Powered by Deep Web Technologies
Note: This page contains sample records for the topic "industrial energy efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Clean Energy Manufacturing Initiative Industrial Efficiency and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

2

Energy Matters: Industrial Energy Efficiency | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Matters: Industrial Energy Efficiency Energy Matters: Industrial Energy Efficiency November 18, 2011 - 2:33pm Addthis On November 16, 2011, Deputy Assistant Secretary for Energy...

3

Energy Efficiency and Industrial Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next Generation Nuclear Plant Docs CONTACT US Center for Advanced Energy Studies Energy Efficiency and Industrial Technology The Department conducts research for DOE, other...

4

Industrial Energy Efficiency Assessments  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.Indiana College Provides TrainingEnergy Efficiency

5

Industrial Energy Efficiency Projects Improve Competitiveness...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs U.S. Department of...

6

Setting the Standard for Industrial Energy Efficiency  

E-Print Network [OSTI]

Voluntary Agreements for Energy Efficiency or GHG EmissionsACEEE Summer Study on Energy Efficiency in Industry, WestStandard for Industrial Energy Efficiency A. McKane 1 , R.

McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

2008-01-01T23:59:59.000Z

7

Industrial Energy Efficiency Programs: Development and Trends  

E-Print Network [OSTI]

As more states establish Energy Efficiency Resource Standards (EERS), goals for energy efficiency savings are increasing across the country. Increasingly, states are relying on their industrial energy efficiency programs to find and help implement...

Chittum, A.; Kaufman, N.; Elliot, N.

2010-01-01T23:59:59.000Z

8

Energy Efficiency Fund (Gas)- Commercial and Industrial Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

Through the Connecticut Energy Efficiency Fund, rebates are available for commercial, industrial or municipal customers of Connecticut Natural Gas Corporation, Southern Connecticut Gas Company, or...

9

Industrial energy efficiency policy in China  

SciTech Connect (OSTI)

Chinese industrial sector energy-efficiency policy has gone through a number of distinct phases since the founding of the People s Republic in 1949. An initial period of energy supply growth in the 1950s, 1960s, and 1970s was followed by implementation of significant energy efficiency programs in the 1980s. Many of these programs were dismantled in the 1990s during the continuing move towards a market-based economy. In an effort to once again strengthen energy efficiency, the Chinese government passes the Energy Conservation Law in 1997 which provides broad guidance for the establishment of energy efficiency policies. Article 20 of the Energy Conservation Law requires substantial improvement in industrial energy efficiency in the key energy-consuming industrial facilities in China. This portion of the Law declares that ''the State will enhance energy conservation management in key energy consuming entities.'' In 1999, the industrial sector consumed nearly 30 EJ, or 76 percent of China's primary energy. Even though primary energy consumption has dropped dramatically in recent years, due mostly to a decline in coal consumption, the Chinese government is still actively developing an overall policy for energy efficiency in the industrial sector modeled after policies in a number of industrialized countries. This paper will describe recent Chinese government activities to develop industrial sector energy-efficiency targets as a ''market-based'' mechanism for improving the energy efficiency of key industrial facilities.

Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

2001-05-01T23:59:59.000Z

10

Industrial Energy Efficiency and Climate Change Mitigation  

SciTech Connect (OSTI)

Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

2009-02-02T23:59:59.000Z

11

Unitil- Commercial and Industrial Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

Unitil offers three different programs for its commercial, industrial, and institutional customers in New Hampshire: the Small Business Energy Efficiency Services Program, the Large Business...

12

Duke Energy- Small Commercial and Industrial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Duke Energy encourages its business customers to increase the energy efficiency of eligible facilities through the Commercial and Industrial Energy Efficiency Rebate Program. The equipment rebates...

13

Industrial Energy Efficiency Assessments | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About UsIndustrial Energy Efficiency Assessments

14

DTE Energy (Electric)- Commercial and Industrial Energy Efficiency Program  

Broader source: Energy.gov [DOE]

DTE Energy's Commercial Your Energy Savings Program provides prescriptive incentives to commercial and industrial customers who implement energy efficiency upgrades in facilities. Custom incentives...

15

Progress Energy Carolinas- Commercial and Industrial Energy-Efficiency Program  

Broader source: Energy.gov [DOE]

Progress Energy provides rebates for energy efficiency measures in new construction or retrofits, as well as Technical Assistance for feasibility/energy studies to commercial, industrial and...

16

Energy efficient industrialized housing research program  

SciTech Connect (OSTI)

This is the second volume of a two volume report on energy efficient industrialized housing. Volume II contains support documentation for Volume I. The following items are included: individual trip reports; software bibliography; industry contacts in the US, Denmark, and Japan; Cost comparison of industrialized housing in the US and Denmark; draft of the final report on the systems analysis for Fleetwood Mobile Home Manufacturers. (SM)

Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; Mc Donald, M.; McGinn, B.; Ryan, P.; Sekiguchi, T. (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

1989-01-01T23:59:59.000Z

17

Advanced, Energy-Efficient Hybrid Membrane System for Industrial...  

Broader source: Energy.gov (indexed) [DOE]

Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse hybridmembranesystemsfa...

18

Energy Efficiency Improvement Opportunities for the Cement Industry  

E-Print Network [OSTI]

Lime Institute. 2001. Energy Efficiency Opportunity Guide inIndustry, Office of Energy Efficiency, Natural Resourcesof a Cement Kiln, Energy Efficiency Demonstration Scheme,

Worrell, Ernst

2008-01-01T23:59:59.000Z

19

Industrial energy-efficiency-improvement program  

SciTech Connect (OSTI)

Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

Not Available

1980-12-01T23:59:59.000Z

20

Energy Efficiency and Pollution Prevention: Industrial Efficiency Strategies  

E-Print Network [OSTI]

. ~ Water and sewage expenses are reduced by $400,000 per year. ~ Alternative cutting fluids and recycling technology reduced disposal costs by 75% ($640,000 per year). ~ Reduction in consumables (e.g., cutting fluid) saves $1.5 million annually...ENERGY EFFICIENCY AND POLLUTION PREVENTION: INDUSTRIAL EFFICIENCY STRATEGIES Miriam Pye R. Neal Elliott, Ph.D., P.E. Research Associate Industry Program Director American Council for an Energy-Efficient Economy (ACEEE) Washington, D...

Pye, M.; Elliott, R. N.

Note: This page contains sample records for the topic "industrial energy efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Innovative Energy Efficient Industrial Ventilation  

E-Print Network [OSTI]

?, a law of physics, shows why electricity savings can be high (Figure 5). 0 10 20 30 40 50 60 70 80 90 100 0 102030405060708090100 Air volume [CFM %] Power [H.P. %] P o w e r [ H .P . % ] A i r v o l u m e [ C FM %] C F M = 50 % of b l ast... and dust could settle. An on-demand dust collecting system solves this problem by using a PLC (industrial computer) which calculates necessary air volume based on information from the sensors. The PLC is adjusting the RPM of the fan accordingly...

Litomisky, A.

2005-01-01T23:59:59.000Z

22

Emerging energy-efficient technologies for industry  

SciTech Connect (OSTI)

U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, society is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology is essential in achieving these challenges. We report on a recent analysis of emerging energy-efficient technologies for industry, focusing on over 50 selected technologies. The technologies are characterized with respect to energy efficiency, economics and environmental performance. This paper provides an overview of the results, demonstrating that we are not running out of technologies to improve energy efficiency, economic and environmental performance, and neither will we in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity, and reduced capital costs compared to current technologies.

Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorne, Jennifer

2004-01-01T23:59:59.000Z

23

Energy Efficient Industrial Building Design  

E-Print Network [OSTI]

" or precooled air concept of ventilation, with a high temperature hot-water/chilled-water changeover piping system. Extensive energy recovery systems would be provided for production equipment and oil mist control would be by local captive systems, rather...

Holness, G. V. R.

1983-01-01T23:59:59.000Z

24

Industrial Compressed Air System Energy Efficiency Guidebook.  

SciTech Connect (OSTI)

Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

United States. Bonneville Power Administration.

1993-12-01T23:59:59.000Z

25

Ohio Center for Industrial Energy Efficiency Fact Sheet | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Industrial Energy Efficiency Fact Sheet More Documents & Publications Reducing Industrial Energy Intensity in the Southeast Project Fact Sheet Save Energy Now Pennsylvania Project...

26

Emerging energy-efficient industrial technologies  

SciTech Connect (OSTI)

U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if not more important in many cases) in influencing the decision on whether to adopt an emerging technology. The technologies were characterized with respect to energy efficiency, economics, and environmental performance. The results demonstrate that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. We show that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity and worker safety, and reduced capital costs.

Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

2000-10-01T23:59:59.000Z

27

Energy-Efficiency Improvement Opportunities for the Textile Industry  

E-Print Network [OSTI]

Cold Storage Facilities. ? Proceedings of the 2005 ACEEE Summer Study on Energy efficiency in Industry,

Hasanbeigi, Ali

2010-01-01T23:59:59.000Z

28

Productivity benefits of industrial energy efficiency measures  

E-Print Network [OSTI]

the linkage between energy efficiency and productivity.and increased energy efficiency in integrated paper andand Office of Energy Efficiency and Renewable Energy, 1997.

Worrell, Ernst

2011-01-01T23:59:59.000Z

29

Energy efficient industrialized housing research program  

SciTech Connect (OSTI)

This report summarizes three documents: Multiyear Research Plan, Volume I FY 1989 Task Reports, and Volume II Appendices. These documents describe tasks that were undertaken from November 1988 to December 1989, the first year of the project. Those tasks were: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. While this document summarizes information developed in each task area, it doesn't review task by task, as Volume I FY 1989 Task Reports does, but rather treats the subject of energy efficient industrialized housing as a whole to give the reader a more coherent view. 7 figs., 9 refs.

Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

1990-02-01T23:59:59.000Z

30

Policies and Measures to Realise Industrial Energy Efficiency...  

Open Energy Info (EERE)

Realise Industrial Energy Efficiency and Mitigate Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policies and Measures to Realise Industrial Energy...

31

Energy Efficiency Fund (Electric)- Commercial and Industrial Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

All Connecticut Utilities implement electric and gas efficiency rebate programs funded by Connecticut's public benefits charge through the Energy Efficiency Fund. The Connecticut Light and Power...

32

Muscatine Power and Water- Commercial and Industrial Energy Efficiency Rebates  

Broader source: Energy.gov [DOE]

Muscatine Power and Water (MP&W) offers rebates for energy efficient upgrades to commercial and industrial customers. Rebates are available for commercial lighting retrofits, energy efficient...

33

Energy Efficient Industrialized Housing Research Program  

SciTech Connect (OSTI)

Six area reported progress in the Energy Efficient Industrialized Housing Research Program during FY 1991. As part of Industry Guidance, meetings were held with steering and technical committees in computers, housing design and manufacturing. This task area enables the program to benefit from the expertise of industry representatives and communicate research results directly to them. As part of the Design Process performance specifications were being developed for the future housing system designed last year. These house designs coordinate and optimize predicted and desirable advances in computerized design processes, materials, components, and manufacturing automation to achieve energy efficiency at reduced first cost. Energy design software were being developed for CAD systems, stressed skin insulating core panel manufacturers; and a prototype energy sales tool. A prototype design was to be developed to integrate one or more subsystems with the building skin. As part of the Manufacturing Process we are developing a manufacturing process simulation and data base to help current and new entrants to the industrialized housing industry in assessing the impact of implementing new manufacturing techniques. For Evaluation we are developing testing plans for six units of housing on the UO campus and the stressed skin insulating core house to be constructed in Oregon. The DOW Chemical test structure will be retrofitted with a tile roof and retested to compare to the dome and conventional construction structures. Calibration of the wind tunnel will be completed so that laboratory tests can be conducted to simulate the ventilation cooling efficiency of houses in design. Research utilization and program management were either aspects of this program.

Not Available

1992-03-01T23:59:59.000Z

34

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network [OSTI]

industry’s share of global primary energy use declined toused 91 EJ of primary energy, 40% of the global total of 227eq/yr. Global and sectoral data on final energy use, primary

Worrell, Ernst

2009-01-01T23:59:59.000Z

35

Policies for Promoting Industrial Energy Efficiency in Developing...  

Open Energy Info (EERE)

under the structure of an Industrial Standards Framework that are designed to promote the organizational culture change needed for industrial energy efficiency to be both realized...

36

Entergy Arkansas- Commercial and Industrial Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

Entergy Arkansas has several programs to help commercial and industrial customers increase the energy efficiency of eligible facilities.

37

Laclede Gas Company- Commercial and Industrial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Commercial and Industrial customers can receive rebates for various energy efficiency measures. Customers implementing specified efficiency measures can receive prescriptive rebates. All other...

38

Emerging energy-efficient technologies for industry  

SciTech Connect (OSTI)

For this study, we identified about 175 emerging energy-efficient technologies in industry, of which we characterized 54 in detail. While many profiles of individual emerging technologies are available, few reports have attempted to impose a standardized approach to the evaluation of the technologies. This study provides a way to review technologies in an independent manner, based on information on energy savings, economic, non-energy benefits, major market barriers, likelihood of success, and suggested next steps to accelerate deployment of each of the analyzed technologies. There are many interesting lessons to be learned from further investigation of technologies identified in our preliminary screening analysis. The detailed assessments of the 54 technologies are useful to evaluate claims made by developers, as well as to evaluate market potentials for the United States or specific regions. In this report we show that many new technologies are ready to enter the market place, or are currently under development, demonstrating that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity. Several technologies have reduced capital costs compared to the current technology used by those industries. Non-energy benefits such as these are frequently a motivating factor in bringing technologies such as these to market. Further evaluation of the profiled technologies is still needed. In particular, further quantifying the non-energy benefits based on the experience from technology users in the field is important. Interactive effects and inter-technology competition have not been accounted for and ideally should be included in any type of integrated technology scenario, for it may help to better evaluate market opportunities.

Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorn, Jennifer

2001-03-20T23:59:59.000Z

39

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network [OSTI]

Energy efficiency and energy awareness in Botswana; ESI,awareness and training was the most frequently identified opportunity for improved energy

Worrell, Ernst

2009-01-01T23:59:59.000Z

40

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network [OSTI]

energy efficiency. Among industries included are cement, pulp and paper and plasticenergy efficiency in industry. Achievements: Production standards have been set for the engineering, plastics,

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial energy efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity  

SciTech Connect (OSTI)

Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

Selldorff, John; Atwell, Monte

2014-09-23T23:59:59.000Z

42

Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity  

ScienceCinema (OSTI)

Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

Selldorff, John; Atwell, Monte

2014-12-03T23:59:59.000Z

43

Multi-Project Baselines for Evaluation of Industrial Energy-Efficiency and Electric Power Projects  

E-Print Network [OSTI]

of Industrial Energy-Efficiency and Electric Power Projectsof Industrial Energy-Efficiency and Electric Power ProjectsOf Industrial Energy-Efficiency And Electric Power Projects

2001-01-01T23:59:59.000Z

44

Industrial Energy Efficiency in Ukraine: The Business Outlook  

E-Print Network [OSTI]

Ukraine is full of profitable opportunities for energy efficiency. Industry accounts for many of these opportunities because of its high level of energy consumption and its ability to pay for energy efficiency measures in hard currency. This paper...

Evans, M.

45

Building a State Industrial Energy Efficiency Network  

E-Print Network [OSTI]

Industries of the Future brings the tools and resources of the Industrial Technology Program of the Department of Energy to the state level. In addition, with the guidance of an industry-led advisory board, the program has developed conferences and forums...

Ferland, K.

2005-01-01T23:59:59.000Z

46

Industrial Energy Auditing: An Opportunity for Improving Energy Efficiency and Industrial Competitiveness  

E-Print Network [OSTI]

INDUSTRIAL ENERGY AUDITING: AN OPPORTUNITY FOR IMPROVING ENERGY EFFICIENCY AND INDUSTRIAL COMPETITIVENESS CHARLES GLASER, PROGRAM MANAGER, IMPLEMENTATION AND DEPLOYMENT DIVISION OFFICE OF INDUSTRIAL TECHNOLOGIES, U.S. DEPARTMENT OF ENERGY..., WASHINGTON, D.C. ABSTRACT This paper describes the Department of Energy's industrial energy auditing program, its achievements to date, and future plans. The Energy Analysis and Diagnostic Center (EADC) Program provides no-cost energy audits to small...

Glaser, C.

47

Industrial Energy Efficiency Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusiness PlanPosting

48

A Review of Energy Use and Energy Efficiency Technologies for the Textile Industry  

E-Print Network [OSTI]

Best practices/case studies - Indian Industries, Energy-efficiencyBest practices/case studies - Indian Industries, Energy-efficiencyBest practices/case studies - Indian Industries, Energy-efficiency

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

49

Promising Areas for Energy Efficiency in Industrial Process  

E-Print Network [OSTI]

Promising Areas for Energy Efficiency in Industrial Process Babu Joseph Ph.D Southern California Edison Company Almost all of the electric utilities in the US have some sort of energy efficiency improvement program for their customers. In all...

Joseph, B.

50

2015 ACEEE Summer Study on Energy Efficiency in Industry  

Broader source: Energy.gov [DOE]

The American Council for an Energy-Efficient Economy (ACEEE) is hosting a summer conference that will have six panels with concurrent sessions held over two days, each developed around industry energy efficiency.

51

Energy efficient industrialized housing research program  

SciTech Connect (OSTI)

This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

1989-12-01T23:59:59.000Z

52

Oklahoma Municipal Power Authority- Commercial and Industrial Energy Efficiency Program  

Broader source: Energy.gov [DOE]

The Oklahoma Municipal Power Authority (OMPA) offers the Demand and Energy Efficiency Program (DEEP) to eligible commercial, industrial, and municipal government customers served by OMPA. This...

53

Dakota Electric Association- Commercial and Industrial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Dakota Electric Association provides financial incentives for commercial and industrial customers to increase the energy efficiency of eligible facilities. Examples of equipment and measures...

54

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network [OSTI]

Summer Study on Energy Efficiency in Industry. AmericanSummer Study on Energy Efficiency in Industry. AmericanCanada, Office of Energy Efficiency, Ottawa, Ontario. Carbon

Brush, Adrian

2012-01-01T23:59:59.000Z

55

Application of Industrial Heat Improving energy efficiency of  

E-Print Network [OSTI]

compared with Residential Heat Pumps High energy efficiency = high coefficient of performance (COP) (eApplication of Industrial Heat Pumps Improving energy ­ efficiency of industrial processes . H.J. Laue Information Centre on Heat Pumps and Refrigeration IZW e.V. #12;2 Welcome Achema Congress 2012

Oak Ridge National Laboratory

56

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network [OSTI]

L. , S. de la Rue du Can, J. Sinton, E. Worrell, N. Zhou, J.industry. Energy 23: 725-32. Sinton, J.E. and D.G. Fridley (Roy, 2000; IEA, 2003a,b; Sinton and Fridley, 2000). Hence,

Worrell, Ernst

2009-01-01T23:59:59.000Z

57

ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY  

E-Print Network [OSTI]

Waste. Office of Energy Efficiency and Renewable Energy,Industry. Office of Energy Efficiency and Renewable Energy,Savings. Office of Energy Efficiency and Renewable Energy,

Kramer, Klaas Jan

2010-01-01T23:59:59.000Z

58

U.S. Energy Department, Pay-Television Industry and Energy Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

- developed through a non-regulatory agreement between the pay-TV industry, the consumer electronics industry and energy efficiency advocates - will improve set-top box efficiency...

59

Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

Not Available

2008-12-01T23:59:59.000Z

60

Emerging Energy-Efficient Technologies for Industry  

E-Print Network [OSTI]

Efficient cell retrofit designs Alum-2 aluminum 46 Process Integration (pinch analysis) Other-4 cross-cuning 38 Autothermal reforming-Ammonia Chem-7 chemicals 37 Condebelt drying Paper-2 pulp and paper 34 Electron Beam Sterilization Food-l food... processing 34 Inert AnodeslWetted Cathodes Alum-4 aluminum 34 Electricity is a unique energy source, with a large infrastructure supporting its generation and delivery and significant emissions. Many, including electric utilities, will fmd it important...

Worrell, E.; Martin, N.; Price, L.; Ruth, M.; Elliott, N.; Shipley, A.; Thorn, J.

Note: This page contains sample records for the topic "industrial energy efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice  

E-Print Network [OSTI]

organizational framework for industrial facilities to integrate energy efficiencyof energy efficiency. A first step once the organizational

McKane, Aimee

2010-01-01T23:59:59.000Z

62

Industrial Energy Efficiency: Designing Effective State Programs...  

Office of Environmental Management (EM)

State Programs for the Industrial Sector This report provides state regulators, utilities, and other program administrators an overview of the spectrum of U.S. industrial...

63

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network [OSTI]

mitigate 21 MtCO 2 . Cogeneration (also called Combined Heatefficiencies. Industrial cogeneration is an important partpotential for industrial cogeneration is estimated at almost

Worrell, Ernst

2009-01-01T23:59:59.000Z

64

India's Fertilizer Industry: Productivity and Energy Efficiency  

SciTech Connect (OSTI)

Historical estimates of productivity growth in India's fertilizer sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Our analysis shows that in the twenty year period, 1973 to 1993, productivity in the fertilizer sector increased by 2.3% per annum. An econometric analysis reveals that technical progress in India's fertilizer sector has been biased towards the use of energy, while it has been capital and labor saving. The increase in productivity took place during the era of total control when a retention price system and distribution control was in effect. With liberalization of the fertilizer sector and reduction of subsidies productivity declined substantially since the early 1990s. Industrial policies and fiscal incentives still play a major role in the Indian fertilizer sect or. As substantial energy savings and carbon reduction potential exists, energy policies can help overcome barriers to the adoption of these measures in giving proper incentives and correcting distorted prices.

Schumacher, K.; Sathaye, J.

1999-07-01T23:59:59.000Z

65

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network [OSTI]

losses in power production to generate heat and/or cold for industrial processes and district heating,

Worrell, Ernst

2009-01-01T23:59:59.000Z

66

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

and M. Kushler. (1997). Energy Efficiency in Automotive andSummer Study on Energy Efficiency in Industry. AmericanCalifornia Institute of Energy Efficiency ( CIEE). (2000b).

Galitsky, Christina

2008-01-01T23:59:59.000Z

67

Energy-Efficiency Improvement Opportunities for the Textile Industry  

SciTech Connect (OSTI)

The textile industry is one of the most complicated manufacturing industries because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. Especially in times of high energy price volatility, improving energy efficiency should be a primary concern for textile plants. There are various energy-efficiency opportunities that exist in every textile plant, many of which are cost-effective. However, even cost-effective options often are not implemented in textile plants mostly because of limited information on how to implement energy-efficiency measures, especially given the fact that a majority of textile plants are categorized as SMEs and hence they have limited resources to acquire this information. Know-how on energy-efficiency technologies and practices should, therefore, be prepared and disseminated to textile plants. This guidebook provides information on energy-efficiency technologies and measures applicable to the textile industry. The guidebook includes case studies from textile plants around the world and includes energy savings and cost information when available. First, the guidebook gives a brief overview of the textile industry around the world, with an explanation of major textile processes. An analysis of the type and the share of energy used in different textile processes is also included in the guidebook. Subsequently, energy-efficiency improvement opportunities available within some of the major textile sub-sectors are given with a brief explanation of each measure. The conclusion includes a short section dedicated to highlighting a few emerging technologies in the textile industry as well as the potential for the use of renewable energy in the textile industry.

