 31 (2006), pp.cracking and alternative processes,” Energy 31 (2006), pp.cracking and alternative processes,” Energy 31 (2006), pp.

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

17

Glass manufacturing is an energy-intensive industry mainly ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... There is substantial potential for energy efficiency improvements in glass manufacturing. Estimates range from ...

18

Energy use and carbon dioxide emissions in energy-intensive industries in key developing countries  

E-Print Network (OSTI)

rotary) Brazil China India Mexico Energy and Carbon Dioxideenergy intensity values for Brazil, China, India, and Mexico,energy intensity values for Brazil, China, India and Mexico,

Price, Lynn; Worrell, Ernst; Phylipsen, Dian

1999-01-01T23:59:59.000Z

19

Glass manufacturing is an energy-intensive industry mainly fueled ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium.

20

The cement industry is the most energy intensive of all ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium.

Note: This page contains sample records for the topic "industrial energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Climate Policy Design for Energy-Intensive Industries - And The Rest of Us  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Policy Design for Energy-Intensive Industries - And The Rest of Us Climate Policy Design for Energy-Intensive Industries - And The Rest of Us Speaker(s): Holmes Hummel Date: January 8, 2009 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Richard Diamond Driving the U.S. energy system toward climate stabilization requires integration of multiple policy instruments in a staged series of legislative and regulatory policy vehicles. Qualifying the limitations of a cap-and-trade approach, Dr. Hummel will present a framework for orienting and organizing a multi-faceted policy development process. After surveying key design recommendations for specific sectors, the presentation will drill deeper into the specific challenge of engaging energy-intensive industries subject to global competition. After briefly discussing some of

22

DE-AC03-76SF00098. Energy Use and Energy Intensity of the U.S. Chemical Industry  

E-Print Network (OSTI)

The U.S. chemical industry is the largest in the world, and responsible for about 11 % of the U.S. industrial production measured as value added. It consumes approximately 20 % of total industrial energy consumption in the U.S. (1994), and contributes in similar proportions to U.S. greenhouse gas emissions. Surprisingly, there is not much information on energy use and energy intensity in the chemical industry available in the public domain. This report provides detailed information on energy use and energy intensity for the major groups of energy-intensive chemical products. Ethylene production is the major product in terms of production volume of the petrochemical industry. The petrochemical industry (SIC 2869) produces a wide variety of products. However, most energy is used for a small number of intermediate compounds, of which ethylene is the most important one. Based on a detailed assessment we estimate fuel use for ethylene manufacture at 520 PJ (LHV), excluding feedstock use. Energy intensity is estimated at 26 GJ/tonne ethylene (LHV), excluding feedstocks. The nitrogenous fertilizer production is a very energy intensive industry, producing a variety of fertilizers and other nitrogen-compounds. Ammonia is the most important intermediate chemical

Ernst Worrell; Dian Phylipsen; Dan Einstein; Nathan Martin; Ernst Worrell; Dian Phylipsen; Dan Einstein; Nathan Martin

2000-01-01T23:59:59.000Z

23

World Best Practice Energy Intensity Values for SelectedIndustrial Sectors  

SciTech Connect

"World best practice" energy intensity values, representingthe most energy-efficient processes that are in commercial use in atleast one location worldwide, are provided for the production of iron andsteel, aluminium, cement, pulp and paper, ammonia, and ethylene. Energyintensity is expressed in energy use per physical unit of output for eachof these commodities; most commonly these are expressed in metric tonnes(t). The energy intensity values are provided by major energy-consumingprocesses for each industrial sector to allow comparisons at the processlevel. Energy values are provided for final energy, defined as the energyused at the production facility as well as for primary energy, defined asthe energy used at the production facility as well as the energy used toproduce the electricity consumed at the facility. The "best practice"figures for energy consumption provided in this report should beconsidered as indicative, as these may depend strongly on the materialinputs.

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky,Christina; Zhou, Nan

2007-06-05T23:59:59.000Z

24

Energy Intensities for the Iron and Steel Industry (1985-1994)  

U.S. Energy Information Administration (EIA)

national level data on energy intensity issues on household energy use in the residential sector, energy intensity issues on manufacturing energy use in the ...

25

Smart Grid as a Driver for Energy-Intensive Industries: A Data Center Case  

NLE Websites -- All DOE Office Websites (Extended Search)

Smart Grid as a Driver for Energy-Intensive Industries: A Data Center Case Smart Grid as a Driver for Energy-Intensive Industries: A Data Center Case Study Title Smart Grid as a Driver for Energy-Intensive Industries: A Data Center Case Study Publication Type Conference Paper LBNL Report Number LBNL-6104E Year of Publication 2012 Authors Ganti, Venkata, and Girish Ghatikar Conference Name Grid-Interop 2012 Date Published 12/2012 Conference Location Irving, TX Keywords data centers, market sectors, technologies Abstract The Smart Grid facilitates integration of supply- and demand-side services, allowing the end-use loads to be dynamic and respond to changes in electricity generation or meet localized grid needs. Expanding from previous work, this paper summarizes the results from field tests conducted to identify demand response opportunities in energy-intensive industrial facilities such as data centers. There is a significant opportunity for energy and peak-demand reduction in data centers as hardware and software technologies, sensing, and control methods can be closely integrated with the electric grid by means of demand response. The paper provides field test results by examining distributed and networked data center characteristics, end-use loads and control systems, and recommends opportunities and challenges for grid integration. The focus is on distributed data centers and how loads can be "migrated" geographically in response to changing grid supply (increase/decrease). In addition, it examines the enabling technologies and demand-response strategies of high performance computing data centers. The findings showed that the studied data centers provided average load shed of up to 10% with short response times and no operational impact. For commercial program participation, the load-shed strategies must be tightly integrated with data center automation tools to make them less resource-intensive.

26

U.S. Commercial Buildings Energy Intensity  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Commercial Buildings Energy Intensities > Table 5b

27

U.S. Commercial Buildings Energy Intensity  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Commercial Buildings Energy Intensities > Table 5a

28

U.S. Commercial Buildings Energy Intensity  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Commercial Buildings Energy Intensities > Table 7a

29

U.S. Commercial Buildings Energy Intensity  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Commercial Buildings Energy Intensities > Table7c

30

U.S. Commercial Buildings Energy Intensity  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Commercial Buildings Energy Intensities > Table 7b

31

Determinants of energy intensity in industrialized countries : a comparison of China and India  

E-Print Network (OSTI)

The amount of final energy per unit of economic output (usually in terms of gross domestic product, or GDP), known as energy intensity, is often used to measure the effectiveness of energy use and the consumption patterns ...

Huang, Feiya

2006-01-01T23:59:59.000Z

32

ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for energy-Intensive Processes (eIP) addresses the top technology opportunities to save energy and reduce carbon emissions across the industrial sector. the portfolio focuses the...

33

Comparison Study of Energy Intensity in the Textile Industry: A Case Study in Five Textile Sub-sectors  

E-Print Network (OSTI)

This paper contributes to the understanding of energy use in the textile industry by comparing the energy intensity of textile plants in five major sub-sectors, i.e. spinning, weaving, wet-processing, worsted fabric manufacturing, and carpet manufacturing in Iran. Results of the study showed that spinning plant electricity intensity varies between 3.6 MWh/tonne yarn and 6.6 MWh/tonne yarn, while fuel intensity ranges between 6.7 MBtu/tonne yarn and 11.7 MBtu/tonne yarn. In weaving plants, electricity intensity ranges from 1.2 MWh/tonne fabric to 2.2 MWh/tonne fabric, while fuel intensity was 10.1 MBtu/tonne fabric and 16.4 MBtu/tonne fabric for the two plants studied. In three wet-processing plants, the electricity intensity was found to be between 1.5 MWh/tonne finished fabric and 2.5 MWh/tonne finished fabric, while the fuel intensity was between 38.2 MBtu/tonne finished fabric and 106.3 MBtu/tonne finished fabric. In addition, some methodological issues to improve such energy intensity comparison analysis and benchmarking in the textile industry is discussed.

Hasanbeigi, A.

2011-01-01T23:59:59.000Z

34

Energy use and carbon dioxide emissions in energy-intensive industries in key developing countries  

E-Print Network (OSTI)

Structural Factors Affecting Energy Use and Carbon DioxideStructural Factors Affecting Energy Use and Carbon Dioxide

Price, Lynn; Worrell, Ernst; Phylipsen, Dian

1999-01-01T23:59:59.000Z

35

Energy-Efficiency Technologies and Benchmarking the Energy Intensity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy-Efficiency Technologies and Benchmarking the Energy Intensity for the Textile Industry Title Energy-Efficiency Technologies and Benchmarking the Energy Intensity for the...

36

Industrial Application of High Combustion Intensity Systems and Energy Conservation Implications  

E-Print Network (OSTI)

In the past decade industrial combustion technology has been advanced through adaptations of the equipment operating with dramatically reduced excess air requirements and use of air preheat techniques. The importance of operating industrial combustion equipment at stoichiometric conditions is emphasized. The calculated fuel savings resulting from elimination of excess air and use of heat recovery air preheat are reviewed. Design parameters for the aerodynamic design and control of the combustion process are quantified for vortex stabilized systems. Design analyses of the fuel injectors used with gaseous, liquid and pulverized coal fuels are also presented. The resulting high intensity combustion systems evolved are illustrated with photographs of flames in actual installations and during equipment development testing. Attention to detail in equipment manufacture and proper field adjustment of combustion equipment is essential in achieving the dramatic fuel savings that are possible.

Williams, F. D. M.; Anderson, L. E.

1982-01-01T23:59:59.000Z

37

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities >Table 7b Glossary U.S. Residential Housing Primary Energy Intensity

38

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities > Table 8b Glossary U.S. Residential Buildings Primary Energy Intensity

39

OECD energy intensity  

Science Conference Proceedings (OSTI)

to examine OECD countries' energy intensity levels (i.e., the ratio of energy ... steady-state or long-run distribution of energy intensity for the Organisation of ...

40

ENERGY STAR Challenge for Industry: Statement of Energy Improvement...  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge for Industry: Statement of Energy Improvement Use this form to document the energy intensity reduction of an industrial site that is participating in the ENERGY STAR...

Note: This page contains sample records for the topic "industrial energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Target Allocation Methodology for China's Provinces: Energy Intensity in the 12th FIve-Year Plan  

E-Print Network (OSTI)

economic energy intensity as an indicator for energy savingon industrial energy intensity as an indicator of savingsindustrial energy intensity as an indicator of savings

Ohshita, Stephanie

2011-01-01T23:59:59.000Z

42

Energy Intensity Strategy  

E-Print Network (OSTI)

Our presentation will cover how we began the journey of conserving energy at our facility. We’ll discuss a basic layout of our energy intensity plan and the impact our team has had on the process, what tools we’re using, what goals have been identified, how we structured the plan to include our team in the process and so on.

Rappolee, D.

2008-01-01T23:59:59.000Z

43

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities >Table 7a Glossary U.S. Residential Housing Primary Page Last Revised: July 2009

44

Home > Households, Buildings & Industry > Energy Efficiency ...  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Residential Buildings Energy Intensities > Table 4 Total Square Feet of U.S. Housing Units

45

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities > Table 5c Glossary U.S. Residential Housing Site Page Last Revised: July 2009

46

Industrial Energy Efficiency Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics The industrial sector is vital to the U.S. economy, but at the same time consumes the most energy in the country to manufacture products we use every day. Among the most energy-intensive industries are aluminum, chemicals, forest product, glass, metal casting, mining, petroleum refining, and steel. The energy supply chain begins with electricity, steam, natural gas, coal, and other fuels supplied to a manufacturing plant from off-site power plants, gas companies, and fuel distributors. Energy then flows to either a central energy generation utility system or is distributed immediately for direct use. Energy is then processed using a variety of highly energy-intensive systems, including steam, process heating, and

47

Policy modeling for industrial energy use  

E-Print Network (OSTI)

simple energy intensity is not a good indicator for energyEnergy Intensity in the Iron & Steel industry: A Comparison of Physical and Economic Indicators",energy efficiency in the Korean manufacturing sector, studies using economic energy efficiency indicators (energy intensity

2003-01-01T23:59:59.000Z

48

Outlook for Industrial Energy Benchmarking  

E-Print Network (OSTI)

The U.S. Environmental Protection Agency is exploring options to sponsor an industrial energy efficiency benchmarking study to identify facility specific, cost-effective best practices and technologies. Such a study could help develop a common understanding of opportunities for energy efficiency improvements and provide additional information to improve the competitiveness of U.S. industry. The EPA's initial benchmarking efforts will focus on industrial power facilities. The key industries of interest include the most energy intensive industries, such as chemical, pulp and paper, and iron and steel manufacturing.

Hartley, Z.

2000-04-01T23:59:59.000Z

49

Unlocking energy intensive habits  

NLE Websites -- All DOE Office Websites (Extended Search)

energy intensive habits energy intensive habits Presentation at LBL Oct 10, 2013 by Hal Wilhite Professor and Research Director University of Oslo Centre for Development and the Environment Source: WWF US EIA Outlook 2011 Conventional framing of the energy consumption and savings * Sovereign consumers * Economically rational and persistentely reflexive. * Uninfluenced by social and material conditions of everyday life * Focus on efficiency and not on size and volume which is for the most part treated as an indifferent variable Cognitive reductionism The change of frame * From individual to socio-material * From rational/reflexive experience-based (practical) knowledge * From efficiency to reduction A theory of habit * Acknowledges the role of lived experience (history, both cultural and personal) in forming

50

Energy Savings in Industrial Buildings  

E-Print Network (OSTI)

The industrial sector accounts for more than one-third of total energy use in the United States and emits 28.7 percent of the country’s greenhouse gases. Energy use in the industrial sector is largely for steam and process heating systems, and electricity for equipment such as pumps, air compressors, and fans. Lesser, yet significant, amounts of energy are used for industrial buildings – heating, ventilation, and air conditioning (HVAC), lighting and facility use (such as office equipment). Due to economic growth, energy consumption in the industrial sector will continue to increase gradually, as will energy use in industrial buildings. There is a large potential for energy saving and carbon intensity reduction by improving HVAC, lighting, and other aspects of building operation and technologies. Analyses show that most of the technologies and measures to save energy in buildings would be cost-effective with attractive rates of return. First, this paper will investigate energy performance in buildings within the manufacturing sector, as classified in the North American Industry Classification System (NAICS). Energy use patterns for HVAC and lighting in industrial buildings vary dramatically across different manufacturing sectors. For example, food manufacturing uses more electricity for HVAC than does apparel manufacturing because of the different energy demand patterns. Energy saving opportunities and potential from industrial buildings will also be identified and evaluated. Lastly, barriers for deployment of energy savings technologies will be explored along with recommendations for policies to promote energy efficiency in industrial buildings.

Zhou, A.; Tutterow, V.; Harris, J.

2009-05-01T23:59:59.000Z

51

Industrial Distributed Energy: Combined Heat & Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(DOE) (DOE) Industrial Technology Program (ITP) Industrial Distributed Energy: Combined Heat & Power (CHP) Richard Sweetser Senior Advisor DOE's Mid-Atlantic Clean Energy Application Center 32% Helping plants save energy today using efficient energy management practices and efficient new technologies Activities to spur widespread commercial use of CHP and other distributed generation solutions 10% Manufacturing Energy Systems 33% Industries of the Future R&D addressing top priorities in America's most energy-intensive industries and cross-cutting activities applicable to multiple industrial subsectors 25% Industrial Distributed Energy Industrial Technical Assistance DOE ITP FY'11 Budget: $100M Knowledge development and

52

Industrial Energy Efficiency Assessments  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Energy Efficiency Assessments Lynn Price Staff Scientist China Energy Group Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Industrial Energy Efficiency Assessments - Definition and overview of key components - International experience - Chinese situation and recommendations - US-China collaboration Industrial Energy Efficiency Assessments - Analysis of the use of energy and potential for energy efficiency in an industrial facility * Current situation * Recommendations for improving energy efficiency * Cost-benefit analysis of recommended options * An action plan for realizing potential savings Types of Industrial Energy Efficiency Assessments - Preliminary or walk-through - Detailed or diagnostic Audit criteria

53

energy intensity | OpenEI  

Open Energy Info (EERE)

intensity intensity Dataset Summary Description Energy intensity data and documentation published by the U.S. DOE's office of Energy Efficiency and Renewable Energy (EERE). Energy intensity is defined as: amount of energy used in producing a given level of output or activity; expressed as energy per unit of output. This is the energy intensity of the the electricity sector, which is an energy consuming sector that generates electricity. Data are organized to separate electricity-only generators from combined heat and power (CHP) generators. Data is available for the period 1949 - 2004. Source EERE Date Released May 31st, 2006 (8 years ago) Date Updated Unknown Keywords Electricity Energy Consumption energy intensity fossil fuels renewable energy Data application/vnd.ms-excel icon electricity_indicators.xls (xls, 2.1 MiB)

54

High-Intensity Discharge Industrial Lighting Design Strategies for the Minimization of Energy Usage and Life-Cycle Cost.  

E-Print Network (OSTI)

??Worldwide, the electrical energy consumed by artificial lighting is second only to the amount consumed by electric machinery. Of the energy usage attributed to lighting… (more)

Flory IV, Isaac L.

2008-01-01T23:59:59.000Z

55

U.S. Residential Housing Weather-Adjusted Site Energy Intensity  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities >Table 6b U.S. Residential Housing Weather-Adjusted Site Energy Intensity

56

EIA - International Energy Outlook 2009-Industrial Sector Energy...  

Annual Energy Outlook 2012 (EIA)

and 2030 Figure 65. World Industrial Sector Energy Consumption by Major Energy-Intensive Industry Shares, 2005 Figure 66. OECD and Non-OECD Major Steel Producers, 2007 Figure 67....

57

Industrial energy efficiency policy in China  

E-Print Network (OSTI)

Economic Indicators," Energy Policy 25(7'-9): 727-744. X u ,Best Practice Energy Policies in the Industrial Sector, Mayand Intensity Change," Energy Policy 22(3): Sinton, J.E.

Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

2001-01-01T23:59:59.000Z

58

ENERGY STAR Challenge for Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge Challenge for Industry Professional Engineers' Guide for Validating Statements of Energy Improvement Office of Air and Radiation Climate Protection Partnerships Division May 2013 Revised ii Introduction The U.S. Environmental Protection Agency's (U.S. EPA) ENERGY STAR program provides guidance, tools, and recognition to help companies improve their energy performance. ENERGY STAR is a voluntary partnership program that companies choose to join. Through ENERGY STAR, U.S. EPA offers a number of forms of recognition for achievements in energy efficiency. The ENERGY STAR Challenge for Industry recognizes individual industrial sites for achieving a 10 percent reduction in energy intensity within 5 years from the conclusion of an established baseline. To be

59

Opportunities to Reduce Energy and Water Intensity of Mining ...  

Science Conference Proceedings (OSTI)

Presentation Title, Opportunities to Reduce Energy and Water Intensity of Mining ... bearing on the value of mining projects and the image of the mining industry; ...

60

Industrial | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report . Market Trends Despite a 54-percent increase in industrial shipments, industrial energy...

Note: This page contains sample records for the topic "industrial energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Oklahoma Industrial Energy Management Program  

E-Print Network (OSTI)

The need for sound energy management is no longer worthy of debate. Action is necessary and much is being done by U.S. industry. Unfortunately, however, the majority of the work is being done by the few large energy intensive industries throughout the country. The average small to medium sized company has yet to undertake a dedicated program. The reasons are numerous, but often it is simply because of a lack of knowledge of techniques or the amount of savings possible. Recognizing this, the Oklahoma Department of Energy designed a program to acquaint Oklahoma industry with the potential savings available through energy management and some basic techniques. The program is entitled "Oklahoma Industrial Energy Management Program" and is housed at Oklahoma State University. The program is funded by the U. S. Department of Energy through the State Energy Conservation Plan. This paper describes the program offerings, impact to date and plans for the future. The program offerings basically include: 1. A series of tuition free Industrial Energy Management Conferences (over 20 given to date involving many Oklahoma industries). 2. A free energy newsletter entitled "Energy Channel" mailed to all participating Oklahoma industries. 3. A series of Energy Audit booklets including instructions and forms. 4. Technical aid on a limited basis. 5. A series of laboratory type experiments involving power factor, solar energy, boiler combustion improvement and other energy related projects. 6. Fact sheet publication as the need develops. Plans for the future include expansion of the program to small businesses in general through the Energy Extension Service and more technical aid to participating industries, The basic plan involving the services above shall remain intact. The program has been very successful to date. The results are directly transferable to other states and the program directors are willing to share information.

Turner, W. C.; Webb, R. E.; Phillips, J. M.; Viljoen, T. A.

1979-01-01T23:59:59.000Z

62

Assumptions to the Annual Energy Outlook 2002 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated

63

U.S. Commercial Buildings Energy Intensity  

U.S. Energy Information Administration (EIA)

Energy Efficiency > Commercial Buildings Energy Intensities > Table 6a. U.S. Commercial Buildings Energy

64

China's Industrial Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

China's Industrial Energy China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy- Saving Program and the Ten Key Energy-Saving Projects Jing Ke, Lynn Price, Stephanie Ohshita, David Fridley, Nina Khanna, Nan Zhou, Mark Levine China Energy Group Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Reprint version of journal article published in "Energy Policy", Volume 50, Pages 562-569, November 2012 October 2012 This work was supported by the China Sustainable Energy Program of the Energy Foundation through the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

65

California Industrial Energy Efficiency Potential  

E-Print Network (OSTI)

The Potential for Energy Efficiency. Prepared for The EnergyIndustrial Sector Energy Efficiency Potential Study - DraftIndustrial Energy Efficiency Market Characterization Study.

Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; Rafael Friedmann; Rufo, Mike

2005-01-01T23:59:59.000Z

66

Industrial energy management | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify...

67

A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.  

E-Print Network (OSTI)

indicators of steel sector energy efficiency and intensity.Energy intensity in the iron and steel industry: a comparison of physical and economic indicators,”

Hasanbeigi, Ali

2012-01-01T23:59:59.000Z

68

Process Energy Audit for Large Industries  

E-Print Network (OSTI)

This paper discusses the author's approach to energy audits of large industries. Five large industrial segments, with energy intensive processes have been selected as examples. Items include: 1) the general methodology of conducting comprehensive industrial energy audit, 2) how one can identify energy efficiency opportunities, and 3) illustrate a few case study examples of energy conservation measures implemented in some of the industries, and 4) the importance of quality assurance/quality control in an energy audit. I will restrict this discussion to only electrical energy audit.

Chari, S.

1993-03-01T23:59:59.000Z

69

EIA - International Energy Outlook 2009-Industrial Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Industrial Sector Energy Consumption Industrial Sector Energy Consumption International Energy Outlook 2009 Chapter 6 - Industrial Sector Energy Consumption Worldwide industrial energy consumption increases by an average of 1.4 percent per year from 2006 to 2030 in the IEO2009 reference case. Much of the growth is expected to occur in the developing non-OECD nations. Figure 63. OECD and Non-OECD Industrial Sector Energy Consumption, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 64. World Industrial Sector Energy Consumption by Fuel, 2006 and 2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 65. World Industrial Sector Energy Consumption by Major Energy-Intensive Industry Shares, 2005 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800.

70

Changes in Energy Intensity 1985-1991  

Annual Energy Outlook 2012 (EIA)

Information Administration Home Page. Home > Energy Users > Manufacturing > Changes in Energy Intensity Changes in Energy Intensity 1985-1991 Overview Full Report The focus is...

71

Award Recipient of the ENERGY STAR Challenge for Industry Gustine...  

NLE Websites -- All DOE Office Websites (Extended Search)

the ENERGY STAR Challenge for Industry in 2010. This plant reached 12% reduction in energy intensity within two years of its baseline. The Gustine Plant achieved the...

72

Manufacturing sector carbon dioxide emissions in nine OECD countries 1973--87: A Divisia index decomposition to changes in fuel mix, emission coefficients, industry structure, energy intensities, and international structure  

DOE Green Energy (OSTI)

In this paper the reduction in energy-related manufacturing carbon dioxide emissions for nine OECD countries in the period 1973 to 1987 is analyzed. Carbon dioxide emissions are estimated from energy use data. The emphasis is on carbon dioxide intensities, defined as emissions divided by value added. The overall manufacturing carbon dioxide intensity for the nine OECD countries was reduced by 42% in the period 1973--1987. Five fuels are specified together with six subsectors of manufacturing. Carbon dioxide emissions are estimated from fossil fuel consumption, employing emissions coefficients for gas, oil and solids. In addition, electricity consumption is specified. For electricity use an emission coefficient index is calculated from the shares of fossil fuels, nuclear power and hydro power used to generate electricity, and the efficiency in electricity generation from these energy sources. A Divisia index approach is used to sort out the contribution to reduced carbon dioxide intensity from different components. The major finding is that the main contribution to reduced carbon dioxide intensity is from the general reduction in manufacturing energy intensity, most likely driven by economic growth and increased energy prices, giving incentives to invest in new technology and new industrial processes. There is also a significant contribution from reduced production in the most carbon dioxide intensive subsectors, and a contribution from higher efficiency in electricity generation together with a larger nuclear power share at the expense of oil. 19 refs., 5 figs., 11 tabs.

Torvanger, A. (Senter for Anvendt Forskning, Oslo (Norway) Lawrence Berkeley Lab., CA (USA))

1990-11-01T23:59:59.000Z

73

Intense low energy positron beams  

Science Conference Proceedings (OSTI)

Intense positron beams are under development or being considered at several laboratories. Already today a few accelerator based high intensity, low brightness e{sup +} beams exist producing of the order of 10{sup 8} {minus} 10{sup 9} e{sup +}/sec. Several laboratories are aiming at high intensity, high brightness e{sup +} beams with intensities greater than 10{sup 9} e{sup +}/sec and current densities of the order of 10{sup 13} {minus} 10{sup 14} e{sup +} sec{sup {minus}} {sup 1}cm{sup {minus}2}. Intense e{sup +} beams can be realized in two ways (or in a combination thereof) either through a development of more efficient B{sup +} moderators or by increasing the available activity of B{sup +} particles. In this review we shall mainly concentrate on the latter approach. In atomic physics the main trust for these developments is to be able to measure differential and high energy cross-sections in e{sup +} collisions with atoms and molecules. Within solid state physics high intensity, high brightness e{sup +} beams are in demand in areas such as the re-emission e{sup +} microscope, two dimensional angular correlation of annihilation radiation, low energy e{sup +} diffraction and other fields. Intense e{sup +} beams are also important for the development of positronium beams, as well as exotic experiments such as Bose condensation and Ps liquid studies.

Lynn, K.G.; Jacobsen, F.M.

1993-12-31T23:59:59.000Z

74

Energy Efficiency Fund (Electric) - Commercial and Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Energy Efficiency Programs Energy Efficiency Fund (Electric) - Commercial and Industrial Energy Efficiency Programs Eligibility Commercial Industrial...