China Energy Group; Hasanbeigi, Ali

2010-09-29T23:59:59.000Z

68

Setting the Standard for Industrial Energy Efficiency  

E-Print Network [OSTI]

ISO 9000/14000 quality and environmental management systems,industrial quality and environmental management systems suchISO 9000/14000 quality and environmental management systems,

McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

2008-01-01T23:59:59.000Z

69

Setting the Standard for Industrial Energy Efficiency  

E-Print Network [OSTI]

complete an in-depth energy audit and analysis to baselineof measures identified in the energy audit with a payback ofon energy management, energy audits and analysis, routines

McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

2008-01-01T23:59:59.000Z

70

Design for energy efficiency: Energy efficient industrialized housing research program. Progress report  

SciTech Connect (OSTI)

Since 1989, the U.S. Department of Energy has sponsored the Energy Efficient Industrialized Housing research program (EEIH) to improve the energy efficiency of industrialized housing. Two research centers share responsibility for this program: The Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. Additional funding is provided through the participation of private industry, state governments and utilities. The program is guided by a steering committee comprised of industry and government representatives. This report summarizes Fiscal Year (FY) 1990 activities and progress, and proposed activities for FY 1991 in Task 2.1 Design for Energy Efficiency. This task establishes a vision of energy conservation opportunities in critical regions, market segments, climate zones and manufacturing strategies significant to industrialized housing in the 21st Century. In early FY 1990, four problem statements were developed to define future housing demand scenarios inclusive of issues of energy efficiency, housing design and manufacturing. Literature surveys were completed to assess seven areas of influence for industrialized housing and energy conservation in the future. Fifty-five future trends were identified in computing and design process; manufacturing process; construction materials, components and systems; energy and environment; demographic context; economic context; and planning policy and regulatory context.

Kellett, R.; Berg, R.; Paz, A.; Brown, G.Z.

1991-03-01T23:59:59.000Z

71

International industrial sector energy efficiency policies  

E-Print Network [OSTI]

company and the Danish Energy Agency (Ezban et al. , 1994;company and the Danish Energy Agency. The agreements, whichagreements with the Danish Energy Agency, representing 45%

Price, Lynn; Worrell, Ernst

2000-01-01T23:59:59.000Z

72

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network [OSTI]

world energy consumption. More than 90% of this energy is used in the productionworld steel production, finding potential CO 2 emission reductions due to energy

Worrell, Ernst

2009-01-01T23:59:59.000Z

73

Certifying Industrial Energy Efficiency Performance: Aligning Management, Measurement, and Practice to Create Market Value  

E-Print Network [OSTI]

Certifying Industrial Energy Efficiency Performance:to improve their energy efficiency- as evidenced by the 98%the renewed interest in energy efficiency worldwide and the

McKane, Aimee; Scheihing, Paul; Williams, Robert

2008-01-01T23:59:59.000Z

74

Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China  

E-Print Network [OSTI]

Banerjee, R. , 2005. Energy Efficiency and Demand SideKiln Systems,” Energy Efficiency in the Cement Industry (Ed.for Improving Energy Efficiency, Reducing Pollution and

Price, Lynn

2010-01-01T23:59:59.000Z

75

Emerging Energy-Efficient Technologies for Industry  

E-Print Network [OSTI]

recycled glass cullet Black liquor gasification CondebeltBeam Sterilization Black liquor gasification Efficient cellSensors and controls Black liquor gasification Near net

2005-01-01T23:59:59.000Z

76

Energy Efficiency Improvement in the Petroleum RefiningIndustry  

SciTech Connect (OSTI)

Information has proven to be an important barrier inindustrial energy efficiency improvement. Voluntary government programsaim to assist industry to improve energy efficiency by supplyinginformation on opportunities. ENERGY STAR(R) supports the development ofstrong strategic corporate energy management programs, by providingenergy management information tools and strategies. This paper summarizesENERGY STAR research conducted to develop an Energy Guide for thePetroleum Refining industry. Petroleum refining in the United States isthe largest in the world, providing inputs to virtually every economicsector, including the transport sector and the chemical industry.Refineries spend typically 50 percent of the cash operating costs (e.g.,excluding capital costs and depreciation) on energy, making energy amajor cost factor and also an important opportunity for cost reduction.The petroleum refining industry consumes about 3.1 Quads of primaryenergy, making it the single largest industrial energy user in the UnitedStates. Typically, refineries can economically improve energy efficiencyby 20 percent. The findings suggest that given available resources andtechnology, there are substantial opportunities to reduce energyconsumption cost-effectively in the petroleum refining industry whilemaintaining the quality of the products manufactured.

Worrell, Ernst; Galitsky, Christina

2005-05-01T23:59:59.000Z

77

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network [OSTI]

EJ of primary energy, 40% of the global total of 227 EJ. Byof the global greenhouse gas emissions. Total energy-relatedglobal greenhouse gas emissions, of which over 80% is from energy use. Total

Worrell, Ernst

2009-01-01T23:59:59.000Z

78

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network [OSTI]

route used, product mix, energy and carbon intensities ofmix, different degrees of integration but mainly due to the age and type of technology and levels of retrofitting of energy

Worrell, Ernst

2009-01-01T23:59:59.000Z

79

Energy Matters: An invitation to Chat About Industrial Efficiency  

ScienceCinema (OSTI)

Do you have questions or ideas about how the U.S. Department of Energy can contribute to global competitiveness through industrial efficiency? Dr. Kathleen Hogan would like to hear them. Submit your questions via: Email ( newmedia@hq.doe.gov ) Twitter ( @Energy ) Facebook ( Facebook.com/Energygov ) **LIVE CHAT IS EXPIRED**

Hogan, Kathleen

2013-05-29T23:59:59.000Z

80

Energy Matters: An invitation to Chat About Industrial Efficiency  

SciTech Connect (OSTI)

Do you have questions or ideas about how the U.S. Department of Energy can contribute to global competitiveness through industrial efficiency? Dr. Kathleen Hogan would like to hear them. Submit your questions via: Email ( newmedia@hq.doe.gov ) Twitter ( @Energy ) Facebook ( Facebook.com/Energygov ) **LIVE CHAT IS EXPIRED**

Hogan, Kathleen

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial energy efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Emerging energy-efficient industrial technologies  

E-Print Network [OSTI]

Treatment Motor System Optimization Fuel Cells Microturbinesoptimization Advanced reciprocating engines Advanced CHP turbine systems Advanced ASD designs Compressed air system management Fuel cellsOptimization Pump Efficiency Improvement Switched Reluctance Motor Advanced Lubricants Advanced CHP Turbine Systems Advanced Reciprocating Engines Fuel Cells

2000-01-01T23:59:59.000Z

82

Duke Energy (Electric)- Commercial and Industrial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Duke Energy’s Smart $aver Incentive program offers rebates to non-residential customers to install energy efficient equipment in their facilities. All Duke Energy North Carolina nonresidential...

83

Emerging energy-efficient industrial technologies  

E-Print Network [OSTI]

Converter Furnace. ” In Ironmaking 2000, 18th Advancedenergy consumption for ironmaking is estimated at 780 TBtu (would reduce energy use in ironmaking by 30 percent relative

2000-01-01T23:59:59.000Z

84

Energy efficiency opportunities in China. Industrial equipment and small cogeneration  

SciTech Connect (OSTI)

A quick glance at comparative statistics on energy consumption per unit of industrial output reveals that China is one of the least energy efficient countries in the world. Energy waste not only impedes economic growth, but also creates pollution that threatens human health, regional ecosystems, and the global climate. China`s decision to pursue economic reform and encourage technology transfer from developed countries has created a window of opportunity for significant advances in energy efficiency. Policy changes, technical training, public education, and financing can help China realize its energy conservation potential.

NONE

1995-02-01T23:59:59.000Z

85

Energy Efficiency in the Microelectronics Industry  

E-Print Network [OSTI]

The rapid advance of technology towards shrinking circuits and increasing speed of execution is coupled by the demand for enhanced manufacturing rates and fuller equipment utilization. This puts renewed emphasis on understanding the way energy...

Bhatti, B.

86

Partnerships for Industrial Productivity Through Energy Efficiency  

E-Print Network [OSTI]

of myself as a gold miner. Some 75% to 85% of my studies and efforts ended in failure. The remaining 15% was worth the gold mine, and HAVE produced such savings as: A An average of 15% to 18% of the total energy usage of all the facilities surveyed..., with a 2 year payback or less. If the payback period could have been 3 to 4 years the average would have been between 25% and 35% B. Over 4.0 megawatts oC demand in one year C. Over S8OO,OOO per year in one facility D. Over 55% of the energy...

Johnston, W. E.

87

Promoting Energy Efficiency in Industry: Utility Roles and Perspectives  

E-Print Network [OSTI]

successful utility marketing puget Sound Power and Light programs related to commercial/industrial end (Puget Power) -- The most flex use efficiency are: ible rebate program offered. Commercial/industrial customers ? Customer Education may submit... proposals and engineering designs for a rebate Pacific Gas and Electric Company up to $100,000. Utility (PG&E) -- Technical briefs of engineers also help with drawing new, emerging technologies. up bid specifications. Energy consumption monitoring...

Limaye, D. R.; Davis, T. D.

1984-01-01T23:59:59.000Z

88

Energy Efficiency Opportunities in the Brewery Industry  

E-Print Network [OSTI]

--t -~?:"t 300?~ 200 . 100 o ? U.S. - -+ - Anheuser-Busch (US) ??? [J??? Coors (US) .. Canada ;( Austria ---0--Asahi (Japan) --0--Germany ? United Kingdom Figure 1. Physical primary energy intensities/or beer production/or selected countries.../a Heineken Zoeterwoude Netherlands CHP 5 n/a Anheuser-Busch US bioenergy recovery <2 10-15% of purchased system fuel saved Ontario Brewery Canada heat recovery from n/a 8 refrigeration Kirin, Tokyo Japan engine driven cooling 4 10% electricity savings I...

Worrell, E.; Galitsky, C.; Martin, N.

89

Implementation and Rejection of Industrial Steam System Energy Efficiency Measures  

SciTech Connect (OSTI)

Steam systems consume approximately one third of energy applied at U.S. industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of five years through the Energy Savings Assessment (ESA) program administered by the U.S. Department of Energy (U.S. DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well.

Therkelesen, Peter; McKane, Aimee

2013-05-01T23:59:59.000Z

90

Industrial Attitudes to Petroleum Prices: Policies and Energy Efficiency  

E-Print Network [OSTI]

contracts. When it became apparent that gas prices were no longer going to be in the vicinity of $2/Mbtu for the foreseeable future, industry began to seriously invest once again in energy efficiency. A 2003 study by ACEEE found that a modest 5% decrease...

Shipley, A. M.; Langer, T.; Black, S.

2007-01-01T23:59:59.000Z

91

Technologies and Policies to Improve Energy Efficiency in Industry  

SciTech Connect (OSTI)

The industrial sector consumes nearly 40% of annual global primary energy use and is responsible for a similar share of global energy-related carbon dioxide (CO2) emissions. Many studies and actual experience indicate that there is considerable potential to reduce the amount of energy used to manufacture most commodities, concurrently reducing CO2 emissions. With the support of strong policies and programs, energy-efficient technologies and measures can be implemented that will reduce global CO2 emissions. A number of countries, including the Netherlands, the UK, and China, have experience implementing aggressive programs to improve energy efficiency and reduce related CO2 emissions from industry. Even so, there is no silver bullet and all options must be pursued if greenhouse gas emissions are to be constrained to the level required to avoid significant negative impacts from global climate change.

Price, Lynn; Price, Lynn

2008-03-01T23:59:59.000Z

92

Riverland Energy Cooperative- Commercial and Industrial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Riverland Energy Cooperative offers a number of rebates for the purchase and installation of efficient lighting fixtures, air conditioners, heat pumps, water heaters, central electric thermal...

93

Industrial Energy Use and Energy Efficiency in Developing Countries  

E-Print Network [OSTI]

The industrial sector accounts for over 50% of energy used in developing countries. Growth in this sector has been over 4.5% per year since 1980. Energy intensity trends for four energy-intensive sub-sectors (iron and steel, chemicals, building...

Price, L.; Martin, N.; Levine, M. D.; Worrell, E.

94

Energy-Efficiency Improvement Opportunities for the Textile Industry  

E-Print Network [OSTI]

Finishing Stenters, ADB Energy-efficiency Support Project.After Treatment Dryer. ? Energy-efficiency Bulletin (No.40).E. and Galitsky, C. , 2004. Energy-efficiency improvement

Hasanbeigi, Ali

2010-01-01T23:59:59.000Z

95

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network [OSTI]

opportunities, recommend energy efficiency actions, developSummer Study on Energy efficiency in Industry. AmericanACEEE Summer Study on Energy Efficiency in Industry, ACEEE,

Worrell, Ernst

2011-01-01T23:59:59.000Z

96

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

M. Kushler. (c. 1997). Energy Efficiency in Automotive andSummer Study on Energy Efficiency in Industry, Americanof Industrial Technologies, Energy Efficiency and Renewable

Galitsky, Christina

2008-01-01T23:59:59.000Z

97

Energy Efficient Industrialized Housing Research Program. Annual report, FY 1991  

SciTech Connect (OSTI)

Six area reported progress in the Energy Efficient Industrialized Housing Research Program during FY 1991. As part of Industry Guidance, meetings were held with steering and technical committees in computers, housing design and manufacturing. This task area enables the program to benefit from the expertise of industry representatives and communicate research results directly to them. As part of the Design Process performance specifications were being developed for the future housing system designed last year. These house designs coordinate and optimize predicted and desirable advances in computerized design processes, materials, components, and manufacturing automation to achieve energy efficiency at reduced first cost. Energy design software were being developed for CAD systems, stressed skin insulating core panel manufacturers; and a prototype energy sales tool. A prototype design was to be developed to integrate one or more subsystems with the building skin. As part of the Manufacturing Process we are developing a manufacturing process simulation and data base to help current and new entrants to the industrialized housing industry in assessing the impact of implementing new manufacturing techniques. For Evaluation we are developing testing plans for six units of housing on the UO campus and the stressed skin insulating core house to be constructed in Oregon. The DOW Chemical test structure will be retrofitted with a tile roof and retested to compare to the dome and conventional construction structures. Calibration of the wind tunnel will be completed so that laboratory tests can be conducted to simulate the ventilation cooling efficiency of houses in design. Research utilization and program management were either aspects of this program.

Not Available

1992-03-01T23:59:59.000Z

98

Promoting Energy Efficiency in Cement Making: The ENERGY STAR(R) for Industry Program  

E-Print Network [OSTI]

best practices for compressed air system energy efficiencyenergy efficiency opportunities applicable to plants within the focus industry, including information on best practices

Masanet, Eric; Worrell, Ernst

2007-01-01T23:59:59.000Z

99

Measuring Energy Efficiency Improvements in Industrial Battery Chargers  

E-Print Network [OSTI]

&E is sponsoring this test work as a direct result of the energy saving opportunity that is available in the installed base of forklift battery chargers in our service territory. It is estimated that 32,000 three phase chargers and 12,500 single phase chargers...) website in summer 2009: ESL-IE-09-05-32 Proceedings of the Thirty-First Industrial Energy Technology Conference, New Orleans, LA, May 12-15, 2009 www.etcc-ca.com There are a number of elements that make up battery charger energy efficiency...

Matley, R.

100

Developing an energy efficiency service industry in Shanghai  

SciTech Connect (OSTI)

The rapid development of the Chinese economy over the past two decades has led to significant growth in China's energy consumption and greenhouse gas (GHG) emissions. Between 1980 and 2000, China's energy consumption more than doubled from 602 million to 1.3 billion tons of coal-equivalent (NBS, 2003). In 2000, China's GHG emissions were about 12% of the global total, ranked second behind only the US. According to the latest national development plan issued by the Chinese government, China's energy demand is likely to double again by 2020 (DRC, 2004), based on a quadrupling of its gross domestic product (GDP). The objectives of the national development plan imply that China needs to significantly raise the energy efficiency of its economy, i.e., cutting the energy intensity of its economy by half. Such goals are extremely ambitious, but not infeasible. China has achieved such reductions in the past, and its current overall level of energy efficiency remains far behind those observed in other developed economies. However, challenges remain whether China can put together an appropriate policy framework and the institutions needed to improve the energy efficiency of its economy under a more market-based economy today. Shanghai, located at the heart of the Yangtze River Delta, is the most dynamic economic and financial center in the booming Chinese economy. With 1% of Chinese population (13 million inhabitants), its GDP in 2000 stood at 455 billion RMB yuan (5% of the national total), with an annual growth rate of 12%--much higher than the national average. It is a major destination for foreign as well as Chinese domestic investment. In 2003, Shanghai absorbed 10% of actual foreign investment in all China (''Economist'', January 17-23, 2004). Construction in Shanghai continues at a breakneck pace, with an annual addition of approximately 200 million square foot of residential property and 100 million square foot of commercial and industrial space over the last 5 years. It is one reason that China consumed over 60% of the world's cement production in 2003 (NBS 2004). Energy consumption in Shanghai has been growing at 6-8% annually, with the growth of electricity demand at over 10% per year. Shanghai, with very limited local energy resources, relies heavily on imported coal, oil, natural gas, and electricity. While coal still constitutes over half of Shanghai's energy consumption, oil and natural gas use have been growing in importance. Shanghai is the major market for China's West to East (natural gas) Pipeline (WEP). With the input from WEP and off-shore pipelines, it is expected that natural gas consumption will grow from 250 million cubic meters in 2000 to 3000-3500 million cubic meters in 2005. In order to secure energy supply to power Shanghai's fast-growing economy, the Shanghai government has set three priorities in its energy strategy: (1) diversification of its energy structure, (2) improving its energy efficiency, and (3) developing renewable and other cleaner forms of energy. Efficiency improvements are likely to be most critical, particularly in the near future, in addressing Shanghai's energy security, especially the recent electricity shortage in Shanghai. Commercial buildings and industries consume the majority of Shanghai's, as well as China's, commercial energy. In the building sector, Shanghai has been very active implementing energy efficiency codes for commercial and residential buildings. Following a workshop on building codes implementation held at LBNL for senior Shanghai policy makers in 2001, the Shanghai government recently introduced an implementation guideline on residential building energy code compliance for the downtown area of Shanghai to commence in April, 2004, with other areas of the city to follow in 2005. A draft code for commercial buildings has been developed as well. In the industrial sector, the Shanghai government started an ambitious initiative in 2002 to induce private capital to invest in energy efficiency improvements via energy management/services companies (EMC/ESCOs). In partic

Lin, Jiang; Goldman, Charles; Levine, Mark; Hopper, Nicole

2004-02-10T23:59:59.000Z

Note: This page contains sample records for the topic "industrial energy efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network [OSTI]

60% of total primary energy consumption, compared to theShare of Total Primary Energy Consumption World US Chinaof industrial primary energy consumption in The Netherlands.

Price, Lynn

2008-01-01T23:59:59.000Z

102

Energy-Efficiency Improvement Opportunities for the Textile Industry  

E-Print Network [OSTI]

A. T. de Almeida, 2002. Energy- efficient Motor Systems: Ain the current age, as energy-efficient technologies oftenCouncil for an Energy-Efficient Economy, Washington, D.C.

Hasanbeigi, Ali

2010-01-01T23:59:59.000Z

103

Energy Efficiency Opportunities within the Heat Treatment Industry.  

E-Print Network [OSTI]

??Energy efficiency measures have become a top priority for large energy consuming companies because of the increasing energy prices and implemented energy policies. Many companies… (more)

Källen, Malin

2012-01-01T23:59:59.000Z

104

India's pulp and paper industry: Productivity and energy efficiency  

SciTech Connect (OSTI)

Historical estimates of productivity growth in India's pulp and paper sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both statistical and econometric estimates of productivity growth for this sector. Their results show that productivity declined over the observed period from 1973-74 to 1993-94 by 1.1% p.a. Using a translog specification the econometric analysis reveals that technical progress in India's pulp and paper sector has been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protection afforded by high tariffs on imported paper products and other policies, which allowed inefficient, small plants to enter the market and flourish. Will these trends continue into the future, particularly where energy use is concerned? The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with liberalization of the sector, and tighter environmental controls, the industry is moving towards higher efficiency and productivity. However, the analysis also shows that because these improvements are being hampered by significant financial and other barriers the industry might have a long way to go.

Schumacher, Katja

1999-07-01T23:59:59.000Z

105

Meeting State Carbon Emission Requirements through Industrial Energy Efficiency: The Southern California Gas Company’s Industrial End User Program  

Broader source: Energy.gov [DOE]

This case study describes the Southern California Gas Company’s Industrial End User program, which helps large industrial customers increase energy efficiency and reduce energy use and greenhouse gas emissions.

106

Industrial Sector Energy Efficiency Modeling (ISEEM) Framework Documentation  

E-Print Network [OSTI]

Model Part I, Energy Technology Systems Analysis Programme,A Report of the Energy Technology Systems Analysis Project,Energy Efficiency Technologies in Integrated Assessment

Karali, Nihan

2014-01-01T23:59:59.000Z

107

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network [OSTI]

industry is for process cooling, freezing, and cold storage.Cold Storage Facilities. Proceedings of the 2005 ACEEE Summer Study on Energy Efficiency in Industry,industry. Unit processes such as pasteurization, homogenization, and cold storage

Brush, Adrian

2012-01-01T23:59:59.000Z

108

Moorhead Public Service Utility- Commercial and Industrial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

[http://www.mpsutility.com Moorhead Public Service Utility] offers the Bright Energy Solutions Programs for commercial and industrial customers that purchase and install qualifying energy-efficient...

109

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Cement Industry in China  

E-Print Network [OSTI]

for Improving Energy Efficiency, Reducing Pollution andSummer Study on Energy Efficiency in Industry. Washington,R. N. , 1994, “The energy-efficiency gap: What does it

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

110

Energy-Efficiency Improvement Opportunities for the Textile Industry  

E-Print Network [OSTI]

efficiency improvement opportunities in electric motors in electric motors 31 When considering energy-efficiencyefficiency improvement opportunities in electric motors

Hasanbeigi, Ali

2010-01-01T23:59:59.000Z

111

Industrial Energy Efficiency as a Risk Management Strategy  

E-Print Network [OSTI]

of acting before government regulations are implemented. In this manner, regulations are a surprise element in doing business. Finally, energy efficiency as a corporate goal, will lead to an overall reduction in greenhouse gas emissions. This sole... can be effective as a corporate strategy as well. Plant level interactions with energy efficiency yield immediate gains, while energy efficiency as part of the corporate agenda delivers long term benefits. Energy efficiency employed...

Naumoff, C.; Shipley, A. M.

2007-01-01T23:59:59.000Z

112

Off-Balance Sheet Financing for Industrial Energy Efficiency Projects  

E-Print Network [OSTI]

Traditionally, energy efficiency projects have been financed by energy service companies (ESCOs) under a shared savings arrangement known as performance contracting. Essentially, performance contracting packages engineering, procurement...

Williams, S. J.

113

Empire District Electric- Commercial and Industrial Energy Efficiency Rebates  

Broader source: Energy.gov [DOE]

The Empire District Electric Company offers a Commercial/Industrial Prescriptive Rebate Program to its non-residential customers in Arkansas who purchase certain high-efficiency equipment for...

114

Economic and Policy Factors Affecting Energy Efficiency Improvements in the U. S. Paper Industry  

E-Print Network [OSTI]

The U.S. pulp, paper and paperboard industry has made significant improvements over the past eleven years in the energy efficiency of its operations. The industry is firmly committed to: increased utilization of important renewable domestic energy...

Freund, S. H.

1984-01-01T23:59:59.000Z

115

DTE Energy (Gas)- Commercial and Industrial Energy Efficiency Program  

Broader source: Energy.gov [DOE]

DTE Energy's Commercial Your Energy Savings Program provides prescriptive incentives, predominantly on a simple per unit basis. Custom incentives are based on the amount of estimated annual energy...

116

Energy Efficiency Improvement Opportunities for the Cement Industry  

SciTech Connect (OSTI)

This report provides information on the energy savings, costs, and carbon dioxide emissions reductions associated with implementation of a number of technologies and measures applicable to the cement industry. The technologies and measures include both state-of-the-art measures that are currently in use in cement enterprises worldwide as well as advanced measures that are either only in limited use or are near commercialization. This report focuses mainly on retrofit measures using commercially available technologies, but many of these technologies are applicable for new plants as well. Where possible, for each technology or measure, costs and energy savings per tonne of cement produced are estimated and then carbon dioxide emissions reductions are calculated based on the fuels used at the process step to which the technology or measure is applied. The analysis of cement kiln energy-efficiency opportunities is divided into technologies and measures that are applicable to the different stages of production and various kiln types used in China: raw materials (and fuel) preparation; clinker making (applicable to all kilns, rotary kilns only, vertical shaft kilns only); and finish grinding; as well as plant wide measures and product and feedstock changes that will reduce energy consumption for clinker making. Table 1 lists all measures in this report by process to which they apply, including plant wide measures and product or feedstock changes. Tables 2 through 8 provide the following information for each technology: fuel and electricity savings per tonne of cement; annual operating and capital costs per tonne of cement or estimated payback period; and, carbon dioxide emissions reductions for each measure applied to the production of cement. This information was originally collected for a report on the U.S. cement industry (Worrell and Galitsky, 2004) and a report on opportunities for China's cement kilns (Price and Galitsky, in press). The information provided in this report is based on publicly-available reports, journal articles, and case studies from applications of technologies around the world.

Price, Lynn; Worrell, Ernst; Galitsky, Christina; Price, Lynn

2008-01-31T23:59:59.000Z

117

Industrial Energy Efficiency Technical Review Guidelines and Best Practices  

E-Print Network [OSTI]

of commercial and other sector programs. The following programs were deemed to represent the best combination of applicability and access to relevant information: ? BC Hydro?s Power Smart Partners - Industrial (Transmission and Distribution...) ? Wisconsin?s Focus on Energy ? Industrial ? California Public Utilities Commission?s (CPUC) Southern California Industrial and Agricultural (SCIA) and Pacific Gas & Electric?s (PG&E) Fabrication, Process and Manufacturing Review of Impact Evaluation...

Dalziel, N.

2013-01-01T23:59:59.000Z

118

Shakopee Public Utilities- Commercial and Industrial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Shakopee Public Utilities (SPU) offers a wide array of rebates and incentives encouraging its commercial customers to increase the energy efficiency of their facilities. Broadly, rebates exist for...

119

EPUD- Commercial and Industrial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Emerald People's Utility District (EPUD) offers financial incentives for commercial customers to increase the energy efficiency of their facilities. EPUD works with the Bonneville Power...

120

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network [OSTI]

Energy Efficiency and CO2 Emissions. Paris: IEA. KEMA, withrelated carbon dioxide (CO2) emissions. Many studies andconcurrently reducing CO2 emissions. With the support of

Price, Lynn

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial energy efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Emerging Industrial Innovations for New Energy Efficient Technologies  

E-Print Network [OSTI]

as integrated photovoltaic systems may play an even larger role in the more productive use of our energy resources. This paper explores recent work on industrial innovation, often involving public-private partnerships, and provides a context to understand...

Laitner, J. A.

2007-01-01T23:59:59.000Z

122

Duquesne Light Company- Commercial and Industrial Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Duquesne Light provides rebates on energy-saving equipment to commercial and industrial customers in the eligible service territory. There are 2 types of rebate programs available to all C&I...

123

Greenhouse Gas Programs, Energy Efficiency, and the Industrial Sector  

E-Print Network [OSTI]

The United States has made significant progress in reducing total energy use through energy efficiency improvements over the past decade, yet the United States still ranks as the highest absolute greenhouse gas (GHG) emitter in the world with 23...

Zhou, A.; Tutterow, V.; Harris, J.

124

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network [OSTI]

sustainable energy system was begun, further supporting those goals of increased renewable energy sources and energy efficiency. Sweden

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

125

U.S. Industrial Energy Efficiency Programs | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energy AmericanOfficeinGeothermal Energy Capacity

126

Con Edison Commercial and Industrial Energy Efficiency Program  

E-Print Network [OSTI]

? Con Edison C&I Energy Efficiency Team ? Program Management and Account Executives ? Lockheed Martin Team ? Marketing, Operations, Engineering and Administration ? Market Partner Network ? Con Edison Customers 6 C&I Program: Three Major..., energy consultants, and other suppliers of energy efficient equipment and services ? Market Partners assist Con Edison customers with applying for incentives, supporting their application process and providing solutions to energy problems...

Pospisil, D.

2011-01-01T23:59:59.000Z

127

Otter Tail Power Company- Commercial and Industrial Energy Efficiency Grant Program  

Broader source: Energy.gov [DOE]

Otter Tail Power Company Grants for Conservation Program allows its commercial and industrial customers to submit energy-saving proposals and receive grants for their custom efficiency projects....

128

Kansas City Power and Light- Commercial/Industrial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Kansas City Power and Light (KCP&L) provides financial incentives for commercial and industrial customers to increase the energy efficiency of eligible facilities. Rebates are available for...

129

Austin Utilities (Gas and Electric)- Commercial and Industrial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Austin Utilities offers incentives to its commercial and industrial customers for the installation of energy-efficient equipment in eligible facilities. Rebates are available for lighting equipment...

130

Minnesota Valley Electric Cooperative- Commercial and Industrial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Minnesota Valley Electric Cooperative (MVEC) offers incentives to encourage commercial and industrial customers to increase the energy efficiency of facilities. Rebates are offered for the...

131

Ohio Center for Industrial Energy Efficiency | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy(National1EnergyFederalaimsOffshore Wind

132

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Cold Storage Facilities. Proceedings of the 2005 ACEEE Summer Study on Energy Efficiency in Industry,

Worrell, Ernst

2011-01-01T23:59:59.000Z

133

Duke Energy (Electric)- Commercial/Industrial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

'''Due to new federal standards, Duke Enegry Ohio will cease to offer incentives for most standard T8s and all T5 fixtures replacing T12 fixtures. Contact Duke Energy Ohio for additional...

134

Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About UsIndustrial Energy Efficiency AssessmentsJobs

135

Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector: Executive Summary  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About UsIndustrial Energy Efficiency

136

Northwest Save Energy Now Industrial Energy Efficiency Initiative |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced FramingBoost | Department

137

Industrial Energy Efficiency Achieving Success in a Difficult Environment  

E-Print Network [OSTI]

Energy use and the resulting environmental impacts are major points of concern for the world in the 21st century. Opinions that define the challenges of sustainable energy options are as diverse as the proposed solutions. The industrial sector is a...

Castellow, C.

2011-01-01T23:59:59.000Z

138

Asia-Energy Efficiency Guide to Industry | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio Energy CoClimateArtificial

139

Energy Efficiency Improvements and Cost Saving Opportunities in the Corn Wet Milling Industry  

E-Print Network [OSTI]

Corn wet milling is the most energy intensive industry in the food and kindred products group (SIC 20). Plants typically spend approximately $15 to 25 million per year on energy, one of its largest operating costs, making energy efficiency...

Galitsky, C.; Worrell, E.

140

Clean Energy Manufacturing Initiative Industrial Efficiency and Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouthFunding Opportunities

Note: This page contains sample records for the topic "industrial energy efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

ConEd (Electric)- Commercial and Industrial Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Con Edison offers New York Commercial electric customers a rebate program for energy efficient equipment in buildings inside the eligible service area. All equipment must be installed by a...

142

ConEd (Gas)- Commercial and Industrial Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Con Edison offers New York Commercial natural gas customers a rebate program for energy efficient equipment in buildings inside the eligible service area. All equipment must be installed by a...

143

Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice  

SciTech Connect (OSTI)

Industry utilizes very complex systems, consisting of equipment and their human interface, which are organized to meet the production needs of the business. Effective and sustainable energy efficiency programs in an industrial setting require a systems approach to optimize the integrated whole while meeting primary business requirements. Companies that treat energy as a manageable resource and integrate their energy program into their management practices have an organizational context to continually seek opportunities for optimizing their energy use. The purpose of an energy management system standard is to provide guidance for industrial and commercial facilities to integrate energy efficiency into their management practices, including fine-tuning production processes and improving the energy efficiency of industrial systems. The International Organization for Standardization (ISO) has identified energy management as one of its top five priorities for standards development. The new ISO 50001 will establish an international framework for industrial, commercial, or institutional facilities, or entire companies, to manage their energy, including procurement and use. This standard is expected to achieve major, long-term increases in energy efficiency (20percent or more) in industrial, commercial, and institutional facilities and to reduce greenhouse gas (GHG) emissions worldwide.This paper describes the impetus for the international standard, its purpose, scope and significance, and development progress to date. A comparative overview of existing energy management standards is provided, as well as a discussion of capacity-building needs for skilled individuals to assist organizations in adopting the standard. Finally, opportunities and challenges are presented for implementing ISO 50001 in emerging economies and developing countries.

McKane, Aimee; Desai, Deann; Matteini, Marco; Meffert, William; Williams, Robert; Risser, Roland

2009-08-01T23:59:59.000Z

144

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network [OSTI]

and Tools for Best Practices in Industrial Energy Efficiencyand Tools for Best Practices in Industrial Energy EfficiencyEnergy efficiency opportunities identified. BUILDING CAPACITY Tracking and Monitoring Systems established for tracking energy performance and best practices

Worrell, Ernst

2011-01-01T23:59:59.000Z

145

Meaningful Energy Efficiency Performance Metrics for the Process Industries  

E-Print Network [OSTI]

, BPST HP Steam LP Steam PROCESS WORK ESL-IE-09-05-19 Proceedings of the Thirty-First Industrial Energy Technology Conference, New Orleans, LA, May 12-15, 2009 Reforming, Hydro-treating, etc. Examples of process units in gas processing plants...

Kumana, J. D.; Sidhwa, N. R.

146

Lost Opportunities in Industrial Energy Efficiency: New Production Lean Manufacturing and Lean Energy  

E-Print Network [OSTI]

companies regularly increase production by adding additional manufacturing equipment, or increasing operating hours. This approach can add large new energy loads to the electrical grid and gas distribution networks. Alternately, increasing production...Lost Opportunities in Industrial Energy Efficiency: New Production, Lean Manufacturing and Lean Energy John Seryak Gary Epstein Mark D’Antonio Engineer jseryak@ers-inc.com President gepstein@ers-inc.com Vice President mdantonio...

Seryak, J.; Epstein, G.; D'Antonio, M.

2006-01-01T23:59:59.000Z

147

Industrial Energy Conservation by New Process Design and Efficiency Improvements  

E-Print Network [OSTI]

from the Fifth Industrial Energy Technology Conference Volume II, Houston, TX, April 17-20, 1983 Po'.,.lla4 E"*VY Potential Saving, t Totti To,.1 En., " r_-. C0!'1V?11Ional T-ehnotogy PrC)doK:1 __l~~=~1 l~~r;:~ 11:rr:U?Yr) AlumInum Imptovltd Hli...

Kusik, C. L.; Stickles, R. P.; Machacek, R. F.

1983-01-01T23:59:59.000Z

148

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network [OSTI]

company and the Danish Energy Agency. The agreements, whichDanish Energy Authority [1] The Ministry of the Environment [2] and its Environmental Protection Agency [agencies 1. Voluntary Agreements with industry – Danish Energy

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

149

Energy Efficiency Opportunities in the Stone and Asphalt Industry  

E-Print Network [OSTI]

Industries of the Future (DOE-IOF) initiative. In addition to being highly energy intensive, stone crushing currently produces 42% of the total material consumed by weight in the US, which is mainly used as highway aggregates. Based on GDP growth... Symon4-1/2 HP300 061 150 220 270 100 0.50 0.63 270 161 150 220 100% 100% 3/4 proc 220 150 427 703 Daily Energy Consumption Entering Screenhouse 1501 Run Hours per Day 15.5 Daily Production Stage kW kWh/dy Product Tons/dy Model Notes Primary 240 3,000 3...

Moray, S.; Throop, N.; Seryak, J.; Schmidt, C.; Fisher, C.; D'Antonio, M.

2006-01-01T23:59:59.000Z

150

Energy Information Administration - Energy Efficiency, energy...  

U.S. Energy Information Administration (EIA) Indexed Site

Efficiency Energy Efficiency energy consumption savings households, buildings, industry & vehicles The Energy Efficiency Page reflects EIA's information on energy efficiency and...

151

Putting renewables and energy efficiency to work: How many jobs can the clean energy industry generate in the US?  

E-Print Network [OSTI]

Putting renewables and energy efficiency to work: How many jobs can the clean energy industry employment Energy efficiency employment a b s t r a c t An analytical job creation model for the US power energy (RE), energy efficiency (EE), carbon capture and storage (CCS) and nuclear power. The paper

Kammen, Daniel M.

152

Development of a New Extended Motor Product Label for Industrial Energy Efficiency  

E-Print Network [OSTI]

opportunities ESL-IE-14-05-11 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Prescriptive Rebate Programs Provides a rebate for specific products that have been determined to be more efficient... of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Example: Prescriptive Rebates Example: NEMA Premium ® • Label identifies highest efficiency motors • Label is acceptable documentation for efficiency programs...

Rogers, E.; Boteler, R.; Elliot, R. N.

2014-01-01T23:59:59.000Z

153

Lewis County PUD- Commercial and Industrial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

[http://www.lcpud.org/index.html Lewis County PUD] offers rebates for commercial and industrial lighting, as well as industrial process upgrades, on a case-by-case basis. Eligible industrial...

154

Energy Efficiency Programs for Small and Medium Sized Industry  

E-Print Network [OSTI]

.47 0.60 0.73 0.39 16.59 Lumber SIC 24 2.66 2.29 2.9 2.46 7.55 Furniture SIC 25 1.18 1.28 1.20 0.96 18.33 Paper SIC 26 10.84 9.94 12.56 11.91 -9.88 Printing and 0.62 0.73 0.77 0.76 -21.44 Publishing SIC 27 Chemicals SIC 28 9.99 9.51 9.69 10.44 -4....79 0.87 6.16 Related Products SIC 38 Misc. Manufacturing 1.08 1.10 0.93 1.17 -8.10 SIC39 50 ESL-IE-01-05-08 Proceedings from the Twenty-third National Industrial Energy Technology Conference, Houston, TX, May 1-4, 2001 Energy Intensity (Thousand...

Shipley, A. M.; Elliott, R. N.

155

Energy Efficiency Improvement in the Petroleum Refining Industry  

E-Print Network [OSTI]

Manufacturing and Petroleum Refining Industries. Office of1994. Petroleum Refining: Technology and Economics, 3 rdProfile of the U.S. Petroleum Refining Industry, Office of

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

156

India's cement industry: Productivity, energy efficiency and carbon emissions  

SciTech Connect (OSTI)

Historical estimates of productivity growth in India's cement sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Analysis shows that in the twenty year period, 1973 to 1993, productivity in the aluminum sector increased by 0.8% per annum. An econometric analysis reveals that technical progress in India's cement sector has been biased towards the use of energy and capital, while it has been material and labor saving. The increase in productivity was mainly driven by a period of progress between 1983 and 1991 following partial decontrol of the cement sector in 1982. The authors examine the current changes in structure and energy efficiency in the sector. Their analysis shows that the Indian cement sector is moving towards world-best technology, which will result in fewer carbon emissions and more efficient energy use. However, substantial further energy savings and carbon reduction potentials still exist.

Schumacher, Katja; Sathaye, Jayant

1999-07-01T23:59:59.000Z

157

Energy-Efficiency Improvement Opportunities for the Textile Industry  

E-Print Network [OSTI]

consumption. Improving boiler efficiency and capturingrule of thumb is that boiler efficiency can be increased byrecovery. Generally, boiler efficiency can be increased by

Hasanbeigi, Ali

2010-01-01T23:59:59.000Z

158

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

industry is refrigeration, which is used for process cooling, cold storage,Cold Storage Facilities. Proceedings of the 2005 ACEEE Summer Study on Energy Efficiency in Industry,

Masanet, Eric

2008-01-01T23:59:59.000Z

159

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network [OSTI]

saves $200,000 per Year with Energy-Efficient Motors. Copper2000). Emerging Energy-Efficient Industrial Technologies.Council for an Energy-Efficient Economy, Washington, DC,

Neelis, Maarten

2008-01-01T23:59:59.000Z

160

Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011- pg 7  

Broader source: Energy.gov [DOE]

High-risk, high-value research and development focused on energy efficiency that industry would not typically pursue without federal leadership and support by public-private partnership.

Note: This page contains sample records for the topic "industrial energy efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011- pg 3  

Broader source: Energy.gov [DOE]

High-risk, high-value research and development focused on energy efficiency that industry would not typically pursue without federal leadership and support by public-private partnership.

162

Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011- pg 5  

Broader source: Energy.gov [DOE]

High-risk, high-value research and development focused on energy efficiency that industry would not typically pursue without federal leadership and support by public-private partnership.

163

Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.Indiana College Provides TrainingEnergy EfficiencyRecovery

164

ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY  

SciTech Connect (OSTI)

The U.S. pulp and paper industry consumes over $7 billion worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pulp and paper industry to reduce energy consumption in a cost-effective manner. This paper provides a brief overview of the U.S. EPA ENERGY STAR(R) for Industry energy efficiency guidebook (a.k.a. the"Energy Guide") for pulp and paper manufacturers. The Energy Guide discusses a wide range of energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. Also provided is a discussion of the trends, structure, and energy consumption characteristics of the U.S. pulp and paper industry along with a description of the major process technologies used within the industry. Many energy efficiency measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in pulp and paper mills and related industries worldwide. The information in this Energy Guide is intended to help energy and plant managers in the U.S. pulp and paper industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?as well as on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

Kramer, Klaas Jan; Masanet, Eric; Worrell, Ernst

2009-01-01T23:59:59.000Z

165

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

2008-03-01T23:59:59.000Z

166

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

SciTech Connect (OSTI)

The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.

Kermeli, Katerina; Worrell, Ernst; Masanet, Eric

2011-12-01T23:59:59.000Z

167

Steam systems in industry: Energy use and energy efficiency improvement potentials  

SciTech Connect (OSTI)

Steam systems are a part of almost every major industrial process today. Thirty-seven percent of the fossil fuel burned in US industry is burned to produce steam. In this paper we will establish baseline energy consumption for steam systems. Based on a detailed analysis of boiler energy use we estimate current energy use in boilers in U.S. industry at 6.1 Quads (6.4 EJ), emitting almost 66 MtC in CO{sub 2} emissions. We will discuss fuels used and boiler size distribution. We also describe potential savings measures, and estimate the economic energy savings potential in U.S. industry (i.e. having payback period of 3 years or less). We estimate the nationwide economic potential, based on the evaluation of 16 individual measures in steam generation and distribution. The analysis excludes the efficient use of steam and increased heat recovery. Based on the analysis we estimate the economic potential at 18-20% of total boiler energy use, resulting in energy savings approximately 1120-1190 TBtu ( 1180-1260 PJ). This results in a reduction of CO{sub 2} emissions equivalent to 12-13 MtC.

Einstein, Dan; Worrell, Ernst; Khrushch, Marta

2001-07-22T23:59:59.000Z

168

Expanding the Pool of Federal Policy Options to Promote Industrial Energy Efficiency  

SciTech Connect (OSTI)

Improving the energy efficiency of industry is essential for maintaining the viability of domestic manufacturing, especially in a world economy where production is shifting to low-cost, less regulated developing countries. Numerous studies have shown the potential for significant cost-effective energy-savings in U.S. industries, but the realization of this potential is hindered by regulatory, information, workforce, and financial obstacles. This report evaluates seven federal policy options aimed at improving the energy efficiency of industry, grounded in an understanding of industrial decision-making and the barriers to efficiency improvements. Detailed analysis employs the Georgia Institute of Technology's version of the National Energy Modeling System and spreadsheet calculations, generating a series of benefit/cost metrics spanning private and public costs and energy bill savings, as well as air pollution benefits and the social cost of carbon. Two of the policies would address regulatory hurdles (Output-Based Emissions Standards and a federal Energy Portfolio Standard with Combined Heat and Power); three would help to fill information gaps and workforce training needs (the Superior Energy Performance program, Implementation Support Services, and a Small Firm Energy Management program); and two would tackle financial barriers (Tax Lien Financing and Energy-Efficient Industrial Motor Rebates). The social benefit-cost ratios of these policies appear to be highly favorable based on a range of plausible assumptions. Each of the seven policy options has an appropriate federal role, broad applicability across industries, utilizes readily available technologies, and all are administratively feasible.

Brown, Dr. Marilyn Ann [Georgia Institute of Technology] [Georgia Institute of Technology; Cox, Matthew [Georgia Institute of Technology] [Georgia Institute of Technology; Jackson, Roderick K [ORNL] [ORNL; Lapsa, Melissa Voss [ORNL] [ORNL

2011-01-01T23:59:59.000Z

169

Energy-Efficiency Improvement Opportunities for the Textile Industry  

E-Print Network [OSTI]

in electric motors 86 5.6.3.1998. United States Industrial Electric Motor Systems Marketto make sure that the electric motors installed in the ring

Hasanbeigi, Ali

2010-01-01T23:59:59.000Z

170

PPL Electric Utilities- Commercial and Industrial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

PPL Electric Utilities offers rebates and incentives for commercial and industrial products installed in their service area. The program offers rebates for lighting, heat pumps, refrigeration...

171

Advanced, Energy-Efficient Hybrid Membrane System for Industrial...  

Energy Savers [EERE]

(1 slide) Develo Project Objecve Current StateChallenges Heavy industrial water utilization footprint Freshwater Withdrawals in the U.S. by Sector (2005) Domestic...

172

Advanced Nanostructured Molecular Sieves for Energy Efficient Industrial Separations  

SciTech Connect (OSTI)

Due to the very small relative volatility difference between propane and propylene, current propane/propylene separation by distillation requires very tall distillation towers (150-250 theoretical plates) and large reflux ratios (up to 15), which is considered to be the most energy consuming large-scale separation process. Adsorptive separation processes are widely considered to be more energy-efficient alternatives to distillation. However, slow diffusion kinetics/mass transport rate through the adsorbent bed often limits the performance of such processes, so further improvements are possible if intra-particle mass transfer rates can be improved. Rive Technology, Inc. is developing and commercializing its proprietary mesoporous zeolite technology for catalysis and separation. With well-controlled intracrystalline mesoporosity, diffusion kinetics through such mesoporous zeolite based catalysts is much improved relative to conventional zeolites, leading to significantly better product selectivity. This 'proof-of-principle' project (DE-EE0003470) is intended to demonstrate that Rive mesoporous zeolite technology can be extended and applied in adsorptive propane/propylene separation and lead to significant energy saving compared to the current distillation process. In this project, the mesoporous zeolite Y synthesis technology was successfully extended to X and A zeolites that are more relevant to adsorbent applications. Mesoporosity was introduced to zeolite X and A for the first time while maintaining adequate adsorption capacity. Zeolite adsorbents were tested for liquid phase separation performance using a pulse flow test unit and the test results show that the separation selectivity of the mesoporous zeolite adsorbent is much closer to optimal for a Simulated Moving Bed (SMB) separation process and the enhanced mesoporosity lead to >100% increase of overall mass transport rate for propane and propylene. These improvements will significantly improve the performance of an adsorptive separation unit for propane/propylene separation compared with traditional zeolite adsorbents. The enhanced transport will allow for more efficient utilization of a given adsorbent inventory by reducing process cycle time, allowing a faster production rate with a fixed amount of adsorbent or smaller adsorbent inventory at a fixed production rate. Smaller adsorbent inventory would also lead to significant savings in the capital cost due to smaller footprint of the equipment. Energy consumption calculation, based on the pulse test results for rived NaX zeolite adsorbent, of a hypothetical moderate-scale SMB propane/propylene separation plant that processes 6000 BPSD refinery grade propylene (70% propylene) will consume about 60-80% less energy (both re-boiler and condenser duties) compared to a C3 splitter that process the same amount of feed. This energy saving also translates to a reduction of 30,000-35,000 tons of CO2 emission per year at this moderate processing rate. The enhancement of mass transport achievable by introduction of controlled mesoporosity to the zeolite also opens the door for the technology to be applied to several other adsorption separation processes such as the separation of xylene isomers by SMB, small- and large scale production of O2/N2 from air by pressure swing adsorption, the separation of CO2 from natural gas at natural gas wellheads, and the purification of ultra-high purity H2 from the off gas produced by steam-methane-reforming.