75

Industrial Distributed Energy: Combined Heat & Power | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Distributed Energy: Combined Heat & Power Industrial Distributed Energy: Combined Heat & Power Information about the Department of Energy's Industrial Technologies...

76

Assumptions to the Annual Energy Outlook 2000 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The energy-intensive industries are modeled through the use of a detailed process flow accounting procedure, whereas the nonenergy-intensive and the nonmanufacturing industries are modeled with substantially less detail (Table 14). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated by using the SEDS24 data.

77

Industrial Energy Procurement Contracts  

E-Print Network (OSTI)

Rates are going down and services are improving! Or are they? As opportunities to directly contract for energy expand from the larger industrials to include mid-market companies, existing energy supply and service contracts will be renegotiated and new ones developed. Many of these mid-level industrial customers typically lack in-house expertise on energy procurement, yet their operations use significant amounts of energy. This paper looks at some of the issues involved in the main terms of a procurement contract, as well as issues in contract formation and termination. Finally the paper reviews some of the recent energy aggregation and outsourcing deals to highlight some that worked and some that didn't.

Thompson, P.; Cooney, K.

2000-04-01T23:59:59.000Z

78

Industrial Energy Use and Energy Efficiency in Developing Countries  

E-Print Network (OSTI)

The industrial sector accounts for over 50% of energy used in developing countries. Growth in this sector has been over 4.5% per year since 1980. Energy intensity trends for four energy-intensive sub-sectors (iron and steel, chemicals, building materials, and pulp and paper) are reviewed. Scenarios of future industrial sector energy use in developing countries show that this region will dominate world industrial energy use in 2020. Growth is expected to be about 3.0% per year in a business-as-usual case, but can be reduced using state-of-the art or advanced technologies. Polices to encourage adoption of these technologies are briefly discussed.

Price, L.; Martin, N.; Levine, M. D.; Worrell, E.

1996-04-01T23:59:59.000Z

79

Solar energy industry survey  

SciTech Connect

This report describes the results of a survey of companies in the solar energy industry. The general objective of the survey was to provide information to help evaluate the effectiveness of technology transfer mechanisms for the development of the solar industry. The specific objectives of the survey included: (1) determination of the needs of the solar industry; (2) identification of special concerns of the solar industry; and (3) determination of the types of technology transfer mechanisms that would be most helpful to the solar industry in addressing these needs and concerns. The major focus was on technical problems and developments, but institutional and marketing considerations were also treated. The majority of the sample was devoted to the solar heating and cooling (SHAC) component of the industry. However, a small number of photovoltaic (PV), wind, and power generation system manufacturers were also surveyed. Part I discusses the methodology used in the selection, performance, and data reduction stages of the survey, comments on the nature of the responses, and describes the conclusions drawn from the survey. The latter include both general conclusions concerning the entire solar industry, and specific conclusions concerning component groups, such as manufacturers, architects, installers, or dealers. Part II consists of tabulated responses and non-attributed verbatim comments that summarize and illustrate the survey results.

1979-08-06T23:59:59.000Z

80

Green Energy Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Energy Industries Inc Jump to: navigation, search Name Green Energy Industries Inc Sector Marine and Hydrokinetic Website http:http:www.gecorpusa.co Region United States...

Note: This page contains sample records for the topic "industrial energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

California Solar Energy Industries Association | Open Energy...  

Open Energy Info (EERE)

Name California Solar Energy Industries Association Place Rio Vista, California Zip 94571 Sector Solar Product California Solar Energy Industries Association is a trade group...

82

Millennium Energy Industries | Open Energy Information  

Open Energy Info (EERE)

Industries Jump to: navigation, search Name Millennium Energy Industries Place Jordan Zip 1182 Sector Solar Product Jordan-based solar energy firm focused in MENA region....

83

Energy intensity in China's iron and steel sector  

E-Print Network (OSTI)

In this study, I examine the spatial and economic factors that influence energy intensity in China's iron and steel sector, namely industrial value added, renovation investment, coke consumption, and local coke supply. ...

Xu, Jingsi, M.C.P. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

84

Knowledge-Intensive Work in the Oil and Gas Industry  

E-Print Network (OSTI)

Knowledge-Intensive Work in the Oil and Gas Industry: A Case Study Thesis for the degree collaborative work practices within a large international oil and gas company (OGC). The work is founded empirical findings, we argue that in knowledge-intensive, interdisciplinary work such as oil and gas

Langseth, Helge

85

Industrial Energy Use Indices  

E-Print Network (OSTI)

Energy use indices and associated coefficients of variation are computed for major industry categories for electricity and natural gas use in small and medium-sized plants in the U.S. Standard deviations often exceed the average EUI for an energy type, with coefficients of variation averaging 290% for 8,200 plants from all areas of the continental U.S. Data from milder climates appears more scattered than that from colder climates. For example, the ratio of the average of coefficient of variations for all industry types in warm versus cold regions of the U.S. generally is greater than unity. Data scatter may have several explanations, including climate, plant area accounting, the influence of low cost energy and low cost buildings used in the south of the U.S. This analysis uses electricity and natural gas energy consumption and area data of manufacturing plants available in the U.S. Department of Energy’s national Industrial Assessment Center database.

Hanegan, A.; Heffington, W. M.

2007-01-01T23:59:59.000Z

86

Industrial Technologies - Energy Innovation Portal  

Industrial Technologies Marketing Summaries Here you’ll find marketing summaries of industrial technologies available for licensing from U.S. Department of Energy ...

87

AMO Industrial Distributed Energy: Partnerships  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

energy efficiency by 2020. The Industrial Energy EfficiencyCombined Heat & Power Working Group is developing a number of resources. News Energy Department Invests in...

88

California Industrial Energy Efficiency Potential  

E-Print Network (OSTI)

sponsored avoided cost studies, energy efficiency programat various costs is with energy efficiency supply curves.Energy Efficiency in Industry Table 4 summarizes the benefit-cost

Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; Rafael Friedmann; Rufo, Mike

2005-01-01T23:59:59.000Z

89

THE DEVELOPMENT OF A 1990 INDUSTRIAL ENERGY USE BASELINE  

E-Print Network (OSTI)

to determine total energy consumption for that industry. However, if specific energy intensities per unit consumption, and emissions generated by energy consumption, a comprehensive, baseline data set of industrial branches of Canadian industry, forms the goal of this report. An adequate baseline energy consumption

90

U.S. energy intensity projected to continue its steady decline ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil ... Energy use in homes, ... the role of energy-intensive industries in the United States declined with continuing structural changes ...

91

EIA - Assumptions to the Annual Energy Outlook 2008 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2008 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 21 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module projects energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region projection using the SEDS1 data.

92

Iron and Steel Energy Intensities  

U.S. Energy Information Administration (EIA) Indexed Site

If you are having trouble, call 202-586-8800 for help. Home > >Energy Users > Energy Efficiency Page > Iron and Steel Energy Intensities First Use of Energy Blue Bullet First Use/Value of Production Blue Bullet First Use/Ton of steel End Uses of Consumption Blue Bullet Total End Use/Value of Production Blue Bullet Total End Use/Ton of Steel Boiler Fuel as End Use Blue Bullet Boiler Fuel /Value of Production Blue Bullet Boiler Fuel /Ton of Steel Process Heating as End Use Blue Bullet Process Heating Fuel /Ton of Steel Blue Bullet Process Heating /Value of Production Machine Drive as End Use Blue Bullet Machine Drive Fuel/Ton of Steel Blue Bullet Machine Drive Fuel /Value of Production Expenditures Blue Bullet Purchased Fuel /Ton of Steel Blue Bullet Purchased Fuel /Value of Production

93

Industrial Energy Management and Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management and Standards Industrial Energy Management and Standards Industrial Energy Management and Standards Industrial Energy Management and Standards More Documents &...

94

Energy Efficiency Fund (Gas) - Commercial and Industrial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas) - Commercial and Industrial Energy Efficiency Programs Energy Efficiency Fund (Gas) - Commercial and Industrial Energy Efficiency Programs Eligibility Commercial Industrial...

95

A Comparison of Iron and Steel Production Energy Use and Energy Intensity  

NLE Websites -- All DOE Office Websites (Extended Search)

A Comparison of Iron and Steel Production Energy Use and Energy Intensity A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S. Title A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S. Publication Type Report Year of Publication 2011 Authors Hasanbeigi, Ali, Lynn K. Price, Nathaniel T. Aden, Zhang Chunxia, Li Xiuping, and Shangguan Fangqin Date Published June/2011 Publisher Lawrence Berkeley National Laboratory; Iron & Steel Research Institute, Iron and Steel Industry Keywords energy intensity, energy use, Low Emission & Efficient Industry Abstract Production of iron and steel is an energy-intensive manufacturing process. In 2006, the iron and steel industry accounted for 13.6% and 1.4% of primary energy consumption in China and the U.S., respectively (U.S. DOE/EIA, 2010a; Zhang et al., 2010). The energy efficiency of steel production has a direct impact on overall energy consumption and related carbon dioxide (CO2) emissions. The goal of this study is to develop a methodology for making an accurate comparison of the energy intensity (energy use per unit of steelproduced) of steel production. The methodology is applied to the steel industry in China and the U.S. The methodology addresses issues related to boundary definitions, conversion factors, and indicators in order industry energy use to develop a common framework for comparing steel intensity energy use.

96

EIA - Assumptions to the Annual Energy Outlook 2009 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2009 Industrial Demand Module Table 6.1. Industry Categories. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version Table 6.2.Retirement Rates. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process flow or end use accounting

97

Industry, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Industry, California: Energy Resources (Redirected from Industry, CA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.0197335, -117.9586754 Loading map......

98

Current and future industrial energy service characterizations  

DOE Green Energy (OSTI)

Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

1980-10-01T23:59:59.000Z

99

ENERGY STAR Challenge for Industry | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR plant certification ENERGY STAR Challenge for Industry See who has taken the Challenge See who has achieved the Challenge See who is promoting the Challenge ENERGY...

100

Success stories: Industrial energy management | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

stories Production Strategy Saves Money & Energy: Eastman Chemical Company Related resources Guidelines for Energy Management Energy guides Industrial service and product providers...

Note: This page contains sample records for the topic "industrial energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Industries in focus | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR Energy Performance Indicators for plants Industries in focus Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers...

102

NREL: Energy Storage - Industry Participants  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Participants NREL's energy storage project is funded by the DOE's Vehicle Technologies Office. We work closely with automobile manufacturers, energy storage developers,...

103

Industrial Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Facilities Industrial Facilities Industrial Facilities October 8, 2013 - 10:14am Addthis The Federal Energy Management Program (FEMP) encourages Federal agencies requiring assistance with implementing energy-efficiency measures in their industrial facilities to hire a U.S. Department of Energy Industrial Assessment Center (IAC) for assessment services. The following resources can be used to plan and implement industrial facility energy-efficiency projects. Technical Publications: The Advanced Manufacturing Office (AMO) website offers fact sheets, handbooks, and self-assessment manuals covering steam system efficiency, fundamentals of compressed air systems, motor systems management, and other topics. Tools: The AMO website offers valuable software tools for evaluating

104

Energy productivity in the industrial sector: an econometric analysis  

SciTech Connect

Energy productivity and energy intensity within the industrial sector of the economy are examined. Results suggest that relative prices and other economic factors can explain much of the variation in both energy productivity and energy intensity for manufacturing and mining and for the industrial sector as a whole. Cyclical factors, seasonal factors and trend variables are also useful in explaining variation in these data, both for annual and monthly time series. Of the variables examined, it appears that the relative price of energy is a highly significant factor in accounting for the difference between actual industrial energy intensity and that which might have been expected had pre-1973 trends continued.

Roop, J.M.

1983-01-01T23:59:59.000Z

105

Industrial Energy Audit Guidebook: Guidelines for Conducting...  

Open Energy Info (EERE)

Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities Jump to: navigation, search Name Industrial Energy Audit Guidebook: Guidelines...

106

U.S. Commercial Buildings Energy Intensity  

U.S. Energy Information Administration (EIA)

Energy Efficiency > Commercial Buildings Energy Intensities > Table 6b . ... Warehouse and Storage 42: 38 45: Other: 3. 154: 170 163: Vacant 28: 21 21: Total ...

107

U.S. Commercial Buildings Energy Intensity  

U.S. Energy Information Administration (EIA)

Table 7c. U.S. Commercial Buildings Energy Intensity Using Primary Energy 1 by Census Region and Principal Building Activity, 1992-1999 (Million Btu per Worker)

108

Aggregating physical intensity indicators: results of applying the composite indicator approach to the Canadian industrial sector  

E-Print Network (OSTI)

Issues surrounding the development, application and interpretation of energy intensity indicators are a continuing source of debate in the field of energy policy analysis. Although economic energy intensity indicators still dominate intensity/efficiency studies, the use of physical energy intensity indicators is on the rise. In the past, physical energy intensity indicators were not employed since it was often impossible to develop aggregate (sector-level or nation-wide) measures of physical energy intensity due to the difficulties associated with adding diverse physical products. This paper presents the results of research conducted specifically to address this ‘‘aggregation’ ’ problem. The research focused on the development of the Composite Indicator Approach, a simple, practical, alternative method for calculating aggregate physical energy intensity indicators. In this paper, the Composite Indicator Approach is used to develop physical energy intensity indicators for the Canadian industrial and manufacturing sectors, and is then compared to other existing methods of aggregation. The physical composite indicators developed using this approach are also evaluated in terms of their reliability and overall usefulness. Both comparisons suggest that the Composite Indicator Approach can be a useful, and ultimately suitable, way of addressing the aggregation problem typically associated with heterogeneous sectors of the economy. r

Mallika N; John Nyboer; Mark Jaccard

1999-01-01T23:59:59.000Z

109

Transforming the Oil Industry into the Energy Industry  

E-Print Network (OSTI)

innovation and lets industry pick winning technologies. TheTransforming the Oil Industry intothe Energy Industry BY DANIEL SPERLING AND SONIA YEH A C C E

Sperling, Daniel; Yeh, Sonia

2009-01-01T23:59:59.000Z

110

Oklahoma Industrial Energy Management Program  

E-Print Network (OSTI)

In Oklahoma, industry consumes about 35% of the total energy consumed. While it is true that much work has been done in the larger companies, most small to medium sized companies have yet to undertake a substantial energy management program. Often they simply do not understand the savings possible or the techniques available. Recognizing this, a program was developed to acquaint Oklahoma industry with the potential savings allowable through energy management techniques. The program is entitled 'Oklahoma Industrial Energy; Management Program' and is located at Oklahoma State University. This paper describes past, on-going, and proposed activities of this Program and assesses their impact. Included are industrial energy management conferences, closed circuit television short courses on selected energy management topics, energy auditing, industrial energy audits (through the Oklahoma Energy Analysis and Diagnostic Center) , energy and water management research, and two courses currently being offered.

Turner, W. C.; Estes, C. B.

1982-01-01T23:59:59.000Z

111

Characterizing emerging industrial technologies in energy models  

E-Print Network (OSTI)

level of capital and energy intensity and the existing costchoice of energy-intensity for new capital installed in each

Laitner, John A. Skip; Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

2003-01-01T23:59:59.000Z

112

Industrial Technologies Success Stories - Energy Innovation Portal  

Bookmark Industrial Technologies Success Stories - Energy Innovation Portal on Google; Bookmark Industrial Technologies Success Stories ...

113

Industrial energy-efficiency-improvement program  

SciTech Connect

Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

1980-12-01T23:59:59.000Z

114

Industrial Geospatial Analysis Tool for Energy Evaluation  

E-Print Network (OSTI)

IGATE-E is an industrial energy analysis tool. The tool is intended to be a decision support and planning tool to a wide spectrum of energy analysts, engineers, researchers, government organizations, private consultants, industry partners, and alike. The tool applies statistical modeling to multiple datasets and provides information at the geospatial resolution of zip code using bottom up approaches. Within each zip code, the current version of the tool estimates electrical energy consumption of manufacturing industries based on each type of industries using information from DOE's Industrial Assessment Center database (IAC-DB) and DOE's Energy Information Administration Manufacturing Energy Consumption Survey database (EIA-MECS DB), in addition to commercially available databases such as the Manufacturing News database (MNI, Inc.). Ongoing and future work include adding modules for the predictions of fuel energy consumption streams, manufacturing process steps energy consumption, major energy intensive processes (EIPs) within each industry type among other metrics of interest. The tool utilizes the DOE EIA-MECS energy survey data to validate bottom-up estimates and permits several statistical examinations.

Alkadi, N.; Starke, M.; Ma, O.; Nimbalkar, S.; Cox, D.; Dowling, K.; Johnson, B.; Khan, S.

2013-01-01T23:59:59.000Z

115

ENERGY STAR Challenge for Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Plant Industrial Plant Certification Professional Engineers' Guide for Validating Statements of Energy Performance Office of Air and Radiation Climate Protection Partnerships Division June 2013 ii Introduction The U.S. Environmental Protection Agency's ENERGY STAR program provides guidance, tools, and recognition to help companies improve the energy performance of their facilities and strengthen the effectiveness of their energy management program. Through ENERGY STAR, the U.S. Environmental Protection Agency (EPA) offers a number of forms of recognition, including certification for facility energy efficiency. ENERGY STAR certification for industrial plants recognizes individual manufacturing plants whose

116

Midstate Electric Cooperative - Commercial and Industrial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Energy Efficiency Rebate Program Midstate Electric Cooperative - Commercial and Industrial Energy Efficiency Rebate Program Eligibility Commercial...

117

Industrial Energy Efficiency:Policy, Initiatives, & Opportunities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency:Policy, Initiatives, & Opportunities Industrial Energy Efficiency:Policy, Initiatives, & Opportunities presentation Industrial Energy Efficiency:Policy, Initiatives, &...

118

Award Recipient of ENERGY STAR Challenge for Industry Butner...  

NLE Websites -- All DOE Office Websites (Extended Search)

the ENERGY STAR Challenge for Industry in June 2010. This plant achieved a 22.7% energy intensity reduction in the first year following its baseline. The success of achieving the...

119

Award Recipient of ENERGY STAR Challenge for Industry Hastings...  

NLE Websites -- All DOE Office Websites (Extended Search)

the ENERGY STAR Challenge for Industry in June 2010. This plant achieved a 14.2% energy intensity reduction in the first year following its baseline. The success of achieving the...

120

Award Recipient of ENERGY STAR Challenge for Industry JM Eagle...  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR Challenge for Industry in September 2010. This plant achieved a 12.6% energy intensity reduction in the first year following its baseline. The success of achieving the...

Note: This page contains sample records for the topic "industrial energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Description of Energy Intensity Tables (12)  

U.S. Energy Information Administration (EIA) Indexed Site

3. Description of Energy Intensity Data Tables 3. Description of Energy Intensity Data Tables There are 12 data tables used as references for this report. Specifically, these tables are categorized as tables 1 and 2 present unadjusted energy-intensity ratios for Offsite-Produced Energy and Total Inputs of Energy for 1985, 1988, 1991, and 1994; along with the percentage changes between 1985 and the three subsequent years (1988, 1991, and 1994) tables 3 and 4 present 1988, 1991, and 1994 energy-intensity ratios that have been adjusted to the mix of products shipped from manufacturing establishments in 1985 tables 5 and 6 present unadjusted energy-intensity ratios for Offsite-Produced Energy and Total Inputs of Energy for 1988, 1991, and 1994; along with the percentage changes between 1988 and the two subsequent

122

Shrenik Industries | Open Energy Information  

Open Energy Info (EERE)

India Zip 416 109 Sector Wind energy Product Maharashtra-based wind turbine tower manufacturer and subsidiary of the Sanjay Ghodawat Group of Industries. References...

123

Ventower Industries | Open Energy Information  

Open Energy Info (EERE)

Place Monroe, Michigan Zip 48161 Sector Wind energy Product Michigan-based wind turbine tower manufacturer. References Ventower Industries1 LinkedIn Connections CrunchBase...

124

Eolica Industrial | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Eolica Industrial Place Sao Paulo, Sao Paulo, Brazil Zip 01020-901 Sector Wind energy Product Brazil based wind turbine steel towers and...

125

ENERGY STAR Challenge for Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge for Industry Professional Engineers' Guide for Validating Statements of Energy Improvement Office of Air and Radiation Climate Protection Partnerships Division May 2013...

126

Assumptions to the Annual Energy Outlook 2001 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Comleted Copy in PDF Format Comleted Copy in PDF Format Related Links Annual Energy Outlook 2001 Supplemental Data to the AEO 2001 NEMS Conference To Forecasting Home Page EIA Homepage Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The

127

AMO Industrial Distributed Energy: Information Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Industrial Distributed Energy Search Search Help Industrial Distributed Energy EERE...

128

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network (OSTI)

Economic Profile of the California Energy Industry Analysisand R.L. Cooper, "California Energy Outlook," LawrenceDivision Analysis of the California Energy Industry Energy

Authors, Various

2010-01-01T23:59:59.000Z

129

Federal Energy Management Program: Industrial Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Facilities to someone by E-mail Share Federal Energy Management Program: Industrial Facilities on Facebook Tweet about Federal Energy Management Program: Industrial...

130

Duke Energy (Electric) - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Electric) - Commercial and Industrial Energy Efficiency Rebate Program Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility...

131

Energy consumption in the pipeline industry  

SciTech Connect

Estimates are developed of the energy consumption and energy intensity (EI) of five categories of U.S. pipeline industries: natural gas, crude oil, petroleum products, coal slurry, and water. For comparability with other transportation modes, it is desirable to calculate EI in Btu/Ton-Mile, and this is done, although the necessary unit conversions introduce additional uncertainties. Since water and sewer lines operate by lift and gravity, a comparable EI is not definable.

Banks, W. F.

1977-12-31T23:59:59.000Z

132

Industry Profile | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Profile Industry Profile Industry Profile November 1, 2013 - 11:40am Addthis The largest energy consuming industrial sectors account for the largest share of CHP capacity; namely: Chemicals (30%), Petroleum Refining (17%), and Paper Products (14%). Other industrial sectors include: Commercial/Institutional (12%), Food (8%), Primary Metals (5%), Other Manufacturing (8%), and Other Industrial (6%). Combined heat and power (CHP)-sometimes referred to as cogeneration-involves the sequential process of producing and utilizing electricity and thermal energy from a single fuel. CHP is widely recognized to save energy and costs, while reducing carbon dioxide (CO2) and other pollutants. CHP is a realistic, near-term option for large energy efficiency improvements and significant CO2 reductions.

133

Energy intensity (Table E.1g)  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL ... E.1g World Energy Intensity--Total Primary Energy Consumption per Dollar of Gross Domestic

134

Emerging Energy-Efficient Technologies for Industry  

E-Print Network (OSTI)

1998. “Emerging Energy-Saving Technologies and Practices for200 emerging energy-efficient technologies in industry, of2000. “Emerging Energy-Efficient Industrial Technologies,”

2005-01-01T23:59:59.000Z

135

Guardian Industries | Open Energy Information  

Open Energy Info (EERE)

Industries Industries Jump to: navigation, search Name Guardian Industries Place Auburn Hills, MI Website http://www.guardian.com/ References Results of NREL Testing (Glass Magazine)[1] Guardian News Archive[2] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Other Relationship Partnering Center within NREL Transportation Technologies and Systems Partnership Year 2002 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Guardian Industries is a company located in Auburn Hills, MI. References ↑ "Results of NREL Testing (Glass Magazine)" ↑ "Guardian News Archive" Retrieved from "http://en.openei.org/w/index.php?title=Guardian_Industries&oldid=381719" Categories: Clean Energy Organizations

136

Industrial Energy Efficiency Assessments | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

about the Industrial Energy Efficiency Assessments program and its implementation in China. session2industrytrackpriceen.pdf session2industrytrackpricecn.pdf More...

137

Industry, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Industry, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.0197335, -117.9586754 Loading map... "minzoom":false,"mappingservice":...

138

Oklahoma Industrial Energy Management Program  

E-Print Network (OSTI)

Each and every citizen has been affected by the energy crisis by now. Business and industry have especially been hurt as the rising cost of energy and its dwindling supplies are the twin jaws of a vise rapidly closing in on profits. Much work is being done in large companies; but most small to medium companies have yet to undertake a substantial energy management program. The reasons are many but often they simply I do not understand the savings possible or the techniques available. Recognizing this, the Oklahoma Department of Energy designed a program to acquaint Oklahoma industry with the potential savings available through energy management and some basic techniques. The program is, entitled "Oklahoma Industrial Energy Management Program" and is housed at Oklahoma State University. The program is funded by the U. S. Department of Energy through the State Energy Conservation Plan. This paper describes the program offerings, impact to date and plans for the future.

Estes, C. B.; Turner, W. C.

1980-01-01T23:59:59.000Z

139

Industrial Energy Audit Training for Engineers  

E-Print Network (OSTI)

The field of engineering energy conservation has witnessed an explosion of concern and activity during the last three years throughout the United States. In Texas, such activities have been enhanced by comprehensive industrial energy auditor training programs that were conceived and initiated under the guidance of the Texas Industrial Commission. One such program, begun with Texas A&M and expanded throughout the state, has continued to provide a high level of engineering and scientific training in the field of energy conservation to practicing personnel in the field. Attendees in the past have included consultants, engineers in industry, plant managers, utility engineering service representatives, and government representatives concerned with energy conservation. Numerous energy programs are conducted throughout Texas and the United States by a variety of organizations. This paper presents the activities and feedback obtained from a 45-hour industrial auditor training program that follows the guidelines originally developed by a statewide advisory board under the auspices of the Texas Industrial Commission. This 5-day intensive engineering level training program has been conducted regularly since its beginning in 1978. The program has been conducted by the Texas Society of Energy Auditors for a number of years and has resulted in positive feedback from the attendees.

Russell, B. D.

1982-01-01T23:59:59.000Z

140

Carbon Emissions: Food Industry - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The wet corn milling industry emits almost a sixth of the energy-related carbon in the food industry. ...

Note: This page contains sample records for the topic "industrial energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Award Recipient of ENERGY STAR Challenge for Industry JM Eagle...  

NLE Websites -- All DOE Office Websites (Extended Search)

STAR Challenge for Industry in June 2010. The plant achieved a 15.5% reduction in energy intensity in the first year following its baseline. The success of achieving the Challenge...

142

Industrial Energy Auditing - A Short Course for Engineers  

E-Print Network (OSTI)

This paper describes an intensive five day short course, directed toward engineers currently working in industry, which provides the participants with the rudiments of industrial energy auditing. Experience has shown that this format of training can be successful if the course material is properly presented by experts in the various aspects of energy usage and conservation.

Witte, L. C.