Kunhao Li, Michael Beaver

2012-01-18T23:59:59.000Z

173

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

2008-03-01T23:59:59.000Z

174

Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice  

E-Print Network [OSTI]

Comparison of National Energy Management Standards, prepared2007, Industrial Energy Management: Issues Paper, preparedMeeting: Using Energy Management Standards to stimulate

McKane, Aimee

2010-01-01T23:59:59.000Z

175

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network [OSTI]

Total Primary Energy Consumption World US China Californiaprimary energy consumption, compared to the world (39%), theFigure 3. Energy consumption by sector for the world, the

Price, Lynn

2008-01-01T23:59:59.000Z

176

Energy-Efficiency Improvement Opportunities for the Textile Industry  

E-Print Network [OSTI]

Strategic energy management programs ..5.1.1. Strategic energy management programs 5 Changing howelements in a strategic energy management program are shown

Hasanbeigi, Ali

2010-01-01T23:59:59.000Z

177

Overview of the Duke University Bass Connections Program in Industrial Energy Efficiency  

E-Print Network [OSTI]

Overview of the Duke University Bass Connections Program in Industrial Energy Efficiency Gale Boyd, Duke University Presented to the IETC May 21st, 2014 New Orleans, LA ESL-IE-14-05-03 Proceedings of the Thrity-Sixth Industrial Energy Technology... related to the economy, the environment, and security. ESL-IE-14-05-03 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 AY13-14 Project Team List ? The University as an Energy Laboratory: Design...

Boyd, G.

2014-01-01T23:59:59.000Z

178

Electric & Gas Conservation Programs Connecticut Energy Efficiency Fund Programs for Commercial & Industrial Customers  

E-Print Network [OSTI]

1 Electric & Gas Conservation Programs Connecticut Energy Efficiency Fund Programs for Commercial & Industrial Customers Presented by: CL&P?s Conservation and Load Management Department 2 ? Connecticut Energy Efficiency... watts/sq.ft. calculations relative to ASHRAE 90.1-2004 baselines 7 Energy Conscious Blueprint Program ? Provides prescriptive rebates for: ? CT Cool Choice for HVAC Equipment ($ per ton) ? Utility prescriptive caps apply to the following: ? VFDs...

Sermakekian, E.

2011-01-01T23:59:59.000Z

179

Fort Collins Utilities- Commercial and Industrial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Fort Collins provides businesses incentives for new construction projects and existing building retrofits. The Electric Efficiency Program encourages companies to retrofit facilities with new...

180

Development of a performance-based industrial energy efficiency indicator for cement manufacturing plants.  

SciTech Connect (OSTI)

Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing the plant performance with that of similar plants in the same industry. Manufacturing plants can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the cement manufacturing industry to provide a plant-level indicator of energy efficiency for assembly plants that produce a variety of products, including Portland cement and other specialty cement products, in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for cement manufacturing plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

Boyd, G.; Decision and Information Sciences

2006-07-21T23:59:59.000Z

Note: This page contains sample records for the topic "industrial energy efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Bardhan, Ashok; Kroll, Cynthia A.

2011-01-01T23:59:59.000Z

182

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network [OSTI]

40% of annual global primary energy use and is responsible40% of annual global primary energy use and is responsibleindustry’s share of global primary energy (which includes

Price, Lynn

2008-01-01T23:59:59.000Z

183

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network [OSTI]

Total Primary Energy Consumption World US China Californiaenergy consumption, compared to the world (39%), the US (3. Energy consumption by sector for the world, the US, China

Price, Lynn

2008-01-01T23:59:59.000Z

184

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network [OSTI]

reducing energy consumption per unit of GDP by 20% betweena 20% reduction in energy use per unit of GDP by 2010 (Price

Price, Lynn

2008-01-01T23:59:59.000Z

185

Gas Turbines Increase the Energy Efficiency of Industrial Processes  

E-Print Network [OSTI]

clean fuel gas for the gas turbine is produced by gasification of coal, are presented. Waste heat from the gasifier and the gas turbine exhaust is converted to high pressure steam for steam turbines. Gas turbines may find application in other industrial...

Banchik, I. N.; Bohannan, W. R.; Stork, K.; McGovern, L. J.

1981-01-01T23:59:59.000Z

186

Energy efficiency for greenhouse gas emission reduction in China: The case of the cement industry  

SciTech Connect (OSTI)

A project at LBNL has combined two different approaches to investigate changes in efficiency in China`s cement industry, which currently accounts for over 6% of China`s total commercial energy use and over 1% of global carbon emissions. Cement output has doubled over the past five years, and will double again within 15 years. Addressing cement industry carbon emissions will be a key element of any program to control China`s carbon emissions. Macro-level analysis was used to investigate industry-wide trends, and detailed case studies of individual plants illuminated key issues in technology choice that fundamentally affect efficiency. In general, enterprises adopted technologies that increased output and improved quality, and had little regard for energy efficiency, though most new technologies and practices did improve efficiency. Changes in energy prices were a surprisingly weak factor in adoption of efficient technologies. Unexpectedly, many enterprises developed a strong preference for the least fuel-efficient technology, which allows power generation with kiln waste heat. This preference was motivated in a large part by the desire to achieve security in electricity supply, and by some reforms. This alternative has become increasingly popular, and threatens to reverse some progress made in reducing the carbon-intensiveness of China`s cement industry. Foreign technical assistance and more importantly, greater participation in China`s cement industry of foreign cement companies would speed the adoption of large scale very efficient precalciner plants. Paradoxically, improving energy efficiency in China`s cement industry is also a supply-side issue, improved reliability in China`s power network will make the more fuel-efficient alternative more attractive.

Sinton, J. [Lawrence Berkeley National Lab., Berkeley, CA (United States)

1996-12-31T23:59:59.000Z

187

ITP Industrial Distributed Energy: Ultra Efficient Combined Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ultra Efficient Combined Heat, Hydrogen, and Power System A High-Temperature Fuel Cell to Provide On-site Process Reducing Gas, Clean Power, and Heat The project will utilize...

188

Energy Efficiency Improvement Opportunities for the Cement Industry  

E-Print Network [OSTI]

and energy savings per tonne of cement produced are estimated and then carbon dioxide emissionsand energy savings per tonne of cement produced are estimated and then carbon dioxide emissions

Worrell, Ernst

2008-01-01T23:59:59.000Z

189

Energy efficiency opportunities within the powder coating industry - Energy audit and pinch analysis.  

E-Print Network [OSTI]

??The powder coating industries in Sweden use about 525 GWh of energy every year. The need to reduce the energy use is increasing due to… (more)

Bergek, Charlotte

2011-01-01T23:59:59.000Z

190

Industrial Energy-Efficiency Improvement Program. Annual report to the Congress and the President 1979  

SciTech Connect (OSTI)

The industrial energy efficiency improvement program to accelerate market penetration of new and emerging industrial technologies and practices which will improve energy efficiency; encourage substitution of more plentiful domestic fuels; and enhance recovery of energy and materials from industrial waste streams is described. The role of research, development, and demonstration; technology implementation; the reporting program; and progress are covered. Specific reports from the chemicals and allied products; primary metals; petroleum and coal products; stone, clay, and glass, paper and allied products; food and kindred products; fabricated metals; transportation equipment; machinery (except electrical); textile mill products; rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products are discussed. Additional data from voluntary submissions, a summary on progress in the utilization of recovered materials, and an analysis of industrial fuel mix are briefly presented. (MCW)

Not Available

1980-12-01T23:59:59.000Z

191

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

perpetuate less energy efficient designs. When a companytips for the energy efficient design of new labs andEnergy Guide. Energy efficient system design. The greatest

Galitsky, Christina

2008-01-01T23:59:59.000Z

192

DOE Announces First Companies to Receive Industrial Energy Efficiency...  

Broader source: Energy.gov (indexed) [DOE]

to help make it possible for companies to conform to the upcoming International Organization for Standardization (ISO) 50001 energy management system standard. ISO, the world's...

193

DOE Recognizes Midwest Industrial Efficiency Leaders | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department of Energy Secretary Steven Chu today

194

DOE Selects 26 Universities to Assess Industrial Energy Efficiency |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department ofThe U.S. Department of Energy awardsDepartment

195

Tax and Fiscal Policies for Promotion of Industrial EnergyEfficiency: A Survey of International Experience  

SciTech Connect (OSTI)

The Energy Foundation's China Sustainable Energy Program (CSEP) has undertaken a major project investigating fiscal and tax policy options for stimulating energy efficiency and renewable energy development in China. This report, which is part of the sectoral sub-project studies on energy efficiency in industry, surveys international experience with tax and fiscal policies directed toward increasing investments in energy efficiency in the industrial sector. The report begins with an overview of tax and fiscal policies, including descriptions and evaluations of programs that use energy or energy-related carbon dioxide (CO2) taxes, pollution levies, public benefit charges, grants or subsidies, subsidized audits, loans, tax relief for specific technologies, and tax relief as part of an energy or greenhouse gas (GHG) emission tax or agreement scheme. Following the discussion of these individual policies, the report reviews experience with integrated programs found in two countries as well as with GHG emissions trading programs. The report concludes with a discussion of the best practices related to international experience with tax and fiscal policies to encourage investment in energy efficiency in industry.

Price, Lynn; Galitsky, Christina; Sinton, Jonathan; Worrell,Ernst; Graus, Wina

2005-09-15T23:59:59.000Z

196

Energy-Efficiency Technologies and Benchmarking the Energy Intensity for the Textile Industry  

E-Print Network [OSTI]

Energy-Efficiency Technologies and Benchmarking the EnergyEnvironmental Energy Technologies Division Lawrence BerkeleyIsfahan University of Technology Mohamad Abdolrazaghi,

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

197

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network [OSTI]

11) HVAC systems Energy-efficient system design EfficientHVAC Systems Energy-efficient system design. The greatestdesign teams for energy-efficient building design. Financial

Brush, Adrian

2012-01-01T23:59:59.000Z

198

Implementing an Industrial Energy Efficiency Program in Minnesota |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment of EnergyDepartment of Energy Map

199

Tuesday Webcast for Industry: Regional Energy Efficiency Programs  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7Department ofDepartment ofEngagingWebcast

200

CEMI Industrial Efficiency (text version) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

still give a good return. If I'm a manufacturer of clothing or I'm a manufacturer of plastic products, I may or may not have energy connected to what I do, but everything I do,...

Note: This page contains sample records for the topic "industrial energy efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

E-Print Network [OSTI]

Energy efficiency integrated into organizational culture. ofuse and organizational goals for energy efficiency. Staff

Kermeli, Katerina

2013-01-01T23:59:59.000Z

202

DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThirdPartnership | Department of

203

DOE Announces First Companies to Receive Industrial Energy Efficiency  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThirdPartnership | DepartmentDemonstrationFinal

204

Policies and Measures to Realise Industrial Energy Efficiency and Mitigate  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power Inc Jump to:Venture, Texas: EnergyPolema JSC Jump

205

Certifying Industrial Energy Efficiency Performance: AligningManagement, Measurement, and Practice to Create Market Value  

SciTech Connect (OSTI)

More than fifteen years after the launch of programs in theU.K. and U.S., industry still offers one of the largest opportunities forenergy savings worldwide. The International Energy Agency (IEA) estimatesthe savings potential from cost-optimization of industrial motor-drivensystems alone at 7 percent of global electricity use. The U.S. Departmentof Energy (USDOE) Industrial Technologies Program estimates 7 percentsavings potential in total US industrial energy use through theapplication of proven best practice. Simple paybacks for these types ofprojects are frequently two years or less. The technology required toachieve these savings is widely available; the technical skills requiredto identify energy saving opportunities are known and transferable.Although programs like USDOE's Best Practices have been highlysuccessful, most plants, as supported by 2002 MECS data, remain eitherunaware or unmotivated to improve their energy efficiency--as evidencedby the 98 percent of US industrial facilities reporting to MECS say thatthey lack a full-time energy manager. With the renewed interest in energyefficiency worldwide and the emergence of carbon trading and newfinancial instruments such as white certificates1, there is a need tointroduce greater transparency into the way that industrial facilitiesidentify, develop, and document energy efficiency projects. Historically,industrial energy efficiency projects have been developed by plantengineers, frequently with assistance from consultants and/or supplierswith highly specialized technical skills. Under this scenario,implementation of energy efficiency improvements is dependent onindividuals. These individuals typically include "champions" within anindustrial facility or corporation, working in cooperation withconsultants or suppliers who have substantial knowledge based on years ofexperience. This approach is not easily understood by others without thisspecialized technical knowledge, penetrates the market fairly slowly, andhas no assurance of persistence, since champions may leave the company orbe reassigned after project completion.This paper presents an alternatescenario that builds on the body of expert knowledge concerning energymanagement best practices and the experience of industrial champions toengage industry in continuous energy efficiency improvement at thefacility rather than the individual level. Under this scenario,standardized methodologies for applying and validating energy managementbest practices in industrial facilities will be developed through aconsensus process involving both plant personnel and specializedconsultants and suppliers. The resulting protocols will describe aprocess or framework for conducting an energy savings assessment andverifying the results that will be transparent to policymakers, managers,and the financial community, and validated by a third-party organization.Additionally, a global dialogue is being initiated by the United NationsIndustrial Development Organization (UNIDO) concerning the development ofan international industrial energy management standard that would be ISOcompatible. The proposed scenario will combine the resulting standardwith the best practice protocols for specific energy systems (i.e.,steam, process heating, compressed air, pumping systems, etc.) to formthe foundation of a third party, performance-based certification programfor the overall industrial facility that is compatible with existingmanagement systems, including ISO 9001:2000, 14001:2004 and 6 Sigma. Thelong term goal of this voluntary, industry designed certification programis to develop a transparent, globally accepted system for validatingenergy efficiency projects and management practices. This system wouldcreate a verified record of energy savings with potential market valuethat could be recognized among sectors and countries.

McKane, Aimee; Scheihing, Paul; Williams, Robert

2007-07-01T23:59:59.000Z

206

Development of a performance-based industrial energy efficiency indicator for corn refining plants.  

SciTech Connect (OSTI)

Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing their plant's performance with that of similar plants in the same industry. Manufacturing facilities can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the corn refining industry to provide a plant-level indicator of energy efficiency for facilities that produce a variety of products--including corn starch, corn oil, animal feed, corn sweeteners, and ethanol--for the paper, food, beverage, and other industries in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for corn refining plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

Boyd, G. A.; Decision and Information Sciences; USEPA

2006-07-31T23:59:59.000Z

207

India-International Industrial Energy Efficiency Deployment Project | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany:Information IDSDloomis's pictureThroughEnergy

208

China-International Industrial Energy Efficiency Deployment Project | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuoCatalystPathways Calculator JumpforPFAN)Energy

209

Energy Smart- Commercial and Industrial Energy Efficiency Rebate Program (20 Municipalities)  

Broader source: Energy.gov [DOE]

Franklin Energy Services has partnered with the Michigan Public Power Agency (MPPA), which is made up of 20 municipal utilities, to offer the Energy Smart Commercial and Industrial Energy...

210

Industrial Customer Perspectives on Utility Energy Efficiency Programs |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofTheDepartment of2012Pathways

211

Industrial Energy Efficiency Projects Improve Competitiveness and Protect  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofTheDepartment of2012PathwaysJobs | Department of

212

Industrial Energy Efficiency: Designing Effective State Programs for the  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofTheDepartment of2012PathwaysJobs | Department

213

AEP SWEPCO - Commercial and Industrial Energy Efficiency Rebate Programs |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office of FossilMembership |92011PolicyDepartment(Ohio) |MaximumProgram

214

Energy Efficiency Program for Certain Commercial and Industrial Equipment |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessin Jamaica, N.Y. |Technologies onDepartment of

215

Department of Energy Lauds Highly Efficient Industrial Technology |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealing WithDevelopment of NewImplementsandAmerica 2011

216

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Council for an Energy-Efficient Economy, Washington, D.C.American Council for Energy Efficient Economy, WashingtonAmerican Council for an Energy Efficient Economy Proceedings

Worrell, Ernst

2008-01-01T23:59:59.000Z

217

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Energy efficiency integrated into organizational culture.use and organizational goals for energy efficiency. Stafforganizational commitment to continuous improvement of energy efficiency.

Worrell, Ernst

2008-01-01T23:59:59.000Z

218

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Best Practices. Case Study–The Challenge: Improving Ventilation System Energy EfficiencyEnergy Efficiency & Renewable Energy (EERE), Office of Industrial Technologies. 2000. Best PracticesEnergy Efficiency Actions for Plant Personnel96   iii Appendix D: Assessing Energy Management Systems for Best Practices .

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

219

FirstEnergy (West Penn Power)- Commercial and Industrial Energy Efficiency Rebate Program (Pennsylvania)  

Broader source: Energy.gov [DOE]

FirstEnergy (West Penn Power) offers various rebates to eligible commercial, industrial, non-profit, local government and institutional customers in Pennsylvania service territory who upgrade to...

220

A Review of Energy Use and Energy Efficiency Technologies for the Textile Industry  

E-Print Network [OSTI]

s Office of Industrial Technology and Oak Ridge NationalGunnar Hovstadius of ITT Fluid Technology Corporation. 2002.of Demonstrated Energy Technologies (CADDET), Sittard, the

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial energy efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice  

E-Print Network [OSTI]

regarding energy efficiency; • Limited awareness of theof awareness and the corresponding failure to manage energyawareness within the corporate management culture of the potential for energy

McKane, Aimee

2010-01-01T23:59:59.000Z

222

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Oversized and Underloaded Electric Motor. Office of EnergyUnited States Industrial Electric Motor Systems Marketthe NEMA Premium Efficiency Electric Motor specification was

Galitsky, Christina

2008-01-01T23:59:59.000Z

223

Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry  

E-Print Network [OSTI]

The Diffusion of Energy Efficiency in Building. ” Americanlevel of energy efficiency in new buildings. Furthermore, asIncorporating Energy Efficiency into Commercial Buildings—

Bardhan, Ashok; Kroll, Cynthia A.

2011-01-01T23:59:59.000Z

224

Opportunities for Energy Efficiency and Demand Response in the California Cement Industry  

E-Print Network [OSTI]

Opportunities for Energy  Efficiency and Demand Response in Agricultural/Water End?Use Energy Efficiency Program.    i 1   4.0   Energy Efficiency and Demand Response 

Olsen, Daniel

2012-01-01T23:59:59.000Z

225

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

E-Print Network [OSTI]

Employ an energy-efficient system design. For HVAC systemsHVAC Systems Energy-efficient system design Recommissioningdesign teams for energy-efficient building design. Financial

Kermeli, Katerina

2013-01-01T23:59:59.000Z

226

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network [OSTI]

Raising Awareness Awareness of energy efficiency createdCommunications Awareness of energy efficiency createdbasis Raise awareness No promotion of energy efficiency

Brush, Adrian

2012-01-01T23:59:59.000Z

227

Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry  

E-Print Network [OSTI]

the larger diffusion of green and energy efficient buildingsowners, the costs of green and energy efficient buildings,market. Demand for Green and Energy Efficient Buildings The

Bardhan, Ashok; Kroll, Cynthia A.

2011-01-01T23:59:59.000Z

228

Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China  

E-Print Network [OSTI]

UNFCCC), 2007 b. Energy efficiency measures at cementUNFCCC), 2007 c. Energy efficiency measures at cementBanerjee, R. , 2005. Energy Efficiency and Demand Side

Price, Lynn

2010-01-01T23:59:59.000Z

229

Certifying Industrial Energy Efficiency Performance: Aligning Management, Measurement, and Practice to Create Market Value  

E-Print Network [OSTI]

knowledge concerning energy management best practices andapplying and validating energy management best practices inan international industrial energy management standard that

McKane, Aimee; Scheihing, Paul; Williams, Robert

2008-01-01T23:59:59.000Z

230

The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry  

E-Print Network [OSTI]

technologies Conventional ammonia-based refrigeration systems Production growth through 2020 1%/year Specific energy consumption of base technologies (delivered) 0.008 kWh/lb. (electricity) Regional weighted average fossil fuel intensity of electricity... consumption and improve productivity by increasing the energy efficiency of industrial processes and systems. Therefore, the adoption of such technologies is important because they enable manufacturing plants to become both more competitive and productive...

Lung, R. B.; Masanet, E.; McKane, A.

2006-01-01T23:59:59.000Z

231

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

use and organizational goals for energy efficiency. Stafforganizational commitment to continuous improvement of energy efficiency.efficiency project, limited finances, poor accountability for measures, or organizational

Galitsky, Christina

2008-01-01T23:59:59.000Z

232

Energy Efficient Industrialized Housing Research Program, Center for Housing Innovation, University of Oregon and the Florida Solar Energy Center  

SciTech Connect (OSTI)

This research program addresses the need to increase the energy efficiency of industrialized housing. Two research centers have responsibility for the program: the Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. The two organizations provide complementary architectural, systems engineering, and industrial engineering capabilities. In 1989 we worked on these tasks: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. The current research program, under the guidance of a steering committee composed of industry and government representatives, focuses on three interdependent concerns -- (1) energy, (2) industrial process, and (3) housing design. Building homes in a factory offers the opportunity to increase energy efficiency through the use of new materials and processes, and to increase the value of these homes by improving the quality of their construction. Housing design strives to ensure that these technically advanced homes are marketable and will meet the needs of the people who will live in them.

Brown, G.Z.

1990-01-01T23:59:59.000Z

233

Opportunities to improve energy efficiency in the U.S. pulp and paper industry  

SciTech Connect (OSTI)

This paper analyzes the energy efficiency and carbon dioxide emissions reductions potential of the U.S. pulp and paper industry, one of the largest energy users in the U.S. manufacturing sector. We examined over 45 commercially available state-of-the-art technologies and measures. The measures were characterized, and then ordered on the basis of cost-effectiveness. The report indicates that there still exists significant potential for energy savings and carbon dioxide emissions reduction in this industry. The cost-effective potential for energy efficiency improvement is defined as having a simple pay-back period of three years or less. Not including increased recycling the study identifies a cost-effective savings potential of 16% of the primary energy use in 1994. Including increased recycling leads to a higher potential for energy savings, i.e. a range of cost-effective savings between 16% and 24% of primary energy use. Future work is needed to further elaborate on key energy efficiency measures identified in the report including barriers and opportunities for increased recycling of waste paper.

Worrell, Ernst; Martin, Nathan; Anglani, Norma; Einstein, Dan; Krushch, Marta; Price, Lynn

2001-02-02T23:59:59.000Z

234

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Raising Awareness Awareness of energy efficiency createdExternal Recognition Awareness of energy efficiency createdout energy audits, improving motivation and awareness in all

Worrell, Ernst

2008-01-01T23:59:59.000Z

235

Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry  

E-Print Network [OSTI]

decision to adopt energy efficient design, as well as theenergy efficient and sustainable technologies and designs.investing in green design or energy efficient technologies?

Bardhan, Ashok; Kroll, Cynthia A.

2011-01-01T23:59:59.000Z

236

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network [OSTI]

in flue gas oxygen, boiler efficiency is increased by 2.5% (40 Boiler Energy EfficiencyChapter 13. 7.1 Boiler Energy Efficiency Measures The boiler

Brush, Adrian

2012-01-01T23:59:59.000Z

237

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network [OSTI]

use and organizational goals for energy efficiency. StaffEnergy efficiency integrated into organizational culture.efficiency typically only occur when a strong organizational

Brush, Adrian

2012-01-01T23:59:59.000Z

238

Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California  

SciTech Connect (OSTI)

This report summarizes the Lawrence Berkeley National Laboratory's research to date in characterizing energy efficiency and open automated demand response opportunities for industrial refrigerated warehouses in California. The report describes refrigerated warehouses characteristics, energy use and demand, and control systems. It also discusses energy efficiency and open automated demand response opportunities and provides analysis results from three demand response studies. In addition, several energy efficiency, load management, and demand response case studies are provided for refrigerated warehouses. This study shows that refrigerated warehouses can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for open automated demand response (OpenADR) at little additional cost. These improved controls may prepare facilities to be more receptive to OpenADR due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

Lekov, Alex; Thompson, Lisa; McKane, Aimee; Rockoff, Alexandra; Piette, Mary Ann

2009-05-11T23:59:59.000Z

239

Ontario’s Protocols for Evaluating the Energy and Bill Savings from Industrial Energy Efficiency Programs  

E-Print Network [OSTI]

. This paper focuses on how the protocols will help provide more transparent information to building owners about the net savings achieved by a particular energy efficiency investment and reviews the best methods available to estimate both gross and net energy...

Messenger, M.

2007-01-01T23:59:59.000Z

240

FirstEnergy (MetEdison, Penelec, Penn Power)- Commercial and Industrial Energy Efficiency Program  

Broader source: Energy.gov [DOE]

In order to help meet the goals established in Pennsylvania's Act 129, FirstEnergy's Pennsylvania companies (MetEdison, Penelec, and Penn Power) are providing energy efficiency incentives for a...

Note: This page contains sample records for the topic "industrial energy efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Energy efficiency and carbon dioxide emissions reduction opportunities in the U.S. cement industry  

SciTech Connect (OSTI)

This paper reports on an in-depth analysis of the U.S. cement industry, identifying cost-effective energy efficiency measures and potentials. The authors assess this industry at the aggregate level (Standard Industrial Classification 324), which includes establishments engaged in manufacturing hydraulic cements, including Portland, natural, masonry, and pozzolana when reviewing industry trends and when making international comparisons. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Between 1970 and 1997, primary physical energy intensity for cement production (SIC 324) dropped 30%,from 7.9 GJ/t to 5.6 GJ/t, while carbon dioxide intensity due to fuel consumption (carbon dioxide emissions expressed in tons of carbon per ton cement) dropped 25%, from 0.16 tC/ton to 0.12 tC/ton. Carbon dioxide intensity due to fuel consumption and clinker calcination dropped 17%, from 0.29 tC/ton to 0.24 tC/ton. They examined 30 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. They constructed an energy conservation supply curve for U.S. cement industry which found a total cost-effective reduction of 0.6 GJ/ton of cement consisting of measures having a simple payback period of 3 years or less. This is equivalent to potential energy savings of 11% of 1994 energy use for cement making and a savings of 5% of total 1994 carbon dioxide emissions by the U.S. cement industry. Assuming the increased production of blended cement in the U.S., as is common in many parts of the world, the technical potential for energy efficiency improvement would not change considerably. However, the cost-effective potential, would increase to 1.1 GJ/ton cement or 18% of total energy use, and carbon dioxide emissions would be reduced by 16%.

Martin, Nathan; Worrell, Ernst; Price, Lynn

1999-08-01T23:59:59.000Z

242

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

actions, develop an energy management plan for business; and38. Caffal, C. (1995). Energy Management in Industry. Centre2005a). Guidelines for Energy Management. United States

Worrell, Ernst

2008-01-01T23:59:59.000Z

243

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

2005). Guidelines for Energy Management. Washington, D.C.Caffal, C. (1995). Energy Management in Industry. Centre forfor improving your energy management practices. Resources

Galitsky, Christina

2008-01-01T23:59:59.000Z

244

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

O&M Best Practices for Energy-Efficient Buildings. PreparedGenentech, Vacaville: New Energy Efficient Site. Oakland,200,000 per Year with Energy-Efficient Motors. New York, New

Galitsky, Christina

2008-01-01T23:59:59.000Z

245

Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China  

E-Print Network [OSTI]

and MAIN, 1993. Energy Technology in the Cement Industrialof Demonstrated Energy Technologies (CADDET), Internationaland MAIN. 1993. Energy Technology in the Cement Industrial

Price, Lynn

2010-01-01T23:59:59.000Z

246

Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China  

E-Print Network [OSTI]

of Demonstrated Energy Technologies (CADDET), Internationaland MAIN. 1993. Energy Technology in the Cement IndustrialAugust 19, 2009. Energy Technology Support Unit (ETSU).

Price, Lynn

2010-01-01T23:59:59.000Z

247

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network [OSTI]

Council for an Energy-Efficient Economy, Washington, D.C. BCCouncil for an Energy-Efficient Economy, Washington, D.C.Council for an Energy-Efficient Economy, Washington, D.C.

Brush, Adrian

2012-01-01T23:59:59.000Z

248

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

E-Print Network [OSTI]

are realized when the boiler efficiency is improved, and the43 5.6.1 Boiler energy efficiencysystems. 5.6.1 Boiler energy efficiency measures The boiler

Kermeli, Katerina

2013-01-01T23:59:59.000Z

249

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Cement Industry  

E-Print Network [OSTI]

Energy Efficiency Technologies in Integrated AssessmentEnergy Efficiency Technologies in Integrated Assessmentto Look Ahead (CSI/ECRA-Technology Papers). Ghosh, S. N. (

Morrow III, William R.

2014-01-01T23:59:59.000Z

250

Energy Efficiency Fund  

Broader source: Energy.gov [DOE]

Connecticut's original electric-industry restructuring legislation (Public Act 98-28), enacted in April 1998, created separate funds to support energy efficiency and renewable energy.* The...

251

Otter Tail Power Company- Commercial and Industrial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Otter Tail Power Company Rebate Program offers rebates to qualifying commercial, industrial, and agricultural customers for the installation of high-efficiency equipment upgrades. See the program...

252

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

2010-10-21T23:59:59.000Z

253

Crossing the Valley of Death: Policy Options to Advance the Uptake of Energy-Efficient Emerging Technologies in US Industry  

E-Print Network [OSTI]

and health of American manufacturers. This paper examines the market conditions and policy measures that affect the commercialization and adoption rate of promising, new energy-efficient industrial technologies. Market maturity, macroeconomic health, public...

Harris, J.; Bostrom, P.; Lung, R. B.

2011-01-01T23:59:59.000Z

254

Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies  

SciTech Connect (OSTI)

Stimulated by public demand and state and federal legislation, industry has begun to develop bio- and photo- degradable plastics. so far, however, none of these degradable plastics meets all of the criteria for success - adequate physical and mechanical properties for the desired use, cost-effectiveness, and 100% degradability. Polylactic acid (PLA) plastic is one degradable plastic that shows promise. It has the desired properties and is 100% degradable. However, PLA plastic made by conventional techniques is not cost effective. Made from lactic acid, which is typically made form petroleum using a very costly synthesis process. Lactic acid can also be made from carbohydrates (starches), found in food processing wastes such as potato wastes, cheese whey, and sorghum. Conversion of starch to simple sugars, and fermentation of these sugars can produce lactic acid.

Not Available

1992-07-01T23:59:59.000Z

255

Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California  

E-Print Network [OSTI]

Best Practices Guide. Walla Walla, WA, Cascade Energy Engineering, Inc. , Northwest Energy EfficiencyBest Practices Guide. Walla Walla, WA, Cascade Energy Engineering, Inc. , Northwest Energy EfficiencyBest Practices Guide. Walla Walla, WA, Cascade Energy Engineering, Inc. , Northwest Energy Efficiency

Lekov, Alex

2009-01-01T23:59:59.000Z

256

Barron Electric Cooperative- Commercial, Industrial, and Agricultural Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Barron Electric Cooperative (BEC) offers the Customized Energy Incentive Program for their commercial, industrial, and agricultural members to save energy by replacing old equipment with more...

257

Analysis of Energy-Efficiency Opportunities for the Pulp and Paper Industry in China  

E-Print Network [OSTI]

and Emission Reduction Technologies. Food and AgriculturalIEA). 2009. Energy Technology Transitions for Industry -IEA). 2010. Energy Technology Perspectives - Scenarios and

Kong, Lingbo

2014-01-01T23:59:59.000Z

258

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network [OSTI]

Biomass Gasification Technologies for Fuels, Chemicals andEnergy, National Energy Technology Laboratory. CO ? Solution01GO10621. Industrial Technologies Progarm (ITP). 2006e.

Kong, Lingbo

2014-01-01T23:59:59.000Z

259

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

E-Print Network [OSTI]

Best Practices, Case Study. Office of Energy Efficiency andBest Practices, A guide to Achieving Operational Efficiency, release 3.0. Office of Energy EfficiencyEnergy efficiency opportunities identified. BUILDING CAPACITY Tracking Monitoring and Systems established for tracking energy performance and best practices

Kermeli, Katerina

2013-01-01T23:59:59.000Z

260

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

NEMA Premium ® Efficiency Electric Motor specification wasUnderloaded Electric Motor. Office of Energy Efficiency andElectric Apparatus Service Association (EASA) (2003). The Effect of Repair/Rewinding on Motor Efficiency.

Galitsky, Christina

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial energy efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

NEMA Premium ® Efficiency Electric Motor specification wasUnderloaded Electric Motor. Office of Energy Efficiency andElectric Apparatus Service Association (EASA) (2003). The Effect of Repair/Rewinding on Motor Efficiency.

Worrell, Ernst

2008-01-01T23:59:59.000Z

262

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

often used is that boiler efficiency can be increased by 1%gas by 1% increases boiler efficiency by 2.5%, although this2001a). Boilers and Heaters, Improving Energy Efficiency.

Worrell, Ernst

2008-01-01T23:59:59.000Z

263

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Oversized and Underloaded Electric Motor. Office of EnergyOptimization Electric Motor System at a Corporate CampusUnited States Industrial Electric Motor Systems Market

Galitsky, Christina

2008-01-01T23:59:59.000Z

264

Overview: EPRI's Program for Process Industry Energy Efficiency and Environmental Improvement  

E-Print Network [OSTI]

Faced with increased energy and labor costs and the expense of complying with stricter environmental regulations, many U.S industries have been unable to compete effectively with lower-cost foreign imports. As these industries lose market shares...

Amarnath, A.

265

Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China  

SciTech Connect (OSTI)

China's cement industry, which produced 1,388 million metric tons (Mt) of cement in 2008, accounts for almost half of the world's total cement production. Nearly 40% of China's cement production is from relatively obsolete vertical shaft kiln (VSK) cement plants, with the remainder from more modern rotary kiln cement plants, including plants equipped with new suspension pre-heater and pre-calciner (NSP) kilns. Shandong Province is the largest cement-producing Province in China, producing 10% of China's total cement output in 2008. This report documents an analysis of the potential to improve the energy efficiency of NSP kiln cement plants in Shandong Province. Sixteen NSP kiln cement plants were surveyed regarding their cement production, energy consumption, and current adoption of 34 energy-efficient technologies and measures. Plant energy use was compared to both domestic (Chinese) and international best practice using the Benchmarking and Energy Saving Tool for Cement (BEST-Cement). This benchmarking exercise indicated an average technical potential primary energy savings of 12% would be possible if the surveyed plants operated at domestic best practice levels in terms of energy use per ton of cement produced. Average technical potential primary energy savings of 23% would be realized if the plants operated at international best practice levels. Energy conservation supply curves for both fuel and electricity savings were then constructed for the 16 surveyed plants. Using the bottom-up electricity conservation supply curve model, the cost-effective electricity efficiency potential for the studied cement plants in 2008 is estimated to be 373 gigawatt hours (GWh), which accounts for 16% of total electricity use in the 16 surveyed cement plants in 2008. Total technical electricity-saving potential is 915 GWh, which accounts for 40% of total electricity use in the studied plants in 2008. The fuel conservation supply curve model shows the total technical fuel efficiency potential equal to 7,949 terajoules (TJ), accounting for 8% of total fuel used in the studied cement plants in 2008. All the fuel efficiency potential is shown to be cost effective. Carbon dioxide (CO{sub 2}) emission reduction potential associated with cost-effective electricity saving is 383 kiloton (kt) CO{sub 2}, while total technical potential for CO{sub 2} emission reduction from electricity-saving is 940 ktCO{sub 2}. The CO{sub 2} emission reduction potentials associated with fuel-saving potentials is 950 ktCO{sub 2}.

Price, Lynn; Hasanbeigi, Ali; Lu, Hongyou; Wang, Lan

2009-10-01T23:59:59.000Z

266

Energy Efficiency Improvement by Measurement and Control: A Case Study of Reheating Furnaces in the Steel Industry  

E-Print Network [OSTI]

ENERGY EFFICIENCY IMPROVEMENT BY MEASUREMENT AND CONTROL A case study of reheating furnaces in the steel industry Anders Mlirtensson Department of Environmental and Energy Systems Studies Lund University S-22362 Lund Sweden ABSTRACT... of process studied, as a result of approach using steel reheating furnaces as a case study. investments in information technology; it is also concluded that The steel industry is a large user of energy: in Sweden it used such investments are cost...

Martensson, A.

267

Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry  

E-Print Network [OSTI]

DITR). 2003. Energy Efficiency Best Practice Case Study:Energy efficiency opportunities identified. BUILDING CAPACITY Tracking and Monitoring Systems established for tracking energy performance and best practicesenergy efficiency improvements. As part of the facility assessment, the energy team should also look for best practices

Masanet, Eric

2014-01-01T23:59:59.000Z

268

California’s Industrial Energy Efficiency Best Practices Technical Outreach and Training Program  

E-Print Network [OSTI]

This paper describes the California Energy Commission’s (Commission) energy policies and programs that save energy and money for California’s manufacturing and food processing industries to help retain businesses in-state and reduce greenhouse gases...

Kazama, D. B.; Wong, T.; Wang, J.

2007-01-01T23:59:59.000Z

269

India's iron and steel industry: Productivity, energy efficiency and carbon emissions  

SciTech Connect (OSTI)

Historical estimates of productivity growth in India's iron and steel sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both growth accounting and econometric estimates of productivity growth for this sector. Their results show that over the observed period from 1973--74 to 1993--94 productivity declined by 1.71{percent} as indicated by the Translog index. Calculations of the Kendrick and Solow indices support this finding. Using a translog specification the econometric analysis reveals that technical progress in India's iron and steel sector has been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protective policy regarding price and distribution of iron and steel as well as by large inefficiencies in public sector integrated steel plants. Will these trends continue into the future, particularly where energy use is concerned? Most likely they will not. The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with the liberalization of the iron and steel sector, the industry is rapidly moving towards world-best technology, which will result in fewer carbon emissions and more efficient energy use in existing and future plants.

Schumacher, Katja; Sathaye, Jayant

1998-10-01T23:59:59.000Z

270

Public/private sector cooperation to promote industrial energy efficiency: Allied partners and the US Department of Energy  

SciTech Connect (OSTI)

Since 1996, the US Department of Energy's Office of Industrial Technologies (USDOE) has been involved in a unique voluntary collaboration with industry called the Allied Partner program. Initially developed under the Motor Challenge program, the partnership concept continues as a central element of USDOE's BestPractices, which in 2001 integrated all of USDOE's near-term industrial program offerings including those in motors, compressed air, pump, fan, process heating and steam systems. Partnerships are sought with end use industrial companies as well as equipment suppliers and manufacturers, utilities, consultants, and state agencies that have extensive existing relationships with industrial customers. Partners are neither paid nor charged a fee for participation. Since the inception of Allied Partners, the assumption has been that these relationships could serve as the foundation for conveying a system energy-efficiency message to many more industrial facilities than could be reached through a typical government-to-end-user program model. An independent evaluation of the Motor Challenge program, reported at the last EEMODS conference, attributed US $16.9 million or nearly 67 percent of the total annual program energy savings to the efforts of Allied Partners in the first three years of operation. A recent evaluation of the Compressed Air Challenger, which grew out of the former Motor Challenger program, attribute additional energy savings from compressed air training alone at US $12.1 million per year. Since the reorganization under BestPractices, the Allied Partner program has been reshaped to extend the impact of all BestPractices program activities. This new model is more ambitious than the former Motor Challenge program concerning the level of collaborative activities negotiated with Allied Partners. This paper describes in detail two new types of program initiatives involving Allied Partners: Qualified Specialist Training and Energy Events. The Qualified Specialist activity was conceived as a way of engaging the supply side of industry, consultants, and utilities to greatly increase use of decision making software developed by USDOE to assist industrial facilities in assessing the energy efficiency of their energy-using systems. To date, USDOE has launched Qualified Specialist training with member companies of the Hydraulic Institute (HI) and with distributors and consultants associated with the Compressed Air Challenge. These activities train and qualify industry professionals to use and to train customers to use USDOE's Pumping System Assessment Tool (PSAT) and AIRMaster + software programs, respectively. The industry experts provide a public benefit by greatly increasing customer access to the software and assessment techniques. Participating Specialists anticipate a business benefit by providing a valuable service to key customers that is associated with USDOE. The Energy Event concept was developed in 2001 in cooperation with the California Energy Commission in response to the state's energy crisis and has been extended to other geographic areas during 2002. The three California events, named ''Energy Solutions for California Industry,'' relied on Allied Partners to provide system-based solutions to industrial companies as both speakers and exhibitors. These one-day events developed a model for a serious solutions-oriented format that avoids the typical trade show atmosphere through strict exhibitor guidelines, careful screening of speaker topics, and reliance on case studies to illustrate cost- and energy-saving opportunities from applying a systems approach. Future plans to use this activity model are discussed as well as lessons learned from the California series.

McKane, Aimee; Cockrill, Chris; Tutterow, Vestal; Radspieler, Anthony

2003-05-18T23:59:59.000Z

271

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network [OSTI]

NEMA Premium® Efficiency Electric Motor specification wasUnderloaded Electric Motor. Office of Energy Efficiency andElectric Apparatus Service Association (EASA) (2003). The Effect of Repair/Rewinding on Motor Efficiency.

Brush, Adrian

2012-01-01T23:59:59.000Z

272

Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry  

E-Print Network [OSTI]

Green’ with FCC Expander Technology,” Chemical EngineeringCONCAWE 2008, “Refinery Technology Support Group, Impact ofEnergy, Industrial Technologies Program, Nov. 2007.

Morrow III, William R.

2014-01-01T23:59:59.000Z

273

Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China  

E-Print Network [OSTI]

Energy-efficiency standards for electric motors in Brazilianefficiency motors are included since there are around 500 – 700 electric

Price, Lynn

2010-01-01T23:59:59.000Z

274

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

Neelis, Maarten; Worrell, Ernst; Masanet, Eric

2008-09-01T23:59:59.000Z

275

Great River Energy (28 Member Cooperatives)- Commercial and Industrial Efficiency Rebates  

Broader source: Energy.gov [DOE]

Great River Energy, a generation and transmission cooperative which serves 28 electric distribution cooperatives in Minnesota, offers rebates for the installation of certain energy efficiency...

276

Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China  

E-Print Network [OSTI]

report documents an analysis of the potential to improve the energy efficiencyreport documents an analysis of the potential to improve the energy efficiency

Price, Lynn

2010-01-01T23:59:59.000Z

277

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

2008-01-01T23:59:59.000Z

278

Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It begins with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.

Galitsky, Christina; Worrell, Ernst; Ruth, Michael

2003-07-01T23:59:59.000Z

279

Federal Support for Energy Efficiency in U.S. Industry: Collaboratively Addressing Energy Management in Small- and Medium-Sized Enterprises (SMEs)  

E-Print Network [OSTI]

The U.S. industrial sector consumes about one-third of energy in the United States each year. Improving energy efficiency in an industrial environment may come with a host of benefits to the facility owner, including a reduction in annual energy...

Bostrom, P.; Lung, R. B.; Harris, J.

2010-01-01T23:59:59.000Z

280

Energy Efficient Microwave Hybrid Processing of Lime for Cement, Steel, and Glass Industries  

SciTech Connect (OSTI)

In this study, the microwave materials interactions were studied through dielectric property measurements, process modeling, and lab scale microwave hybrid calcination tests. Characterization and analysis were performed to evaluate material reactions and energy usage. Processing parameters for laboratory scale and larger scale calcining experiments were developed for MAT limestone calcination. Early stage equipment design concepts were developed, with a focus on microwave post heating treatment. The retrofitting of existing rotary calcine equipment in the lime industry was assessed and found to be feasible. Ceralink sought to address some of the major barriers to the uptake of MAT identified as the need for (1) team approach with end users, technology partners, and equipment manufacturers, (2) modeling that incorporates kiln materials and variations to the design of industrial microwave equipment. This project has furthered the commercialization effort of MAT by working closely with an industrial lime manufacturer to educate them regarding MAT, identifying equipment manufacturer to supply microwave equipment, and developing a sophisticated MAT modeling with WPI, the university partner. MAT was shown to enhance calcining through lower energy consumption and faster reaction rates compared to conventional processing. Laboratory testing concluded that a 23% reduction in energy was possible for calcining small batches (5kg). Scale-up testing indicated that the energy savings increased as a function of load size and 36% energy savings was demonstrated (22 kg). A sophisticated model was developed which combines simultaneous microwave and conventional heating. Continued development of this modeling software could be used for larger scale calcining simulations, which would be a beneficial low-cost tool for exploring equipment design prior to actual building. Based on these findings, estimates for production scale MAT calcining benefits were calculated, assuming uptake of MAT in the US lime industry. This estimate showed that 7.3 TBTU/year could be saved, with reduction of 270 MMlbs of CO2 emissions, and $29 MM/year in economic savings. Taking into account estimates for MAT implementation in the US cement industry, an additional 39 TBTU/year, 3 Blbs of CO2 and $155 MM/year could be saved. One of the main remaining barriers to commercialization of MAT for the lime and cement industries is the sheer size of production. Through this project, it was realized that a production size MAT rotary calciner was not feasible, and a different approach was adapted. The concept of a microwave post heat section located in the upper portion of the cooler was devised and appears to be a more realistic approach for MAT implementation. Commercialization of this technology will require (1) continued pilot scale calcining demonstrations, (2) involvement of lime kiln companies, and (3) involvement of an industrial microwave equipment provider. An initial design concept for a MAT post-heat treatment section was conceived as a retrofit into the cooler sections of existing lime rotary calciners with a 1.4 year payback. Retrofitting will help spur implementation of this technology, as the capital investment will be minimal for enhancing the efficiency of current rotary lime kilns. Retrofits would likely be attractive to lime manufacturers, as the purchase of a new lime kiln is on the order of a $30 million dollar investment, where as a MAT retrofit is estimated on the order of $1 million. The path for commercialization lies in partnering with existing lime kiln companies, who will be able to implement the microwave post heat sections in existing and new build kilns. A microwave equipment provider has been identified, who would make up part of the continued development and commercialization team.