1979-01-01T23:59:59.000Z

143

EIA - The National Energy Modeling System: An Overview 2003-Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module The National Energy Modeling System: An Overview 2003 Industrial Demand Module Figure 7. Industrial Demand Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Economic Subsectors Within the IDM Table. Need help, contact the National Energy Information Center at 202-586-8800. Industrial Demand Module Table. Need help, contact the National Energy Information Center at 202-586-8800. Fuel Consuming Activities for the Energy-Intensive Manufacturing Subsectors Table. Need help, contact the National Energy Information Center at 202-586-8800. The industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing

144

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

Market Information: Industries End-use(s) Energy typesNotes Market Information: Industries End-use(s) Energy typesNotes Market Information: Industries End-use(s) Energy types

2000-01-01T23:59:59.000Z

145

Changes in energy intensity in the manufacturing sector 1985--1991  

SciTech Connect

In this report, energy intensity is defined as the ratio of energy consumption per unit of output. Output is measured as the constant dollar of value of shipments and receipts, and two measures of energy consumption are presented in British thermal units (Btu): Offsite-Produced Energy and Total Inputs of Energy. A decrease in energy intensity from one period to another suggests an increase in energy efficiency, and vice versa. Energy efficiency can be defined and measured in various ways. Certain concepts of energy efficiency, especially those limited to equipment efficiencies, cannot be measured over time using changes in energy-intensity ratios. While improved energy efficiency will tend to reduce energy intensity, it is also true that a change in energy intensity can be due to factors unrelated to energy efficiency. For this report, energy intensity is used as a surrogate measure for energy efficiency, based on industry knowledge and current methodological analyses.

1995-09-15T23:59:59.000Z

146

Energy Basics: Industrial Energy Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels supplied to a manufacturing plant from off-site power plants, gas companies, and fuel distributors. Energy then flows to either a central energy generation utility system or...

147

Productivity benefits of industrial energy efficiency measures  

E-Print Network (OSTI)

energy savings are related to energy price changes through1997 dollars. All energy prices and savings were evaluatedthe relationship of energy prices to industry-wide energy

Worrell, Ernst

2011-01-01T23:59:59.000Z

148

International industrial sector energy efficiency policies  

E-Print Network (OSTI)

Scheme for Industry: The Energy Audit,” Proceedings of thefacilities conduct energy audits, employ an energy manager,1994), and the mandatory energy audits and energy management

Price, Lynn; Worrell, Ernst

2000-01-01T23:59:59.000Z

149

AMO Industrial Distributed Energy: Clean Energy Application Centers  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Industrial Distributed Energy Search Search Help Industrial Distributed Energy EERE...

150

Industry Leaders Saving Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Leaders Saving Energy Industry Leaders Saving Energy Industry Leaders Saving Energy May 6, 2010 - 11:35am Addthis Joshua DeLung Companies such as 3M, Intel, PepsiCo and Whirlpool are participating in the Energy Department's Save Energy Now LEADER initiative, committing to reducing their energy use by 25 percent or more in 10 years. Another established company participating in the program, AT&T, is also making that commitment to saving energy while producing more renewable power at many of its locations across the country."We're taking meaningful steps to run a more-efficient network and explore alternative and renewable energy use," John Schinter, director of energy for AT&T Services, Inc., says. The company utilizes wind and solar power at some of its buildings. In

151

Industrial Technology Program - Energy  

energy and eliminating oxide byproducts ... such as copper-indium- ... • Goal is to approach solar cell performance observed at lab-scale

152

ESMAP-China Energy Intensity Reduction Strategy | Open Energy Information  

Open Energy Info (EERE)

Intensity Reduction Strategy Intensity Reduction Strategy Jump to: navigation, search Name China-ESMAP Low Carbon Growth Country Studies Program Agency/Company /Organization Energy Sector Management Assistance Program of the World Bank Sector Energy, Land Focus Area Energy Efficiency, Renewable Energy, Forestry, Agriculture Topics Low emission development planning, Policies/deployment programs, Background analysis Website http://www.esmap.org/filez/pub Country China Eastern Asia References China Energy Intensity Reduction Strategy[1] Overview "The study involves the development of pragmatic "implementation" focused policy notes to support the Government of China's goal of reducing energy intensity in China focusing on: Reevaluation of renewable energy targets, growth path, and related

153

Technical Change, Investment and Energy Intensity  

E-Print Network (OSTI)

This paper analyzes the role of different components of technical change on energy intensity by applying a Translog variable cost function setting to the new EU KLEMS dataset for 3 selected EU countries (Italy, Finland and ...

Kratena, Kurt

154

Energy End-Use Intensities in Commercial Buildings 1989  

U.S. Energy Information Administration (EIA) Indexed Site

9 Energy End-Use Intensities 1989 Energy End-Use Intensities Overview Full Report Tables National estimates and analysis of energy consumption by fuel (electricity, natural gas,...

155

Measuring industrial energy efficiency: Physical volume versus economic value  

SciTech Connect

This report examines several different measures of industrial output for use in constructing estimates of industrial energy efficiency and discusses some reasons for differences between the measures. Estimates of volume-based measures of output, as well as 3 value-based measures of output (value of production, value of shipments, and value added), are evaluated for 15 separate 4-digit industries. Volatility, simple growth rate, and trend growth rate estimates are made for each industry and each measure of output. Correlations are made between the volume- and value-based measures of output. Historical energy use data are collected for 5 of the industries for making energy- intensity estimates. Growth rates in energy use, energy intensity, and correlations between volume- and value-based measures of energy intensity are computed. There is large variability in growth trend estimates both long term and from year to year. While there is a high correlation between volume- and value-based measures of output for a few industries, typically the correlation is low, and this is exacerbated for estimates of energy intensity. Analysis revealed reasons for these low correlations. It appears that substantial work must be done before reliable measures of trends in the energy efficiency of industry can be accurately characterized.

Freeman, S.L.; Niefer, M.J.; Roop, J.M.

1996-12-01T23:59:59.000Z

156

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

U.S. Department of Energy U.S. Environmental ProtectionWashington, DC: US Department of Energy. (Paper-3) (Paper-Energy-intensive Other US TOTAL Energy-intensive Other Total

2000-01-01T23:59:59.000Z

157

Innovative Energy Efficient Industrial Ventilation  

E-Print Network (OSTI)

This paper was written to describe an innovative “on-demand” industrial ventilation system for woodworking, metalworking, food processing, pharmaceutical, chemical, and other industries. Having analyzed existing industrial ventilation in 130 factories, we found striking dichotomy between the classical “static” design of ventilation systems and constantly changing workflow and business demands. Using data from real factories, we are able to prove that classical industrial ventilation design consumes 70 % more energy than necessary. Total potential electricity saving achieved by using on-demand systems instead of classically designed industrial ventilation in the U.S. could be 26 billion kWh. At the average electricity cost of 7 cents per kWh, this would represent $1.875 billion. Eighty such systems are already installed in the USA and European Union.

Litomisky, A.

2005-01-01T23:59:59.000Z

158

DOE Launches New Website Aimed at Improving Industrial Energy Savings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Website Aimed at Improving Industrial Energy New Website Aimed at Improving Industrial Energy Savings DOE Launches New Website Aimed at Improving Industrial Energy Savings November 8, 2005 - 2:19pm Addthis Washington, D.C. - Energy Secretary Samuel W. Bodman today announced the launch of a new website providing U.S. manufacturing plants a quick and easy way to sign up for the Department of Energy's Industrial Energy Saving Teams program. The program, launched on October 3, 2005 as part of a national energy saving effort, seeks to improve the energy efficiency of America's most energy-intensive manufacturing facilities through comprehensive energy assessments. "President Bush has called on all Americans to improve efficiency in light of expected higher energy prices this fall. Because they are so energy

159

Energy Flow Models for the Steel Industry  

E-Print Network (OSTI)

Energy patterns in the U. S. steel industry are examined using several models. First is an end-use model based on data in the 1994 Manufacturing Energy Consumption Survey (MECS). Then a seven-step process model is presented and material flow through each step is calibrated against Commerce Dept. data. Third, a detailed energy flow model is presented for coke ovens and blast furnaces, two very energy-intensive steps in our seven step model of steelmaking. This process-step model is calibrated against both our energy end use and material flow models. These models can serve as the base case for simulating changes in energy utilization and waste streams for steelmaking spurred by economic or regulatory conditions or technology innovations.

Hyman, B.; Andersen, J. P.

1998-04-01T23:59:59.000Z

160

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network (OSTI)

to Improve Energy Efficiency and Reduce Greenhouse Gasand Industrial Energy Efficiency. Energy Policy, 33: 949-Galitsky (2005) Energy efficiency improvement opportunities

Worrell, Ernst

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

an existing Market Information: Industries End-use(s) EnergyGas Boiler Market Information: Industries End-use(s) Energyelectricity Market Information: Industries End-use(s) Energy

2000-01-01T23:59:59.000Z

162

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network (OSTI)

trends in the iron and steel industry. Energy Policy 30:initiatives of Japan’s steel industry against globalenergy use in the steel industry, but can reduce both energy

Worrell, Ernst

2009-01-01T23:59:59.000Z

163

Comparison of National Programs for Industrial Energy Efficiency: Industry Brief  

Science Conference Proceedings (OSTI)

This report looks at the Better Buildings, Better Plants program from the Department of Energy; E3, an initiative of five U.S. federal agencies; ENERGY STAR for Industry from the Environmental Protection Agency; and Superior Energy Performance, a product of the U.S. Council for Energy-Efficient Manufacturing. By comparing the goals of several energy-efficiency programs that have been established to support industry, this report hopes to help industrial facilities find the right fit for their own ...

2013-02-25T23:59:59.000Z

164

Industry  

E-Print Network (OSTI)

Development of energy intensity indicators for Canadianvarious indicators to present energy intensity, including “energy intensity, which is a constructed indicator, making

Bernstein, Lenny

2008-01-01T23:59:59.000Z

165

EIA Energy Efficiency-Commercial Buildings Sector Energy Intensities,  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities: 1992- 2003 Released Date: December 2004 Page Last Revised: August 2009 These tables provide estimates of commercial sector energy consumption and energy intensities for 1992, 1995, 1999 and 2003 based on the Commercial Buildings Energy Consumption Survey (CBECS). They also provide estimates of energy consumption and intensities adjusted for the effect of weather on heating, cooling, and ventilation energy use. Total Site Energy Consumption (U.S. and Census Region) Html Excel PDF bullet By Principal Building Activity (Table 1a) html Table 1a excel table 1a. pdf table 1a. Weather-Adjusted by Principal Building Activity (Table 1b) html table 1b excel table 1b pdf table 1b.

166

Overview of Industrial Energy Training and Software  

Science Conference Proceedings (OSTI)

Symposium, Energy Technologies and Carbon Dioxide Management ... A Suggestion for Establishing Energy Management Policy in Primary Aluminum Industry ...

167

PNNL: Available Technologies: Energy & Utilities Industry  

Industry: Energy & Utilities. Click on the portfolios below to view the technologies that may have potential applications in the Energy & ...

168

Industrial Distributed Energy: Combined Heat & Power  

Energy.gov (U.S. Department of Energy (DOE))

Information about the Department of Energy’s Industrial Technologies Program and its Combined Heat and Power program.

169

Nanotechnology for Energy, Healthcare and Industry  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2011. Symposium, Nanotechnology for Energy, Healthcare and Industry. Sponsorship.

170

Why did China's Energy Intensity Increase during 1998-2006: Decomposition and Policy Analysis  

E-Print Network (OSTI)

coal-dependent consumption structure (Fig. 4) and low per capita energy endowments. China's coal use takes up about 70 percent of the total energy consumption. Per capita oil, natural gas and coal deposits). Moreover, industrial consumption increased more rapidly due to expansion in energy-intensive industries

Edwards, Paul N.

171

What is energy use intensity (EUI)? | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

buildings Use Portfolio Manager How Portfolio Manager calculates metrics What is energy use intensity (EUI)? Secondary menu About us Press room Contact Us Portfolio...

172

Transforming the Oil Industry into the Energy Industry  

E-Print Network (OSTI)

Transforming the Oil Industry into the Energy Industry BYculprit. It consumes half the oil used in the world andconsuming two thirds of the oil and causing about one third

Sperling, Daniel; Yeh, Sonia

2009-01-01T23:59:59.000Z

173

AMO Industrial Distributed Energy: About Industrial Distributed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

potential to reduce greenhouse gas (GHG) emissions through energy efficiency and fossil fuel displacement by using alternative fuels and capturing waste energy streams Providing...

174

Firm Size and Industry Structure Under Human Capital Intensity: Insights from the Evolution of the Global Advertising Industry  

Science Conference Proceedings (OSTI)

Although existing literature assumes that the human capital intensity of professional services leads to small and flimsy firms, several professional services feature large, long-lived firms. To develop insights about firm size and industry structure ... Keywords: advertising agencies, financial intermediation, human capital, industry evolution, industry structure, professional services, vertical differentiation

Andrew von Nordenflycht

2011-01-01T23:59:59.000Z

175

Setting the Standard for Industrial Energy Efficiency  

E-Print Network (OSTI)

Voluntary Agreements for Energy Efficiency or GHG EmissionsACEEE Summer Study on Energy Efficiency in Industry, WestStandard for Industrial Energy Efficiency A. McKane 1 , R.

McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

2008-01-01T23:59:59.000Z

176

Energy Matters: Industrial Energy Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Matters: Industrial Energy Efficiency Matters: Industrial Energy Efficiency Energy Matters: Industrial Energy Efficiency November 18, 2011 - 2:33pm Addthis On November 16, 2011, Deputy Assistant Secretary for Energy Efficiency Dr. Kathleen Hogan joined us for a live chat on Energy.gov to discuss the role of industrial energy efficiency in strengthening the American economy. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs On Wednesday, November 16th, Dr. Kathleen Hogan, Deputy Assistant Secretary for Energy Efficiency, discussed industrial energy efficiency on an Energy Matters video livechat. Dr. Hogan answered questions, submitted by industry professionals and the interested public via email, Facebook and Twitter, on how commercial building efficiency, advanced manufacturing, and corporate partnerships can

177

Market impacts: Improvements in the industrial sector | ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy performance Communicate energy efficiency Industrial energy management information center Market impacts: Improvements in the industrial sector An effective energy...

178

Industrial - Program Areas - Energy Efficiency & Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Animation The ORNL Industrial Technologies Program has made technological advances in industry that contribute to improved efficiency through decreased energy consumption, improved...

179

Danish Wind Industry Association | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Danish Wind Industry Association Place Copenhagen V, Denmark Zip DK-1552 Sector Wind energy Product The Danish Wind Industry Association (DWIA) is...

180

CRV industrial Ltda | Open Energy Information  

Open Energy Info (EERE)

CRV industrial Ltda Place Carmo do Rio Verde, Goias, Brazil Sector Biomass Product Ethanol and biomass energy producer References CRV industrial Ltda1 LinkedIn Connections...

Note: This page contains sample records for the topic "industrial energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Ontario's Industrial Energy Services Program  

E-Print Network (OSTI)

The Ontario Ministry of Energy began offering its new Industrial Energy Services Program (IESP) in early 1987. This 3-year, $5-million program, while not new in concept, is thought to be unique for its depth of service and method of delivery. It provides Ontario's manufacturers with advice and funding assistance for the identification and definition of industrial energy efficiency opportunities. The first phase provides for a free comprehensive site energy audit/analysis, conducted over one to five days, by teams of private sector consultants, selected to match expertise with manufacturer's needs. The emphasis is on process and equipment improvements, but site services and buildings are also examined. The final report includes detailed descriptions of major opportunities, along with estimated costs, savings, and paybacks. The next phases provide for sharing the detailed feasibility study costs and project engineering costs for those energy projects that move to implementation. In this paper, the author briefly describes the novel administrative structure of the program, presents the results of the activities to date, and describes, in some detail, several case studies from different industrial sectors.

Ploeger, L. K.

1987-09-01T23:59:59.000Z

182

Industrial energy efficiency policy in China  

E-Print Network (OSTI)

Sinton, J.E. 1996. Energy Efficiency in Chinese Industry:and Wang, Q. 1998. "Energy Efficiency Accomplishments and1999. Status Report on Energy Efficiency Policy and Programs

Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

2001-01-01T23:59:59.000Z

183

International industrial sector energy efficiency policies  

E-Print Network (OSTI)

Summer Study on Energy Efficiency in Industry. Washington,1997. “Electric Motor Energy Efficiency Regulations: Theet al. , (eds. ). Energy Efficiency Improvements in Electric

Price, Lynn; Worrell, Ernst

2000-01-01T23:59:59.000Z

184

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

1998. “Emerging Energy-Saving Technologies and Practices for2000. “Emerging Energy-Efficient Industrial Technologies,”of cleaner, more energy- efficient technologies can play a

2004-01-01T23:59:59.000Z

185

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

1998. “Emerging Energy-Saving Technologies and Practices for2000. “Emerging Energy-Efficient Industrial Technologies,”of cleaner, more energy- efficient technologies can play a

2001-01-01T23:59:59.000Z

186

Characterizing emerging industrial technologies in energy models  

E-Print Network (OSTI)

Efficient and Clean Energy Technologies, 2000. Scenarios ofEmerging Energy-Efficient Industrial Technologies,” Lawrenceinformation about energy efficiency technologies, their

Laitner, John A. Skip; Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

2003-01-01T23:59:59.000Z

187

Productivity benefits of industrial energy efficiency measures  

E-Print Network (OSTI)

of costs and benefits of industrial energy efficiencyof the annual costs of an energy efficiency measure, therebyof cost- effectiveness of energy- efficiency improvement

Worrell, Ernst

2011-01-01T23:59:59.000Z

188

Purchased Energy, Energy Intensity, and Policy Impacts in the...  

NLE Websites -- All DOE Office Websites (Extended Search)

Purchased Energy, Energy Intensity, and Policy Impacts in the U.S. Manufacturing Sector: Tentative Findings Speaker(s): Marvin J. Horowitz Date: July 8, 2011 - 12:00pm Location:...

189

China energy issues : energy intensity, coal liquefaction, and carbon pricing  

E-Print Network (OSTI)

In my dissertation I explore three independent, but related, topics on China's energy issues. First, I examine the drivers for provincial energy-intensity trends in China, and finds that technology innovation is the key ...

Wu, Ning, Ph. D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

190

EIA - 2010 International Energy Outlook - Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial International Energy Outlook 2010 Industrial Sector Energy Consumption Worldwide industrial energy consumption increases by 42 percent, or an average of 1.3 percent per year, from 2007 to 2035 in the IEO2010 Reference case. Ninety-five percent of the growth occurs in non-OECD nations. Overview The world's industries make up a diverse sector that includes manufacturing, agriculture, mining, and construction. Industrial energy demand varies across regions and countries, depending on the level and mix of economic activity and technological development, among other factors. Energy is consumed in the industrial sector for a wide range of activities, such as processing and assembly, space conditioning, and lighting. Industrial energy use also includes natural gas and petroleum products used as feedstocks to produce non-energy products, such as plastics. In aggregate, the industrial sector uses more energy than any other end-use sector, consuming about one-half of the world's total delivered energy.

191

Solar Energy Industries Association | Open Energy Information  

Open Energy Info (EERE)

Solar Energy Industries Association Solar Energy Industries Association Name Solar Energy Industries Association Address 575 7th Street NW #400 Place Washington, DC Zip 20004 Number of employees 11-50 Year founded 1974 Website http://www.seia.org/ Coordinates 38.897162°, -77.021563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.897162,"lon":-77.021563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

192

China's Industrial Energy Consumption Trends and Impacts of the Top-1000  

NLE Websites -- All DOE Office Websites (Extended Search)

China's Industrial Energy Consumption Trends and Impacts of the Top-1000 China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects Title China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects Publication Type Journal Year of Publication 2012 Authors Ke, Jing, Lynn K. Price, Stephanie Ohshita, David Fridley, Nina Zheng Khanna, Nan Zhou, and Mark D. Levine Keywords energy saving, energy trends, industrial energy efficiency, top-1000 Abstract This study analyzes China's industrial energy consumption trends from 1996 to 2010 with a focus on the impact of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects. From 1996 to 2010, China's industrial energy consumption increased by 134%, even as the industrial economic energy intensity decreased by 46%. Decomposition analysis shows that the production effect was the dominant cause of the rapid growth in industrial energy consumption, while the efficiency effect was the major factor slowing the growth of industrial energy consumption. The structural effect had a relatively small and fluctuating influence. Analysis shows the strong association of industrial energy consumption with the growth of China's economy and changing energy policies. An assessment of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects indicates that the economic energy intensity of major energy-intensive industrial sub-sectors, as well as the physical energy intensity of major energy-intensive industrial products, decreased significantly during China's 11th Five Year Plan (FYP) period (2006-2010). This study also shows the importance and challenge of realizing structural change toward less energy-intensive activities in China during the 12th FYP period (2011-2015).

193

California Industrial Energy Efficiency Potential  

SciTech Connect

This paper presents an overview of the modeling approach andhighlights key findings of a California industrial energy efficiencypotential study. In addition to providing estimates of technical andeconomic potential, the study examines achievable program potential undervarious program-funding scenarios. The focus is on electricity andnatural gas savings for manufacturing in the service territories ofCalifornia's investor-owned utilities (IOUs). The assessment is conductedby industry type and by end use. Both crosscutting technologies andindustry-specific process measures are examined. Measure penetration intothe marketplace is modeled as a function of customer awareness, measurecost effectiveness, and perceived market barriers. Data for the studycomes from a variety of sources, including: utility billing records, theEnergy Information Association (EIA) Manufacturing Energy ConsumptionSurvey (MECS), state-sponsored avoided cost studies, energy efficiencyprogram filings, and technology savings and cost data developed throughLawrence Berkeley National Laboratory (LBNL). The study identifies 1,706GWh and 47 Mth (million therms) per year of achievable potential over thenext twelve years under recent levels of program expenditures, accountingfor 5.2 percent of industrial electricity consumption and 1.3 percent ofindustrial natural gas consumption. These estimates grow to 2,748 GWh and192 Mth per year if all cost-effective and achievable opportunities arepursued. Key industrial electricity end uses, in terms of energy savingspotential, include compressed air and pumping systems that combine toaccount for about half of the total achievable potential estimates. Fornatural gas, savings are concentrated in the boiler and process heatingend uses, accounting for over 99 percent to total achievablepotential.

Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; RafaelFriedmann; Rufo, Mike

2005-06-01T23:59:59.000Z

194

Energy Efficiency Indicators Methodology Booklet  

E-Print Network (OSTI)

Energy Intensity Indicators .related policies. Energy intensity indicators are used forStructure of US Energy Intensity Indicators Sectors Industry

Sathaye, Jayant

2010-01-01T23:59:59.000Z

195

EIA-Assumptions to the Annual Energy Outlook - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2007 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 21 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS25 data.

196

Energy End-Use Intensities in Commercial Buildings  

Annual Energy Outlook 2012 (EIA)

2 Distribution Category UC-950 Energy Consumption Series Energy End-Use Intensities in Commercial Buildings September 1994 Energy Information Administration Office of Energy...

197

ENERGY STAR industrial partnership | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR industrial partnership ENERGY STAR industrial partnership Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Improve energy performance ENERGY STAR industrial partnership New ENERGY STAR industrial partners Energy guides Energy efficiency and air regulation

198

Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy  

Open Energy Info (EERE)

Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities Agency/Company /Organization: Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Energy Efficiency, Industry Resource Type: Guide/manual Website: china.lbl.gov/sites/china.lbl.gov/files/LBNL-3991E.Industrial%20Energy Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities Screenshot References: Industrial Energy Audit Guidebook[1] "This guidebook provides guidelines for energy auditors regarding the key elements for preparing for an energy audit, conducting an inventory and

199

U.S. Industrial Energy Efficiency Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Second U.S.-China Second U.S.-China Energy Efficiency Forum May 6, 2011 James Quinn Energy Efficiency & Renewable Energy U.S. Department of Energy U.S. Industrial Energy Efficiency Programs 2 | Industrial Energy Efficiency eere.energy.gov Global Energy Challenges Energy efficiency and renewable energy provide solutions to global energy challenges. Security Environment Economy Clean Energy Solutions Overarching Challenges: * Carbon reduction * Market delivery of clean energy technologies * Research and development needs * Economic growth * Workforce development 3 | Industrial Energy Efficiency eere.energy.gov U.S. industry accounts for about one-third of all U.S. energy consumption. Petroleum Natural Gas Electricity* Coal and Coke Renewable Energy Residential 21.8% Industry 31.4% Commercial

200

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model's parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. (Lawrence Berkeley Lab., CA (United States) Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.); Hwang, R. (Lawrence Berkeley Lab., CA (United States))

1992-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model`s parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. [Lawrence Berkeley Lab., CA (United States)]|[Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics]|[Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Hwang, R. [Lawrence Berkeley Lab., CA (United States)

1992-02-01T23:59:59.000Z

202

Assumptions to the Annual Energy Outlook - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumption to the Annual Energy Outlook Industrial Demand Module Table 17. Industry Categories Printer Friendly Version Energy-Intensive Manufacturing Nonenergy-Intensive Manufacturing Nonmanufacturing Industries Food and Kindred Products (NAICS 311) Metals-Based Durables (NAICS 332-336) Agricultural Production -Crops (NAICS 111) Paper and Allied Products (NAICS 322) Balance of Manufacturing (all remaining manufacturing NAICS) Other Agriculture Including Livestock (NAICS112- 115) Bulk Chemicals (NAICS 32B) Coal Mining (NAICS 2121) Glass and Glass Products (NAICS 3272) Oil and Gas Extraction (NAICS 211) Hydraulic Cement (NAICS 32731) Metal and Other Nonmetallic Mining (NAICS 2122- 2123) Blast Furnaces and Basic Steel (NAICS 331111) Construction (NAICS233-235)

203

Geothermal Energy Industry Briefing Packet  

DOE Green Energy (OSTI)

The Earl Warren Legal Institute, part of the University of California at Berkeley, is a center for law-related interdisciplinary research and public service in areas of national social concern. Since 1975, we have worked with the U.S. Department of Energy and Lawrence Berkeley Laboratory on various projects addressing energy policy and environmental issues. We are now engaged in a major effort to identify current legal, economic and institutional obstacles to commercial development and use of geothermal energy sources. Geothermal resources--heat reservoirs beneath the earth's surface--have received increasing attention in recent years of growing energy consciousness, and much progress has been made toward understanding their nature, extent and uses. Encouraged by federal and state development programs, there now exists an active and growing community of geologists, geophysicists, engineers, drilling companies, developers and end-users of geothermal heat. However, Department of Energy studies indicate that current knowledge and available technology would support substantially broader use of the resource, particularly by private sector commercial, industrial and agricultural concerns. Accordingly, we are now seeking to determine the knowledge and attitudes of such entities toward geothermal use; the factors which will influence decisions to utilize geothermal or not; the perceived obstacles, if any, to expanded use in their own industries; and the types of government policies or programs which might minimize such obstacles. The industries we have chosen to approach have been targeted by others as potential geothermal users. However, we recognize that many firms today have little or no knowledge of the resource or of its potential applications. We have therefore prepared the following brief summary as an introduction for some, perhaps a refresher for others, and hopefully a stimulus for an exchange of ideas with all whose views we intend to solicit as our work proceeds.