Fall, Morgana L; Yakovlev, Vadim; Sahi, Catherine; Baranova, Inessa; Bowers, Johnney G; Esquenazi\t, Gibran L

2012-02-10T23:59:59.000Z

Note: This page contains sample records for the topic "industrial energy efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Voluntary agreements for increasing energy-efficiency in industry: Case study of a pilot project with the steel industry in Shandong Province, China  

SciTech Connect (OSTI)

China faces a significant challenge in the years ahead to continue to provide essential materials and products for a rapidly-growing economy while addressing pressing environmental concerns. China's industrial sector is heavily dependent on the country's abundant, yet polluting, coal resources. While tremendous energy conservation and environmental protection achievements were realized in the industrial sector in the past, there remains a great gulf between the China's level of energy efficiency and that of the advanced countries of the world. Internationally, significant energy efficiency improvement in the industrial sector has been realized in a number of countries using an innovative policy mechanism called Voluntary Agreements. This paper describes international experience with Voluntary Agreements in the industrial sector as well as the development of a pilot program to test the use of such agreements with two steel mills in Shandong Province, China.

Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

2003-03-01T23:59:59.000Z

282

Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

for best practices in energy efficiency.. 76for best practices in energy efficiency ORGANIZATIONEnergy Efficiency and Renewable Energy. Best Practices

Galitsky, Christina; Worrell, Ernst; Ruth, Michael

2003-01-01T23:59:59.000Z

283

Perform, Achieve and Trade (PAT): An Innovative Mechanism for Enhancing Energy Efficiency in India's Industrial Sector  

E-Print Network [OSTI]

by Energy Conservation Act, 2001 of India and National Mission on Enhanced Energy Efficiency (NMEEE) under National Action Plan on Climate Change (NAPCC). The Energy Conservation Act, 2001 which is the first legislative initiative by Govt. of India to give...

Garnik, S. P.; Martin, M.

2014-01-01T23:59:59.000Z

284

Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice  

E-Print Network [OSTI]

such as energy performance indicators that relate energy useselection of energy performance indicators and objectives

McKane, Aimee

2010-01-01T23:59:59.000Z

285

International Experience with Key Program Elements of IndustrialEnergy Efficiency or Greenhouse Gas Emissions Reduction Target-SettingPrograms  

SciTech Connect (OSTI)

Target-setting agreements, also known as voluntary ornegotiated agreements, have been used by a number of governments as amechanism for promoting energy efficiency within the industrial sector. Arecent survey of such target-setting agreement programs identified 23energy efficiency or GHG emissions reduction voluntary agreement programsin 18 countries. International best practice related to target-settingagreement programs calls for establishment of a coordinated set ofpolicies that provide strong economic incentives as well as technical andfinancial support to participating industries. The key program elementsof a target-setting program are the target-setting process,identification of energy-saving technologies and measures usingenergy-energy efficiency guidebooks and benchmarking as well as byconducting energy-efficiency audits, development of an energy-savingsaction plan, development and implementation of energy managementprotocols, development of incentives and supporting policies, monitoringprogress toward targets, and program evaluation. This report firstprovides a description of three key target-setting agreement programs andthen describes international experience with the key program elementsthat comprise such programs using information from the three keytarget-setting programs as well as from other international programsrelated to industrial energy efficiency or GHG emissionsreductions.

Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

2008-02-02T23:59:59.000Z

286

Opportunities for Energy Efficiency and Demand Response in the California Cement Industry  

SciTech Connect (OSTI)

This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

2010-12-22T23:59:59.000Z

287

Voluntary Agreements for Increasing Energy-Efficiency in Industry: Case Study of a Pilot Project with the Steel Industry in Shandong Province, China  

SciTech Connect (OSTI)

This paper describes international experience with the use of Voluntary Agreements for increasing industrial sector energy-efficiency, drawing lessons learned regarding the essential elements of the more successful programs. The paper focuses on a pilot project for implementation of a Voluntary Agreement with two steel mills in Shandong Province that was developed through international collaboration with experts in China, the Netherlands, and the U.S. Designing the pilot project involved development of approaches for energy-efficiency potential assessments for the steel mills, target-setting to establish the Voluntary Agreement energy-efficiency goals, preparing energy-efficiency plans for implementation of energy-saving technologies and measures, and monitoring and evaluating the project's energy savings.

Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

2003-03-01T23:59:59.000Z

288

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. 22nd NREL Industry Growth Forum  

E-Print Network [OSTI]

and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. 22nd NREL Industry Growth ForumNREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency;National Renewable Energy Laboratory Innovation for Our Energy Future The 22nd NREL Industry Growth Forum

289

Port Angeles Public Works and Utilities- Commercial and Industrial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Port Angeles Public Works and Utilities provides incentives for business customers to increase the energy efficiency of eligible facilities. Rebates are offered for a variety of improvements...

290

Energy Efficiency in the Pulp and Paper Industry: Simulation of Steam Challenge and CHP Incentives with ITEMS  

E-Print Network [OSTI]

ENERGY EFFICIENCY IN THE PULP AND PAPER INDUSTRY: SIMULATION OF STEAM CHALLENGE AND CHP INCENTIVES WITH ITEMS Joseph M. Roop Staff Scientist Pacific Northwest National Laboratory Richland, Washington ABSTRACT# Two programs being.... This document number is PNNL-SA-29768. ? Referred to as ISTUM in (3). industry (here, we use the newer acronym CHP for" combined heat and power"). Our use of ITEMS demonstrates that such programs can be analyzed, and their effec tiveness assessed using...

Roop, J. M.

291

Voluntary Agreements for Energy Efficiency or GHG EmissionsReduction in Industry: An Assessment of Programs Around the World  

SciTech Connect (OSTI)

Voluntary agreements for energy efficiency improvement and reduction of energy-related greenhouse gas (GHG) emissions have been a popular policy instrument for the industrial sector in industrialized countries since the 1990s. A number of these national-level voluntary agreement programs are now being modified and strengthened, while additional countries--including some recently industrialized and developing countries--are adopting these type of agreements in an effort to increase the energy efficiency of their industrial sectors.Voluntary agreement programs can be roughly divided into three broad categories: (1) programs that are completely voluntary, (2) programs that use the threat of future regulations or energy/GHG emissions taxes as a motivation for participation, and (3) programs that are implemented in conjunction with an existing energy/GHG emissions tax policy or with strict regulations. A variety of government-provided incentives as well as penalties are associated with these programs. This paper reviews 23 energy efficiency or GHG emissions reduction voluntary agreement programs in 18 countries, including countries in Europe, the U.S., Canada, Australia, New Zealand, Japan, South Korea, and Chinese Taipei (Taiwan) and discusses preliminary lessons learned regarding program design and effectiveness. The paper notes that such agreement programs, in which companies inventory and manage their energy use and GHG emissions to meet specific reduction targets, are an essential first step towards GHG emissions trading programs.

Price, Lynn

2005-06-01T23:59:59.000Z

292

Promoting emerging energy-efficiency technologies and practices by utilities in a restructured energy industry: A report from California  

SciTech Connect (OSTI)

The potential energy savings from emerging technologies (i.e., those technologies emerging from research and development) represent a significant resource to California and the US This paper describes how California's investor-owned utilities (IOUs) have been promoting emerging technologies over the last three years to increase energy efficiency in the buildings sector. During these years, the IOUs have experienced significant changes in their regulatory environment as part of the restructuring of the energy industry in California. These regulatory changes have impacted the way emerging technologies are treated by the regulatory community and the IOUs. After reviewing these changes, the paper concludes by discussing potential opportunities to improve the market penetration of emerging technologies.

Vine, Edward L.

2000-07-01T23:59:59.000Z

293

Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice  

E-Print Network [OSTI]

The purpose of an energy management system standard is towww.iso.org/iso/energy_management_system_standard Relatedof an energy management system. For organizations already

McKane, Aimee

2010-01-01T23:59:59.000Z

294

Energy-Efficiency Technologies and Benchmarking the Energy Intensity for the Textile Industry  

E-Print Network [OSTI]

Benchmarking the Energy Intensity for the Textile Industryand Comparing the Energy Intensity in the Textile Industrywere visited. The energy intensity of each plant was

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

295

Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice  

E-Print Network [OSTI]

Thinking Globally: How ISO 50001 – Energy Management canThinking Globally: How ISO 50001 – Energy Management canOrganization for Standardization (ISO) has identified energy

McKane, Aimee

2010-01-01T23:59:59.000Z

296

The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry  

SciTech Connect (OSTI)

For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-05-01T23:59:59.000Z

297

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

31, 2010. ) U.S. DOE Energy Efficiency & Renewable Energy (3, 2010. ) Northwest Energy Efficiency Alliance, ElectricEPRI. 1997. Quality Energy Efficiency Retrofits for Water

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

298

Industrial Energy: Counseling the Marriage Between Energy Users and Efficiency Programs  

E-Print Network [OSTI]

time, on site employee, the energy manager can boost implementation rates by navigating the organizational issues that result from change. Energy managers will play a pivotal role in the adoption of strategic energy management protocols such as ISO.... However, intermittent assistance tends to yield intermittent results. An energy manager, integral to a company or facility, provides the leadership and organizational continuity for implementing change...

Russell, C.

2013-01-01T23:59:59.000Z

299

Progress Energy Carolinas- Commercial Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Progress Energy provides rebates for energy efficiency measures in new construction or retrofits, as well as Technical Assistance for feasibility/energy studies to commercial, industrial and...

300

A Review of Energy Use and Energy Efficiency Technologies for the Textile Industry  

E-Print Network [OSTI]

originally published in “Renewable and Sustainable Energyoriginally published in “Renewable and Sustainable Energyoriginally published in “Renewable and Sustainable Energy

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial energy efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

White Paper on Energy Efficiency Status of Energy-Using Products in China (2012)  

E-Print Network [OSTI]

2010. 16. Center for Industrial Energy Efficiency (CIEE).Report on Industrial Energy Efficiency in China: AchievementReview of Industrial Energy Efficiency in “11th Five- Year

Zhou, Nan

2013-01-01T23:59:59.000Z

302

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network [OSTI]

V. (2001). Optimize energy efficiency of HRSG. HydrocarbonCEC (2001). 2001 Energy Efficiency Standards for Residential2002. Consortium for Energy Efficiency (CEE), 2007. Motor

Neelis, Maarten

2008-01-01T23:59:59.000Z

303

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Georgia. Bureau of Energy Efficiency (BEE) India (2004).CEC) (2001). 2001 Energy Efficiency Standards forCanada, Office of Energy Efficiency, Ottawa, Ontario.

Masanet, Eric

2008-01-01T23:59:59.000Z

304

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Energy efficiency integrated into organizational culture.use and organizational goals for energy efficiency. Stafforganizational commitment to continuous improvement of energy efficiency.

Galitsky, Christina

2008-01-01T23:59:59.000Z

305

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Energy efficiency integrated into organizational culture.use and organizational goals for energy efficiency. Stafforganizational commitment to continuous improvement of energy efficiency.

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

306

Industrial Strategic Planning - A New Approach to Developing Energy Efficient Programs  

E-Print Network [OSTI]

Today's energy environment is a precarious one. Industry is well aware of the situation. Some have developed plans to cope with it, others are taking a 'wait and see' posture. To help in decision making, strategic planning has begun to emerge...

Delgado, R. M.; Mitchell, G. M.

1983-01-01T23:59:59.000Z

307

Sustaining Industrial Energy Efficiency in Process Cooling in a Potentially Water-Short Future  

E-Print Network [OSTI]

by Energy-Intensive Plants* Source: Anonymous US petrochemical company *Includes refineries and ethylene plants ESL-IE-14-05-18 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Estimated Water Use... Sources Strategy: Education on New(er) Technologies and Approaches • Barriers to Use of Unconventional Water Sources (sea water, brackish water or brine water) – High pipeline costs; Need to address upgrades to metallurgy as well as minimizing...

Ferland, K.

2014-01-01T23:59:59.000Z

308

Industrial and Agricultural Production Efficiency Program  

Broader source: Energy.gov [DOE]

Energy Trust of Oregon offers the Industrial and Agricultural Production Efficiency Program to customers of Portland General Electric, Pacific Power, NW Natural and Cascade Natural Gas. In order to...

309

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Journal. July: 40-51. Pharmaceutical Industry Association ofthan 25% of the U.S. pharmaceutical industry’s total valueadded of the U.S. pharmaceutical industry, Billion $/year

Galitsky, Christina

2008-01-01T23:59:59.000Z

310

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

2008-01-01T23:59:59.000Z

311

International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs  

E-Print Network [OSTI]

of industrial primary energy consumption in The Netherlands.included total primary energy consumption for twelve typeswas converted into primary energy consumption and the energy

Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

2008-01-01T23:59:59.000Z

312

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Determining Electric Motor Load and Efficiency. Among theEnergy Efficiency Alliance, Electric Motor Management. 2001.Energy Efficiency Alliance, Electric Motor Management. 2001.

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

313

International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs  

E-Print Network [OSTI]

Incentives for Business Investments in Energy Conservation and Renewableincentives for adoption of energy efficiency and renewable

Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

2008-01-01T23:59:59.000Z

314

Save Energy Now (SEN) Assessment Helps Expand Energy Management Program at Shaw Industries: Flooring Company Saves $872,000 Annually by Improving Steam System Efficiency  

SciTech Connect (OSTI)

This case study describes how the Shaw Industries plant #20 in Dalton, Georgia, achieved annual savings of $872,000 and 93,000 MMBtu after receiving a DOE Save Energy Now energy assessment and implementing recommendations to improve the efficiency of its steam system.

Not Available

2008-07-01T23:59:59.000Z

315

The Use of Electricity in Industry and Energy Saving - The Gamma Co-Efficient  

E-Print Network [OSTI]

of simple factors : the gamma factor. It is, when using energy, the number of thermies which are replaced by one kWh. Gamma is not a factor for measuring the oil saving but the using efficiency. For measuring the oil saving, the author uses 'the net gain...

Wolf, R.; Froehlich, R.

1983-01-01T23:59:59.000Z

316

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Raising Awareness Awareness of energy efficiency createdExternal Recognition Awareness of energy efficiency createdimprove the awareness of personnel with regard to energy use

Neelis, Maarten

2008-01-01T23:59:59.000Z

317

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Raising Awareness Awareness of energy efficiency createdExternal Recognition Awareness of energy efficiency createdimprove the awareness of personnel with regard to energy use

Masanet, Eric

2008-01-01T23:59:59.000Z

318

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Raising Awareness Awareness of energy efficiency createdExternal Recognition Awareness of energy efficiency created1996). Energy Saved by Raising Employees’ Awareness. Case

Galitsky, Christina

2008-01-01T23:59:59.000Z

319

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China  

E-Print Network [OSTI]

Potentials in the Iron and steel Industry in China. Reportfor the U.S. Iron and Steel Industry. An ENERGY STAR Guidebusiness/industry/Iron_Steel_Guide.pdf Worrell, E. Ramesohl,

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

320

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

SciTech Connect (OSTI)

Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

Sathaye, J.; Xu, T.; Galitsky, C.

2010-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "industrial energy efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

EIA Energy Efficiency-Table 3a. Value of Shipments by Selected Industries,  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623PrimarySelected Industries,1998, 2002,

322

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

E-Print Network [OSTI]

the NEMA Premium Efficiency Electric Motor specification wason Motor Efficiency. St. Louis, Missouri. Electric Apparatus

Kermeli, Katerina

2013-01-01T23:59:59.000Z

323

ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY  

E-Print Network [OSTI]

Industrial/Commercial Boiler Population. Report Submitted toCouncil of Industrial Boiler Owners, Burke, Virginia. [23]Assessment Case Study. Boiler Blowdown Heat Recovery Project

Kramer, Klaas Jan

2010-01-01T23:59:59.000Z

324

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

2005. Navigating Energy Management: A Roadmap for Business.Characteristics and Energy Management Opportunities. BurtonCaffal, C. 1995. Energy Management in Industry. Centre for

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

325

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Caffal, C. (1995). Energy Management in Industry. Centre forPollution Prevention/Energy Management. General Motorsactions, develop an energy management plan for business; and

Galitsky, Christina

2008-01-01T23:59:59.000Z

326

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

actions, develop an energy management plan for business; andCaffal, C. (1995). Energy Management in Industry. Centre forEquipment. Federal Energy Management Program, Washington,

Masanet, Eric

2008-01-01T23:59:59.000Z

327

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network [OSTI]

The NEMA Premium Efficiency Electric Motor specification wasEnergy Efficiency Improvements in Electric Motors andRewinding on Motor Efficiency. Electric Apparatus Service

Worrell, Ernst

2011-01-01T23:59:59.000Z

328

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network [OSTI]

7.1 summarizes the boiler efficiency measures, while Tablerule of thumb is that boiler efficiency can be increased by2001). Boilers and Heaters, Improving Energy Efficiency.

Neelis, Maarten

2008-01-01T23:59:59.000Z

329

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

design teams for energy-efficient building design. FinancialHVAC Systems Energy-efficient system design Fan modificationHVAC Systems Energy-efficient system design. The greatest

Masanet, Eric

2008-01-01T23:59:59.000Z

330

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Council for an Energy-Efficient Economy, Washington, D.C.Council for an Energy-Efficient Economy, Washington, D.C.EEBPP) (2000b). Energy Efficient Refrigeration Technology –

Masanet, Eric

2008-01-01T23:59:59.000Z

331

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

American Council for an Energy Efficient Economy, WashingtonCashes in on Energy Efficient Inverter Technology. National$200,000 per Year with Energy-Efficient Motors. Case Study

Galitsky, Christina

2008-01-01T23:59:59.000Z

332

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

American Council for an Energy Efficient Economy (ACEEE).and S. Nadel. 2002. Energy-Efficient Motor Systems: ACouncil for an Energy-Efficient Economy. Washington, D.C.

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

333

Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry  

E-Print Network [OSTI]

offsites (e.g. , boiler efficiency improvements) have beenEfficiency Measures /  Technologies  Reduce Stand?By Boiler Efficiency Measures /  Technologies  Reduce Stand?By Boiler 

Morrow III, William R.

2014-01-01T23:59:59.000Z

334

ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY  

E-Print Network [OSTI]

to between 2.5-3%, boiler efficiency improvements would saveand hog fuel, the efficiencies of boilers that combust theserecovery boiler, which can increase the efficiency of steam

Kramer, Klaas Jan

2010-01-01T23:59:59.000Z

335

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

often used is that boiler efficiency can be increased by 1%gas by 1% increases boiler efficiency by 2.5% (CIPEC 2001).Conservation and Boiler Plant Efficiency Advancements. 22 nd

Galitsky, Christina

2008-01-01T23:59:59.000Z

336

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

in flue gas oxygen, boiler efficiency is increased by 2.5% (50 Boiler Energy Efficiencyin Chapter 13. Boiler Energy Efficiency Measures The boiler

Masanet, Eric

2008-01-01T23:59:59.000Z

337

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Energy efficiency integrated into organizational culture.use and organizational goals for energy efficiency. Staffefficiency typically only occur when a strong organizational

Neelis, Maarten

2008-01-01T23:59:59.000Z

338

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Energy efficiency integrated into organizational culture.use and organizational goals for energy efficiency. Staffefficiency typically only occur when a strong organizational

Masanet, Eric

2008-01-01T23:59:59.000Z

339

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Energy efficiency integrated into organizational culture.use and organizational goals for energy efficiency. Staffefficiency therefore typically only occur when a strong organizational

Worrell, Ernst

2011-01-01T23:59:59.000Z

340

Policy Options for Encouraging Energy Efficiency Best Practices in Shandong Province's Cement Industry  

E-Print Network [OSTI]

12 Figure 7 Total energy consumption and energy intensity ofonly data on total energy consumption or energy intensitytce) Figure 7 Total energy consumption and energy intensity

Price, Lynn

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial energy efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

refrigeration systems lead to high compressor energy consumptionrefrigeration systems can help energy managers and facilities engineers track energy consumption,

Galitsky, Christina

2008-01-01T23:59:59.000Z

342

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Efficiency Alliance, Electric Motor Management. 2001. Motor2002. United States Industrial Electric Motor Systems Marketaccessed March 23, Motors Electric motors represent one of

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

343

An Exploration of Innovation and Energy Efficiency in an Appliance Industry  

E-Print Network [OSTI]

LG, Philips, etc. ), as well as companies from a wide variety of industries, including aerospace (Boeing), electronics (

Taylor, Margaret

2013-01-01T23:59:59.000Z

344

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

E-Print Network [OSTI]

of energy management: energy audits/assessments, energyto Titan America, energy audits conducted in concrete plantsmanagement programs Energy audit Energy teams Employee

Kermeli, Katerina

2013-01-01T23:59:59.000Z

345

Berkshire Gas- Commercial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Berkshire Gas Company (BCG) provides rebates for its commercial and industrial customers to pursue energy efficient improvements to their facilities. As a part of their energy efficiency program,...

346

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

costs, and increased energy awareness among employees (Wyethimprove the awareness of personnel with regard to energy useawareness Build capacity Not addressed No promotion of energy

Galitsky, Christina

2008-01-01T23:59:59.000Z

347

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

in a strategic energy management program are depicted inelements of a strategic energy management program. Energyfocused and strategic energy management program will help to

Galitsky, Christina

2008-01-01T23:59:59.000Z

348

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

in a strategic energy management program are depicted inof a strategic energy management program A successfulfocused and strategic energy management program will help to

Worrell, Ernst

2008-01-01T23:59:59.000Z

349

Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California  

E-Print Network [OSTI]

for defrosting/compressor cooling or in frigid climates withthermosiphon compressor cooling, premium-efficiency motors,

Lekov, Alex

2009-01-01T23:59:59.000Z

350

Outlook for Industrial Energy Benchmarking  

E-Print Network [OSTI]

The U.S. Environmental Protection Agency is exploring options to sponsor an industrial energy efficiency benchmarking study to identify facility specific, cost-effective best practices and technologies. Such a study could help develop a common...

Hartley, Z.

351

Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry  

E-Print Network [OSTI]

Profile of the U.S. Petroleum Refining Industry, prepared byBandwidth for Petroleum Refining Processes, prepared byKaiser, M.J. , Petroleum Refining Technology & Economics,

Morrow III, William R.

2014-01-01T23:59:59.000Z

352

Cape Light Compact- Commercial, Industrial and Municipal Buildings Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Through a multi-member partnership, Cape Light Compact (CLC) and Masssave offer a variety of financial incentives for commercial, industrial, and municipal facilities. Custom rebate options are...

353

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network [OSTI]

ultrafiltration, and reverse osmosis, each indicating asubjected to reverse osmosis filtration, microfiltration,processing industry are reverse osmosis systems and ultra-

Brush, Adrian

2012-01-01T23:59:59.000Z

354

Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China  

E-Print Network [OSTI]

Wang, L. , 2008. Alternative fuel using and waste materialPolicy Research on Alternative Fuels for Cement Industry incement and using alternative fuels in the cement kiln. There

Price, Lynn

2010-01-01T23:59:59.000Z

355

Policy Options for Encouraging Energy Efficiency Best Practices in Shandong Province's Cement Industry  

E-Print Network [OSTI]

clinker production energy intensity Coal intensity ofin standard coal equivalent) ? sectoral energy consumptionfinal energy use) ? energy resources (coal, oil and natural

Price, Lynn

2013-01-01T23:59:59.000Z

356

ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY  

E-Print Network [OSTI]

Assessment Saves Energy and Reduces Waste. Office of EnergyAssessment Saves Energy and Reduces Waste. Office of Energytrading, energy and materials, and waste processing.