Bressler, Sandra E.; Hanemann, Michael; Katz, Ira Benjamin; Nimmons, John T.

1976-01-01T23:59:59.000Z

204

Control of energy saving at industrial enterprises  

Science Conference Proceedings (OSTI)

Problems connected with improvement of control systems for power systems of industrial enterprises, which are most important elements of energy and fuel consumption in industry, are considered. The growth of energy and fuel cost, the increasing requirements ...

A. F. Rezchikov

2010-10-01T23:59:59.000Z

205

Longmont Power & Communications - Commercial and Industrial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

are here Home Savings Longmont Power & Communications - Commercial and Industrial Energy Efficiency Rebate Program Longmont Power & Communications - Commercial and...

206

Nanotechnology for Energy, Environment, Electronics & Industry  

Science Conference Proceedings (OSTI)

Symposium, Nanotechnology for Energy, Environment, Electronics & Industry ... Electrochemical Optimization of TiO2 Nanotubular Structure Formation and ...

207

Industrial Technologies Available for Licensing - Energy ...  

Industrial Technologies Available for Licensing U.S. Department of Energy (DOE) laboratories and participating research institutions have technologies ...

208

Energy Department Partners with Industry to Train Federal Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Energy Department Partners with Industry to Train Federal Energy Managers and Reduce Energy Costs Energy Department Partners...

209

Table 22. Energy Intensity, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Intensity, Projected vs. Actual" Energy Intensity, Projected vs. Actual" "Projected" " (quadrillion Btu / real GDP in billion 2005 chained dollars)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",11.24893441,11.08565002,10.98332766,10.82852279,10.67400621,10.54170176,10.39583203,10.27184573,10.14478673,10.02575883,9.910410202,9.810812106,9.69894802,9.599821783,9.486985399,9.394733753,9.303329725,9.221322623 "AEO 1995",,10.86137373,10.75116461,10.60467959,10.42268977,10.28668187,10.14461664,10.01081222,9.883759026,9.759022105,9.627404949,9.513643295,9.400418762,9.311729546,9.226142899,9.147374752,9.071102491,8.99599906 "AEO 1996",,,10.71047701,10.59846153,10.43655044,10.27812088,10.12746866,9.9694713,9.824165152,9.714832565,9.621874334,9.532324916,9.428169355,9.32931308,9.232716414,9.170931044,9.086870061,9.019963901,8.945602337

210

Industrial Energy Efficiency Programs: Development and Trends  

E-Print Network (OSTI)

As more states establish Energy Efficiency Resource Standards (EERS), goals for energy efficiency savings are increasing across the country. Increasingly, states are relying on their industrial energy efficiency programs to find and help implement those savings. Historically, industrial energy efficiency programs have not been completely effective at finding those savings, in large part because the programs have not been flexible enough to accommodate the heterogeneous needs and unique characteristics of the industrial sector. This paper will discuss the state of industrial energy efficiency programs today. Relying on an ACEEE-administered survey of 35 industrial energy efficiency programs, we will determine current trends and challenges, address emerging needs, and identify best practices in the administration of today's industrial efficiency programs. The paper will serve as an update on industrial energy efficiency program activities and discuss the ways in which today's programs are trying to serve their industrial clients better.

Chittum, A.; Kaufman, N.; Elliot, N.

2010-01-01T23:59:59.000Z

211

Energy Conservation Through Water Usage Reduction in the Semiconductor Industry  

E-Print Network (OSTI)

The semiconductor industry uses large amounts of Ultrapure Water (UPW) in the wafer fabrication process. Producing UPW involves energy-intensive operations, such as membrane separations, ultraviolet lamps, and continuous pumping and recirculation systems. Indirect energy costs can also be allocated to steps in the UPW process. Motorola recognizes that by reducing UPW consumption, energy savings will result. Energy conservation can also be achieved by improving the UPW generation process itself and by recycling or reclaiming UPW and other water streams.

Mendicino, L.; McCormack, K.; Gibson, S.; Patton, B.; Lyon, D.; Covington, J.

1998-04-01T23:59:59.000Z

212

Industry Energy Efficiency Workshop - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Notes on the Energy Information Administration's summary session on Industry Sector Energy-Efficiency Workshop on March 5, 1996

213

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

Market Information: Industries Iron and Steel SIC 331 End-use(s) Process heating Energyinformation on energy savings, economic, non-energy benefits, major market

2001-01-01T23:59:59.000Z

214

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

Market Information: Industries Iron and Steel SIC 331 End-use(s) Process heating Energyinformation on energy savings, economic, non-energy benefits, major market

2004-01-01T23:59:59.000Z

215

Export.gov - Energy Industry Associations  

NLE Websites -- All DOE Office Websites (Extended Search)

Problems Locations Domestic Offices International Offices FAQ Blog Connect Home > By Industry > Energy Print | E-mail Page Main Topics Energy Home Oil & Gas Civil Nuclear...

216

Energy End-Use Intensities in Commercial Buildings 1992 - Index...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Energy End-Use Intensities 1992 Energy End-Use Intensities Overview Tables National estimates of energy consumption by fuel (electricity and natural gas) and end use (heating,...

217

China's energy intensity and its determinants at the provincial level  

E-Print Network (OSTI)

Energy intensity is defined as the amount of energy consumed per dollar of GDP (Gross Domestic Product). The People's Republic of China's (China's) energy intensity has been declining significantly since the late 1970s. ...

Zhang, Xin, S.M. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

218

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network (OSTI)

casting technology. Energy Policy 31: 1339-1356. Martin,Energy Efficiency. Energy Policy, 33: 949-962. Worrell, E.and pulp industry. Energy Policy 25: 745-758. Flannery,

Worrell, Ernst

2009-01-01T23:59:59.000Z

219

Energy End-Use Intensities in Commercial Buildings  

U.S. Energy Information Administration (EIA)

DOE/EIA-0555(94)/2 Distribution Category UC-950 Energy Consumption Series Energy End-Use Intensities in Commercial Buildings September 1994 Energy Information ...

220

International industrial sector energy efficiency policies  

SciTech Connect

Over 40 percent of the energy consumed globally is used in the industrial sector. In China, this sector consumes an even larger proportion, reaching nearly 70 percent in 1997. A variety of energy efficiency policies and programs have been instituted in both industrialized and developing countries in an effort to improve the energy efficiency of the industrial sector. There are very few comprehensive evaluations of these industrial sector energy efficiency policies; however a number of recent workshops and conferences have included a focus on these policies. Three important meetings were the International Energy Agency's Industrial Energy Efficiency: Policies and Programs Conference in 1994, Industrial Energy Efficiency Policies: Understanding Success and Failure - A Workshop Organized by the International Network for Energy Demand Analysis in the Industrial Sector in 1998, and the American Council for an Energy-Efficient Economy's 1999 Summer Study on Energy Efficiency in Industry. Man y articles from these meetings are included as attachments to this memo. This paper provides a brief description of each of seven categories of individual industrial energy efficiency policies and programs, discuss which industrial sectors or types of equipment they apply to, and provide references for articles and reports that discuss each policy or program in more detail. We begin with mandatory-type policies and move to more voluntary-type policies. We then provide a brief description of four integrated industrial energy efficiency policies and provide references for articles and reports that describe these policies in greater detail.

Price, Lynn; Worrell, Ernst

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

International industrial sector energy efficiency policies  

SciTech Connect

Over 40 percent of the energy consumed globally is used in the industrial sector. In China, this sector consumes an even larger proportion, reaching nearly 70 percent in 1997. A variety of energy efficiency policies and programs have been instituted in both industrialized and developing countries in an effort to improve the energy efficiency of the industrial sector. There are very few comprehensive evaluations of these industrial sector energy efficiency policies; however a number of recent workshops and conferences have included a focus on these policies. Three important meetings were the International Energy Agency's Industrial Energy Efficiency: Policies and Programs Conference in 1994, Industrial Energy Efficiency Policies: Understanding Success and Failure - A Workshop Organized by the International Network for Energy Demand Analysis in the Industrial Sector in 1998, and the American Council for an Energy-Efficient Economy's 1999 Summer Study on Energy Efficiency in Industry. Man y articles from these meetings are included as attachments to this memo. This paper provides a brief description of each of seven categories of individual industrial energy efficiency policies and programs, discuss which industrial sectors or types of equipment they apply to, and provide references for articles and reports that discuss each policy or program in more detail. We begin with mandatory-type policies and move to more voluntary-type policies. We then provide a brief description of four integrated industrial energy efficiency policies and provide references for articles and reports that describe these policies in greater detail.

Price, Lynn; Worrell, Ernst

2000-01-01T23:59:59.000Z

222

Developing an energy efficiency service industry in Shanghai  

E-Print Network (OSTI)

Workshop on Energy Efficiency Service Industry, Shanghai,Workshop on Energy Efficiency Service Industry, Shanghai,Workshop on Energy Efficiency Service Industry, Shanghai,

Lin, Jiang; Goldman, Charles; Levine, Mark; Hopper, Nicole

2004-01-01T23:59:59.000Z

223

Industrial Biomass Energy Consumption and Electricity Net Generation...  

Open Energy Info (EERE)

Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 Biomass energy consumption and electricity net generation in the industrial...

224

Progress and Outlook on China Industrial Energy Conservation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Progress and Outlook on China Industrial Energy Conservation Progress and Outlook on China Industrial Energy Conservation Progress and Outlook on China Industrial Energy...

225

Energy Programs of the Texas Industrial Commission  

E-Print Network (OSTI)

The objectives of the Industrial Energy Conservation Program are to assist Texas industry in using energy more efficiently through seminars, workshops, technical information exchange and other supportive programs with the goal of conserving at least 283.81 trillion BTU's of industrial energy in 1980. As the primary consumer of Texas' energy (54% of total, industry is a major focal point of the state's energy conservation effort. Although industry's overall record of energy conservation is good, such a large consumer must receive serious attention in any plan aimed at improving the overall efficiency of energy use in the state. The Texas Industrial Commission has been designated lead agency of the industrial conservation effort, and as such, created the Energy Utilization Department in the Fall of 1977. The multi-faceted department has established programs to accomplish its mission including: The Energy Search Center, an information access point for Texas manufacturers; a series of technical workshops and seminars; an annual Industrial Energy Technology Conference; the coordination of a university program for the training of industrial energy auditors; and organizational assistance in the establishment of regional energy conservation groups. Although manufacturers are encouraged to utilize the programs, they are designed primarily for small or medium-sized industries and low-technology operations where the employment of an energy specialist is economically impractical.

Heare, J.; dePlante, L. E.

1979-01-01T23:59:59.000Z

226

International Industrial Energy Efficiency Deployment Project | Open Energy  

Open Energy Info (EERE)

Industrial Energy Efficiency Deployment Project Industrial Energy Efficiency Deployment Project Jump to: navigation, search Name International Industrial Energy Efficiency Deployment Project Agency/Company /Organization United States Department of Energy (USDOE), Institute for Sustainable Communities (ISC), Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory (ORNL), Alliance for Energy Efficient Economy (India), Confederation of Indian Industry Sector Energy Focus Area Industry Topics Implementation, Low emission development planning, Technology characterizations Program Start 2011 Program End 2013 Country China, India Eastern Asia, Southern Asia References International Industrial Energy Efficiency Deployment Project[1] Overview China "China is prioritizing a low carbon, energy efficient economy and has

227

EIA Energy Efficiency-Iron and Steel Energy Intensity, 1998-2002  

Gasoline and Diesel Fuel Update (EIA)

Iron and Steel Manufacturing Energy Intensities, 1998, 2002, and 2006 Below are data for iron and steel industry from the 1998, 2002, and 2006 Manufacturing Energy Consumption Survey (MECS). The tables provide estimates for energy consumed for all purposes, end uses of fuel consumption, offsite-produced fuel consumption, expenditures for purchased energy, as well as energy intensities per value of production and per ton of steel. Energy Consumption 1998, 2002, and 2006 Table 1. Consumption of Energy for All Purposes (First Use) html Table 1 excel table 1. pdf table 1. Table 2. End Uses of Fuel Consumption html table 2. excel table 2. pdf table 2. Table 3. Offsite-Produced Fuel Consumption html table 3. excel table 3. pdf table 3. Table 4. Expenditures for Purchased Energy

228

Industrial energy efficiency policy in China  

SciTech Connect

Chinese industrial sector energy-efficiency policy has gone through a number of distinct phases since the founding of the People s Republic in 1949. An initial period of energy supply growth in the 1950s, 1960s, and 1970s was followed by implementation of significant energy efficiency programs in the 1980s. Many of these programs were dismantled in the 1990s during the continuing move towards a market-based economy. In an effort to once again strengthen energy efficiency, the Chinese government passes the Energy Conservation Law in 1997 which provides broad guidance for the establishment of energy efficiency policies. Article 20 of the Energy Conservation Law requires substantial improvement in industrial energy efficiency in the key energy-consuming industrial facilities in China. This portion of the Law declares that ''the State will enhance energy conservation management in key energy consuming entities.'' In 1999, the industrial sector consumed nearly 30 EJ, or 76 percent of China's primary energy. Even though primary energy consumption has dropped dramatically in recent years, due mostly to a decline in coal consumption, the Chinese government is still actively developing an overall policy for energy efficiency in the industrial sector modeled after policies in a number of industrialized countries. This paper will describe recent Chinese government activities to develop industrial sector energy-efficiency targets as a ''market-based'' mechanism for improving the energy efficiency of key industrial facilities.

Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

2001-05-01T23:59:59.000Z

229

Industrial Energy Efficiency and Climate Change Mitigation  

Science Conference Proceedings (OSTI)

Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

2009-02-02T23:59:59.000Z

230

ENERGY STAR Challenge for Industry promotional posters | ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge for Industry helpful tools and resources ENERGY STAR Challenge for Industry promotional posters Secondary menu About us Press room Contact Us Portfolio Manager Login...

231

A Comparison of Iron and Steel Production Energy Intensity in China and the  

NLE Websites -- All DOE Office Websites (Extended Search)

A Comparison of Iron and Steel Production Energy Intensity in China and the A Comparison of Iron and Steel Production Energy Intensity in China and the U.S Title A Comparison of Iron and Steel Production Energy Intensity in China and the U.S Publication Type Conference Proceedings Year of Publication 2011 Authors Price, Lynn K., Ali Hasanbeigi, Nathaniel T. Aden, Zhang Chunxia, Li Xiuping, and Shangguan Fangqin Conference Name ACEEE Industrial Summer Study Date Published 07/2011 Publisher American Council for an Energy-Efficient Economy Conference Location New York Keywords china, energy intensity, iron and steel, Low Emission & Efficient Industry, united states Abstract The goal of this study was to develop a methodology for making an accurate comparison of the energy intensity of steel production in China and the U.S. The methodology addresses issues related to boundary definitions, conversion factors, and industry structure. In addition to the base case analysis, six scenarios were developed to assess the effect of different factors such as the share of electric arc furnace (EAF) steel production, conversion factors for the embodied energy of imported and exported intermediary and auxiliary products, and the differences in net calorific values of the fuels. The results of the analysis show that for the whole iron and steel production process, the final energy intensity in 2006 was equal to 14.90 GJ/tonne crude steel in the U.S. and 23.11 GJ/tonne crude steel in China in the base scenario. In another scenario that assumed the Chinese share of electric arc furnace production in 2006 (i.e. 10.5%) in the U.S., the energy intensity of steel production in the U.S. increased by 54% to 22.96GJ/tonne crude steel. Thus, when comparing the energy intensity of the U.S and Chinese steel industry,the structure of the industry should be taken into account.

232

Emerging Energy-Efficient Technologies for Industry  

E-Print Network (OSTI)

and paper pulp and paper Non-Energy Benefits While energyin the energy-intensive sectors (steel, petroleum, paper,1 Glass-1 Other-1 Paper-4 Refin-1 Total Energy Savings High

2005-01-01T23:59:59.000Z

233

Short-Term Energy Outlook Supplement: Energy-weighted industrial...  

U.S. Energy Information Administration (EIA) Indexed Site

Short-Term Energy Outlook Supplement: Energy-weighted industrial production indices December 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy...

234

Industrial applications of solar energy. First quarterly progress report  

DOE Green Energy (OSTI)

The objective of this program is to define solar energy systems that are technically and economically feasible, can satisfy all or part of selected industry demands, and to determine the market potential for such systems. The primary emphasis is placed on the application of total energy systems where industrial process heat, electrical needs, and space heating and cooling requirements are satisfied with a single solar collector field at maximum possible efficiency. Industrial energy usage in the United States and the Southwest was surveyed to determine which industries were most energy intensive. This resulted in the selection of six major groups: (1) Chemicals and Allied Products - SIC 28, (2) Primary Metals - SIC 33, (3) Petroleum and Coal Products - SIC 29, (4) Paper and Allied Products - SIC 26, (5) Stone, Clay, and Glass Products - SIC 32, and (6) Food and Kindred Products - SIC 20. These groupings account for approximately 80% of the total industrial energy usage, both nationwide and within the Southwest. These major groups were then pursued through their subdivisions to determine more specifically the largest energy users and their locations within the Southwest, allowing the final industry selection. Approximately 300 representatives of the selected industries were contacted to determine their specific energy requirements as well as architecturally related energy parameters. Climatic and seismic data is also being collected for the areas encompassing the selected regions.

Rogan, J.E.

1976-01-01T23:59:59.000Z

235

Pulp & Paper Industry- A Strategic Energy Review  

E-Print Network (OSTI)

The pulp and paper industry with yearly energy purchases of $5 billion per year including 50 billion kWh of power is one of the largest industrial energy producers in the U.S. However, structural changes in the global pulp and paper industry could greatly impact the energy purchases of U.S. firms. Depending on how energy suppliers react, this change could represent a threat or an opportunity.

Stapley, C. E.

1997-04-01T23:59:59.000Z

236

Industrial Geospatial Analysis Tool for Energy Evaluation (IGATE-E)  

Science Conference Proceedings (OSTI)

IGATE-E is an energy analysis tool for industrial energy evaluation. The tool applies statistical modeling to multiple publicly available datasets and provides information at the geospatial resolution of zip code using bottom up approaches. Within each zip code, the current version of the tool estimates electrical energy consumption of manufacturing industries based on each type of industries using DOE s Industrial Assessment Center database (IAC-DB) and DOE s Energy Information Administration Manufacturing Energy Consumption Survey database (EIA-MECS DB), in addition to other commercially available databases such as the Manufacturing News database (MNI, Inc.). Ongoing and future work include adding modules for the predictions of fuel energy consumption streams, manufacturing process steps energy consumption, major energy intensive processes (EIPs) within each industry type among other metrics of interest. The tool provides validation against DOE s EIA-MECS state level energy estimations and permits several statistical examinations. IGATE-E is intended to be a decision support and planning tool to a wide spectrum of energy analysts, researchers, government organizations, private consultants, industry partners, and alike.

Alkadi, Nasr E [ORNL; Starke, Michael R [ORNL; Ma, Ookie [DOE EERE; Nimbalkar, Sachin U [ORNL; Cox, Daryl [ORNL

2013-01-01T23:59:59.000Z

237

Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings  

E-Print Network (OSTI)

Energy Intensity in the Iron and Steel Industry: A Comparison of Physical and Economic Indicators”,energy and carbon intensity are evaluated. We show that macro-economic indicators,

Price, Lynn; Worrell, Ernst; Khrushch, Marta

1999-01-01T23:59:59.000Z

238

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network (OSTI)

energy supply system plans? The 1) describe quantitatively the California energy industryenergy supply and de~and, but first we describe some economic impacts of the existing energy industry.

Authors, Various

2010-01-01T23:59:59.000Z

239

Energy Intensity Indicators in the U.S.: Electricity Sector ...  

Open Energy Info (EERE)

Intensity Indicators in the U.S.: Electricity Sector (1949 - 2004) Energy intensity data and documentation published by the U.S. DOE's office of Energy Efficiency and Renewable...

240

Energy Management in a Multi-Industry Organization  

E-Print Network (OSTI)

Tenneco operates in seven of the nation's ten most energy intensive industries: Petroleum Refining, Chemicals Manufacturing, Pulp and Paper, Transportation Equipment, Primary Metals, Food Processing, and Machinery. This diversification of manufacturing operations and products, coupled with decentralization of management decision making present special challenges to the planning and coordination of an effective corporate level energy program. These challenges include accommodating different management styles and attitudes, different manufacturing operations, different energy intensities, different businesses, and different degrees of government regulation. Tenneco's energy program has steadily expanded to include all segments of the companies' various operations, even the least energy intensive, and has provided a steady stream of economic benefits in the form of avoided energy costs.

Lawrence, J.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Identifying Opportunities for Industrial Energy Conservation  

E-Print Network (OSTI)

The Energy Productivity Center of the Mellon Institute is engaged in a 2-year study to identify opportunities for improved U.S. industrial energy productivity. A distinguishing feature is the focus on energy services provided when fuels are consumed. The paper describes the Center's Least-Cost Energy Strategy, the Industrial Energy Productivity Project, and presents least-cost results for 1978 and for energy markets over the next two decades.

Hoffman, A. R.

1981-01-01T23:59:59.000Z

242

Wells Public Utilities - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Energy Efficiency Rebate Program Wells Public Utilities - Commercial and Industrial Energy Efficiency Rebate Program Eligibility Commercial Fed....

243

Empire District Electric - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Empire District Electric - Commercial and Industrial Energy Efficiency Rebates Empire District Electric - Commercial and Industrial Energy Efficiency Rebates < Back Eligibility...

244

Addressing the effectiveness of industrial energy efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

incentives certainly played an important role in helping China meet its 11th FYP energy intensity goal, but key questions remain unanswered as to whether the incentive policies...

245

Use of energy management systems for performance monitoring of industrial  

NLE Websites -- All DOE Office Websites (Extended Search)

Use of energy management systems for performance monitoring of industrial Use of energy management systems for performance monitoring of industrial load-shaping measures Title Use of energy management systems for performance monitoring of industrial load-shaping measures Publication Type Journal Article Year of Publication 1988 Authors Akbari, Hashem, Mashuri Warren, Anibal De T. Almeida, Deborah J. Connell, and Jeffrey P. Harris Journal Energy Volume 13 Pagination 253-263 Abstract We have studied the use of industrial energy management and control systems (EMCSs) for monitoring the performance of electric load-shaping measures in three of California's most electricity-intensive and rapidly growing industrial sectors: food, plastics, and computing equipment and electronics. In this paper, we summarize current load-shaping strategies, report on the current use of EMCSs in selected industries, and recommend ways for electric utility companies to verify the potential of EMCSs for performance monitoring. We conclude that EMCSs can be used to collect and store data for evaluating industrial load shaping. Some sophisticated EMCSs are currently being used for this purpose, mostly in larger electronics firms. Most EMCSs now available need to be customized to monitor a particular facility. We also conclude that electric utility companies can encourage the use of EMCSs for performance monitoring by helping to educate their industrial customers about EMCSs, establishing protocols to standardize communication between EMCSs, and testing EMCSs with data-logging functions at demonstration sites.

246

Industrial Energy Efficient Technology Guide 2007  

Science Conference Proceedings (OSTI)

This report updates the Industrial Energy Efficient Technology Reference Guide, previously known as the Electrotechnology Reference Guide. The last version of the Electrotechnology Reference Guide was published in 1992. This 2007 edition specifically updates information on industrial-sector energy consumption and the status of energy efficient technologies.

2007-07-31T23:59:59.000Z

247

Energy Use and Savings in the Canadian Industrial Sector  

E-Print Network (OSTI)

The changing role of energy as a production input in the industrial sector in Canada is examined. Energy use patterns are reviewed in terms of the energy input types, both purchased and self-produced, the actual energy form and quality requirements, and the residual energy forms, in particular the rejected gaseous and liquid waste heat streams. The trends in the intensity of energy use are examined, in terms of the energy consumed per unit of production output, and relative to the cost of other production inputs. Energy consumption and intensity have been influenced by many factors: energy prices; energy types used; structural composition and product mix; the state of the national economy and international markets, etc. In addition, energy use management with the achievement of optimum economic efficiency of energy use as the objective became an increasing priority for corporate and national energy planning during the 1970's. The potential for saving energy and money, the costs and benefits, are discussed in the light of evidence from a variety of industry and government sources. It appears that the substitution of energy-saving techniques and technologies as a replacement for the use of energy inputs will remain a high priority during the 1980's.

James, B.

1982-01-01T23:59:59.000Z

248

U.S. Commercial Buildings Weather Adjusted Site Energy Intensity  

U.S. Energy Information Administration (EIA)

Table 6c. U.S. Commercial Buildings Energy Intensity Using. Weather-Adjusted Site Energy. 1. ... Laboratory buildings are included in the "Other" category.

249

Industry Professional | Open Energy Information  

Open Energy Info (EERE)

Industry Professional Jump to: navigation, search How to GET INVOLVED WITH OpenEI Get involved with OpenEI Programmer.jpg Industry Professional Do you have valuable information...

250

Industrial service and product providers | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify...

251

Energy and Environmental Challenges in Aluminium Industry  

Science Conference Proceedings (OSTI)

Presentation Title, Energy and Environmental Challenges in Aluminium Industry - A Review ... A projection based on the present global Alumina and Aluminium ...

252

Nanotechnology for Energy, Environment, Electronics and Industry  

Science Conference Proceedings (OSTI)

The benefits can range from higher system properties and energy efficiency, to innovative healthcare solutions, to advanced industry products and solutions.

253

Nanotechnology for Energy, Environment, Healthcare and Industry  

Science Conference Proceedings (OSTI)

The benefits can range from higher system properties and energy efficiency, to innovative healthcare solutions, to advanced industry products and solutions.

254

XH Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Jump to: navigation, search Name XH Industries Inc Place Ilwaco, Washington, DC Zip 98624-9046 Sector Wind energy Product Washington-based repairer of wind power...

255

Advanced Manufacturing Office: Industrial Distributed Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Industry Classification System (NAICS) code, system size, technologyprime mover, fuel, thermal energy use, and year installed. Access the CHP Project Profiles database....

256

Jinlong Industrial Group | Open Energy Information  

Open Energy Info (EERE)

Solar Product Solar energy company based in Hebei province, engaged in manufacturing photovoltaic cell, crystal silicon and other key products. References Jinlong Industrial...

257

Energy Opportunities in the Aluminum Processing Industry  

Science Conference Proceedings (OSTI)

As carbon management has grown in importance and project payback becomes ... overall energy within a plant and within the aluminum processing industry.

258

Barron Electric Cooperative - Commercial and Industry Energy...  

Open Energy Info (EERE)

icon Barron Electric Cooperative - Commercial and Industry Energy Efficiency Lighting Rebates (Wisconsin) This is the approved revision of this page, as well as being the...

259

Advanced Manufacturing Office: Western Industrial Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Send a link to Advanced Manufacturing Office: Western Industrial Energy Efficiency & Combined Heat and Power Regional Dialogue Meeting to someone by E-mail Share Advanced...

260

ENERGY STAR Industrial Plant Certification: Instructions for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Senior care resources Small business resources State and local government resources ENERGY STAR Industrial Plant Certification: Instructions for applying This document...

Note: This page contains sample records for the topic "industrial energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy Perspectives: Industrial and transportation sectors ...  

U.S. Energy Information Administration (EIA)

Since 2008, energy use in the transportation, residential, and commercial sectors stayed relatively constant or fell slightly. Industrial consumption grew in 2010 and ...

262

Rotem Industries Ltd | Open Energy Information  

Open Energy Info (EERE)

research, development, construction & consultation of major solar energy projects: solar power plants and solar powered desalination study. References Rotem Industries Ltd1...

263

Alten Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Industries Inc Place Baltimore, Maryland Zip 21218 Product Maryland-based integrated alternative energy development corporation dedicated to supporting a viable domestic...

264

Value Capture in the Global Wind Energy Industry  

E-Print Network (OSTI)

CA: Personal Computing Industry Center, working paper.flows in the wind energy industry. Peterson Institute, WPin the Global Wind Energy Industry Jason Dedrick, Syracuse

Dedrick, Jason; Kraemer, Kenneth L.

2011-01-01T23:59:59.000Z

265

Improving MapReduce energy efficiency for computation intensive workloads  

Science Conference Proceedings (OSTI)

MapReduce is a programming model for data intensive computing on large-scale distributed systems. With its wide acceptance and deployment, improving the energy efficiency of MapReduce will lead to significant energy savings for data centers and computational ... Keywords: intelligent DVFS scheduling, MapReduce energy efficiency, computation intensive workloads, data intensive computing, large-scale distributed systems, data centers, computational grids, energy savings, Hadoop, energy-proportional computing, resource allocation, dynamic voltage and frequency scaling, processor frequency

Thomas Wirtz; Rong Ge

2011-07-01T23:59:59.000Z

266

Energy Smart - Commercial and Industrial Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Rebate Program (20 Municipalities) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling...

267

Greenhouse Gas Programs, Energy Efficiency, and the Industrial Sector  

E-Print Network (OSTI)

The United States has made significant progress in reducing total energy use through energy efficiency improvements over the past decade, yet the United States still ranks as the highest absolute greenhouse gas (GHG) emitter in the world with 23.6 metric tons of carbon dioxide equivalent per capita in 2006. The industrial sector (agriculture is excluded) is responsible for 28.7 percent of the GHG emissions in the U.S. However, the U.S. industrial sector has numerous economically viable opportunities to reduce energy use and GHG emissions. Energy efficiency, including new clean technologies, plays a significant role in increasing productivity and reducing energy intensity, and thus emissions. Increasing energy efficiency in industrial processes is central to addressing climate change issues in the industrial sector. This paper describes the energy-efficiency programs, methodologies, and technologies that can economically lead to significant GHG reductions in the industrial sector. The paper also discusses the impacts of climate change policies and programs to the application of advanced low-carbon industrial technologies.

Zhou, A.; Tutterow, V.; Harris, J.

2009-05-01T23:59:59.000Z

268

Window Industry Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

Industry Technology Roadmap Industry Technology Roadmap Jump to: navigation, search Logo: Window Industry Technology Roadmap Name Window Industry Technology Roadmap Agency/Company /Organization United States Department of Energy Sector Energy Focus Area Energy Efficiency, Buildings Topics Technology characterizations Resource Type Guide/manual Website http://www.nrel.gov/docs/fy01o References Window Industry Technology Roadmap[1] Abstract The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. Overview "The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. It serves as a resource for government to

269

Portfolio Manager Technical Reference: U.S. National Energy Use Intensity |  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. National Energy Use U.S. National Energy Use Intensity Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

270

Biomass energy conversion workshop for industrial executives  

DOE Green Energy (OSTI)

The rising costs of energy and the risks of uncertain energy supplies are increasingly familiar problems in industry. Bottom line profits and even the simple ability to operate can be affected by spiralling energy costs. An often overlooked alternative is the potential to turn industrial waste or residue into an energy source. On April 9 and 10, 1979, in Claremont, California, the Solar Energy Research Institute (SERI), the California Energy Commission (CEC), and the Western Solar Utilization Network (WSUN) held a workshop which provided industrial managers with current information on using residues and wastes as industrial energy sources. Successful industrial experiences were described by managers from the food processing and forest product industries, and direct combustion and low-Btu gasification equipment was described in detail. These speakers' presentations are contained in this document. Some major conclusions of the conference were: numerous current industrial applications of wastes and residues as fuels are economic and reliable; off-the-shelf technologies exist for converting biomass wastes and residues to energy; a variety of financial (tax credits) and institutional (PUC rate structures) incentives can help make these waste-to-energy projects more attractive to industry. However, many of these incentives are still being developed and their precise impact must be evaluated on a case-by-case basis.

None

1979-01-01T23:59:59.000Z

271

Energy Savings Potential and Policy for Energy Conservation in Selected Indian Manufacturing Industries  

E-Print Network (OSTI)

Minimization of damage from the rising trend of global warming would warrant two kinds of action for a country like India: a) abatement of greenhouse gas emissions and b) adaptation to climate change so as to reduce climate change related vulnerability of the people. The target of low carbon economic growth of India in terms of declining energy and carbon intensity of GDP assumes, therefore, a special significance in such context. Of the different options for lowering carbon intensity of GDP, the option of energy conservation through reduced energy intensity of output happens to be cheaper in most cases than the carbon free energy supply technology options. As the industrial sector has the largest sectoral share of final energy consumption in India this paper focuses on the assessment of energy savings potential in seven highly energy consuming industries. The paper estimates the energy savings potential for each of these industries using unit level Annual Survey of Industries data for 2007-08. The paper further develops an econometric model admitting substitutability among energy and other non-energy inputs as well as that among fuels using translog cost function for the selected industries and

Manish Gupta; Ramprasad Sengupta; Manish Gupta; Ramprasad Sengupta

2012-01-01T23:59:59.000Z

272

Fostering a Renewable Energy Technology Industry  

E-Print Network (OSTI)

LBNL-59116 Fostering a Renewable Energy Technology Industry: An International Comparison of Wind and Renewable Energy, Wind & Hydropower Technologies Program, of the U.S. Department of Energy under Contract No by the Assistant Secretary of Energy Efficiency and Renewable Energy, Wind & Hydropower Technologies Program

273

Industrial energy management information center | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

energy management information center energy management information center Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Improve energy performance Industrial service and product providers Earn recognition Market impacts: Improvements in the industrial sector

274

Developing a solar energy industry in Egypt  

E-Print Network (OSTI)

This paper assesses Egypt's current energy infrastructure and its problems, the available solar energy resource, and the technologies required to harness this resource. After this assessment, an industry based on high ...

AbdelMessih, Sherife (Sherife Mohsen)

2009-01-01T23:59:59.000Z

275

Greenline Industries | Open Energy Information  

Open Energy Info (EERE)

Industries Place San Rafael, California Zip 94901 Product Small to medium scale biodiesel plants designer and producer. They also run a biodiesel plant in Vallejo,...

276

DMI Industries | Open Energy Information  

Open Energy Info (EERE)

OTTR), is a diversified heavy steel manufacturer with a primary concentration on wind tower fabrication. References DMI Industries1 LinkedIn Connections CrunchBase Profile No...

277

Energy Technical Assistance: Industrial Processes Program  

E-Print Network (OSTI)

The Energy Technical Assistance Division of Texas Engineering Extension Service (TEEX) has implemented an energy conservation program to assist small industry in using energy more efficiently. This full time service, an outgrowth of the Texas A&M University College of Engineering activities, is available through support of Texas Energy and Natural Resources Advisory Council. Engineers with industry and consulting experience are located in Arlington and Houston TEEX offices.

McClure, J. D.

1980-01-01T23:59:59.000Z

278

Web-Based Industrial Energy Management Tool  

Science Conference Proceedings (OSTI)

This report describes continuing research on the Industrial Energy Management Tool (IEMT), a web-based software resource intended for the evaluation of industrial energy efficiency measures. The IEMT software development is ongoing, and this report covers the status of an alpha tool that has already been created and plans for moving forward with development of a beta product.

2008-03-31T23:59:59.000Z

279

Explaining Long-Run Changes in the Energy Intensity of the U.S. Economy  

E-Print Network (OSTI)

Recent events have revived interest in explaining the long-run changes in the energy intensity of the U.S. economy. We use a KLEM dataset for 35 industries over 39 years to decompose changes in the aggregate energy-GDP ...

Sue Wing, Ian.

280

US Solar Energy Industries Association SEIA | Open Energy Information  

Open Energy Info (EERE)

Energy Industries Association SEIA Energy Industries Association SEIA Jump to: navigation, search Name US Solar Energy Industries Association (SEIA) Place Washington, Washington, DC Zip 20005 Sector Solar Product US national trade association of solar energy manufacturers, dealers, distributors, consultants, and marketers. References US Solar Energy Industries Association (SEIA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. US Solar Energy Industries Association (SEIA) is a company located in Washington, Washington, DC . References ↑ "US Solar Energy Industries Association (SEIA)" Retrieved from "http://en.openei.org/w/index.php?title=US_Solar_Energy_Industries_Association_SEIA&oldid=352621

Note: This page contains sample records for the topic "industrial energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

California Industrial Energy Efficiency Potential  

E-Print Network (OSTI)

Prepared for the California Energy Commission. December. [and F. Coito). 2002. California's Secret Energy Surplus; Theby key end use. Figure 1. California Energy Consumption by

Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; Rafael Friedmann; Rufo, Mike

2005-01-01T23:59:59.000Z

282

DTE Energy (Electric) - Commercial and Industrial Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DTE Energy (Electric) - Commercial and Industrial Energy Efficiency DTE Energy (Electric) - Commercial and Industrial Energy Efficiency Program DTE Energy (Electric) - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Institutional Local Government State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Manufacturing Other Construction Heat Pumps Commercial Lighting Lighting Insulation Design & Remodeling Water Heating Windows, Doors, & Skylights Maximum Rebate Facility: $200,000 Project: $200,000 Customer: $750,000 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Custom Measures: $0.08/kWh first year energy savings Lighting: Varies ECM Motors/Controls: Varies

283

DTE Energy (Gas) - Commercial and Industrial Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DTE Energy (Gas) - Commercial and Industrial Energy Efficiency DTE Energy (Gas) - Commercial and Industrial Energy Efficiency Program DTE Energy (Gas) - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Institutional Local Government State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Other Construction Manufacturing Insulation Design & Remodeling Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Facility: $200,000 Project: $100,000 Customer: $200,000 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Custom Measures: $4/MCF of first year energy savings Whole Building Design Incentive: 50% of cost up to $3,000 Steam Trap Repair/Replacement: $100

284

Industry  

E-Print Network (OSTI)

in the iron and steel industry: a global model. Energy, 30,report of the world steel industry 2005. International Irontrends in the iron and steel industry. Energy Policy, 30,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

285

State Level Analysis of Industrial Energy Use  

E-Print Network (OSTI)

Most analyses of industrial energy use have been conducted at the national level, in part because of the difficulties in dealing with state level data. Unfortunately, this provides a distorted view of the industrial sector for state and regional policymakers. ACEEE has completed analyses on eight states drawing upon data from a diverse set of sources to characterize the industries at a relatively high level of disaggregation. These analyses demonstrate how different state and regional mixes are from the national mix and the importance of a regionally specific approach to industrial energy policy. In addition, the data suggest that significant shifts are occurring in industry mix in some of these states that will have important ramifications on future industrial policies for these states. This paper will provide an overview of our analytical approach, the data sources that are available, and provide examples of the analysis results to demonstrate the regional diversity of industrial electricity use.

Elliott, R. N.; Shipley, A. M.; Brown, E.

2003-05-01T23:59:59.000Z

286

Canada's Voluntary Industrial Energy Conservation Program  

E-Print Network (OSTI)

Industrial Energy Conservation in Canada is organized and promoted through a voluntary program that is administered by industry. Industry is divided into fifteen sectors, each of which is represented by a Voluntary Task Force. Information exchange, goal setting and progress reporting are carried on through these Task Forces which are staffed with industrial volunteers and representatives from the major trade associations. Inter-industry liaison is accomplished via a Coordinating Committee comprised of the individual Task Force Chairmen and representatives of the federal government. While the program has been in existence only since 1976, impressive gains have already been made and targets have been set for 1980 and 1985. The strength of the program lies in its candid cooperation between industry and government. There has, to date, been no need or advantage to implementing a government mandated program for industrial energy conservation in Canada.

Wolf, C. A., Jr.

1980-01-01T23:59:59.000Z

287

Table 23. Energy Intensity, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Energy Intensity, Projected vs. Actual Energy Intensity, Projected vs. Actual (quadrillion Btu / $Billion Nominal GDP) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 20.1 18.5 16.9 15.5 14.4 13.2 AEO 1983 19.9 18.7 17.4 16.2 15.1 14.0 9.5 AEO 1984 20.1 19.0 17.7 16.5 15.5 14.5 10.2 AEO 1985 20.0 19.1 18.0 16.9 15.9 14.7 13.7 12.7 11.8 11.0 10.3 AEO 1986 18.3 17.8 16.8 16.1 15.2 14.3 13.4 12.6 11.7 10.9 10.2 9.5 8.9 8.3 7.8 AEO 1987 17.6 17.0 16.3 15.4 14.5 13.7 12.9 12.1 11.4 8.2 AEO 1989* 16.9 16.2 15.2 14.2 13.3 12.5 11.7 10.9 10.2 9.6 9.0 8.5 8.0 AEO 1990 16.1 15.4 11.7 8.6 6.4 AEO 1991 15.5 14.9 14.2 13.6 13.0 12.5 11.9 11.3 10.8 10.3 9.7 9.2 8.7 8.3 7.9 7.4 7.0 6.7 6.3 6.0 AEO 1992 15.0 14.5 13.9 13.3 12.7 12.1 11.6 11.0 10.5 10.0 9.5 9.0 8.6 8.1 7.7 7.3 6.9 6.6 6.2 AEO 1993 14.7 13.9 13.4 12.8 12.3 11.8 11.2 10.7 10.2 9.6 9.2 8.7 8.3 7.8 7.4 7.1 6.7 6.4

288

Industrial Technologies - Energy Innovation Portal  

With the growing pressure placed on energy efficiency and reliance on fossil fuels, alternative sources of energy are increasingly important.

289

Mulk Renewable Energy Aditya Solar Power Industries JV | Open Energy  

Open Energy Info (EERE)

Mulk Renewable Energy Aditya Solar Power Industries JV Mulk Renewable Energy Aditya Solar Power Industries JV Jump to: navigation, search Name Mulk Renewable Energy & Aditya Solar Power Industries JV Place United Arab Emirates Sector Solar Product UAE-based company that is developing a 200MW solar thermal plant in Sharjah. References Mulk Renewable Energy & Aditya Solar Power Industries JV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Mulk Renewable Energy & Aditya Solar Power Industries JV is a company located in United Arab Emirates . References ↑ "Mulk Renewable Energy & Aditya Solar Power Industries JV" Retrieved from "http://en.openei.org/w/index.php?title=Mulk_Renewable_Energy_Aditya_Solar_Power_Industries_JV&oldid=348970"

290

Biofuel Industries Group LLC | Open Energy Information  

Open Energy Info (EERE)

Industries Group LLC Industries Group LLC Jump to: navigation, search Name Biofuel Industries Group LLC Place Adrian, Michigan Zip 49221 Product Biofuel Industries Group, LLC owns and operates the NextDiesel biodiesel plant in Adrian, Michigan. References Biofuel Industries Group LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Biofuel Industries Group LLC is a company located in Adrian, Michigan . References ↑ "Biofuel Industries Group LLC" Retrieved from "http://en.openei.org/w/index.php?title=Biofuel_Industries_Group_LLC&oldid=342814" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

291

Progress and Outlook on China Industrial Energy Conservation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Progress and Outlook on China Industrial Energy Conservation Wang Wenyuan, Department of Energy Conservation and...

292

Financing the growth of energy efficiency service industry in Shanghai  

E-Print Network (OSTI)

present experiences of energy service industrial developmentNational Association of Energy Service Companies (NAESCO),2004, “Developing an Energy Efficiency Service Industry in

Lin, Jiang; Gilligan, Donald; Zhao, Yinghua

2005-01-01T23:59:59.000Z

293

Developing an energy efficiency service industry in Shanghai  

E-Print Network (OSTI)

Japanese Association of Energy Service Companies (JAESCO),growth of a viable energy services industry should become anhealthy development of a local energy services industry, the

Lin, Jiang; Goldman, Charles; Levine, Mark; Hopper, Nicole

2004-01-01T23:59:59.000Z

294

Estimating energy-augmenting technological change in developing country industries  

E-Print Network (OSTI)

trend due to the constant energy price bias assumption. ThisIndian industries, Energy price bias (standard error)industries, 1980–1997 Energy price bias (standard error)

Sanstad, Alan H.; Roy, Joyashree; Sathaye, Jayant A.

2006-01-01T23:59:59.000Z

295

Energy Conservation in China North Industries Corporation  

E-Print Network (OSTI)

This paper describes an overview of the energy conservation in China North Industries Corporation. It shows how the corporation improves energy efficiencies and how it changes constitution of fuel--converting oil consumption to coal. Energy management organization, energy balance in plants and several specific techniques such as Heat pipe application, Coal oil mixture, Coal water slurry are also mentioned in this paper.

You, W. T.

1985-05-01T23:59:59.000Z

296

Industrial applications of solar energy. First quarterly progress report  

SciTech Connect

Industrial energy usage in the United States and the Southwest was surveyed to determine which industries were most energy intensive. This resulted in the selection of six major groups: (1) Chemicals and Allied Products - SIC 28, (2) Primary Metals - SIC 33, (3) Petroleum and Coal Products - SIC 29, (4) Paper and Allied Products - SIC 26, (5) Stone, Clay, and Glass Products - SIC 32, and (6) Food and Kindred Products - SIC 20. These groupings account for approximately 80% of the total industrial energy usage, both nationwide and with the Southwest. These major groups were then pursued through their subdivisions to determine more specifically the largest energy users and their locations within the Southwest, allowing the final industry selection. Approximately 300 representatives of the selected industries were contacted to determine their specific energy requirments as well as architecturally related energy parameters. Climaic and seismic data is also being collected for the areas encompassing the selected regions. Figures of Merit are being defined and their applicability to total energy systems tested. Subsystem definition work was initiated.

Rogan, J.E.

1976-01-01T23:59:59.000Z

297

The Texas Industrial Energy Conservation Program  

E-Print Network (OSTI)

Industry is Texas' largest consumer of energy (46+% of total). With foresight of the escalating cost of energy, it was apparent these additional costs to industry would have two adverse effects. First, the cost of their product to the consumer would increase, and second, the impact on industry would curtail growth and expansion which would have a detrimental impact on both employment and the Texas economy. To combat this problem, the Energy Utilization Department of the Texas Industrial Commission was formed under funds provided by the U.S. Department of Energy with these funds administered by the Texas Energy and Natural Resources Advisory Council. This paper examines the program, its methodology, and the energy and financial benefits derived from its operation.

Waldrop, T.

1982-01-01T23:59:59.000Z

298

Effective Transfer of Industrial Energy Conservation Technologies  

E-Print Network (OSTI)

Voluntary participation in industrial energy conservation programs resulted in savings of approximately 1 million barrels of oil equivalent per day in the U.S. during 1981. These energy savings accrued largely from the development, introduction, and acceptance by industry of new energy conserving technologies. These new technologies were developed through cost sharing programs between the Department of Energy and private industry. These joint efforts reduced the risk to industry, thus making them willing to accept and use these new technologies at an accelerated rate. Examples of several technologies that were used by industry at an accelerated rate are described in this paper. These technologies are; textile foam finishing and dyeing, forging furnace modifications, and high efficiency metallic recuperators.

Clement, M.; Vallario, R. W.

1983-01-01T23:59:59.000Z

299

California Industrial Energy Efficiency Potential  

E-Print Network (OSTI)

from 1% to 5% of base usage for natural gas. The achievableUsage A key initial step in the analysis was to develop a baseline understanding of industrial electricity and natural gas

Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; Rafael Friedmann; Rufo, Mike

2005-01-01T23:59:59.000Z

300

Motech Industries | Open Energy Information  

Open Energy Info (EERE)

Photovoltaics Partnership Year 2008 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now Motech Industries is a company located in Bethlehem, Taiwan....

Note: This page contains sample records for the topic "industrial energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Benteler Industries | Open Energy Information  

Open Energy Info (EERE)

Technologies and Systems Partnership Year 2002 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now Benteler Industries is a company located in...

302

Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duke Energy (Electric) - Commercial and Industrial Energy Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate Program Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Construction Commercial Weatherization Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Home Weatherization Windows, Doors, & Skylights Maximum Rebate Commercial Incentives: $50,000 per fiscal year, per facility for all eligible technologies combined Custom Incentives: 50% of incremental cost Most Prescriptive Incentives: 50% of equipment cost Custom Incentives: 50% of incremental cost

303

Energy Smart - Commercial and Industrial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Smart - Commercial and Industrial Energy Efficiency Rebate Energy Smart - Commercial and Industrial Energy Efficiency Rebate Program (20 Municipalities) Energy Smart - Commercial and Industrial Energy Efficiency Rebate Program (20 Municipalities) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Incentives for Prescriptive measures may not exceed 50% of the total project cost, or the individual utilities customer cap (varies per each utility). Incentives for Custom measure may not exceed 40% of the total project cost, or the individual utilities customer cap (varies per each utility). Program Info Expiration Date 12/31/2013 State Michigan

304

Energy Efficiency Fund (Electric) - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Fund (Electric) - Commercial and Industrial Energy Efficiency Fund (Electric) - Commercial and Industrial Energy Efficiency Programs Energy Efficiency Fund (Electric) - Commercial and Industrial Energy Efficiency Programs < Back Eligibility Commercial Industrial Institutional Local Government Multi-Family Residential State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Other Windows, Doors, & Skylights Appliances & Electronics Maximum Rebate Contact EEF Program Info State Connecticut Program Type Utility Rebate Program Rebate Amount Incentives Vary Widely Provider Connecticut Light and Power All Connecticut Utilities implement electric and gas efficiency rebate programs funded by Connecticut's public benefits charge through the Energy

305

Solar Energy LLC Industrial Investors Group | Open Energy Information  

Open Energy Info (EERE)

LLC Industrial Investors Group LLC Industrial Investors Group Jump to: navigation, search Name Solar Energy LLC - Industrial Investors Group Place Moscow, Russian Federation Zip 119017 Sector Solar Product The company Solar Energy plans to use turnkey equipment from GT Solar and others to make silicon, ingots, wafers and cells in Russia. References Solar Energy LLC - Industrial Investors Group[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Energy LLC - Industrial Investors Group is a company located in Moscow, Russian Federation . References ↑ "Solar Energy LLC - Industrial Investors Group" Retrieved from "http://en.openei.org/w/index.php?title=Solar_Energy_LLC_Industrial_Investors_Group&oldid=351271

306

Guidance for Preparing ENERGY STAR Challenge for Industry Plant Profile  

NLE Websites -- All DOE Office Websites (Extended Search)

Suzhou Facility Suzhou Facility BD Medical No.5 Baiyu Road Suzhou Industrial Park Jiangsu P.R. China In 1995 BD became the second multinational company to open a manufacturing facility in Suzhou Industrial Park. The BD Medical facility in Suzhou currently employs approximately 1,100 associates and produces catheters, infusion products, anesthesia kits and other medical devices. BD is a leading global medical technology company that manufactures and sells medical devices, instrument systems and reagents. The Suzhou facility achieved the ENERGY STAR Challenge for Industry in 2012. The facility reduced its energy intensity by 22.2% in two years, avoiding greenhouse gas emissions in the amount of 1,192 metric tons of CO 2 e. Energy achievements were accomplished through

307

Equity Industrial Partners | Open Energy Information  

Open Energy Info (EERE)

Equity Industrial Partners Equity Industrial Partners Jump to: navigation, search Name Equity Industrial Partners Facility Equity Industrial Partners Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Equity Industrial Turbines LLC Developer Equity Industrial Turbines LLC Energy Purchaser City of Gloucester Location Gloucester MA Coordinates 42.625864°, -70.65621° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.625864,"lon":-70.65621,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

308

Figure 60. Energy intensity of selected commercial end uses ...  

U.S. Energy Information Administration (EIA)

Refrigeration Lighting Heating, cooling, and ventilation Other 2040.00 2011.00 ... Energy intensity of selected commercial end uses, 2011 and 2040 ...

309

World Energy Intensity by Region, 1970-2020  

U.S. Energy Information Administration (EIA)

If energy intensities in the developing world are assumed to increase by 136 percent—the most rapid annual rate of increase observed between 1990 and 1997 ...