Kramer, Klaas Jan

2010-01-01T23:59:59.000Z

357

Energy efficiency and carbon dioxide emissions reduction opportunities in the U.S. cement industry  

E-Print Network [OSTI]

Table 2. Energy Consumption, Carbon Emissions Coefficients,and Carbon Emissions from Energy Consumption, and CarbonEnergy – Related Carbon Emissions Fuel Energy Use Carbon (

Martin, Nathan; Worrell, Ernst; Price, Lynn

1999-01-01T23:59:59.000Z

358

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

representatives. Next Steps Energy Awareness None conducted.PowerPoint presentation on energy awareness and Excel filesdegree Occasional energy efficiency awareness campaigns.

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

359

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network [OSTI]

increase refrigeration system energy consumption by up toannual refrigeration system energy consumption by nearly 40%

Brush, Adrian

2012-01-01T23:59:59.000Z

360

Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Degradable plastic made from potato peels  

SciTech Connect (OSTI)

Stimulated by public demand and state and federal legislation, industry has begun to develop bio- and photo- degradable plastics. so far, however, none of these degradable plastics meets all of the criteria for success - adequate physical and mechanical properties for the desired use, cost-effectiveness, and 100% degradability. Polylactic acid (PLA) plastic is one degradable plastic that shows promise. It has the desired properties and is 100% degradable. However, PLA plastic made by conventional techniques is not cost effective. Made from lactic acid, which is typically made form petroleum using a very costly synthesis process. Lactic acid can also be made from carbohydrates (starches), found in food processing wastes such as potato wastes, cheese whey, and sorghum. Conversion of starch to simple sugars, and fermentation of these sugars can produce lactic acid.

Not Available

1992-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial energy efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

E-Print Network [OSTI]

Communication Plan Energy Awareness Site plan developed. notAn effective energy awareness campaign: • educates employeesimplement an effective energy awareness campaign, you must

Kermeli, Katerina

2013-01-01T23:59:59.000Z

362

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network [OSTI]

Strategic Energy Management Program ..Systems 6.1 Strategic Energy Management Program Improvingin a strategic energy management program were identified and

Brush, Adrian

2012-01-01T23:59:59.000Z

363

Policy Options for Encouraging Energy Efficiency Best Practices in Shandong Province's Cement Industry  

E-Print Network [OSTI]

processes, definitions and boundaries Data on energy2009). Key Energy-using Enterprises Definition and evolutionsystem, since by definition their annual energy consumption

Price, Lynn

2013-01-01T23:59:59.000Z

364

Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California  

E-Print Network [OSTI]

in significant energy and demand savings for refrigeratedbe modified to reduce energy demand during demand responsein refrigerated warehouse energy demand if they are not

Lekov, Alex

2009-01-01T23:59:59.000Z

365

Costs and benefits of industrial reporting and voluntary targets for energy efficiency. A report to the Congress of the United States. Volume II: Appendices  

SciTech Connect (OSTI)

This part sets forth the regulations for the Industrial Energy conservation Program established under Part E of Title III of the Act. It includes criteria and procedures for the identification of reporting corporations, reporting requirements, criteria and procedures for exemption from filing reports directly with DOE, voluntary industrial energy efficiency improvement targets and voluntary recovered materials utilization targets. The purpose of the program is to promote increased energy conservation by American industry and, as it relates to the use of recovered materials, to conserve valuable energy and scarce natural resources.

Not Available

1994-02-01T23:59:59.000Z

366

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

for its cooling tower water. Solar air heating. Solar airSolar air heating Building insulation Restriction of sash openings Variable-air-volume hoods Improved filtration quality and efficiency Cooling towers

Galitsky, Christina

2008-01-01T23:59:59.000Z

367

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Characterization: Gas Turbines. Arlington, VA. February.is higher than that of a gas turbine-based CHP system (74%,electrical efficiency of a gas turbine-based CHP system is

Galitsky, Christina

2008-01-01T23:59:59.000Z

368

Comprehensive Approaches to Industrial Energy Efficiency: Examples from the Climate Wise Program  

E-Print Network [OSTI]

The Climate Wise Program is a partnership initiative sponsored by the U.S. EPA, with technical support from the U.S. DOE, with industry. It is designed to stimulate the voluntary reduction of greenhouse gas emissions among participating...

Milmoe, P. H.; Winkelman, S. R.; Asrael, J.

369

Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California  

E-Print Network [OSTI]

white wine production instead of the more energy intensiveand dairy and wine processors. The energy loads in these

Lekov, Alex

2009-01-01T23:59:59.000Z

370

Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry  

E-Print Network [OSTI]

to a strategic energy management program, a strategic,a focused and strategic energy management program that helps

Masanet, Eric

2014-01-01T23:59:59.000Z

371

Energy Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for37 East andCommissionEfficiency | Department

372

Analysis of Energy-Efficiency Opportunities for the Pulp and Paper Industry in China  

E-Print Network [OSTI]

efficiently utilize black liquor and other waste biomass forbiomass is used and black liquor is converted intoRecovery Falling film black liquor evaporation Black liquor

Kong, Lingbo

2014-01-01T23:59:59.000Z

373

Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China  

E-Print Network [OSTI]

separator. Material falls down and is transferred to another cyclone,separators for raw mill High Efficiency roller mill for raw materials grinding Low pressure drop cyclones

Price, Lynn

2010-01-01T23:59:59.000Z

374

Loveland Water and Power- Commercial and Industrial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Loveland Water and Power, in conjunction with the Platte River Power Authority provides businesses incentives for new construction projects and existing building retrofits. The Electric Efficiency...

375

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network [OSTI]

Characterization: Steam Turbines. Arlington, Virginia.scale CHP systems use steam turbines. Switching to naturalsystem efficiency of a steam turbine-based CHP system (80%

Brush, Adrian

2012-01-01T23:59:59.000Z

376

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Caffal, C. (1995). Energy Management in Industry. Centre forU.S. DOE-OIT (2003a). Energy Management Program Benefits.actions, develop an energy management plan for business; and

Neelis, Maarten

2008-01-01T23:59:59.000Z

377

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network [OSTI]

actions, develop an energy management plan for business; andFigure 8-1. Main elements of a strategic energy managementCaffal, C. (1995). Energy Management in Industry. Centre for

Worrell, Ernst

2011-01-01T23:59:59.000Z

378

Empire District Electric- Commercial and Industrial Efficiency Rebates  

Broader source: Energy.gov [DOE]

Empire District Electric Company offers rebates to certain commercial and industrial customers for the installation of energy efficiency equipment. Prescriptive rebates for lighting, air...

379

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

the NEMA Premium Efficiency Electric Motor specification wasUnderloaded Electric Motor. Office of Energy Efficiency andElectric Apparatus Service Association (EASA) (2003). The Effect of Repair/Rewinding on Motor Efficiency.

Galitsky, Christina

2008-01-01T23:59:59.000Z

380

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

NEMA Premium ® Efficiency Electric Motor specification wasUnderloaded Electric Motor. Office of Energy Efficiency andElectric Apparatus Service Association (EASA) (2003). The Effect of Repair/Rewinding on Motor Efficiency.

Masanet, Eric

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial energy efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy Programs of the Texas Industrial Commission  

E-Print Network [OSTI]

The objectives of the Industrial Energy Conservation Program are to assist Texas industry in using energy more efficiently through seminars, workshops, technical information exchange and other supportive programs with the goal of conserving at least...

Heare, J.; dePlante, L. E.

1979-01-01T23:59:59.000Z

382

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network [OSTI]

at a U.S. DOE sponsored energy audit of a Land O’Lakes dairy2002a). Similarly, in energy audits of seven fresh fruit andguide for consistency. Energy audits carried out at seven

Brush, Adrian

2012-01-01T23:59:59.000Z

383

Tax and Fiscal Policies for Promotion of Industrial Energy Efficiency: A Survey of International Experience  

E-Print Network [OSTI]

asp? secID=2 Danish Energy Agency, 2000. Green Taxes forvoluntary agreement (Danish Energy Agency, 2000). Subsidies,of companies with the Danish Energy Agency, are made for

Price, Lynn; Galitsky, Christina; Sinton, Jonathan; Worrell, Ernst; Graus, Wina

2005-01-01T23:59:59.000Z

384

Policy Options for Encouraging Energy Efficiency Best Practices in Shandong Province's Cement Industry  

E-Print Network [OSTI]

developing its energy saving cap- and-trade pilot program indeveloping its energy saving cap-and-trade pilot program inNational Economic and Trade Commission (NETC), 1999. Energy

Price, Lynn

2013-01-01T23:59:59.000Z

385

Policy Options for Encouraging Energy Efficiency Best Practices in Shandong Province's Cement Industry  

E-Print Network [OSTI]

and Evaluation of Energy Intensity per GDP Indicators ( ???Statistics on Energy Consumption Per Unit of GDP. 2006,tce/10,000 RMB Energy Consumption per unit of GDP (tonne of

Price, Lynn

2013-01-01T23:59:59.000Z

386

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

a predictive and preventive maintenance program. The Motorand could save considerable energy. Preventive maintenance.A general preventive maintenance (PM) program

Galitsky, Christina

2008-01-01T23:59:59.000Z

387

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

HVAC Meaures Combined heat and power (CHP) Energy managementet al. 2003). Combined heat and power (CHP) or cogeneration.requirements, the combined heat and power (CHP) systems may

Worrell, Ernst

2008-01-01T23:59:59.000Z

388

Energy efficient data centers  

SciTech Connect (OSTI)

Data Center facilities, prevalent in many industries and institutions are essential to California's economy. Energy intensive data centers are crucial to California's industries, and many other institutions (such as universities) in the state, and they play an important role in the constantly evolving communications industry. To better understand the impact of the energy requirements and energy efficiency improvement potential in these facilities, the California Energy Commission's PIER Industrial Program initiated this project with two primary focus areas: First, to characterize current data center electricity use; and secondly, to develop a research ''roadmap'' defining and prioritizing possible future public interest research and deployment efforts that would improve energy efficiency. Although there are many opinions concerning the energy intensity of data centers and the aggregate effect on California's electrical power systems, there is very little publicly available information. Through this project, actual energy consumption at its end use was measured in a number of data centers. This benchmark data was documented in case study reports, along with site-specific energy efficiency recommendations. Additionally, other data center energy benchmarks were obtained through synergistic projects, prior PG&E studies, and industry contacts. In total, energy benchmarks for sixteen data centers were obtained. For this project, a broad definition of ''data center'' was adopted which included internet hosting, corporate, institutional, governmental, educational and other miscellaneous data centers. Typically these facilities require specialized infrastructure to provide high quality power and cooling for IT equipment. All of these data center types were considered in the development of an estimate of the total power consumption in California. Finally, a research ''roadmap'' was developed through extensive participation with data center professionals, examination of case study findings, and participation in data center industry meetings and workshops. Industry partners enthusiastically provided valuable insight into current practice, and helped to identify areas where additional public interest research could lead to significant efficiency improvement. This helped to define and prioritize the research agenda. The interaction involved industry representatives with expertise in all aspects of data center facilities, including specialized facility infrastructure systems and computing equipment. In addition to the input obtained through industry workshops, LBNL's participation in a three-day, comprehensive design ''charrette'' hosted by the Rocky Mountain Institute (RMI) yielded a number of innovative ideas for future research.

Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

2004-03-30T23:59:59.000Z

389

ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY  

E-Print Network [OSTI]

and drying processes. An energy audit of the mill found thatpreheating A plant-wide energy audit of Georgia-Pacific’s

Kramer, Klaas Jan

2010-01-01T23:59:59.000Z

390

The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry  

E-Print Network [OSTI]

z = specific primary energy consumption of RF dryer (Btu/and specific primary energy consumption (240 Btu/lb. ) of RFenergy consumption of base technologies in 2020 (primary)

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-01-01T23:59:59.000Z

391

Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry  

E-Print Network [OSTI]

Doing Good? Green Office Buildings. American Economic ReviewEnergy Effriciency in Commercial Buildings in Operation.Energy and Buildings. 43(11): 3106-3111. Ezovski, Derek.

Bardhan, Ashok; Kroll, Cynthia A.

2011-01-01T23:59:59.000Z

392

Policy Options for Encouraging Energy Efficiency Best Practices in Shandong Province's Cement Industry  

E-Print Network [OSTI]

4 Energy saving and CO2 emission reduction potential of4 Energy saving and CO2 emission reduction potential ofmore potential CO2 emissions reductions when calculations

Price, Lynn

2013-01-01T23:59:59.000Z

393

Policy Options for Encouraging Energy Efficiency Best Practices in Shandong Province's Cement Industry  

E-Print Network [OSTI]

Make CSI key performance indicators publicly availableor key energy performance indicators are close to the best

Price, Lynn

2013-01-01T23:59:59.000Z

394

Energy Efficiency & Renewable Energy  

E-Print Network [OSTI]

& Acceptance Hydrogen Supply & Delivery Infrastructure Hydrogen Cost Target*: $2 ­ 3 /gge, (dispensedEnergy Efficiency & Renewable Energy Overview of DOE Hydrogen and Fuel Cell Activities Dr. Sunita, domestic resources. Stationary Power (including CHP & backup power) Auxiliary & Portable Power

395

Energy Efficiency & Renewable Energy  

E-Print Network [OSTI]

& Delivery Infrastructure Hydrogen Cost Target: $2 ­ 3 /gge, delivered Key Challenges Technology ValidationEnergy Efficiency & Renewable Energy Overview of Hydrogen and Fuel Cell Activities Dr. Sunita. Stationary Power (including CHP & backup power) Auxiliary & Portable Power Transportation Benefits

396

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network [OSTI]

Characterization: Gas Turbines. Arlington, Virginia.is higher than that of a gas turbine-based CHP system (74%electrical efficiency of a gas turbine-based CHP system is

Brush, Adrian

2012-01-01T23:59:59.000Z

397

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

development of renewable energy production facilities in theProduction at Candy-Making Facility. Office of Energy Efficiency and Renewable

Masanet, Eric

2008-01-01T23:59:59.000Z

398

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

2002a, 2002b). The power-to- heat ratio of a steam turbine-of electricity. The power-to-heat ratio of a gas turbine-co-generation, combined heat & power and renewable energy

Galitsky, Christina

2008-01-01T23:59:59.000Z

399

Role of Appraisals in Energy Efficiency Financing  

SciTech Connect (OSTI)

This research identifies barriers and challenges and current industry status including several key appraisal industry developments for identifying and valuing energy efficiency, critical obstacles to documenting and assessing the potential added value from energy efficiency improvements, current opportunities to support and standardize reporting on energy efficiency and to ensure proper valuation, and next steps towards enabling energy efficiency financing market transformation.

Doyle, V.; Bhargava, A.

2012-05-01T23:59:59.000Z

400

Energy efficiency improvements in Chinese compressed air systems  

E-Print Network [OSTI]

Air Systems, Paper #071 Energy efficiency improvements into increase industrial energy efficiency. As a result, morein use. Over time, energy efficiency decreases and the cost

McKane, Aimee; Li, Li; Li, Yuqi; Taranto, T.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial energy efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China  

E-Print Network [OSTI]

and fuel prices, investment cost of the measures, and energyprices. Variations in the investment cost and energy savingsA change in either the investment cost or the energy savings

Price, Lynn

2010-01-01T23:59:59.000Z

402

Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China  

E-Print Network [OSTI]

10 B. Conversion Factors andfinal energy using a conversion factor of 0.0001229 kWh/tonto primary energy using a conversion factor of 0.000404 kWh/

Price, Lynn

2010-01-01T23:59:59.000Z

403

Strategic Industrial Energy Efficiency: Reduce Expenses, Build Revenues, and Control Risk  

E-Print Network [OSTI]

Some manufacturing companies successfully boost their financial performance through optimized energy use. This leads not only to reduced energy consumption and associated environmental benefits, but also to capacity improvements that generate...

Russell, C.

2004-01-01T23:59:59.000Z

404

Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry  

E-Print Network [OSTI]

Energy Star, the highest correlation is with metropolitan area GDP perEnergy Star buildings in total building stock as dependent variable, only GDP perEnergy Star LEED I II III I II III rentable building area number of stories year built classA classB GDP per

Bardhan, Ashok; Kroll, Cynthia A.

2011-01-01T23:59:59.000Z

405

SEPTEMBER 2009 ENERGY EFFICIENCY &  

E-Print Network [OSTI]

SEPTEMBER 2009 GUIDE TO ENERGY EFFICIENCY & RENEWABLE ENERGY FINANCING DISTRICTS FOR LOCAL Assessment Districts) DEER Database for Energy Efficient Resources DSIRE Database of State Incentives for Renewables & Efficiency EECBG Energy Efficiency and Conservation Block Grants EIM Energy Improvement Mortgage

Kammen, Daniel M.

406

Energy Efficiency & Renewable Energy  

E-Print Network [OSTI]

Energy Efficiency & Renewable Energy DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program DOE/CESA/TTC Hydrogen and Fuel Cells: Addressing Energy Challenges #12;4 Fuel Cells -- Where are we today? Fuel Cells for Transportation

407

Energy Efficiency & Renewable Energy  

E-Print Network [OSTI]

Energy Efficiency & Renewable Energy Source: US DOE 10/2010 Hydrogen and Fuel Cell Technologies ­ Upcoming Workshops & Solicitations Source: US DOE 10/2010 2 #12; Double Renewable Energy Capacity by 2012 Update Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program Fuel

408

Energy Efficiency & Renewable Energy  

E-Print Network [OSTI]

Energy Efficiency & Renewable Energy Overview of Hydrogen and Fuel Cell Activities Richard Farmer Hydrogen Business Council September 14, 2010 #12; Double Renewable Energy Capacity by 2012 Invest $150 Deputy Program Manager Fuel Cell Technologies Program United States Department of Energy Mountain States

409

Energy Efficiency & Renewable Energy  

E-Print Network [OSTI]

Energy Efficiency & Renewable Energy 2009 FUEL CELL MARKET REPORT NOVEMBER 2010 #12;Authors of Energy's Fuel Cell Technologies Program for their support and guidance in the preparation of this report-Jerram of Fuel Cell Today Consulting, Rachel Gelman of the National Renewable Energy Laboratory, Jennifer Gangi

410

Energy Efficiency & Renewable Energy  

E-Print Network [OSTI]

Energy Efficiency & Renewable Energy AUGUST 2010 2009 WIND TECHNOLOGIES MARKET REPORT EXECUTIVE (Berkeley Lab) Kevin Porter and Sari Fink (Exeter Associates) Suzanne Tegen (National Renewable Energy relatively high levels of wind energy penetration in their electricity grids: end-of-2009 wind power capacity

411

Definition of Energy Efficiency  

U.S. Energy Information Administration (EIA) Indexed Site

the energy efficiency effects. Most of what is defined as energy efficiency is actually energy intensity. Energy intensity is the ratio of energy consumption to some measure of...

412

Energy efficient data centers  

E-Print Network [OSTI]

wit h energy efficiency Improving Best Practices Linkwit h energy efficiency Improving Best Practices Linkwit h energy efficiency Improving Best Practices Link

Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

2004-01-01T23:59:59.000Z

413

Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California  

E-Print Network [OSTI]

your Power. (2008). "Demand Response Programs." RetrievedS. (2008). Automated Demand Response Results from Multi-Yearusing Open Automated Demand Response, California Energy

Lekov, Alex

2009-01-01T23:59:59.000Z

414

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network [OSTI]

typically using centrifugal compressors or turbo fans) andapplied to centrifugal and rotary screw compressors. At thecompressor fan energy use by up to 50% compared to centrifugal

Brush, Adrian

2012-01-01T23:59:59.000Z

415

Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China  

E-Print Network [OSTI]

defined as the incineration of wastes for disposal purposesof use (for example incineration with or without heatthe wastes (for example. incineration with or without energy

Price, Lynn

2010-01-01T23:59:59.000Z

416

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network [OSTI]

Gets Free Cooling Through Waste Heat Recovery. Washington,Process Integration and Waste Heat Recovery in Lithuanianto make good use of waste heat and solar energy." Progress

Brush, Adrian

2012-01-01T23:59:59.000Z

417

Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet, AprilEdwardDepartment of

418

Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet, AprilEdwardDepartment ofLora Toy (Principal

419

Air Force Achieves Fuel Efficiency through Industry Best Practices (Brochure), Federal Energy Management Program (FEMP)  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012) 1 Documentation and Approval of Federally Fundedhighest

420

Tuesday Webcast for Industry: Tax Rebates/Credits Available for Energy Efficiency Actions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7Department ofDepartment ofEngagingWebcastTax

Note: This page contains sample records for the topic "industrial energy efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Tuesday Webcasts for Industry: Tax Rebates/Credits Available for Energy Efficiency Actions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7Department ofDepartmentEngaging

422

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network [OSTI]

usage by minimized production losses through the application of new materials and better sensor technologytechnology (Soderberg 2008; ECOTARGET 2009): Reduces fibrous raw material use Reduces energy consumption due to less fiber raw materials usage

Kong, Lingbo

2014-01-01T23:59:59.000Z

423

Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry  

E-Print Network [OSTI]

Piet, Kok, Nils, & Quigley, John M. (2009). “Why DoPiet; Kok, Nils; Quigley, John M. 2010. Doing Well by DoingNils, Marquise McGraw, and John M. Quigley. 2011. “Energy

Bardhan, Ashok; Kroll, Cynthia A.

2011-01-01T23:59:59.000Z

424

Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector  

E-Print Network [OSTI]

Energy Efficiency Improvements in Electric Motors andEnergy Efficiency Improvements in Electric Motors and

Xu, T.T.

2011-01-01T23:59:59.000Z

425

New 3E Plus Computer Program- A Tool for Improving Industrial Energy Efficiency  

E-Print Network [OSTI]

is necessary to reduce energy dollars, determine surface temperature, protect personnel, control condensation, track Btu loss/gain per lineal foot, and track environmental emissions. It allows energy managers to quantify the risk of doing nothing versus... average nOF (22?C). ? Environmental Impact The bottom line of the analysis chart shows that the addition of the recommended four inches of insula tion reduces carbon dioxide emissions to 5086 pounds per lineal foot per year. This figure is very...

Brayman, N. J.

426

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network [OSTI]

means of saving energy at its Morris, Illinois plant (U.S.Morris, Illinois site as a potential energy saving project,Wide Energy Efficiency Plan (EEP) at its Morris, Illinois

Neelis, Maarten

2008-01-01T23:59:59.000Z

427

Energy Efficiency Project Development  

SciTech Connect (OSTI)

The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1, 2001 through December 31, 2002. At the request of the DOE, we have also included in this report additional activities during the reporting period January, 1999 through January, 2001. This additional information had been reported earlier in the Final Technical Reports that summarized activities undertaken in those earlier periods.

IUEP

2004-03-01T23:59:59.000Z

428

Energy Efficiency & Renewable Energy  

E-Print Network [OSTI]

National Harbor #12;U.S. Energy Consumption U.S. Primary Energy Consumption by Source and Sector 2 #12 · Efficiencies can be 60% (electrical) and 85% (with CHP) · > 90% reduction in criteria pollutants U.S. Department of Energy #12;7 Market Transformation Government acquisitions could significantly reduce the cost

429

Utility Partnership Webinar Series: Industrial Customer Perspectives on Utility Energy Efficiency Programs  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New12.'6/0.2Contract (UESC) is not an

430

Bonneville Power Administration and the Industrial Technologies Program Leverage Support to Overcome Energy Efficiency Barriers in the Northwest  

Broader source: Energy.gov [DOE]

This case study explores how Bonneville Power Administration, a Northwest regional wholesale power provider, rethought how to encourage and promote energy efficiency projects through its utilities.

431

Title: Designing Energy-Efficient Information Processing Systems Abstract: The semiconductor industry is facing some extraordinary challenges, including process and  

E-Print Network [OSTI]

Title: Designing Energy-Efficient Information Processing Systems Abstract: The semiconductor than 450 papers, and received six Conference and two IEEE Transactions Best Paper awards for their work

432

Potential for Energy Efficient Motors and Variable Speed Drives in the Petroleum and Chemical Industry  

E-Print Network [OSTI]

This paper presents an in-depth survey of motors in a refinery and a chemical plant. The potential for energy and demand savings is then determined and hence the dollar savings using a sliding rate structure currently applicable to the petrochemical...