310

Figure 59. Commercial delivered energy intensity in four cases ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 59. Commercial delivered energy intensity in four cases, 2005-2040 (index, 2005 = 1) Reference case 2011 Technology case

311

Figure 55. Residential delivered energy intensity in four ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 55. Residential delivered energy intensity in four cases, 2005-2035 (index, 2005 = 1) Best Available Technology case High Technology case

312

CHANGES IN ENERGY INTENSITY IN THE MANUFACTURING SECTOR  

U.S. Energy Information Administration (EIA)

DOE/EIA-0552(85-91) Changes in Energy Intensity in the Manufacturing Sector 1985-1991 September 1995 ... All telephone orders should be directed to:

313

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network (OSTI)

Petroleum Refineries: An ENERGY STAR Guide for Energy andGlass Industry: An ENERGY STAR Guide for Energy and PlantAssembly Industry: An ENERGY STAR Guide for Energy and Plant

Price, Lynn

2008-01-01T23:59:59.000Z

314

Solar Power Industries SPI | Open Energy Information  

Open Energy Info (EERE)

Solar Power Industries SPI Solar Power Industries SPI Jump to: navigation, search Name Solar Power Industries (SPI) Place Belle Vernon, Pennsylvania Zip 15012 Product US-based manufacturer of mono and multicrystalline PV cells, modules and systems. References Solar Power Industries (SPI)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Power Industries (SPI) is a company located in Belle Vernon, Pennsylvania . References ↑ "Solar Power Industries (SPI)" Retrieved from "http://en.openei.org/w/index.php?title=Solar_Power_Industries_SPI&oldid=351318" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

315

Sanyo Chemical Industries | Open Energy Information  

Open Energy Info (EERE)

Chemical Industries Chemical Industries Jump to: navigation, search Name Sanyo Chemical Industries Place Tokyo, Japan Zip 103-0023 Product String representation "Sanyo is a petr ... uction process." is too long. References Sanyo Chemical Industries[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sanyo Chemical Industries is a company located in Tokyo, Japan . References ↑ "Sanyo Chemical Industries" Retrieved from "http://en.openei.org/w/index.php?title=Sanyo_Chemical_Industries&oldid=350614" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

316

Energy efficient industrialized housing research program  

SciTech Connect

This is the second volume of a two volume report on energy efficient industrialized housing. Volume II contains support documentation for Volume I. The following items are included: individual trip reports; software bibliography; industry contacts in the US, Denmark, and Japan; Cost comparison of industrialized housing in the US and Denmark; draft of the final report on the systems analysis for Fleetwood Mobile Home Manufacturers. (SM)

Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; Mc Donald, M.; McGinn, B.; Ryan, P.; Sekiguchi, T. (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

1989-01-01T23:59:59.000Z

317

Department of Energy Support of Energy Intensive Manufacturing Related to Refractory Research  

Science Conference Proceedings (OSTI)

For many years, the United States Department of Energy (DOE) richly supported refractory related research to enable greater energy efficiency processes in energy intensive manufacturing industries such as iron and steel, glass, aluminum and other non-ferrous metal production, petrochemical, and pulp and paper. Much of this support came through research projects funded by the former DOE Energy Efficiency and Renewable Energy (EERE) Office of Industrial Technologies (OIT) under programs such as Advanced Industrial Materials (AIM), Industrial Materials of the Future (IMF), and the Industrial Technologies Program (ITP). Under such initiatives, work was funded at government national laboratories such as Oak Ridge National Laboratory (ORNL), at universities such as West Virginia University (WVU) and the Missouri University of Science and Technology (MS&T) which was formerly the University of Missouri Rolla, and at private companies engaged in these manufacturing areas once labeled industries of the future by DOE due to their strategic and economic importance to American industry. Examples of such projects are summarized below with information on the scope, funding level, duration, and impact. This is only a sampling of representative efforts funded by the DOE in which ORNL was involved over the period extending from 1996 to 2011. Other efforts were also funded during this time at various other national laboratories, universities and private companies under the various programs mentioned above. Discussion of the projects below was chosen because I was an active participant in them and it is meant to give a sampling of the magnitude and scope of investments made by DOE in refractory related research over this time period.

Hemrick, James Gordon [ORNL

2013-01-01T23:59:59.000Z

318

Despatch Industries | Open Energy Information  

Open Energy Info (EERE)

Despatch Industries Despatch Industries Jump to: navigation, search Name Despatch Industries Place Minneapolis, Minnesota Zip 55044 Sector Solar Product Manufacturer of infrared drying and firing furnaces used in solar cell manufacture, and other thermal processing equipment. Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

319

Reid Industries | Open Energy Information  

Open Energy Info (EERE)

Reid Industries Reid Industries Jump to: navigation, search Name Reid Industries Address PO Box 503 Place San Francisco, CA Zip 94104 Phone number 415-947-1050 Coordinates 37.7923058°, -122.4021273° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7923058,"lon":-122.4021273,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

320

Jax Industries | Open Energy Information  

Open Energy Info (EERE)

Jax Industries Jax Industries Jump to: navigation, search Name Jax Industries Place Hillsboro, Oregon Product Developer of recharge systems for CZ process silicon ingot growers, some of which produce PV silicon feedstock. Coordinates 43.651735°, -90.341144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.651735,"lon":-90.341144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "industrial energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Energy End-Use Intensities in Commercial Buildings 1989 -- Executive  

U.S. Energy Information Administration (EIA) Indexed Site

9 Energy End-Use Intensities > Executive Summary 9 Energy End-Use Intensities > Executive Summary Executive Summary Energy End Uses Ranked by Energy Consumption, 1989 Energy End Uses Ranked by Energy Consumption, 1989 Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A through F of the 1989 Commercial Buildings Energy Consumption Survey. divider line The demand for energy in U.S. stores, offices, schools, hospitals, and other commercial buildings has been increasing. This report examines energy intensities in commercial buildings for nine end uses: space heating, cooling, ventilation, lighting, water heating, cooking, refrigeration, office equipment, and "other." The objective of this analysis was to increase understanding of how energy is used in commercial buildings and to identify targets for greater energy efficiency which could moderate future growth in demand.

322

Otter Tail Power Company - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Home Weatherization Commercial Weatherization Heating &...

323

DRAFT DO NOT QUOTE Energy Prices and Energy Intensity in China: A Structural Decomposition Analysis and Econometrics Study  

E-Print Network (OSTI)

Since the start of its economic reforms in 1978, China's energy prices relative to other prices have increased. At the same time, its energy intensity, i.e., energy consumption per unit of Gross Domestic Product (GDP), has declined dramatically, by about 70%, in spite of increases in energy consumption. Is this just a coincidence? Or does a systematic relationship exist between energy prices and energy intensity? In this study, we examine whether and how China’s energy price changes affect its energy intensity trend during 1980-2002 at a macro level. We conduct the research by using two complementary economic models: the input-output-based structural decomposition analysis (SDA) and econometric regression models and by using a decomposition method of own-price elasticity of energy intensity. Findings include a negative own-price elasticity of energy intensity, a price-inducement effect on energyefficiency improvement, and a greater sensitivity (in terms of the reaction of energy intensity towards changes in energy prices) of the industry sector, compared to the overall economy. Analysts can use these results as a starting point for China's energy and carbon

Xiaoyu Shi; Karen R. Polenske; Xiaoyu Shi; Karen R. Polenske

2005-01-01T23:59:59.000Z

324

Energy Efficiency Fund (Gas) - Commercial and Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Fund (Gas) - Commercial and Industrial Energy Efficiency Fund (Gas) - Commercial and Industrial Energy Efficiency Programs Energy Efficiency Fund (Gas) - Commercial and Industrial Energy Efficiency Programs < Back Eligibility Commercial Industrial Institutional Local Government Low-Income Residential Schools State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate All Gas Programs: Contact utility Custom Retrofits: 40% Comprehensive Project: 50% of total cost Program Info Funding Source Connecticut Energy Efficiency Fund State Connecticut Program Type Utility Rebate Program Rebate Amount

325

Methodology of Energy Intensities - Appendix A  

U.S. Energy Information Administration (EIA) Indexed Site

Glossary Appendix A Survey Design, Implementation, and Estimates Introduction The Energy Information Administration (EIA) designed the 1994 Manufacturing Energy Consumption...

326

Industry  

E-Print Network (OSTI)

and power in US industry. Energy Policy, 29, pp. 1243-1254.Paris. IEA, 2004: Energy Policies of IEA Countries: Finlandand steel industry. Energy Policy, 30, pp. 827-838. Kim, Y.

Bernstein, Lenny

2008-01-01T23:59:59.000Z

327

Advanced Energy Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Fort Collins, Colorado Zip 80525 Sector Solar Product US-based manufacturer of power conversion and control systems for the semiconductor and solar industries. The company also...

328

1985 US energy industry yearbook  

Science Conference Proceedings (OSTI)

The annual yearbook directory designed to discuss the US petroleum industry is presented. The information is presented under the following topics: major intergrated oil companies, drilling and exploration companies, independent petroleum companies, petrochemical giants, engineering and construction companies, marketing and refining companies, and terminal companies.

Hoffman, C. (ed.)

1985-01-01T23:59:59.000Z

329

Policy Options for Encouraging Energy Efficiency Best Practices in Shandong Province's Cement Industry  

E-Print Network (OSTI)

Evaluation of Energy Intensity per GDP Indicators ( ??? GDPand energy indicators, including economic energy intensity,

Price, Lynn

2013-01-01T23:59:59.000Z

330

Allegheny Power - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contact Utility Custom: 0.05kWh saved Provider SAIC FirstEnergy company Potomac Edison offers rebates to eligible commercial and industrial customers in Maryland service...

331

VAWT Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Zip 89118 Sector Wind energy Product Focused on design, production, and marketing of wind turbines in the 0.1-0.5MW range. References VAWT Industries Inc1 LinkedIn...

332

Industry  

E-Print Network (OSTI)

milling industry: An ENERGY STAR Guide for Energy and Plantcement mak- ing - An ENERGY STAR Guide for Energy and Plantre- fineries - An ENERGY STAR Guide for Energy and Plant

Bernstein, Lenny

2008-01-01T23:59:59.000Z

333

Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice  

E-Print Network (OSTI)

Tracking Industrial Energy Efficiency and CO2 Emissions: Aapplication of Energy Efficiency in Industry, Vienna,for Promoting Industrial Energy Efficiency in Developing

McKane, Aimee

2010-01-01T23:59:59.000Z

334

Asia-Energy Efficiency Guide to Industry | Open Energy Information  

Open Energy Info (EERE)

Asia-Energy Efficiency Guide to Industry Asia-Energy Efficiency Guide to Industry Jump to: navigation, search Tool Summary Name: Asia-Energy Efficiency Guide to Industry Agency/Company /Organization: United Nations Environment Programme Sector: Energy Focus Area: Energy Efficiency, Industry Topics: Finance, Technology characterizations Resource Type: Guide/manual, Lessons learned/best practices Website: energyefficiencyasia.org/tools/trainingmaterials/tools_financing_train UN Region: Central Asia, Eastern Asia, South-Eastern Asia Asia-Energy Efficiency Guide to Industry Screenshot References: Energy Efficient-Asia[1] "This Guide has been developed for Asian companies who want to improve energy efficiency through Cleaner Production and for stakeholders who want to help them. The Guide includes:

335

Energy Department Partners with Industry to Train Federal Energy Managers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Partners with Industry to Train Federal Energy Energy Department Partners with Industry to Train Federal Energy Managers and Reduce Energy Costs Energy Department Partners with Industry to Train Federal Energy Managers and Reduce Energy Costs November 10, 2005 - 2:21pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced a partnership with the Energy Solutions Center Inc. (ESC), a technology commercialization and market development organization representing energy utilities, municipal energy authorities, and equipment manufacturers and vendors, to train federal energy managers, natural gas utilities and manufacturers on energy-efficient gas fueled technologies. "This innovative public-private partnership will help federal agencies as well as private companies improve the efficiency of their operations,

336

Energy Department Partners with Industry to Train Federal Energy Managers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Partners with Industry to Train Federal Energy Energy Department Partners with Industry to Train Federal Energy Managers and Reduce Energy Costs Energy Department Partners with Industry to Train Federal Energy Managers and Reduce Energy Costs November 10, 2005 - 2:21pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced a partnership with the Energy Solutions Center Inc. (ESC), a technology commercialization and market development organization representing energy utilities, municipal energy authorities, and equipment manufacturers and vendors, to train federal energy managers, natural gas utilities and manufacturers on energy-efficient gas fueled technologies. "This innovative public-private partnership will help federal agencies as well as private companies improve the efficiency of their operations,

337

A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.  

Science Conference Proceedings (OSTI)

Production of iron and steel is an energy-intensive manufacturing process. In 2006, the iron and steel industry accounted for 13.6% and 1.4% of primary energy consumption in China and the U.S., respectively (U.S. DOE/EIA, 2010a; Zhang et al., 2010). The energy efficiency of steel production has a direct impact on overall energy consumption and related carbon dioxide (CO2) emissions. The goal of this study is to develop a methodology for making an accurate comparison of the energy intensity (energy use per unit of steel produced) of steel production. The methodology is applied to the steel industry in China and the U.S. The methodology addresses issues related to boundary definitions, conversion factors, and indicators in order to develop a common framework for comparing steel industry energy use. This study uses a bottom-up, physical-based method to compare the energy intensity of China and U.S. crude steel production in 2006. This year was chosen in order to maximize the availability of comparable steel-sector data. However, data published in China and the U.S. are not always consistent in terms of analytical scope, conversion factors, and information on adoption of energy-saving technologies. This study is primarily based on published annual data from the China Iron & Steel Association and National Bureau of Statistics in China and the Energy Information Agency in the U.S. This report found that the energy intensity of steel production is lower in the United States than China primarily due to structural differences in the steel industry in these two countries. In order to understand the differences in energy intensity of steel production in both countries, this report identified key determinants of sector energy use in both countries. Five determinants analyzed in this report include: share of electric arc furnaces in total steel production, sector penetration of energy-efficiency technologies, scale of production equipment, fuel shares in the iron and steel industry, and final steel product mix in both countries. The share of lower energy intensity electric arc furnace production in each country was a key determinant of total steel sector energy efficiency. Overall steel sector structure, in terms of average plant vintage and production capacity, is also an important variable though data were not available to quantify this in a scenario. The methodology developed in this report, along with the accompanying quantitative and qualitative analyses, provides a foundation for comparative international assessment of steel sector energy intensity.

Hasanbeigi, Ali; Price, Lynn; Aden, Nathaniel; Chunxia, Zhang; Xiuping, Li; Fangqin, Shangguan

2011-06-15T23:59:59.000Z

338

A New System of Energy Intensity Indicators for the U.S. Economy Focus on Manufacturing  

E-Print Network (OSTI)

The U.S. commitment to energy efficiency and conservation policy was emphasized in the National Energy Policy (NEP) made public in May 2001. Recommendation 14 in Chapter 4 of the NEP - "Making Energy Efficiency a National Priority" -recommended that "...the President direct the Secretary of Energy to establish a national priority for improving energy efficiency. The priority would be to improve the energy intensity of the U.S. economy, as measured by the amount of energy required for each dollar of economic productivity. This increased efficiency should be pursued through the combined efforts of industry, consumers, and federal, state, and local governments." As part of the effort to make energy efficiency a national priority, the Department of Energy has developed improved national indicators of energy intensity.

Roop, J. M.

2003-05-01T23:59:59.000Z

339

Energy Consumption and Potential for Energy Conservation in the Steel Industry  

E-Print Network (OSTI)

The domestic steel industry, being energy-use intensive, requires between 4 and 5 percent of total annual domestic energy consumption. More than two-thirds of total steel industry energy, however, is derived from coal. During the post-World War II era specific energy consumption exhibited a steady decline of slightly less than 1 percent per year. Potential for future savings is estimated at approximately 25 percent. Full realization of potential savings will require huge sums of capital. These needs will be in competition with other capital needs for modernizing existing facilities, for expansion, and for the large investments required to meet environmental regulations.

Hughes, M. L.

1979-01-01T23:59:59.000Z

340

ENERGY STAR industrial partnership | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Skip to main content ENERGY STAR logo Skip directly to page content Facebook Twitter YouTube Our Blog Search Search Energy Efficient Products Energy Efficient Products ENERGY STAR...

Note: This page contains sample records for the topic "industrial energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Industrial energy management information center | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Skip to main content ENERGY STAR logo Skip directly to page content Facebook Twitter YouTube Our Blog Search Search Energy Efficient Products Energy Efficient Products ENERGY STAR...

342

Improvements in industrial energy performance | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

my money go? Set and Save with ENERGY STAR Product Finder Rebate Finder Store Locator Energy Savings At Home Energy Savings At Home Improving your home's energy efficiency with...

343

ENERGY STAR Challenge for Industry | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program...

344

New York Industrial Energy Buyers, LLC | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon New York Industrial Energy Buyers, LLC Jump to: navigation, search Name New York...

345

Wind Energy In America: Ventower Industries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

County Courthouse: Before and After Solar Industry At Work The World Renewable Energy Forum in Denver Solar Phoenix 2 Launch Event The Max Tech and Beyond Competition Leon...

346

Energy efficient industrialized housing research program  

Science Conference Proceedings (OSTI)

This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

1989-12-01T23:59:59.000Z

347

Energy Recovery in Industrial Distillation Processes  

E-Print Network (OSTI)

Distillation processes are energy intensive separation processes which present attractive opportunities for energy conservation. Through the use of multistage vapor recompression, heat which is normally unavailable can be delivered at suitably high temperatures resulting in significant energy savings. The distillation process will be reviewed as it relates to both vapor recompression and heat pumping techniques and case study examples of these energy recovery methods will be discussed.

Paul, D. B.

1983-01-01T23:59:59.000Z

348

ENERGY STAR Challenge for Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Certification Professional Engineers' Guide for Validating Statements of Energy Performance Office of Air and Radiation Climate Protection Partnerships Division June...

349

Geothermal energy for industrial application  

DOE Green Energy (OSTI)

The types of geothermal resources are reviewed briefly. The uses of geothermal energy are covered under electrical generation and non-electric direct uses. (MHR)

Fulton, R.L.

1979-03-01T23:59:59.000Z

350

The Role of Thermal Energy Storage in Industrial Energy Conservation  

E-Print Network (OSTI)

Thermal Energy Storage for Industrial Applications is a major thrust of the Department of Energy's Thermal Energy Storage Program. Utilizing Thermal Energy Storage (TES) with process or reject heat recovery systems has been shown to be extremely beneficial for several applications. Recent system studies resulting from contracts awarded by the Department of Energy (DOE) have identified four especially; significant industries where TES appears attractive - food processing, paper and pulp, iron and steel, and cement. Potential annual fuel savings with large scale implementation of near term TES systems for these industries is over 9 x 106 bbl of oil. This savings is due to recuperation and storage in the food processing industry, direct fuel substitution in the paper and pulp industry and reduction in electric utility peak fuel use through in-plant production of electricity from utilization of reject heat in the steel and cement industries.

Duscha, R. A.; Masica, W. J.

1979-01-01T23:59:59.000Z

351

EIA - AEO2010 - Energy intensity trends in AEO2010  

Gasoline and Diesel Fuel Update (EIA)

intensity trends in AEO2010 intensity trends in AEO2010 Annual Energy Outlook 2010 with Projections to 2035 Figure 17. Trends in U.S. oil prices, energy consumption, and economic output, 1950-2035 Click to enlarge » Figure source and data excel logo Energy intensity trends in AEO2010 Energy intensity—energy consumption per dollar of real GDP—indicates how much energy a country uses to produce its goods and services. From the early 1950s to the early 1970s, U.S. total primary energy consumption and real GDP increased at nearly the same annual rate (Figure 17). During that period, real oil prices remained virtually flat. In contrast, from the mid-1970s to 2008, the relationship between energy consumption and real GDP growth changed, with primary energy consumption growing at less than one-third the previous average rate and real GDP growth continuing to grow at its historical rate. The decoupling of real GDP growth from energy consumption growth led to a decline in energy intensity that averaged 2.8 percent per year from 1973 to 2008. In the AEO2010 Reference case, energy intensity continues to decline, at an average annual rate of 1.9 percent from 2008 to 2035.

352

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

energy efficiency, energy-efficient industrial process technology, energy storage, fuel cells, renewable energy, distributed power generation, and system analysis and policy

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

353

About ENERGY STAR for commercial and industrial buildings | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR for commercial and industrial buildings ENERGY STAR for commercial and industrial buildings Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Find out who's partnered with ENERGY STAR Become an ENERGY STAR partner Find ENERGY STAR certified buildings and plants ENERGY STAR certification Featured research and reports Facts and stats Climate change and buildings

354

China and India Industrial Efficiency NREL Partnership | Open Energy  

Open Energy Info (EERE)

China and India Industrial Efficiency NREL Partnership China and India Industrial Efficiency NREL Partnership Jump to: navigation, search Logo: China-NREL Industrial Efficiency Partnership Name China-NREL Industrial Efficiency Partnership Agency/Company /Organization National Renewable Energy Laboratory Sector Energy Focus Area Energy Efficiency, Industry Topics Background analysis Country China Eastern Asia References NREL International Program Overview Abstract In support of the DOE Office of Energy Efficiency and Renewable Energy (EERE) Industrial Technologies Program's (ITP) activities to promote industrial energy efficiency internationally, the NREL industrial communications team is developing a specialized portfolio of technical and outreach materials. "In support of the DOE Office of Energy Efficiency and Renewable Energy

355

Moorhead Public Service Utility - Commercial and Industrial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moorhead Public Service Utility - Commercial and Industrial Energy Efficiency Rebate Program Moorhead Public Service Utility - Commercial and Industrial Energy Efficiency Rebate...

356

Energy Storage Solutions Industrial Symposium | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Solutions Industrial Symposium Sep 04 2013 09:00 AM - 05:30 PM Energy Storage Solutions Industrial Symposium - Wednesday September 4, 2013 CONTACT : Email: Phone:...

357

Government and Industry A Force for Collaboration at the Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Government and Industry A Force for Collaboration at the Energy Roadmap Update Workshop Government and Industry A Force for Collaboration at the Energy Roadmap Update Workshop...

358

Analysis of Energy-Efficiency Opportunities for the Cement Industry...  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China Title Analysis of Energy-Efficiency Opportunities for the Cement Industry in...

359

Loveland Water & Power - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home Savings Loveland Water & Power - Commercial and Industrial Energy Efficiency Rebate Program Loveland Water & Power - Commercial and Industrial Energy...

360

Policies and Measures to Realise Industrial Energy Efficiency...  

Open Energy Info (EERE)

and Measures to Realise Industrial Energy Efficiency and Mitigate Climate Change Jump to: navigation, search Name Policies and Measures to Realise Industrial Energy Efficiency and...

Note: This page contains sample records for the topic "industrial energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

US Energy Service Company Industry: History and Business Models...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Business Models US Energy Service Company Industry: History and Business Models Information about the history of US Energy Service Company including industry history,...

362

Assumptions to the Annual Energy Outlook 1999 - Industrial Demand...  

Gasoline and Diesel Fuel Update (EIA)

industrial.gif (5205 bytes) The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing...

363

USDA, Departments of Energy and Navy Seek Input from Industry...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Departments of Energy and Navy Seek Input from Industry to Advance Biofuels for Military and Commercial Transportation USDA, Departments of Energy and Navy Seek Input from Industry...

364

Industrial Energy Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

cost savings and reduced carbon dioxide emissions. Understanding how energy is used and wasted-or energy use and loss footprints-can help plants pinpoint areas of energy...

365

ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY  

E-Print Network (OSTI)

Efficiency and Renewable Energy, Industrial TechnologiesEfficiency and Renewable Energy, Industrial TechnologiesEfficiency and Renewable Energy, Industrial Technologies

Kramer, Klaas Jan

2010-01-01T23:59:59.000Z

366

Duke Energy (Electric) - Commercial/Industrial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duke Energy (Electric) - Commercial/Industrial Energy Efficiency Duke Energy (Electric) - Commercial/Industrial Energy Efficiency Rebate Program Duke Energy (Electric) - Commercial/Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Institutional Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Commercial Weatherization Heat Pumps Heating Appliances & Electronics Commercial Lighting Lighting Water Heating Home Weatherization Windows, Doors, & Skylights Maximum Rebate 50% of cost in many cases Commercial and Industrial: $50,000/facility per year Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Custom Incentives: 50% T8/T5 Fluorescent Fixtures: $3-$20 T5/T8 Fluorescent High Bay Fixtures: $55-$175 CFL High Bay Fixtures: $75

367

Industry Information | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Under-Represented Communities When small businesses first approach the Department of Energy, there's a lot to learn about the types of products that we buy and the locations that...

368

Energy Industries of Ohio | Open Energy Information  

Open Energy Info (EERE)

yIndustriesofOhio&oldid367631" Categories: Energy Distribution Organizations Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special...

369

Energy Intensity Trends in AEO2010 (released in AEO2010)  

Reports and Publications (EIA)

Energy intensity (energy consumption per dollar of real GDP) indicates how much energy a country uses to produce its goods and services. From the early 1950s to the early 1970s, U.S. total primary energy consumption and real GDP increased at nearly the same annual rate (Figure 17). During that period, real oil prices remained virtually flat. In contrast, from the mid-1970s to 2008, the relationship between energy consumption and real GDP growth changed, with primary energy consumption growing at less than one-third the previous average rate and real GDP growth continuing to grow at its historical rate. The decoupling of real GDP growth from energy consumption growth led to a decline in energy intensity that averaged 2.8 percent per year from 1973 to 2008. In the AEO2010 Reference case, energy intensity continues to decline, at an average annual rate of 1.9 percent from 2008 to 2035.

Information Center

2010-05-11T23:59:59.000Z

370

Industry insight Energy and utilities In a nutshell  

E-Print Network (OSTI)

in highly specific areas within the oil and gas, waste management, recycling and renewable energies sectors1 Industry insight ­ Energy and utilities In a nutshell The UK's energy and utilities industry management; renewable energy industries; energy conservation organisations. The industry employs around 530

Martin, Ralph R.

371

Progress Energy Carolinas - Commercial and Industrial Energy-Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Industrial and Industrial Energy-Efficiency Program Progress Energy Carolinas - Commercial and Industrial Energy-Efficiency Program < Back Eligibility Commercial Construction Industrial Multi-Family Residential Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Custom Projects: 75% of the incremental measure costs Technical Efficiency Studies: 50% of cost up to $10,000-$20,000 Design Incentive (New Construction): $50,000 Program Info Expiration Date 1/1/2013 State North Carolina Program Type Utility Rebate Program Rebate Amount Custom: $0.08 per kW hour saved annually

372

Industrial Compressed Air System Energy Efficiency Guidebook.  

DOE Green Energy (OSTI)

Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

United States. Bonneville Power Administration.

1993-12-01T23:59:59.000Z

373

National Level Co-Control Study of the Targets for Energy Intensity and  

NLE Websites -- All DOE Office Websites (Extended Search)

National Level Co-Control Study of the Targets for Energy Intensity and National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China Title National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China Publication Type Report LBNL Report Number LBNL-5253E Year of Publication 2011 Authors Zhou, Nan, Lynn K. Price, Nina Zheng, Jing Ke, and Ali Hasanbeigi Date Published 10/2011 Publisher Lawrence Berkerley National Laboratory ISBN Number LBNL-5253E Keywords china, china energy, co-control, energy intensity, industrial energy efficiency, iron and steel industry, Low Emission & Efficient Industry, policy studies, sulfur dioxide Abstract Since 2006, China has set goals of reducing energy intensity, emissions, and pollutants in multiple guidelines and in the Five Year Plans. Various strategies and measures have then been taken to improve the energy efficiency in all sectors and to reduce pollutants. Since controlling energy, CO2 emissions, and pollutants falls under the jurisdiction of different government agencies in China, many strategies are being implemented to fulfill only one of these objectives.Co-controls or integrated measures could simultaneously reduce greenhouse gas (GHG)emissions and criteria air pollutant emissions. The targets could be met in a more cost effective manner if the integrated measures can be identified and prioritized. This report provides analysis and insights regarding how these targets could be met via co-control measures focusing on both CO2 and SO2 emissions in the cement, iron & steel, and power sectors to 2030 in China. An integrated national energy and emission model was developed in order to establish a baseline scenario that was used to assess the impact of actions already taken by the Chinese government as well as planned and expected actions. In addition, CO2 mitigation scenarios and SO2 control scenarios were also established to evaluate the impact of each of the measures and the combined effects.

374

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

22 nd National Industrial Energy Technology Conference18 th National Industrial Energy Technology Conferenceof Demonstrated Energy Technologies (CADDET). (1993).

Galitsky, Christina

2008-01-01T23:59:59.000Z

375

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Demonstrated Energy Technologies (CADDET), The Netherlands.second National Industrial Energy Technology ConferenceNational Industrial Energy Technology Conference. Houston,

Worrell, Ernst

2008-01-01T23:59:59.000Z

376

Orion Bus Industries | Open Energy Information  

Open Energy Info (EERE)

Bus Industries Bus Industries Jump to: navigation, search Name Orion Bus Industries Place Ontario, Canada Information About Partnership with NREL Partnership with NREL Yes Partnership Type Other Relationship Partnering Center within NREL Transportation Technologies and Systems Partnership Year 2001 Link to project description http://www.nrel.gov/news/press/2002/3002_hybird_buses.html LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Orion Bus Industries is a company located in Ontario, Canada. References Retrieved from "http://en.openei.org/w/index.php?title=Orion_Bus_Industries&oldid=381704" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages Printable version Permanent link Browse properties

377

Borla Performance Industries, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Borla Borla Performance Industries, Inc. America's Next Top Energy Innovator Challenge 1830 likes Borla Performance Industries, Inc. Oak Ridge National Laboratory Borla Performance Industries is a 35-year technology leader, manufacturer and marketer of exhaust for the automotive industry, delivering innovative, patented exhaust systems that enhance the performance of internal combustion engines. Borla has an option to license a novel, nano-pore membrane technology from OakRidge National Laboratory. Combining this innovation with Borla's diesel exhaust technology will lead to a low cost, unique exhaust system that will double as a neutral energy device to recover and reclaim potable water from diesel and other internal combustion exhaust. Using capillary condensation - which contrasts to thermodynamic

378

Borla Performance Industries, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Borla Borla Performance Industries, Inc. America's Next Top Energy Innovator Challenge 1830 likes Borla Performance Industries, Inc. Oak Ridge National Laboratory Borla Performance Industries is a 35-year technology leader, manufacturer and marketer of exhaust for the automotive industry, delivering innovative, patented exhaust systems that enhance the performance of internal combustion engines. Borla has an option to license a novel, nano-pore membrane technology from OakRidge National Laboratory. Combining this innovation with Borla's diesel exhaust technology will lead to a low cost, unique exhaust system that will double as a neutral energy device to recover and reclaim potable water from diesel and other internal combustion exhaust. Using capillary condensation - which contrasts to thermodynamic

379

Borla Performance Industries, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Borla Borla Performance Industries, Inc. America's Next Top Energy Innovator Challenge 1830 likes Borla Performance Industries, Inc. Oak Ridge National Laboratory Borla Performance Industries is a 35-year technology leader, manufacturer and marketer of exhaust for the automotive industry, delivering innovative, patented exhaust systems that enhance the performance of internal combustion engines. Borla has an option to license a novel, nano-pore membrane technology from OakRidge National Laboratory. Combining this innovation with Borla's diesel exhaust technology will lead to a low cost, unique exhaust system that will double as a neutral energy device to recover and reclaim potable water from diesel and other internal combustion exhaust. Using capillary condensation - which contrasts to thermodynamic

380

Solar Industry At Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry At Work Industry At Work Solar Industry At Work Addthis 1 of 11 Vice President Joe Biden talks with staff at the National Renewable Energy Lab's Process Development and Integration Laboratory (PDIL). The PDIL brings together technical experts from NREL, the solar industry, and universities for collaborative research. Image: Dennis Schroeder (NREL) 2 of 11 Steven Bohn, an engineer at SunEdison oversees SunEdison's testing facility at SolarTAC in Aurora, CO. The SolarTAC mission is to increase the efficiency of solar energy products and rapidly deploy them to the commercial market. Image: Dennis Schroeder (NREL) 3 of 11 NREL scientists Ki Ye and Joe Berry peer into the glass siding of a deposition instrument to view the latest results of an experiment with a new material.

Note: This page contains sample records for the topic "industrial energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy End-Use Intensities in Commercial Buildings 1992  

U.S. Energy Information Administration (EIA) Indexed Site

Overview > Tables Overview > Tables 1992 Energy End-Use Intensities Tables Energy Consumption by End Use, 1992 Figure on Energy Consumption By End Use, 1992 Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A through F of the 1992 Commercial Buildings Energy Consumption Survey. divider line To View and/or Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader If you experience any difficulties, visit our Technical Frequently Asked Questions. divider line Tables - (file size 31,655 bytes), pages 6. - requires Adobe Acrobat Reader Consumption of All Major Fuels by End Uses, 1992 Energy End-Use Intensities for All Major Fuels, 1992 Consumption of Electricity by End Uses, 1992 Energy End-Use Intensities for Electricity, 1992

382

Missourian Finds New Opportunity in Energy Industry | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Missourian Finds New Opportunity in Energy Industry Missourian Finds New Opportunity in Energy Industry Missourian Finds New Opportunity in Energy Industry July 1, 2010 - 4:15pm Addthis David Pollack didn't want to settle. After graduating from college in May 2008 with a bachelor's degree in mechanical engineering, David Pollack became frustrated by the scarcity of quality job opportunities. He wanted something that would challenge him professionally. He took action and launched Cornerstone Energy Solutions, a company that improves energy efficiency in residential, commercial and industrial settings. The inspiration for the company came from his father, a retired history teacher, who often talked about the energy crisis he believed America was facing. "For a long time, I listened to my father talk about the energy

383

Energy-Efficiency Improvement Opportunities for the Textile Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

3970E Energy-Efficiency Improvement Opportunities for the Textile Industry Ali Hasanbeigi China Energy Group Energy Analysis Department Environmental Energy Technologies Division...

384

High-Intensity Discharge Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High-Intensity Discharge Lighting Basics High-Intensity Discharge Lighting Basics High-Intensity Discharge Lighting Basics August 15, 2013 - 5:59pm Addthis High-intensity discharge (HID) lighting provides the highest efficacy and longest service life of any lighting type. It can save 75%-90% of lighting energy when it replaces incandescent lighting. Illustration of a high-intensity discharge (HID) lIllustration amp. The lamp is a tall cylindrical shape, and a cutout of the outer tube shows the materials inside. A long, thin cylinder called the arc tube runs through the lamp between two electrodes. The space around the arc tube is labeled as a vacuum. In a high-intensity discharge lamp, electricity arcs between two electrodes, creating an intensely bright light. Mercury, sodium, or metal halide gas

385

Promoting Energy Efficiency in Cement Making: The ENERGY STAR(R) for Industry Program  

E-Print Network (OSTI)

industry. For information Energy Guide for Cement Making,eworrellt@lbl.gov. End Notes Energy Efficiency Improvementthe Cement Industry: An ENERGY STAR® Guide for Energy and

Masanet, Eric; Worrell, Ernst

2007-01-01T23:59:59.000Z

386

Talking energy with R. J. Reynolds industries  

SciTech Connect

Energy management takes a high priority among the various companies making up R.J. Reynolds (RJR) Industries, whose corporate energy program could serve as a model for other large, diversified organizations. Placing energy as a part of corporate business planning helps to integrate it into capital and business development programs. Each company prepares an annual five-year plan for energy strategy. The company provides technical seminars for professional training for both the domestic and international staff. Summaries of energy-management activities at individual companies cover RJR Tobacco International, R.J. Reynolds Tobacco Co., R.J. Reynolds Archers, Sea-Land Services, and Del Monte Corporation. (DCK)

Glorioso, J.

1982-06-01T23:59:59.000Z

387

Emerging energy-efficient industrial technologies  

Science Conference Proceedings (OSTI)

U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if not more important in many cases) in influencing the decision on whether to adopt an emerging technology. The technologies were characterized with respect to energy efficiency, economics, and environmental performance. The results demonstrate that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. We show that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity and worker safety, and reduced capital costs.

Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

2000-10-01T23:59:59.000Z

388

Non-ferrous Metals Industry Energy Management System Certification...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-ferrous Metals Industry Energy Management System Certification Details about China Quality Certification Center and Energy Management System certifications....

389

Industrial Energy Efficiency Cooperative Partnership (Chinese/English)  

SciTech Connect

Chinese/English brochure on the Save Energy Now process for DOE Industrial Energy Efficiency Partnership with China.

2008-01-01T23:59:59.000Z

390

Emerging Energy-Efficient Technologies for Industry  

E-Print Network (OSTI)

U.S. industry consumes approximately 37% of the nation's energy to produce 24% of the nation's GDP. Increasingly, society is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology is essential in achieving these challenges. We report on a recent analysis of emerging energy-efficient technologies for industry, focusing on over 50 selected technologies. The technologies are characterized with respect to energy efficiency, economics and environmental performance. This paper provides an overview of the results, demonstrating that we are not running out of technologies to improve energy efficiency, economic and environmental performance, and neither will we in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity, and reduced capital costs compared to current technologies.

Worrell, E.; Martin, N.; Price, L.; Ruth, M.; Elliott, N.; Shipley, A.; Thorn, J.

2001-05-01T23:59:59.000Z

391

Emerging energy-efficient technologies for industry  

Science Conference Proceedings (OSTI)

U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, society is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology is essential in achieving these challenges. We report on a recent analysis of emerging energy-efficient technologies for industry, focusing on over 50 selected technologies. The technologies are characterized with respect to energy efficiency, economics and environmental performance. This paper provides an overview of the results, demonstrating that we are not running out of technologies to improve energy efficiency, economic and environmental performance, and neither will we in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity, and reduced capital costs compared to current technologies.

Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorne, Jennifer

2004-01-01T23:59:59.000Z

392

Duke Energy - Small Commercial and Industrial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duke Energy - Small Commercial and Industrial Energy Efficiency Duke Energy - Small Commercial and Industrial Energy Efficiency Rebate Program Duke Energy - Small Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Institutional Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Combined maximum of $50,000/facility/year Program Info State Indiana Program Type Utility Rebate Program Rebate Amount CFL Screw-In: $2 Hardwired, Pin Based CFL Fixtures (Replacing Incandescent): $22 T8 Fluorescent Fixtures (Replacing T8/T12): $3-$30 T5 Fluorescent Fixtures (Replacing T12): $5-$13 T8 High Bay Fixtures (Replacing HID): $30-$60 T5 High Bay Fixtures (Replacing HID): $30-$75

393

Energy Basics: High-Intensity Discharge Lighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and longest service life of any lighting type. It can save 75%-90% of lighting energy when it replaces incandescent lighting. HID lamps use an electric arc to produce...

394

Energy Market Impacts of Alternative Greenhouse Gas Intensity Reduction Goals  

Gasoline and Diesel Fuel Update (EIA)

1 1 Energy Market Impacts of Alternative Greenhouse Gas Intensity Reduction Goals March 2006 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by the requester. Energy Information Administration / Energy Market Impacts of Alternative Greenhouse Gas Intensity Reduction Goals

395

ENERGY STAR Challenge for Industry: Statement of Energy Improvement |  

NLE Websites -- All DOE Office Websites (Extended Search)

Statement of Energy Statement of Energy Improvement Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

396

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network (OSTI)

Competitiveness in the Renewable Energy Sector: The Case ofand Regulation Concerning Renewable Energy ElectricityIndustrial Policy and Renewable Energy Technology.

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

397

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

and guidance service. Energy audits and analysis of specificfree comprehensive energy audits or industrial assessments.as a part of the Enterprise Energy Audit Programme (EEAP) of

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

398

Some Intensive and Extensive Quantities in High-Energy Collisions  

E-Print Network (OSTI)

We review the evolution of some statistical and thermodynamical quantities measured in difference sizes of high-energy collisions at different energies. We differentiate between intensive and extensive quantities and discuss the importance of their distinguishability in characterizing possible critical phenomena of nuclear collisions at various energies with different initial conditions.

Tawfik, A

2013-01-01T23:59:59.000Z

399

B. Appendix: Scaling of Cost with Energy and Intensity  

NLE Websites -- All DOE Office Websites (Extended Search)

B. Appendix: Scaling of Cost with Energy and Intensity With the two ongoing studies, one for the physics program, 1 and one for the accelerator and facilities 2 on the...

400

Better Buildings, Better Plants: How You Can Benefit, plus New Executive Order on Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DRAFT ADVANCED MANUFACTURING OFFICE Better Buildings, Better Plants: How You Can Benefit, plus New Executive Order on Industrial Energy Efficiency Advanced Manufacturing Office October 9, 2012 Andre de Fontaine Katrina Pielli 2 Today * Better Buildings, Better Plants Overview - Better Buildings, Better Plants Program - Better Buildings, Better Plants Challenge * Looking Ahead to 2013 - In-Plant Trainings - Enhanced energy intensity baselining and tracking tool - New communication materials * Executive Order on Industrial Energy Efficiency and Combined Heat and Power - DOE Activities in Support of Executive Order * Regional Industrial Energy Efficiency & Combined Heat and Power Dialogue Meetings * Better Buildings, Better Plants * "CHP as a Clean Energy Resource" new report

Note: This page contains sample records for the topic "industrial energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Priority listing of industrial processes by total energy consumption and potential for savings. Final report  

SciTech Connect

A survey of eight of the most energy-intensive segments of the U.S. industry is made to quantify the energy consumed in the principal process units, to identify areas in which significant improvement appear possible, and to rank the process units in terms of total energy consumption and the potential for improvement. Data on the steel, paper, aluminum, textile, cement, and glass industries, petroleum refineries, and olefins and derivative products industries were compiled to help plan the development of new energy sources and to provide targets for energy conservation activities. (MCW)

Streb, A.J.

1977-01-01T23:59:59.000Z

402

Market analysis of the solar energy industry  

SciTech Connect

This report describes the results of a survey of companies in the solar energy industry. The general objective of the survey was to provide information to help evaluate the effectiveness of technology transfer mechanisms for the development of the solar industry. The specific objectives of the survey included: (1) determination of the needs of the solar industry; (2) identification of special concerns of the solar industry; and (3) determination of the types of technology transfer mechanisms that would be most helpful to the solar industry in addressing these needs and concerns. The major focus was on technical problems and developments, but institutional and marketing considerations were also treated. The majority of the sample was devoted to the solar heating and cooling (SHAC) component of the industry. However, a small number of photovoltaic (PV), wind, and power generation system manufacturers were also surveyed. Part I discusses the methodology used in the selection, performance, and data reduction stages of the survey, comments on the nature of the responses, and describes the conclusions drawn from the survey. The latter include both general conclusions concerning the entire solar industry, and specific conclusions concerning component groups, such as manufacturers, architects, installers, or dealers. Part II consists of tabulated responses and non-attributed verbatim comments that summarize and illustrate the survey results.

1979-08-01T23:59:59.000Z

403

Two Decades of U.S. Household Trends in Energy-Intensity ...  

U.S. Energy Information Administration (EIA)

This paper looks at two decades of energy–intensity trends. Energy intensity measures are often used as a measure of energy efficiency and its change over time.

404

Energy Conservation in Army Industrial Facilities  

E-Print Network (OSTI)

The United States Army Materiel Development and Readiness Command (DARCOM) is responsible for the life cycle functions for all assigned materiel systems of the United States Army and Department of Defense agencies. DARCOM installations account for approximately 19 percent of the Army's total energy consumption (approximately 44 million barrels of oil equivalent) and have reduced energy consumption approximately 26 percent below FY 75 levels. Highlights of the program include a comprehensive energy audit program, process energy studies, several different energy capital investment programs, and an aggressive energy awareness program. This paper describes the program with particular emphasis on the ongoing effort to establish relationships between key production parameters and energy consumption throughout the command. This will enable DARCOM to forecast future energy requirements and to determine the effectiveness of the conservation program in a dynamic industrial environment.

Aveta, G. A.; Sliwinski, B. J.

1984-01-01T23:59:59.000Z

405

Industrial Gas Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

406

Industrial Gas Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

407

A comparison of energy intensity in the United States and Japan  

SciTech Connect

This report compares energy intensity in the US and Japan in 1985. Energy intensity is examined for each of the following end-use energy consuming sectors: residential and commercial, transportation, and industrial (manufacturing). In each sector, comparative measures of the relative energy intensity are developed. The comparison indicates that when adjustments are made for certain differences between the two countries, energy intensity in the US compares more favorably with Japan than when just the aggregate energy-to-gross-domestic-product ratio is used. For instance, climate and residential floor space explain a good portion of the difference between residential energy consumption in the US and Japan. Likewise, although the US requires about twice as much energy for passenger travel, it requires about half the energy for freight movement (when normalized for distance and vehicle capacity) compared with Japan. Finally, the US manufacturing sector, as a whole, is about equal to Japan in terms of the amount of energy consumed in producing a dollar's worth of goods, in current dollars and using 1985 exchange rates. 53 refs.

McDonald, S.C.

1990-12-01T23:59:59.000Z

408

Energy dispersive spectroscopy using synchrotron radiation: intensity considerations  

SciTech Connect

Detailed considerations are given to the reliability of energy dependent integrated intensity data collected from the pressure cavity of a diamond-anvil pressure cell illuminated with heterochromatic radiation from a synchrotron storage ring. It is demonstrated that at least in one run, the electron beam current cannot be used to correct for energy-intensity variations of the incident beam. Rather there appears to be an additional linear relationship between the decay of the synchrotron beam and the magnitude of the background intensity. 13 refs., 7 figs.

Skelton, E.F.; Elam, W.T.; Qadri, S.B.; Webb, A.W.; Schiferl, D.

1985-01-01T23:59:59.000Z

409

Energy-Efficient Industrial Waste Treatment Technologies  

Science Conference Proceedings (OSTI)

Rising energy costs coupled with the continuing need for effective environmental treatment methods have stimulated interest in advanced energy-efficient technologies. EPRI has reviewed a wide variety of electricity-based processes for industrial air pollution control, wastewater treatment, and solid waste treatment along with some closely related competing technologies. These technologies ranged from untested concepts to well-established ones. While most offer process cost savings and improvements over e...

2007-10-31T23:59:59.000Z

410

China-International Industrial Energy Efficiency Deployment Project | Open  

Open Energy Info (EERE)

China-International Industrial Energy Efficiency Deployment Project China-International Industrial Energy Efficiency Deployment Project Jump to: navigation, search Name China-International Industrial Energy Efficiency Deployment Project Agency/Company /Organization United States Department of Energy (USDOE), Institute for Sustainable Communities (ISC), Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory (ORNL), Alliance for Energy Efficient Economy (India), Confederation of Indian Industry Sector Energy Focus Area Industry Topics Implementation, Low emission development planning, Technology characterizations Program Start 2011 Program End 2013 Country China Eastern Asia References International Industrial Energy Efficiency Deployment Project[1] Overview China "China is prioritizing a low carbon, energy efficient economy and has

411

Progress Energy Carolinas - Commercial and Industrial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study (Retrofit Only): 50% of cost Design Incentive (New Construction Only): 0.05kWh projected first-year savings Building Energy Modeling (New Construction Only): Up to...

412

Industrial Energy Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

steam, natural gas, coal, and other fuels supplied to a manufacturing plant from off-site power plants, gas companies, and fuel distributors. Energy then flows to either a central...

413

Setting the Standard for Industrial Energy Efficiency  

SciTech Connect

Industrial motor-driven systems use more than 2194 billionkWh annually on a global basis and offer one of the largest opportunitiesfor energy savings.1 The International Energy Agency estimates thatoptimization of motor driven systems could reduce global electricitydemand by 7 percent through the application of commercially availabletechnologies and using well-tested engineering practices. Yet manyindustrial firms remain either unaware of or unable to achieve theseenergy savings. The same factors that make it so challenging to achieveand sustain energy efficiency in motor-driven systems (complexity,frequent changes) apply to the production processes that they support.Yet production processes typically operate within a narrow band ofacceptable performance. These processes are frequently incorporated intoISO 9000/14000 quality and environmental management systems, whichrequire regular, independent audits to maintain ISO certification, anattractive value for international trade. It is our contention that acritical step in achieving and sustaining energy efficiency ofmotor-driven systems specifically, and industrial energy efficiencygenerally, is the adoption of a corporate energy management standard thatis consistent with current industrial quality and environmentalmanagement systems such as ISO. Several energy management standardscurrently exist (US, Denmark, Ireland, Sweden) and specifications(Germany, Netherlands) others are planned (China, Spain, Brazil, Korea).This paper presents the current status of energy management standardsdevelopment internationally, including an analysis of their sharedfeatures and differences, in terms of content, promulgation, andimplementation. The purpose of the analysis is to describe the currentstate of "best practices" for this emerging area of energy efficiencypolicymaking and tosuggest next steps toward the creation of a trulyinternational energy management standard that is consistent with the ISOprinciples of measurement, documentation, and continuousimprovement.

McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

2007-06-01T23:59:59.000Z

414

EIA - Annual Energy Outlook 2008 (Early Release)-Energy Intensity Section  

Gasoline and Diesel Fuel Update (EIA)

Intensity Intensity Annual Energy Outlook 2008 (Early Release) Energy Intensity Figure 7. Energy use per capita and per dollar of gross domestic product, 1980-2030 (index, 1980 = 1). Need help, contact the National Energy Information Center at 202-586-8800. figure data Energy intensity, measured as energy use (in thousand Btu) per dollar of GDP (in 2000 dollars), is projected to decline at an average annual rate of 1.6 percent from 2006 to 2030 in the AEO2008 reference case (Figure 7). Although energy use generally increases as the economy grows, continuing improvement in the energy efficiency of the U.S. economy and a shift to less energy-intensive activities are projected to keep the rate of energy consumption growth lower than the rate of GDP growth. Since 1992, the energy intensity of the U.S. economy has declined on

415

Department of Energy Launches Initiative with Industry to Better...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launches Initiative with Industry to Better Protect the Nation's Electric Grid from Cyber Threats Department of Energy Launches Initiative with Industry to Better Protect the...

416

ENERGY STAR Challenge for Industry: Poster, "Rise to the Challenge...  

NLE Websites -- All DOE Office Websites (Extended Search)

business resources State and local government resources ENERGY STAR Challenge for Industry: Poster, "Rise to the Challenge" (Version 3) This poster (V.3) is for industrial...

417

Energy Department Develops Tool with Industry to Help Utilities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Develops Tool with Industry to Help Utilities Strengthen Their Cybersecurity Capabilities Energy Department Develops Tool with Industry to Help Utilities Strengthen Their...

418

Energy Efficiency Program for Certain Commercial and Industrial...  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Program for Certain Commercial and Industrial Equipment Energy Efficiency Program for Certain Commercial and Industrial Equipment The purpose of this memorandum is to...

419

New Industrial Park Energy Supply for Economical Energy Conservation  

E-Print Network (OSTI)

The new industrial park energy supply (NIPES) concept is an attractive approach for providing a stable, long-term domestic energy source for industrial plants at reasonable cost and reasonable financial risk. The NIPES concept consists of a system of energy supply stations and steam transmission lines that supply process heat and electricity to multiple users in an industrial park(s) setting. The energy supply stations grow along with the industrial park(s) as new industries are attracted by a reliable, reasonably priced energy source. This paper describes the generic NIPES concept and summarizes the results of the evaluation of a specific NIPES system for the Lake Charles, Louisiana, area. The economics of the specific NIPES system is compared to that of individual user-owned coal-fired facilities for new industrial plants and of individual user-owned oil-fired facilities for existing industrial plants. The results indicate substantial savings associated with the NIPES system for both new and existing users and/or a potential for high return on investment by third-party investors.

Scott, D.; Marda, R. S.; Hodson, J. S.; Williams, M.

1982-01-01T23:59:59.000Z

420

Arizona Solar Energy Industries Association | Open Energy Information  

Open Energy Info (EERE)

Energy Industries Association Energy Industries Association Jump to: navigation, search Logo: Arizona Solar Energy Industries Association Name Arizona Solar Energy Industries Association Place Arizona Website http://www.arizonasolarindustr Coordinates 34.0489281°, -111.0937311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0489281,"lon":-111.0937311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "industrial energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy-Related Carbon Emissions, by Industry, 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Efficiency Page > Energy Energy-Related Carbon Emissions > Total Table Energy Efficiency Page > Energy Energy-Related Carbon Emissions > Total Table Total Energy-Related Carbon Emissions for Manufacturing Industries, 1994 Carbon Emissions (million metric tons) Carbon Intensity SIC Code Industry Group Total Net Electricity Natural Gas Petro- leum Coal Other (MMTC/ Quadrillion Btu) Total 371.7 131.1 93.5 87.3 56.8 3.1 17.16 20 Food and Kindred Products 24.4 9.8 9.1 W W 0.1 20.44 21 Tobacco Products W 0.1 W W W W W 22 Textile Mill Products 8.7 5.5 1.7 0.6 1.0 * 28.21 23 Apparel and Other Textile Products W 1.3 0.4 W W W W 24 Lumber and Wood Products 4.9 3.4 0.7 W W 0.2 9.98 25 Furniture and Fixtures 1.6 1.1 0.3 * 0.1 0.1 23.19 26 Paper and Allied Products 31.6 11.0 8.3 4.3 7.8 0.3 11.88

422

Next generation solutions for the energy services industry  

E-Print Network (OSTI)

Solutions for the Energy Services Industry Satish Kumar,Steve Kromer, Enron Energy Services ABSTRACT Internetare reshaping the energy services landscape and the pivotal

Kumar, Satish; Kromer, Steve

2006-01-01T23:59:59.000Z

423

Energy Efficiency Improvement Opportunities for the Cement Industry  

E-Print Network (OSTI)

Lime Institute. 2001. Energy Efficiency Opportunity Guide inIndustry, Office of Energy Efficiency, Natural Resourcesof a Cement Kiln, Energy Efficiency Demonstration Scheme,

Worrell, Ernst

2008-01-01T23:59:59.000Z

424

Energy-Efficiency Improvement Opportunities for the Textile Industry  

E-Print Network (OSTI)

P. , 2002. SITRA Energy Audit – Implementation Strategy inof Indian Industry (CII), 2006. Energy Bulletin onFinishing Stenters, ADB Energy-efficiency Support Project.

Hasanbeigi, Ali

2010-01-01T23:59:59.000Z

425

Table 2.4 Industrial Sector Energy Consumption (Trillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review October 2013 29 Table 2.4 Industrial Sector Energy Consumption (Trillion Btu) Primary Consumptiona

426

Energy-Efficiency Improvement Opportunities for the Textile Industry  

E-Print Network (OSTI)

Industry (CII), 2007. ?Energy Saving in After TreatmentTechnologies for Energy Savings/GHG Emissions Reduction (Practice Case Study 300: Energy Savings by Reducing the Size

Hasanbeigi, Ali

2010-01-01T23:59:59.000Z

427

Value Capture in the Global Wind Energy Industry  

E-Print Network (OSTI)

investigations/wind-energy-funds-going-overseas/ Dedrick,America. GWEC (Global Wind Energy Council) (2010). Globaland investment flows in the wind energy industry. Peterson

Dedrick, Jason; Kraemer, Kenneth L.