Fendley, K. A.; Pillay, P.

433

3M's System-Wide Approach to Industrial Energy Efficiency: A Corporate and Facility Perspective  

E-Print Network [OSTI]

system that would reduce energy consumption of an electrical power company in Tokyo. Employees of Sumitomo 3M Limited developed a way of using 3MTM Fluorinert? Liquid as a cooling medium to make slush ice during the night for use in cooling...

Schultz, S. C.; Belk, V.; Asrael, J.

434

CenterPoint Energy- Commercial and Industrial Standard Offer Program  

Broader source: Energy.gov [DOE]

CenterPoint Energy's Commercial and Industrial Standard Offer Program pays incentives to service providers who install energy efficiency measures in commercial or industrial facilities that are...

435

Government-University-Industrial Collaborations for Energy Efficiency and a Better Environment  

E-Print Network [OSTI]

professors... they will incorporate the lessons learned from their "real world" experiences, even if only subconsciously. In fact, academic courses at both graduate and undergraduate levels in the areas ofenergy, the environment, preventive maintenance... or are unduly intimidated by the corrosion problem. COMPUTERIZED PREVENTIVE MAINTENANCE- An effective preventive maintenance program can help a facility substantially reduce both energy and operating costs, and a computerized preventive maintenance system...

Phillips, W. C.

436

EIA Energy Efficiency-Manufacturing Industry Trend Data, 1998 and 2002  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri

437

EIA Energy Efficiency-Table 1b. Fuel Consumption for Selected Industries,  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623Primary

438

EIA Energy Efficiency-Table 3d. Value Added by Selected Industries, 1998,  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623PrimarySelected

439

EIA Energy Efficiency-Table 3e. Gross Output by Selected Industries, 1998,  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623PrimarySelectedand 2002 e Page Last

440

EIA Energy Efficiency-Table 4a. Value of Shipments by Selected Industries,  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623PrimarySelectedand 2002 e Page

Note: This page contains sample records for the topic "industrial energy efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

EIA Energy Efficiency-Table 4b. Value of Production by Selected Industries,  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623PrimarySelectedand 2002 e Page1998,

442

EIA Energy Efficiency-Table 4d. Value Added by Selected Industries, 1998  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623PrimarySelectedand 2002 eand

443

EIA Energy Efficiency-Table 4e. Gross Output by Selected Industries, 1998,  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623PrimarySelectedand 2002 eandand

444

EIA Energy Efficiency-Table 4f. Industrial Production Indexes by Selected  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623PrimarySelectedand 2002

445

Energy Efficiency Program for Certain Commercial and Industrial Equipment: Test Procedures for  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoThese Web sites offer educationalofAProgram

446

U.S. and China Sign Agreement to Increase Industrial Energy Efficiency |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept. of Energy, Office ofNuclearProtocol atChina

447

Energy Efficiency Loan Program  

Broader source: Energy.gov [DOE]

The Keystone HELP Energy Efficiency Loan Program is designed to help homeowners improve energy efficiency with special financing for high-efficiency heating, air conditioning, insulation, windows,...

448

Energy Efficiency & Renewable Energy  

E-Print Network [OSTI]

Energy Efficiency & Renewable Energy Summary of Input to DOE Request for Information DE FOA, stationary, portable power, and early market applications. Comments on the existing DOE targets and justification for any proposed modifications. Topics to be included in the potential workshop / pre

449

New process modeling [sic], design, and control strategies for energy efficiency, high product quality, and improved productivity in the process industries. Final project report  

SciTech Connect (OSTI)

This project was concerned with the development of process design and control strategies for improving energy efficiency, product quality, and productivity in the process industries. In particular, (i) the resilient design and control of chemical reactors, and (ii) the operation of complex processing systems, was investigated. Specific topics studied included new process modeling procedures, nonlinear controller designs, and control strategies for multiunit integrated processes. Both fundamental and immediately applicable results were obtained. The new design and operation results from this project were incorporated into computer-aided design software and disseminated to industry. The principles and design procedures have found their way into industrial practice.

Ray, W. Harmon

2002-06-05T23:59:59.000Z

450

Energy Technical Assistance: Industrial Processes Program  

E-Print Network [OSTI]

The Energy Technical Assistance Division of Texas Engineering Extension Service (TEEX) has implemented an energy conservation program to assist small industry in using energy more efficiently. This full time service, an outgrowth of the Texas A...

McClure, J. D.

1980-01-01T23:59:59.000Z

451

National Grid (Electric)- Large Commercial Energy Efficiency Incentive Programs  

Broader source: Energy.gov [DOE]

National Grid offers electric energy efficiency programs for large commercial and industrial customers.

452

Optimize Deployment of Renewable Energy Technologies for Government Agencies, Industrial Facilities, and Military Installations: NREL Offers Proven Tools and Resources to Reduce Energy Use and Improve Efficiency (Brochure)  

SciTech Connect (OSTI)

The National Renewable Energy Lab provides expertise, facilities, and technical assistance to campuses, facilities, and government agencies to apply renewable energy and energy efficiency technologies.

Not Available

2010-01-01T23:59:59.000Z

453

Energy-Efficient Mortgages  

Broader source: Energy.gov [DOE]

Homeowners can take advantage of energy efficient mortgages (EEM) to either finance energy efficiency improvements to existing homes, including renewable energy technologies, or to increase their...

454

SM Energy-Efficient  

E-Print Network [OSTI]

SM 111 Energy Energy-Efficient Ventilation for Apartment Buildings #12. These Guides provide clear and practical information on issues related to energy-efficient building retrofits

Diamond, Richard

455

Industrial Energy Efficiency Assessments  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.Indiana College Provides Training

456

Presentation 3.1: Report on energy efficient technologies and CO2 reduction potentials in the pulp and paper industry  

E-Print Network [OSTI]

, at the International Energy Agency in Paris. The goal of the workshop is to better quantify the global potentialPresentation 3.1: Report on energy efficient technologies and CO2 reduction potentials in the pulp, and it will imply a fundamental rethinking of the sector's strategy. 251 #12;#12;INTERNATIONAL ENERGY AGENCY AGENCE

457

OPTIONS for ENERGY EFFICIENCY  

E-Print Network [OSTI]

OPTIONS for ENERGY EFFICIENCY in EXISTING BUILDINGS December 2005 CEC-400-2005-039-CMF;OPTIONS FOR ENERGY EFFICIENCY in EXISTING BUILDINGS COMMISSION REPORT TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................iii California's Successful Energy Efficiency Programs

458

Energy Efficient Radio Resource  

E-Print Network [OSTI]

Energy Efficient Radio Resource Management in a Coordinated Multi-Cell Distributed Antenna System Omer HALILOGLU Introduction System Model Performance Evaluation Conclusion References Energy Efficient Hacettepe University 5 September 2014 Omer HALILOGLU (Hacettepe University) Energy Efficient Radio Resource

Yanikomeroglu, Halim

459

Energy Efficient Digital Networks  

E-Print Network [OSTI]

2007. Enabling an Energy-Efficient Future Internet ThroughIEEE 802.3az: The Road to Energy Efficient Ethernet. IEEEPHY Compliant With New Energy Efficient Ethernet Guidelines;

Lanzisera, Steven

2014-01-01T23:59:59.000Z

460

Energy efficient data centers  

E-Print Network [OSTI]

Varone. 2002a. Energy- and Eco-Efficiency of Data Centres. ANew Buildings S Energy- and Eco-Efficiency of Data Centres:FC Source: Energy- and Eco-Efficiency of Data Centres: A

Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial energy efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Data Center Energy Efficiency  

Broader source: Energy.gov [DOE]

The Federal Energy Management Program (FEMP) supports data center efficiency initiatives by encouraging Federal agencies to adopt best practices and construct energy-efficient data centers.

462

Energy Efficiency -- Home Page  

U.S. Energy Information Administration (EIA) Indexed Site

If you are having trouble, call 202-586-8800 for help. Home >Energy Users EEnergy Efficiency Page Energy-Efficiency Measurement MEASUREMENT DISCUSSION: Measures and Policy Issues...

463

Black Hills Energy (Gas)- Commercial Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Black Hills Energy offers commercial and industrial customers incentives to encourage energy efficiency in eligible businesses. Prescriptive rebates are available for furnace and boiler...

464

Xcel Energy (Electric)- Business Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Xcel Energy offers rebate programs for Colorado commercial and industrial customers for a wide range of energy efficiency technologies including heating and cooling, motors, lighting, and...

465

NorthWestern Energy- Commercial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

NorthWestern Energy offers multiple rebate programs for commercial and industrial customers to make energy efficient improvements to their businesses. The E+ Commercial Natural Gas Savings Program...

466

Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the US pulp and paper industry  

SciTech Connect (OSTI)

The pulp and paper industry accounts for over 12% of total manufacturing energy use in the US (US EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the US This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then the cost-effective energy savings potential in case B increases to 22%.

Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

2000-07-01T23:59:59.000Z

467

Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the U.S. pulp and paper industry  

SciTech Connect (OSTI)

The pulp and paper industry accounts for over 12% of total manufacturing energy use in the U.S. (U.S. EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the U.S. This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then the cost-effective energy savings potential in case B increases to 22%.

Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

2000-07-01T23:59:59.000Z

468

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

Brown, Moya Melody, Camilla Dunham Whitehead, Rich; Dunham Whitehead, Camilla; Brown, Rich

2010-09-30T23:59:59.000Z

469

Harnessing Smart Sensor Technology for Industrial Energy Efficiency- Making Process-Specific Efficiency Projects Cost Effective with a Broadly Configurable, Network-Enabled Monitoring Tool  

E-Print Network [OSTI]

and Renewable Energy Best Practices. 5. International Society of Information Fusion. http://isif.org/ 6. Shipley, A.M. and R.N. Elliott. 2006. Ripe for the Picking: Have We Exhausted the Low-Hanging Fruit in the Industrial Sector? ACEEE Report IE061...

Wiczer, J. J.; Wiczer, M. B.

2011-01-01T23:59:59.000Z

470

Applications of industrial ecology : manufacturing, recycling, and efficiency  

E-Print Network [OSTI]

This work applies concepts from industrial ecology to analyses of manufacturing, recycling, and efficiency. The first part focuses on an environmental analysis of machining, with a specific emphasis on energy consumption. ...

Dahmus, Jeffrey B. (Jeffrey Brian), 1974-

2007-01-01T23:59:59.000Z

471

Select an Energy-Efficient Centrifugal Pump: Industrial Technologies Program (ITP) Energy Tips - Pumping Systems Tip Sheet #3 (Fact Sheet).  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartment of Energy Moniz: WhatM-1 SectionMarchSeismicity3 *

472

Reducing Industrial Energy Intensity in the Southeast Project Fact Sheet  

Broader source: Energy.gov [DOE]

This fact sheet contains details regarding a Save Energy Now industrial energy efficiency project that the U.S. Department of Energy funded in Mississippi.

473

Western Massachusetts Electric- Commercial Energy Efficiency Rebates  

Broader source: Energy.gov [DOE]

Western Massachusetts Electric (WMECO) helps commercial and industrial customers offset the additional costs of purchasing and installing energy efficient equipment. WMECO offers rebates for...

474

Rural Business Energy Efficiency Improvement Loan Program  

Broader source: Energy.gov [DOE]

The Maryland Agricultural and Resource Based Industry Development Corporation (MARBIDCO) offers low interest loans for energy efficiency improvements to farms and rural businesses through the Rural...

475

U.S. Department of Energy Energy Efficiency and Renewable Energy  

E-Print Network [OSTI]

U.S. Department of Energy Energy Efficiency and Renewable Energy One in a series of industrial energy efficiency sourcebooks a sourcebook for industry Bringing you a prosperous future where energy of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) Best

476

Energy Efficient Digital Networks  

E-Print Network [OSTI]

introduced to the market, saving energy in California, thesupport EEE to save energy, so broad market adoption shouldaccelerate market transformation of energy efficient digital

Lanzisera, Steven

2014-01-01T23:59:59.000Z

477

Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector  

SciTech Connect (OSTI)

Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. With the working of energy programs and policies on carbon regulation, how to effectively analyze and manage the costs associated with GHG reductions become extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions (e.g., carbon emission) for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct brief overview on different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by problem statements, and a description of the basic concepts of quantifying the cost of conserved energy including integrating non-regrets options. A non-regrets option is defined as a GHG reduction option that is cost effective, without considering their additional benefits related to reducing GHG emissions. Based upon these, we develop information on costs of mitigation measures and technological change. These serve as the basis for collating the data on energy savings and costs for their future use in integrated assessment models. In addition to descriptions of the iron and steel making processes, and the mitigation measures identified in this study, the report includes tabulated databases on costs of measure implementation, energy savings, carbon-emission reduction, and lifetimes. The cost curve data on mitigation measures are available over time, which allows an estimation of technological change over a decade-long historical period. In particular, the report will describe new treatment of technological change in energy-climate modeling for this industry sector, i.e., assessing the changes in costs and energy-savings potentials via comparing 1994 and 2002 conservation supply curves. In this study, we compared the same set of mitigation measures for both 1994 and 2002 -- no additional mitigation measure for year 2002 was included due to unavailability of such data. Therefore, the estimated potentials in total energy savings and carbon reduction would most likely be more conservative for year 2002 in this study. Based upon the cost curves, the rate of change in the savings potential at a given cost can be evaluated and be used to estimate future rates of change that can be the input for energy-climate models. Through characterizing energy-efficiency technology costs and improvement potentials, we have developed and presented energy cost curves for energy efficiency measures applicable to the U.S. iron and steel industry for the years 1994 and 2002. The cost curves can change significantly under various scenarios: the baseline year, discount rate, energy intensity, production, industry structure (e.g., integrated versus secondary steel making and number of plants), efficiency (or mitigation) measures, share of iron and steel production to which the individual measures can be applied, and inclusion of other non-energy benefits. Inclusion of other non-energy benefits from implementing mitigation measures can reduce the costs of conserved energy significantly. In addition, costs of conserved energy (CCE) for individual mitigation measures increase with the increases in discount rates, resulting in a general increase in total cost of mitigation measures for implementation and operation with a higher discount rate. In 1994, integrated steel mills in the U.S. produced 55.

Xu, T.T.; Sathaye, J.; Galitsky, C.

2010-09-30T23:59:59.000Z

478

Energy Efficiency of LEDs  

Broader source: Energy.gov (indexed) [DOE]

Efficiency of LEDs The energy efficiency of LEDs has increased substantially since the first general illumination products came to market, with currently available lamps and...

479

Ontario's Industrial Energy Services Program  

E-Print Network [OSTI]

% of the engineering costs up to a maximum depending on the size of the annual energy bill. Once the work has been completed and the consultant's invoice paid, a copy of the invoice and a co~y of the report is sent to the Ministry. After internal review, a cheque... represent approximately $600 million annually. Recently, the Ontario Ministry of Energy released a policy paper outlining the government's commitment to energy conservation and efficiency. One of the key areas was Industry, and the Ministry's programs...

Ploeger, L. K.

480

Is There an Energy Efficiency Gap?  

E-Print Network [OSTI]

Many analysts of the energy industry have long believed that energy efficiency offers an enormous "win-win" opportunity: through aggressive energy conservation policies, we can both save money and reduce negative externalities ...

Allcott, Hunt Volney

Note: This page contains sample records for the topic "industrial energy efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

High-Tech Means High-Efficiency: The Business Case for EnergyManagement in High-Tech Industries  

SciTech Connect (OSTI)

In the race to apply new technologies in ''high-tech'' facilities such as data centers, laboratories, and clean rooms, much emphasis has been placed on improving service, building capacity, and increasing speed. These facilities are socially and economically important, as part of the critical infrastructure for pharmaceuticals,electronics, communications, and many other sectors. With a singular focus on throughput, some important design issues can be overlooked, such as the energy efficiency of individual equipment (e.g., lasers, routers and switches) as well as the integration of high-tech equipment into the power distribution system and the building envelope. Among technology-based businesses, improving energy efficiency presents an often untapped opportunity to increase profits, enhance process control,maximize asset value, improve the work place environment, and manage a variety of business risks. Oddly enough, the adoption of energy efficiency improvements in this sector lags behind many others. As a result, millions of dollars are left on the table with each year ofoperation.

Shanshoian, Gary; Blazek, Michele; Naughton, Phil; Seese, RobertS.; Mills, Evan; Tschudi, William

2005-11-15T23:59:59.000Z

482

Cleanroom Energy Efficiency Workshop Proceedings  

SciTech Connect (OSTI)

On March 15, 1999, Lawrence Berkeley National Laboratory hosted a workshop focused on energy efficiency in Cleanroom facilities. The workshop was held as part of a multiyear effort sponsored by the California Institute for Energy Efficiency, and the California Energy Commission. It is part of a project that concentrates on improving energy efficiency in Laboratory type facilities including cleanrooms. The project targets the broad market of laboratory and cleanroom facilities, and thus cross-cuts many different industries and institutions. This workshop was intended to raise awareness by sharing case study success stories, providing a forum for industry networking on energy issues, contributing LBNL expertise in research to date, determining barriers to implementation and possible solutions, and soliciting input for further research.

Tschudi, Bill

1999-03-15T23:59:59.000Z

483

Industrial Energy Use Indices  

E-Print Network [OSTI]

of variations for all industry types in warm versus cold regions of the U.S. generally is greater than unity. Data scatter may have several explanations, including climate, plant area accounting, the influence of low cost energy and low cost buildings used...

Hanegan, A.; Heffington, W. M.

2007-01-01T23:59:59.000Z

484

Energy Efficiency and Energy Policy  

E-Print Network [OSTI]

Energy Efficiency and Energy Policy David E. Claridge, Director Energy Systems Laboratory November 19, 2014 ESL-KT-14-11-17 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 50 Years of Automobile Improvements ? 1960s...: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Impact of Auto/Truck Efficiency Increases ? Autos/light trucks used energy = Energy Imports in 2012 ? AUTO/TRUCK EFFICIENCY IMPROVEMENTS have CUT U.S. ENERGY IMPORTS IN HALF ESL...

Claridge, D.

2014-01-01T23:59:59.000Z

485

Energy Efficiency Goals  

Broader source: Energy.gov [DOE]

In 2009, Missouri enacted the Missouri Energy Efficiency Investment Act, creating energy efficiency sales and peak reduction goals to be met through investment in demand side management. The goals...

486

Efficiency Exchange Conference Highlights Energy Efficiency Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficiency Alliance (NEEA), Bonneville Power Administration and electric utilities throughout the Northwest, are hosting the second annual Efficiency Exchange...

487

Lincoln Electric System (Commercial and Industrial)- Sustainable Energy Program  

Broader source: Energy.gov [DOE]

Lincoln Electric System (LES) offers a variety of energy efficiency incentives for commercial and industrial customers through the Sustainable Energy Program (SEP). Some incentives are provided on...

488

Dakota Electric Association- Commercial and Industrial Custom Energy Grant Program  

Broader source: Energy.gov [DOE]

Dakota Electric's Custom Energy Grant Program is offered for any commercial or industrial customer that installs qualifying energy-efficient products which exceed conventional models and result in...

489

Energy Efficiency Financing  

Office of Energy Efficiency and Renewable Energy (EERE)

Information and examples of state financing for energy efficiency programs, with descriptions on implementation methods and concerns.

490

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the U.S. Pulp and Paper Sector  

E-Print Network [OSTI]

Best Practices in the Netherlands: Top Ten Energy Saving Opportunities. Proceedings COST Strategic Workshop “Improving Energy Efficiency

Xu, Tengfang

2014-01-01T23:59:59.000Z

491

ENTRY LOBBY ENERGY EFFICIENCY  

E-Print Network [OSTI]

ENTRY LOBBY ENERGY EFFICIENCY Clerestory windows provide natural day-lighting.· Exterior roof SUSTAINABILITY FEATURES #12;ADMINISTRATION ENERGY EFFICIENCY High performance window glazing· minimizes heat gain ENERGY EFFICIENCY High performance window glazing· minimizes heat gain. Light-colored roofing reflects

Escher, Christine

492

2015-01-16 Issuance: Energy Efficiency Program for Consumer Products and Commercial and Industrial Equipment: Notice of Information Collection Extension  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register notice of information collection extension regarding consumer products and commercial and industrial equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on January 16, 2015. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

493

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network [OSTI]

rule of thumb is that boiler efficiency can be increased bytemperature, and boiler efficiency. They are a recommendedresult is improved boiler efficiency. Turbulator installers

Worrell, Ernst

2011-01-01T23:59:59.000Z

494

Northwest Energy Efficiency Alliance Request for Proposals to Evaluate  

E-Print Network [OSTI]

Northwest Energy Efficiency Alliance Request for Proposals to Evaluate Existing Consumer Behavioral research, evaluations and behavior change initiatives. The Northwest Energy Efficiency Alliance (NEEA interest groups and energy efficiency industry representatives that operate in the states of Idaho, Montana

495

Energy Efficiency: A Priority  

E-Print Network [OSTI]

Energy Efficiency: A Priority October 9th 2013 2 Energy efficiency: a priority NBC profile (April 30th, 2013) 1st financial institution in Quebec 19 920 employees 451 branches in Canada 2,4 million individual clients 3 Energy efficiency: a... priority Energenia?s profile Consulting firm specializing exclusively in energy efficency Founded by Robert Patenaude in 2003 National Bank?s main partner for the development, implementation and supervision of the energy efficiciency program since...

Patenaude, R.

2013-01-01T23:59:59.000Z

496

Utility Partnership Webinar Series: State Mandates for Utility Energy Efficiency  

Broader source: Energy.gov [DOE]

This webinar highlights state mandates from throughout the country, and how they’ve influenced utility industrial energy efficiency programs.

497

Energy Efficiency Program Overview  

E-Print Network [OSTI]

Energy Efficiency Program Overview Clean Air Through Energy Efficiency CATEE Conference November 18-20, 2014 Dallas, TX ESL-KT-14-11-02 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 General Overview • State of Texas... enacted legislation requiring Transmission and Distribution utilities (TDUs) achieve annual goals for energy efficiency • Public Utility Commission of Texas (PUCT) implemented rules and guidelines for consistency among the TDU programs • Texas TDUs...

Mutiso,S.

2014-01-01T23:59:59.000Z

498

Scottish Energy Research Academy Energy Industry Doctorates  

E-Print Network [OSTI]

on a case by case basis. · Wind energy · Marine energy · Bio-energy · Solar energy · Energy conversionScottish Energy Research Academy (SERA) Energy Industry Doctorates Project Selection Process Notes The Energy Technology Partnership (ETP) has established an Energy Industry Doctorate Programme

Painter, Kevin

499

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

E-Print Network [OSTI]

the NEMA Premium Efficiency Electric Motor specification wasElectric Apparatus Service Association (EASA) (2003). The Effect of Repair/Rewinding on Motor Efficiency.

Sathaye, J.

2011-01-01T23:59:59.000Z

500

Briggs & Stratton Sustainable Energy Efficiency  

E-Print Network [OSTI]

Technology Conference New Orleans, LA. May 21-24, 2013 7 Energy Teams ? Corporate Energy Manager ? Corporate Environmental Department ? Facilities ? Plant Manager ? Designated Facility Energy Leader ? Various team members ? Corporate-wide Monthly...-05-22 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 13 Energy Saved through B&S Energy Efficiency Measures 7.8 7.2 15.1 6.9 13.9 7.9 7.8 15...

Feustel, R.

2013-01-01T23:59:59.000Z