2011-01-01T23:59:59.000Z

428

Linking Energy Efficiency and ISO: Creating a Framework for Sustainable Industrial Energy Efficiency  

E-Print Network (OSTI)

application of energy efficiency standards in China andfor Sustainable Industrial Energy Efficiency in China. ”Model for Industrial Energy Efficiency”, In Proceedings of

McKane, Aimee; Perry, Wayne; Aixian, Li; Tienan, Li; Williams, Robert

2005-01-01T23:59:59.000Z

429

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

in the Metal Fabrication Industry. 18 th National Industrial40-51. Pharmaceutical Industry Association of Puerto Rico (on Energy Efficiency in Industry. American Council for an

Galitsky, Christina

2008-01-01T23:59:59.000Z

430

Target Allocation Methodology for China's Provinces: Energy Intensity in the 12th FIve-Year Plan  

SciTech Connect

Experience with China's 20% energy intensity improvement target during the 11th Five-Year Plan (FYP) (2006-2010) has shown the challenges of rapidly setting targets and implementing measures to meet them. For the 12th FYP (2011-2015), there is an urgent need for a more scientific methodology to allocate targets among the provinces and to track physical and economic indicators of energy and carbon saving progress. This report provides a sectoral methodology for allocating a national energy intensity target - expressed as percent change in energy per unit gross domestic product (GDP) - among China's provinces in the 12th FYP. Drawing on international experience - especially the European Union (EU) Triptych approach for allocating Kyoto carbon targets among EU member states - the methodology here makes important modifications to the EU approach to address an energy intensity rather than a CO{sub 2} emissions target, and for the wider variation in provincial energy and economic structure in China. The methodology combines top-down national target projections and bottom-up provincial and sectoral projections of energy and GDP to determine target allocation of energy intensity targets. Total primary energy consumption is separated into three end-use sectors - industrial, residential, and other energy. Sectoral indicators are used to differentiate the potential for energy saving among the provinces. This sectoral methodology is utilized to allocate provincial-level targets for a national target of 20% energy intensity improvement during the 12th FYP; the official target is determined by the National Development and Reform Commission. Energy and GDP projections used in the allocations were compared with other models, and several allocation scenarios were run to test sensitivity. The resulting allocations for the 12th FYP offer insight on past performance and offer somewhat different distributions of provincial targets compared to the 11th FYP. Recommendations for reporting and monitoring progress on the targets, and methodology improvements, are included.

Ohshita, Stephanie; Price, Lynn

2011-03-21T23:59:59.000Z

431

Industrial Energy Auditing: An Opportunity for Improving Energy Efficiency and Industrial Competitiveness  

E-Print Network (OSTI)

This paper describes the Department of Energy's industrial energy auditing program, its achievements to date, and future plans. The Energy Analysis and Diagnostic Center (EADC) Program provides no-cost energy audits to small and medium size manufacturers, and recommends ways to cut plant energy use. The program is conducted by universities for the DOE, and has performed over 3600 audits since 1976. Approximately 55 percent of the recommendations made through the EADC program are implemented by industry. Since program inception, audit recommendations have produced a cumulative national energy savings of about 67 trillion Btus, valued at $365 million. The National Energy Strategy (NES) has identified industrial energy audits as a cost-effective means to reduce energy consumption in industry. In support of the NES, the EADC program is expanding, and plans to have 40 operational EADCs by the year 2000. Through outreach activities, EADCs will also encourage similar private-sector programs, e.g. utility-conducted industrial audits performed for demand-side management programs.

Glaser, C.

1992-04-01T23:59:59.000Z

432

ENERGY STAR Challenge for Industry: Recognition Application Form | ENERGY  

NLE Websites -- All DOE Office Websites (Extended Search)

Recognition Application Form Recognition Application Form Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

433

ENERGY STAR Challenge for Industry: Registration Form | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Registration Form Registration Form Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder Technical documentation

434

ENERGY STAR Challenge for Industry: Participant Handbook | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Participant Handbook Participant Handbook Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder Technical documentation

435

New trends in industrial energy efficiency in the Mexico iron and steel industry  

E-Print Network (OSTI)

de Ingeniería, U N A M . , Mexico Energy Analysis Program atIndustrial Energy Efficiency in the Mexico: Iron and Steelenergy consumption of the iron and steel industry is the feedstock. In Mexico,

Ozawa, Leticia; Martin, Nathan; Worrell, Ernst; Price, Lynn; Sheinbaum, Claudia

1999-01-01T23:59:59.000Z

436

Shermco Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Shermco Industries Inc Shermco Industries Inc Jump to: navigation, search Name Shermco Industries, Inc. Place Irving, Texas Zip 75061 Sector Wind energy Product Irving-based electrical power maintenance and analysis company. Their specialized wind power division, provides on-site and up-tower generator maintenance and repair work. Coordinates 32.813516°, -96.955506° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.813516,"lon":-96.955506,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

437

Magnetech Industrial Services | Open Energy Information  

Open Energy Info (EERE)

Magnetech Industrial Services Magnetech Industrial Services Jump to: navigation, search Name Magnetech Industrial Services Address 800 Nave Rd SE Place Massillon, Ohio Zip 44646 Sector Carbon, Hydro, Wind energy Product Maintenance and repair Phone number 330-830-3500 Website http://www.magnetech.com Coordinates 40.7630029°, -81.5142436° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7630029,"lon":-81.5142436,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

438

Alaskan Wind Industries | Open Energy Information  

Open Energy Info (EERE)

Alaskan Wind Industries Alaskan Wind Industries Jump to: navigation, search Name Alaskan Wind Industries Address 51235 Kenai Spur Highway Place Nikiski, Alaska Zip 99635 Sector Wind energy Product Wind Turbines & Solar Products. Installation and Procurement Website http://www.akwindindustries.co Coordinates 60.722798°, -151.325844° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.722798,"lon":-151.325844,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

439

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

and Renewable Energy (EERE) [2] Office of Industrialthat participate in EERE’s Industries of the Future Program.

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

440

Industry Recruitment/Support | Open Energy Information  

Open Energy Info (EERE)

Recruitment/Support Recruitment/Support Jump to: navigation, search To promote economic development and the creation of jobs, some states offer financial incentives to recruit or cultivate the manufacturing and development of renewable energy systems and equipment. These incentives commonly take the form of tax credits, tax exemptions and grants. In some cases, the amount of the incentive depends on the amount of eligible equipment that a company manufactures. Most of these incentives apply to several renewable energy technologies, but a few states target specific technologies, such as wind or solar. These incentives are usually designed as temporary measures to support industries in their early years, and they commonly include a sunset provision to encourage the industries to become

Note: This page contains sample records for the topic "industrial energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Borla Performance Industries, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Element One, Inc. Element One, Inc. National Renewable Energy Laboratory 191524 likes Element One, based in Boulder, Colorado, has created the only available coatings that change color when detecting hydrogen and other hazardous gas leaks, either reversibly or non-reversibly, to provide both current and historical information about leaks. Element One's patented gas indicators and sensors use catalyzed thin films or nanoparticles of a transition metal oxide to create very low cost sensors for use in industrial and consumer environments, greatly reducing the potential for undetected leaks and their cost and safety implications. This technology is also being integrated for use in refineries, industry gas and fuel cells systems and was developed using technology from the National Renewable Energy Laboratory.

442

Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

2008-12-01T23:59:59.000Z

443

B. Appendix: Scaling of Cost with Energy and Intensity  

NLE Websites -- All DOE Office Websites (Extended Search)

B. Appendix: Scaling of Cost with Energy and Intensity B. Appendix: Scaling of Cost with Energy and Intensity With the two ongoing studies, one for the physics program, [1] and one for the accelerator and facilities [2] on the "Neutrino Factory Based on a Muon Storage Ring", a number of interesting suggestions and ideas came up. Almost immediately the question of scaling cost with the storage ring energy and with intensity came up. Nevertheless, it was impossible to explore all those questions in great detail, either in the report or in the preliminary cost estimate that is presented in Appendix A. During the study it became more and more clear, that one of the unique features of a neutrino source, namely the possibility to balance the cost of the accelerator with the cost of the detector, would urge the accelerator people to find an answer to this

444

Energy-Efficiency Improvement Opportunities for the Textile Industry  

E-Print Network (OSTI)

for cement making. An ENERGY STAR Guide for Energy and PlantSteel Industry. An ENERGY STAR? Guide for Energy and Plant1997. Cutting your energy costs-A guide for the textile

Hasanbeigi, Ali

2010-01-01T23:59:59.000Z

445

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and...

446

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

and ENERGY STAR’ S Energy Guides for entire industries,as a part of their Energy Guides for “focus” partners.savings manual, an energy management guide, an interactive

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

447

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

Performance for Industrial Refrigeration Systems. ” M.Sc.the performance of industrial refrigeration systems. SystemIndustrial Technologies Cooling and Storage (Food-4) Refrigeration

2000-01-01T23:59:59.000Z

448

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

Efficient Technologies for Industry Ernst Worrell Staff20036, USA ABSTRACT U.S. industry consumes approximately 37%efficient technologies for industry, focusing on over 50

2004-01-01T23:59:59.000Z

449

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network (OSTI)

and Paper n Other Industries, Electricity Conservation s65% of electricity consumed by industry is used by motorof the main industries include electricity savings. q

Worrell, Ernst

2009-01-01T23:59:59.000Z

450

The use of industrial energy in seven OECD (Organization for Economic Cooperation and Development) countries  

SciTech Connect

The objective of this study was to analyze the industrial demand for energy in seven Organization for Economic Cooperation and Development (OECD) countries with particular emphasis on fuel substitution between oil, natural gas, coal, and electricity. Changing fuel demand also results from economic growth, changes in industrial structure, and changes in the energy intensity of industrial output. A historical analysis of these factors and fuel substitution is undertaken for industry as an aggregate, and for 12 specific industries. The major results of the historical analysis are: (1) fuel use changes are a result of fuel switching, changing energy intensity, changing industrial structure, and economic growth; (2) fuel substitutability depends upon fuel use. The three fossil fuels are substitutes in the industrial heat market, but there are numerous special industrial processes where a particular fuel is required; (3) large substitutions have occurred between fuels; (4) fuel substitutions have been very different across countries, both in the type of substitutions that have occurred and the factors accounting for the substitutions; and (5) in most countries, major changes in fuel use can be explained by two or three industries, suggesting that future analyses be industry specific.

Sutherland, R.J.

1987-01-01T23:59:59.000Z

451

Workshop Proceedings of the Industrial Building Energy Use  

E-Print Network (OSTI)

Industrial Data Base? PURCHASED, SITE, IDENTIFIED ENERGY END USES PG&EEUA DATABASE ELECTRICITY LIGHTING AIR CONDITIONING REFRIGERATION

Akbari, H.

2008-01-01T23:59:59.000Z

452

Carbon Emissions: Chemicals Industry - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

... is sequestered in chemical industry products, such as plastics and fertilizers, rather than emitted through combustion. [Energy ...

453

Pages that link to "Industry" | Open Energy Information  

Open Energy Info (EERE)

Transport Sectors: Policy Drivers and International Trade Aspects ( links) Asia-Energy Efficiency Guide to Industry ( links) Supporting Entrepreneurs for...

454

Table 2.1d Industrial Sector Energy Consumption Estimates ...  

U.S. Energy Information Administration (EIA)

Table 2.1d Industrial Sector Energy Consumption Estimates, 1949-2011 (Trillion Btu) Year: Primary Consumption 1: Electricity

455

Energy prices and energy intensity in China : a structural decomposition analysis and econometrics study  

E-Print Network (OSTI)

Since the start of its economic reforms in 1978, China's energy prices relative to other prices have increased. At the same time, its energy intensity, i.e., energy consumption per unit of Gross Domestic Product (GDP), has ...

Shi, Xiaoyu

2006-01-01T23:59:59.000Z

456

Energy prices and energy intensity in China : a structural decomposition analysis and econometric study  

E-Print Network (OSTI)

Since the start of its economic reforms in 1978, China's energy prices relative to other prices have increased. At the same time, its energy intensity, i.e., physical energy consumption per unit of Gross Domestic Product ...

Shi, Xiaoyu, M.C.P. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

457

JUGENHEIMER INDUSTRIAL SUPPLIES INC | Open Energy Information  

Open Energy Info (EERE)

JUGENHEIMER INDUSTRIAL SUPPLIES INC JUGENHEIMER INDUSTRIAL SUPPLIES INC Jump to: navigation, search Name JUGENHEIMER INDUSTRIAL SUPPLIES INC Address 6863 COMMERCE DR Place Hubbard, Ohio Zip 44425 Sector Services Product Energy provider: energy transmission and distribution; Engineering/architectural/design;Installation; Maintenance and repair;Manufacturing; Retail product sales and distribution Phone number 800-533-8171 Website http://WWW.JUGENHEIMERSUPPLIES Coordinates 41.179321°, -80.570193° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.179321,"lon":-80.570193,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

458

Emerging energy-efficient technologies for industry  

Science Conference Proceedings (OSTI)

For this study, we identified about 175 emerging energy-efficient technologies in industry, of which we characterized 54 in detail. While many profiles of individual emerging technologies are available, few reports have attempted to impose a standardized approach to the evaluation of the technologies. This study provides a way to review technologies in an independent manner, based on information on energy savings, economic, non-energy benefits, major market barriers, likelihood of success, and suggested next steps to accelerate deployment of each of the analyzed technologies. There are many interesting lessons to be learned from further investigation of technologies identified in our preliminary screening analysis. The detailed assessments of the 54 technologies are useful to evaluate claims made by developers, as well as to evaluate market potentials for the United States or specific regions. In this report we show that many new technologies are ready to enter the market place, or are currently under development, demonstrating that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity. Several technologies have reduced capital costs compared to the current technology used by those industries. Non-energy benefits such as these are frequently a motivating factor in bringing technologies such as these to market. Further evaluation of the profiled technologies is still needed. In particular, further quantifying the non-energy benefits based on the experience from technology users in the field is important. Interactive effects and inter-technology competition have not been accounted for and ideally should be included in any type of integrated technology scenario, for it may help to better evaluate market opportunities.

Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorn, Jennifer

2001-03-20T23:59:59.000Z

459

Lincoln Electric System (Commercial and Industrial) - Sustainable Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial) - Sustainable Commercial and Industrial) - Sustainable Energy Program Lincoln Electric System (Commercial and Industrial) - Sustainable Energy Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate '''General Incentive Limits''' Commercial Industrial Lighting Retrofit: $100,000 per program year Commercial and Industrial Energy Efficiency: $100,000 per program year Program Info State Nebraska Program Type Utility Rebate Program Rebate Amount Commercial Industrial Lighting Retrofit Lighting Retrofit: $500/kW of peak-demand reduction

460

Amrit Bio Energy Industries Ltd | Open Energy Information  

Open Energy Info (EERE)

Amrit Bio Energy Industries Ltd Amrit Bio Energy Industries Ltd Jump to: navigation, search Name Amrit Bio Energy & Industries Ltd. Place Kolkata, West Bengal, India Zip 700017 Sector Biomass Product Kolkata-based biomass project developer. Subsidiary of Amrit Projects Ltd. (APL). Coordinates 22.52667°, 88.34616° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.52667,"lon":88.34616,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "industrial energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Secretary Chu Announces More than $155 Million for Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Announces More than $155 Million for Industrial Secretary Chu Announces More than $155 Million for Industrial Energy Efficiency Projects Secretary Chu Announces More than $155 Million for Industrial Energy Efficiency Projects November 3, 2009 - 12:00am Addthis WASHINGTON, DC- Energy Secretary Steven Chu announced today that the Department of Energy is awarding more than $155 million in funding under the American Recovery and Reinvestment Act for 41 industrial energy efficiency projects across the country. These awards include funding for industrial combined heat and power systems, district energy systems for industrial facilities, and grants to support technical and financial assistance to local industry. The industrial sector uses more than 30 percent of U.S. energy and is responsible for nearly 30 percent of U.S.

462

Secretary Chu Announces More than $155 Million for Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More than $155 Million for Industrial More than $155 Million for Industrial Energy Efficiency Projects Secretary Chu Announces More than $155 Million for Industrial Energy Efficiency Projects November 3, 2009 - 12:00am Addthis WASHINGTON, DC- Energy Secretary Steven Chu announced today that the Department of Energy is awarding more than $155 million in funding under the American Recovery and Reinvestment Act for 41 industrial energy efficiency projects across the country. These awards include funding for industrial combined heat and power systems, district energy systems for industrial facilities, and grants to support technical and financial assistance to local industry. The industrial sector uses more than 30 percent of U.S. energy and is responsible for nearly 30 percent of U.S. carbon emissions.

463

DOE Recognizes Midwest Industrial Efficiency Leaders | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Midwest Industrial Efficiency Leaders Midwest Industrial Efficiency Leaders DOE Recognizes Midwest Industrial Efficiency Leaders September 10, 2009 - 12:00am Addthis DETROIT, MI - The U.S. Department of Energy and Michigan Governor Jennifer M. Granholm joined with over 300 industry, state, and federal leaders to recognize industrial efficiency leaders and plot a course to accelerate industrial energy efficiency in the Midwest. As part of the Midwest Industrial Energy Efficiency Exchange that began last night and continued today, Governor Granholm and DOE announced 11 Save Energy Now awards recognizing industry leaders for their exemplary energy saving accomplishments. Attendees at the Energy Efficiency Exchange also had an opportunity to learn about new energy saving technologies and ways to

464

Advanced Energy Industries, Inc. SEGIS developments.  

DOE Green Energy (OSTI)

The Solar Energy Grid Integration Systems (SEGIS) initiative is a three-year, three-stage project that includes conceptual design and market analysis (Stage 1), prototype development/testing (Stage 2), and commercialization (Stage 3). Projects focus on system development of solar technologies, expansion of intelligent renewable energy applications, and connecting large-scale photovoltaic (PV) installations into the electric grid. As documented in this report, Advanced Energy Industries, Inc. (AE), its partners, and Sandia National Laboratories (SNL) successfully collaborated to complete the final stage of the SEGIS initiative, which has guided new technology development and development of methodologies for unification of PV and smart-grid technologies. The combined team met all deliverables throughout the three-year program and commercialized a broad set of the developed technologies.

Scharf, Mesa P. (Advanced Energy Industries, Inc., Bend, OR); Bower, Ward Isaac; Mills-Price, Michael A. (Advanced Energy Industries, Inc., Bend, OR); Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali; Kuszmaul, Scott S.; Gonzalez, Sigifredo

2012-03-01T23:59:59.000Z

465

Carbon Emissions: Paper Industry - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Energy-Related Carbon Emissions for Selected Paper Industries, 1994. Paper and paperboard mills emit over 80 percent of the energy-related carbon in ...

466

Trends in Industrial Energy Efficiency: The Role of Standards...  

NLE Websites -- All DOE Office Websites (Extended Search)

Trends in Industrial Energy Efficiency: The Role of Standards, Certification, and Energy Management in Climate Change Mitigation Speaker(s): Aimee McKane Date: March 18, 2008 -...

467

CANCELED: Trends in Industrial Energy Efficiency - the Role of...  

NLE Websites -- All DOE Office Websites (Extended Search)

CANCELED: Trends in Industrial Energy Efficiency - the Role of Standards, Certification, and Energy Management in Climate Change Mitigation Speaker(s): Aimee McKane Date: January...

468

industrial | U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Perspectives: Industrial and transportation sectors lead energy use by sector. ... New EIA data show total grid-connected photovoltaic solar capacity. October ...

469

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "New Jersey" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,...

470

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Illinois" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,19...

471

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Virginia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,19...

472

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Texas" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,...

473

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Washington" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,...

474

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Montana" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,199...

475

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Maine" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,...

476

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "South Dakota" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,199...

477

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Kansas" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999...

478

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "West Virginia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,19...

479

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Louisiana" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1...

480

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "New Hampshire" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,19...

Note: This page contains sample records for the topic "industrial energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

ENERGY STAR Challenge for Industry: Poster, "Our Actions Made...  

NLE Websites -- All DOE Office Websites (Extended Search)

business resources State and local government resources ENERGY STAR Challenge for Industry: Poster, "Our Actions Made a Difference" This co-brandable poster is for ENERGY STAR...

482

Award Recipient of the ENERGY STAR Challenge for Industry Bainbridge...  

NLE Websites -- All DOE Office Websites (Extended Search)

approximately 47 million inshell pounds of peanuts. The Bainbridge facility achieved the ENERGY STAR Challenge for Industry in 2010. This plant reached 16% reduction in energy...

483

2013 Summer Study on Energy Efficiency in Industry | Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Version Development Adoption Compliance Regulations Resource Center 2013 Summer Study on Energy Efficiency in Industry American Council for an Energy-Efficient Economy (ACEEE)...

484

Energy Management in the Materials Industry: Home Page  

Science Conference Proceedings (OSTI)

This course is directed toward energy managers, engineers, supervisors, and managers working in the materials industry who want to reduce their energy usage ...

485

UN Alcohol Energy Data: Consumption by other industries and constructi...  

Open Energy Info (EERE)

other industries and construction The Energy Statistics Database contains comprehensive energy statistics on the production, trade, conversion and final consumption of primary and...

486

UN Alcohol Energy Data: Consumption by transportation industry...  

Open Energy Info (EERE)

by transportation industry The Energy Statistics Database contains comprehensive energy statistics on the production, trade, conversion and final consumption of primary and...

487

Industries in focus | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR Energy Performance Indicators for plants ENERGY STAR Energy Performance Indicators for plants » Industries in focus Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Tools for benchmarking energy management practices Tools for tracking and benchmarking facility energy performance

488

Energy Responsibility Accounting - An Energy Conservation Tool for Industrial Facilities  

E-Print Network (OSTI)

As energy costs continue to rise faster than the rate of inflation, industrial energy management becomes a more important issue in the control of manufacturing costs. Energy Responsibility Accounting (ERA) is a tool which improves management's control of energy through accurate measurement of energy usage and costs by plant burden centers. The concept of responsibility accounting involves the continuous flow of information through, out an organization for the purposes of planning and cost control. In the past, responsibility accounting has been used primarily to control labor costs, to reduce material waste, and to contain the cost of supplies. ERA extends factory responsibility accounting systems to include energy. With ERA, management will know who is making an effort to conserve energy, how a new process affects energy usage, where additional emphasis on conservation may be needed and how much energy is being saved.

Kelly, R. L.

1980-01-01T23:59:59.000Z

489

DOE Announces First Companies to Receive Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Companies to Receive Industrial Energy First Companies to Receive Industrial Energy Efficiency Certification DOE Announces First Companies to Receive Industrial Energy Efficiency Certification December 9, 2010 - 12:00am Addthis WASHINGTON - The U.S. Department of Energy today announced the first industrial plants in the country to be certified under the Superior Energy Performance program -- a new, market-based industrial energy efficiency program. The energy management certification program is accredited by the American National Standards Institute (ANSI) and will serve as a roadmap for industrial facilities to help continually improve their efficiency and maintain market competitiveness. The industrial and manufacturing sectors, which account for roughly one-third of energy use in the United

490

Policies and Measures to Realise Industrial Energy Efficiency and Mitigate  

Open Energy Info (EERE)

Policies and Measures to Realise Industrial Energy Efficiency and Mitigate Policies and Measures to Realise Industrial Energy Efficiency and Mitigate Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policies and Measures to Realise Industrial Energy Efficiency and Mitigate Climate Change Agency/Company /Organization: United Nations Industrial Development Organization Sector: Energy Focus Area: Conventional Energy, Energy Efficiency, Industry Topics: GHG inventory, Low emission development planning, Policies/deployment programs Resource Type: Publications Website: www.unido.org/fileadmin/user_media/Publications/Pub_free/UNEnergy2009P Policies and Measures to Realise Industrial Energy Efficiency and Mitigate Climate Change Screenshot References: Policies and Measures to Realise Industrial Energy Efficiency and Mitigate Climate Change[1]

491

Table 24. Refining Industry Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

- Corrections to Tables 24 to 32 - Corrections to Tables 24 to 32 Table 24. Refining Industry Energy Consumption 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2002- 2025 Carbon Dioxide Emissions 4/ (million metric tons) 190.4 185.7 188.0 191.3 207.3 215.6 220.0 222.8 225.1 226.3 228.0 230.7 234.1 237.5 238.5 239.4 239.4 238.6 240.6 240.5 242.2 244.2 245.9 246.3 246.6 1.2% Table 25. Food Industry Energy Consumption 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2002- 2025 Carbon Dioxide Emissions 3/ (million metric tons) 87.8 89.4 87.5 87.8 89.2 90.2 90.9 91.4 92.2 93.5 94.5 95.7 96.7 97.7 98.6 99.6 100.8 101.9 102.9 104.1 105.4 107.0 108.7 110.3 112.1 1.0% Table 26. Paper Industry Energy Consumption 2001 2002 2003 2004 2005 2006 2007

492

The cement industry is the most energy intensive of all ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. ... ...

493

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

condensate recovery, a closed hood for heat recovery, as well as integration of the various steam and

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

494

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

in a back-pressure steam turbine to generate electricity (compressor uses a steam turbine, using internally generatedwith a gas turbine, producing steam and electricity. The hot

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

495

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

electricity generation, transmission, and distributionelectricity generation, transmission, and distributionelectricity generation, transmission, and distribution

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

496

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

10 2.1.3 Direct Reduced Iron – Electric ArcThin Slab Casting Direct Reduced Iron – Electric ArcThin Slab Casting Direct Reduced Iron – Electric Arc

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

497

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

by combining the gasification of coal with the meltin black liquor gasification has not yet resulted in aof heavy fuel oil, gasification of coal, and electrolysis.

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

498

Metallurgical industries are key parts of energy-intensive ...  

U.S. Energy Information Administration (EIA)

Tools; Glossary › All Reports ... weather; gasoline; capacity; nuclear; exports; forecast; View All Tags ...

499

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

feedstock would use a coal gasifier to convert the coal tosynthesis gas. Most coal gasifier-based ammonia plants areof a modern entrained bed gasifier, selexol gas cleanup and

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

500

Energy Efficiency Improvements and Cost Saving Opportunities in the Corn Wet Milling Industry  

E-Print Network (OSTI)

Corn wet milling is the most energy intensive industry in the food and kindred products group (SIC 20). Plants typically spend approximately $15 to 25 million per year on energy, one of its largest operating costs, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. After describing the industry's trends, structure and production and the process's energy use, we examine energy-efficiency opportunities for corn wet millers. Where available, we provide energy savings and typical payback periods for each measure based on case studies of plants that have implemented it. Given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the industry while maintaining the quality of the products produced. Further research on the economics of the measures and their applicability to different wet milling practices is needed to assess implementation of selected technologies at individual plants.

Galitsky, C.; Worrell, E.

2003-05-01T23:59:59.000Z